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Appendix Supplementary Methods 54	  

Quantification of LC-MS/MS raw data 55	  

giBAQ quantification 56	  

For full proteomes, we used unique and razor peptides for quantification. MaxQuant was set to calculate iBAQ 57	  

intensities (Schwanhausser et al, 2011), however we instead used a modified version of the classical iBAQ 58	  

approach termed giBAQ to estimate absolute quantities of gene groups as opposed to protein groups, excluding 59	  

reverse and contaminant hits from the proteinGroups.txt output of MaxQuant. Unless otherwise stated, the 60	  

CPTAC and CRC65 datasets were processed separately from one another. In order to ensure comparability with 61	  

transcriptomics data, we assigned every protein group to a single gene group using the following heuristic with 62	  

four mapping groups (MGs): First, we retrieved a mapping of Uniprot identifiers in the “Majority protein IDs” 63	  

column to HGNC symbols from Ensembl using biomaRt v2.25.2, collapsing isoforms to their parent Uniprot 64	  

identifier. This resulted in two mapping groups, one for the Swiss-Prot entries (MG1) and one for the TrEMBL 65	  

entries (MG2) contained in Uniprot, which were subsequently filtered to remove Swiss-Prot and TrEMBL 66	  

identifiers mapping to more than one HGNC symbol. For each protein group, we then selected the first Swiss-67	  

Prot entry in the “Majority protein IDs” column to represent this protein group and subsequently assigned it the 68	  

corresponding HGNC symbol from MG1. Afterwards, protein groups left without an HGNC symbol were 69	  

represented by the first TrEMBL entry in the “Majority protein IDs” column and subsequently assigned the 70	  

corresponding HGNC symbol from MG2. For protein groups still left without an HGNC symbol, we then used 71	  

the R package Uniprot.ws v2.10.2 to retrieve a mapping of Uniprot identifiers in the “Majority protein IDs” 72	  

column to HGNC symbols from Uniprot (MG3), collapsing isoforms to their parent Uniprot identifier. Protein 73	  

groups left without an HGNC symbol were then represented by the first Uniprot entry in the “Majority protein 74	  

IDs” column and subsequently assigned the first corresponding HGNC symbol from MG3. Afterwards, all 75	  

protein groups still left without an HGNC symbol were assigned the first HGNC symbol from the “Gene 76	  

names” column of the proteinGroups.txt output file (MG4). This heuristic guaranteed that the majority of 77	  

HGNC-symbol-assignments were done using biomaRt (99% for both the CPTAC and CRC65 datasets), a 78	  

system which–as opposed to Uniprot.ws or MaxQuant–could also be used to map HGNC symbols to the various 79	  

identifiers encountered in the transcriptomics datasets described below, ensuring maximum comparability of 80	  

transcriptomics and proteomics data. We favoured MG1 over MG2 during assignment of HGNC symbols, since 81	  

it was based on Swiss-Prot entries, which are manually curated. Selecting the first Swiss-Prot (MG1), TrEMBL 82	  
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(MG2) or Uniprot (MG3) entry in the “Majority protein IDs” column to represent a given protein group during 83	  

HGNC-symbol-assignment in their respective mapping group further made sure that these assignments were 84	  

always based on the identifier corresponding to the protein with the highest number peptides in the respective 85	  

protein group. It is worth noting that 96% and 97% of our heuristic HGNC-symbol assignments for the CPTAC 86	  

patient and CRC65 cell line datasets were identical to the corresponding values in the “Gene names” column of 87	  

the proteinGroups.txt output file, even though it only served as the source for 1% and 0.1% of the HGNC-88	  

symbols, respectively. 89	  

Next, we extracted the number of theoretical peptides per protein group used by MaxQuant for the calculation of 90	  

iBAQ intensities as the ratio of raw intensities to iBAQ intensities, rounded to the nearest integer. As expected, 91	  

these values were constant for each protein group across all samples in the two datasets and were equal to the 92	  

values determined by in silico digestion of the fasta file of UniprotKB used in the database search by MaxQuant 93	  

with the Protein Digestion Simulator v2.2.5679. Protein groups with only missing intensity values across one of 94	  

the two datasets or no assigned HGNC-symbol were excluded from the respective dataset. For each gene group 95	  

as defined by a common HGNC-symbol, we then summed up the raw intensities of protein groups in this gene 96	  

group in a sample-wise manner and divided them by the sum of the number of theoretical peptides for these 97	  

proteins, which satisfied the standard iBAQ criteria adapted to our MaxQuant search parameters. These were 98	  

fully tryptic peptides between 7 and 30 amino acids without missed cleavages, since the minimum peptide 99	  

length in MaxQuant was set to 7 instead of 6. For a gene group only containing proteins which do not share any 100	  

theoretical peptides, this quantity termed giBAQ value will be equal to the iBAQ value obtained for a 101	  

hypothetical protein constructed from them, thereby normalising to the length of the portion of the gene 102	  

accessible by mass spectrometry, rather than the individual protein lengths. 103	  

LFQ quantification 104	  

For Kinobeads experiments, we used unique and razor peptides for quantification. MaxQuant was set to 105	  

calculate LFQ intensities with an LFQ minimum ratio count of two. Fast LFQ was used to determine 106	  

normalisation factors, with the minimum number of neighbours set to three, the average number of neighbours 107	  

set to six and the “Stabilize large LFQ ratios” option enabled. We did not require MS2 spectra for pair-wise 108	  

peptide intensity comparisons during the calculation of LFQ intensities. Gene names associated with protein 109	  

groups were remapped as described above for full proteome data. For each gene group and sample, we then 110	  
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summed up the LFQ intensities of protein groups in this gene group to generate a gene-level quantification, 111	  

which was used in all subsequent analyses. 112	  

Post-processing of quantitative LC-MS/MS data 113	  

Full Proteomes 114	  

The CRC65 and CPTAC datasets were processed separately from one another. For the CPTAC dataset, we 115	  

restricted our analysis to CPTAC sample IDs not removed in the original publication (Zhang et al, 2014) due to 116	  

duplication. Following common practice, giBAQ values were log2-transformed and median-centred. Since the 117	  

CRC65 cell line panel contained two pairs of concordant cell lines (HDC-54/HDC-57 and LS 180/LS 174T; 118	  

Bracht et al, 2010; Klijn et al, 2015; Medico et al, 2015), we replaced missing values in HDC-54 and LS 180 119	  

with measured values from HDC-57 and LS 174T, respectively. HDC-57 and LS 174T were subsequently 120	  

excluded from the analysis. It is worth noting that we did not just calculate the arithmetic mean of these cell line 121	  

pairs, since this would prevent minimum-guided missing value imputation on the peptide level with raw-file-122	  

specific backgrounds, as described in its respective section. 123	  

Kinobeads 124	  

Since we observed batch effects between the three different biological replicates, we decided to log2-transform 125	  

and median-centre them separately from one another, followed by batch-effect removal using ComBat (Johnson 126	  

et al, 2007). Briefly, we first restricted our dataset to gene groups consistently measured between the different 127	  

replicates and across the dataset, selecting gene groups with at least two out of three reported LFQ values per 128	  

cell line in at least 23 cell lines. Next, we removed all gene groups with one or fewer reported LFQ values per 129	  

replicate in order to eliminate noise and enable subsequent parametric batch adjustment using ComBat, 130	  

implemented in the sva R package v3.18.0, with MSI status as a covariate as described by Guinney and 131	  

colleagues (Guinney et al, 2015). We used the median across all three replicates to summarise the LFQ values 132	  

for each cell line, taking the median across all six replicates for the two pairs of concordant cell lines described 133	  

above; HDC-54 was selected to represent HDC-54/HDC-57 and LS 180 was selected to represent 134	  

LS 180/LS 174T. 135	  
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Reanalysis of public mRNA datasets 136	  

Pre-processing 137	  

We downloaded 10 mRNA datasets (GSE36133 - Barretina et al, 2012; E-MTAB-783 - Garnett et al, 2012; E-138	  

MTAB-2706 - Klijn et al, 2015; GSE28567 - Loboda et al, 2011; GSE59857 - Medico et al, 2015; 139	  

Supplementary Table S6 - Mouradov et al, 2014; platform codes "IlluminaGA_RNASeq" + 140	  

"AgilentG4502A_07_3" - TCGA Network, 2012; GSE8332 - Wagner et al, 2007; GSE24795 - Wilding et al, 141	  

2010, respectively) and processed them as follows, automatically obtaining the required chip definition files 142	  

(.cdf) from Bioconductor for microarray datasets, if not stated otherwise. The same cell lines have inconsistent 143	  

names in the different transcriptomics datasets, which is why the first pre-processing step always involved the 144	  

mapping of all cell line names to a set of consistent sample names (see also Table EV6A). 145	  

GSE36133 146	  

We used GEOquery v2.35.6 to download annotation information associated with GSE36133 and obtained raw 147	  

.CEL files, as well as the “Expression arrays samples info file” from the CCLE portal of the Broad Institute 148	  

(http://portals.broadinstitute.org/ccle/data/browseData?conversationPropagation=begin, 31 December 2015). 149	  

The dataset was restricted to cell lines from the large intestine, as well as C32 and Colo 741, which were derived 150	  

from skin according to the “Expression arrays samples info file”. The preproPara() function from the affyPara 151	  

package v1.29.0 was then used with background correction through RMA, quantile normalisation and probe 152	  

summarisation through median polish of perfect match (PM) probes to calculate the classical RMA expression 153	  

measure. Probes with only missing values across the dataset were excluded. Next, we retrieved a mapping of 154	  

AffyIDs to HGNC symbols from Ensembl using biomaRt and filtered it to remove AffyIDs, which mapped to 155	  

more than one HGNC symbol. This mapping was then used to assign each AffyID to its corresponding HGNC 156	  

symbol. AffyIDs we were not able to map this way were excluded from the dataset. This was one of two 157	  

datasets for which we were not able to first map primary IDs (in this case AffyIDs) to GeneIDs with the default 158	  

annotation data downloaded from GEO or related sources. For consistency reasons, GeneIDs served as the basis 159	  

for HGNC symbol assignment during the analysis of other transcriptomics datasets whenever possible. For 160	  

GSE36133, this resulted in an expression matrix of 36,877 AffyIDs across 63 cell lines. 161	  

E-MTAB-783 162	  

We obtained raw .CEL files, as well as the corresponding eSet.r and adf.txt files from ArrayExpress 163	  

(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-783/files/, 31 December 2015) and downloaded the 164	  
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“gdsc_manova_input_w5.csv” file from the GDSC portal in order to be able to map cell lines to tissues of origin 165	  

(ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-5.0/, 12 March 2016). The dataset was restricted to 166	  

cell lines from the large intestine, as well as C32 and SW626, which were derived from skin and ovary, 167	  

respectively, according to the tissue labels in the “gdsc_manova_input_w5.csv” file. The rest of the pre-168	  

processing was similar to GSE36133, with the only difference being that we first mapped AffyIDs to Ensembl 169	  

GeneIDs using the adf.txt file and afterwards assigned each GeneID to an HGNC symbol using biomaRt as 170	  

described above. This resulted in an expression matrix of 20,106 AffyIDs across 37 cell lines. 171	  

E-MTAB-2706 172	  

We obtained Supplementary Table 1 from the original publication by Klijn et al., as well as RPKM data for 173	  

coding genes from the website accompanying the publication (http://research-pub.gene.com/KlijnEtAl2014/, 06 174	  

October 2015). Supplementary Table 1 was used to assign cell lines to their tissues of origin and the dataset was 175	  

subsequently restricted to colorectal cancer cell lines as well as C32, which was derived from skin. RPKM 176	  

values equal to zero were treated as missing values and GeneIDs only containing missing values were removed 177	  

from the dataset. Afterwards, we quantile normalised and log2-transformed the data, followed by assigning each 178	  

GeneID to an HGNC symbol using biomaRt as described above. This resulted in an expression matrix of 20,965 179	  

GeneIDs across 56 cell lines. 180	  

GSE28567 181	  

We obtained annotation information for GSE28567 through GEOquery and downloaded the appropriate custom 182	  

chip definition file (.cdf) and the corresponding raw .CEL files from NCBI GEO (Edgar et al, 2002; 06 183	  

November 2015). The R package makecdfenv v1.46.0 was used to construct an annotation package from the 184	  

.cdf file, which was subsequently used to relate probes to locations on the microarray. The rest of the pre-185	  

processing was similar to GSE36133, with the only difference being that we first mapped the custom probe IDs 186	  

to Ensembl GeneIDs using the annotation information from GEO and afterwards assigned each GeneID to an 187	  

HGNC symbol using biomaRt as described above. This resulted in an expression matrix of 33,749 probe IDs 188	  

across 67 cell lines. 189	  

GSE59857 190	  

We used GEOquery to obtain a normalised expression set object and annotation information associated with 191	  

GSE59857 and downloaded non-normalised expression data from NCBI GEO (04 November 2015), as well as 192	  

further annotation information for Illumina expression arrays from Bioconductor. The R packages limma 193	  
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v3.26.2 and beadarray v2.19.1 were used for background correction, normalisation and transformation of raw 194	  

data. We first generated an ExpressionSetIllumina from the expression set object we downloaded from NCBI 195	  

GEO and replaced the normalised expression data with the non-normalised data. Subsequently, we performed 196	  

background correction using the backgroundCorrect function from limma, estimating the parameters of the 197	  

normal-exponential (normexp) convolution model adapted for microarrays other than Affymetrix arrays by 198	  

Ritchie et al (2007) using the maximum-likelihood estimator developed by Silver et al (2009) with an offset of 199	  

10 in order to ensure that expression values were positive after background correction. Afterwards, the corrected 200	  

expression data were quantile normalised using the normaliseIllumina function from the beadarray package, 201	  

followed by log2-transformation of the dataset. This method was used in favour of the neqc method described 202	  

by Shi and colleagues (Shi et al, 2010) after comparison of the distributions of expression values produced by 203	  

the two algorithms. We restricted the dataset to probes from coding regions, excluding negative control and bad 204	  

quality probes, but keeping probes associated with GeneIDs contained in the single-sample predictor for the 205	  

CMS subtypes published by Guinney et al (2015) regardless of probe quality annotation. Ensembl GeneIDs 206	  

were mapped to HGNC symbols using biomaRt as described above. This resulted in an expression matrix of 207	  

27,293 probe IDs across 155 cell lines. 208	  

Supplementary Table S6 from Mouradov et al. 209	  

We downloaded (05 August 2014) Supplementary Table S6 from the original publication by Mouradov et al 210	  

(2014), excluded cell line RW2982 from the dataset as the only cell line not present in the CRC65 panel, treated 211	  

RPKM values equal to zero as missing values and restricted the dataset to RefSeq IDs containing at least one 212	  

measured value. Subsequently, RPKM values were quantile normalised and log2-transformed, followed by re-213	  

mapping RefSeq IDs to HGNC symbols using biomaRt as described above. This resulted in an expression 214	  

matrix of 29,973 RefSeq IDs across 12 cell lines. 215	  

Platform code "IlluminaGA_RNASeq" from TCGA 216	  

We used the TCGAbiolinks R package v1.0.4 to obtain and prepare level 3 data associated with COAD/READ 217	  

tumours and platform code “IlluminaGA_RNASeq”, for which we also had proteomics data from the CPTAC 218	  

study on colorectal cancer (Zhang et al, 2014) and which were not excluded from this dataset due to duplication 219	  

as described above (16 December 2015). We removed duplicate rows from the RPKM expression matrix, 220	  

remapped the TCGA barcodes to the sample names described in Table EV6A, treated RPKM values equal to 221	  

zero as missing values and restricted the dataset to GeneIDs containing at least one measured value, as described 222	  
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above. Afterwards, the dataset was log2-transformed and median-centred, followed by re-mapping of GeneIDs 223	  

to HGNC symbols using biomaRt as described above. This resulted in an expression matrix of 19,670 GeneIDs 224	  

across 87 tumours. 225	  

Platform code "AgilentG4502A_07_3" from TCGA 226	  

We again used the TCGAbiolinks R package v1.0.4 to obtain and prepare level 1 data and MAGE-TAB files 227	  

associated with COAD/READ tumours and platform code “AgilentG4502A_07_3”, for which we also had 228	  

proteomics data from the CPTAC study on colorectal cancer (Zhang et al, 2014; 25 January 2016). The 229	  

corresponding platform design file (.adf files) was downloaded from the TCGA portal at https://tcga-230	  

data.nci.nih.gov/docs/publications/tcga/platformdesign.html (26 January 2016). We used limma for the 231	  

processing of txt files generated from microarray scans using Agilent’s Feature Extraction Software (TCGA 232	  

Network, 2011). Briefly, an RGList was generated, followed by annotation of the probes using the platform 233	  

design file in order to perform quality control through annotated MA-plots, boxplots of background intensities, 234	  

image plots of foreground and background intensities, density plots and the QC metrics calculated by the R 235	  

package arrayQualityMetrics v3.26.1. Subsequently, we performed background correction using the 236	  

backgroundCorrect function from limma with the method described by Edwards (2003) and an offset of 50, 237	  

since it produced the most stable results as judged by inspection of MA-plots following within-array loess 238	  

normalisation with standard parameters for several background correction methods. Afterwards, between-array 239	  

normalisation using the “Gquantile” method implemented in the normalizeBetweenArrays function of limma 240	  

was carried out under the assumption that the signal distributions of the green channels across all arrays should 241	  

be the same, since the green channel always contained the Universal Human Reference RNA (TCGA Network, 242	  

2012). We took the median of replicate probes, filtered out probes without GeneID annotation and finally 243	  

mapped the GeneIDs to HGNC symbols using biomaRt as described above. This resulted in an expression 244	  

matrix of 66,728 Agilent IDs across 73 tumours. 245	  

GSE8332 246	  

We used GEOquery to download annotation information associated with GSE8332 and also obtained raw .CEL 247	  

files from NCBI GEO (20 November 2015). The dataset was pre-processed similarly to GSE36133 and 248	  

subsequently restricted to CRC cell lines based on Figure 1 of the original publication (Wagner et al, 2007), as 249	  

well as C32 and Colo 741, which were derived from skin as described above. It is worth noting that the authors 250	  

categorised Colo 741 as a CRC cell line, which contradicts the annotations found in the other mRNA datasets 251	  
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analysed thus far. Using the annotation information downloaded from GEO, AffyIDs were then annotated with 252	  

GeneIDs, which were subsequently mapped to HGNC symbols using biomaRt as described above. This resulted 253	  

in an expression matrix of 39,546 AffyIDs across 36 cell lines. 254	  

GSE24795 255	  

Raw data for GSE24795 were obtained (05 November 2015) and pre-processed as described for GSE8332, with 256	  

the only difference that no samples needed to be omitted, since all cell lines included in the study were CRC cell 257	  

lines. This resulted in an expression matrix of 39,546 AffyIDs across 30 cell lines. 258	  

Combination of transcriptomics datasets 259	  

We aggregated the different transcriptomics datasets described above into one expression matrix using a scheme 260	  

similar to the one published by Guinney and colleagues (Guinney et al, 2015). As mentioned in the original 261	  

publication, we expected strong batch effects between the different transcriptomics datasets and also needed to 262	  

select a single probe or primary ID to represent the expression of a given gene in each dataset in order to avoid 263	  

inconsistent mRNA quantification. But since we intended to compare the abundance of as many mRNA species 264	  

to as many protein species across as many samples as possible, respectively, we refrained from removing outlier 265	  

samples from each dataset separately and also did not restrict the list of quantifiable mRNA species to the ones 266	  

with the largest median absolute deviation (MAD). We also did not select a reference dataset a priori, but rather 267	  

computed similar consistency measures as the ones described by Guinney and colleagues for each dataset and 268	  

selected the reference dataset afterwards, thereby maximising the consistency between the different datasets as 269	  

described below. We started out by reducing all datasets to a common set of 10,044 reference genes based on 270	  

the HGNC-symbol-assignments described in the previous sections. Next, each of the reference genes was 271	  

temporarily represented by the primary identifier (AffyID, Probe ID, etc.) with the largest MAD in each of the 272	  

datasets (reference identifiers). For each dataset, we then calculated the correlation between all primary 273	  

identifiers and these reference identifiers, generating ten correlation matrices with a number of rows equal to the 274	  

number of primary identifiers in the respective dataset and 10,044 columns each; one for each reference 275	  

identifier. For each dataset, this correlation matrix is equivalent to the collection of correlation vectors C of 276	  

length |GREF| mentioned in the publication by Guinney and colleagues. For each of the reference genes and each 277	  

dataset, we then calculated the correlation of all correlation vectors associated with primary identifiers 278	  

quantifying the respective reference gene to all other correlation vectors from the different datasets associated 279	  

with primary identifiers quantifying the same reference gene. This resulted in a collection of 10,044 “gene-280	  
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lists”, one for each reference gene. Each of these “gene-lists” itself consisted of ten “reference-dataset-lists”, one 281	  

for each dataset. Each of these “reference-dataset-lists” itself contained a “dataset-list” of correlation matrices, 282	  

one for each dataset. These correlation matrices finally contained the correlations of all correlation vectors 283	  

associated with primary IDs quantifying the respective reference gene in the respective dataset against all 284	  

corresponding correlation vectors associated with primary IDs quantifying the same reference gene in all other 285	  

datasets. This enabled us to avoid having to select a reference dataset a priori as described by Guinney et al., 286	  

thereby allowing different selection criteria to be consulted before deciding on a reference dataset. In order to 287	  

select a reference dataset, we used the following heuristic: For each potential reference dataset and each primary 288	  

ID in it, we calculated a consistency metric comet by first determining which primary IDs in the other datasets 289	  

quantifying the same reference gene show the highest “correlation of correlations” value with the respective 290	  

primary ID in the potential reference dataset and subsequently summing up these “correlations of correlations” 291	  

for each primary ID in the potential reference dataset. For each dataset and reference gene, this resulted in a 292	  

vector of comet values, one for each primary ID quantifying the respective reference gene. The primary ID with 293	  

the maximum comet value (maxcomet value) was selected to represent the respective reference gene in the 294	  

respective dataset. These primary IDs were the ones resulting in the highest consistency between the different 295	  

datasets if we were to select the respective dataset as a reference. We then compared the distribution of these 296	  

maxcomet values across all datasets in order to find the reference dataset resulting in the highest consistency 297	  

between the different datasets. Four of the ten datasets showed similarly promising distributions of maxcomet 298	  

values (E-MTAB-2706, GSE28567, GSE8332 and GSE36133) and we decided to use GSE36133 as the 299	  

reference dataset, since it was the biggest dataset in terms of both primary IDs and cell lines. In this reference 300	  

dataset, primary IDs associated with maxcomet values were selected to represent their corresponding reference 301	  

genes. For each of the other datasets, the primary ID with the maximum “correlation of correlations” value with 302	  

the primary ID chosen to represent a given reference gene in the reference dataset was selected to represent the 303	  

respective reference gene in the respective dataset. This resulted in ten datasets with 10,044 genes each, which 304	  

were represented by a combination of primary IDs ensuring maximum consistency between the different 305	  

datasets. 306	  

We next merged the eight datasets quantifying transcription in cell lines into one expression matrix and also 307	  

generated a second expression matrix containing all ten datasets. These two expression matrices were treated 308	  

separately from one another during adjustment of batch effects in order to maximise the number of genes in 309	  

each of them. First, we reduced these matrices to genes quantified in at least two samples per dataset, followed 310	  
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by the adjustment of batch effects between the different datasets using ComBat (Johnson et al, 2007) with MSI 311	  

status as a covariate. Next, we restricted the expression matrix containing all ten datasets to samples also present 312	  

in the CPTAC patient dataset. At this stage, we had two mRNA expression matrices, which–together with the 313	  

giBAQ quantitation for cell lines and patients described above–served as the basis for our multi-omics data 314	  

integration strategy. 315	  

Multi-omics data integration strategy 316	  

Computation of protein/mRNA fold-changes 317	  

Wilhelm et al. showed that protein/mRNA ratios or fold-changes are reasonably stable across a number of 318	  

different tissues and that median ratios can be used to estimate protein abundance from mRNA abundance for a 319	  

given protein (Wilhelm et al, 2014). Since these fold-changes were calculated based on RPKM values as 320	  

determined by mRNA-Seq, we were curious as to whether this also holds true when transcript abundance is 321	  

estimated using microarrays. We therefore calculated the median expression for each transcript and sample in 322	  

the two mRNA expression matrices described above and divided the giBAQ values of the corresponding 323	  

proteins in the CRC65 cell line and CPTAC patient dataset by these values in a sample-wise manner. This 324	  

resulted in two ratio matrices, one for the CRC65 dataset and one for the CPTAC dataset, which were used to 325	  

produce Figures EV3A & B. The median mRNA expression values were the basis for Figure EV2B. These 326	  

figures showed that there are systematic differences between protein and mRNA datasets, which manifest as 327	  

reasonably stable protein/mRNA fold-changes within the CRC65 and CPTAC datasets. Notably, the greater 328	  

proteomic ‘depth’ of the CRC65 dataset resulted in systematically higher protein/mRNA fold-changes compared 329	  

to the CPTAC dataset. This could not have been adjusted using global total-sum normalisation, since the peptide 330	  

coverage differed drastically between the two datasets in a non-linear way (Fig. EV2C). 331	  

Integration of transcriptomics and proteomics 332	  

Because protein/mRNA fold-changes were reasonably stable within both datasets, we hypothesised that they 333	  

could be treated as systematic differences and therefore be adjusted using e.g. ComBat as described above. 334	  

ComBat however shifts genes in each dataset to the overall mean and pooled variance across datasets, thereby 335	  

altering the location and scale of each dataset. In our case, we wanted to avoid altering the giBAQ expression 336	  

values as they represent actual measurements of gene group abundance on the protein level. Therefore, we 337	  

decided to instead use MComBat (Stein et al, 2015), which allows the specification of a “gold-standard” dataset 338	  
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towards which all other datasets are adjusted and which is not changed. MComBat takes advantage of the 339	  

systematic differences between protein and mRNA measurements and models them in a protein-wise fashion. 340	  

Stein and colleagues published the R code for MComBat alongside their manuscript at 341	  

https://github.com/SteinCK/M-ComBat/blob/master/M-ComBat%20R%20Script, however this script is setup to 342	  

stop if the combined expression matrix used as input contains any number of missing values. We modified this 343	  

script to instead work similarly to the original ComBat function implemented in the sva R package v3.18.0 with 344	  

respect to missing values; the modified script is available at 345	  

https://github.com/mfrejno/pharmacoproteomics_crc. With this modified MComBat function at hand, we set out 346	  

to integrate transcriptomics and proteomics data for the CRC65 cell line and CPTAC patient datasets separately 347	  

from one another. After merging proteomics and transcriptomics data for each dataset separately, we reduced 348	  

these matrices to gene groups quantified in at least two samples on both the protein and transcript level, 349	  

followed by the adjustment of systematic differences between proteomics and transcriptomics data using the 350	  

aforementioned modified MComBat function without MSI status as a covariate. The resulting adjusted 351	  

expression matrices were the basis for Figure EV3C, as well as for mRNA-guided missing value imputation. 352	  

Preserving differences between mRNA measurements of distinct cell lines, this adjustment resulted in protein 353	  

measurements of one cell line to cluster together with mRNA measurements of the same cell line. Before, 354	  

protein and mRNA measurements clustered together in their respective dataset and were not similar to each 355	  

other. Here, we would like to stress that we only made use of MComBat in order to be able to perform mRNA-356	  

guided missing value imputation. The increase in correlation between protein and mRNA data is only due to the 357	  

fact that MComBat removed systematic differences between them. 358	  

mRNA-guided missing value imputation 359	  

The increase in the overall correlation between transcriptomics and proteomics data after adjusting for 360	  

systematic differences between them (see Fig. EV2B and EV3C) enabled calculating protein abundance from 361	  

adjusted mRNA abundance. In order to do so, the CRC65 and CPTAC datasets had to be processed separately 362	  

from one another. For each protein sample and all of its cognate mRNA samples, we assembled all pairs of 363	  

protein and mRNA measurements corresponding to the same gene group and subsequently modelled protein 364	  

abundance as a function of adjusted mRNA abundance using a single linear model. For each cognate mRNA 365	  

sample, we then used the corresponding linear model to calculate the protein abundance of gene groups with 366	  

missing values in the respective protein sample. For each gene group with missing values in the respective 367	  

protein sample, we then used the mean across all calculated protein abundances based on cognate mRNA 368	  
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samples to impute the giBAQ value of the corresponding gene group. Imputed giBAQ values smaller than zero 369	  

were treated as missing values (see Fig. EV2D). 370	  

Minimum-guided missing value imputation 371	  

Since we were not able to impute all missing values in the proteomics datasets using mRNA-guided missing 372	  

value imputation, we explored a number of secondary imputation methods, which could be used after mRNA-373	  

guided missing value imputation (Figure EV2E). All of these methods shared the common assumption that most 374	  

missing values in proteomics datasets are “missing not at random” (MNAR), i.e. that the likelihood of 375	  

“encountering” a missing value increases as the abundance of the respective analyte approaches the detection 376	  

limit of the instrument (Lazar et al, 2016). We first confirmed that this assumption holds true for both the 377	  

CRC65 cell line and CPTAC patient datasets by calculating the frequency and fraction of missing values per 378	  

intensity bin for both datasets after MComBat adjustment but before mRNA-guided missing value imputation, 379	  

which was the basis for Figure EV2A. The first imputation method we tried out falls into the MinProb category 380	  

described by Lazar and colleagues and was the method described in Figure EV3 of the recent publication by 381	  

Tyanova et al (2016), using a down-shift of 1.8 and a width of 0.3. When we applied this method before mRNA-382	  

guided missing value imputation, this resulted in strong bimodality of the intensity distribution for both datasets, 383	  

but even applying it after mRNA-guided missing value imputation did not circumvent this undesirable 384	  

behaviour completely. When adjusting the parameters of this perseus-type imputation such that the imputed 385	  

values became more and more (eventually fully) part of the overall distribution, we found an ever increasing and 386	  

eventually large number of cases in which the imputed values for specific proteins had much higher intensities 387	  

than the same but experimentally robustly measured protein intensities in a different sample, which is equally 388	  

undesirable. Since imputing missing values with the sample-wise (MinDet method described by Lazar et al.) or 389	  

protein-wise minimum introduced too much bias by reducing the variability of the measurements, we decided to 390	  

implement a new imputation method termed “minimum-guided missing value imputation” on the protein level. 391	  

This method ensured that no imputed value for a given protein was bigger than a measured value for the same 392	  

protein by sampling missing values with replacement from the distribution of measured values smaller than the 393	  

minimum for the respective protein. This was done across the entire dataset, which is why each dataset needed 394	  

to be normalised and handled separately. For each protein with one or more missing values across the dataset, 395	  

we first determined the minimum expression value. In a protein-wise fashion, missing values were subsequently 396	  

replaced with measured values, which were sampled from the truncated distribution of measured values as 397	  

described above. This resulted in a much more favourable behaviour with reduced bimodality of the intensity 398	  



15	  
	  

distributions of each dataset if applied after mRNA-guided missing value imputation. Imputation on the protein 399	  

level however should not be favoured over imputation on the peptide level, since aggregating peptide-level 400	  

information to form protein expression values already represents a form of implicit missing value imputation, as 401	  

discussed by Lazar et al (2016). We therefore decided to transfer the concept of minimum-guided missing value 402	  

imputation to the peptide level, but only imputed missing values for peptides if the corresponding protein 403	  

abundance was missing as well. With a stable protein-group-to-HGNC-symbol mapping at hand (see above), we 404	  

made use of MaxQuant’s relational database output and mapped each peptide and its intensity in the 405	  

evidence.txt output file to the protein group and by extension also to the gene group to the quantification of 406	  

which the respective peptide intensity contributed. Since razor peptides per definition map to more than one 407	  

protein group, we made sure to map their intensity only to those protein and gene groups for the quantification 408	  

of which MaxQuant actually used them. For each protein with one or more missing values across the dataset, we 409	  

then found the sample with the lowest expression of this protein and determined which peptides contributed to 410	  

this value. For each missing value in each of these reference peptides, we then searched in a window of 1.1 min 411	  

(centred at the recalibrated retention time of the respective reference peptide in the matching fractions) for 412	  

peptides with a lower intensity than the reference peptide. From the intensities of these low-intensity peptides, 413	  

we then sampled the missing values for the corresponding reference peptide with replacement. All imputed 414	  

peptide intensities corresponding to a given protein with missing values were subsequently summed up in a 415	  

sample-wise fashion to form protein intensities and calculate giBAQ values as described above. By adjusting the 416	  

retention time window queried for low-intensity peptides, one can control how similar the imputed values will 417	  

be to one another, thereby reducing the variability across the dataset in the low-intensity range. This is useful 418	  

especially for clustering algorithms using correlation as a measure of distance between samples, since low-419	  

intensity features will not contribute as much to the distance between samples as they would have if they were 420	  

imputed with a different method, giving more weight to reliably measured features. Here, we decided to use the 421	  

same window MaxQuant used for transferring identifications by “Match between runs”, since the concept is 422	  

somewhat similar. Missing values in our Kinobeads dataset were imputed using minimum-guided missing value 423	  

imputation on the gene group level. It is worth noting that the clustering results were the same (p<0.0005, two-424	  

sided Fisher’s Exact Test) and the fold-changes of significantly differentially expressed proteins were highly 425	  

correlated (Pearson’s R=0.997) when using the perseus-type or minimum-guided missing value imputation. 426	  

After this two-step imputation, 93.6/74.7% of all values in the CRC65/CPTAC dataset were measured at the 427	  

protein level, 2.7/10.9% were measured at the mRNA level and 3.7/14.3% were imputed using minimum-guided 428	  
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missing value imputation on the peptide level, respectively. The Kinobeads dataset contained 5.3% missing 429	  

values before imputation as described above. 430	  

Combination of the CRC65 and CPTAC datasets 431	  

After missing value imputation, the CRC65 cell line and CPTAC patient datasets had to be combined into one 432	  

expression matrix in order to be able to identify integrated proteomic subtypes of CRC consisting of cell lines 433	  

and patients. However, the imputation we performed might influence downstream analyses, since some of the 434	  

proteomics samples had more missing values than others and because we did not have transcriptomics data for 435	  

all samples. Missing values in samples for which we did not have data on the mRNA level were imputed using 436	  

minimum-guided missing value imputation only, possibly generating outlier samples, which will distort any 437	  

unsupervised clustering. We therefore first removed outlier samples from both datasets separately using 438	  

arrayQualityMetrics, only keeping samples not marked as an outlier by any of the outlier detection methods 439	  

performed (“Distance between arrays”, “Boxplots” and “MA plots”). Afterwards, we merged the two expression 440	  

matrices into one joined matrix. Since we identified substantially more peptides per sample in the CRC65 441	  

dataset than in the CPTAC dataset (Fig. 2 and EV2C) and because MaxQuant calculates protein intensities as 442	  

the sum of peptide intensities, we expected strong systematic differences between the two datasets, which would 443	  

have an unfavourable impact on any clustering algorithm applied to the joined expression matrix. Therefore, we 444	  

adjusted systematic differences between the two datasets using ComBat (Johnson et al, 2007) with MSI status as 445	  

a covariate as described above. 446	  

Identification & characterisation of subtypes 447	  

Identification of subtypes 448	  

After combining the full proteome datasets into one expression matrix and following the removal of systematic 449	  

differences between them, we used consensus clustering (Monti et al, 2003) as implemented in the 450	  

ConsensusClusterPlus R package v1.24.0 to determine Full Proteome Subtypes (FPSs) and Kinobeads Subtypes 451	  

(KSs) of CRC. The method we used was in many aspects similar to the method used by Zhang et al (2014), but 452	  

made use of a different agglomeration method, while being more stringent during the identification of core 453	  

samples. The main difference however was that we used the entire expression matrix for the discovery of FPSs 454	  

and only restricted our Kinobeads data to kinases during the identification of KSs. We used hierarchical 455	  

clustering to assign samples to one of k=4 clusters, with “1-Pearson correlation” as the distance metric, 456	  
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“ward.D2” as the agglomeration method and 1,000 resampling iterations using 80% of all gene groups and 457	  

samples, while varying k from two to eight clusters during exploratory data analysis. We decided to use four 458	  

clusters based on the four known Consensus Molecular Subtypes published by Guinney et al (2015). Clusters 459	  

with less than six members were removed, followed by the calculation of item-consensus values and silhouette 460	  

widths (Rousseeuw, 1987) for each sample using the calcICL function from the ConsenusClusterPlus R package 461	  

v1.24.0 and the silhouette function of the R package cluster v2.0.3, respectively. Being more stringent than 462	  

Zhang et al., we defined core samples as samples with a positive silhouette width, provided that they also show 463	  

the highest item-consensus with the cluster they were finally assigned to. Clusters only consisting of core 464	  

samples for which we did not have mRNA data were excluded in order to avoid artefacts due to missing value 465	  

imputation. The columns in the final heat maps were restricted to core samples, which were ordered according 466	  

to the final consensus tree. This method was also used to cluster the reduced mRNA expression matrix after the 467	  

exclusion of cell lines not in the CRC65 dataset and transcripts not in the CMS classifier by Guinney et al. 468	  

(2015), in order to produce Figure 1B. 469	  

Differential expression analysis 470	  

We used significance analysis of microarrays (SAM; Tusher et al, 2001) as implemented in the samr R package 471	  

v2.0 in order to discover gene groups differentially expressed between the different subtypes we identified, 472	  

restricting the analysis to core samples while using 100 permutations, the Wilcoxon test statistic and a target 473	  

FDR of 0.01 (1%). The rows in the final heat maps were ordered according to a similar metric, which was 474	  

intended to visualise which gene groups were higher or lower expressed in one subtype compared to the 475	  

remaining subtypes. First, we standardised the expression matrix in a row-wise fashion so that each gene group 476	  

had a mean of zero and a standard deviation of one. For each gene group, we then calculated all pairwise 477	  

combinations of two-sided Wilcoxon test statistics between each subtype and the remaining subtypes. Each gene 478	  

group was then assigned to the subtype with the lowest p-value. For each subtype, gene groups associated with 479	  

it were then ordered in increasing order of their summed expression across all samples in this subtype, starting 480	  

with the gene groups with higher expression in the respective subtype compared to the others, followed by gene 481	  

groups with lower expression in the respective subtype compared to the others. These blocks of gene groups 482	  

were then sorted according to the order of the subtypes they were associated with in the final consensus tree, 483	  

creating the checkerboard-like pattern seen in Figures 3A and Figure EV5G. 484	  
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Functional annotation enrichment & clustering 485	  

We used MetaCore v6.26.68498 from Thomson Reuters to perform enrichment analyses of functional 486	  

annotations for the gene groups differentially expressed between the different FPSs. In order to be more 487	  

stringent, we set the background MetaCore uses to calculate its p-values for the enrichment of functional 488	  

annotations using the hypergeometric test to the list of network objects defined by the HGNC symbols detected 489	  

in at least two samples in both the CRC65 cell line and CPTAC patient datasets. This ensures that the 490	  

enrichment analysis does not suffer from acquisition bias. The standardized mean difference between subtype-491	  

specific gene group expression and overall mean expression as computed using SAM served as the raw input for 492	  

the enrichment analysis, which was further filtered to remove values between the 2.5% and 97.5% quantiles of 493	  

these values across all permutations, in order to restrict the analysis to gene groups with large class contrasts. 494	  

This filtered matrix was uploaded to https://portal.genego.com/, followed by the calculation of enrichment 495	  

analyses with respect to “Pathway Maps”, “Process Networks”, “GO Processes”, “GO Molecular Functions” 496	  

and “GO Localizations” for up- and down-regulated gene groups, respectively. We exported the entire table of 497	  

annotations for each of these functional annotation enrichments and further processed them in R. For “Pathway 498	  

Maps” and “Process Networks”, we only imported annotations with a minimum FDR≤0.05 (5%) as provided by 499	  

MetaCore, merged the tables of annotations enriched in up- and down-regulated gene groups from any subtype 500	  

into a single table, excluded rodent-specific annotations and subsequently assembled bar charts of –log10(FDR) 501	  

values for up- and down-regulated gene groups into a single figure. For each of the different Gene Ontology 502	  

(GO) categories, we also only imported annotations with a minimum FDR≤0.05 (5%) as provided by MetaCore. 503	  

Subsequently, tables for the different GO categories were combined while keeping GO-terms enriched in up- 504	  

and down-regulated gene groups specific to a certain subtype separate from one another. This resulted in six 505	  

different tables; two for each subtype containing GO-terms associated with up- and down-regulated gene 506	  

groups, respectively. Afterwards, GO-term names were re-mapped to GO Accessions using a mapping 507	  

downloaded from AmiGO using GOOSE (http://amigo.geneontology.org/goose, 19 May 2016) and GO 508	  

Accessions with an FDR of more than 0.05 (5%) were removed from the corresponding table. Finally, these 509	  

tables were sequentially uploaded to REViGO (http://revigo.irb.hr/) for summarisation and visualisation of 510	  

significant GO-terms using treemaps, with an allowed similarity of 0.7, interpreting associated numbers as p-511	  

values, restricting the database to Homo sapiens and employing the SimRel semantic similarity measure (01 512	  

July 2016; Schlicker et al, 2006).  513	  
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Reanalysis of public dose-response datasets 514	  

Pre-processing 515	  

The same cell lines and drugs have inconsistent names in the different drug sensitivity datasets, which is why 516	  

the first pre-processing step always involved the mapping of all cell line and drug names to a set of consistent 517	  

sample and drug names, respectively (see also Tables EV6A and 6B). For reasons of transparency, we also 518	  

annotated each drug with the corresponding dataset it was derived from. Concordant cell lines were treated as 519	  

replicates during model fitting, which was kept as consistent as possible between the different datasets. In 520	  

essence, we always modelled a relative response measure R as a function of the final drug concentration on the 521	  

assay plate as described below. 522	  

GDSC 523	  

We obtained raw dose-response data (gdsc_drug_sensitivity_raw_data_w5.csv), annotation information 524	  

(gdsc_tissue_output_w5.csv) and screening concentrations (gdsc_compounds_conc_w5.csv) from 525	  

ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-5.0/ (04 September 2015) prior to the publication by 526	  

Iorio et al (2016), which is why all our analyses were based on release v5.0. First, we annotated the raw data 527	  

with the corresponding drug names and “fold-dilution” information, as well as data on the maximum screening 528	  

concentration used for each drug. This allowed us to calculate the actual concentrations at which each 529	  

compound was used in the drug screen. We then calculated the mean background signal for each compound and 530	  

cell line (blank wells not containing cells) and subtracted it from each corresponding raw signal, setting negative 531	  

values to zero afterwards. Next, we determined the mean control signal for each compound and cell line and 532	  

afterwards divided each corresponding background-corrected raw signal by its respective control signal, 533	  

generating normalised and background-corrected viability data. Finally, for each compound, compound 534	  

concentration and cell line, we then calculated relative response measures R as the mean of these values and 535	  

restricted the dataset to cell lines from the large intestine, as well as C32 and SW626. 536	  

CCLE 537	  

We downloaded Supplementary Table 11 from the original publication by Barretina et al (2012) and restricted 538	  

the dataset first to cell lines from the large intestine, as well as C32 and Colo 741. We then restricted the dataset 539	  

further to only include drugs for which the authors were able to fit at least two sigmoid dose-response models 540	  

among our selection of cell lines as indicated in the FitType column, removing dose-response data for both 541	  

“Nutlin-3” and “PHA-665752”. Subsequently, we converted raw activity values A (“Activity Data (median)”) 542	  
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back to relative response measures R=T/U=1+A/100 (T represents the response for the compound-treated well, 543	  

U represents the median response of the untreated wells across the plate) by reverting the corresponding 544	  

equation in the addendum to the original publication, in order to make the CCLE dataset more comparable to the 545	  

other drug sensitivity datasets. 546	  

CTRP 547	  

We obtained the expanded CTRP v2.0 dataset from the FTP server of the CTD2 data portal at 548	  

ftp://caftpd.nci.nih.gov/pub/dcc_ctd2/Broad/CTRPv2.0_2015_ctd2_ExpandedDataset/ (23 December 2015). 549	  

The results published here are therefore partially based upon data generated by the Cancer Target Discovery and 550	  

Development (CTD2) Network (https://ctd2.nci.nih.gov/dataPortal/) established by the National Cancer 551	  

Institute’s Office of Cancer Genomics. First, we annotated the raw data with the corresponding compound and 552	  

cell line names, as well as information on the tissue of origin for the cell lines used in the screen. Based on these 553	  

annotations, the dataset was restricted to cell lines from the large intestine, as well as C32 and Colo 741. 554	  

Viability data annotated with the same cell line name, compound concentration and compound name were 555	  

treated as replicates during model fitting. The weighted percent-viability with error propagation (“cpd_avg_pv”) 556	  

was used as a relative response measure R. 557	  

Cetuximab 558	  

We downloaded (03 January 2016) Supplementary Data 1 from the original publication by Medico et al (2015) 559	  

and converted the percentage of growth inhibition P to a relative response measure R=1-P/100 in order to make 560	  

the data comparable to the other drug sensitivity datasets. 561	  

Dose-response models & parameter extraction 562	  

Using the drc package v2.5-12 in R, we fitted the classical symmetric four-parameter log-logistic model to each 563	  

drug in each dataset: 564	  

𝑓 𝑥, (𝑏, 𝑐,𝑑, 𝑒) = 𝑐 +   
𝑑 − 𝑐

1 + exp  (𝑏(log 𝑥 − log  (𝑒)))
 

The four parameters c=“Lower Limit” (i.e. lower limit of the relative response as the drug concentration 565	  

approaches infinity), d=“Upper Limit” (i.e. upper limit of the relative response as the drug concentration 566	  

approaches zero), b=“Slope” (Hill slope, i.e. slope at the inflection point of the dose-response curve), and 567	  

e=“ED50” (i.e. the dose required to reduce the relative response to c+(d-c)/2) were estimated from the data and 568	  

subsequently extracted from the fitted model. We also modified the computeAUC function from the drexplorer 569	  
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package v1.1.2 to accept the output of the drm function from the drc R package as an input and used it to extract 570	  

the standardised area under the dose-response curve (AUC) for each of the fitted models across the tested dose-571	  

range. Here, the AUC across the tested dose-range was defined as the area under the dose-response curve 572	  

between zero and one, divided by the area under y=1 from the lowest to the highest concentration tested. It is 573	  

worth noting that the relative response measures described above varied between approximately zero and one, 574	  

enabling unified model fitting and parameter extraction.  575	  

Modelling of Drug Sensitivity 576	  

In order to find proteins and kinases associated with drug sensitivity or resistance, we used elastic net regression 577	  

(Zou & Hastie, 2005) to model drug sensitivity as a function of protein and kinase profile, respectively. 578	  

Together with a bootstrapping approach, this regularised multivariate linear regression method was previously 579	  

successfully applied to identify genomic, transcriptomic and proteomic markers of drug sensitivity and 580	  

resistance (Barretina et al, 2012; Garnett et al, 2012; Gholami et al, 2013; Iorio et al, 2016). The advantages of 581	  

the elastic net are discussed in detail in the Supplementary Methods associated with the publication by Barretina 582	  

et al (2012), as well as in the original publication by Zou and Hastie (2005). Briefly, the algorithm is especially 583	  

useful for “large p, small N” (p>>N) regression problems involving for example data generated using current 584	  

omics technologies of various kind, which measure many, possibly highly correlated analytes (p) across a small 585	  

number of samples (N). In settings like these with varying degrees of multicollinearity, the ordinary least 586	  

squares (OLS) estimates of the regression coefficients and the resulting models frequently perform poorly both 587	  

in terms of prediction accuracy on new data, as well as regarding the interpretability of the model itself (Zou & 588	  

Hastie, 2005). The elastic net aims at improving both prediction performance and model interpretability by 589	  

consolidating L2-regularised Ridge regression (Hoerl & Kennard, 1970) and L1-regularised Lasso regression 590	  

(Tibshirani, 1996), in order to combine the advantages of the different penalty terms they use to constrain the 591	  

coefficient vector. On its own, Ridge regression often has a higher predictive accuracy than OLS in the above-592	  

mentioned situations by striking a balance between bias and variance of predicted values via its bound on the 593	  

L2-norm of the coefficient vector, thereby aiming at improving the overall prediction accuracy (Tibshirani, 594	  

1996). However, it always keeps all predictors in the model, which is not useful if the goal is to increase its 595	  

interpretability compared to OLS. Lasso regression on the other hand does automatic variable selection via its 596	  

bound on the L1-norm of the coefficient vector, thereby shrinking some coefficients while forcing others to be 597	  

exactly zero, which results in a more parsimonious model consisting of a reduced subset of good predictors, 598	  
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which is easier to interpret (Tibshirani, 1996). However, this comes at the cost of only selecting at most N 599	  

variables in settings where p>>N, as well as only selecting one variable from a group of correlated variables to 600	  

be included in the model while excluding the others in settings with multicollinearity (Zou & Hastie, 2005). The 601	  

authors also observed that Ridge regression performs far better than Lasso regression with respect to predictions 602	  

on new data in settings with multicollinearity where N>p. By combining these two penalty terms, the elastic net 603	  

now promotes parsimony of models through the L1-penalty, while at the same time encouraging a grouping 604	  

effect through the L2-penalty (Barretina et al, 2012), meaning that highly collinear predictors are usually either 605	  

in the model or dropped from it together. Double shrinkage of coefficients is prevented by the introduction of a 606	  

scaling factor (Zou & Hastie, 2005) and the higher level parameter α with 0   ≤   α   ≤   1 is used to control the 607	  

balance between the L2-penalty (α=0) and the L1-penalty (α=1), while λ controls the degree of regularisation 608	  

(Friedman et al, 2010). 609	  

If yi ∈ ℝ! are drug responses expressed as AUC for i=1,…,N cell lines and xi ∈ ℝ! are standardised 610	  

measurements for i=1,…,N cell lines across j=1,…,p proteins or kinases with zero mean and unit variance 611	  

forming N observation pairs (xi, yi), then the cost function we minimised using glmnet v2.0-5 (Friedman et al, 612	  

2010) is given by 613	  

min
(!!,!)∈ℝ!!!

1
2𝑁

𝑦! − 𝛽! − 𝑥!!𝛽 ! +
!

!!!
𝜆 1 − 𝛼

1
2
𝛽 !!

! + 𝛼 𝛽 !!  

We used leave-one-out cross-validation over a grid of 100 equally-spaced values of α with 0   ≤   𝛼   ≤   1 by 100 614	  

values of λ automatically selected by the algorithm for each α to find the combination of α and λ resulting in the 615	  

lowest mean-squared error between the fitted mean and the response. We then turned to a bootstrapping 616	  

approach similar to the ones used before in order to be able to sort the different proteins or kinases according to 617	  

their importance in predicting the response to a given drug (Barretina et al, 2012; Garnett et al, 2012; Gholami et 618	  

al, 2013; Iorio et al, 2016). Briefly, we generated 1000 bootstrap datasets by sampling the above-mentioned 619	  

observation pairs with replacement and solved the elastic net optimisation problem for each of these datasets 620	  

using the optimal values of α and λ. This resulted in a 1000  ×  (𝑝 + 1) matrix of regression coefficients 621	  

capturing the solutions for the bootstrap datasets as rows and the regression coefficients as columns. The 622	  

intercept column 𝛽!"#!" ∈ ℝ!""",! was stored separately from the remainder of the matrix, which left us with a 623	  

1000  ×  𝑝 matrix of coefficients 𝛽!"#$!" ∈ ℝ!""",! for j=1,…,p proteins or kinases across 1000 bootstrap datasets. 624	  

Each column of 𝛽!"#$!"  was subsequently multiplied by the standard deviation of the corresponding protein or 625	  

kinase across all xi, as well as by its corresponding weight ω described in Equation 11 in the publication by 626	  
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Moghaddas Gholami et al (2013) if ω ∈ {-1,1} or by zero if ω ∉ {-1,1}. This resulted in a 1000  ×  𝑝 matrix of 627	  

effect sizes 𝛽!""!"  analogous to Equation 12 in the publication by Moghaddas Gholami et al. It is worth stressing 628	  

that columns of effect sizes corresponding to proteins or kinases whose coefficients did not have a consistent 629	  

sign across all 1000 bootstrap solutions were set to zero through the multiplication with the weight ω. For each 630	  

column in 𝛽!"#!" , 𝛽!"#$!"  and 𝛽!""!" , we then calculated the mean across all bootstrap solutions to form 𝛽!"#!"#$, 631	  

𝛽!"#$!"#$ and 𝛽!""!"#$, respectively, and also counted the number of times the absolute effect size of a given protein 632	  

or kinase was bigger than zero to form 𝐹!"" ∈   ℕ!. For each protein or kinase j=1,…,p, we then determined 633	  

whether (a) 𝐹!"",! was bigger than or equal to the 9th decile of 𝐹!"" and also checked whether 𝛽!"",!!"#$ was either 634	  

(b1) bigger than or equal to the 19th ventile of 𝛽!""!"#$ or (b2) smaller than or equal to the 1st ventile of 𝛽!""!"#$. We 635	  

only considered proteins or kinases for which both condition (a) and one of condition (b1) or (b2) were true to be 636	  

robust predictive markers of drug response, while all proteins or kinases j=1,…,p with 𝛽!"",!!"#$ > 0 were 637	  

designated as being associated with drug response. In effect-size heat maps, we only displayed the top 5 and 638	  

bottom 5 robust predictive markers of drug response with respect to 𝛽!""!"#$, while restricting the columns to 639	  

only the top 10 and bottom 10 cell lines with respect to their drug response as measured by AUC. For each drug, 640	  

we always used all N available observation pairs (xi, yi) to train the model with three different input matrices 641	  

each: 642	  

1) The combined full proteome expression matrix after missing value imputation 643	  

2) All proteins in the Kinobeads expression matrix after missing value imputation 644	  

3) All kinases in the Kinobeads expression matrix after missing value imputation 645	  

For each drug, we then used the corresponding 𝛽!"#!"#$ and 𝛽!"#$!"#$ from scenario 1) to predict the drug response 646	  

𝑦! of each cell line and patient in the combined dataset based on the corresponding full proteome expression 647	  

profile xi using the following formula: 648	  

𝑦!   = 𝛽!"#!"#$ + 𝛽!"#$,!!"#$×𝑥!,!
!

!!!
 

These predictions were subsequently standardised to have zero mean and unit variance and can be found in 649	  

Table EV3A. We also predicted 𝑦! using 𝛽!"#!"#$ and 𝛽!"#$!"#$ from scenario 3) and subsequently standardised 650	  

these predictions to have zero mean and unit variance in order to generate kinase-centric drug sensitivity 651	  

hypotheses. Cell lines with a standardised AUC bigger than zero were designated as “resistant”, while cell lines 652	  

with a standardised AUC smaller than zero were designated as “sensitive”. The type of figure used to visualise 653	  
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the result of an elastic net regression is termed “effect-size heat map”. In effect-size heat maps, up to five of the 654	  

most robust predictive markers of drug resistance and sensitivity with respect to 𝛽!""!"#$ were displayed, 655	  

respectively, while restricting the columns to at most the top 10 and bottom 10 cell lines with respect to their 656	  

drug response as measured by AUC in order to increase visual clarity. In such a figure, these top and bottom ten 657	  

cell lines are shown as columns ordered from left to right in increasing order of drug resistance, while the 658	  

predictors (proteins or kinases) with respect to absolute effect-size are shown as rows. In the bar plot to the left, 659	  

predictors associated with drug resistance are visualised by yellow bars, while predictors associated with drug 660	  

sensitivity are shown as dark blue bars in increasing or decreasing order of absolute effect-size from top to 661	  

bottom, respectively. The heat map itself shows standardized expression values (z-scores) of the predictors with 662	  

blue=”low expression” and red=”high expression”. Below the heat map, a heat strip visualises the AUC of the 663	  

drug in question from dark-blue=”low AUC” to yellow=”high AUC” (see Figure 1A for an example of an 664	  

effect-size heat map). 665	  

Cox proportional hazards regression 666	  

In order to assess whether or not the cytoplasmic/membranous expression level of MERTK is a prognostic 667	  

biomarker in CRC, we modelled the different outcome variables of the QUASAR 2 trial as a function of 668	  

MERTK expression using univariate and multivariate Cox proportional hazards regression (COXPH), restricted 669	  

to the first 5 years of follow-up. First, univariate COXPH was carried out using the coxph function of the R 670	  

package survival v2.38-3 with default parameters and “Gender”, “Age”, “BMI”, "Treatment" (capecitabine ± 671	  

bevacizumab), "Location" (right colon or left colon), "T" (from TNM staging system; T2/T3 or T4), "N" (from 672	  

TNM staging system; N0, N1 or N2), "MSI" (microsatellite instability), "CIN" (chromosomal instability) and 673	  

"MERTK" (cytoplasmic/membranous MERTK expression; ≤5% or >5%) as covariates. The threshold of 5% 674	  

was selected in order to balance the groups while avoiding false positives due to weak staining. Significant 675	  

(p<0.05) covariates from univariate COXPH were then used as explanatory variables in multivariate COXPH. 676	  

We made use of the stepAIC function from the R package MASS v7.3-45 to perform stepwise backward model 677	  

selection starting with the full model and removing explanatory variables in order to minimise Akaike’s 678	  

Information Criterion (AIC). For each outcome variable, final models were then built using significant (p<0.05) 679	  

covariates from the stepwise selected models. These final models all fulfilled the proportional hazards 680	  

assumption. Results from the COXPH analyses can be found in Table EV5. 681	  
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Annotation information 682	  

We compiled annotation information for the CRC65 and CPTAC datasets, as well as target annotations for 683	  

drugs in the four drug sensitivity datasets (GDSC, CCLE, CTRP and Cetuximab) from several sources 684	  

(Supplementary Table 11 & GSE36133, Barretina et al., 2012; Supplementary Table 1, Bracht et al., 2010; 685	  

Supplementary Table 3, De Sousa et al., 2013; COSMIC, Forbes et al., 2015; GDSC release 5.0 & E-MTAB-686	  

783, Garnett et al., 2012; cms_labels_public_all.txt, Guinney et al., 2015; GDSC release 5.0, Iorio et al., 2016; 687	  

Figure 1 & E-MTAB-2706, Klijn et al., 2015; Table 1, Ku et al., 1999; Table S1, Liu and Zhang, 2016; 688	  

GSE28567, Loboda et al., 2011; Supplementary Data 1 & 2 & GSE59857, Medico et al., 2015; Supplementary 689	  

Table 1 & 6, Mouradov et al., 2014; CTRP v2.0 expanded dataset, Rees et al., 2016; Supplementary Table 2, 690	  

Sadanandam et al., 2013; Supplementary Table 1 & platform codes "IlluminaGA_RNASeq" & 691	  

"AgilentG4502A_07_3", TCGA Network, 2012; GSE8332, Wagner et al., 2007; Table 1, Wheeler et al., 1999; 692	  

GSE24795, Wilding et al., 2010; Supplementary Table 1, Zhang et al., 2014) and summarised them in Table 693	  

EV6. Entries for cell lines in the columns “Sadanandam subtype”, “Marisa subtype”, “De Sousa E Melo 694	  

subtype” and “Roepman subtype” were based on the publication by Medico and colleagues and were not 695	  

restricted by an FDR filter. The “Goblet-like”, “Goblet” and “Enterocyte” subtype of the classifier by 696	  

Sadanandam and colleagues were merged into the “Entererocyte/Goblet-like” subtype, while “MSI-L” was 697	  

recoded to “MSI-” and “MSI-H” was recoded to “MSI+” according to the publication by Liu and Zhang. Some 698	  

of the other annotations were also recoded to fit the unified nomenclature. For drug targets, we applied the 699	  

following heuristic: After mapping compounds to a consensus set of names, the annotation from the CTRP 700	  

dataset was used as the first source of target information. Drugs for which this dataset lacked annotation were 701	  

assigned targets based on the annotation from the GDSC dataset. Drugs the target information of which was not 702	  

included in the GDSC dataset were then assigned targets based on the annotation from the CCLE dataset. Drugs 703	  

still left without target information were finally assigned labels based on the information contained in the 704	  

“target_or_activity_of_compound” column of the “v20.meta.per_compound.txt” file from the expanded CTRP 705	  

v2.0 dataset. Amendments to these mappings in order to reduce redundancy are documented in Table EV6B. 706	  

  707	  
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