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Dynamic changes in the mouse skeletal muscle proteome during
denervation-induced atrophy
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Stefan Günther2, Bert Blaauw5, Thomas Braun2 and Marcus Krüger1,4,‡

ABSTRACT
Loss of neuronal stimulation enhances protein breakdown and
reduces protein synthesis, causing rapid loss of muscle mass. To
elucidate the pathophysiological adaptations that occur in atrophying
muscles, we used stable isotope labelling and mass spectrometry
to quantify protein expression changes accurately during denervation-
induced atrophy after sciatic nerve section in the mouse
gastrocnemius muscle. Additionally, mice were fed a stable isotope
labelling of amino acids in cell culture (SILAC) diet containing
13C6-lysine for 4, 7 or 11 days to calculate relative levels of protein
synthesis in denervated and control muscles. Ubiquitin remnant
peptides (K-ε-GG) were profiled by immunoaffinity enrichment to
identify potential substrates of the ubiquitin-proteasomal pathway. Of
the 4279 skeletal muscle proteins quantified, 850 were differentially
expressed significantly within 2 weeks after denervation compared
with control muscles. Moreover, pulse labelling identified Lys6
incorporation in 4786 proteins, of which 43 had differential Lys6
incorporation between control and denervated muscle. Enrichment
of diglycine remnants identified 2100 endogenous ubiquitination
sites and revealed a metabolic and myofibrillar protein diglycine
signature, including myosin heavy chains, myomesins and titin,
during denervation. Comparative analysis of these proteomic
data sets with known atrogenes using a random forest
approach identified 92 proteins subject to atrogene-like regulation
that have not previously been associated directly with denervation-
induced atrophy. Comparison of protein synthesis and proteomic
data indicated that upregulation of specific proteins in response
to denervation is mainly achieved by protein stabilization. This
study provides the first integrated analysis of protein expression,
synthesis and ubiquitin signatures during muscular atrophy in a living
animal.

KEY WORDS: Muscle atrophy, Denervation, Pulsed SILAC,
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INTRODUCTION
Numerous experiments have demonstrated that the metabolic
and contractile properties of skeletal muscles can change rapidly
in response to environmental influences (Cohen et al., 2015;
Flück and Hoppeler, 2003). For example, physical exercise can
induce muscle growth and activates signalling pathways that
modulate mitochondrial activity, calcium homeostasis and muscle
contractility (Matsakas and Patel, 2009). Conversely, ageing-
associated diseases, such as cancer, type 2 diabetes mellitus and
neurodegeneration, can lead to marked loss of muscle mass.

Skeletal muscle function is closely associated with motorneuron
innervation. Reduced muscle recruitment, such as occurs during
extended bed rest or spinal cord injury, results in a severe loss of
muscle mass, which is also termed muscle atrophy (Gutmann, 1962;
Jackman and Kandarian, 2004). Protein synthesis decreases, and
processes that regulate protein degradation are enhanced during
muscle wasting. Depletion of proteins is coordinated by both
the ubiquitin-proteasome system (UPS) and autophagy-related
processes (Lecker et al., 1999). Additionally, the members of the
calcium-dependent nonlysosomal protease family (calpains)
facilitate rapid degradation of myofibrillar proteins (Huang and
Forsberg, 1998), and cellular organelles, such as mitochondria, are
degraded via mitophagy, a specific form of autophagy (O’Leary
et al., 2012; Vainshtein et al., 2015).

Unilateral sciatic nerve section is a well-established animal model
of reduced neuronal stimulation (Goldspink, 1976; Gutmann,
1962; Medina et al., 1991). Previous studies demonstrated that
denervation-induced atrophy elevates the cytoplasmic calcium
concentration, activates the UPS and leads to remodelling of myosin
heavy chain (MyHC) composition within individual muscle fibres
(Ciciliot et al., 2013; Mitch and Goldberg, 1996; Zeman et al., 1986).

Analysis of the ubiquitin conjugation cascade in atrophying
muscles demonstrated enhanced expression of several E2
conjugation enzymes and E3 ubiquitin ligases, each of which
targets specific protein substrates for destruction via the proteasome.
For example, the E3 ubiquitin ligases MURF1, atrogin-1 (MAFbx)
and TRIM32 proteins are the key E3 ubiquitin ligases that mediate
protein degradation during muscular atrophy (Bodine et al., 2001;
Cohen et al., 2012; Gomes et al., 2001). Notably, MURF1 and
TRIM32 are responsible for degradation of myofibrillar proteins,
whereas atrogin-1 leads to degradation of MYOD, myogenin and
the eukaryotic initiation factor 3 (eIF3).

Systematic microarray analysis of different muscle-wasting
conditions, including starvation, diabetes, uraemia and
denervation, has identified a specific set of genes called atrogenes,
which are either up- or downregulated during muscle atrophy. So
far, ∼120 atrogenes have been found, but it seems likely that this list
is not complete (Lecker et al., 2004; Raffaello et al., 2006; Sacheck
et al., 2007). Although mRNA expression studies have provided
detailed insight into gene activity during atrophy, there have beenReceived 30 November 2016; Accepted 16 May 2017
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few unbiased and systematic investigations of the changes in protein
expression, protein synthesis and post-translational modifications
during neuronal denervation of muscle tissue (Argadine et al., 2009;
Goldspink, 1976; Ryder et al., 2015).
Recently, mass spectrometric (MS)-based proteomics has

become an indispensable tool to measure proteins and their post-
translational modifications. As a result of the development of
powerful, high-resolution MS instruments, it is now possible to
quantify the expression of vast numbers of proteins in complex
biological samples (Cox and Mann, 2011; Mann et al., 2013). More
importantly, the combination of MS-based proteomics with
several enrichment strategies for specific modifications has
enabled quantitative analysis of thousands of reversible
protein modifications, including phosphorylation, acetylation and
ubiquitination (Olsen et al., 2010). Public databases contain data on
>500,000 post-translational modifications, demonstrating that
individual proteins are highly engineered via diverse sets of
modifications (Olsen and Mann, 2013).
The development of metabolic labelling approaches has

facilitated accurate protein quantification and has been used to
analyse protein turnover in both cell culture models and living
animals (Schwanhäusser et al., 2009). The stable isotope labelling
of amino acids in cell culture (SILAC) approach is based on
metabolic incorporation of stable amino acids, for instance lysine
and arginine, into the proteome of cultured cells or living animals
(Krüger et al., 2008; Ong et al., 2002). To enable relative
quantification of proteins between two different conditions,
completely SILAC-labelled samples (condition one) can be
combined with a nonlabelled cell population (condition two) and
then subjected to combined MS analysis. The intensity of the
nonlabelled (light) and labelled (heavy) peptide peaks can be used
to assess the relative abundance of individual proteins of interest in
each condition.
In pulsed SILAC experiments, labelled amino acids are added to

the cell culture media for a short period of time. Newly synthesized
proteins incorporate the labelled amino acids, and the incorporation
rate can be used to compare relative protein turnover between two
different conditions. SILAC labelling of living animals can be
achieved by administration of specific diets containing a SILAC
amino acid, such as 13C6-lysine, named Lys6. Uptake of the labelled
food leads to incorporation of the labelled amino acid into the
proteome, which enables protein synthesis to be monitored over
time in living animals. For instance, a pulsed SILAC approach
demonstrated that several lysosomal degradation substrates had
reduced Lys6 incorporation and increased protein levels in a heart-
specific atrogin-1-deficient mouse model (Zaglia et al., 2014).
Direct incorporation of labelled amino acids can be used to compare
the relative rates of protein synthesis in living animals (Nolte et al.,
2015). However, it should be noted that relative isotope abundance,
which reflects the ratio of natural and labelled lysine isotopes in the
body (Claydon et al., 2012), must be calculated to estimate absolute
protein turnover rates (t½).
Combinatorial analysis of relative changes in protein expression

and synthesis might help to elucidate the complex regulatory
network of protein synthesis and degradation that occurs during
muscular atrophy and decipher the plasticity of skeletal muscle
tissue. Thus, we combined in vivo SILAC expression profiling with
a pulsed SILAC labelling approach based on time-dependent
incorporation of Lys6 to quantify relative protein expression and
synthesis in control and denervated gastrocnemius (GAST) muscles
in a mouse model of sciatic nerve section. In addition, we used an
immunoaffinity approach to enrich peptides containing a diglycine

remnant (K-ε-GG) after tryptic digestion to identify potential
targets of the UPS that undergo selective autophagy. The SILAC
mouse spike-in approach enabled quantification of ∼4200 proteins,
and administration of a Lys6-containing diet for 4, 7 or 11 days
allowed calculation of ∼4700 incorporation rates for individual
proteins in the murine GAST. Moreover, the identification of
>2100 diglycine remnants provides the first quantitative signature
of ubiquitination during muscular atrophy.

RESULTS
Denervation of the sciatic nerve rapidly alters protein
expression profiles in the mouse GAST
Unilateral section of the sciatic nerve was performed in wild-type
C56BL/6J mice to induce muscle atrophy. The GAST was analysed
at several time points over the first 14 days after denervation
(Fig. 1A). Theworkflow of theMS analysis is indicated in Fig. S1A.
At 7 days after sciatic nerve section, a significant loss (∼20%
reduction; P=0.02) in muscle weight was observed compared with
control muscles (Fig. 1B), similar to earlier reports (Sacheck et al.,
2007). To investigate changes in protein expression during atrophy,
we isolated the GAST after 1, 4, 7 and 14 days and performed
relative protein quantification between control and denervated
muscles. To enable accurate protein quantification, GAST muscles
were isolated from Lys6-labelled SILAC mice. These animals were
completely labelled with Lys6 over at least two generations and
functioned as a spike-in standard to quantify nonlabelled peptides
from control and denervated GAST muscles (Hölper et al., 2014).
Each protein sample was mixed in a 1:1 ratio (based on total protein
concentrations) with the SILAC GAST and subjected to in-gel
digestion and LC-MS (liquid chromatography-mass spectrometry)
analysis (Fig. S1A). Here, we identified 45,644 unique peptides
representing 4279 identified protein groups at a false-discovery rate
(FDR) <1% at the peptide and protein level (Table S1). Clustering
analysis using the Pearson coefficient (r) and determining the
Euclidean distances for different time points confirmed high
reproducibility of our protein quantification between biological
replicates (n=3; Fig. 1C). Likewise, principal component analysis
(PCA) clearly confirmed the separation of protein intensities for
control and denervated samples at different time points (Fig. 1D).

To identify whether groups of proteins that participate in the same
pathways are regulated in a similar manner during atrophy, we
performed one-dimensional enrichment of the log2 ratios of control
and denervated muscles on day 4 after section. Boxplots of enriched
gene ontology (GO) terms revealed that groups associated with
‘fatty acid catabolic process’ (GO: 0006631) and ‘myosin complex’
(GO: 0016459) were significantly downregulated at this early time
point after denervation (Fig. 1E). Conversely, we observed that 32
proteins associated with the GO term ‘spliceosomal complex’ (GO:
0005681) and 14 proteins related to the ‘proteasome accessory
complex’ (GO: 0022624) were upregulated at 4 days after
denervation. Next, volcano plots were generated using two-sided
t-tests to follow time-dependent protein changes in response to
denervation. Although no significant changes in protein expression
were observed on day 1 after denervation (Table S1), 174 and 583
proteins were significantly regulated in a different manner at 4 and
7 days after denervation, respectively, at a permutation-based FDR
estimate of 0.05 (Fig. 1F,G). Over the longer term (14 days),
denervation resulted in significantly differential expression of
863 proteins (FDR<0.05), indicating marked remodelling of the
denervated GAST (Fig. 1H).

The GAST contains a mixture of type I and II fibres that express
distinct sets of ‘slow’ and ‘fast’ myosin heavy chain (MyHC)
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Fig. 1. Denervation-inducedmuscle atrophy in the mouse gastrocnemiusmuscle. (A) Overview of the sciatic nerve section model. (B) Weight of the mouse
gastrocnemius muscle (GAST, n=3) at 7 days after denervation. (C) Pearson correlation matrix of protein expression levels for all tested time points after
denervation (biological triplicates). The heatmap based on Euclidean distance for the correlation matrix shows grouping of the control and denervated muscles.
The correlation is based on log2 heavy/light (H/L) ratios shown in Table S1. (D) Principal component analysis protein levels showing clear separation of control and
denervated muscle samples. (E) One-dimensional enrichment of GO terms at 4 days after denervation. Boxplots represent the log2 direct ratio distribution of
proteins annotated with specific GO terms. (F-H) Volcano plots for day 4, 7 and 14, with correction for multiple testing by a randomization-based FDR calculation
using a cut-off of 0.05 (fudge factor S0=0.1).
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proteins. A label-free protein quantification method based on
unique MyHC peptides (Fig. 2A, inset) reflected the MyHC
distributions reported in previous studies (Mänttäri and Järvilehto,
2005; Schiaffino and Reggiani, 2011). Next, we used a published
list of proteins expressed specifically in the soleus and extensor
digitorum longus (EDL) muscles to identify slow and fast fibre-
specific proteins (Drexler et al., 2012), as shown in Table S2.
Comparison of this catalogue with our protein expression data set
revealed that 27% of fast fibre proteins were significantly
downregulated after denervation of the GAST, whereas most
proteins expressed in the slow soleus muscle were significantly
upregulated on day 7 (Fig. 2A). This indicates that the slow type I
fibres within the GAST are more resistant to denervation than type
IIb fibres (Table S2).

Protein expression profiling of denervated muscles reflects
early remodelling activities
Sciatic nerve section is known to activate proteolytic pathways.
Accordingly, we observed that 367 of the 2233 proteins quantified
were significantly downregulated at 7 days after denervation
(Fig. 1G). For example, the protein levels of neurofilament chains
(NEFM, NEFL) and myelin proteins, such as myelin protein zero
(MPZ) and the myelin basic protein (MBP), were significantly
downregulated, indicating loss of neuronal innervation (Fig. 1F,H).
By contrast, neuronal cellular adhesion molecule (NCAM) was ∼5-
fold upregulated (P<10−4) at 7 days after denervation. Enhanced
NCAM expression is associated with neuromuscular diseases and
might be required to recruit axons to neuromuscular junctions
(Cashman et al., 1987).
The histone deacetylase HDAC4 positively regulates genes

associated with synaptogenesis and suppresses glycolytic enzymes
after denervation (Tang et al., 2009). Here, we detected increased
HDAC4 protein expression in denervated muscles, with no
corresponding peptides detected in control muscles (Table S1).
The polyamine pathway synthesizes the metabolites spermidine

and putrescine and is an important muscle homeostatic pathway.
Reductions in the concentrations of enzymes involved in this
pathway are closely associated with the induction of muscle wasting
(Bongers et al., 2015; Lee and MacLean, 2011). Accordingly,
we observed significant downregulation of spermine oxidase
(SMOX) and S-adenosylmethionine decarboxylase proenzyme 1
(AMD1) in the denervated GAST, confirming the important
roles of these enzymes in maintenance of skeletal muscle mass
(Fig. 1H). Although polyamines can regulate Ca2+ flux, and cardiac
hypertrophy is associated with increased polyamine concentrations,
the exact physiological functions of those metabolites are poorly
characterized and could represent an important area for future
research on muscular atrophy (Lin et al., 2014).
Continuous muscle contraction is an energy-demanding process,

and skeletal muscle possesses several metabolic pathways that
produce energy efficiently. Consistent with earlier reports
(Argadine et al., 2009; Lecker et al., 2004; Raffaello et al., 2006;
Sacheck et al., 2007), we observed reduced abundance for nearly all
metabolic pathways after denervation. However, some metabolic
enzymes were upregulated after denervation, including 6-
phosphogluconate dehydrogenase (PGD), an essential enzyme of
the pentose phosphate pathway that converts 6-P-gluconate into
ribulose 5-P and produces NADPH, which protects cells from
oxidative stress (Budak et al., 2014). Given that denervation-
induced muscle atrophy enhances the production of mitochondrial
reactive oxygen species (ROS), increased PGD expression might be
a direct response to increased ROS concentrations (Muller et al.,

2007). Likewise, we found that the enzyme catalase (CAT), which
also protects cells from oxidative damage, was significantly
upregulated at the protein level on day 4 after denervation [fold-
change denervated/control (den/ctrl): 2.4, P=1.4×10−5].

Systematic clustering of protein categories reveals
candidates with atrogene-like expression profiles after
denervation
To enable more systematic analysis of differential protein
expression, we conducted z-score normalization and supervised
fuzzy clustering using the R-package mfuzz (Kumar and Futschik,
2007). Six clusters with different time profiles were identified. For
example, cluster 6 represents a fraction of almost 400 proteins that
were upregulated early and returned to baseline expression by
day 14 following denervation. Notably, this cluster contains several
lysosomal and proteasomal proteins (Fig. 2B,C). The 690 proteins
in cluster 5 were constantly downregulated after denervation. To
investigate whether protein clusters with similar expression patterns
also exhibit similar cellular functions, we examined enrichment of
specific GO terms. This analysis revealed over-representation of the
terms ‘mRNA splicing’ (GO: 0000398) and ‘protein activation
cascade’ (GO: 0072376) in cluster 2, whereas cluster 5 mainly
contains sarcomeric proteins and proteins involved in carbohydrate
metabolism and mitochondrial energy production (Fig. 2C).

To relate transcript and protein levels directly, we compared our
data set on differentially regulated proteins on day 4 with a previous
cDNAmicroarray analysis describing mRNA expression changes in
the denervated GASTmuscle on day 4 (Sacheck et al., 2007). Of the
720 differentially regulated transcripts in the microarray analysis,
we were able to overlap 418 proteins from our data set, resulting in
r=0.74 (Fig. 3A, grey points; Table S3). The remaining 141 proteins
that were identified to be regulated significantly on day 4 did not
overlap with a differentially regulated mRNA in the microarray
(Table S3).

Previous transcriptome studies identified a set of 49 genes that
were consistently up- or downregulated in different muscle-wasting
conditions, including denervation (Lecker et al., 2004; Sacheck
et al., 2007). Comparison of these candidate mRNAs with our
protein data set revealed congruent regulation of 40 proteins and
mRNAs (r=0.62; Fig. 3A, red dots).

The random forest method classifies proteins based on decision
trees, which are generated by specific training sets (Breiman, 2001).
We selected 27 proteins from the literature that showed congruent
increases in mRNA and protein expression after denervation for the
training set (Fig. 3B). The candidates selected for the training set are
listed in Table S4 and labelled with green circles in Fig. 3C. The
proteins in the training set had an average probability score of 0.85,
indicating congruent activation profiles during muscular atrophy. In
total, we observed that 143 of the differentially expressed proteins in
our data set had a probability score >0.7, indicating similar time-
dependent protein changes to the proteins in the training set
(Fig. 3D). To our knowledge, approximately half of these 143
proteins have not previously been described to be induced directly
upon denervation; hence, they could be considered as new
candidates involved in muscular atrophy (Table S4). Plotting the
log2 protein ratios (den/ctrl) against time revealed similar kinetics
for new candidates EHD4, NOP58, TRIM25 and UBXN4 (red
lines) compared with selected proteins from our training set marked
in grey (Fig. 3E).

Overall, this systematic analysis and clustering of quantified
proteins demonstrated largely concordant protein regulation to that
reported in earlier denervation studies. In addition, our analysis
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implicates other proteins that have not previously been recognized
to be involved in early atrophy remodelling events. Whether these
proteins are differentially regulated in other models of atrophy needs
to be addressed in future studies.

Protein expression of ubiquitin cascade and
deubiquitinating enzymes
Based on GO terms, we identified 105 proteins associated with
ubiquitin processing in the GAST; 18 of these proteins were

upregulated after denervation. For instance, the ubiquitin-
conjugating enzyme E2G1 (UBC7; also known as UBE2G2),
an E2 conjugation enzyme related to endoplasmic reticulum-
associated degradation (ERAD) (Friedlander et al., 2000), was
upregulated on day 7 after denervation (fold-change den/ctrl 1.5,
P=9.5×10−5; Fig. 4A). Notably, E2G1 has a modified ubiquitin
conjugation domain that enables synthesis of K-48 chains, even in
the absence of E3 ligases (Choi et al., 2015). Likewise, the E2
ubiquitin-conjugating enzyme R1 (UBE2R1; also known as
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CDC34) was slightly upregulated between day 4 and 7 after
denervation (fold-change den/ctrl 1.5, P=3.7×10−3). CDC34
interacts with the SKP1, cullin-1 (CUL1) and F-box (SCF)
complex and controls ∼20% of all ubiquitin-mediated protein
degradation (Deshaies and Joazeiro, 2009). One function of
CDC34 is catalysis of Lys48-linked polyubiquitination of the
nuclear transcription factor inhibitor NFκBIA (Tan et al., 1999).
However, it is most likely that the CDC34-SCF complex also
ubiquitinates other targets during denervation that have not yet
been elucidated. By contrast, two core components of cullin-ring-
based E3 ubiquitin ligases (CUL2 and CUL5) were downregulated

after denervation (Fig. 4B). The E3 ligases of the MURF family
are required for rapid breakdown of sarcomeric proteins. Although
MURF1 expression could not be detected in control muscles, the
direct SILAC spike-in ratio revealed an ∼10-fold increase in
MURF1/TRIM63 protein ratio over the time course of denervation,
indicating strong upregulation of this E3 ligase during muscular
atrophy (Fig. 4C; Fig. S1A). Interestingly, E3 ubiquitin ligase
tripartite motif 25 (TRIM25), which has not previously been
related to muscle atrophy, was also significantly upregulated, and
we substantiated this regulation by performing western blot
analysis (Fig. 4C,K; Fig. S2A).
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Deubiquitinases are another important class of proteins that
modulate proteolysis. Synthesis and disassembly of ubiquitin chains
on target proteins is a vital process in all living cells. Dysregulation
of deubiquitinases leads to severe human diseases, such as cancer
and ataxia (Heideker and Wertz, 2015). Here, we identified 25
proteins with a direct or associated function in deubiquitination,
which were regulated differentially in the GAST after denervation.
For example, five members of the ubiquitin carboxyl-terminal
hydrolase family, USP2, -13, -15, -24 and -47, were significantly
downregulated 7 days after denervation (Fig. 4D). By contrast,
USP28, a deubiquitinase involved in DNA damage responses
(Knobel et al., 2014), was significantly upregulated (fold-change

den/ctrl 6.3, P=3.6×10−4 on day 4). Likewise, USP14 was also
slightly upregulated (fold-change den/ctrl 1.3, P=4.4×10−3), and
we verified this trend by western blot analysis (Fig. 4K). USP14 is
closely associated with the proteasome, and an earlier report
described that USP14 inhibits the degradation of ubiquitinated
proteins by the proteasome (Lee et al., 2010). Conversely, USP14
might also activate proteolysis by degrading ubiquitin chains on
target proteins and thereby enhance gate opening of the 20S
proteasome (Peth et al., 2009).

Finally, we identified that several autophagy marker proteins,
includingMAP1LC3A(Lc3-A; fold-change den/ctrl 2.1,P=7.1×10−3)
andLAMP2 (fold-change den/ctrl 1.7,P=7.1×10−5)were significantly
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upregulated, indicative of proteolysis via the autophagy-lysosomal
pathways after denervation (Fig. 4E).

Parallel up- and downregulation of sarcomeric proteins
during muscle atrophy
In addition to their essential role in muscle contraction, sarcomeres
also contain proteins involved in cell signalling, control of gene
expression, and protein turnover. To dissect sarcomeric
substructures, we allocated the quantified proteins to their
respective locations within the sarcomere. Previous studies
characterized the distinct responses of thin and thick filaments
during atrophy, with breakdown of thick filaments preferentially
mediated by enhancedMURF1 activity (Cohen et al., 2009). The A-
band consists of thick filaments. Most muscle-specific MyHCs,
regulatory and essential myosin light chains (MyLCs) were
downregulated after denervation (Fig. 4F,G). Conversely, we
noticed that MYL4 and MYL12a were significantly upregulated
after denervation (Table S1). Essential MyLCs interact with MyHC
proteins to maintain the structural stability and modulate the motor
function of myosins (Fig. 4G). MYL4 expression is restricted to the
atria in normal conditions; MYL4 is expressed in skeletal muscle
only during embryonic development and is downregulated in the
neonatal period (Schiaffino et al., 2015). Endogenous re-expression
of MYL4 in skeletal muscle is associated with regeneration,
increased calcium sensitivity and enhanced cardiac contractility
(Morano et al., 1996). It is possible that increased protein levels of
both MYL4 and MYL12A in atrophying muscles reflect reduced
loading during denervation, a condition that mirrors the low loads
during embryonic development.
Next, we observed similar protein degradation trends for proteins

associated with the I-band, a region containing thin filaments
(Fig. 4H). However, some candidates, including ANKRD2,
ANKRD23 and leiomodin 2 (LMOD2), were upregulated after
denervation. The M-band stabilizes thick filaments and contains
structural and metabolic enzymes. Consistently, most M-band
proteins detected were downregulated after denervation, including
myomesin-1 and 2 (Fig. 4I). Notably, myomesin-3 was the only
detectable M-band protein that was significantly upregulated,
indicating a different fibre type localization. The interaction of
M-band proteins with obscurin, NBR1 and sequestosome-1 reflects
their close association with protein quality control pathways (Gautel
and Djinovic-Carugo, 2016). We observed early induction of
the autophagy adaptor protein sequestosome-1 on day 4 after
denervation (fold-change den/ctrl 2.3; P=4.2×10−3) and increased
levels of NBR1 on day 14 (fold-change den/ctrl 2.2; P=4.3×10−3).
The Z-disc, an important structural unit that defines the lateral

borders of the sarcomere (Knöll et al., 2011; Schiaffino and
Reggiani, 2011), is a scaffold for titin and actin filaments and a
hub for key signalling molecules, E3 ubiquitin ligases and
mechanosensors. We identified 52 proteins associated with the
Z-disc, and 55% of these proteins were differentially regulated
significantly at 7 days after denervation.
The most abundant Z-band proteins are members of the α-actinin

family. In agreement with earlier reports that showed α-actinin
levels decreased in response to denervation and starvation (Cohen
et al., 2012), we observed significant downregulation of α-actinin-2
and -3 from day 7 after denervation onwards. Conversely, HSPB7,
CSRP3, α-crystallin (CRYAB) and PDLIM3 were more than 2-fold
upregulated at 7 days after denervation (Fig. 4J). These changes
indicate that rapid remodelling of Z-band structure occurs during
atrophy, in support of the function of the Z-band as an important
signalling intersection for sarcomere homeostasis.

Assessment of protein synthesis during atrophy based on
Lys6 incorporation
Changes in protein expression during muscle atrophy can be
induced by alterations to the rate of protein degradation, the rate of
protein synthesis, or both. To quantify protein synthesis during
denervation-induced atrophy in control and denervated GAST
muscles, we used a 13C6-lysine (Lys6)-containing mouse diet to
label newly synthesized proteins (Fig. 1A; Fig. S1). Denervated
mice were fed the Lys6 diet for 4, 7 or 11 days. Overall, the pulse-
SILAC approach enabled Lys6 incorporation to be quantified for
4786 proteins (Fig. 5A,B; Table S1). Notably, earlier time points of
SILAC labelling (days 1-3) were not feasible, as the intensities of
the labelled peptides were barely detectable by MS. The areas under
the curve (AUCs) for the comparison of Lys6 incorporation over
time demonstrated similar labelling efficiency between the control
and denervated muscles. Likewise, direct comparison of Lys6
incorporation also demonstrated an equal ratio distribution over time
between control and denervated muscles (Fig. 5C). Furthermore,
one-dimensional annotation enrichment of GO terms from the AUC
values demonstrated enhanced Lys6 incorporation after denervation
for proteins related to ‘neutrophin signaling pathway’ (KEGGAQ5:
mmu04722), ‘ribosome’ [KEGG (Kyoto encyclopedia of genes
and genomes): mmu03010] and ‘proteasome core complex’ (GO:
0005839) (Fig. 5D). Volcano plots revealed decreased or enhanced
Lys6 incorporation for 43 proteins, but only on day 7 (q<0.05;
Fig. 5E-G). For example, myomesin-3 and fast serca (ATPase
sarcoplasmic/endoplasmic reticulum Ca2+ transporting 1; ATP2A1)
had increased Lys6 incorporation, whereas the fast myosin-binding
protein c2 (MYBPC2) had reduced Lys6 incorporation after
denervation (Fig. 5F).

Integration of Lys6 incorporation and protein expression
during atrophy
Next, we determined whether denervation-induced changes in Lys6
incorporation are associated with altered protein expression
(Fig. 6A,B,D). We demonstrated that only a minor fraction
(∼22%) of downregulated proteins had reduced Lys6
incorporation (Fig. 6D). Most interestingly, 112 of the 134
proteins upregulated on day 4 and 300 of the 490 proteins
upregulated on day 7 did not have altered Lys6 incorporation after
denervation, suggesting that these proteins were stabilized,
degraded, or both, at slower rates during atrophy than in control
muscle (Fig. 6A,B, segment 2). For example, AKT2 kinase is a key
signalling molecule that integrates several anabolic and catabolic
pathways. We observed a ∼5-fold increase in AKT2 protein
expression on day 7 (P=2×10−4), but Lys6 incorporation for this
protein was not significantly different as indicated by the AUC
curve for control and denervated muscles (Fig. 6C). Furthermore, 48
of the proteins that were downregulated on day 4 and 380 of the
proteins that were downregulated on day 7 had unaltered or even
increased Lys6 incorporation rates. For example, neurofilament
proteins were severely downregulated on day 7, but had enhanced
Lys6 incorporation rates. Such increases in protein synthesis might
reflect a compensatory response to reduced protein expression
levels.

Regulation of diglycine remnants following denervation-
induced atrophy
To provide additional insight into the mechanisms of denervation-
induced atrophy and protein degradation, we enriched peptides with
diglycine remnants in the GAST samples via an immunoaffinity
approach on days 4 and 7 after denervation. As we used only lysine-
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labelled mouse tissues for SILAC quantification, we were restricted
to use of the protease LysC, which specifically cleaves proteins after
lysine residues, to ensure that all peptides could be used for
quantification. Of note, tryptic digestion of lysine residues targeted
by ubiquitin ligases was blocked; hence, trypsin digestion was
used to obtain peptides with a diglycine remnant and at least one
lysine residue per peptide. Following trypsin digestion, the SILAC
peptide mixtures were separated by high pH reversed-phase liquid
chromatography (RPLC) (Fig. S1A). In total, we generated 80
reverse phase fractions and pooled these fractions to create ten
samples. Each sample was incubated with a cross-linked anti-
diglycine antibody, subjected to an enrichment procedure and
analysed by LC-MS (Udeshi et al., 2013), as illustrated in Fig. 1A
and Fig. S1A.
Given that protein degradation via the UPS plays a fundamental

role in muscle atrophy, it is important to assess ubiquitination
patterns and changes during skeletal muscle atrophy (Sandri,
2013). The correlation heatmap separates control and denervated
muscles by their ubiquitination pattern (Fig. 7A). Using a Lys-ε-
Gly-Gly specific antiserum, we were able to enrich 2328 diglycine
sites mapped to 667 different proteins (Fig. 7B; Fig. S2B).
Moreover, 664 of these diglycine sites were newly identified, and
GO analysis revealed that most of the diglycine sites identified
originate from sarcomeric and metabolic proteins, reflecting the
high abundance of these proteins in skeletal muscle (Fig. 7B,C;
Table S5). In addition, a high number of diglycine sites were
allocated to the UPS, ion transport or proteins involved in
transcription and translation.
Volcano plot analysis indicated clear induction of regulated

diglycine sites after denervation; 82 of the 585 (∼15%) diglycine
modification sites were significantly up- or downregulated on day 4

after denervation (Fig. 7D,E; Table S1), and 99 of 559 (17%) on
day 7 after denervation (Fig. 7F).

Next, we examined the ubiquitination pattern for the sarcomeric
protein titin and mapped 418 diglycine remnants; 38 and 28 of these
diglycine modification sites were significantly upregulated
(P<0.05) on day 4 and 7 after denervation, respectively (Table S1;
Fig. S2C). Notably, most sites upregulated at these early time points
are close to the C-terminus, which is connected to the M-band. This
ubiquitination gradient indicates that titin is proteolysed from the C-
terminus towards the N-terminus. The initial breakdown of proteins
localized within the M-band is further supported by the rapid
downregulation of myomesin-1/2. Expression of both myomesin-1
and -2 was downregulated, and we detected that 16 of the associated
∼80 diglycine remnants were significantly enhanced after
denervation (Fig. 7G). Conversely, we observed that myomesin-3
protein levels increased, but only two of the corresponding diglycine
remnants (K453, K476) were enhanced after denervation.

DISCUSSION
The trophic effects of neuronal innervation have been studied using
a plethora of morphological, physiological and biochemical
approaches (Gutmann, 1962). To extend our knowledge of
alterations at the protein level, we determined the quantitative and
temporal changes in protein expression, Lys6 incorporation and
diglycine signatures during denervation-induced muscle atrophy in
the mouse GAST. This analysis reveals the activation of several
pathways and extends the catalogue of proteins that might contribute
to the remodelling of the skeletal muscle proteome during
denervation-induced muscle atrophy.

Previous transcriptional profiling studies revealed that a specific
programme of genes is activated during muscular atrophy, with a set
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of ∼50 atrogenes commonly associated with catabolic states,
including muscle denervation (Sacheck et al., 2007). Comparison of
these genes with our data sets enabled us to generate a training set of
27 candidates by selecting known atrogenes that were congruently
up- or downregulated in our data sets (Table S4). Systematic
random forest analysis revealed similar ‘atrogene-like’ protein
expression profiles for 143 upregulated proteins after denervation.
Furthermore, upregulation of several proteins that participate in the
UPS or autophagy, or function as cathepsin proteases after
denervation was confirmed. In addition, we identified that a broad
range of proteins, which have not previously been described to be
involved in muscular atrophy, were differentially regulated after
denervation. Hence, our protein expression data set provided a
starting point from which we aimed to identify the individual
proteins and networks that are potentially involved in early
remodelling processes after denervation. However, it is necessary
to investigate whether the known atrogenes and candidate proteins
identified in this study are also differentially regulated in other
muscle-wasting conditions.
Interestingly, we observed that several proteins demonstrated

incongruent mRNA levels, protein levels and Lys6 incorporation
after denervation. This suggests that increased mRNA expression,
Lys6 incorporation, or both, can only explain the regulation of some
proteins to an extent. For example, the neuronal cell adhesion
molecule NCAM, protein kinase AKT2 and heat shock protein
HSP7B were increased at the mRNA and protein levels, but their
Lys6 incorporation did not change after denervation. Retinal
dehydrogenase-2 (ALDH1A2) protein expression was significantly
upregulated on days 4 and 7, with no increase in Lys6 incorporation.
Moreover, altered Aldh1a2mRNA transcription was not detected in
previous denervation studies (Sacheck et al., 2007). Conversely,
nodal modulator 1 (Nomo1) mRNA expression was enhanced, with
no change in NOMO1 protein expression or Lys6 incorporation.
These data indicate that a variety of proteins are subjected to post-
transcriptional and post-translational regulation during muscular
atrophy. Although absolute turnover rates were not calculated, this
study indicates that the increased expression levels of selected
proteins observed in atrophying muscles are, at least in part,
independent of altered mRNA levels or protein synthesis,
suggesting that specific proteins are stabilized after denervation.
The breakdown of myofibrillar proteins is mediated by concerted

activation of specific ubiquitin ligases, such as MURF1 and
TRIM32. For example, proteins within the thick filaments are
mainly targeted by MURF1, whereas the thin filament and Z-band
proteins are ubiquitinated by TRIM32 (Cohen et al., 2009, 2012).
TheM-band structure is located in the centre of each sarcomere, and
much attention has been focused on the dynamic regulation of M-
band proteins during early muscular atrophy. Besides its essential
structural function in organizing the lattice of thick filaments, the
M-band also functions as a physiological sensor of stress-related
conditions (Lange et al., 2005). This study confirmed that
myomesin-1/2 are rapidly downregulated in atrophying muscle,
accompanied by reduced Lys6 incorporation, and we observed 16
significantly enhanced diglycine modification sites on myomesin-1/2
after denervation (Fig. 7G). It seems reasonable to assume that the
detection of diglycine modification sites on obscurin and FHL1
indicates that these M-band proteins are degraded by the E3
ubiquitin ligase MURF1 and TRIM32 during early atrophy.
Recently, it has been shown that obscurin specifically interacts
with myomesin-1, and it is tempting to speculate that this interaction
influences the stability of myomesin-1 in fast fibres (Fukuzawa
et al., 2008; Pernigo et al., 2017). Conversely, myomesin-3 protein

expression and Lys6 incorporation were enhanced to a similar
extent after denervation. In addition, diglycine remnant screening
identified only two enhanced diglycine modification sites in
myomesin-3. Previous studies demonstrated that myomesin-3 is
localized within type IIa fibres, whereas myomesin-2 is mainly
expressed in fast glycolytic type IIb fibres. Moreover, muscle fibres
with distinct MyHC expression and metabolic activity exhibit
differing responses to neuronal denervation (Schiaffino and
Reggiani, 2011). Our data confirm that fast glycolytic fibres are
more sensitive to denervation via selective degradation of proteins
in type IIb fibres. In line with this suggestion, downregulation of
myosin-4 was accompanied by enhanced diglycine modification
sites compared with other MyHC proteins (Fig. S2D). Isolation of
single muscle fibres and MS analysis might shed more light on the
regulation of proteins during muscle atrophy and provide deeper
insight into the early remodelling processes that affect individual
fibre types and related structures (Murgia et al., 2015).

Rapid upregulation after denervation of several E3 ligases and
autophagy-related proteins, including NBR1 and sequestosome-1,
indicates that M-band proteins are most likely to be the first proteins
targeted for breakdown during muscular atrophy. However, as the
GAST contains different fibre types, more focused analysis of
specific fibre types is required to determine the spatiotemporal
gradient of protein degradation and the disassembly of myofibrillar
structures in more detail (Volodin et al., 2017).

In addition, we observed an early upregulation of TRIM25
protein expression within 2 weeks of denervation, and our random
forest analysis suggests TRIM25 as a new atrogene candidate
protein. The functional relevance of TRIM25 during denervation
remains largely unknown, although TRIM25 has been linked to
breast cancer growth. TRIM25 activates the RIG1 receptor (retinoic-
acid-inducible gene-I) via K63 ubiquitination, leading to enhanced
NFκB activity (Gack et al., 2007; Horie et al., 2003). In this
context, increased TRIM25 expression might reflect activation of
inflammatory pathways. However, it seems reasonable to assume
that TRIM25 also targets myofibrillar proteins during denervation.
E3 ubiquitin ligases use different E2 conjugation enzymes to
respond to signalling processes and modulate ubiquitin chain
formation on target proteins. MURF1 has been reported to interact
with several different E2 enzymes, including UBE2K, UBE2D and
UBE2N, to form either K48 or K63 ubiquitin chains (Cohen et al.,
2009; Kim et al., 2007). A recent enzyme-linked immunosorbent
assay-based screening approach revealed that MURF1 interacts with
UBE2D2/3 and UBE2E3 in vitro (Marblestone et al., 2013).
However, the protein levels of these E2 enzymes were not
upregulated after denervation; in fact, UBE2N was significantly
downregulated. By contrast, UBE2R (CDC34) and UBE2G1
protein levels were upregulated after denervation, and these E2
enzymes could potentially modulate the function of E3 ligases
during muscular atrophy. However, the functional relevance and
mechanisms of ubiquitin chain formation remain unclear and should
be addressed in future experiments. In addition, the quantitative
diglycine modification site data sets generated in this study could
represent a valuable resource to decipher the specific targets of
E2/E3 ligases during muscular atrophy.

The giant protein titin is one of the most abundant proteins in
skeletal muscle and connects the Z-band with the M-band in the
sarcomere. Our analysis revealed a time-dependent increase in
ubiquitination sites in titin, which spread from the C-terminus at the
M-band towards the N-terminal region at the Z-band (Fig. S2C). It is
tempting to speculate that ubiquitination of titin starts at the
M-band, where several ubiquitin ligases modulate the turnover of
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M-band-associated proteins (Gautel, 2008). It will be interesting to
determine whether ubiquitin ligases such as MURF1 and other
tripartite motif-containing proteins are responsible for this gradient
of titin ubiquitination; such studies will help us to understand the
sequential order of protein degradation during muscular atrophy. A
recent study revealed biphasic breakdown of myofibrillar proteins in
denervated tibialis muscles in mice. The initial step is catalysed by
TRIM32 and induces enhanced ubiquitination of desmin filaments.
Although not significantly altered, we detected nine diglycine
remnants on desmin during the 2 weeks after denervation. These
diglycine remnants might reflect the onset of desmin breakdown
and subsequent myofibrillar degradation after denervation (Volodin
et al., 2017).
Accordingly, our proteomics analysis also demonstrated

enhanced protein levels of several cathepsin proteases and
autophagy markers, such as MAP1LC3A, sequestosome-1 and
NBR1. Formation of lysosomes is required for degradation of extra-
and intracellular material. Lysosomal-associated membrane protein
(LAMP2) is one of the most abundant lysosomal proteins (Gonzalez
et al., 2014). LAMP2 and the lysosomal membrane protein LIMP II
(also known as SCARB2) were upregulated after denervation.
Targeting LIMP II to lysosomes is mainly organized by the clathrin-
associated adaptor protein complex, and we also demonstrated that the
adaptor protein AP3 was significantly upregulated after denervation.
Moreover, overexpression of LIMP II expanded early and late
endosomes and lysosomes in cell culture (Kuronita et al., 2002).
Therefore, our data indicate that LIMP II-dependent enlargement of
lysosomes might also occur during early muscular atrophy.
The random forest analysis revealed that pirin (PIR) protein

expression levels increased after denervation. This non-haem iron-
binding protein is a coregulator of NFκB (Wendler et al., 1997; Liu
et al., 2013). Following translocation of NFκB proteins into the
nucleus, pirin associates with coregulators and binds to NFκB target
genes (Pahl, 1999). For example, pirin interacts with NFκB50-
BCL3 dimers to enhance the DNA-binding activity of this complex
(Dechend et al., 1999). Pirin levels increase in response to oxidative
stress, and oxidation simultaneously activates the iron atom of pirin.
Thus, pirin functions as a redox sensor to facilitate DNA binding of
transcription factors under oxidative stress. Indeed, denervation of
skeletal muscle increases oxidative stress, which is an important
signal for transcriptional activation of target genes (Abruzzo et al.,
2010). Pirin expression is also enhanced in superoxide dismutase
(Sod)-deficient mice. Although the functional relevance of pirin
during denervation-induced atrophy is largely unknown, pirin
might act as a redox sensor that activates pro-inflammatory
pathways during muscular atrophy.
In conclusion, this integrated proteomic analysis demonstrates

that marked regulation of protein expression, protein synthesis and
protein ubiquitination occur in response to denervation-induced
atrophy in skeletal muscle. By combining existing microarray data
sets with our proteomics approach, we are confident of identifying
new networks and relevant signals implicated in the pathobiology of
muscular atrophy.

MATERIALS AND METHODS
Generation of SILAC mice
C57BL/6 mice (male, 9 weeks of age) were fed a 13C6-lysine (Lys6)-
containing mouse diet (Silantes GmbH,München, Germany) to generate the
labelled SILACmouse colony, as previously described (Krüger et al., 2008).
Administration of a diet containing Lys6 leads to a complete exchange of
naturally occurring 12C6-lysine (Lys0) over one generation (Hölper et al.,
2014). Isolated tissues and extracted proteins from SILACmicewere used as

a heavy ‘spike-in’ standard for accurate quantification of the experimental
conditions.

Muscle denervation and tissue lysis
Section of the left sciatic nerve was used to induce muscular atrophy (Lecker
et al., 2004). After isolation of the control and denervated gastrocnemius
(GAST) muscles, samples were snap frozen in liquid nitrogen. Frozen
muscle tissue was ground to a fine powder using a mortar and pestle. Tissue
powder from all experimental conditions was extracted with SDS lysis
buffer (4% SDS in 100 mM Tris/HCl, pH 7.6). Lysates were homogenized,
heated at 70°C for 10 min and clarified by centrifugation. Protein
concentrations were determined using the Bio-Rad DC assay.

LysC protein digestion
For analysis of the proteome, 20 µg of nonlabelled and labelled protein
extracts were mixed and loaded onto a 4-12% Bis-Tris gel (Invitrogen,
Carlsbad, CA, USA), separated by SDS-PAGE and stained using the
Colloidal Blue staining kit (Invitrogen). Each lane of the gel was cut into ten
slices, and proteins were digested in-gel with LysC (Wako Pure Chemical
Industries, Richmond, VA, USA) overnight at 37°C, as previously described
(Shevchenko et al., 2006). Briefly, the gel pieces were destained in
50 mM ammonium bicarbonate and ethanol, reduced with 10 mM
dithiothreitol (DTT) at 56°C for 45 min, carbamidomethylated with 55 mM
iodoacetamide in the dark for 30 min at room temperature, and digested with
12 ng/µl LysC at 37°C overnight. The next day, digestion was stopped by
acidification with trifluoracetic acid (TFA), and peptides were extracted from
the gel pieces with increasing concentrations of acetonitrile (ACN). The
organic solvent was vacuum evaporated using a SpeedVac concentrator plus
(Eppendorf, Hamburg, Germany), and peptides were desalted using
C18-based Stop and Go Extraction Tips (Rappsilber et al., 2007).

Trypsin digestion and peptide purification
For analysis of diglycine-containing peptides, 7.5 mg of the SILAC spike-in
was mixed with equal protein amounts of nonlabelled control and
denervated samples. After precipitation with acetone for 2 h at −20°C,
samples were resuspended in urea buffer (6 M urea, 2 M thiourea in 10 mM
HEPES, pH 7.6). Proteins were reduced with 5 mMDTT for 30 min at room
temperature, carbamidomethylated with 10 mM iodoacetamide for 30 min
in the dark at room temperature and subsequently digested with LysC at an
enzyme:substrate ratio of 1:100 for 3 h at room temperature. Protein samples
were diluted to 2 M urea using 50 mM ammonium bicarbonate and digested
overnight at room temperature using sequencing-grade trypsin (Promega,
Fitchburg, WI, USA) at an enzyme:substrate ratio of 1:100. After digestion,
peptides were acidified with formic acid (FA) and subsequently desalted
using a 500 mg C18 Sep-Pak SPE cartridge (Waters, Milford, MA, USA).
C18 cartridges were preconditioned with 5 ml of ACN, followed by 5 ml of
50% ACN, 0.1% FA and 15 ml of 0.1% TFA. After acidification and
clarification by centrifugation, samples were loaded onto the conditioned
C18 cartridges and washed with 20 ml of 0.1% TFA. Bound peptides were
eluted thrice with 2 ml of 50% ACN/0.1% FA and concentrated on a
SpeedVac concentrator plus (Eppendorf) to ∼100 µl.

Peptide fractionation by high pH RPLC
Off-line high pH RPLC was performed using an XBridge BEH300 C18
3.5 µm column on an ÄKTA Purifier (GE Healthcare Life Sciences, Little
Chalfont, UK). Fractionation was performed as described previously
(Udeshi et al., 2012). Specifically, concentrated samples were
resuspended in RPLC buffer A (5 mM ammonium formate in 2% ACN,
pH 10) and injected at a flow rate of 0.25 ml/min. Peptides were fractionated
using a 64 min gradient that started by increasing the concentration of RPLC
buffer B (5 mM ammonium formate in 90% ACN, pH 10) to 8% at a rate of
1.1% B/min, followed by a 38 min linear gradient from 8 to 27% B. The
gradient was then ramped successively to 31% B at 1% B/min, 39% B at
0.5% B/min and 60% B at 3% B/min. During the entire fractionation, the
flow rate was 0.25 ml/min. In all, 75-80 fractions were collected, and pooled
in a non-contiguous manner to obtain ten fractions that were concentrated to
∼100 µl on a SpeedVac concentrator.
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Enrichment of ubiquitinated (K-ε-GG) peptides
The anti-K-ε-GG antibody was obtained from the PTMScan® ubiquitin
remnant motif kit (Cell Signaling Technology, kit #5562). The antibody was
cross-linked before use, as described previously (Udeshi et al., 2012).
Antibody beads were washed twice with 1 ml of 100 mM sodium borate
(pH 9.0) at 4°C and then cross-linked using 1 ml of 20 mM dimethyl
pimelimidate (DMP) on a rotating wheel for 30 min at room temperature.
Cross-linked beads were washed twice with 1 ml of 200 mM ethanolamine
(pH 8.0) at 4°C, then cross-linking was blocked with 1 ml of 200 mM
ethanolamine on a rotating wheel for 2 h at 4°C. Subsequently, the antibody
beads were washed twice with 1 ml IAP Buffer (50 mM MOPS, pH 7.2,
10 mM sodium phosphate, 50 mM NaCl) at 4°C and resuspended in
IAP buffer. Concentrated peptide fractions obtained from RPLC were
resuspended in 1 ml IAP buffer and incubated with cross-linked antibody
beads (divided equally for ten fractions) for 2 h on a rotating wheel at 4°C.
After immunoprecipitation, beads were washed twice with 1 ml ice-cold
PBS and 1 ml ice-cold water. Bound K-ε-GG peptides were eluted twice
with 100 µl of 0.15% TFA and purified using C18-based Stop and Go
Extraction Tips.

Lys6 incorporation
Mice were denervated as described above and immediately switched to a
mouse diet containing 13C6-lysine (3 g/day) until they were sacrificed at
specific time points for extraction of the GAST muscles from both control
and denervated legs. Tissue lysis and in-gel protein digestion with LysC
were performed as described above.

LC-MS/MS analysis
RPLC of peptides and MS/MS analysis were performed using an Easy nLC
1000 UHPLC coupled to a QExactive mass spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA). Peptides were resuspended in Solvent A
(0.1% FA), picked up with an autosampler and loaded onto in-house made
50 cm fused silica emitters (75 µm diameter) packed with 1.9 µm C18-AQ
Reprosil Pur beads (Dr Maisch GmbH, Ammerbuch, Germany). Samples
were loaded at a flow rate of 750 nl/min. A 150 min segmented gradient of
10-38% Solvent B (80% ACN in 0.1% FA) over 120 min and 38-60%
Solvent B over 7 min at a flow rate of 250 nl/min was used to elute peptides.
Eluted peptides were sprayed into the heated transfer capillary of the mass
spectrometer using a nano-electrospray ion source (Thermo Fisher
Scientific). The mass spectrometer was operated in a data-dependent
mode, where the Orbitrap acquired full MS scans (300-1750 m/z) at a
resolution (R) of 70,000 with an automated gain control (AGC) target of
3×106 ions collected within 20 ms. The dynamic exclusion time was set to
20 s. From the full MS scan, the ten most intense peaks (z≥2) were
fragmented in the high-energy collision-induced dissociation (HCD) cell.
The HCD normalized collision energy was set to 25%. MS/MS scans with
an ion target of 5×105 ions were acquired with a resolution R=35,000, with
a maximal fill time of 120 ms, isolation width of 1.8 m/z, capillary
temperature of 280°C, and spray voltage of 1.8 kV.

MS data processing
MS raw data were analysed using MaxQuant software version 1.4.1.2 (Cox
and Mann, 2008). Peptides were searched using the Andromeda search
engine (Cox et al., 2011) using the mouse UniProt database containing
73,921 entries. Multiplicity was set to 2, and Lys6 was set as the labelled
amino acid to quantify SILAC peptide pairs. LysC was chosen as the
digestion enzyme for protein identification and trypsin for ubiquitinated
peptide identification, both with allowance of cleavage N-terminal to
proline. The maximal number of missed cleavages allowed was two.
Cysteine carbamidomethylation was set as a fixed modification; and
methionine oxidation, N-terminal protein acetylation and Gly-Gly addition
to lysines as variable modifications. The maximal mass tolerance was
20 ppm, initial precursor ion mass deviation, 7 ppm and MS/MS tolerance,
0.5 Da. An FDR of 1% and minimal peptide length of seven amino acids
were applied for peptide identifications. For quantification of SILAC
peptides, a minimal ratio count of two was applied. Ubiquitinated site
identification and quantitative information were obtained from the

MaxQuant GlyGly(K) sites table. Statistical data analysis and t-tests were
performed using Perseus (version 1.3.8.3).

Data analysis
Soft clustering of z-score normalized log2 fold-change of proteomic data
was performed using the R-package Mfuzz (Kumar and Futschik, 2007).
The parameter c (number of clusters) was set to six, and the parameter m
(fuzzifier) was estimated (based on the data) to be 2.54. The AUC of the
incorporation-time profile was calculated using the R-package MESS. To
analyse proteome and ubiquitination data, a two-sided t-test was performed
using a permutation-based FDR of 0.05 (fudge factor S0=0.1) in Perseus.
Statistical analysis of incorporation data was performed using one-sample
tests in Perseus. Multiple testing correction was performed using the
R-package qvalue, calculating q-values at an FDR <0.05.

Random forest analysis
A random forest approach using the comprehensive caret (classification and
regression training) R package (Kuhn et al., 2008) was used to identify
potential atrogenes in the proteomics data set. First, we performed a
literature search and screened transcriptomics data for known atrogenes, and
classified the corresponding proteins into the following two classes: Class 1,
upregulated upon denervation; and Class 2, downregulated following
denervation. Then, we generated a negative data set (Class 3) by shuffling
the complete proteomics data set (time course experiment after
denervation). We tuned the trained random forest by maximizing Cohen’s
kappa (statistic) separately for Class 1 and Class 2 against Class 3. Tuning of
the random forest was performed on the parameter mtry (e.g. randomly
selected features at each split). Given that the negative data set could
introduce bias by chance, we trained a total of 50 random forest for each
class, and the probabilities for Class 1 and 2 were averaged, respectively. For
visualization, we plotted the probability for Class 1 versus the Delta Score
(Class 1−Class 2).

Western blotting and antibodies
Equal amounts of protein from each muscle lysate (∼60 µg) were separated
using the TGX stain-free sodium dodecyl sulphate-polyacrylamide gel
electrophoresis (SDS-PAGE) system from Bio-Rad (Hercules, CA, USA).
Proteins were transferred onto a polyvinylidene difluoride membrane using
the Bio-Rad TransBlot Turbo system and detected with the following
commercial antibodies: rabbit polyclonal anti-Akt (Cell Signaling, #9272,
1:1000), rabbit monoclonal USP14 (Cell Signaling, #11931, 1:1000),
mouse monoclonal anti-α-tubulin (Sigma Aldrich, T9026, 1:500) and rabbit
monoclonal anti-TRIM25 (Abcam, ab167154, 1:000). An anti-dystrophin
antibody (Dys1, Novocastra, NCL-DYS1) was used as a loading control.
Proteins were visualized using a chemiluminescence system (Amersham
ECL Prime) from GE Healthcare.
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