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—— Abstract

Automated deduction in higher-order program calculi, where properties of transformation rules
are demanded, or confluence or other equational properties are requested, can often be done by
syntactically computing overlaps (critical pairs) of reduction rules and transformation rules. Since
higher-order calculi have alpha-equivalence as fundamental equivalence, the reasoning procedure
must deal with it. We define ASD1-unification problems, which are higher-order equational
unification problems employing variables for atoms, expressions and contexts, with additional
distinct-variable constraints, and which have to be solved w.r.t. alpha-equivalence. Our proposal
is to extend nominal unification to solve these unification problems. We succeeded in constructing
the nominal unification algorithm NomUnifyASC. We show that NomUnifyASC is sound and
complete for these problem class, and outputs a set of unifiers with constraints in nondeterministic
polynomial time if the final constraints are satisfiable. We also show that solvability of the output
constraints can be decided in NEXPTIME, and for a fixed number of context-variables in NP
time. For terms without context-variables and atom-variables, NomUnify ASC runs in polynomial
time, is unitary, and extends the classical problem by permitting distinct-variable constraints.
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1 Introduction

Automated deduction in higher-order program calculi, where properties of transformation
rules are demanded, or confluence or other equational properties are requested, can often be
done by syntactically computing overlaps (critical pairs) of reduction rules and transformation
rules. Since higher-order calculi have alpha-equivalence as fundamental equivalence, the
reasoning procedure must deal with it. We define ASD1-unification problems, which are
higher-order equational unification problems with variables for atoms, expressions, and
contexts, with additional distinct-variable constraints, and which have to be solved w.r.t.
alpha-equivalence. Our proposal is to extend nominal unification to solve these unification
problems. The appeal of classical nominal unification is that it solves higher-order equations
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Nominal Unification with Contexts

modulo a-equivalence in quadratic time and outputs at most a single most general unifier
[36, 6, 17].

Our intended application is the diagram-method, which is a syntactic proof method
(e.g. [37, 12, 33]) to show properties like correctness of program transformations. As an
example consider the reduction rule (cp) in the call-by-need lambda-calculus with let (see
e.g. [2,23,33]) (let = A\y.S in C[z]) — (let & = Ay.S in C[Ay.S]) with the restriction that
x is not bound by context C. The diagram-based proof method for correctness of program
transformations computes possible overlaps of the left-hand side (and in certain cases also of
the right-hand side) of a program transformation with the left-hand sides of the reduction rules.
An example equation is let Ay = AA3.51 in D1[AA5.51] = let A3 = AA4.S5 in Ds[Aj]
where A, S, D are variables standing for concrete variables (called atoms), expressions, and
contexts, respectively. The equation comes together with constraints on possible occurrences
of atoms, which can be formulated using the distinct-variable condition (DVC) [5, 2].

A generalized situation for overlap computation is represented by the equation R[¢] = C[¢'],
where R is a reduction context (in which reduction takes place), £ is a left hand side of a
reduction rule, C' an arbitrary context, and ¢’ is the left hand side of a transformation rule.
Provided R, C are variables for reduction contexts and general contexts, respectively, solving
the unification equation R[{] = C[¢'] can be attacked by using nominal unification in the
extended language. The proposal of [31] to solve such problems w.r.t. syntactic equality
permits an even higher expressiveness of the language, but the support for alpha-equivalence
reasoning is missing, and hence several variants of extra constraints are necessary and further
reasoning needs a technically detailed analysis of renamings [29].

Results. A sound and complete algorithm NOMUNIFYASC for nominal unification of
ASD1-unification problems is constructed. The algorithm NOMUNIFYASC computes in NP
time a solution including a constraint (Thm. 5.9) and the collecting version produces at
most exponentially many outputs. The algorithm NOMFRESHASC that checks satisfiability
of the constraints of a solution runs in NEXPTIME (Proposition 5.8), hence solvability of
ASD1-unification problems can be decided in NEXPTIME (Thm. 5.10). Since the number of
context-variables is the only parameter in the exponent of the complexity, we obtain that
if the number of context-variables is fixed, then the algorithm NOMUNIFYASC runs as a
decision algorithm in NP time.

For computing diagrams (in the diagram method), it is important to obtain a complete
set of unifiers. We expect that exponentiality of the number of unifiers is not a problem,
since the input is usually very small. For example, the rules of the let-calculus [2] need
only one context variable. We show that DVCs are a proper generalisation of freshness
constraints if combined with solving equations (Proposition 3.8). A technical innovation is
that decomposition for lambda-bindings can be extended to an arbitrary number of nested
lambda-bindings thanks to the DVC (see Remark 3.4, Proposition 3.5, and Example 3.6).

Classical nominal unification is generalized by replacing freshness constraints by DVC-
constraints such that unitarity and polynomial complexity still hold (Thm. 6.1).

Previous and Related Work. Nominal techniques [27, 26] support machine-oriented reason-
ing on the syntactic level supporting alpha-equivalence. Nominal unification of (syntactically
presented) lambda-expressions was successfully attacked and a quadratic algorithm was
developed [36, 6, 17] where technical innovations are the use of permutations on the abstract
level and of freshness constraints. The approach is used in higher-order logic programming
[8], and in automated theorem provers like nominal Isabelle [34, 35].

There are investigations that extend the expressive power of nominal unification problems:
The restriction that bound variables are seen as atoms can be relaxed: Equivariant unification
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[7, 10] permits atom-variables and permutation-variables which however, appear to add too
much expressive power as mentioned in [7, 10]. A restricted language (allowing atom-
variables, but without permutations at all) and its nominal unification is analyzed in [16].
An investigation of nominal unification with atom-variables and a lazy-guessing algorithm
is described in [32, 15]. Nominal unification for a lambda-calculus with function constants
and a recursive-let is developed in [30] and shown to run in NP time. Reasoning on nominal
terms in higher-order rewrite systems and narrowing as a general, but not provably efficient
method for unification is described in [4]. Nominal techniques to compute overlaps w.r.t.
all term positions are in [3], but there are no context-variables and reduction strategies
cannot be encoded. If there are no binders, then the problem statement can be generalized to
first-order terms with arbitrary occurrences of context-variables and the unification problem
is in PSPACE [14].

Classical nominal unification is strongly related to higher-order pattern unification
[9, 18, 22, 28, 24] which is a decidable fragment of (undecidable) higher-order unification [13]
and has most general unifiers (i.e. is unitary). A slight extension to pattern unification that is
unitary and decidable is described in [19]. Another line of research for reasoning with binders
is the foundation of higher-order abstract syntax [25], and extensions of higher-order pattern
unification as in [1], which, however, cannot adequately deal with ASD1-unification problems,
the problem class of NOMUNIFYASC. The use of deBruijn indices [11] has some advantages
in representing lambda expressions and avoids alpha-renamings, but is not appropriate for
our problem, since we have to deal with free variables and with context variables that may
capture variables.

Outline. Sect. 2 contains the definitions and extensions of nominal syntax. In Sect. 3 the
preparations for the nominal unification algorithm are done, and in Sect. 4 the algorithm
NOMUNIFYASC is introduced, which consists of a set of (non-deterministic) rules, and
also the constraint checking algorithm NOMFRESHASC. In Sect. 5 the properties of the
algorithms are analyzed. In Sect. 6 the special case NL,g is reconsidered, and we illustrate
how the unification algorithm operates on examples. We conclude in Sect. 7. Most of the
proofs are omitted in the main part, but given in the appendix.

2 Nominal Languages and Nominal Unification

We explain the nominal (meta-)languages representing higher-order languages, their semantics
and also several operations.

Let F be a set of function symbols where each f € F has a fixed arity ar(f) > 0, and F
contains at least two function symbols, one of arity 0 (a constant) and one of arity > 2. Let
At be the set of atoms ranged over by a,b; A be the set of atom-variables ranged over by
A, B; S be the set of expression-variables ranged over by S, T standing for expressions; D be
the set of context-variables ranged over by D standing for single hole-contexts; and P be the

set of permutation-variables ranged over by P standing for finite permutations on .At, i.e.

bijections 7 on At such that their support supp(w) = {a € At | 7(a) # a} is a finite set.

The ground expressions are lambda-expressions extended by function symbols, where the
lambda-variables are called atoms. Contexts in the ground language are expressions over a
language extended with a symbol [-] the hole (occurring only once), where expressions can
be plugged in. The language will be enriched by symbols for atoms, expressions, contexts,
and permutations, where the latter are mappings that may change the names of atoms and
are represented by lists of swappings (ab).

» Definition 2.1 (The nominal language NL,ascp with atom-variables, expression-variables,
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context-variables, and permutation-variables). The syntax of NL,ascp is defined by the
grammar

XeAf = a|AlmA

ecé& = X|S|7mS|(fer. . ea(p)| AX.e|Cle]

CcecC = [JID|mD|(fer...[]-..en) | AX.[]| C1[C5]

T n= 0| (A Ay)-7w|(Aa) 7m|(aA) 7|(arag) 7| P-7n|P -7

with the categories AE of atom expressions, £ of expressions, C of contexts, and 7 of
permutations. Here A, S, D, and P is an atom-variable, expression-variable, context-variable,
or permutation-variable, respectively.

Nested permutations are forbidden, e.g. swappings (m1-A; ma-As) are excluded for simpli-
city of algorithms, and since their expressive power is already available using equations and
constraints. We use positions (tree addresses) in expressions, where we ignore permutation
expressions in the addressing scheme. Sublanguages of NL,ascp are denoted by NLj;, where
M is a substring of aASC' P, and the grammar is restricted accordingly. The mainly used
languages are NL, as ground language for the solutions, NL,45¢c as the expression language
for the input, and NL,ascp as the working language inside of the unification algorithm.

» Definition 2.2. A substitution o : NLoascp — NLgascp maps atom-variables to atom
expressions, expression-variables to expressions, context-variables to contexts, permutation-
variables to permutations. A ground substitution p is a substitution p : NLyascp — NL,.
The mapping on atom-variables, expression-variables, context-variables and permutation-
variables determines uniquely a mapping p on all expressions of NL,ascp-

The semantics of the symbols is now explained, which will then justify the simplifications
below.We use permutation application - as operator and syntactic symbol. Similarly, we use
~! as a syntactic symbol in P~! and operator for inversion, and we abbreviate ()-V by V for

a variable V.

» Definition 2.3 (Operations and Simplifications). In all the languages we use the following
operations and simplifications according to the semantics:

(m1-m2)(€) = (my-(ma-€)) (mma) "t =y ! m[] =[]
_>

m(fer...en) = (f mer...me,) m(AX.e)=AIr-Xme wCle]— (7-C)[me]
(X1 X2)_1—>(X1 X2) (0102)[6}—}01[02[6]]

» Remark. The simplifications permit standardizations in the various languages:

In NL,, all permutation operations can be simplified away.

In the language NL,s permutations can be represented as list of swappings of length at
most |[n — 1].

In the language NL,asc, the permutation operations only lead to suspensions of the
form 7 A,7-S, and 7 D.

In all languages, permutations can be represented as a composition of lists of swappings,
permutation-variables P and their inverses P!,

Context expressions can be simplified such that context-variables only occur in the form
(x-D)e].

Let tops(e) be the top symbol of e after simplification of permutation applications, i.e.
tops(a) = atom, tops(AX.e) = A, tops(f e1...e,) = f, tops(m-A) = A, tops(n-S) = S, and
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tops((m-D)le]) = D. For an expression e or context C' in NL,, we denote with FA(e) or
FA(C), resp., the set of free atoms, and with At(e) or At(C'), resp., the set of all atoms. The
set of atoms that become bound in the hole of a context C, called the captured atoms of C,
is denoted as CA(C).

In NL,, a-equivalence ~, is the closure by reflexivity and congruence and the rule
a g FA(e')Ne~y (ab)e = Aa.e ~, b€

We also use a notion of a-equivalence for contexts, defined as follows:

» Definition 2.4 (a-equivalences on contexts in NL,). NL,-contexts C; and Cy are a-
equivalent, written Cy ~,, Co, iff for all atoms a, Cyla] ~, Cz[a] holds.

E.g., Aa.[-] %o Ab[], Aa.AbAa.[] ~q Ab.AD.AG.[], but Aa.Ab.[-| %4 Aa.Aa.]-]. In Definition
2.4 it is sufficient for Cy ~, Ca, if C1[a] ~ C2[a] for all a € CA(Cy) U CA(C3) U {a'}, where
a’ is a fresh atom. Note that C; ~, Cy and e; ~, es imply Ci[e1] ~n Ca[es], but the reverse
is wrong: (f a Aa.a) ~, (f a Ab.b), but (f a Aa.[-]) %o (f a Ab.[-]) and a 7, b. We explain
instantiation modulo « for correctly defining solvability under DvC-restrictions.

» Definition 2.5 (Instantiation modulo «). For testing solvability of equations, we assume
that ground substitutions map into NL,/~,. An equivalent method is that whenever a
variable S or D is replaced by p, we use an a-renamed copy of Sp or Dp, respectively, where
the renaming is done by fresh atoms that do not occur elsewhere (called instantiation modulo
a), and where comparison is done modulo ~.

The following definition explains free/bound variables and the satisfiability of Dvc-
constraints of expression in NL,/~, without using fresh variables.

» Definition 2.6. Let e be a normalized NL, 45¢c p-expression and p be a ground substitution
mapping into NL,/~, such that ep is an NL,/~q-expression. Then we define the bound
atoms BA(e, p), and satisfiability of the DVC of (e, p) as follows, where the bound atoms
introduced by p are ignored.

1. If X is an atom a or a suspension 7-A where A is an atom-variable then BA(X, p) = 0,
and the DVC is satisfied.

2. BA(w-S,p) = 0, and the DvC is satisfied.

3. BA(f e1...en,p) = Uj_; BA(ei,p). The DvC is satisfied, if for all i # j, BA(e;, p) N
(FA(ejp) U BA(ej, p)) = 0 and for all ¢, the DVC holds for (e;, p).

4. BA(AX.e,p) = BA(e,p) U{Xp}. The DVC is satisfied, if it is satisfied for (e, p), and if
Xp ¢ BA(e, p).

5. BA((m-D)le], p) = BA(e, p) U ((m)p)-(CA(Dp)). The DVC is satisfied, if it is satisfied for
D, i.e. CA(Dp) N FA(Dp) =0 as well as (BA(e, p) N ((m)p)-((FA(Dp)) U (CA(Dp))) = 0,
and the DVC is satisfied for (e, p).

A~~~

Note that BA(e, p) # BA(ep), since for e = AA.S,p = {A — a,S — Ab.a b}, we have
BA(ep) = {a, b}, but BA(e, p) = {a} (where we do not distinguish between an atom and the
a-equivalence class of an atom).

Nominal unification is connected with formulating and solving constraints. One form of
constraints are freshness constraints:

» Definition 2.7 (Freshness-Constraints in NL,ascp). Freshness constraints in NL,ascp
are of the form a# e and A # e. The semantics of freshness constraints is as follows: For a
ground substitution p, we say that

p satisfies A# e iff p(A) & FA(p(e));
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p satisfies a# e iff a & FA(p(e));
A set of freshness constraints is satisfiable iff there exists a ground substitution p in NL,ascp
that satisfies all constraints. If p satisfies all constraints of a set of freshness constraints,
then we say that p is a solution of the constraint set.

Another form of constraints is derived from the distinct variable convention.

» Definition 2.8 (Dvc-Constraints). The distinct variable condition (Dvc) holds for an NL,-
expression e, if all bound atoms in e are distinct, and all free atoms in e are distinct from all
bound atoms in e.

A DvC-constraint is of the form DvC(e), where e is an expression. A ground substitution
p satisfies DvC(e), iff the distinct variable condition holds for p(e) where p(e) is generated
by using instantiation modulo « (Def. 2.5). A DVC-constraint is satisfiable if there exists a
satisfying ground substitution p. If p satisfies all constraints of a set of DVC-constraints, then
we say that p is a solution of the constraint set.

For example, fa Ab.(ga Ac.c) satisfies the Dvc and f b Ab.b violates it. With p = {S— Ac.c}
we have (f (Aa.S) (Ab.S))p = f (Aa.Aci.c1) (Ab.Aca.c2) and thus p satisfies DVC(f (Aa.S) (AD.S)).
As another example, p/ = {S — Ac.b} violates DVC(f (Aa.S) (Ab.S)).Finally, note that the
constraint DvC(f (Aa.S) (Aa.S)) is not satisfiable.

» Remark. We will prove below in Proposition 3.8 that freshness constraints can be expressed
as DVC-constraints if they occur in unification problems.

Although freshness constraints are redundant under the assumptions above, we still use
them, since it is an important special case in nominal unification. Later we show, that
DVC-constraints are a proper generalization of freshness constraints, dependent on the used
language.

We now give an extendedexample of the use of constraints.

» Example 2.9. A reduction rule of the corresponding calculus islet z=MAy.s in Clz] —
let = Ay.s in C[Ay.s] where C is a context. (Note that we do not exactly represent the
reduction rule from [2] here.) We represent the expressions as

(et (AA,.D[A,]) (AA,.S)) and (1et (AA,.D[AA,.S]) (AA4,.S)).

However, D is not permitted to capture the atom represented by A,, nor free atoms from .S,
and S is not permitted to have free occurrences of A,. Both conditions can be captured by
the constraint that instances of let (AA,.D[A4;]) (AA4,.S) and let (AA;.D[AA,.S]) (A A,.5)
have to satisfy the bvc. However, the latter violates the DVC in every case due to the two
occurrences of the binder A,. Hence, we add a renaming to the rule and represent it as

(let (AMA,.D[A;]) (M\A,.S)) — (let (MA,.D[(A, A.)-NA,.S]) (AA,.S)) and A, # S,
which is simplified to
(let (MA;.D[A;]) (MA,.S)) — (et (Az.D[AA..(A, A.)-S]) (AA,.S)) and A, # S.

Now the DVC-constraints for both expressions makes sense andproduces the correct condi-
tions.

» Definition 2.10. Let L be a sublanguage of NL,ascp- A nominal unification problem in
L is a pair (I', V) where T is a finite set of equations e = ¢’ with e,e’ € L and V is a finite
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set of freshness and DVC-constraints, where all expressions are in L. A ground substitution p
is a solution of (T, V) iff p satisfies V and ep ~,, e’p for all e =€’ € T.

A unifier for (I', V) is a pair (0,V’) in L, where ¢ is a substitution and V' is a set of
constraints, such that V' is satisfiable and for every substitution ~ such that o o~ is ground
for T, V, V"

(0 07) satisfies V' = (0 0+) is a solution for (T, V)

For a nominal unification problem (I, V) in L, a set M of unifiers is complete, iff for every
solution p of (I', V), there is a unifier (o, V') € M such that there is a ground substitution
~v with Aoy=p(A), Soy ~q p(S), Doy ~4 p(D), and Poy=p(P) for all atom-variables A,
expression-variables S, context-variables D and permutation-variables P occurring in (T, V)
(we say (o, V') covers p). A unifier (o, V') is a most general unifier of (I', V), iff {(o,V')} is
a complete set of unifiers for (I', V).

» Theorem 2.11 ([36, 6, 18, 17]). The nominal unification problem in NL,s, with V
consisting of freshness constraints only, is solvable in quadratic time and is unitary: For a
solvable nominal unification problem (I', V), there exists a most general unifier of the form
(0,V') which can be computed in polynomial time.

In Theorem 6.1 we show that our unification algorithm solves the same problem where
DVC-constraints are permitted, also in polynomial time.

» Definition 2.12. An ASD1-unification problem is a set of NL, 4sc-equations, where context
variables occur at most once, all top-expressions in equations have a DvC-constraint, and the
equations have to be solved w.r.t. a-equivalence.

3 Preparations for NL,sc-Unification

In this section we will analyze properties of contexts and expressions, where we will see that
the use of DVC-constraints is of considerable help. This is a preparation for the unification
rules for treating unification equations of the form Dj[e;] = Da[es] decomposing expressions
with context-variables, and it is a natural requirement for overlaps of (the instances of) rules
and transformations.

» Lemma 3.1. Let e be an NL,-expression. Then there is an expression €' that satisfies the
DVC with e ~q €.

Proof. The argument is a simple bottom-up algorithm that renames all bound atoms by
fresh ones. |

» Lemma 3.2. Let e be an NL,-expression that satisfies the DVC and 7 be a permutation.
Then 7-e also satisfies the DVC.

Proof. This holds, since a permutation is a bijection on the atoms. |

» Lemma 3.3. Let eq,es be two expressions in NL, that satisfy the DVC (separately). Then

€1 ~q €3 1S equivalent to the condition that there exists a permutation m with eq = m-ea,
where supp(m) C (At(e1) U At(e2)) \ (FA(e1) U FA(e2)).

Proof. If ey, e; satisfy the DVC and e; = m-e5 where m does not change free atoms of ey, es,
then clearly e; ~, e2. We prove the other direction of the claim by induction on the size.
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For constants and atoms, this is trivial, since m does not change free atoms.

If e; = Aa.€), and eo = Aa.€h, then €] ~, €}, hence ] = 7€}, for a (minimal) permutation
7. Hence also e; = 7-es.

Let eq = Aa.e, and ey = Ab.eh, with a # b. Then a#eq, a#e), and €] ~, (a b)-e5. The
expressions €] and (a b)-e), satisfy the Dvc, hence by induction hypothesis, ¢] = 7’-(a b)-e},
for a permutation 7’ where 7n'(a) = a. Let 7 be the permutation #’-(a b). Then
7'-(a b)-b = a. Hence m-es = ey.

Ifer=fei1...e1n,andes = fegq... e'z’n, then by induction there are permutations
m; such that m;-ea; = e;; for all 7. Since the permutations can be chosen minimal and
are only determined by the binders, and since the DVC is assumed, the permutations are
disjoint. Thus we can compose (i.e. union) the permutations, and obtain m =7y ... m, as
the required permutation. |

» Remark 3.4. We motivate the decomposition lemma. The inductive definition of ~ for
abstractions that usually consists of two rules can be joined into a single rule that characterizes
a-equivalence:

a# Ab.sa, 81 ~q (a b)-s9

AG.S1 ~g Ab.So

where a may be equal to b or different. Generalizing this for arbitrary contexts results in the
next, slightly more complicated situation where Ch = Aay ... Aap.[], C2 = by ... Ab,.[], and
the rule

CA(Cl) #02[82]7 E"]T : (Cl ~o 71"02781 ~ao 7T'82)
C1[s1] ~a Ca[s2]

where w is a permutation with w-b; = a; for all i, CA(Cy) = {a1,...,a,}, and CA(Cs) =
{b1,...,b,}. We assume that a; # a;, b; # bj fori# j, but a; = b; for some i,j may hold.
We show below, that the latter rule is already the gemeral one, provided the DVC holds for
Cl [81] and CQ[SQ].

We now analyze the decomposition of context applications C[e] under the assumption
that the DvC holds. Note that contexts like Aa.\a.[-] violate the Dvc, and so are excluded.
For an NL,-context C, we denote with CAO(C) the ordered tuple of the atoms in CA(C),
where the atom ordering is according to the nesting of active bindings: The outermost bound
atom comes first. For example if C' = Aa.\a.(f (Ab.Ae.b) (Ab.Ab.[}])), then CAO(C) = (a,b).

» Proposition 3.5. Let C1,Cy be NL,-contexts and e1,es be NLy-expressions, such that Cq
and Cs have identical hole positions, and such that C1le1] as well as Cales] satisfy the DVC.
Then the following are equivalent:

1. Cl [61] ~Na 02[62].

2. Ya € CA(C1): a# Csles] and there is a permutation m with Cy ~, m-Cq and e ~,, Te3,
where m does not change free atoms in Cales], m maps CAO(Cs) to CAO(C1), and
supp(m) C CA(C2) U CA(Ch).

» Example 3.6. The DVC is required in Proposition 3.5: Let C; = (a, Aa.[}]) and Cy =
(a, Ab.[-]), which implies Ci[a] = (a, Aa.a) ~q (a, \b.b) = Ca[b]. The DVC is violated for the
left expression. We see that there does not exist a (common) permutation 7 with Cy ~q, 7-Co
and e; ~g Teg.

Note that exploiting the general decomposition property of context-variables above in a
unification algorithm, even under strong restrictions, requires permutation-variables, and
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also constraints of the form CA(D)#e. There are investigations on nominal unification
permitting variable permutations [7, 10], but an extension to context-variables is open. We
will use further components in the constraint set that has NL,4s5cp as its working language,
which will refine the information.

» Definition 3.7 (Further Constraint Components). Let p be a ground substitution. The
unification algorithm uses the following further constraint components:

A # e, where e is an atom expression. (short form of A#e)
CA(D)#e, which is satisfied by p, if for all atoms a € CA(Dp): a#ep.
supp(m)Fte, which is satisfied by p, if for all atoms a € supp((m)p): aftep.

supp(m) € CA(Cy) U CA(C3) which is satisfied by p, if for all atoms a € supp((7)p):
a € CA(Clp) U CA(CQp)

C # 0, which is satisfied by p, if Cp is not the trivial context.

» Proposition 3.8. In NL-languages containing expression-variables, freshness constraints
can in linear time be encoded as DVC-constraints by translating a#e into DVC((f (Aa.a) S)),
plus the equation S = e; and A#te into Dve((f (MA.A) S)) plus the equation S = e where f
s a binary function symbol, and in both cases, S is a new expression-variable.

Proof. We consider the first case (a # e). If the freshness constraint is satisfied by p, then a
does not occur free in ep, hence the modulo-alpha-instantiation of S by p can be done without
use of the atom a, and then the constraint is satisfied. To prove the converse, assume that
the DVC-constraint is satisfied by p. Then ep cannot have a free atom a. Similar arguments
hold for the other case. |

4  The Unification Algorithm NOMUNIFYASC for NL,4s5¢

The nominal unification problem in the language NL,4s5cp without any restrictions seems
to be too hard (at least we did not find an algorithm to solve it). One hint is that already
context unification for first-order terms is a quite hard problem. Its solvability was open
for decades and recently shown to be in PSPACE [14]. That is why we restrict the input
and allow only single occurrences of the same context-variable. A further complication are
permutation-variables, since nominal unification with permutation-variables but without
contexts, known as equivariant unification [7, 10], is known to be solvable in EXPTIME. If
context-variables and permutations are combined, then it is unclear how to do constraint
solving, since the (to be guessed) support of the permutations depends on the set of captured
atoms occurring in the instance of context-variables, and it is unknown how to bound this
number of atoms.

Thus, we describe a unification algorithm for ASD1-unification problems, where we permit
additional freshness constraints.

Since double occurrences of context variables must be avoided during the execution of the
algorithm, instantiations within the equations are not permitted: For example transitions
using replacement starting with S = D[...], S = e, S = ea, ... may introduce two occurrences
of D, since the result is D[...] = ey, D[...] = ea,.... Thus we propose a Martelli-Montanari-
style algorithm [21] that avoids instantiations within the unsolved equations.
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IFU{Cle] = €'}
(fatten) where S is a fresh variable

TU{C[S] = &'} U{S = e}
Figure 1 The flatten-rule

Tufe=e=M}V,0) (T'wf{e}}, V,0)
(ME2) ———————~
(T'u{e=M},V,0) (T, V,0)

(ME1)

(CW{m-S =me:V =M}, V,0) it g #V,Visan S- or A-variable or atom, and
(ToW{ny-V = Mo}, Vo,0Uc) o ={5— mme VY

(ME3)

(Tu{m-A=mX =M}, V,0) if X#A is an atom or atom-
(To U{ﬂz.XgMU}’Vu{A:ﬂ-l—l.7T2.X},QUU) variable, and o={ A7 72X}

(ME4a)

(Tu{m-X1 =71 Xo = M}, V,0) if X1, X2 are atom-variables s.t.
(TW{m-X; =M}, VU {X1:7r1_1'772~X2}, 6) X1=Xa, or X1, X, are atoms

(ME4b)

TU{r-S=e=M},V.0)
Tu{e= M}, V,0U{S+— 7 te})
(F U{ﬂ'l‘S = Ml} U{ﬂ'Q‘S = Mg}, V,G)

(TW{S = a7 M =7, "My}, V,0)
(TWU{S=nS=M}V,0)

(TU{S = M}, VU{supp(m)#S5},V,0)

(TU{(fer...eanp)) =(f el ... e/ar(f)) =M}, V,0)
CU{(f e1...ear(r) = M}U{er =€),... e0r(p) = e:”(f)},v,@)

(Tu{AX.e; = M}, V,0) if X is of the form 0-a, m-a, or m A and
(T U{/\A/yel = M}, VU{A& =X}0) ™ is not trivial, and Aj is fresh

(F U{)\Al.el = )\Ag.eg = M}, V, 9)

(F U{)\Al.el = ]\47 €1 = (A1 AQ)'EQ}, VU{Al#AAQ.QQ}, 0)

(MES5) if S does not occur in M, e or '

(ME6)

(FP)

(Df)

(Abstr)

(Dlam)

Figure 2 Rules of NOMUNIFYASC for Variables and Decomposition
(I'w{er = (m-D)les] = M}, V,0,A) if tops(e1) is an atom variable, atom,
(TW{e1=ea=M},V[[]/D],0U{D s []},A) or tops(e1)=S, S occurs in ez; DZA
(TW{fer...en = (m-Dy)[e}] =... = (mm-Dm)le.]}, V,0,A)

(CUf{er} U{Diales] [ k=), i € {1,...m}} [ k=1,....,n},
V,aU{Di’—)ﬂ'i_l'(f 61-~-Di,1-~-en) |Z= 1,...,m},A)
~~

J(®)

(CDO)

(CD1)

if Vi : D; € A, and where context variables D; ; for i =1,...,m are fresh

and where for all i = 1,...,m, the index position j() of D; is guessed.
o2, (TWU{AX.eg = (m1-D1)le1] = ... = (mm-Dm)lem]}, V, 0, A)

(Tu{eo = (X A1)-(Diafea]) = ... = (X An) (Dmilem])}

A\VAU| {X# AAZD171[BZ] ‘ 7= 1, ey m}, 6uU {D7 — 7Ti_1'(>\Ai.D1‘71)}, A)
if Vi : D; € A and X is an atom or atom-variable and A;, D; ; are fresh

Figure 3 Rules of NOMUNIFYASC for F-D-Decomposition
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(" H{(m1-D1)ler] = (m2-Do)les] = ... = (mn-Dh)len]}, V, 0, A)
(Tu{er = Po-((m2-Dap)le2]) = ... = Pn'((ﬂn'Dn,l)[en])%
vVu {CA(Dl)#ﬂfl((WZDZ)[(:’ZD,Z =2,... ,n}
U{S’U,pp(Pi) - (CAO(ﬂ'lDl) U CAO(TQD,J)) | 1=2,... ,n},
0 U {Di — Di,lDi,2aDi,1 — 7T;1-P-71-7T1-D1 | 1=2,... ,n},

2

AU {Di,l ‘ 1 =2,.. ,n}) where D; € AaDi,laDi,27 P27. .. >Pn are fresh.

(DCPref)

(DCPRem) First apply (DCPRem*); then apply the guessing rules (GuessDEmpty),

(GuessDNonEmpty) to D; 1 for all j. If all D;; are guessed to be nonempty, then
the rule (DCFork) must be applied to the resulting multi-equation.

(DCFork) Apply (DCFork*), then remove all introduced variables S; ; using (ME5)
The helper rules (DCPRem*) and (DCFork*):

(DCPRem*) (TW{(m1-Dy)[ea] = (m2-Dy)lea] = ... = (mn-Da)len]}, V. 0,8) it v
(L' W{(m1-Dy,1)[e1]=Po-((m2-Da, 1)[62})2 =Py (D1 len]) ), Di€A
V U{CA(D1,0)#(m2: DQ)[62]7 CA(Dn,0)#(mnDn)len]}
U{supp(P;) C (CAO(D1,) U CAO( i0)) |t =2,...,n},
60U {Dl — (7‘(171~.D1,0)D1’17 ...,Dyp— (F;l'Dn’o)Dn’h
D27() — P{l-Dl,O, ey Dn,O — Pn_l-Dl’Q},
AU{D;o|i=1,...,n}) where P;, D; ; are fresh.
T {(my-D = = (mpD,)len]V. V.0, A
(DCFork*) (CU{(m-Dy)les] (m Jlenl} ) if Vi: D;eA

{(mi-Di)leil i € My} U{mi-Siom | i & Mm}},V,0U0,A)
where f with ar(f) > 2 and the index positions j(i) for
i=1,...,n are guessed s.t. |{j(i) | 1 < i < n}| > 2; and
o={D;—(f Si1...Dj[-]...Sim) | 1<i<n} and D}, S;; are fresh; and
~——
J(@)
M :={h|jh)y=k}fork=1,....m

Figure 4 Rules of NOMUNIFYASC for D-D-decomposition.

(F’ V’ 9’ A)
(GuessDEmpty) If D& A, D occurs in T’
(T[L]/DL VIE/DLOU{D =[]}, A)
(I, V,0,A)
(GuessDNonEmpty) If DA, D occurs in '

(T,V,0,Au{D})

Figure 5 Rules of NOMUNIFYASC for guessing D empty or nonempty

11
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if tops(e1),tops(ez) are different atoms; or

(Tu{er =ex =M}, V,0) tops(e1), tops(e2) is atom, A or a function symbol,

Fail and tops(e1) # tops(e2); or tops(e1) is an atom or
atom-variable, and tops(ez) is A or f € F.

(FU{Sl iel iMl,...,SnieniMn},V,G,A)

Fail
if all e; are neither variables nor suspensions, all context variables occurring

(Clash)

(Cycle)

in e; are in A, S;y1 occurs in e; fori =1,...,n — 1, and S; occurs in e,

(I'wfey = (m-D)es] = M}, V,0,A) ¢ tops(e1) is atom or an atom-variable,
Fail or tops(e1)=S and S occurs in ea; DEA

(CDOFail)

Figure 6 Failure Rules of NOMUNIFYASC

4.1 The Data Structures and Rules of NOMUNIFYASC

The state during unification is (I',V,0,A) from NL,ascp, where T' is a set of sets of
expressions, so-called multi-equations, V is a set of freshness and DvC-constraints and further
constraints of Definition 3.7, 6 is a substitution in triangle-form!, represented as a set of
components, and A is a set of context-variables that are assumed to be nonempty. We
explicitly write A if needed.

Multi-equations M = {ey,...,e,} will sometimes be written as e; = ey =... =¢,. We
will assume that the expressions in I' are flattened, using iteratively the rule (flatten) in Fig.
1,ie,in (f e1...ey), Am-X'.e, and in D[e], the expressions e;, e are of the form 7 X, where
X is an atom or expression-variable. For permutations, we assume that there is a compression
scheme implementing sharing using an SLP [20] where a permutation is a composition (i.e.
like a string) of the basic components (a b), (A a), (a A),(A B), P, P~!, and the expansion
of a representation may be exponentially long, and where the required operations on the
permutations like composition and inverting can be done in polynomial time and space.
However, to keep the presentation simple, we do not mention this compression and operations
in the description of the unification rules.

» Definition 4.1 (NoMUNIFYASC). The input of the non-deterministic algorithm NoMUNIFYASC

is an ASD1-unification problem (T', V), where T is a set of equations and V a set of DvC- and
freshness constraints, both over NL,4sc. The internal data structure is a tuple (I, V, 6, A),
over NL,ascp. The algorithm finishes either with Fail, or, if I is empty and no Failure rule
applies, with a tuple (V’, 0, A’).

NOMUNIFYASC uses rules in rule sets: The rule (flatten) in Fig. 1 is applied until no
longer applicable. Then the variable-replacement and usual decomposition rules in Fig. 2,
the rules for decomposing multi-equations with expressions of the form DJ...], and with
function symbols or A as top symbol in Fig. 3, the decomposition rules for multi-equations of
expressions DJ...] in Fig. 4, where the starred rules (DCPrem*) and (DCFork*) are not used
directly; the rules for guessing context-variables as empty or nonempty in Fig. 5, and the
failure rules in Fig. 6. Rules (CD1), (CD2) make one (parallel) decomposition step, where
(CD1) first guesses a common first level of the hole positions of all D;. (DCPref) guesses
that one context is a prefix of the others; (DCPRem*) guesses a (maximal) common prefix of

LA substitution in triangle-form is a shared representation of a substitution, e.g., {z — (f y 2),y —
a,z — Ab.b}, is the substitution {z — f a (Ab.b),y — a,z — Ab.b}, i.e. the substitution itself is
idempotent.
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the contexts D;, and (DCFork*) guesses that D; fork and the first level of the hole positions
of .Dz

The priorities of rule application are the sequence as above, i.e. the rules in Fig. 2, 3, 4,
5, 6. Within the rule sets, for rules in Figs. 2, 3, the priority is the sequence as given in the
figures. For the rules in Figs. 4 and 5, within the rule sets the priority is the same. The
failure rules can be applied at any time.

» Example 4.2. For faSyS; = fS1(\a.S3) S35 there is a substitution that equates the
expressions. However, if there are DvC-constraints for the top expressions, which must be
satisfied by unifiers, i.e. {DvC(f S1S2.51), DvC(f a(Aa.S5) S3)} C V, then these cannot be
satisfied, since for example, the instantiation p(S3) = a cannot be a-renamed. Another
example is [ SS = f (Aa.a) (Ab.b), which is solvable by {S +— Aa.a}: it does not lead to a

DVC-violation, since it is treated as instantiation modulo «.

4.2 The Algorithm for Satisfiability of the Output

We define the non-deterministic algorithm that checks satisfiability of the output constraints,
where we give the justification later in Section 5. The algorithm exploits the execution
sequence of NOMUNIFYASC, since without this information a decision algorithm appears to
be impossible since permutation-variables as well as context-variables appear in the constraint.
I.e., we were unable to find an algorithm checking solvability of arbitrary constraints permitted
by the syntax, i.e. with context-variables and permutation-variables. Thus we have to use
the knowledge on the execution trace of the algorithm in order to decide satisfiability of the
final constraints.

» Definition 4.3. The algorithm NOMFRESHASC operates on the output (V,6, A) of
NoMUNIFYASC and uses the set of all atoms and atom-variables occurring in the exe-
cution sequence H leading to this output, and the number d of context-variables in the input.
It performs the following steps:

(I) Iteratively guess the solution of atom-variables, i.e. for an atom-variable A guess that A
is mapped by the solution to an already used atom in H, or to a fresh one, and replace
the atom-variable A accordingly in H. In the next iteration the fresh atom is among
the used ones. Let H' be the adjusted execution sequence. Note that the exact names
of fresh atoms are irrelevant. Thus there is only a linear number (w.r.t. the number of
used atoms) of possibilities for every atom-variable. Let M4 be the set of all atoms in
the execution sequence H'.

(IT) Replace every expression-variable S that occurs in H' and that is not instantiated by 6,
by a constant ¢ from the signature.

(IIT) Construct M., as a set of [M4| * (d!)? atoms by extending the set M, by further fresh
atoms, where d is the number of context-variables in I'. Guess for every context-variable
D that occurs in I', V, 0 and that is not instantiated by 6, the ordered set of captured
atoms from the given set of atoms.

(Note that the number of potentially generated atoms is at most exponential, see Lemma
5.7).

(IV) Guess the permutation-variables as bijections on the set M.

(V) Test the freshness constraints, equality, disequality, extended freshness constraints, and
non-emptiness constraints, which are now immediately computable. To test whether the
0 violates the DVC in I', use dynamic programming to compute the sets FA, BA for every
expression- and context-variable, and CA(D) for the context-variables D that are not
instantiated by 6. Then test the DvC-property, which is possible in polynomial time.

13
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5 Properties of NOMUNIFYASC and NOMFRESHASC

Let maxArity be the maximal arity of function symbols in the signature.

» Lemma 5.1. The number of occurrences of any context-variable in I' in every state of
NoMUNIFYASC is at most 1.

An example which shows that implicitly requiring the DVC is not stable, in contrast
to requiring explicit DvC-constraints, is {S; = f (Aa.a) (Aa.a)}. It does not satisfy the
DVC, but after applying (flatten) to position 1 of the right hand side, we obtain {S; =
(f S (Aa.a)),S = Xa.a} which has the solution {S — Xa.a,S1 — (f (Ad’.d') (Aa.a)). If
the initial set V contains DVC(f (Aa.a) (Aa.a)), then there is no solution before and after
flattening, since (flatten) cannot be applied to expressions within V.

» Lemma 5.2. If the input is (T, V), then the application of (flatten) to a subexpression of
e of the equations I' does not change the set of solutions.

Proof. Obvious, since ~,, is a congruence. <

» Proposition 5.3. For an NL,asc-input ', V, the non-deterministic algorithm NOMUNIFYASC

terminates after a polynomial number of steps.
Proof. First we define the measure:

p1 = 1,1 + 2 *maxArity * p11 2, where g 1 is the number of expressions in I', and pq 2 is
the number of occurrences of function symbols and A-s in T’
2 is p41,1 minus the number of multi-equations. Note that 0 < po < .
w3 is the pair consisting of the number of occurrences of context-variables D in I' and
the number of context-variables D occurring in I' which are not in A.
Jt4 is the number of occurrences of expressions AX, where X is of the forms (J-a, 7-a, or
m-A and where 7 is nontrivial.
The following table lists the relation between I' before and after the application of the rule
or subalgorithm.

rule p1 p2 ps rule 1 p2 @3 pa rule w1 p2 g rule w1 g2 ps
MEi > Abstr = = = > CD1 > DCPref = = >
FP > Dlam > CD2 > DCPRem= >
Df > CD0O = = > GD(N)E= = > DCFork = >

It can be verified for (MEi), (FP), (Df), (Abstr), (Dlam), and (CDO0) by a simple check.
It is correct for (CD1) and (CD2), since the expression f e; ...e,, is removed, which counts
2*maxArity. (DCPref) removes one occurrence of a context-variable. (DCFork) splits the
context-directions, and first introduces expression-variables S;, which are then removed.
Hence the number of expressions in multi-equations is the same, but there are more multi-
equations. For (DCPRem), it suffices to check (DCFork). The measure s is not increased by
any rule, and po < p1, and pg < p1, hence the number of executions of rules is polynomial.
Since there are multiple sub-steps, we have to argue that a single rule application can be
done in polynomial time. The number of steps within the rules is polynomial due to the
strict decrease w.r.t. the orderings. We add a (standard, SLP) compression scheme using
sharing, which implies that all operations on the permutations like flattening, inverting and
composition can be done in polynomial time and space. |

The assumptions on the DVC-constraints ensure that for every solution p and input
expression e in I', the instance ep satisfies the distinct variable condition.
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» Lemma 5.4. If all top expressions of the initial set of equations I’ are restricted by the
DVC, then this also holds for all top-expressions in the equations in the sequence of rule
executions of the algorithm NOMUNIFYASC.

» Proposition 5.5. Inspecting the details of all rules of NOMUNIFYASC shows soundness:
The solutions of the final data structure are also solutions of the input. The following rules
of the algorithm NOMUNIFYASC do not lose any solutions, i.e. for every solution p of the
data structure Q) before application, there is a solution p’ of the output data structure Q’,
such that p(X) ~q p/(X) for all atom-, expression-, context- and permutation-variables X
occurring in Q: These are rules in Fig. 2, and rules (CD0), (CD2) from Fig. 8. In addition
the failures rules do not lose any solutions, since they are only applicable, if there are no
solutions.

» Proposition 5.6. Assume that for all top-expressions e in the input T', there is a constraint
pvc(e) in V. Then the algorithm NOMUNIFYASC is complete: If p is a solution of the
intermediate data structure Q, I is not empty and no Failure rule applies, then there is a
possible rule application, such that there is solution p’ of the output Q', and p(X) ~ p'(X)
for all atom-, expression-, context- and permutation-variables X occurring in Q.

We now consider the correctness and complexity of NOMFRESHASC.

» Lemma 5.7. Let H be an execution of NOMUNIFYASC starting with So := (Lo, Vo, 00, Ag)
where T'g = T', context variables occur at most once, and 0y, Ay are trivial or empty. Let the
sequence H end with Syus = (0, Vouts Oout, Dout); and let p be a solution of the input as well
as of the output Seyi. Then there is also a solution p' that uses only a set of atom VAe
with | VAs| < | VA| % ((d!)?), where the visible set VA of atoms VA = {a | a occurs in H} U

{Ap | A occurs in H}, and where d is the number of context-variables in T.

» Proposition 5.8. Let (Vout, Oout, Dout) be the output of NOMUNIFYASC for input (T, V).
The algorithm NOMFRESHASC decides satisfiability of the output in NEXPTIME in the size
of the input, where the main components are |(T, V)| ((d!)?), where d is the number of context-
variables in I'. For a fixed upper bound on the number of context-variables, satisfiability can
be checked in NP time.

Proof. This mainly follows from Lemma 5.7. |

» Remark. There is a complexity jump between freshness constraints and DVC-constraints
in the language NL,sc, since satisfiability of freshness constraints in NL,s¢ is in PTIME
whereas satisfiability of DvC-constraints in NL,sc is NP-hard.

Combining Propositions 5.6, 5.3, and 5.8 shows:
» Theorem 5.9. For I,V as input the algorithm NOMUNIFYASC terminates and is sound
and complete. The computation of some output (V',8', A’) can be done in NP-time, and the
collecting version of the algorithm produces at most exponentially many outputs (V', 0", A').

Decidability of solvability of output constraints, and hence of the input, is in NEXPTIME,
and if the number of context-variables is fixed, then in NP time.

» Theorem 5.10. Solvability of ASD1-unification problems is in NEXPTIME.

6 Specializations, Applications and Examples

We consider nominal unification in NL,g with freshness and DVC-constraints extending the res-
ult of [36] (see Theorem 2.11) by allowing DvC-constraints and by restricting NOMUNIFYASC

15
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» Theorem 6.1. The nominal unification problem in NL,s where freshness- and DVC-
constraints are permitted in V is solvable in polynomial time. Moreover, for solvable (T', V),
there exists a most general unifier of the form (V',0) which can be computed in polynomial
time, i.e., the problem class is unitary.

The application of NOMUNIFYASC to NL4g also yields at most one most general unifier,
however, the complexity to check solvability is increased, since already the solvability of
freshness constraints in NL4g is NP-hard [32].

We now consider applications and examples. Most reduction and transformation rules
in the application domain of functional programming languages require freshness and/or
DVC-constraints to exclude invalid instances of the rules.

» Example 6.2. We provide rules that can be described by our language. The rule
app (M.S) S — let A = 5" in S is a sharing-variant of S-reduction. It needs the
constraint Dvc(app (AA.S) S') if let is recursive, to ensure that for the instances, there are
no free occurrence of Ap in S'p.

The rule let A =S in D[A] — let A =S in DI[S] copies a single expression to some
position of the bound atom. The expression is represented by the expression-variable .5,
and the target position by the context-variable D. The constraint Dvc(let A = S in D[A])
prevents capturing in instances, s.t. Ap is not captured by Dp. The constraint Dvc(let A =
S in D[S]) prevents that Dp captures atoms that are free in Sp. Since instances Sp are
a-renamed in (let A =S in D[S])p, these constraints suffice.

» Example 6.3. We describe an exemplary unification problem that occurs in
correctness proofs of program transformations. A reduction rule in the let-
calculus of [2] is let A,=(let A,=S,inS;)inS, — letA,=S,inletA,=S,inS,
with DvC-constraint Dvc(let A,=(let A,=S,1inS;)inS,) that prevents the occur-
rence of A, as free atom in S,, and thus an unwanted capture in the right
hand side. To check whether there is a (preferably nontrivial) overlap of the left
hand side of the rule with itself (as a transformation) we form the unification
equation let A,=(let A,=S,inS,;)inS, = D[let A;=(let A}=S; inS;)in S]] where
the context-variable D is intended as a representation of the reduction strategy?.
For correct application, the constraints DvC(let A,=(let A,=5,1inS;)inS,) and
pvC(D[let A} =(let A} =S, inS;)inS]]) are required. We omit the case that D
[[] and analyze the instantiation D ~— (let A,=D;inS,). We obtain the equation
let Ay=S,inS, = Di[let A} =(let A}=S, inS;)inS’]. Guessing D; + [] results in
let Ay=S,in S, = let A} =(let A|=S, inS)inS]. Guessing A, — A}, we obtain as
solution S, = (let A} =S, in S;), S, = S;. If we alternatively guess A, # A, we obtain as
solution S, = (let A} =S, in ;) and S, = (A, A))-S, together with the constraint A, # S;..

» Example 6.4. An example with two occurrences of an S-variable is the copy
rule [2, 23, 33] let A;,=MA,.SinD[A;] — letA,=MA,.SinD[NA,.(4,A;)-S] with
DVC(let A;=MA,.Sin D[A,]) and Dvc(let A,=AA,.Sin D[AA,.(4, A;)-S]) as constraints,
which imply that A,p is not captured in Dp, and that A,#S is valid. The dia-
gram proof technique [33] also needs to overlap right-hand sides of program trans-
formations with left hand sides of reduction rules. = We overlap the right hand
side and the left hand side of the copy rule at the top position. The prob-
lem (F,V) in NLASC with ' = {Do[letAzJ:)\Ay’l.Sl iIlDl[)\Az’l.(AyJ Az,l)-Sl]}

2 In general, the reduction strategy has to be represented by context classes as in (31].
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= let Ay 2=MAAy 2.5 in Dy[A; ]} and DvC(let Ay 2=AA, 2.52inDy[A,5])} as well as
DVC(Dg[let Ay 1=AAy1.51in D1[AA. 1.(Ay1 A 1)-S1]] contained in V represents this over-
lap. Execution of the rules of NOMUNIFYASC leads to Dy — [], Az1=A,2, and
Ay 1.51 = My 2.5, D1[AA.1.(Ay1 A2 1)-S1]) = Dy[A; 2] as equations. Assume that the
next guesses are A, 1=A, o leading to S1=2S55. For the last equation there are 4 possibilities for
the relative position of the holes of D1, D5: If the hole paths in the instances of Dy and D5 fork
then a solution (using rule (DCFork)) comes with the mappings Dy — Ds[app D4 D5[A; 2]]
and Dy — Dslapp Dy[AA, 1.(Ay1 Az 1)-S1] Ds]. The possibility that the hole-path of Dap
is a prefix of the hole-path Djp can be ruled out since A, 2p is an atom. Further forms of
knowledge may be built into the unification mechanism which would require an extension of
the formalism like adding grammars for context classes.

7 Conclusion and Further Work

We described and analyzed a nominal unification algorithm for a language with higher-order
expressions and variables for atoms, expressions and contexts.

Further work is to extend and adapt the unification and constraint solution method to
more constructs of higher-order languages, like a recursive-let, or context-classes.
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A Detailed Proofs

A.1 Multi-Contexts

» Definition A.1. We introduce n-contexts for some n > 1 (also called multi-contexts)
in NL,. These are expressions of NL, extended by constants (holes) [];,i = 1,...,n,
where every hole occurs at most once. For n > 1 and two n-contexts C7,Cy the relation
Cy ~q Co holds, iff for all n-tuples aq,...,a, of (perhaps equal) atoms a;, it holds that
Cilay,...,a,] ~o Colay,...,a,] as expressions, which is a generalization from contexts
(Definition 2.4) to multi-contexts.

The following lemma helps in the completeness proof of rule (DCFork).

» Lemma A.2. Let n > 1, C1,Cy be NLy-n-contexts, and e ;,e2,,1 = 1,...,n be NLy-
expressions, such that the corresponding hole positions of Cy1 and Cy are identical, and
such that Cile11,...,€e1.n] and Cales ..., e2,] satisfy the DvC. Then Cile1q,- .., €1,n] ~a
Cslezt, ..., ean] iff the following holds:

CA(Cy) # Calean ..., ez, and there is a permutation w that does not change free atoms
in Calea...,e2,] with C1 ~q mCy and e1; ~q meaz,; for all i, m maps CAO(Cs) to
CAO(Ch), and supp(mw) C CAO(C1) U CAO(Cy).

A.2 Properties of DVC-Constraints

» Lemma 3.3. Let ey, eq be two expressions in NL, that satisfy the DVC (separately). Then
€1 ~q €3 s equivalent to the condition that there exists a permutation m with ey = m-es,
where supp(m) C (At(er) U At(e2)) \ (FA(e1) U FA(eq)).

Proof. If e1, ey satisfy the DvC and e; = w-e; where m does not change free atoms of
€1, e, then clearly e; ~, ea. We prove the other direction of the claim by induction on
the size. For constants and atoms, this is trivial, since m does not change free atoms. If
e1=Ma.e|, and es=Aa.e}, then ¢| ~, €5, hence ¢] = 7€}, for a (minimal) permutation .
Hence e; = mes. Let e = Aa.ef, and ex = Ab.e}, with a # b. Then a#es, aftel, and
e} ~q (a b)-eh. The expressions €] and (a b)-¢} satisfy the Dve, by induction hypothesis,
e} = 7'-(a b)-€}, for a permutation 7’ where 7'(a) = a. Let m be the permutation 7'-(a b).
Then 7’-(a b)-b = a. Hence mes =eq. If e1 = fe11...€e1, and ea = feaq... 6/277” then by
induction there are permutations m; such that m;-ea; = eq; for all 4. Since the permutations
can be chosen minimal and are only determined by the binders, and since the DVC is assumed,
the permutations are disjoint. Thus we can compose (i.e. union) the permutations, and
obtain m = 7y ... m, as the required permutation. |

A.3 Decomposition of Context-Applications

» Proposition 3.5. Let C1,Cy be NL,-contexts and ey, es be NL,-expressions, such that Cy
and Co have identical hole positions, and such that Cy[e1] as well as Cses] satisfy the DVC.
Then the following are equivalent:

1. Cl[el] ~a 02[62].

2. Ya € CA(CY): a# Csles] and there is a permutation © with Cy ~, m-Cs and ey ~q €2,
where ™ does not change free atoms in Ciles], m maps CAO(C3) to CAO(Cy), and
supp(m) € CAO(Cy) U CAO(CY).

Proof. We show “ = ” by induction on the length of the hole path of Cj.
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If the length is 0, then the claim is trivial.
IfCy=fer...C,...e, then Cy = f €] ...C5...el,. The capture condition holds, since
e X
CA(C!) = CA(C;). The assumption and the congruence property of ~, imply e; ~ e} for
all i # k. By the induction hypothesis there is a permutation 7 satisfying the theorem,
which is the required permutation.
If C1 = Aa.Cy and Cy = Aa.CY, then the capture condition holds, Cfle1] and Cles] are
a-equivalent, and we can apply the induction hypothesis.
If ¢4 = Xa.Cf{ and Cy = Ab.CY, then a#Clles], and Cflei] ~a (a b)-Chles]. The
DVC also holds for (a b)-C%, hence we can apply the induction hypothesis, and obtain
Cf ~q m(a b)-CY, and e; ~o 7-(a b)-ey, and Ve € CA(C}): c#(a b)-Chea]. The
equation ¢ = a is not possible, since (]| satisfies the DVC; ¢ = b may be possible, but
since a#C}lea], and due to the application of (a b) there are no free occurrences of b in
(a b)-Chlez]. This implies Ve € CA(Ch): c# Calez]. The application n'-(a b)-b results in
a, since 7’ does not change a. Hence the required permutation is # = 7’-(a b).
The reverse is easy: if there are two expressions ey ~, ea, Ci[e1], Coles] satisfy the DvC,
and there is a permutation 7 that does not change free atoms in es, and Cy ~, 7-Cy, then
Cl [61] ~a CQ [62]. <

A.4 Completeness of NOMUNIFYASC

» Proposition 5.6. Assume that for all top-expressions e in the input T', there is a constraint
pvc(e) in V. Then the algorithm NOMUNIFYASC is complete: If p is a solution of the
intermediate data structure Q, I' is not empty and no Failure rule applies, then there is a
possible rule application, such that there is solution p' of the resulting data structure Q', and
p(X) ~ p(X) for all atom-, expression-, context- and permutation-variables X occurring in

Q.
Proof. Let p be a solution of the current state. We scan the cases:

1. We can assume that all multi-equations have at least two expressions since otherwise rule
(ME1) is applicable.

2. We can also assume that all context-variables that occur in I" are contained in A, by
applying either (CDO), or one of the rules (GuessDEmpty) or (GuessDNonEmpty), where
the choice is directed by the solution.

3. If there is a multi-equation that has only context-variables as top symbols, then one of
the rules from Fig. 4 is applicable, depending on the solution p, and there is a solution p’
of the output that extends p. The condition that top-expressions in the input satsify the
DVC and that the input are ASD1-unification problems is necessary for the application
of Proposition 3.5.

4. If there is a multi-equation such that all but one expression have context-variables as top
symbols, then there are several possibilities: Since D € A for all D, one of the rules from
Fig. 3 is applicable, since either the context-variables’ instances have a common prefix or
not. Proposition 3.5 and the knowledge on permutations show that the execution of the
rules is possible. In any case, there will be a solution p’ after the application that is an
extension of p (on the variables of Q).

5. For the other cases there are at least two expressions in the multi-equation, which do
not have a context-variable as top-symbol. The failure rules are not applicable, since
otherwise, there is no solution. If the top symbols of two expressions are A, or function
symbols, then rules (Df), (Abstr) or (Dlam) can be applied and there is a solution p’
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extending p after the application. If there are two expressions of the form 7-X, where X
is an atom or expression-variable, then (ME3), (ME4a), (ME4b), or (MES) is applicable,
and there is a solution p’ extending p after the application. Similar for the case where
tops(.) yields atom twice. If one expression is of the form 7-X, and the other is not of
this form, then we apply (MES5) if this is possible.

6. The final case is that for all equations, the equation pattern permits only applications
of rule (ME5), all multi-equations have only two expressions, but the conditions on
non-containment of S in rule (MES5) prevent this. Defining a quasi-ordering on the
expression-variables generated by the containment ordering over equations shows that
there are no finite instance-expressions for some expression-variable, which is impossible,
since we have assumed that there are solutions. Indeed in this case a failure rule would

apply. |

A.5 Satisfiability of Constraints of NOMUNIFYASC

» Lemma 5.7. Let H be a sequence of executions of NOMUNIFYASC starting with Sy :=
(To, Vo, 00, Ap) where T'g =T, the condition on the input are as stated in Definition 4.3, and
0o, Ag are trivial or empty. Let the sequence H end with Syt = (0, Vout, Oout, Dout), and
let p be a solution of the input as well as of the output Syy. Then there is also a solution
p' that uses only a set of atom VA, with |VAs| < |VA| * ((d)?), where the visible set VA
of atoms VA = {a | a occurs in H} U {Ap | A occurs in H}, and where d is the number of
context-variables in T'.

Proof. We show a stronger claim by induction on the steps of the execution: Let Dp and
Dp be the set of context-variables Dy in the applications of (DCPref) in H and D; ¢ in the
application of (DCPRem) in H, and P;, i = 2,...,n in the applications of (DCPref) and
(DCprem), resp. Let us call these the focused context-variables and the focused permutation-
variables in the respective rule applications. These are the set of context-variables that
are moved to the codomain of §. The permutation-variables are exactly all the generated
ones in H. Let VA= {a | aoccursin H} U {Ap | A occurs in H}. Then the size of VA is
polynomial, since the execution sequence H can be generated in polynomial time according
to Proposition 5.3. The claim is: there is a solution p’ that uses only the set VA, of atoms,
where VAg=VA, and VA; is constructed below, such that | VA; 1| < | VA;|*d?, where d is the
number of context-variables in the input, and where | VA;11|>|VA;| only if rule (DCPref) or
(DCprem) was executed. The construction implies VA; C VA,11. The final VA, is defined
as the final VA,.

We define the construction: Let ¢ be an index in H and S; = (I';, V;,0;, A;) be a state
in H with set VA;, such that the next step is (DCPref) or (DCprem) leading to S;y;.
Let us assume that it is the first occasion in H such that a focussed context-variable or
permutation-variable that is in the focus of a rule application (DCPref) or (DCPrem), uses
an atom a’ in its instances under p, where a’ ¢ VA;. Then the following changes are made
to the solution p, resulting in p’ and a modified execution sequence H'.

First consider the modification concerning the rule (DCPref):

Let us consider the instances (CAO(mi-D1)p), (CAO(Py-mwo-Daq)p)s...,
(CAO(P, 7, Dy 1)p), (same notation as in the rule application). We can as-
sume that (m1-D1)p, CAO(Py-ma-Da1p),..., CAO(P,-m,-Dy1p) only consist of
Ak, ..., G, m-[] where m = |CAO(m-D1)|, by modifying the solution p, which
is without effect on the further execution of the algorithm NoMUNIFYASC and
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solvability. We show that the number of binders can be bounded: Luckily, we can also
eliminate the binder at position j, if aj ; is not in VA; for all k: eliminate the binder j
in every context above, then modify the instantiation of the permutation-variables Py
such that these map exactly (m;-D; 1)p to CAO(mwy-Dy) for k > 2, which is justified by
Proposition 3.5. Hence Pi does not need any extra fresh atoms in its support. Using
the thus modified p, we replace all atoms (as expressions) by the constant ¢ at the
following positions: If the atom at this position in the instance e;p is an atom ay, ; for
some k.

Since binders cannot be repeated, an upper bound on the maximal number of binders
for a single context-variable is |V;| * d’, where d’ is the number of context-variables in
T';. The number of all used atoms in the instances is at most |V;| x d’ * d'.

Let p’ be p after these modifications. The ground substitution p’ is a solution of the
state S;11, and such that the same execution still leads to a final state that covers p'.
There is no effect on the execution of the rules of the algorithm, since the changes are
only in the solution.

Now consider the modification for the rule (DCPrem). It is similar to the previous case,
but we detail it, since the names of variables are different.

Consider the instances (CAO(m1-D10)p), - .., (CAO(mp-Dy0)p). We can assume that
(- Dy.0)p only consist of Aag 1, .., @k m.[-] where m = |CAO(D o)|, by modifying the
solution p, which is without effect on the execution of the algorithm NOMUNIFYASC
and solvability. We can also eliminate the binder at position j, if ax ; is not in VA;
for all k, as follows: eliminate the binder j in every (mg-Dyo)p, then modify the
instantiation of the permutation-variables Py, such that these map exactly CAO(Dy,0)
to CAO(D1,) for k > 2. Using the thus modified p, we replace atoms by the constant
c at all the following positions: If the atom at this position in the instance e;p is an
atom with erased binder: ay ; for some £.

An upper bound on the maximal number of binders for a single context-variable is
|Vi|*d'+d" where d’ is the number of context-variables in T';.

Let p’ be p after these modifications. The ground substitution p’ is a solution of the
state Sj1+1, and such that the same execution still leads to a final state that covers p’.

The number of executions of rules (DCPref), (DCPrem) is at most the number of
different context-variables. This holds, since (DCPref) removes one context-variable, and
since (DCPRem) calls (DCFork), and (DCFork) can be applied also at most as often as
there are expressions with topmost context-variables. As additional argument, all other rules
keep the number of context-variables, and there is never a merge of two multisets that only
contain context-variables. The estimation for the maximal number of variables is that in
(CAO(m1-D1)p), there can at most be d; * |V;| variables, where d; is the number of context-
variables in I';. Since there is an iterated multiplication, we obtain | VA|*dxdx(d—1)*(d—1) .. .,
which leads to the estimation as claimed.

This change can be iterated until there are no (DCPref), (DCPrem)-steps having an index
j where completely fresh variables are used for all context-variables in the multi-equation.
Finally, we have constructed VA.,, and the modified solution p'. |

A.6 The Algorithm NoMUNIFYASC for Restricted Input

» Theorem 6.1. The nominal unification problem in NL,s where freshness- and DVC-
constraints are permitted in V, is solvable in polynomial time. Moreover, for a solvable
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nominal unification problem (T, V), there exists a most general unifier of the form (V',0)
which can be computed in polynomial time.

Proof. We assume that the algorithm computes in polynomial time a unifier (V’, 8) consisting
of a substitution # and a constraint set V', where in addition we assume that the output
substitution 6 is represented in triangle-form and that it is of polynomial size (see [32] for the
technique). Soundness and completeness of computing only a single execution path follows
from Proposition 5.5 since there are no permutation-variables, and no context-variables.
For the final satisfiability test, we instantiate the expression-variables in the codomain of
0 with a constant from the signature. Note that also Aa.a could be used if there is no such
constant. For expression-variables S, it is possible to compute FA(S®) in polynomial time
using dynamic programming. The bound atoms in FA(S) are irrelevant, since these will
be renamed by the substitution process which is done modulo a. Then the check for every
constraint DvC(e), whether e satisfies the DvC, can be performed in polynomial time. <«

A.7 Expressivity of Freshness vs. DVC-Constraints

We show that there is a complexity jump between freshness constraints and DVC-constraints
in the language NL,sc.

» Proposition A.3. Satisfiability of a set V of freshness constraints in NLysc can be decided
in PTIME.

Proof. For deciding satisfiability, we apply the following transformations on V:

{a#b}UV =V {a# fer...en}UV—{a#er,...,a#e,} UV
{a# X.e} UV ={a#e} UV {a#IaetUV -V
{a#7StUV =V {a# 7 Dle]}uV =V

For most of the transformations V — V' satisfiability of V' obviously implies satisfiability
of V. Hence, we only treat the exceptional cases. For the constraints a # 7S, removal
is correct, since S can be instantiated by a fresh atom, and for constraints a #(m-D)le]
removal is correct, since the set of conditions for a single D-variable is of the form
{a1 #(m1-D)lei], ..., an #(mn-D)[en]} which can always be satisfied by instantiating D with
Adj ...al.[-] where a = m;(a;).

After exhaustively applying the transformation the constraint is either empty (and thus
satisfiability is detected), or it contains a constraint a#a and unsatisfiability is detected. <«

» Proposition A.4. Satisfiability of a set of freshness and DVC-constraints in NLysc is
NP-hard.

Proof. To show NP-hardness we reduce 3SAT to the satisfiability problem of freshness and
non-capture constraints in NL,sc. Let C be a set of clauses. We generate a set of freshness
and DVC-constraints T'(C) as follows: Let us assume that True, False are fixed atoms. For
every propositional variable p; occurring in C, there is a context-variable D;. The idea is that
the instances of D; are mainly ATrue.[-] or AFalse.[]. For each D;, we add a DVC-constraint
DvC(f D;(c) (True False)-D;(c)) to T'(C), which ensures that the instance of D; does not
capture both True and False.

For every clause {L1,L2,L3} € C, the set T(C) contains a freshness constraint
True # C1[C2[Cs[True]]] where C; := D, if L, = p; and C; = n-D; if L; = —p,
where m = (True False). E.g., the clause {—pi,p2, —ps} is encoded as True# (w-D;)
[Dsf(-Ds) [True]]).
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We show that satisfiability of the input clause set is equivalent to satisfiability of the
constructed constraint set:
If C is satisfiable, then there exists a valuation v which maps each variable p; to a

truth value, s.t. in each clause at least one literal becomes True under the valuation v.

We set p(D;) := Av(p;).[-]. We have to show that the ground substitution p satisfies all
constraints in 7'(C): For the DvC-constraints we get p(f Dj(c) (True False)-Dj(c)) =
f Ow(p;).c) (M(p;).c) (where L negates a literal). Thus the DVC-constraints are satisfied by
p. For each freshness constraint True # C;[C3[C5[True]]] corresponding to clause {L1, Lo, L3},
we have FA(p(C1[C2[Cs[True]]])) = {True} \ {CA(p(C;)) | 1 < i < 3} = {True} \ {v(L;) |
1 <4 <3} = {True} \ {True} = 0 since v(L;) = True must hold for at least one L, for
1 < ¢ < 3. Thus the freshness constraints True # C4[C2[C5[True]]] hold.

For the other part, assume that T'(C) is satisfiable and p is a ground substitution satisfying
T(C). The DvC-constraints ensure that CA(p(D,)) cannot contain both True and False,

since otherwise binders in p(D;) and in p((True False)-D,) cannot be pairwise disjoint.

Since p satisfies the freshness constraints, we have True ¢ FA(p(C1[C2][C5[True]]]) for all
C4,Cq, C3 corresponding to clause {Li, Lo, L3}, which implies that True € CA(p(C;)) for
some 1 < ¢ < 3. Thus, for those i, we have w € CA(p(D;)) where w = True if L; = p; and
w = False if L; = —p;. This shows that each valuation which sets v(p;) := w for all such p;
satisfies the clause {L1, L2, L3} and thus is a model of C. <
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