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1 Introduction

Although Generalized Autoregressive Conditional Heteroskedastic Normal (GARCH) models

and their numerous extensions can account for a substantial portion of both the volatility

clustering and excess kurtosis found in financial return series, a GARCH–type model has yet

to be constructed for which the filtered residuals consistently fail to exhibit clear–cut signs of

nonnormality. On the contrary, it appears that the vast majority of GARCH–type models,

when fit to returns over weekly and shorter horizons, imply quite heavy–tailed conditional

innovation distributions. Moreover, there is a growing awareness of skewness in both uncon-

ditional and conditional return distributions.1 A natural way of accommodating such stylized

facts is to specify a GARCH–type structure driven by iid innovations from a fat–tailed and,

possibly, asymmetric distribution. A sizeable and growing number of candidate densities exist,

a number of which are considered in the application below. Moreover, building on work by

Hansen (1994), the studies of Paolella (1999), Harvey and Siddique (1999), Brännäs and

Nordman (2001), and Rockinger and Jondeau (2002) employ autoregressive–type structures

to allow for time variation in the skewness and, in some cases, also kurtosis. Thus, while not as

blatant as volatility clustering and heavy tails, time–varying skewness has emerged as another

stylized fact of asset returns.

In this paper, we investigate a model which incorporates the original assumption of normal

innovations, yet can still adequately capture all three aforementioned stylized facts. Specifi-

cally, we let the conditional distribution be a mixture of normals (in short, MN) and extend

the usual GARCH structure by modeling the dynamics in volatility by a system of equations

which permits feedback between the mixture components. With one component, the model

reduces to the Normal–GARCH model originally proposed in Bollerslev (1986). The excess

kurtosis, which plagues Normal–GARCH specifications, can be adequately modeled with only

two components. In addition, with more than one component, time-varying skewness is in-

duced, i.e., it is inherent in the model without requiring explicit specification of a conditional

skewness process. Moreover, the model can capture the leverage effect. These aspects will be

demonstrated in the empirical example below.

The MN formulation also allows for a plausible interpretation of two or more heteroge-

neous groups of market participants. For example, “bullish” and “bearish” investors could

behave differently. Shleifer and Summers (1990) distinguish between “arbitrageurs” or “ratio-
1See, for example, Kane (1977), Friend and Westerfield (1980), Rozelle and Fielitz (1980), Simkowitz and

Beedles (1980), St. Pierre (1993), Mittnik and Rachev (1993), Franses and van Dijk (1996), Peiró (1999), and

Harvey and Siddique (1999).
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nal speculators” and “noise traders” who react differently to arriving news. Moreover, noise

traders may fall into different subgroups, as in Lux (1997), who distinguishes between opti-

mistic and pessimistic naive traders2 and shows that the interaction between fundamentalists

and chartists may be a source of time–varying second moments. The proposed model class is

not only appealing in that it can allow for heterogeneous agents, it also provides, in the em-

pirical application considered, a superior fit compared to competing models. Thus, apart from

a viewpoint of financial theory, it will be of interest to practitioners such as risk managers.

The proposed model indeed has some similar characteristics to Markov switching mod-

els, which have undoubtedly grown in importance (and complexity) since the seminal work of

Hamilton (1988, 1989) (see, for example, Hamilton and Susmel, 1994; Gray, 1996; and Dueker,

1997). However, compared to the aforementioned GARCH-type models with fat–tailed inno-

vation distributions, these models have not been shown to be advantageous with respect to

either estimation or, more importantly, out–of–sample forecasting (Pagan and Schwert, 1990;

Hamilton and Susmel, 1994; Dacco and Satchell, 1999). Nor is the notion of a constant set of

unique and recurring regimes any more plausible in a financial context than the decomposition

considered herein. An approach similar to ours has recently been explored by Wong and Li

(2001), who also argue against use of a latent Markov structure; see Section 5 below for some

discussion of their work.

The remainder of this paper is as follows. Section 2 reviews relevant properties of uncondi-

tional MN distributions, presents the MN-GARCH model and discusses various special cases.

Section 3 details stationarity conditions. An empirical application is presented in Section 4.

Section 5 provides concluding remarks.

2 Mixed Normal Models

The MN distribution has a long and illustrious history in statistics. Its use for modeling heavy-

tailed distributions apparently dates back to 1886, when the mathematician, astronomer and

economist Simon Newcomb used it in his astronomical studies (Newcomb, 1980). After the

seminal work of Pearson in 1894 on the moments estimator for the univariate normal mixture

with two components, maximum likelihood (ML) estimation has become very popular with

the advent of the EM algorithm of Dempster et al. (1977), while exact Bayesian analysis

of mixtures has become feasible after the introduction of the Gibbs sampler of Geman and

Geman (1984) into the statistical mainstream by Gelfand and Smith (1990) and Gelfand et al.
2In Lux (1997), noise traders also differ with respect to their trading–strategies: Some try to find out “the

mood of the market”, others follow various “technical” trading rules.
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(1990). Further historical aspects, modern inferential methods, and discussion of applications

associated with mixtures of normals are given in Titterington et al. (1985), McLachlan and

Basford (1988), and McLachlan and Peel (2000).

2.1 Unconditional Mixed Normal Distribution

A random variable Y is said to have a univariate (finite) normal mixture distribution if its

unconditional density is given by

f (y) =
k∑

j=1

λjφ
(
y; µj , σ

2
j

)
,

where λj > 0, j = 1, . . . , k,
∑k

j=1 λj = 1, are the mixing weights and

φ
(
y;µj , σ

2
j

)
=

1√
2πσj

exp

{
−1

2

(
y − µj

σj

)2
}

, j = 1, . . . , k,

are the component densities. The normal mixture has finite moments of all orders, with

expected value and variance given by

µ = E(Y ) =
k∑

j=1

λjµj , m2 = Var (Y ) =
k∑

j=1

λjσ
2
j +

k∑

j=1

λj (µj − E (Y ))2 . (1)

Owing to its great flexibility (see, for example, the various density plots in Marron and

Wand, 1992), the MN has also been found useful for describing the unconditional distribution

of asset returns (cf. Fama, 1965; Kon, 1984; Akgiray and Booth, 1987; and Tucker and Pond,

1988). Indeed, even a two–component mixture is rather capable of exhibiting the skewness

and kurtosis typical of financial data. To demonstrate the skewness property, let Y be a k–

component mixed normal random variable with mean µ =
∑k

j=1 λjµj . Since for constant a,
∫

(y − a)nφ(y; µ, σ2)dy =
∫

ynφ(y; µ− a, σ2)dy, we have

m3 = E
[
(Y − µ)3

]
=

k∑

j=1

λj (µj − µ)3 + 3
k∑

j=1

λjσ
2
j (µj − µ) (2)

=
k∑

j=1

λj (µj − µ)3 + 3
k∑

j=1

∑

i<j

λjλi(σ2
j − σ2

i )(µj − µi),

which shows that common component means, i.e., µ1 = · · · = µk = µ, imply symmetry. For

k = 2, the above expression becomes

m3 =
λ1

λ2

(
1− λ1

λ2

)
(µ1 − µ)3 + 3λ1 (µ1 − µ)

(
σ2

1 − σ2
2

)

= λ1λ2

[
(λ2 − λ1) (µ1 − µ2)

3 + 3 (µ1 − µ2)
(
σ2

1 − σ2
2

)]
.
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If µ1 6= µ2, then it is necessary and sufficient that λ1 6= λ2 and/or σ2
1 6= σ2

2 for Y to be

asymmetric.3

With regard to kurtosis, let Y be a k-component mixed normal random variable but with

µ1 = . . . = µk = µ, so that E (Y ) =
∑

j λjµj = µ. Then, from Jensen’s inequality,
∑

j λjσ
4
j =

∑
j λj(σ2

j )
2 > (

∑
j λjσ

2
j )

2, so that4

γ2 =
m4

m2
2

=
E

[
(Y − µ)4

]

[
E

[
(Y − µ)2

]]2 = 3

∑
j λjσ

4
j(∑

j λjσ2
j

)2 > 3. (3)

An advantage of the MN model not shared by other distributional assumptions is that it

lends itself to economic interpretation in several ways. A mixture of two or more normals could

arise from different groups of actors, with one group acting, for example, more volatile than

the other or, possibly, processing market information differently. Considering unconditional

distributions, Kon (1984), for example, argues that returns on individual stocks may be drawn

from a noninformation distribution, a firm-specific distribution and a market-wide information

distribution, i.e., a three component mixture.

The MN model can also be appropriate for samples where the components follow a repeat-

ing sequence in generating observations. As an example, day-of-the-week effects, as mentioned

by Fama (1965), are a possible source of mixture distributions. More specifically, political

and economic news arrivals occur continuously, and, if they are assimilated continuously by

investors, the variance of the distribution of price changes between two points in time would

be proportional to the actual number of days elapsed (as in the Monday-effect). By analyzing

corresponding subsamples, however, Fama (1965) found that the Monday-effect does not give

rise to the observed departure from normality. However, the mixture may still be interpreted

as representing trading days of different types: A component with relatively low variance,

for example, could represent “business as usual”—typically associated with a large mixing

weight—while components with high variances and smaller weights could correspond to times

of high volatility caused by the arrival of substantive new information.
3Necessity is rather obvious. Sufficiency follows from the fact that symmetry implies m3 = 0. If µ1 =

µ ± λ2

p
3 (σ2

1 − σ2
2) / (λ1 − λ2) =: µ ± λ2τ , then m3 = 0 but the density is not symmetric. Symmetry, i.e.,

f (µ + y) = f (µ− y), would imply that, for all y,

λ1φ
�
y;±λ2τ, σ2

1

�
+ λ2φ

�
y;∓λ1τ, σ2

2

�
= λ1φ

�
y;∓λ2τ, σ2

1

�
+ λ2φ

�
y;±λ1τ, σ2

2

�
,

which does not hold for any τ 6= 0 because the class of finite normal mixtures is identifiable (Teicher, 1963).

That the density can only be symmetric about its mean is clear; see, e.g., Dudewicz and Mishra (1988, pp.

216-217).
4If, however, the means are far enough apart (so that the density is not highly peaked around its center),

the kurtosis can actually be less than three.
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2.2 Conditionally Heteroskedastic MN Processes

Time series {εt} is generated by a k–component Mixed Normal GARCH(p, q) process, or, in

short, MN-GARCH, if the conditional distribution of εt is a k component MN with zero mean,

i.e.,

εt|Ψt−1 ∼ MN
(
λ1, . . . , λk, µ1, . . . , µk, σ

2
1t, . . . , σ

2
kt

)
, (4)

where Ψt is the information set at time t; λi ∈ (0, 1), i = 1, . . . , k,
∑k

i=1 λi = 1; and µk =

−∑k−1
i=1 (λi/λk) µi. Furthermore, the k × 1 vector of component variances, denoted by σ

(2)
t ,

evolves according to

σ
(2)
t = α0 +

q∑

i=1

αiε
2
t−1 +

p∑

j=1

βjσ
(2)
t−j , (5)

where σ
(2)
t =

[
σ2

1t, σ
2
2t, . . . , σ

2
kt

]T ; αi = [αi1, αi2, . . . , αik]
T , i = 0, . . . , q; and βj , j = 1, . . . , p,

are k × k matrices with typical element βj,mn. Restrictions α0 > 0, αi ≥ 0, i = 0, . . . , q,

and βj ≥ 0, j = 1, . . . , p, are assumed.5 They correspond to the non-negativity conditions of

Bollerslev (1986) for the Normal-GARCH model, although they may be unnecessarily strong

(Nelson and Cao, 1992). They are, however, necessary for the diagonal MN-GARCH(1,1)

model, a useful special case introduced and employed below.

Using lag-operator notation, Lqyt = yt−q, an MN–GARCH process can be written as

(Ik − β (L))σ
(2)
t = α0 + α (L) ε2t , (6)

where β (L) =
∑p

j=1 βjL
j ; α (L) =

∑q
i=1 αiL

i; and Ik is the identity matrix of dimension k.

As is common, a mean equation can also be introduced to incorporate exogenous variables

and/or lagged values via an ARMA(u, v) structure. In particular, an ARMA–MN-GARCH

model for variable rt refers to a process with mean equation

rt = a0 +
u∑

i=1

airt−i + εt +
v∑

j=1

bjεt−j , (7)

with constant a0, AR parameters a1, . . . , au, MA parameters b1, . . . , bv, and with εt|Ψt−1 given

by (4) and (6).

2.3 Special Cases

2.3.1 Diagonal MN-GARCH

A particularly interesting special case for modeling asset returns arises by restricting matrix

β (L) in (6) to be diagonal (subsequently referred to as a diagonal MN-GARCH process). In
5In case of vectors and matrices, symbol ≥ indicates elementwise inequality.
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addition to allowing for a clear interpretation of the dynamics of the component variances,

we find—not only for the example reported below—that it tends to be preferred over the full

model when employing various model–selection criteria.

2.3.2 Partial MN-GARCH

With the interpretation of different groups of actors in mind, it is conceivable that the market

is driven by a mixture in which some components exhibit constant variance. Such components

could be associated with informed traders, whereas the dynamic components could be due to

noise traders, possibly overreacting to news. Below we consider diagonal partial models, where

a model denoted by MN(k, g), g ≤ k, uses k component densities, g of which follow a GARCH

process and k − g components are restricted to be constant. If, for example, models with

g = 1 fit the data well, then the unconditional properties of the normal mixture (skewness

and kurtosis) account for most of the improvement relative to the standard GARCH model

with conditional normality, and volatility clustering is adequately captured by introducing one

GARCH component.

2.3.3 Symmetric MNs –GARCH

We also entertain models for which all the component means are restricted to be zero, i.e.,

µ1 = µ2 = · · ·µk = 0, which imposes a symmetric conditional error distribution. These are

denoted by MNs(k, g) –GARCH. Because both the conditional innovations and the GARCH

structure are symmetric, the unconditional error distribution will also be symmetric.

2.4 Relationship with Other MN-GARCH Specifications

To the best of our knowledge, Vlaar and Palm (1993) and Palm and Vlaar (1997) first suggested

the normal mixture in a GARCH context. The model they proposed is restricted such that,

for all t, σ2
2t = σ2

1t + δ2 (cf. the parameterization in Ball and Torous, 1983)6 and can be nested

in (5). In our notation, it takes the form

 σ2

1t

σ2
2t


 =


 α01

α01 + δ2


 +


 α11

α11


 ε2t−1 +


 β11 0

β11 0





 σ2

1,t−1

σ2
2,t−1


 ,

which permits skewness by allowing the component means to differ from zero.
6Vlaar and Palm (1993, p. 357) motivate this specification by arguing that “...this procedure is preferred to

that of independent variances, since it seems reasonable to assume that the same GARCH effect is present in

all variances.”
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Bauwens et al. (1999a) consider a MN-GARCH model with two components, in which the

component variances are proportional to each other, i.e., for all t, σ2
2t = τσ2

1t, specializing (5)

to7 
 σ2

1t

σ2
2t


 =


 α0

τα0


 +


 α1

τα1


 ε2t−1 +


 β11 0

τβ11 0





 σ2

1,t−1

σ2
2,t−1


 .

It may be argued that the proportionality property is less appealing, since it implies that both

components exhibit essentially the same dynamic behavior and does not allow for two (or

more) differently acting groups of market participants having, for example, different speeds of

adjustment. This feature also applies to the Palm and Vlaar specification.

Another special MN-GARCH model has been proposed in Lin and Yeh (2000). Their

model is also characterized by imposing the same dynamics on each component variance, i.e.,

only the constants α0j , j = 1, . . . , k, in the GARCH equations are component–specific, while

the coefficients of lagged squared error terms and variances are the same in each equation. For

k = 2, this amounts to restricting (5) to

 σ2

1t

σ2
2t


 =


 α01

α02


 +


 α11

α11


 ε2t−1 +


 β11 0

0 β11





 σ2

1,t−1

σ2
2,t−1


 .

Finally, it should be noted that MN-GARCH processes are related to the t–GARCH model

(Bollerslev, 1987) in that the t distribution can be represented as an infinite gamma–mixture

of normals.

3 Stationarity and Persistence

3.1 Weak Stationarity

3.1.1 The General Case

Given the existence of the unconditional expectation Eσ
(2)
t , standard calculations using the

law of iterated expectations show that

Eσ
(2)
t =

[
I − β (1)− α (1) λT

]−1
[α0 + α (1) c] , (8)

where (see Appendix A for derivation)

c =
k∑

j=1

λjµ
2
j =

1
λk




k−1∑

j=1

λjµ
2
j−

∑∑

j<r<k

λjλr (µj − µr)
2


 .

7Alternatively, because σ2
2,t−1 = τσ2

1,t−1, we could define β = β11I2.
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As relationship (8) suggests and Appendix B shows, the necessary and sufficient condition for

the existence of the unconditional variance is

det
[
I − β (1)− α (1)λT

]
> 0. (9)

An interpretation of (9) is provided in Appendix B. Condition (9) assumes a simple form in

the special diagonal MN-GARCH case, which is discussed next.

3.1.2 The Diagonal Case

For diagonal MN-GARCH processes, defining β̃j = 1−∑p
i=1 βi,jj , we have, from (B.7), that

det
[
I − β (1)− α (1) λT

]
= det [I − β (1)]−

k∑

j=1

λj det B (1)j

=


1−

k∑

j=1

λj

β̃j

q∑

i=1

αij




k∏

j=1

β̃j (10)

=




k∑

j=1

λj

β̃j

(
1−

q∑

i=1

αij −
p∑

i=1

βi,jj

)


k∏

j=1

β̃j ,

where matrix B (1)j is defined in (B.2). This last expression implies that it is not necessary

that the inequalities 1 − ∑q
i=1 αij −

∑p
i=1 βi,jj > 0 have to hold for all j ∈ {1, . . . , k}, but

rather for their weighted sum with the jth weight being given by λj/β̃j and the weights

not summing to one.8 The mixing weight of each component is inflated by the component’s

contribution to the deterministic part of σ
(2)
t in (5). This condition is stronger than just

∑k
j=1 λj (1−∑q

i=1 αij −
∑p

i=1 βi,jj) > 0 due to the feedback between the components.

By writing requirement (10) as

1−
k∑

j=1

λj

q∑

i=1

αij

(
1−

p∑

i=1

βi,jj

)−1

> 0,

we see that it is a direct generalization of the well–known stationarity condition stated in

Bollerslev (1986), which can be expressed as

1−
q∑

i=1

αi

(
1−

p∑

i=1

βi

)−1

> 0.

Using (B.5), the unconditional variance of a diagonal MN-GARCH process becomes

E
(
ε2t

)
= λT E

(
σ

(2)
t

)
+ c = c

det
[
I − β + α0λ

T /c
]

det [I − β − α1λT ]

=
c +

∑
j λjα0j/β̃j

1−∑
j λj/β̃j

∑
i αij

=
c +

∑
j λjα0j/β̃j∑

j λj/β̃j (1−∑
i αij −

∑
i βi,jj)

.

8Clearly,
Q

j β̃j > 0 must be assumed, since otherwise the deterministic part of difference equation (5) would

be explosive.
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For k = 1, this reduces to E(ε2t ) = α0/ (1−∑
i αi −

∑
i βi), as in Bollerslev (1986).

According to (10), the process can have finite variance even though some components are

not covariance stationary, as long as the corresponding weights are sufficiently small. This

result is similar to the condition for strict stationarity given by Francq et al. (2001) for a

regime–switching GARCH(1,1) model. They show that, in this model, the condition derived

by Nelson (1991) for the single–regime GARCH model need not hold in each regime but for

a weighted average of the GARCH–parameters in each regime, where the weights are the

stationary probabilities of the Markov chain.

3.2 Measuring Volatility Persistence

As is demonstrated in Appendix B, the largest eigenvalue, ρmax, of matrix

Φ =




β1 + α1λ
T β2 + α2λ

T · · · βr−1 + αr−1λ
T βr + αrλ

T

Ik 0k · · · 0k 0k

0k Ik 0k 0k

...
...

. . .
...

...

0k 0k · · · Ik 0k




, (11)

with r = max {p, q} and 0k denotes a k×k matrix of zeros, can serve as a measure of volatility

persistence, since the impact of past variances declines geometrically at the rate ρmax. In the

case of an MN–GARCH(1,1) model, this is the largest eigenvalue of the matrix β(1)+α(1)λT .

Analogous to the expression for the single component case, i.e., a Normal–GARCH(1,1) model

(Bollerslev et al., 1994), the conditional expectation of future variances in this model is given

by

E
[
σ

(2)
t+k|Ψt−1

]
= σ(2) +

(
β (1) + α (1)λT

)k
(
σ

(2)
t − σ(2)

)
,

where, from (8),

σ(2) = E
(
σ

(2)
t

)
=

[
I − β (1)− α (1)λT

]−1
(α0 + α1c)

and
[
β (1) + α (1)λT

]k tends to zero geometrically with rate ρmax.

4 Conditional Heteroskedasticity of NASDAQ Returns

We investigate the daily returns on the NASDAQ index from its inception in February 1971

to June 2001, a sample of T = 7, 681 observations.9 Continuously compounded percentage
9The data were obtained from the internet site http://www.marketdata.nasdaq.com, maintained by the

Economic Research Department of The National Association of Securities Dealers, Inc.

9



01/15/75 12/29/78 12/14/82 11/25/86 11/08/90 10/24/94 10/08/98

−10

−5

0

5

10

NASDAQ Returns

Figure 1: Percentage Returns on NASDAQ Index.

returns, rt = 100 (log Pt − log Pt−1), are considered, where Pt denotes the index level at time

t. Figure 1 shows a plot of the return series. While the usual stylized fact of strong volatility

clustering is apparent from Figure 1, it is not as obvious that the data are also negatively

skewed. The usual measure for asymmetry involving the third moment of the data (let alone

its asymptotically valid standard error under normality) is virtually meaningless to report,

given that 3rd and higher moments of financial data may not exist. In this case, estimating

an unconditional Student’s t distribution resulted in 2.4 degrees of freedom (and approximate

standard error 0.08). One possible way to infer if asymmetry is statistically significant is to

use a flexible parametric density which allows for asymmetry and fit it both restricted and

unrestricted, from which a likelihood ratio test for asymmetry can be constructed. This was

done using the noncentral t distribution, as suggested for use in a financial modeling context by

Harvey and Siddique (1999); the asymmetric generalized t distribution in Mittnik and Paolella

(2000); and the stable Paretian distribution (see, e.g., Mittnik, Paolella and Rachev, 2000).

The likelihood ratio values were 69, 73 and 66, respectively, which are clearly tremendously

significant at any conventional testing level.

Sample autocorrelation plots of Normal-GARCH(1,1) residuals (not shown) suggest a low

order AR model for the mean equation. The Bayesian Information Criterion (BIC) favors an

AR(3), which will accompany all GARCH structures estimated below.10

10All ARMA(r, s)–GARCH(1,1) models for combinations r + s ≤ 4 were estimated, assuming conditionally

normal innovations.

10



4.1 Estimation Issues

We estimate the ARMA–MN–GARCH model by conditional ML, conditioning, due to the

ARMA structure (7), on the first u return observations and set the first v values of εt to zero

and, for the GARCH structure, set the initial values of σ
(2)
t and ε2t equal to their unconditional

expectations given in (8).11 Because it is not clear what the “typical” parameter values would

be for the GARCH structure with k ≥ 2 components when applied to financial return series,

we simply set the starting values to λi = 1/k, α01 = . . . = α0k = 0.05, α11 = . . . = α1k = 0.1,

β1,11 = . . . = β1,kk = 0.8 and the off–diagonal elements of β matrices to zero. For several

real data sets including the one used below (as well as many simulated series), these proved

adequate, with convergence occurring usually within 20 to 50 iterations. Use of other, even

very unrealistic, starting values led in virtually all cases to the same estimates.

Bayesian inference via Markov Chain Monte Carlo methods such as the Metropolis Hastings

algorithm (see Chib and Greenberg, 1996, and Bauwens et al., 1999b, and the references

therein) is theoretically possible, but for the large sample sizes typically available in financial

applications and the lack of strong prior information, conditional ML estimation should yield

very similar results. Furthermore, obtaining the ML estimates is computationally easier, both

in terms of programming effort as well as in run time and assessment of convergence. For the

diagonal model discussed below, an EM algorithm could also be constructed, but would offer

little, if any gain, given the slow convergence of the method, and because each M–step would

itself require numerical optimization.

4.2 Determining the Number of Mixture Components

For mixture models in general, the number of required component densities is unknown and

needs to be empirically determined. Unfortunately, standard test theory breaks down in

this context; see, for example, Wolfe (1971), Everitt and Hand (1981), Aitkin et al. (1981),

Hartigan (1985), Ghosh and Sen (1985) McLachlan and Peel (2000, Ch. 6), and Chen et al.

(2001). These authors perform and refer to simulation studies suggesting that the asymptotic

distribution of the usual likelihood ratio test statistic mimics a χ2 distribution with degrees of

freedom larger than the number of fixed parameters under the null. This draws into question

the results of Kon (1984), in which standard theory is used to provide evidence that some

stocks are best modeled by a mixture of four components. Similar criticism applies to Kim

and Kon (1994), although the values of the likelihood ratio statistics reported there (ranging
11The quasi-Newton maximization method available in Matlab (version 5.2, function fminu) was used, with

(automatically computed) numeric gradient and Hessian, and a convergence criterion of 0.0001.
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from 423 to 1854) are high enough to keep their conclusions valid under more appropriate

methods of model selection.

Standard model selection criteria such as the AIC (Akaike, 1973) and the BIC (Schwarz,

1978) are widely used in the GARCH literature and can be used to compare models with

differing numbers of components. For a model with K parameters and log–likelihood, L,

evaluated at the maximum likelihood estimator, AIC = −2L+2K and BIC = −2L+K log T ,

with BIC being more conservative than AIC in that it favors more parsimonious models.

Because these measures rely on the same conditions employed in the asymptotic theory of the

likelihood ratio test, their small and large sample properties are likewise not known. However,

the literature on mixtures provides some encouraging evidence in the context of unconditional

models, suggesting that the BIC provides a reasonably good indication for the number of

components (see, in particular, Dasgupta and Raftery, 1998; Fraley and Raftery, 1998; Leroux,

1992; Roeder and Wassermann, 1997; and McLachlan and Peel, 2000, Ch. 6). According to

Kass and Raftery (1995), a BIC difference of less than two corresponds to “not worth more than

a bare mention”, while differences between two and six imply positive evidence, differences

between six and ten give rise to strong evidence, and differences greater than ten invoke very

strong evidence. The results of Mittnik and Paolella (2000) suggest that, with respect to

out–of–sample prediction, these measures are indeed useful for choosing among GARCH–type

models with competing distributional assumptions.

4.3 Goodness of Fit and Diagnostic Checking

In addition to the likelihood–based model selection via AIC and BIC, we examine the distri-

butional properties of the residuals of the models. With the MN–GARCH model, it is not

possible to directly evaluate the distributional properties of the estimated residuals ε̂t because,

even if the model were correctly specified, standardized residuals would not be identically

distributed. To circumvent this, we transform the residuals by computing the corresponding

value of the conditional cdf, that is,

ût = F̂ (ε̂t|Ψt−1) , t = 1, . . . , T. (12)

Under a correct specification, the transformed residuals, ût, are iid uniform (Rosenblatt, 1952;

see also Diebold et al., 1998). Thus, an inspection of the quantile fit can be based on the T

ût–values. Below, we report for selected ξ–values the percentage of ût–values, denoted by Uξ,

for which ût ≤ ξ; i.e.,

Uξ = 100× T−1
T∑

t=1

I[0,ξ] (ût) , (13)
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where I denotes the indicator function. For a correctly specified model, we expect Uξ ≈ 100×ξ.

Also, a histogram of the ût’s provides a valuable visual check of the goodness of fit. To formally

test for uniformity of the transformed values (12), we use the Pearson goodness–of–fit test, as

was suggested by Palm and Vlaar (1997). The test statistic is given by

X2 =
g∑

i=1

(ni − n∗i )
2

n∗i
, (14)

where g is the number of (equally spaced) subintervals over the [0, 1]–interval; ni is the number

of observations in interval i; and n∗i is the expected number of observations under the null

hypothesis of uniformity. Below, we will report the results for g = 100.

If (14) is used to test a simple hypothesis, the statistic has an asymptotic χ2 distribution

with g − 1 degrees of freedom under the null. However, if the hypothesis is composite, the

X2–values tend to be smaller when evaluated at the estimated rather than the true parameter

values. As a consequence, the asymptotic distribution of (14) is actually unknown, but is

bounded between the χ2(g −K − 1) and χ2(g − 1) distributions, where K is the number of

estimated parameters12 (see Stuart et al., 1999, Ch. 25). To reflect the uncertainty about the

true asymptotic distribution of X2, we will act as if it were χ2(g−K− 1)–distributed, so that

the test tends to favor models with less parameters resulting in similar fit.

A drawback of the above test is the degree of arbitrariness that is inherent in the choice of

the number of classes, g.13 In addition, one may wish to test whether the specified distribution

captures some specific characteristics of the data such as (conditional) skewness and kurtosis.14

This can be accomplished by the further transformation

zt = Φ−1 (ût) , (15)

where Φ is the standard normal cdf, such that the zt’s are iid N(0,1) distributed, if the

underlying model is correct. Berkowitz (2001) shows that inaccuracies in the specified density

will be preserved in the transformed data.15 Thus, this transformation allows the use of

normal probability plots or moment–based normality tests for checking features such as correct

specification of skewness and kurtosis.
12If the parameters are determined by minimizing (14), the exact asymptotic distribution is χ2(g −K − 1).
13For example, the use of values between g = 50 and g = 150 gave rise to p–values below 0.01 in 1%, 2%, 1%,

and 5% of the cases for models MN(2,2), MN(3,2), MN(3,3), and MN(4,4), respectively (for the model–notation,

see Section 2.3).
14As skewness and kurtosis of a mixture model are (complicated) functions of the model parameters, time–

variability of the component variances implies time–varying skewness and kurtosis.
15Use of values (15) was also advocated by Palm and Vlaar (1997).
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4.4 Competing Models

In the following comparison, all models entertained share a common AR(3)–GARCH(1,1)

specification, i.e., following the notation in Section 2.2, u = 3, v = 0 and p = q = 1. Within

the MN-GARCH model class, for a given number of components, k, it turns out that the

diagonal model was always preferred over the full model when using the BIC criterion. With

respect to the AIC, only for k = 2 was the full model preferred. For this reason, we restrict our

attention to the diagonal models in the following analysis. We briefly discuss the characteristics

of the full model for k = 2 and k = 3 at the end of this section.

In addition to several MN-GARCH specifications, we also fit the AR(3)–GARCH(1,1)

model assuming a variety of conditional innovation distributions. To save space, we do not

reproduce the density specifications here and refer the reader to the corresponding citations

provided. Along with the Student’s t (Bollerslev, 1987), two asymmetric generalizations are

used, namely the non–central t distribution (Harvey and Siddique, 1999) and the so–called t3

distribution used in Mittnik and Paolella (2000). Further candidates include the hyperbolic

(Eberlein and Keller, 1995; Küchler et al., 1999; Paolella, 1999), the generalized logistic (or

EGB2) distribution (Paolella, 1997, Wang et al., 2001) and the asymmetric two–sided Weibull

(Mittnik et al., 1998), abbreviated ADW.

Table 1 reports the likelihood–based goodness–of–fit measures for the fitted models and

the rankings of the models with respect to each of the criteria. Not surprisingly, the worst

performer is the standard Normal–GARCH model. For each criterion, the best model is among

the MN–GARCH class. Furthermore, each of the chosen models is of the form MN(k, k)–

GARCH, i.e., without suppression of any of the components’ dynamics to a constant. When

ranking according to the log–likelihood and the AIC, the top 5 models all belong to the MN–

GARCH class, whereas, according to the BIC, 4 of the 5, including the top three, belong

to that class. All symmetric MNs –GARCH models perform relatively poorly. This is not

surprising, given the pronounced negative skewness of the unconditional distribution.

In view of these results, the models MN(3, 3) and MN(4, 4), as well as MN(2, 2) and

MN(3, 2), are retained for further consideration. The estimated parameter values of interest

along with their approximate standard errors16 are shown in Table 2. (Due to the GARCH(1,1)

specification we simply write β for matrix β1 and denote the typical element of β by βij .) For

comparison purposes, results for the standard Normal–GARCH model are also given.

In Table 2, the components are ordered with respect to decreasing component means µj ,

16Standard errors were obtained by numerically computing the Hessian matrix at the ML estimates. The

delta method was used to approximate the standard errors of functions of estimated quantities, namely, α1i+βii,

i = 1, . . . , 4, as well as the weights and means of the last component of each of the models.
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Table 1: Likelihood–based goodness of fita

Distributional L AIC BIC
Model K Value Rank Value Rank Value Rank

Normal 7 -9142.8 16 18299.5 16 18348.1 16
MN(2, 1) 10 -8962.7 15 17945.4 15 18014.8 15
MN(3, 1) 13 -8931.4 12 17888.7 14 17979.0 14
MN(3, 2) 15 -8857.5 4 17745.1 4 17849.2 2
MN(2, 2) 12 -8872.5 5 17768.9 5 17852.4 3
MN(3, 3) 17 -8845.5 3 17725.0 3 17843.1 1
MN(4, 4) 22 -8831.7 2 17707.5 1 17860.3 5
MN(5, 5) 27 -8828.1 1 17710.2 2 17897.7 9
MNs(2, 2) 11 -8931.9 13 17885.7 13 17962.2 13
MNs(3, 3) 15 -8908.5 10 17847.0 10 17951.2 12
Student’s t 8 -8932.7 14 17881.3 12 17936.9 11

non–central t 9 -8908.2 9 17834.4 9 17896.9 8
t3 10 -8884.3 6 17788.6 6 17858.1 4

hyperbolic 9 -8904.7 8 17827.4 8 17889.9 7
EGB2 9 -8895.0 7 17808.1 7 17870.6 6
ADW 9 -8927.5 11 17873.1 11 17935.6 10

aThe leftmost column refers to the conditional distribution used with an AR(3)–

GARCH(1,1) model specification fitted for the NASDAQ returns. The column labeled

K refers to the number of parameters for the respective models; L is the log likelihood;

AIC = −2L + 2K and BIC = −2L + K log T . For each of the three criteria the criterion

value and the ranking of the models are shown. Boldface entries indicate the best model for

the particular criterion.

which also corresponds to an ordering with respect to increasing α1j (with the necessary excep-

tion of the third component of model MN(3,2)), decreasing mixing weights, and a decreasing

βjj (with the exception of components 1 and 2 in model MN(4,4)). The results indicate a clear

relationship between the component mean, µj , and the component dynamics determined by

α1j and βjj . As µj drops, the increasing α1j reflects an increasing responsiveness to (negative)

shocks, while there is more inertia in σ2
jt when shocks tend to be positive, as is reflected by

the increasing values of βjj .

Another striking result is that the volatility dynamics are stable in the sense that α1j+βjj <

1 when µj ≥ 0 and unstable in the sense that α1j + βjj > 1 for µj < 0. However, all

estimated models themselves are stationary, as can be seen from the respective volatility

persistence measures, ρmax, reported in the last row of Table 2. This is due to the fact that

the unstable components have sufficiently small mixing weights. In model MN(3,3), the first

15



component is rather similar to the first component in model MN(2,2) and responds rather

slowly to shocks. The second component, although just unstable (α12 + β22 = 1.032), is more

similar to the Normal–GARCH model and has an intermediate position. The third component,

however, tends to heavily “overreact” to shocks, as reflected by the large value of α13; it is

also characterized by a remarkably high value for constant α03 and is highly unstable, with

α13 + β33 = 1.870. Observe also that, in each model with two or more components, the higher

the volatility (as measured by the estimate of α1i + βii and the unconditional component

variances Eσ2
i , i = 1, . . . , 4), the lower is µ̂i, i.e., negative means arise in conjunction with

higher variance. This finding is compatible with the well–known leverage effect (Black, 1976),

which refers to the tendency for high volatility to coincide with negative returns (see, for

example, Bekaert and Wu, 2000).17

The different responsiveness of the components to shocks is illustrated in Figure 2, which

shows the square roots of the variance in the Normal–GARCH and of the component vari-

ances in model MN(3,3). The graphs clearly reveal the calm and rather hectic behavior of

components 1 and 3, respectively, while σ2t mimics the evolution of σt for the Normal–GARCH

model. The relatively large constant α03 = 0.332 in component 3 is reflected in the floor of

σ3t at roughly 1.

Returning to Table 2, the first two components of the MN(3,2) resemble those of the

MN(2,2) model. With a component mean of µ3 = −2.281 and the rather small weight of

λ3 = 0.004, the third component captures the large negative shocks and amounts to a jump

process which does not include any conditional volatility dynamics. Model MN(4,4) is quite

similar to model MN(3,3) but with the stable component with positive mean being split into

two positive stable components.

Table 3 provides quantile values (13), skewness, kurtosis and the Jarque–Bera Lagrange

multiplier test for normality for the “normalized” residuals, v̂t = Φ−1 (ût), t = 1, . . . , 7678, of

the four candidate MN and the symmetric MNs models. The corresponding histograms, with

one-at-a-time (i.e., not simultaneous) 95% confidence intervals, and normal probability plots

are displayed in Figure 4. The graph for MN(4, 4) mimics that for MN(3, 3) and is not shown.

The quantiles Uξ of the asymmetric MN models match the target values ξ rather well—

both in the left and right tails—as can be seen from Table 3 and Figure 4. Note, however,

that the left–tail fit of the MN(2, 2) model is not as good as that for the models with k > 2;

this coincides with the preferences of the AIC and BIC criteria for higher parameterized MN

models and is especially evident from the skewness and kurtosis statistics reported in Table 3.
17A number of GARCH models exist that incorporate an asymmetric relation between risk and return, e.g.,

the EGARCH of Nelson (1991) and the model of Glosten et al. (1993); see also Bollerslev et al. (1994).
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Table 2: MN-GARCH Parameter Estimates for NASDAQ Returnsa

Normal MN(2, 2) MN(3, 3) MN(3, 2) MN(4, 4)

α01 0.014
(0.0018)

0.002
(0.0008)

0.000
(0.0007)

0.001
(0.0008)

0.003
(0.0032)

α11 0.117
(0.0083)

0.051
(0.0066)

0.022
(0.0080)

0.038
(0.0068)

0.067
(0.0192)

β11 0.869
(0.0089)

0.920
(0.0090)

0.956
(0.0137)

0.934
(0.0101)

0.855
(0.0461)

α11 + β11 0.986
(0.0032)

0.971
(0.0037)

0.978
(0.0063)

0.972
(0.0044)

0.922
(0.0345)

λ1 1 0.820
(0.0255)

0.541
(0.0879)

0.724
(0.0427)

0.373
(0.1182)

µ1 0 0.091
(0.0100)

0.164
(0.0233)

0.119
(0.0133)

0.200
(0.0367)

Eσ2
1 0.986 0.525 0.370 0.460 0.329

α02 – 0.075
(0.0235)

0.012
(0.0055)

0.027
(0.0122)

0.000
(0.0011)

α12 – 0.512
(0.0941)

0.197
(0.0425)

0.379
(0.0685)

0.015
(0.0054)

β22 – 0.727
(0.0457)

0.835
(0.0260)

0.768
(0.0357)

0.980
(0.0071)

α12 + β22 – 1.239
(0.0588)

1.031
(0.0244)

1.146
(0.0413)

0.995
(0.0031)

λ2 0 0.180
(0.0255)

0.433
(0.0832)

0.272
(0.0431)

0.317
(0.0743)

µ2 – −0.415
(0.0575)

−0.153
(0.0548)

−0.281
(0.0508)

0.035
(0.0700)

Eσ2
2 – 1.741 0.926 1.355 0.506

α03 – – 0.332
(0.1913)

0.825
(0.6246)

0.005
(0.0086)

α13 – – 1.303
(0.5179)

– 0.246
(0.0724)

β33 – – 0.567
(0.1389)

– 0.824
(0.0393)

α13 + β33 – – 1.870
(0.4209)

0 1.070
(0.0416)

λ3 0 0 0.026
(0.0111)

0.004
(0.0028)

0.289
(0.0841)

µ3 – – −0.865
(0.2223)

−2.281
(0.7251)

−0.232
(0.0824)

Eσ2
3 – – 2.936 0.825 0.974

α04 – – – – 0.373
(0.2158)

α14 – – – – 1.427
(0.6015)

β44 – – – – 0.546
(0.1524)

α14 + β44 – – – – 1.973
(0.5002)

λ4 0 0 0 0 0.021
(0.0089)

µ4 – – – – −0.894
(0.2412)

Eσ2
4 – – – – 2.941

ρmax 0.986 0.985 0.989 0.986 0.994
aStandard errors are given in parentheses. Column MN(k, g) indicates the

MN–GARCH(1,1) with k components, g of which follow a GARCH process

and k − g components being restricted to having constant variances. Eσ2
i ,

i = 1, . . . , 4, denotes the unconditional variance of component i, as computed

from (8), and ρmax is the measure of volatility persistence, that is, the largest

eigenvalue of matrix (11).
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Figure 2: Volatility evolution for the Normal–GARCH and the MN(3,3)–GARCH models
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While there is no significant skewness and excess kurtosis in the “normalized” residuals of the

MN(3,3) and MN(4,4) models, the model MN(2,2) fails to adequately capture these properties.

However, all three models as well as the MN(3,2) pass the Pearson goodness–of–fit test at the

10% level. Note that the symmetric mixture models MNs(2, 2) and MNs(3, 3) are able to

accommodate the excess kurtosis from the residuals, but clearly fail to capture the skewness.

Taken altogether, it appears that the asymmetric diagonal–MN(3, 3) and diagonal–MN(4, 4)

models provide an adequate description of the NASDAQ series.

Using (1) and (2), the conditional skewness m3/m
3/2
2 of the fitted MN(3,3) model is shown

in the top plot of Figure 3. Because of the increase in the conditional variance of the process

towards the end of the data set, the implied skewness moves towards zero. The middle plots

in the figure show the conditional density when the skewness reached its most extreme value

of −1.56. Its remarkable deviation from symmetry and the wide range of implied skewness

values in the top plot emphasize the importance of time-varying skewness in this data set. The

bottom plot shows the implied kurtosis, which appears to have a “natural lower bound” of 3,

which is explainable from (3) and the fact that µ̂1, µ̂2 and µ̂3 are relatively close in value.

4.5 Empirical Results for the Non–diagonal Models

For the two–component full model, we obtain a triangular structure for β. The estimated

model is of the form

 σ2

1t

σ2
2t


 =


 0.002

0.077


 +


 0.051

0.538


 ε2t−1 +


 0.918 0.000

0.447 0.572





 σ2

1t−1

σ2
2t−1


 , (16)

with λ = (0.806, 0.194)T and µ = (0.095,−0.395)T . The log likelihood, AIC and BIC of the

model are –8869.4, 17764.8 and 17855.1, respectively. Thus, while AIC would prefer the full

model, BIC prefers the diagonal specification.

Model (16) gives rise to a dynamic behavior similar to that of the diagonal model discussed

in Section 4.4. For example, the volatility–persistence value is ρmax = 0.987, which is close to

the value 0.985 for the diagonal MN(2, 2) in Table 2. Expression (B.4) shows how the compo-

nents of the full model respond to innovations. The component–specific volatility persistence

measures, given by α1j + βjj in the diagonal case, are now computed as the Frobenius roots

of matrices β1(1) + α1(1)eT
j , j = 1, 2. (Here, ej denotes the jth k × 1 unit vector.) These are

0.969 and 1.192, respectively, and are similar to those implied for the MN(2, 2) model, namely,

α11 + β11 = 0.971 and α12 + β22 = 1.239 (from line 4 in Table 2). Also, both processes give

rise to quite similar unconditional variances.
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Figure 3: Top plot shows the implied skewness of fitted conditional densities for the NASDAQ

data using the MN(3,3) model, with the inscribed circle indicating the maximal implied left

skewness of -1.56, the density (solid line) of which is plotted in the middle panel together with

the weighted component densities (dashed, dotted and dash–dotted lines); the right graph in

the middle panel is a magnification of the left tail. The bottom plot shows the implied kurtosis.
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The three–component full model is




σ2
1t

σ2
2t

σ2
3t


 =




0.005

0.000

0.007


 +




0.029

0.283

0.251


 ε2t−1 +




0.221 0.202 0.010

1.572 0.235 0.001

0.000 0.000 0.968







σ2
1t−1

σ2
2t−1

σ2
3t−1


 ,

with λ = (0.622, 0.372, 0.006)T , µ = (0.145,−0.220,−1.375)T , and ρmax = 0.994. The log–

likelihood is –8842.4, which is a negligible improvement compared to the diagonal model.

4.6 Extension to Fat–Tailed Components: The Mixed–t–GARCH

An extension of the MN-GARCH model which very naturally suggests itself is to replace the

normal distribution with a fatter-tailed alternative. This would, in the NASDAQ case, help

to accomodate the lack of fit of the MN(2,2)-GARCH(1,1) and potentially render unnecessary

the MN(3,3) model, also resulting in a more parsimonious model. In this case, the component

densities are characterized by an additional shape parameter, which may or may not differ

across the components. As the conditional variance of εt is affected by this shape parameter,

we have

E
[
ε2t |Ψt−1

]
=

k∑

j=1

λjκjσ
2
jt + c

where c is as in (8) and κj is a function of the shape parameter of the jth component. For

example, if the component densities are Student’s t with νj degrees of freedom, j = 1, . . . , k,

then κj = νj/(νj − 2). Straightforward calculations show that the stationarity condition (9)

is easily extended, with the vector of mixing weights λ being replaced by λ ¯ κ, where ¯
denotes element–by–element multiplication (the Hadamard product) of conformable matrices

and κ = [κ1, . . . , κk]T .

Using a mixture of Student’s t distributions for the NASDAQ, first consider the same

degrees of freedom parameter, ν, for each mixture component, jointly estimated with the

remaining parameters. The resulting model then generalizes that proposed by Neely (1999)

who used the Student’s t with the Vlaar and Palm (1993) model. In the two-component case,

ν̂ = 14.8 (with standard error 3.4), indicating a relatively mild deviation from normality. With

log likelihood value −8862.4 and 13 parameters, this resulted in a AIC value of 17750.9 and

a BIC value of 17841.2, i.e., the AIC favors the MN(3,3)-GARCH(1,1) formulation, while the

BIC is virtually indifferent. Thus, the introduction of the fatter-tailed density cannot replace

the added dynamics which are allowed for in the MN(3,3) case.

Allowing the degrees of freedom to differ in this model, the low–volatility component has

ν̂1 = 44.2 (with “standard error” 47.9), and the high volatility unstationary component has
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ν̂2 = 8.63 (with standard error 1.81). The log likelihood of this model with 14 parameters is

−8857.9, implying AIC = 17743.8 and BIC = 17841.0. Compared to the MN(3,3) model, the

discussion of the former paragraph still applies.

Using the Student’s t in the three component model (with equal degrees of freedom) resulted

in ν̂ = 109.8 (with the meaningless standard error of 310) and log likelihood value −8845.1,

clearly demonstrating the adequacy of the normal.

It must be emphasized that these results are based on a single data set; the “mixed-t-

GARCH” might indeed be useful in other contexts. However, its use ventures into the ad-hoc

realm which we have endeavored to avoid.

Table 3: In–sample Fit of AR(3)–GARCH(1,1) MN Modelsa

Normal MNs(2, 2) MNs(3, 3) MN(2, 2) MN(3, 2) MN(3, 3) MN(4, 4)
U0.1 0.703 0.234 0.182 0.195 0.143 0.130 0.130
U0.5 1.420 0.755 0.821 0.495 0.612 0.560 0.560
U1 1.954 1.511 1.719 0.886 1.042 1.094 1.055
U2.5 3.647 3.829 3.985 2.370 2.527 2.761 2.748
U5 5.978 6.851 6.981 5.522 5.548 5.731 5.640
U10 9.820 11.64 11.66 10.78 10.68 10.51 10.63
U90 93.01 91.63 91.61 90.49 90.41 90.28 90.10
U95 96.69 96.20 96.26 95.29 95.26 95.08 95.21
U97.5 98.41 98.50 98.42 97.67 97.64 97.60 97.51
U99 99.30 99.65 99.57 99.05 99.04 99.01 99.05
U99.5 99.69 99.88 99.83 99.58 99.51 99.49 99.49
U99.9 99.90 99.99 99.99 99.91 99.88 99.91 99.92
X2 0.000 0.000 0.000 0.276 0.168 0.186 0.325

Skewness −0.672∗∗∗ −0.298∗∗∗ −0.290∗∗∗ −0.088∗∗∗ −0.054∗ −0.046 −0.037
Kurtosis 2.521∗∗∗ 0.064 0.027 0.134∗∗ 0.094∗ 0.011 −0.012

JB 2609.7∗∗∗ 115.1∗∗∗ 108.1∗∗∗ 15.6∗∗∗ 6.5∗∗ 2.7 1.8
aThe upper part of the table reports the empirical quantiles filtered by the fitted models, with Uξ denoting the

ξ%–quantile. The lower part reports test results on the distributional properties of the transformed residuals. X2

refers to the p–value of the Pearson goodness–of–fit test (14) after transformation (12), with g = 100 and g−K−1

degrees of freedom, where K is the number of parameters of the respective models. The last three rows are based on

transformation (15). “Skewness” denotes the coefficient of skewness γ1 = m3/m
3/2
2 and “Kurtosis” the coefficient

of excess kurtosis γ2−3 = m4/m2
2−3. Under normality, Tγ2

1/6 ∼ χ2(1) and T (γ2−3)2/24 ∼ χ2(1) asymptotically.

JB is the value of the Jarque–Bera (1987) Lagrange multiplier test for normality, i.e., JB = Tγ2
1/6+T (γ2−3)2/24

(cf. Lütkepohl, 1991, pp. 152–156). Asterisks ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5% and 1% levels,

respectively.
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5 Conclusions

We have investigated the properties and the usefulness of a class of conditionally heteroskedas-

tic models for financial return series which re-employs the normality assumption via a mixed

normal structure. The model gives rise to rich dynamics including time–varying skewness and

kurtosis, which is otherwise not encountered in GARCH models driven by innovations from

the “usual” asymmetric fat-tailed distributions. When applied to the returns on the NASDAQ

index, the model class fairs extremely well compared to commonly used competing distribu-

tional specifications. Moreover, it offers a disaggregation of the conditional variance process

which is amenable to economic interpretation, including the well–known leverage effect.

There are several possible generalizations of the proposed model which might be worth

future investigation. First, allowing for time–varying mixture weights, as proposed in Vlaar

and Palm (1993) and implemented, for example, in Beine and Laurent (1999) to model ex-

change rates, with the weights depending on central bank interventions. Second, more general,

asymmetric GARCH structures, such as those proposed by Ding et al. (1993); and Sentana

(1995), could be entertained. Third, the use of a weighted likelihood function, as employed in

Mittnik and Paolella (2000) for achieving better out-of-sample forecasting performance, might

also prove useful in this context. Finally, models with more general dynamics in the mean

equation might be advantageous for modeling certain nonlinear time series. To this end, Wong

and Li (2001) proposed a mixture autoregressive ARCH(k; p1, . . . , pk; q1, . . . , qk) model, which

allows for rather general mean dynamics. It is defined by

F (yt|Ψt−1) =
k∑

j=1

λjΦ
(

εj,t

σj,t

)
, (17)

where εj,t = yt−γj,0−
∑pj

i=1 γj,iyt−i and σ2
j,t = αj,0+

∑qj

i=1 αj,iε
2
j,t−i. In modeling asset returns,

however, the benefits of additional efforts in modeling the mean dynamics tend to be negligible,

so that specification (5) may be preferable in the present context. Furthermore, in contrast

to (17), the model structure adapted here allows a clear separation between the dynamics in

the mean and in volatility, and, moreover, it leads to tractable stationarity conditions with

insightful interpretations.18

18In (17), the dynamics in the means also account for conditional heteroskedasticity. The interaction between

AR– and ARCH–dynamics leads to rather complicated stationarity conditions, especially for autoregressive

orders exceeding one.

24



Appendix

A Computation of Constant c in (8)

For Y ∼ MN
(
λ1, . . . , λk, µ1, . . . , µk, σ

2
1, . . . , σ

2
k

)
, we have

Var [Y ] =
k∑

j=1

λjσ
2
j +

k∑

j=1

λjµ
2
j −




k∑

j=1

λjµj




2

=
k∑

j=1

λjσ
2
j + c.

Hence, with E [Y ] =
∑k

j=1 λjµj = 0 ⇔ µk = −∑k−1
j=1

λj

λk
µj ,

c =
k∑

j=1

λjµ
2
j =

k−1∑

j=1

λjµ
2
j + λk

(k−1∑

j=1

λj

λk
µj

)2

=
1
λk

(k−1∑

j=1

λjµ
2
j

(
1−

k−1∑

j=1

λj

)
+

k−1∑

j=1

k−1∑

r=1

λjλrµjµr

)

=
1
λk

(k−1∑

j=1

λjµ
2
j −

k−1∑

j=1

λjµ
2
j

k−1∑

r=1

λr +
k−1∑

j=1

k−1∑

r=1

λjλrµjµr

)

=
1
λk

(k−1∑

j=1

λjµ
2
j −

k−1∑

j=1

λjµ
2
j

∑

r 6=j

λr + 2
∑∑

j<r<k

λjλrµjµr

)

=
1
λk

(k−1∑

j=1

λjµ
2
j−

∑∑

j<r<k

λjλr(µj − µr)2
)

.

For k = 2, the expression for constant c reduces to c = λ1
1−λ1

µ2
1.

B Derivation of Stationarity Condition (9)

By deriving a GARCH equation for the conditional variance of εt,

E
(
ε2t |Ψt−1

)
= λT σ

(2)
t + c,

we show that the process is weakly stationary if the eigenvalues of matrix Φ, defined by (11),

are less than one in absolute value or, equivalently, if the roots of the characteristic equation

det
[
I − α (z) λT − β (z)

]
= 0

are outside the unit circle. By use of the non-negativity conditions for the αi and βi, this is

equivalent to condition (9).

Consider the MN–GARCH process (6). Using the fact that, for any invertible matrix C,

C−1 = C+/detC, where C+ denotes the adjoint matrix of C, (6) can be written as

det [I − β (L)]σ(2)
t = [I − β (1)]+ α0 + [I − β (L)]+ α (L) ε2t . (B.1)
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Without loss of generality, it can be assumed that the roots of det [I − β (z)] = 0 lie outside

the unit circle, since otherwise the non-stochastic part of difference equation (5) would be

explosive.

The construction of the adjoint matrix implies that

[I − β (L)]+ α (L) =




det B(L)1
det B(L)2

...
det B(L)k


 , (B.2)

where B (L)j is matrix I − β (L) with the jth column being replaced by α (L). Thus, (B.1)

gives rise to k univariate equations of the form

det [I − β (L)]σ2
tj =

(
det B (L)j

)
ε2t + det A (1)j , j = 1, . . . , k, (B.3)

where A (1)j is matrix I − β (1) with the jth column being replaced by α0.

Note that (B.3) can not be interpreted as a GARCH equation for σ2
jt, because σ2

jt is not

the conditional variance of εt. If such an interpretation were correct, weak stationarity would

require the roots of

det [I − β (z)]− detB (z)j = det
[
I − β (z)− α (z) eT

j

]
= 0, j = 1, . . . , k, (B.4)

to be outside the unit circle, where ej is the jth unit vector in Rk.19 The conditional variance

of εt is given by a linear combination of the conditional component variances, i.e.,

E
[
ε2t |Ψt−1

]
= σ2

t =
k∑

j=1

λjσ
2
jt + c.

The variance of the process {εt} thus follows a univariate GARCH equation,

det [I − β (L)]σ2
t =

( k∑

j=1

λj det B (L)j

)
ε2t + c∗, (B.5)

where c∗ =
∑

j λjA(1)j + det (I − β(1)) c = cdet
[
I − β(1) + α0λ

T /c
]

is constant. The argu-

ment is completed by following the same lines as in Gourieroux (1997, p. 37). Defining wt =

ε2t −σ2
t and replacing, in (B.5), σ2

t by ε2t −wt, we obtain an ARMA(max {pk, p(k − 1) + q} , pk)

representation for the ε2t process,

[
det

(
I − β (L)

)−
k∑

j=1

λj detB (L)j

]
ε2t = det [I − β (L)]wt + c∗. (B.6)

19The first equality in (B.4) follows directly from the linearity of det (·) in columns.
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Hence, the sequence E
(
ε2t

)
converges and the process

{
ε2t

}
is weakly stationary if the roots of

the characteristic equation20

det [I − β (z)]−
k∑

j=1

λj detB (z)j = det
[
I − β (z)− α (z) λT

]
(B.7)

=
k∑

j=1

λj det
[
I − β (z)− α (z) eT

j

]

= 0

are larger than unity or, equivalently, the spectral radius, ρ (·), of the transition matrix (11)

satisfies ρ (Φ) < 1.21 If ρ (Φ) < 1, then (9) holds, and, by the non-negativity of Φ, guarantees

the required positivity in (8).22

Next, assume that det
[
I − α (1)λT − β (1)

]
> 0 and note that, by the Frobenius Theorem

(Gantmacher, 1959, p. 66), the largest root in magnitude of Φ is real and non–negative, so it

suffices to show that the determinant condition implies that there is no real root of Φ equal to

or larger than one. Define, analogous to Φ, the matrix

B =




β1 β2 ··· βr−1 βr

I 0 ··· 0 0
0 I 0 0
...

...
. . .

...
...

0 0 ··· I 0


 ,

where r = max {p, q}. As was mentioned above, it can be assumed without loss of generality

that the eigenvalues of B are inside the unit circle, i.e., det [I − β (z)] = 0 ⇒ |z| > 1. From

(B.6), the characteristic equation of matrix Φ is

det (zI − Φ) = det
(
zrI −

p∑

i=1

βiz
r−i −

q∑

i=1

αiλ
T zr−i

)

= det (zI −B)
[
1− λT

(
zrI −

p∑

i=1

βiz
r−i

)−1
q∑

i=1

αiz
r−i

]

= det (zI −B)
[
1− λT

(
I −

p∑

i=1

βiz
−i

)−1
q∑

i=1

αiz
−i

]
.

From non-negativity,
∑q

i=1 αiz
−i monotonically decreases in z.

(
I −∑p

i=1 βiz
−i

)−1 forms the

first k rows and columns of
(
I −Bz−1

)−1 =
∑∞

i=0 Biz−i ≥ 0 for z > ρ (B). It decreases

20Recall that a GARCH process is serially uncorrelated; hence the process is weakly stationary if the variance

exists.
21The first equality can be obtained by repeated use of the linearity of det(·) in columns. It is, however, a

direct consequence of the Sherman–Morrison formula for determinants, stating that, for matrix A and vectors

u and v, det
�
A + uvT

�
= det A + vT A+u (see, e.g., Henderson and Searle, 1981).

22It is well–known (see, e.g., Bowden, 1972), that
�
I − α (z) λT − β (z)

�−1
is the upper left block of matrix

(I − Φz)−1 ≥ 0 for z−1 > ρ (Φ).
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monotonically in z. Hence, it follows that, if det (I − Φ) = det
[
I − α (1)λT − β (1)

]
> 0, then

ρ (Φ) < 1.

To appreciate the stationarity condition of MN–GARCH processes, note that, combining

(B.6) with (B.3) shows that stability does not require the condition det
(
I − β (1)− α (1) eT

j

)

> 0 to hold for each of the k relationships in (B.3). It suffices that positivity holds for the

weighted average with weights λj , j = 1, . . . , k.
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