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1 Introduction

Risk managers of financial institutions are particularly interested in the left—i.e., downside—tail

of the return distribution of financial assets. To assess the short–term exposure to market risks,

they are required to evaluate future shortfall probabilities or value–at–risk levels of financial

investments. Such estimates can be based on the distribution of the returns themselves. For

example, ever since the pioneering works of Mandelbrot (1963) and Fama (1965), there have

been numerous studies investigating the appropriateness of the stable Paretian distribution for

modeling the unconditional distribution of asset returns (for an overview, see, for example, Mittnik

and Rachev, 1993; and McCulloch, 1997).

However, short–term prediction often benefits substantially when taking conditional volatility

into account. The GARCH class of conditional models has been widely and—both from an

academic and applied perspective—successfully used to model returns on financial assets (see

Palm, 1997 and Gourieroux, 1997, for surveys). Although a stationary GARCH model with

normally distributed innovations gives rise to an unconditional distribution with higher (possibly

nonexistent) kurtosis than the normal, it is often found that residuals from estimated GARCH

models of financial return data still tend to exhibit nonnegligible kurtosis. To allow for this, other

fatter tailed distributions for GARCH innovations have been considered in the literature, most

notably the Student’s t. Only very recently has the stable Paretian distribution been considered in

the context of modeling the conditional heteroscedastic distribution of asset returns. Special cases

of the model considered herein were developed by McCulloch (1985), Nelson (1990), Panorska et

al. (1995), and Mittnik et al. (1998), while a more general case was examined in Liu and Brorsen

(1995), Paolella (1999) and Mittnik, Paolella and Rachev (2000, 2002).

Like the Student’s t, the stable Paretian distribution includes the normal distribution as a spe-

cial, limiting case and permits heavy–tailed distributions for GARCH innovations. However, the

stable Paretian distribution allows for skewness, an attractive property in financial applications

not shared by the Student’s t. In addition to this practical aspect, the stable Paretian distribu-

tion also has the appealing theoretical property that it is the only valid distribution that arises

as a limiting distribution of sums of independently, identically distributed (iid) random variables.

This is highly desirable, given that error terms in econometric models are usually interpreted as

random variables that represent the sum of the external effects not being captured by the model.
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This contribution investigates the use of asymmetric stable Paretian power GARCH models

for modeling downside risk and demonstrates that this model class is more suitable than the class

of Student’s t GARCH models, particularly when one uses a goodness–of–fit criterion that focuses

on the tails of the conditional distribution.

The remainder is organized as follows. Section 2 discusses GARCH processes with stable

Paretian innovations and stationarity conditions. Section 3 reconsiders the empirical analysis

of the five exchange–rate series in Liu and Brorsen (1995) using the appropriate measure for

persistence of volatility and compares the goodness of fit of the estimated stable Paretian and

Student’s t GARCH models. The problem of out–of–sample conditional density prediction with

particular focus on predicting downside market risk is considered in Section 4. Section 5 concludes.

2 GARCH–Stable Processes

Sequence yt is said to be a stable Paretian power GARCH process or, in short, an Sδα,βGARCH(r, s)

process (see Panorska et al., 1995; Paolella, 1999; Rachev and Mittnik, 2000), if

yt = µ+ ctεt, εt
iid∼ Sα,β (0, 1) (1)

and

cδt = θ0 +
r∑

i=1

θi|yt−i − µ|δ +
s∑

j=1

φjc
δ
t−j , (2)

where Sα,β (0, 1) denotes the standard asymmetric stable Paretian distribution with stable index

α, skewness parameter β ∈ [−1, 1], zero location parameter, and unit scale parameter. There exist

several notational varieties of the stable Paretian distribution; we use the same as in Samorod-

nitsky and Taqqu (1994) and Rachev and Mittnik (2000), whereby

∫ ∞

−∞
eitxdH(x)=





exp{−cα|t|α[1− iβsign(t) tan πα
2 ] + iδt}, if α 6= 1,

exp{−c|t|[1 + iβ 2
π sign(t) ln |t|] + iδt}, if α = 1,

(3)

is the characteristic function and H denotes the distribution function corresponding to Sα,β(δ, c).

The density is symmetric for β = 0 and skewed to the right (left) for β > 0 (β < 0). Stable

index α, which, in general, assumes values in interval (0,2], determines the tail-thickness of the

distribution. As α approaches 2, tails become thinner; and for α = 2 the standard stable Paretian

distribution coincides with normal distribution N(0, 2). For α < 2, εt does not possess moments

of order α or higher.
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Mittnik et al. (2002) derived sufficient conditions under which the Sδα,βGARCH(r, s) process

has a unique strictly stationary solution. These are given by 1 < α ≤ 2, 0 < δ < α, c0 > 0, ci ≥ 0,

i = 1, . . . , r, r ≥ 1, dj ≥ 0, j = 1, . . . , s, s ≥ 0, and that the volatility persistence, VS , defined by

VS := E|Z|δ
r∑

i=1

θi +

s∑

j=1

φj (4)

for Z ∼ Sα,β (0, 1), satisfies

VS ≤ 1. (5)

If 1 < α ≤ 2 and 0 < δ < α, they also showed that

λα,β,δ := E|Z|δ = 1

ψ
δ

Γ

(
1− δ

α

)
(1 + τ2

α,β)
δ
2α cos

(
δ

α
arctan τα,β

)
, (6)

where τα,β := βtan (απ/2) and

ψ
δ
=





Γ (1− δ) cos πδ2 , if δ 6= 1,

π/2, if δ = 1.
(7)

Restrictions 1 < α ≤ 2 and 0 < δ < α not only appear to be satisfied for the data sets used

below, but also for other, even more volatile series, such as stock price indices and East Asian

currencies (see Mittnik et al, 1998 and Mittnik et al, 2000, respectively).

Analogous to the ordinary normal GARCH model (Engle and Bollerslev, 1986), we say that

yt is an integrated Sδα,βGARCH(r, s) process, denoted Sδα,βIGARCH(r, s), if, in (5), VS = 1. In

practice, the estimated volatility persistence, V̂S , tends to be quite close to one for highly volatile

series, so that an integrated model might offer a reasonable data description. Because both finite

sample and even asymptotic properties of V̂S and the associated likelihood ratio test statistics are

not known (see, however, Mittnik et al., 2000), it is not immediately clear how one can test for an

integrated process. Instead of formally testing, we suggest fitting both models and examining the

change in various goodness–of–fit statistics, most notably the Anderson–Darling statistic, which

is particularly relevant for assessing the models’ ability to successfully model the value–at–risk

(see Section 3.3 below).
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3 Modeling Exchange–Rate Returns

To examine the appropriateness of the stable GARCH hypothesis, we model returns1 on five

daily spot foreign exchange rates against the U.S. dollar, namely the British pound, Canadian

dollar, German mark, Japanese yen, and the Swiss franc. The choice of exchange rate allows us to

compare our more general GARCH specification to that used by Liu and Brorsen (1995), who set

α = δ in (2). However, our sample is somewhat larger than theirs, covering the period January

2, 1980 to July 28, 1994, yielding series of lengths 3681, 3682, 3661, 3621, and 3678, respectively.

Serial correlation was found to be negligible, and, as is common in practice, a GARCH(r, s)

specification with r = s = 1 was sufficient to capture serial correlation in the absolute returns.

Therefore, we specify a model of the form

rt = µ+ ctεt (8)

cδt = θ0 + θ1 |rt−1 − µ|δ + φ1c
δ
t−1 (9)

for each of the five currencies.

3.1 Approximate Maximum Likelihood Estimation

Evaluation of the probability density function (pdf) and, thus, the likelihood function of the Sα,β

distribution is nontrivial, because it lacks an analytic expression. The maximum likelihood (ML)

estimate of parameter vector θθθ = (µ, c0, θ0, θ1, φ1, α, β, δ)
′ for the Sδα,βGARCH(1, 1) models (8) –

(9) is obtained by maximizing the logarithm of the likelihood function

L(θθθ; r1, . . . , rT ) =

T∏

t=1

c−1
t Sα,β

(
rt − µ
ct

)
, (10)

where c0 denotes the unknown initial value of ct.

The ML estimation we conduct is approximate in the sense that the stable Paretian density

function Sα,β ((rt − µ) /ct) needs to be approximated. To do so, we follow the algorithm of Mittnik

et al. (1999), which approximates the stable Paretian density via fast Fourier transform of the

characteristic function. DuMouchel (1973) shows that the ML estimator of the parameters of

the stable density is consistent and asymptotically normal with the asymptotic covariance matrix

1We define the return rt in period t by rt = 100× (lnPt − lnPt−1), where Pt is the exchange rate at time t.
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being given by the inverse of the Fisher information matrix. Approximate standard errors of the

estimates can be obtained via numerical approximation of the Hessian matrix.

Below, we will demonstrate that—for the five series under consideration—the Sδα,βGARCH(r, s)

model outperforms its Student’s t counterpart. However, it is of practical interest to know at

least three things before adopting a new and more complex method: First, how easy the stable

ML estimation routine is to implement; second, whether it is numerically well-behaved; and third,

how fast it performs. When implemented in high–level software which provide both FFT and

linear interpolation routines (such as Matlab and Splus), the algorithm becomes a straightforward

programming exercise. Our experience has shown that the method is extremely well behaved,

giving rise to numerical problems only for grossly misspecified and/or overspecified models (for

which the Student’s t GARCH model also has difficulties) or, in the case of the more general class

of ARMA-GARCH models, when there is near zero-pole cancellation in the ARMA structure—a

well–known difficulty in ARMA estimation.

The satisfactory behavior of the algorithm is actually not surprising for at least two reasons.

First, there is no explicit numerical integration involved (as in the approach of Liu and Brorsen,

1995) and, second, the method can be made arbitrarily accurate by the choice of several tuning

constants (recommendations for which are given in Mittnik et al., 1999). Nevertheless, it is clear

that the method will take longer than the (essentially closed form) evaluation of the Student’s t

density. For the series considered in this paper, use of a quasi-Newton minimization algorithm

(BFGS, as implemented in Matlab 5.2) with convergence tolerance of 10−4 resulted in convergence

after about 150 to 350 function evaluations (including gradient calculations). Rather contrary to

our initial expectations—and fears—, the choice of initial values is of surprisingly little impor-

tance. Given any “reasonable” set of values, say α > 1.4, |β| < 0.7, |µ| < 0.2, θ0 > 0, θ1 > 0 and

φ1 > 0.2, convergence to the same respective maxima occurred for all five exchange–rate series

under consideration, and also for the vast majority of trials from simulation experiments. From

a purely numerical standpoint then, the method appears both highly reliable and “stable”.

Evaluation of the GARCH recursion requires presample values ε0 and c0. Following Nelson

and Cao (1992), one could set those to their unconditional expected values, i.e.,

ĉ0 =
θ̂0

1− λα̂,β̂,δ̂
∑r

i=1 θ̂i −
∑s

j=1 φ̂j
and ε̂0 = λ̂ĉ0. (11)

In the IGARCH case, (11) will be invalid, so we instead estimate c0 as an additional parameter.
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In fact, we chose to do this for all models considered here, as (11) will clearly be problematic for

nearly integrated GARCH models.

For the integrated model Sδα,βIGARCH(1, 1), the restriction φ1 = 1 − λα,β,δθ1 needs to be

imposed. Notice that this entails evaluation of (4) at each iteration, as φ1 is also dependent on

values α̂, β̂ and δ̂.

We compare the Sδα,βGARCH model to the most commonly used heavy–tailed variant of the

GARCH model, the Student’s t-GARCH models in power form, say tδν–GARCH(r, s), given by

rt = µ+ ctεt, εt
iid∼ t(ν), (12)

cδt = θ0 +
r∑

i=1

θi |rt−i − µ|δ +
s∑

j=1

φjc
δ
t−j , (13)

where t(ν) refers to the Student’s t distribution with ν degrees of freedom, i.e.,

f (x; ν) = Kν

(
1 +

x2

ν

)− ν+1
2

(14)

and

Kν =
Γ
(
ν+1
2

)
ν−1/2

√
πΓ
(
ν
2

) . (15)

Assuming 0 < δ < ν and ν > 1,2 taking unconditional expectations of cδt in (13) shows that Ecδt

exists if E |T |δ
∑r

i=1 θi +
∑s

j=1 φj < 1, where T ∼ t (ν) and

λν,δ := E |T |δ =
√
νδ

π
Γ

(
δ + 1

2

)
Γ

(
ν − δ
2

)
Γ−1

(ν
2

)
. (16)

Analogous to (4), the measure of volatility persistence for tδν–GARCH(r, s) models is defined to

be

Vt := λν,δ

r∑

i=1

θi +
s∑

j=1

φj . (17)

Similar remarks regarding treatment of presample values and the imposing of the IGARCH

constraint apply to the Student’s t model as well.

2The condition ν > 1 is analogous to requiring α > 1 in the stable Paretian case and implies existence of a finite

first moment of the innovations.
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3.2 Estimation Results and Volatility Persistence

The parameter estimates of the models are presented in Table 1. Noteworthy are the estimates

of the skewness parameter β: All β̂ values are (statistically) significantly different from zero,

although those for the British pound and German mark series are quite close to zero. In addition,

when |β| < 0.3 and α is over 1.8, the amount of skewness is, for practical purposes, slight.

Skewness is most pronounced for the Japanese yen, for which α̂ = 1.81 and β̂ = −0.418.
The persistence–of–volatility measure given in the last column of Table 1 reflects the speed

with which volatility shocks die out. A V̂ –value near one is indicative of an integrated GARCH

process, in which volatility shocks have persistent effects. Under the Sα,β assumption, the models

for the Canadian dollar (V̂S = λα̂,β̂,δ̂ θ̂1 + φ̂1 = 1.001) and Japanese yen (V̂S = 1.002) series

would suggest that they are very close to being integrated. Under the Student’s t assumption,

V̂t = λν̂,δ̂ θ̂1 + φ̂1 = 0.992 for the Canadian dollar, which is also rather close to being integrated,

while V̂t is only 0.972 for the Japanese yen. Thus, for these two currencies, the indications

regarding persistence of volatility differ under the two distributional assumptions. For the other

currencies, the measures are strikingly close, most notably for the German mark (V̂S = V̂t = 0.969)

and the Swiss franc (V̂S = 0.971, V̂t = 0.968). It is interesting to note that, for each of these

two currencies, the log-likelihood values Lt and LS are also extremely close. These are discussed

further in the next section.

For all five series, we also estimated the models with the IGARCH condition imposed. Table

2 shows the resulting parameter estimates. Not surprisingly, for those models for which the

persistence measure was close to unity, the IGARCH–restricted parameter estimates differ very

little. For the remaining models, the greatest changes occur with the power parameter δ and,

to a lesser extent, the shape parameters α and ν. The former increase, while the latter decrease

under IGARCH restrictions.

It should also be noted that the restriction α = δ, imposed by Liu and Brorsen (1995) when

estimating GARCH-stable models for the same five currencies, is not supported by our results.

This is important because, if δ ≥ α, the unconditional first moments of ct is infinite for any

α < 2. The knife–edge specification δ = α does not only induce conceptual difficulties, but also

leads to a highly volatile evolution of the ct series in practical work. For our estimates, we obtain

δ̂ < α̂, which suggest that conditional volatility cδt is a well–defined quantity in the sense that

E
(
cδt | rt−1, rt−2, . . .

)
<∞ for VS < 1.
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Table 1: GARCH Parameter Estimatesa

Intercept GARCH Distribution Persistence

Parameters Parameters Measureb

µ θ0 θ1 φ1 δ Shape Skew V̂

British

Sα,β -9.773e-3 8.085e-3 0.04132 0.9171 1.359 1.850 -0.1368 0.984

(0.012) (2.39e-3) (6.42e-3) (0.0118) (0.0892) (0.0245) (0.0211)

t -2.312e-3 0.01190 0.06373 0.9071 1.457 6.218 — 0.976

(0.010) (3.56e-3) (0.0115) (0.0200) (0.167) (0.615)

Canadian

Sα,β 5.167e-3 1.034e-3 0.04710 0.9164 1.404 1.823 0.3577 1.001

(0.0614) (3.12e-4) (6.63e-3) (0.0118) (0.0143) (0.0104) (0.0209)

t -2.240e-3 7.774e-4 0.06112 0.9118 1.793 5.900 — 0.992

(3.83e-3) (6.90e-4) (5.98e-3) (7.27e-3) (0.0150) (0.0801)

German

Sα,β 2.580e-3 0.01525 0.05684 0.8971 1.101 1.892 -0.06779 0.969

(0.016) (1.61e-3) (3.44e-3) (7.42e-3) (9.78e-3) (0.0216) (0.0184)

t 6.643e-3 0.01812 0.07803 0.8938 1.261 7.297 — 0.969

(9.21e-4) (2.25e-3) (6.45e-3) (4.43e-3) (0.147) (0.186)

Japanese

Sα,β -0.01938 4.518e-3 0.06827 0.8865 1.337 1.814 -0.4175 1.002

(0.0166) (1.12e-3) (7.91e-3) (0.0124) (0.0132) (0.0107) (8.80e-3)

t 5.318e-3 9.949e-3 0.07016 0.8756 1.816 5.509 — 0.972

(8.87e-3) (3.03e-3) (0.0119) (0.0205) (0.162) (0.461)

Swiss

Sα,β -2.677e-3 0.01595 0.04873 0.9115 1.041 1.902 -0.2836 0.971

(0.0124) (3.30e-3) (6.84e-3) (0.0132) (0.144) (0.0206) (0.0722)

t 8.275e-3 0.02099 0.06825 0.9061 1.159 8.294 — 0.968

(0.0118) (3.91e-3) (6.85e-3) (7.25e-3) (0.179) (0.933)
aEstimated models: rt = µ + ctεt, c

δ
t = θ0 + θ1 |rt−1 − µ|δ + φ1c

δ
t−1. “Shape” denotes the

degrees of freedom parameter ν for the Student’s t distribution and stable index α for the

stable Paretian distribution; “Skew” refers to the stable Paretian skewness parameter β.

Standard deviations resulting from ML estimation are given in parentheses.

b V̂ corresponds to V̂S in the stable Paretian and V̂t in the Student’s t case. V = 1 implies

an IGARCH model.

8



Table 2: IGARCH Parameter Estimatesa

Intercept IGARCH Distribution

Parameters Parameters

µ θ0 θ1 φ1 δ Shape Skew

British

Sα,β -0.01023 7.050e-3 0.03781 0.9114 1.598 1.846 -0.1340

(0.0103) (1.79e-3) (5.64e-3) — (0.0677) (0.0224) (0.0147)

t -3.033e-3 4.237e-3 0.05774 0.9130 1.949 5.543 —

(0.0101) (1.68e-3) (9.83e-3) — (0.264) (0.484)

Canadian

Sα,β 5.148e-3 1.115e-3 0.04689 0.9154 1.404 1.823 0.3578

(3.65e-3) (2.14e-4) (5.71e-3) — (0.0143) (0.0105) (0.0209)

t -2.098e-3 4.998e-4 0.06468 0.9146 1.796 5.890 —

(3.48e-3) (1.37e-4) (7.54e-3) — (0.0226) (0.0838)

German

Sα,β 8.959e-3 9.666e-3 0.04518 0.8896 1.676 1.881 0.03944

(0.0113) (1.85e-3) (6.10e-3) — (0.0662) (0.0217) (0.0930)

t 8.851e-3 5.505e-3 0.08124 0.9003 1.741 6.560 —

(0.0106) (1.60e-3) (0.0106) — (0.231) (0.676)

Japanese

Sα,β -0.01932 4.814e-3 0.06768 0.8858 1.336 1.814 -0.4175

(8.44e-3) (9.75e-4) (7.68e-3) — (0.0751) (0.0226) (0.0151)

t 6.136e-3 5.611e-3 0.06036 0.8689 2.314 5.066 —

(8.57e-3) (1.31e-3) (0.0112) — (0.224) (0.410)

Swiss

Sα,β 3.823e-3 0.01111 0.03700 0.9009 1.724 1.889 -0.1703

(0.0127) (2.65e-3) (5.40e-3) — (0.0419) (0.0169) (0.137)

t 9.130e-3 2.047e-3 0.07125 0.9347 1.166 8.194 —

(0.0119) (8.34e-4) (9.13e-3) — (9.79e-3) (0.0996)
a Estimated models: rt = µ + ctεt, c

δ
t = θ0 + θ1 |rt−1 − µ|δ + (1− λθ1) c

δ
t−1

with IGARCH condition φ̂1 = 1− λ̂θ̂1 imposed. See footnote to Table 1 for

further details.
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3.3 Goodness of Fit

We employ three likelihood–based and one empirical CDF–based criteria for comparing the good-

ness of fit of the candidate models. The first is the maximum log-likelihood value obtained from

ML estimation. This value may be viewed as an overall measure of goodness of fit and allows

us to judge which candidate is more likely to have generated the data. The second is the AICC

(Hurvich and Tsai, 1989; see also Brockwell and Davis, 1991, eq. 9.3.7) given by

AICC = −2L+
2T (k + 1)

T − k − 2
, (18)

where k denotes the number of estimated parameters and T the number of observations. This is

the bias–corrected information criterion of Akaike (1973), which corrects the latter’s tendency to

overfit. Similarly, the SBC (Schwartz, 1978), defined as

SBC = −2L+
k log (T )

T
, (19)

is a similar penalizing strategy which is commonly used.

The fourth criterion is the Anderson–Darling statistic (Anderson and Darling, 1952; see also

Press et al., 1991; and Tanaka, 1996), given by

AD = sup
x∈R

|Fs(x)− F̂ (x)|√
F̂ (x)

(
1− F̂ (x)

) , (20)

where F̂ (x) denotes the cdf of the estimated parametric density, and Fs(x) is the empirical sample

distribution, i.e.,

Fs(x) =
1

T

T∑

t=1

I(−∞,x]

(
rt − µ̂
ĉt

)
,

where I (·) is the usual indicator function. The AD statistic weights discrepancies appropriately

across the whole support of the distribution. This is especially important if one is interested

in determining conditional shortfall probabilities, i.e., the probability of large investment losses,

or so-called value–at–risk measures, where one focuses on the left tail of the conditional return

distribution.

Table 3 displays the aforementioned goodness-of-fit measures for the estimated models. In

both the unrestricted and IGARCH restricted cases, the inference suggested from the maximum

log-likelihood value L, and the AICC and SBC are identical. This is not too surprising, given the

large ratio of observations to parameters, and the fact that there is only one parameter difference

between the Student’s t and stable Paretian GARCH models.

It appears that L significantly favors the Student’s t distribution for the British pound (with

values, in obvious notation, Lt = −3828.6 and LS = −3842.0) and the Canadian dollar (Lt =
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−152.25, LS = −159.92). For the German mark (Lt = −3896.2, LS = −3896.5) and the Swiss

franc (Lt = −4308.1, LS = −4308.6), the log-likelihood values, AICC and SBC are very close,

albeit larger for the Student’s t. On the other hand, the Sα,β assumption is favored quite strongly

for the Japanese yen with LS = −3178.7 as compared to Lt = −3331.7.
For the British pound, the AD statistic (ADt = 0.0244, ADS = 0.0375) slightly favors the Stu-

dent’s t model, in agreement with L, although the difference is relatively small. The AD statistics

for the remaining countries all favor the stable Paretian model, particularly for the German mark

(ADt = 0.345, ADS = 0.0368), the Japanese yen (ADt = 0.0986, ADS = 0.0401) and the Swiss

franc (ADt = 0.287, ADS = 0.0457). The usual caveat applies, in that, statistically speaking,

it is not clear to what extent these differences are significant. However, given virtually identical

log-likelihood values, but AD statistics which are several times smaller for the Sα,β distribution,

one might safely conclude that, particularly in the tails of the conditional distribution, the Sα,β

model offers a distinct advantage, irrespective of its desirable theoretical properties which are not

shared by the Student’s t distribution.

For each currency and both distributional assumptions, Figure 1 plots the values

ADt =
|Fs (ε̂t:T )− F̂ (ε̂t:T ) |√
F̂ (ε̂t:T )

(
1− F̂ (ε̂t:T )

) ,

t = 1, . . . , T , where T is the sample size and ε̂t:T denotes the sorted GARCH–filtered residuals.

In most cases, most notably for the Student’s t GARCH model of the German, Japanese and

Swiss currency returns, the maximum absolute value of the ADt occurs in the (left) tail of the

distribution.

Turning now to the IGARCH–restricted fits, it is clear that the log–likelihood values must nec-

essarily decrease, since none of the unrestricted GARCH models precisely satisfied the IGARCH

restrictions. However, for the Sα,β model of the Canadian dollar (L = 159.97) and Japanese yen

(L = 3178.8), the log-likelihoods are very close to their unrestricted counterparts. This was ex-

pected, as the IGARCH condition for the unrestricted models of these two currencies were nearly

met. Somewhat surprising, however, is the small decrease in AD values for the Sα,β model of the

Canadian dollar (ADS = 0.0529) and Japanese yen (ADS = 0.0394). Particularly for the latter

two currencies, stable IGARCH models appear to describe the daily returns quite plausibly.

4 Prediction of Densities and Downside Risk

Decisions on financial investments are typically based on the expected return and the expected

risk of the assets under consideration. Rather than adhering to the conventional mean-variance

11



Table 3: Goodness–of–Fit Measures of Estimated Models a

L AICC SBC AD

Sα,β t Sα,β t Sα,β t Sα,β t

Britain:

GARCH -3842.0 -3828.6 7700.0 7671.2 7684.0 7657.2 0.0375 0.0244

IGARCH -3842.3 -3837.1 7698.6 7686.2 7684.6 7674.2 0.0417 0.0420

Canada:

GARCH -159.92 -152.25 0335.9 0318.5 0319.9 0304.5 0.0532 0.0571

IGARCH -159.97 -153.71 0334.0 0319.4 0320.0 0307.4 0.0529 0.0633

Germany:

GARCH -3986.5 -3986.2 7989.0 7986.4 7973.0 7972.4 0.0368 0.345

IGARCH -3989.9 -3999.4 7993.8 8010.8 7979.8 7998.8 0.0506 0.200

Japan:

GARCH -3178.7 -3333.7 6373.4 6681.4 6357.4 6667.4 0.0401 0.0986

IGARCH -3178.8 -3334.6 6371.6 6681.2 6357.6 6669.2 0.0394 0.0793

Switzerland:

GARCH -4308.6 -4308.1 8633.2 8630.2 8617.2 8616.2 0.0457 0.287

IGARCH -4314.2 -4325.0 8642.4 8662.0 8628.4 8650.0 0.0460 0.278
aL refers to the maximum log-likelihood value; AICC is the corrected AIC criteria (18); SBC is

the Schwarz Bayesian Criteria (19); and AD is the Anderson-Darling statistic (20).
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Figure 1: Comparison of the variance adjusted differences between the sample and fitted distri-

bution functions.
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criterion, recent risk management concepts for financial institutions focus on the downside risk

or the value-at-risk of a financial position due to market movements. In this context, a typical

question would be: what is the probability that the value of a financial position will drop by

50% or more over the next period, i.e., Pr (rt+1 < −0.50)? Alternatively, one may ask what is

the threshold or value-at-risk, −z (γ), under which a position will not fall with a probability of

100 (1− γ)%; i.e., find −z (γ) such that Pr (rt+1 < −z (γ)) = γ.

Under unconditional normality, it would be sufficient to simply predict the conditional mean

and variance to answer such questions. However, for GARCH processes driven by nonnormal,

asymmetric and, possibly, infinite-variance innovations, the predictive conditional density

f̂t+1|t (rt+1) = f



rt+1 − µ

(
θ̂θθt

)

ct+1

(
θ̂θθt

)

∣∣∣∣∣∣
rt, rt−1, . . .


 , (21)

needs to be computed. In (21), θ̂θθt refers to the estimated parameter vector using the sample

information up to and including period t; and ct+1 (·) is obtained from the conditional–scale

recursion (2) using θ̂θθt.
3 Multistep density predictions,

f̂t+n|t (rt+n) = f



rt+n − µ

(
θ̂θθt

)

ct+n

(
θ̂θθt

)

∣∣∣∣∣∣
rt, rt−1, . . .


 , (22)

are obtained by recursive application of (2) with unobserved quantities being replaced by their

conditional expectations.

For each of the five currencies under consideration, we evaluate f̂t+1|t (rt+1), t = 2000, . . . , T −
1, for the Sδα,βGARCH(1,1) and tδνGARCH(1,1) models, as well as the conventional GARCH(1,1)

model with normal innovations.4 We re-estimate (via ML estimation) the model parameters at

each step, as would typically be done in actual applications.

The overall density forecasting performance of competing models can be compared by evalu-

ating their conditional densities at the future observed value rt+1, i.e., f̂t+1|t (rt+1). A model will

fare well in such a comparison if realization rt+1 is near the mode of f̂t+1|t (·) and if the mode

of the conditional density is more peaked. The conditional densities are determined not only by

the specification of the mean and GARCH equations, but also by the distributional choice for the

innovations.

Table 4 presents the means, standard deviations and medians of the density values f̂t+1|t (rt+1),

t = 2000, . . . , T − 1, for each currency. Based on the means, values corresponding to the Sα,β

and Student’s t assumptions are extremely close, with the Student’s t values nevertheless larger

3A conditionally varying location parameter, µt, would be handled analogously.
4Since the sample sizes, T , of the five currencies vary, the number of forecasts ranges from 1,621 to 1,682.
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in each case. Based on the medians, however, the stable Paretian model is (slightly) favored by

the British, Canadian and German currencies. Notice that this is contrary to the model selection

based on the goodness of fit measures; both AICC and AD statistics favored use of stable Paretian

innovations for the Japanese yen and Student’s t innovations for the British pound.

Next, we examine how well the models predict the downside risk. Consider the value-at-risk

implied by a particular model, M , namely

Pr
(
rt+1 ≤ −zMt+1 (γ)

)
= γ, t = 2000, . . . , T − 1. (23)

For a correctly specified model we expect 100γ% of the observed rt+1-values to be less than or

equal to the implied threshold-values −zt+1 (γ). If the observed frequency

γ̂M :=
1

T − 2000

T−1∑

t=2000

I(−∞,−zMt+1(γ)] (rt+1)

is less (higher) than γ, then model M tends to overestimate (underestimate) the risk of the

currency position; i.e., the implied absolute zMt+1 (γ)-values tend to be too large (small).

The predictive performance for assessing the downside risk achieved by the normal, Stu-

dent’s t and stable Paretian models are compared in Table 5 for the shortfall probabilities

γ = 0.01, 0.025, 0.05, 0.10. A comparison of the stable Paretian and Student’s t GARCH models

over the five currencies and four cutoff values, γ, shows that, in 4 out the 20 cases, the Student’s

t GARCH model outperforms that of the stable Paretian, while the latter is more accurate in

11 cases, sometimes considerably so (as for the Canadian dollar with γ = 0.025 and 0.05). The

remaining 5 cases are tied.

Table 6 presents summary measures5 for the predictive performance of the three models across

all five currencies in the form of the mean error

MEM (γ) =
1

5

5∑

i=1

100
(
γ̂Mi − γ

)
,

mean absolute error

MAEM (γ) =
1

5

5∑

i=1

100
∣∣γ̂Mi − γ

∣∣

and the mean squared error

MSEM (γ) =
1

5

5∑

i=1

1002
(
γ̂Mi − γ

)2
.

5The measures are evaluated for 100γ rather than γ because the resulting scales of the reported values enhance

readability.
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Table 4: Comparison of Overall Predictive Performancea

British Canadian German Japanese Swiss

Mean

Normal 0.4198 1.1248 0.4064 0.4796 0.3713

t 0.4429 1.1871 0.4258 0.5207 0.3851

Sα,β 0.4380 1.1798 0.4213 0.5173 0.3820

Standard Deviation

Normal 0.1934 0.5697 0.1888 0.1988 0.1620

t 0.2325 0.6802 0.2151 0.2782 0.1840

Sα,β 0.2189 0.6482 0.2016 0.2662 0.1771

Median

Normal 0.4291 1.0824 0.4178 0.5172 0.3942

t 0.4483 1.1500 0.4452 0.5261 0.4069

Sα,β 0.4493 1.1730 0.4477 0.5242 0.4041
aThe entries represent average predictive likelihood values,
∑T−1

t=2000 f̂t+1|t (rt+1).

Table 5: Comparison of Predictive Performance for Downside Riska

100γ Model British German Canadian Japanese Swiss

Normal 1.9036 1.5051 1.3674 1.9124 1.4899

1.0 t 1.3682 0.9031 0.7134 1.4189 1.3707

Sα,β 1.3682 0.9031 1.3080 1.3572 1.2515

Normal 3.0339 2.6490 2.3187 2.8994 3.2777

2.5 t 2.8554 2.9500 2.1403 3.2079 3.3969

Sα,β 2.9149 2.9500 2.4970 2.5910 3.1585

Normal 4.7591 4.5756 3.6266 4.9969 4.7676

5.0 t 5.1160 5.2378 3.9834 5.7372 5.0656

Sα,β 5.1160 5.2378 5.0535 5.2437 5.0656

Normal 8.3879 9.2113 8.5612 8.0814 8.9392

10.0 t 9.8751 10.6562 9.9287 10.3023 10.8462

Sα,β 9.6966 10.4154 10.2259 9.8088 10.2503
aThe entries show the observed frequencies γ̂M = (T − 2000)−1

∑T−1
t=2000 I(−∞,−zM

t+1
(γ)] (rt+1) multiplied by 100. For a correctly specified

model, we expect γ̂M ≈ γ.
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Table 6: Summary Measures for the Predictive Performancea

100γ Model ME (γ) MAE (γ) MSE (γ)

Normal 0.6357 0.6357 0.4558

1.0 t 0.1549 0.3083 0.1080

Sα,β 0.2376 0.2764 0.0861

Normal 0.3357 0.4083 0.2209

2.5 t 0.4101 0.5540 0.3527

Sα,β 0.3223 0.3235 0.1633

Normal -0.4548 0.4548 0.4357

5.0 t 0.0280 0.4346 0.3302

Sα,β 0.1433 0.1433 0.0273

Normal -1.3638 1.3638 2.0195

10.0 t 0.3217 0.4002 0.2517

Sα,β 0.0794 0.2772 0.0830

Normal -0.2118 0.7156 0.7830

A
gg

re
ga

te

t 0.2287 0.4243 0.2607

Sα,β 0.1956 0.2551 0.0899
aShown are the mean error (ME), mean absolute error (MAE)

and mean squared error (MSE) of the observed extreme-tail

frequencies from Table 5 across the five currencies. The bottom

panel is the aggregate over all γ-values considered.
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The ME’s for the normal show that it underestimates the probability of extreme downturns

(MENormal (γ) > 0 for γ = 0.01, 0.025) and overestimates the probability of moderate downturns

(MENormal (γ) < 0 for γ = 0.05, 0.10). With one exception, the ME’s of the stable Paretian

and Student’s t GARCH models are smaller (in absolute terms) than those for the normal.

However, they are always positive, indicating, on average, slight underprediction of the downturn

probabilities. For γ = 0.01 and γ = 0.05, the Student’s t model has smaller ME than the stable

Paretian model. This is due to the Student’s t model’s offsetting prediction error for the Canadian

dollar for these γ–values.

While the ME’s indicate possible systematic prediction bias, the MAEs and MSEs reflect the

size of the prediction error. With respect to both measures, the stable Paretian model dominates

those of both the normal and the Student’s t for all γ-values considered. This is also evident from

the bottom panel of Table 6, which aggregates the summary measures over all γ-values considered.

In the aggregate, the model using the stable Paretian innovation assumption outperforms those

using the normal and Student’s t in terms of all three summary measures.

5 Conclusions

Power GARCH processes driven by either stable Paretian or Student’s t innovations have been

evaluated and compared in the context of predicting downside market risk, an activity which is

particularly important for risk managers of financial institutions. For all five exchange–rate series

considered, the asymmetric stable Paretian distributional assumption was found to be superior.

While there exist several popular model classes designed to parsimoniously and effectively fit

financial return data, the GARCH class of models is arguably the most common. Furthermore,

the usual assumption, and that which is implemented in popular software packages, is that the

driving innovations are either normally or Student’s t distributed. The former is the “standard”

assumption in financial and even most econometric or statistical models, but fails demonstrably

in empirical applications (see, e.g., Palm, 1997; Gourieroux, 1997; and the references therein).

Indeed, normality is a special, limiting case of the stable Paretian distribution, which, otherwise,

allows for fatter–than–normal tails and skewness, these being precisely two of the typical “stylized

facts” associated with financial returns data. The Student’s t assumption does allow for fatter

tails, but is restricted to being symmetric. The latter restraint can actually be overcome if more

general Student’s t–like distributions are used (Paolella, 1999; Mittnik and Paolella, 2000), but

these suggestions, while often providing admirable in– and out–of–sample fits, do not possess

the theoretical property of summability, common only to the stable Paretian (and, thus, normal)

class of distributions.
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With respect to the summability property, one might argue that the value of stable Paretian

models is, as shown here, their improved forecasting ability as compared to competing models,

with such “theoretical niceties” as summability being largely irrelevant. In a larger context,

however, the summability property can often be judiciously used when building more complex

financial models such as those used in portfolio analysis. In such models, the ad hoc nature of,

say, the Student’s t distribution can become quite problematic. Further discussion along these

lines and a test for the summability property in the context of GARCH models has been proposed

in Paolella (2001) and further applied in Mittnik et al. (2000).
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