
Improvements for
Concurrent Haskell with Futures?

Manfred Schmidt-Schauß, David Sabel, and Nils Dallmeyer

Goethe-University, Frankfurt, Germany
{schauss,sabel,dallmeyer}@ki.cs.uni-frankfurt.de

Technical Report Frank-58

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

Abstract. We propose a model for measuring the runtime of concur-
rent programs by the minimal number of evaluation steps. The focus of
this paper are improvements, which are program transformations that
improve this number in every context, where we distinguish between se-
quential and parallel improvements, for one or more processors, respec-
tively. We apply the methods to CHF, a model of Concurrent Haskell
extended by futures. The language CHF is a typed higher-order func-
tional language with concurrent threads, monadic IO and MVars as syn-
chronizing variables. We show that all deterministic reduction rules and
15 further program transformations are sequential and parallel improve-
ments. We also show that introduction of deterministic parallelism is a
parallel improvement, and its inverse a sequential improvement, provided
it is applicable. This is a step towards more automated precomputation of
concurrent programs during compile time, which is also formally proven
to be correctly optimizing.

1 Introduction

Motivation and Goals. A current trend in programming and programming lan-
guages is towards distributing and parallelizing computation tasks. The design
and implementation of algorithms for distributed and parallelized computing is
a complex engineering task and optimizing such algorithms and systems is an
art. A natural feature are the different and unpredictable speeds of the various
sub-computations, and the need for controlling and synchronizing them. It is

? The first and third authors are supported by the Deutsche Forschungsgemeinschaft
(DFG) under grant SCHM 986/11-1, and the second author is supported by the
Deutsche Forschungsgemeinschaft (DFG) under grant SA2908/3-1.

2 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

known that the functional programming paradigm can contribute to this area,
in particular lazy functional programming in providing the tools for specifica-
tion of computation results, data dependencies and data flow, without exactly
specifying the exact sequence of evaluation steps [14, 8, 24, 4, 17].

A method to optimize concurrent programs is to apply source-to-source pro-
gram transformations. Concerning so-called deterministic parallelism they may
even introduce concurrency and parallelism into sequential programs and thus
“parallelize” the programs [3, 39, 18]. An indispensable requirement is that the
applied transformations do not change the meaning of the program, i.e. that
they are correct and thus leave the semantics of the programs unchanged. The
next crucial question is how they influence the resource behavior of the pro-
grams. Ideally, those transformations are preferable, which optimize the pro-
grams w.r.t. time, space and/or the number of required processors. In sequential
functional languages the so-called improvement theory was developed by [20],
recently revived e.g. by [11, 33, 34], to provide a strong notion of when a program
transformation optimizes a program in any case. A study of improvements in a
nondeterministic setting is in [16], who study a call-by-name lambda-calculus
with McCarthy’s amb-operator, and define and analyze a cost simulation and
cost equivalence for may- and must-convergence. However, to the best of our
knowledge, for a concurrent programming language with shared memory and
side-effecting computations there is no corresponding analysis. It is also unclear
how to transfer the simulation-techniques of [16] into such a program calculus.

We consider an abstract model of concurrent processes to illustrate the notion
of improvements in a concurrent setting. Let P be a set of programs, and for P ∈
P, let rl(P) ⊆ N be the set of possible lengths of successful reduction sequences
of P . For example, a concurrent (nondeterministic) program P0 that reduces in
3, 5, and 100 reduction steps to a value has rl(P0) = {3, 5, 100}, and a program
P ′ without any successfully terminating reduction sequence has rl(P ′) = ∅. Let
C ⊆ (P → P) be the set of contexts. We assume that ∼ as program equivalence
is already given as a congruence, i.e. P1 ∼ P2 =⇒ C(P1) ∼ C(P2). We say
program P1 improves P2 (w.r.t. the runtime), notation P1 � P2, if P1 ∼ P2, and
∀C ∈ C : min(rl(C[P1])) ≤ min(rl(C[P2])) where min(∅) =∞. This is consistent
with the same notion for deterministic programs where |rl(P)| ≤ 1. It is the
same as requiring that for every successful reduction sequence of C[P2] of length
n, there is a successful reduction sequence of C[P1] of length at most n. Hence
it is also consistent with the may-convergence part of the definition in [16].

We give arguments in favor of this definition. In a realistic concurrent lan-
guage, this notion does not only mean to minimize the reduction length, but
due to the in-all-context condition it is finer: it compares the minimal reduction
length for every resulting value. The reason is that the improvement notion is
contextual, and for every (finite) data value v a context Cv can be programmed
that accepts the value and otherwise loops. Our notion focuses on shortest re-
duction sequences and thus it immediately prefers reduction sequences without
redundant reduction steps, for example of sub-processes that do not contribute
to the final value. Also, other alternatives to using the minimum are question-

Improvements for Concurrent Haskell with Futures 3

able, for example, taking the supremum may result in ∞ for simple recursive
non-deterministic programs like p = 1 ⊕ p, (where ⊕ means nondeterministic
choice). That p is a proper improvement of p′ = (1⊕1)⊕p′ can only be justified
by the minimum-based definition.

Since the matter of concurrency is complex, we restrict the focus of the paper:

– We only consider improvements of the runtime and thus ignore any consid-
erations of space and other resources.

– We restrict the runtime-observation to the minimum-based definition, which
can be seen as optimizing programs for the best-case, i.e. for a perfect sched-
uler which always chooses the shortest evaluation.

– Concerning the reduction length of successful evaluations we will consider
two definitions which are both suitable for the concurrent setting: A single-
processor model where a reduction is a sequence of interleaved steps which
stem from the concurrent processes, and a multi-processor model where par-
allel reduction steps are allowed such that different concurrent processes
make progress at the same time.

– We will work with a specific concurrent (and lazy functional) programming
language whose semantics is well-analyzed, such that we can reuse existing
results (and techniques) on the correctness of transformations.

Thus, there are two goals: we want to develop an improvement theory for
concurrent programming and we want to analyze concrete transformations with
regards to being improvements. For accomplishing the second goal, we will con-
sider CHF as an expressive concurrent language model.

Focusing on the Program Calculus CHF ∗. Concurrent Haskell was proposed in
[24], and implemented in the Glasgow Haskell Compiler [23, 25]. There is an
imperative level (the action layer) which sequentializes computation by Haskell’s
monadic programming features (see e.g. [26, 40, 23]) and it permits the execution
of side-effects like starting further threads and modifying external storage. The
pure functional level is the core part. The combination of monadic and pure
functional programming is a compromise between the need for sequential actions
and the unspecified sequence of evaluating pure functional expressions.

As for deterministic (lazy) functional programming, concurrent (and lazy)
functional programming leaves the sequence unspecified in its pure part, hence
permits lots of different possible parallel and distributed evaluations for the
same initial situation [24, 4, 22, 21]. Optimizing a concurrent functional program
by program transformations puts several issues. The first issue is whether the
program modifications are correct, which depends on the chosen semantics; the
second issue is the notion of optimization, which depends on the chosen model
of resources and their usage. The difficulties with concurrency are highlighted by
the fact that two nontrivial and sensible programs P and P ′ may be equivalent
w.r.t. the chosen semantics, and both may have an infinite number of different
evaluations leading to different values.

We want to model this in a mathematical clean way that is also applicable to
practical applications and has a potential to be applied to Concurrent Haskell.

4 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

data Tree = Node Tree Tree | Leaf N

f :: A→ A→ A g :: N → A someTree :: Tree

mainPure =

let res = (calcPure someTree)

in seq res (return res)

calcPure (Leaf n) = g n

calcPure (Node l r) =

(calcPure l) ‘f‘ (calcPure r)

mainFut = calcFut someTree

calcFut (Leaf n) =

let res = (g n)

in seq res (return res)

calcFut (Node l r) = do

lres <- future (calcFut l)

rres <- future (calcFut r)

let res = (lres ‘f‘ rres)

seq res (return res)

mainMVar = do

up <- newEmptyMVar

calcMVar someTree up

val <- takeMVar up

return val

calcMVar (Node l r) up = do

leftTreeVal <- newEmptyMVar

rightTreeVal <- newEmptyMVar

forkIO (calcMVar l leftTreeVal)

forkIO (calcMVar r rightTreeVal)

v1 <- takeMVar leftTreeVal

v2 <- takeMVar rightTreeVal

let w = (v1 ‘f‘ v2)

seq w (putMVar up w)

calcMVar (Leaf n) up =

putMVar up (g n)

Fig. 1. A pure and two concurrent implementations of binary tree-fold

As concurrent language model we employ CHF ∗ (Concurrent Haskell with Fu-
tures), which is a semantically equivalent variant of CHF [28, 29]. It captures the
semantics of a variant of Concurrent Haskell extended by so-called futures [7, 22,
21, 18] which allow to declaratively use the result of concurrent computations.
Our futures are related to the IVars of [18] who use a technique similar to futures
in their deterministic parallel functional language. CHF borrows techniques from
the call-by-need calculus [2] and from the pi-calculus [19]. Our choice of the ex-
ample calculus is appropriate, since it is well investigated w.r.t. methods and
results on the correctness of transformations. CHF ∗ is a process calculus which
comprises shared memory in the form of Concurrent Haskell’s MVars, named
threads (i.e. so-called futures) and heap bindings: a finished thread y⇐ e is
turned into a global binding y = e′, where e′ is the value of e. On the expression
level there are monadic IO-computations and pure functional expressions. The
latter extend the lambda calculus by data constructors, case-expressions, recur-
sive let-expressions, and Haskell’s seq-operator for sequential evaluation. CHF ∗

comes with a monomorphic type system with recursive types where polymorphic
data constructors are monomorphically instantiated. A small-step operational se-
mantics tells us which (sequential and parallel) reduction sequences are possible
[28]. A reduction sequence is successfully terminated, when the main thread has
successfully finished its computation.

The semantics of CHF ∗ is a contextual semantics that compares processes
in all possible contexts by may-convergence and should-convergence as proposed
by [28], where the latter is different from must-convergence. This notion of se-
mantic equality of programs is our criterion of correctness of a transformation.
It is an extension of the contextual semantics of pure functional expressions to

Improvements for Concurrent Haskell with Futures 5

nondeterministic processes. It is able to distinguish a program P where all re-
duction sequences are successful from a program P ′ with the same outcome and
one additional reduction sequence that gets stuck (for example by a deadlock).
A type system (a weak one like a monomorphic one is sufficient) is indispensable,
since without types the contextual semantics distinguishes too many expressions
and thus is of restricted use (for example (map id) and id are different without
types). [28, 29] present different techniques for recognizing semantic equality, and
also some results on correctness of transformations.

Improvements in CHF ∗. We work with two resource models for the runtime, the
length of a sequential interleaved reduction sequence (the work done), and the
length of a parallel reduction sequence, which represents the runtime for a fixed
number of processors. If a program P is given, we look for the minimum of the
lengths of all interleaved reduction sequences (that successfully stop) from P .
Our criterion for a CHF ∗-program P being an improvement of another CHF ∗-
program P ′ is that in all process-contexts D, the minimal reduction length of
D[P] is not greater than the minimal reduction length of D[P ′]. We will argue in
this paper that this makes perfect sense and support this by an analysis of the
improvement relation. For the parallel resource model, we compare the minimal
lengths of the parallel reduction sequences before and after a transformation.

An example for a particular transformation is (return e1) >>= e2 → (e2 e1)
where >>= is the bind-operator for a monadic combination of two actions and
(return e1) has result e1 which is fed as an argument to e2. This transformation
is called (lunit) (the left identity monad law). It is only executed in CHF ∗, if the
expression is in a (monadic) reduction position in a thread. As a novel result we
show that this transformation is an improvement also in all contexts. Finally, the
transformation (drfork) that removes deterministic future calls and its inverse
are analyzed.

An example for sequential and parallel improvements and illustrating the
expressiveness of our approach is the parallelized fold of the leaf-elements in a
tree, implemented in Concurrent Haskell (or CHF ∗), see Fig. 11. Depending on
the functions f, g, this could be the sum of numbers in the leaves, or the search
for a number in the tree. For simplicity, we assume that the tree someTree is
given as a finite and fully evaluated tree, and that the functions f, g are strict
in all of their arguments. The program mainPure is the pure version, mainFut
is a very similar parallelized CHF ∗-version using futures, and mainMVar is the
Concurrent Haskell version with explicit synchronization using MVars.2 Let us
compare the interleaved and parallel reduction lengths of mainPure, mainFut,
and mainMVar. An analysis and informal reasoning shows that mainPure is a
(sequential) improvement of mainFut and mainMVar. For trees that are not too
small, again informal reasoning shows that mainFut is a parallel improvement
over mainMVar, which in turn is a parallel improvement over mainPure. For very

1 We use Haskell’s do-notation that is a shorthand for a sequence of >>=-expressions
2 We remark that calcMVar evaluates the tree in a strict manner, while for calcPure

and calcFut this depends on the function f .

6 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

small trees, mainPure is a parallel improvement of the two others, due to the
overhead of bind and additional seq-evaluation steps. Our paper and results will
provide methods and techniques to prove some of these improvements formally
(see the Conclusion).

Results. The results of this paper are:

– We develop resource models for runtime in a concurrent call-by-need calculus
and introduce the corresponding notions of improvements (Sect. 3)

– For all deterministic reduction rules of the operational semantics and for
additional 15 program transformations and (drfork) (which are known as
correct), we show that they are sequential improvements and for the same
set of 15 transformations and the inverse of (drfork) we show that these are
also parallel improvements (see Theorem 4.3). The transformations include
functional transformations like partial evaluation, garbage collection, unique
copying, and common subexpression elimination, but also transformations
which pre-evaluate monadic computations or remove them (like deterministic
thread elimination), which may change the runtime and sequence of actions.

– A corollary is that the translation of CHF ∗ to an abstract-machine-friendly
representation is an improvement equivalence (Theorem 4.5).

– We develop proof techniques to show the improvement property including a
diagram method and the notion of thread-normalized reductions (see Sect. 5,
in particular Sect. 5.2).

Outline. In Sect. 2 we introduce the syntax of the calculus CHF ∗, its opera-
tional semantics, and the contextual semantics. In Sect. 3 the resource models
of sequential and parallel improvements are defined. In Sect. 4 we summarize
our results for specific program transformations. In Sect. 5 we explain our proof
technique of using reduction diagrams in conjunction with thread-normalized re-
ductions (see Definitions 5.7 and 5.12 and Lemma 5.13). We conclude in Sect. 6
by first reconsidering the example programs of Fig. 1 and applying our obtained
improvement results to them. We then discuss related and previous work on im-
provements, and finally we summarize our results and discuss potential further
work. Missing proofs can be found in the appendix.

2 The Process Calculus CHF ∗

We present the syntax, the type system, and the operational semantics of the
program calculus CHF ∗ which models a core language of Concurrent Haskell
extended by futures. We assume a partitioned set of data constructors c such
that each family represents a type T . We assume that the data constructors of T
are cT,1, . . . , cT,|T | and that each cT,i has an arity ar(cT,i) ≥ 0. For example, we
assume that there is a type Bool with data constructors True, False and a type
List with constructors Nil and : (written infix as in Haskell). The two-layered
syntax of the calculus CHF ∗, originally introduced by [28], has processes on the
top-layer which may have expressions (the second layer) as subterms. Processes

Improvements for Concurrent Haskell with Futures 7

P ∈ Proc ::= (P1|P2) | x⇐ e | νx.P | xm e | xm− | x = e

e ∈ Expr ::= x | m | λx.e | (e1 e2) | seq e1 e2 | c e1 . . . ear(c)
| letrec x1 = e1, . . . , xn = en in e
| caseT e of (cT,1 x1 . . . xar(cT,1) → e1) . . . (cT,|T | x1 . . . xar(cT,|T |) → e|T |)

m ∈ MExpr ::= return e | e >>= e′ | future e | takeMVar e | newMVar e | putMVar e e′
τ ∈ Typ ::= IO τ | (T τ1 . . . τn) | MVar τ | τ1 → τ2

Fig. 2. Syntax of expressions, processes, and types

P1|P2 ≡ P2|P1 (P1|P2)|P3 ≡ P1|(P2|P3) (νx.P1)|P2 ≡ νx.(P1|P2)
if x 6∈ FV (P2)νx1.νx2.P ≡ νx2.νx1.P P1 ≡ P2 if P1 =α P2

Fig. 3. Structural congruence ≡

E∈ECtxt ::= [·] | (E e) | caseE of alts | seqE e M∈MCtxt ::= [·] | M >>= e
F∈FCtxt ::=E | takeMVar E | putMVar E e D∈PCtxt ::= [·] | D|P | P|D | νx.D
L∈LCtxt ::=x⇐M[F] | (x⇐M[F[xn]]|xn=En[xn−1]|. . .|x2=E2[y]|y=E1),

s.t. Ei 6=[·] for 2≤i≤n
L̂∈L̂Ctxt ::=x⇐M[F] | (x⇐M[F[xn]]|xn=En[xn−1]|. . .|x2=E2[y]|y=E1),

s.t. Ei 6=[·] for 1≤i≤n

Fig. 4. PCtxt, MCtxt,ECtxt, FCtxt, LCtxt, and L̂Ctxt-contexts.

Monadic Computations

(sr,lunit) y⇐M[return e1 >>= e2]
sr−→ y⇐M[e2 e1]

(sr,tmvar) y⇐M[takeMVar x]|xm e
sr−→ y⇐M[return e]|xm−

(sr,pmvar) y⇐M[putMVar x e]|xm− sr−→ y⇐M[return ()]|xm e

(sr,nmvar) y⇐M[newMVar e]
sr−→ νx.(y⇐M[return x]|xm e),where x is fresh

(sr,fork) y⇐M[future e]
sr−→ νz.(y⇐M[return z]|z⇐ e),where z is fresh

(sr,unIO) y⇐ return e
sr−→ y = e, if the thread is not the main-thread

Functional Evaluation

(sr,cp) L̂[x]|x = v
sr−→ L̂[v]|x = v, if v is an abstraction or a variable

(sr,cpcxa) L̂[x]|x = c e1 . . . en
sr−→ νy1, . . . yn.(L̂[x]|x = c y1 . . . yn|y1 = e1|. . .|yn = en)

if c is a constructor, or return, >>= , takeMVar, putMVar, newMVar, or future; and
in addition some ei is not a variable. Only the non-variables ej are abstracted

(sr,cpcxb) L̂[x]|x = c y1 . . . yn
sr−→ (L̂[c y1 . . . yn]|x = c y1 . . . yn)

if c is a constructor, or return, >>= , takeMVar, putMVar, newMVar, or future

(sr,mkbinds) L[letrec x1 = e1, . . . , xn = en in e]
sr−→ νx1 . . . xn.(L[e]|x1 = e1|. . .|xn = en)

(sr,lbeta) L[((λx.e1) e2)]
sr−→ νx.(L[e1]|x = e2)

(sr,case) L[caseT c e1 . . . en of . . . (c y1. . .yn→e) . . .]
sr−→ νy1 . . . yn.(L[e]|y1=e1|. . .|yn=en]), if n > 0

(sr,case) L[caseT c of . . . (c→ e) . . .]
sr−→ L[e]

(sr,seq) L[(seq v e)]
sr−→ L[e], if v is a functional value

Closure: If P1 ≡ D[P ′1], P2 ≡ D[P ′2], and P ′1
sr−→ P ′2 then P1

sr−→ P2

We assume capture avoiding reduction for all reduction rules.

Fig. 5. Standard reduction rules

8 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

and expressions are defined by the grammars in Fig. 2 where Var is a countably-
infinite set of variables, denoted with u,w, x, y, z.

Parallel processes are formed by parallel composition “|”, ν-binders restrict
the scope of variables, a concurrent thread x⇐ e evaluates the expression e and
binds the result of the evaluation to the variable x. The variable x is also called
the future x. In a process there is (at most one) unique distinguished thread,

called the main thread written as x
main⇐== e. MVars are mutable variables which

are empty or filled. If a thread wants to fill an already filled MVar xm e or
empty an already empty MVar xm−, then the thread blocks. The variable x is
called the name of the MVar. Bindings x = e represent the global heap of shared
expressions, where x is called a binding variable. For a process P , a variable
x is an introduced variable if x is a future, a name of an MVar, or a binding
variable. An introduced variable is visible to the whole process unless its scope
is restricted by a ν-binder, i.e. in Q|νx.P the scope of x is P . A process is
well-formed, if all introduced variables are pairwise distinct, and there exists at

most one main thread x
main⇐== e.

Expressions Expr consist of a call-by-need lambda calculus and monadic ex-
pressions MExpr which model IO-operations. Functional expressions are built
from variables, abstractions λx.e, applications (e1 e2), constructor applications
(c e1 . . . ear(c)), letrec-expressions letrec x1 = e1, . . . , xn = en in e, caseT -
expressions for every type T , and seq-expressions (seq e1 e2). We abbrevi-
ate case-expressions as caseT e of Alts where Alts are the case-alternatives.
The case-alternatives must have exactly one alternative (cT,i x1 . . . xar(cT,i) →
ei) for every constructor cT,i of type T , where the variables x1, . . . , xar(cT,i)

(occurring in the pattern cT,i x1 . . . xar(cT,i)) are pairwise distinct and become
bound with scope ei. We use if e then e1 else e2 for the case-expression
caseBool e of (True → e1) (False → e2). In letrec x1 = e1, . . . , xn = en in e
the variables x1, . . . , xn are pairwise distinct and the bindings xi = ei are recur-
sive, i.e. the scope of xi is e1, . . . , en and e. We abbreviate (parts of) letrec-
environments as Env , and thus e.g. write letrec Env in e. Monadic operators
newMVar, takeMVar, and putMVar are used to create and access MVars, the
“bind”-operator >>= implements the sequential composition of IO-operations,
the future-operator is used for thread creation, and the return-operator lifts
expressions to monadic expressions. Functional values are defined as abstractions
and constructor applications. The monadic expressions (return e), (e1 >>= e2),
(future e), (takeMVar e), (newMVar e), and (putMVar e1 e2) are called monadic
values. A value is either a functional value or a monadic value.

Variable binders are introduced by abstractions, letrec-expressions, case-
alternatives, and by νx.P . This induces a notion of free and bound variables,
α-renaming, and α-equivalence (denoted by =α). Let FV (P) (FV (e), resp.) be
the free variables of process P (expression e, resp.). For a set x1=e1, . . . ,xn=en
of letrec-bindings or a sequence of bindings x1=e1|. . .|xn=en, let LV (x1 =
e1, . . . , xn = en) and LV (x1 = e1|. . .|xn = en) the set of let-bound variables
{x1, . . . , xn}. We assume the distinct variable convention to hold: free variables
are distinct from bound variables, and bound variables are pairwise distinct. We

Improvements for Concurrent Haskell with Futures 9

assume that reductions implicitly perform α-renaming to obey this convention.
In Fig. 3 structural congruence ≡ of processes is defined.

The set of monomorphic types of constructor c is denoted as types(c). The
syntax of types Typ is given in Fig. 2 where (IO τ) stands for a monadic action
with return type τ , (MVar τ) stands for an MVar-reference with content type τ ,
and τ1 → τ2 is a function type. We assume that every variable is explicitly typed
by a global typing function Γ , s.t. Γ (x) is the type of variable x. The notation
Γ ` e :: τ means that type τ can be derived for expression e using the global
typing function Γ , and for processes, the notation Γ ` P :: wt means that the
process P can be well-typed using the global typing function Γ . We omit the
(standard) monomorphic typing rules, but emphasize some special restrictions:
x⇐ e is well-typed, if Γ ` e :: IO τ , and Γ ` x :: τ , the first argument of seq
must not be an IO- or MVar-type. A process P is well-typed iff P is well-formed
and Γ ` P :: wt holds. An expression e is well-typed with type τ (written as
e :: τ) iff Γ ` e :: τ holds.

We recall the operational semantics of CHF ∗, which is a small-step reduc-
tion relation called standard reduction. The presentation here is analogous to [28]
with the difference that we use the two rules (sr,cpcxa) and (sr,cpcxb) instead of
the rule (sr,cpcx). This modification does not change the semantics as we show
in Theorem A.1. Successful processes are the successful outcomes of the stan-
dard reduction. They capture the behavior that termination of the main-thread
implies termination of the whole program. A well-formed process P is successful,

if P ≡ νx1. . . . νxn.(x
main⇐== return e|P ′). We permit standard reductions only

for well-formed processes which are not successful. A context is a process or an
expression with a hole [·]. We assume that the hole [·] is typed and carries a
type label, which we sometimes write as [·τ]. The typing rules are accordingly
extended by the axiom for the hole: Γ ` [·τ] :: τ . Given a context C[·τ] and an ex-
pression e :: τ , C[e] denotes the result of replacing the hole in C with expression
e. Since our syntax has different syntactic categories, we require different con-
texts (see Fig. 4): (i) process contexts that are processes with a hole at process
position, (ii) expression contexts that are expressions with a hole at expression
position, and (iii) process contexts with an expression hole. The standard reduc-
tion rules use process contexts (together with the structural congruence) to select
some components for the reductions. In general, these components are a single
thread, or a thread and a (filled or empty) MVar, or a thread and a set of bind-
ings (which are referenced and used by the selected thread). Analogous to [28],
we define monadic contexts MCtxt, expression evaluation contexts ECtxt, forcing

contexts FCtxt, and the functional evaluation contexts LCtxt, L̂Ctxt (see Fig.
4) for modeling the call-by-need (concurrent) standard reduction. The standard
reduction rules are given in Fig. 5 and with the closure w.r.t. PCtxt-contexts and

≡, they define the standard reduction
sr−→. With

sr,+−−−→ we denote the transitive

closure of
sr−→, and with

sr,∗−−→ we denote the reflexive-transitive closure of
sr−→.

The small-step reduction rules consist of rules to perform monadic computations,
and of rules to perform functional evaluation on expressions. The rule (sr,lunit)
implements monadic sequencing for the operator >>= . The rules (sr,tmvar) and

10 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

(sr,pmvar) perform a takeMVar- or a putMVar-operation on a filled (or empty,
resp.) MVar. The rule (sr,nmvar) creates a new filled MVar. The rule (sr,fork)
spawns a new future for a concurrent computation. The rule (sr,unIO) binds
the result of a monadic computation to a functional binding, i.e. the value of a
concurrent future becomes accessible.

The rule (sr,cpcxa) shares the (non-variable) arguments of constructor appli-
cations (and monadic expressions) which occur in a needed binding x = e. The
rules (sr,cp), and (sr,cpcxb) inline a needed binding x = e where e must be an
abstraction, a variable, a flat constructor application or a flat monadic expres-
sion. The rule (sr,mkbinds) moves the bindings of a letrec-expression into the
global heap bindings. The rule (sr,lbeta) is the sharing variant of β-reduction.
The (sr,case)-reduction reduces a case-expression, where – if the scrutinee is
not a constant – bindings are created to implement sharing. The (sr,seq)-rule
evaluates a seq-expression and replaces it with the second argument provided
the first argument is a functional value.

We define the redex of the reduction rules. For (sr,lunit), (sr,tmvar), (sr,pmvar),
(sr,nmvar), (sr,fork), it is the monadic expression in the context M. For rule
(sr,unIO), the redex is y⇐ return e, for (sr,mkbinds), (sr,lbeta), (sr,case), (sr,seq),
the redex is the functional expression in the context L, and for (sr,cp), (sr,cpcxa),

(sr,cpcxb) the redex is the variable x in the context L̂.
We briefly recall the notion of contextual equivalence with may- and should-

convergence as observations (see [28]). The concept is to equate processes P1, P2

whenever their observable behavior is indistinguishable if P1 and P2 are plugged
into any process context. As observations we use may- and should-convergence:

Definition 2.1. A process P may-converges (written as P↓), iff it is well-
formed and reduces to a successful process, i.e. P↓ iff P is well-formed and ∃P ′ :

P
sr,∗−−→ P ′ ∧ P ′ is successful. If P↓ does not hold, then P must-diverges written

as P⇑. A process P should-converges (written as P⇓), iff it is well-formed and
remains may-convergent after reductions, i.e. P⇓ iff P is well-formed and ∀P ′ :

P
sr,∗−−→ P ′ =⇒ P ′↓. If P is not should-convergent then we say P may-diverges

written as P↑.
We write P↓P ′ (or P↑P ′, resp.) if P

sr,∗−−→ P ′ and P ′ is successful (or must-
divergent, resp.).

Definition 2.2. Contextual approximation ≤c is defined as ≤c := ≤↓ ∩ ≤⇓,
contextual may-equivalence ∼↓,c is defined as ∼↓,c:= ≤↓ ∩ ≥↓, and contextual
equivalence ∼c on processes is defined as ∼c:= ≤c ∩ ≥c where for ξ ∈ {↓,⇓}:
P1 ≤ξ P2 iff ∀D ∈ PCtxt : D[P1]ξ ⇒ D[P2]ξ.

A program transformation γ on processes is a binary relation on processes. It is
correct iff γ ⊆ ∼c.

We sometimes attach further information to reduction or transformation ar-

rows, e.g.
sr,a,k−−−−→ means k sr-reductions of kind a; we use ∗ and + to denote the

reflexive-transitive and the transitive closure, respectively. The notation
a∨b−−→

means a reduction of kind a or of kind b.

Improvements for Concurrent Haskell with Futures 11

3 Sequential and Parallel Improvements in CHF ∗

In deterministic programming languages, a program transformation is an im-
provement iff it is correct and it does not increase the length of reduction se-
quences in any context (but usually decreases the reduction length in many
cases). Here the “length” of reduction sequences may also cover only essential
reductions steps instead of all steps. Investigations of improvements and tech-
niques to show that transformations are improvements for deterministic func-
tional program calculi with call-by-need evaluation can be found in [20, 11, 33,
35]. In this paper we are concerned with a concurrent functional language and
thus we require an adapted definition of improvement for this scenario. Con-
currency as given by the evaluation of CHF ∗-programs has two differences com-
pared to the programs in purely deterministic functional languages: i) evaluation
is non-deterministic and thus may lead to different results; ii) evaluation of con-
current threads gives rise to parallel execution of threads (on several processors)
and thus speeds up the execution of programs.

We consider two improvement relations covering both aspects of concur-
rent evaluation. The first one can be seen as a single-processor model while
the other one is adapted for a multi-processor scenario. In order to count the
time required for evaluations in CHF ∗, we will count reduction steps where
we consider two forms of evaluations: sequences of interleaved reductions from
the concurrent threads (called sequential reductions), and sequences of paral-
lel reductions, where threads run in parallel. To restrict the length measure to
essential reduction steps, we use sets A of reduction kinds from Fig. 5, where
only the name is of interest and where we abstract from the exact expressions
and application positions. Let Aall be the set of all reduction kinds, and let
Acp := {(sr, cp), (sr, cpcxa), (sr, cpcxb), (sr,mkbinds)}. The main set of reduc-
tions that we use is the set Anoncp := Aall \Acp, however, for some of our results,
we also use other subsets of Aall.

We argue why considering the number of reductions in Anoncp and thus omit-
ting Acp-reductions is sufficient. Abstract machines like variants of the Sestoft
machines [38] usually do not need (cp) for variables, nor (cpcxa), i.e. copying
variables and abstracting functional or monadic values, since this is built-in due
to the restricted structure of machine expressions. The other reduction kinds
(cp), (cpcxb), and (mkbinds) only occur as follows (if reduction steps are viewed
per thread): Several (mkbinds) are always followed by a Anoncp-reduction or by
a (cp) which copies an abstraction and then a Anoncp-reduction. The same holds
for (cpcxb). The extra effort is at most the size of the initial process. Summa-
rizing, the number of Anoncp-steps is a characteristic factor indicating the time
required for evaluation. We omit an explicit detailed analysis in this paper, which
could be done in a similar way to the analysis of [33] which was performed for a
deterministic setting.

12 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

3.1 Sequential Improvements

A sequential A-improvement improves the length of minimal and successful re-
duction sequences w.r.t. the reduction kinds in A:

Definition 3.1. Let P be a well-formed process with P↓, A ⊆ Aall, and Red
be a successful reduction sequence of P . Let srnrA(Red) be the number of A-
reductions occurring in Red. We define srnrA(P) := min{srnrA(Red) | Red is
a successful standard reduction of P}.

Let P1 and P2 be two well-formed processes with P1↓, P2↓ and P1 ∼c P2. If
∀D ∈ PCtxt : srnrA(D[P1]) ≤ srnrA(D[P2]), then P1 sequentially A-improves
P2, written P1 �A P2. If P1 �A P2 and P2 �A P1, then we say P1, P2 are
improvement-equivalent w.r.t. A (and interleaved reduction). A program trans-

formation
PT−−→ is a sequential A-improvement if P1

PT−−→ P2 implies that P2

sequentially A-improves P1 for all processes P1, P2. We say that
PT−−→ is a se-

quential A-improvement equivalence iff
PT−−→ and

PT−−−−→ (the inverse of
PT−−→) are

both sequential A-improvements.

Sequential A-improvements are related to counting the length of reductions
in the deterministic calculus LR by [36], where the main measure only counts
(lbeta), (case), and (seq)-reductions. It is an adaptation of the improvement
notions in [33, 35] to our concurrent, non-deterministic standard reduction.

For motivating our notion of improvement and to detail the abstract model
in the introduction, we first consider processes P, P ′ s.t. P ′ is some (conserva-
tively) parallelized version of a pure program P . Then in general there is only
one reduction length for all possible reductions. Hence in this case taking the
minimum has no effect and improvements are the same as in the deterministic
case. In the more general case, we motivate that comparing the minimal reduc-
tion lengths covers the intuitive notion also in the case of a non-deterministic
program, and if there are different evaluations leading to incomparable results.
To be more concrete, let P2 be:

P0|w1⇐ seq x1 (putMVar z x1)
|w2⇐ seq x2 (putMVar z x2)|zm−|x1 = e1|x2 = e2

where e1 evaluates to 1 and e2 evaluates to 2 (perhaps also generating some
global bindings). Suppose the evaluation of e1 is shorter than that of e2, and
e′2 ∼c e2 is an expression that requires strictly more reduction steps than e2 to
evaluate to 2. Let P ′2 be P2, where e2 is replaced by e′2.

Using the results from [28, 29], we see that P ′2 ∼c P2. The first impression is
that P ′2 and P2 are equivalent w.r.t. improvement, since the standard reduction
that prefers to put e1 into the MVar z may in both cases be chosen for comparing
the number of reductions, since it has less reductions. So let us conjecture that
P ′2 � P2. However, since the property of having shorter reductions must hold in
any surrounding context D, we can also choose a process context including an
expression e3 with a very long computation as follows: D = y⇐ takeMVar z|[·]
|u

main⇐== if y == 1 then seq x (return x) else return 0|x = e3

Improvements for Concurrent Haskell with Futures 13

Comparing D[P ′2] and D[P2] shows that the reduction sequences that evaluate
e1 are now the longer ones and the evaluation of e2 determines the minimum,
hence srnr(D[P ′2]) > srnr(D[P2]), and our conjecture is false. This shows that
our definition using outer contexts and the minimal number of reductions is
sensible for the different non-deterministic possibilities of reductions.

3.2 Parallel Improvements

For measuring the duration of parallel evaluations of processes by their lengths,
we first have to precisely define the notion of parallel evaluation (or parallel
reduction sequences):

Definition 3.2 (Parallel evaluation). Let P be a well-formed process and let
us assume w.l.o.g. that it is in ν-prenex form νx1 . . . xn.P0. Then a parallel re-

duction, written as P
srp−−→ P ′, is the result of several (at least one) sr-reduction

steps at once, provided there is no interference between the (syntactic) effects.
This can also be defined as a sequence of n sr-reductions, where every permu-
tation of the reduction sequence is executable and leads to the same resulting
expression (up to α-renaming and structural congruence). The exact details of
“no interference” are as follows:

1. For the monadic computations and for (cpcxa), (mkbinds), (lbeta), (case),
and (seq) in Fig. 5, the parallel reduction is P0 = R|P0,R → R′|P ′0,R where
R is the redex of the sr-reductions, and P0,R → P ′0,R is a parallel reduction
of the rest.

2. For (cp), the reduction is R|(x = v)|P0,R → R′|(x = v)|P ′0,R where R is
the (cp)-redex, and (x = v)|P0,R → (x = v)|P ′0,R is a parallel reduction.

3. For (cpcxb), R|x = c y1 . . . yn|P0,R → R′|x = c y1 . . . yn|P
′
0,R is the

reduction where R is the (cpcxb)-redex and x = c y1 . . . yn|P0,R → x =
c y1 . . . yn|P

′
0,R is a parallel reduction.

A parallel reduction sequence is successful if the last process is successful. The
number of parallel single reductions in a parallel reduction step is limited by the
number of available processors, sometimes denoted by the number N .

Note that in a parallel reduction step, the following observations are valid:
i) There is at most one sr-reduction per thread. ii) Single functional reduction
steps may be triggered by several threads. iii) If several threads try to access the
same MVar, then conflicts occur.

There is no standard form of a parallel reduction sequence. Only for a suc-
cessful reduction sequence without MVar-accesses, i.e. a deterministic one, and
if an unbounded number of processors is available, an eager scheduling leads to
the shortest parallel reduction. But even this parallel reduction sequence is not
unique and in general not optimal w.r.t. the work.

Definition 3.3. Let P be a well-formed process with P↓, let A be a set of reduc-
tion kinds, and let N ∈ {1, 2, . . . } ∪ {∞} be the number of available processors.

14 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

For a parallel reduction sequence Red, let srnrpNA (Red) be the number of parallel
reduction steps for at most N processors that contain an A-reduction. If N =∞,
then we may omit the superscript N . Let srnrpNA (P), the parallel number of A-
steps, be the minimum of {srnrpNA (Red) | Red is a successful parallel reduction
with at most N processors of P}.

For well-formed P1, P2 with P1↓, P2↓, P1 ∼c P2, we say P1 parallel im-
proves P2 w.r.t. A and N processors; notation P1 �p,N,A P2, iff ∀D ∈ PCtxt :
srnrpNA (D[P1]) ≤ srnrpNA (D[P2]). (We mainly use Anoncp.) If P1 �p,N,A P2 and
P2 �p,N,A P1, then we say P1, P2 are improvement-equivalent w.r.t. A, N and

parallel reduction. A program transformation
PT−−→ is a parallel improvement

w.r.t. A and N processors, iff P2
PT−−→ P1 implies P1 �p,N,A P2 for all processes

P1, P2, and it is a parallel improvement equivalence w.r.t. A,N iff P2
PT−−→ P1

implies that P1 and P2 are improvement-equivalent w.r.t A and N . ut

Remark 3.4. In CHF ∗ there is an exponential upper bound for the acceleration
by parallelizing: If P is a process that is started from a single thread. Then
srnr(P) < 2srnrp(P)+1. The reason is that every parallel reduction step can
at most double the number of threads and this doubling is done by (fork)-
reductions. Hence the overall number of reduction steps is at most 1 + 2 + . . .+
2srnrp(P) < 2srnrp(P)+1.

4 Proven Improvements

In this section we summarize our concretely obtained results on sequential and
parallel improvements in the process calculus CHF ∗. For readability, the proofs
and the used proof techniques are deferred to later sections.

We define several program transformations for which we have checked whether
they are sequential and/or parallel improvements. In Fig. 6 we define general,
surface, and top contexts. In Fig. 7 the program transformations are defined
where the first part are generalizations of some standard reductions. The rules
(dtmvar) and (dpmvar) are variants of (sr,tmvar) and (sr,pmvar) where the side
conditions ensure that the MVar-access is deterministic. The rule (drfork) re-
moves a future-operation and thus performs thread elimination provided that
the corresponding computation does not access the storage (i.e. any MVar). The
three rules named (gc) represent a form of garbage collection, where the first
rule operates on the process level and allows the removal of global bindings and
MVars, while the other rules operate on the expression level and allow to remove
(parts of) letrec-environments. The rule (ucp) means “unique copying” and al-
lows inlining of an expression which is referenced only once. The representation
of the rule is split into two parts (two rules (ucpt) and one rule (ucpd)) where
(ucpt) is not applied below an abstraction and (ucpd) is always applied inside
an abstraction. The two variants of rule (ucpt) are: the first one operates on the
process level and inlines a global binding, while the second one operates on the
expression level and inlines a (local) letrec-binding. Finally, the transformation
(cse) performs common subexpression elimination where the first rule replaces

Improvements for Concurrent Haskell with Futures 15

C ∈ CCtxt := general contexts: process contexts with the hole at expression position.
S ∈ SCtxt := surface contexts: CCtxt with the hole not inside an abstraction.
T ∈ TCtxt := top contexts: SCtxt with the hole not inside a case-alternative.

Fig. 6. Context classes for transformations

a duplicated expression by a reference to the copy, and the other rules remove a
duplicated environment (in a local letrec or as part of the global bindings).

Definition 4.1. In Fig. 7 several program transformations are defined using
general, surface, and top contexts defined in Fig. 6. The transformations are
assumed to be closed w.r.t. ≡ and w.r.t. PCtxt-contexts and in all rules only
instances that do not violate the scoping are permitted.

Remark 4.2. There are sufficient criteria for the applicability of (dtmvar) and
(dpmvar), for example, if D = [·], or if neither M, e nor D contain occurrences of
x, or if νx.D[M[·]] is closed and D does not contain any takeMVar nor putMVar.

Theorem 4.3. In Table 1 we summarize the established results for the consid-
ered concrete program transformations concerning the property of being sequen-
tial improvements and being parallel improvements. The results also imply:

– (ucp) is a sequential A-improvement equivalence for all A with A ⊆ Anoncp,
– (gc) is a sequential A-improvement equivalence for all A with A ⊆ Aall \
{mkbinds},

– (ucp) is a parallel A-improvement equivalence for all A with A ⊆ Anoncp,
– (gc) is a parallel A-improvement equivalence for all A with A ⊆ Anoncp.

Proof. We defer the proofs to later sections or to the appendix. However, at this
point we provide pointers to the proofs: The results on sequentialA-improvements
are proved in Theorem 5.4 (for (sr,a)-transformations), in Proposition B.11 for
(lbeta), (case), and (seq), in Proposition B.10 for (mkbinds), in Proposition B.6
for (cp), in Propositions B.1 for (gc) and in Proposition B.2 for (gc)−, in Proposi-
tion B.3 for (ucp) and in Propositions B.5, B.4 for (ucp)−, in Proposition B.7 for
(cpcxa), in Proposition B.9 for (cpcxb), in Proposition B.13 for (cse), in Propo-
sition B.14 for (lunit), in Proposition B.15 for (nmvar), in Proposition B.16 for
(dtmvar) and (dpmvar), in Proposition B.18 for (drfork). The results on parallel
improvements are proved in Theorem 5.19 and Proposition B.18.

As a further topic which also motivates the analysis of transformation (ucp),
let us consider a translation into code for an abstract machine. [27] provides a
concurrent abstract machine to execute CHF-programs which extends Sestoft’s
machine [38], which was designed for call-by-need evaluation of purely func-
tional expressions. The abstract machine is restricted to simplified expressions
of CHF ∗: In a simplified expression several argument positions are restricted to
be variables only. We indicate the restrictions: (e x), (seq e x), (c x1 . . . xn),
xm y, return x, x1 >>=x2, future x, takeMVar x, putMVar x1 x2, newMVar x.
The following definition shows how the restrictions can be achieved.

16 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

(lunit) C[return e1 >>= e2]
sr−→ C[e2 e1]

(cp) C[x]|x = v
sr−→ C[v]|x = v, if v is an abstraction or a variable

(cpcxa) C[x]|x = c e1 . . . en
sr−→ νy1, . . . yn.(C[x]|x = c y1 . . . yn|y1=e1|. . .|yn=en),

if c is a monadic operator or a constructor and some ei is not a variable, and
where only the non-variables ej are abstracted

(cpcxb) C[x]|x = c y1 . . . yn
sr−→ (C[c y1 . . . yn]|x = c y1 . . . yn),

if c is a monadic operator or a constructor
(mkbinds) C[letrec x1 = e1, . . . , xn = en in e]

sr−→ νx1 . . . xn.(C[e]|x1 = e1|. . .|xn = en)

(lbeta) C[((λx.e1) e2)]
sr−→ νx.(C[e1]|x = e2)

(case) C[caseT c e1 . . . en of . . . (c y1. . .yn→e) . . .]
sr−→ νy1 . . . yn.(C[e]|y1=e1|. . .|yn=en]), if n > 0

(case) C[caseT c of . . . (c→ e) . . .]
sr−→ C[e]

(seq) C[(seq v e)]
sr−→ C[e], if v is a functional value

(dtmvar) νx.D[y⇐M[takeMVar x]|xm e]→ νx.D[y⇐M[return e]|xm−]

if for all D′ ∈ PCtxt and
sr,∗−−→-sequences starting with

D′[νx.(D[y⇐M[takeMVar x]|xm e])] the first execution of any
(takeMVar x)-operation takes place in the y-thread.

(dpmvar)νx.D[y⇐M[putMVar x e]|xm−]→ νx.D[y⇐M[return ()]|xm e]

if for all D′ ∈ PCtxt and
sr,∗−−→-sequences starting with

D′[νx.(D[y⇐M[putMVar x e]|xm−])] the first execution of any
(putMVar x e′)-operation takes place in the y-thread.

(drfork) C[future e]→ C[e]

if for all D ∈ PCtxt and
sr,∗−−→-sequences starting with D[C[future e]] the

threads, started with future e, never will execute an action on an MVar.
(gc) νx1, . . . , xn.(P|Comp(x1)|. . .|Comp(xn))→ P

if for all i ∈ {1, . . . , n} : Comp(xi) is a binding xi = ei, an MVar xim ei, or
an empty MVar xim−, and xi 6∈ FV (P).

(gc) C[letrec Env in e]→ C[e], if FV (e) ∩ LV (Env) = ∅
(gc) C[letrec Env1,Env2 in e]→ C[letrec Env2 in e]

if (FV (Env1, e)) ∩ LV (Env1) = ∅
(ucpt) νx.(S[x]|x = e)→ (S[e]), if x does not occur in S, e and S does not bind x
(ucpt) S1[letrec x = e,Env in S2[x]]→ S1[letrec Env in S2[e]]

if x does not occur elsewhere and S1 and S2 do not bind x
(ucpd) C1[λy.C2[letrec x = e,Env in S[x]]]→ C1[λy.C2[letrec Env in S[e]]]

if x does not occur elsewhere and C1, C2, and S do not bind x
(ucp) = (ucpd) ∨ (ucpt)
(cse) C[e]|x = e→ C[x]|x = e
(cse) C[letrec Env e]|Env ′ → C[e]|Env ′, if π·Env ∼α Env ′ for some permuta-

tion π that maps LV (Env)→ LV (Env ′) and LV (Env) is fresh for Env ′

(cse) x1 = e1|. . .|xn = en|y1 = e′1|. . .|yn = en → x1 = e1|. . .|xn = en,
if π·ei ∼α π·e′i for the permutation π with ∀i : π(xi) = yi, π(yi) = xi the
variables xi are not free in ej for all j.

Closure: If P1 ≡ D[P ′1], P2 ≡ D[P ′2], and P ′1
PT−−→ P ′2 then P1

PT−−→ P2

Fig. 7. Program transformations. The permutation π in (cse) is a variable-to-variable
(bijective) function on the expressions.

Improvements for Concurrent Haskell with Futures 17

Table 1. Summary of improvement results

Transformation is a sequential A-improve-
ment for all A with . . .

is a parallel A–improvement
w.r.t. A and N for . . .

(sr,a) for a6∈{tmvar, pmvar} A ⊆ Aall A ⊆ Aall and every N
(lbeta), (case), and (seq) A ⊆ Aall A ⊆ Anoncp and every N
(mkbinds) A ⊆ Aall A ⊆ Anoncp and every N
(cp) A ⊆ Aall A ⊆ Anoncp and every N
(gc) A ⊆ Aall A ⊆ Anoncp and every N
(gc)− A ⊆ Aall \ {mkbinds} A ⊆ Anoncp and every N
(ucp) A ⊆ Aall \ {cpcxa} A ⊆ Anoncp and every N
(ucp)− A ⊆ Anoncp A ⊆ Anoncp and every N
(cpcxa) A ⊆ Aall \ {mkbinds} A ⊆ Anoncp and every N
(cpcxb) A⊆Aall\{mkbinds, cpcxa} A ⊆ Anoncp and every N
(cse) A ⊆ Anoncp A ⊆ Anoncp and every N
(lunit) A ⊆ Anoncp A ⊆ Anoncp and every N
(dtmvar), (dpmvar) A ⊆ Aall A ⊆ Anoncp and every N
(drfork) A ⊆ Anoncp -
(drfork)− - A⊆(Anoncp\{fork, unIO})

Definition 4.4. The function σ translates processes into simplified processes.
It is defined to be homomorphic over the term structure (e.g. σ(P1|P2) :=
σ(P1)|σ(P2), etc.) except for the cases:

σ(e1 e2) := letrec x = σ(e2) in (σ(e1) x)
σ(c e1 . . . en) := letrec x1 = σ(e1), . . . , xn = σ(en) in c x1 . . . xn

if c is a constructor, or a monadic operator
σ(seq e1 e2) := letrec x = σ(e2) in seq σ(e1) x
σ(xm e) := xm y|y = σ(e)

The translation σ is equivalent to an iterated use of the inverse of (ucp).

Theorem 4.5. The translation σ from full CHF ∗ into the set of simplified
CHF ∗-programs (the machine expressions) is an improvement equivalence w.r.t.
every set A ⊆ Anoncp of reduction kinds.

Note that the restriction to A ⊆ Anoncp is not really essential, since reduc-
tions like copying variables, (cpcxa), (cpcxb), (mkbinds) are not performed by
the abstract machine due to the used data structures. There is also no essential
difference in copying abstractions, since every copy of an abstraction is (in the
same thread) immediately followed by a reduction (lbeta) or (seq), hence our
measure is realistic for measuring the runtime of the machine.

5 Proofs and Proof Techniques

We now mainly explain our proof techniques which we have applied to derive the
results on sequential and parallel improvements (as summarized in Theorem 4.3).
For space reasons, most of the proofs are given in the appendix only.

18 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

5.1 Improvement Property of Standard Reductions

For proving any improvement property of a program transformation, we require
that the transformation is correct. Correctness results for transformations under
consideration can in many cases be imported from [28, 29] for the calculus CHF
and by using the following equivalence between CHF and CHF ∗:

Remark 5.1. The calculus CHF used by [28] and the calculus CHF ∗ introduced
in this paper are equivalent w.r.t. may- and should-convergence, and also w.r.t.
correctness of transformations, as proved in Appendix A. The reason to replace
the CHF-rule (cpcx) by two rules (cpcxa), (cpcxb) is that these reductions lead
to less conflicts in reasoning about transformations.

This allows the import of correctness results from previous work:

Theorem 5.2. The standard reductions (sr, fork), (sr, unIO), (sr, lunit), and
(sr, nmvar), and the transformations (cp), (cpcxa), (cpcxb), (mkbinds), (lbeta),
(case), (seq), (gc), (cse), (dtmvar), (dpmvar), (ucp), (cse), and (lunit) are cor-
rect program transformations.

Proof. This follows from the results in [28, Propositions 5.2, 5.6, 7.5 and Theo-
rem 6.7] and from the equivalence of CHF and CHF ∗. ut

We show that the correct standard reductions are also sequentialA-improvements
for any set A ⊆ Aall (see Definition 3.1).

Proposition 5.3. Let A ⊆ Aall, P be a well-formed process with P↓ and let

P
sr,a−−→ P ′ with a 6∈ {pmvar, tmvar}. Then srnrA(P ′) ≤ srnrA(P).

Proof. If P ′ is successful, then the claim is trivial. By assumption, P is not (yet)
successful, hence let Red be a reduction of P to a successful process, and let

P
sr,b−−→ P1 be the first step of Red . Note that b ∈ {pmvar, tmvar} is possible.

There are only three possibilities: reductions are equal, or they commute, which
means they are in different threads, or P1 is successful:

P
sr,b ��

sr,a // P ′

sr,b ��
P1

sr,a // P ′1

P

sr,b ��

sr,a // P ′

sr,b ��
P1(succ.)

b
// P ′1(succ.)

P
sr,b �� sr,a

||
P1

Induction on the length of the reduction yields a reduction Red ′ of P ′ that is
not greater for any A. Thus the minimum of reductions of P ′ w.r.t. A is smaller
than the minimum for P . ut

Note that there is no bound k s.t. srnrA(P)− srnrA(P ′) ≤ k in all situations
of Proposition 5.3.

Theorem 5.4. The standard reductions except for (tmvar), (pmvar) are im-
provements for any A.

Proof. Let P be a process s.t. P
sr−→ P ′ and D ∈ PCtxt s.t. D[P] is well-formed.

Then Proposition 5.3 can be applied to D[P] and D[P ′], since D[P]
sr−→ D[P ′],

and thus the claim holds. ut

Improvements for Concurrent Haskell with Futures 19

5.2 Proving Sequential Improvements

We explain our proof technique for the case of sequential improvements. For a
particular improvement P ′ � P , we have a proof task for every D[P] and D[P ′].
Since it is too hard to compute the explicit minimal lengths, and then to compare
them, we show that for every reduction sequence of D[P] to a successful process,
there is a shorter reduction sequence of D[P ′] to a successful process. This enables
the use of constructive methods and the operational semantics that tell us how
to modify a reduction sequence of D[P] to obtain a reduction sequence of D[P ′].
Clearly, for this to work, the modifications from P to P ′ must be small and
easily controllable. This is often the case for simple program transformations.

In order to increase the coverage of the method, we also require a standard-
ization and a rearrangement of reductions sequences of D[P]. The idea is to cut
redundant parts of reduction sequences which do not contribute to the computa-
tion of the success. Since cutting makes the reduction sequences shorter, we see
that it is sufficient for comparing the minimal reduction sequences to only con-
sider the standardized reduction sequences, which we will call thread-normalized
reductions. The construction of a (hopefully) shorter reduction sequence of D[P ′]
from a (standardized) reduction sequence of D[P] will be done by the method of

so-called forking diagrams. A forking diagram for transformation
PT−−→ consists

of a fork and join. A fork for transformation
PT−−→ is of the form P1

sr←− P PT−−→ P ′

(or as an extended form P2
sr←− P1

sr←− P
PT−−→ P ′). It describes an overlap be-

tween a standard reduction and a transformation step. A join is of the form

P1
PT1−−−→ Q1 . . . Qn−1

PTn−−−→ Qn
sr←− P ′m . . . P

′
1

sr←− P ′ and it describes the reduc-
tion and transformation steps which can be used to close the overlap. Here the
processes are in meta-notation, thus they may represent sets of processes. The
graphical representation of the usual and extended form of forking diagram is
as follows, where solid lines are used for the reductions and transformations of
the fork, and dashed lines are used for the reductions and transformations of the
join.

P
PT //

sr

��

P ′

sr��
P ′1

P ′m
sr��

P1
PT1

// Q1 Qn−1
PTn

// Qn

P
PT //

sr ��

P ′

sr��
P1

sr

��

P ′1

P ′m
sr��

P2
PT1

// Q1 Qn−1
PTn

// Qn

(usual form) (extended form)

For P1
sr←− P

PT−−→ P ′, a forking diagram is applicable iff there exist processes

P ′i , Qj with P1
PT1−−−→ Q1 . . . Qn−1

PTn−−−→ Qn
sr←− P ′m . . . P ′1

sr←− P ′.
The forking diagrams are obtained by checking all cases for an overlap be-

tween standard reduction and transformations steps and then computing closing

20 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

reduction sequences. The diagrams are then used to construct a reduction se-
quence of D[P ′] from the given one for D[P]. Of course, these diagrams must have
a completeness property: every concrete overlap (within a thread-normalized and
rearranged reduction sequence) has to be covered by at least one applicable di-

agram. We also allow forks where more than one
sr−→-reduction is given for P1

(see the extended form above). However, since our standard reduction is non-
deterministic, the standardization and rearrangement of reduction sequences is
necessary, where the left-down reduction P

sr−→ P1
sr−→ P2 are reductions trig-

gered by the same thread. An example of such a diagram is the third (ucp)-
diagram in Proposition B.3.

We define thread-normalized reduction sequences, which are, roughly speak-
ing, those reduction sequences not containing unneeded functional evaluations.
For reasoning on reduction sequences of minimal length, it is sufficient to con-
sider thread-normalized reduction sequences.

Definition 5.5. Let P be a process and P
sr−→ P ′ be a reduction step. Then

the reduction step is triggered by thread y, if the reduction is within the context
D[y⇐M[·]], in the context D[L̂[·]] or in the context D[L[·]], where L̂, L starts
with thread y. Monadic computations are triggered by a unique thread, whereas
functional evaluations may be triggered by more than one thread.

Example 5.6. We illustrate Definition 5.5 by an example. Let P be the process

y1
main⇐== putMVar x1 True|y2⇐ z True|y3⇐ z False

|z=(λw1.λw2.return w2) True|x1 m−

Then there are two standard reductions for P , i.e. P
sr−→ Pi for i = 1, 2 where:

P1 := y1
main⇐== return ()|y2⇐ z True|y3⇐ z False

|z=(λw1.λw2.return w2) True|x1 m True

P2 := y1
main⇐== putMVar x1 True|y2⇐ z True|y3⇐ z False

|z=λw2.return w2|w1=True|x1 m−

The step P
sr−→ P1 is triggered by y1, and P

sr−→ P2 is triggered by y2 and y3.

Focusing on a single thread, only the reductions (sr,unIO), (sr,pmvar), and
(sr,tmvar) can be seen as a communication with other already existing threads
in a reduction sequence reaching a successful state. If the last reduction step of
a non-main thread in a reduction sequence reaching success is not of this form,
then this reduction step is redundant. We will make this more precise:

Definition 5.7. Let P be a process and Red be a (finite) reduction sequence
from P to a successful process. Let one of the following hold for every reduction
step S in Red:

1. S is triggered by the main thread.
2. S is an (sr,unIO), (sr,pmvar), or (sr,tmvar).

Improvements for Concurrent Haskell with Futures 21

3. S is triggered by a thread y, and there is a later step in Red also triggered
by thread y.

Then the reduction Red is called thread-normalized.

Example 5.8. We consider the process P from Example 5.6. Then the reduction
sequence P

sr−→ P1 is thread-normalized, but for instance the reduction sequence
P

sr−→ P2
sr−→ P3, for some P3, is not thread-normalized since the step P

sr−→ P2

does not meet the conditions of Definition 5.7. Indeed, P
sr−→ P1 is the only

reduction sequence for P which is thread-normalized.

Lemma 5.9. Let A ⊆ Aall, P be a process, Red be a reduction sequence from P
to a successful process. Then there is also a thread-normalized reduction sequence
Red ′ from P to a successful process that is not longer than Red w.r.t. A.

Corollary 5.10. Let P be a process and let A ⊆ Aall. Then the minimal length
srnrA(P) of sequential reductions of P can be determined by minimizing over
thread-normalized reductions.

For our proof technique, the following rearrangement of reduction sequences
is very helpful.

Lemma 5.11. Let A ⊆ Aall, P be a process, Red be a thread-normalized reduc-

tion sequence from P to a successful process. Let Red = Red1;
sr,a−−→;Red2;

sr,b−−→
; Red3, where b 6∈ {(pmvar), (tmvar)}, and

sr,a−−→;
sr,b−−→ are triggered by the same

thread y, and there is no reduction step in Red2 that is also triggered by y. Then

Red ′ = Red1;
sr,a−−→;

sr,b−−→;Red2; Red3 is a thread-normalized reduction sequence
to a successful process with srnrA(Red) = srnrA(Red ′).

Proof. There are no conflicts, since b 6∈ {(pmvar), (tmvar)}. Hence the reduction
sr,b−−→ can be shifted to the left. This does not change the number of reductions
in the sequence, for any A.

For proving that transformations are improvements w.r.t. sequential reduc-
tion sequences, we define the following improvement-property:

Definition 5.12. A transformation
PT−−→ on processes has the improvement-

property for reductions w.r.t. a set of reduction kinds A, if
PT−−→ is closed w.r.t.

PCtxt-contexts and for all P
PT−−→ P ′ and if there is a thread-normalized reduc-

tion sequence Red of P to a successful process, then there is a reduction sequence
Red ′ of P ′ to a successful process, such that srnrA(Red) ≥ srnrA(Red ′).

Due to Lemma 5.9 the improvement-property implies that
PT−−→ is a sequential

A-improvement:

Lemma 5.13. If a correct transformation
PT−−→ has the improvement-property

for reductions w.r.t. a set of reduction kinds A, then
PT−−→ is a sequential A-

improvement.

22 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

5.3 Proofs of Parallel Improvements

We provide results and arguments also for the last column of Table 1, and thus
show that the considered transformations are parallel improvements. Since there
are no proper conflicts between sr-reductions, we obtain that standard reductions
6∈ {pmvar, tmvar} are also parallel improvements. The proof is almost the same
as for sequential reductions.

Theorem 5.14. The standard reductions a with a 6∈ {pmvar, tmvar} are par-
allel improvements for every A and N .

The notions and analyses of sequential reduction sequences can be transferred
to the parallel case. A parallel reduction sequence Red is thread-normalized if one
corresponding sequential reduction sequence Redseq of Red is thread-normalized
(this means all sequences). This can be achieved by thread-normalizing the in-
terleaved reduction sequence. In proofs of parallel improvements, this operation
does not increase the length of parallel reduction sequences.

Lemma 5.15. Let A be a set of reduction kinds and N be a number of pro-
cessors. Let P be a process and Red be a parallel reduction sequence, using at
most N processors, from P to a successful process. Then there is also a thread-
normalized parallel reduction sequence Red ′ from P to a successful process with
srnrpNA (Red) ≥ srnrpNA (Red ′).

Rearranging sequential reduction sequences is also possible for parallel re-
duction sequences with certain extra restrictions. This rearrangement is crucial
in transferring the arguments for sequential reduction sequences to parallel ones.

We write single reductions steps
sr,a−−→ in a parallel reductions sequences Red

as Red = Red0 ⊕
sr,a−−→.

Lemma 5.16. Let A ⊆ Aall, and N be the number of processors. Let P be
a process and Red be a parallel thread-normalized reduction sequence from P

to a successful process. Let Red = (Red1 ⊕
sr,a−−→); Red2; (Red3 ⊕

sr,b−−→
);Red4 with at most N processors, where b 6∈ {(pmvar), (tmvar)}, the reductions
sr,a−−→;

sr,b−−→ are triggered by the same thread y, Red1,Red3 are single parallel
reduction steps or empty, and there is no reduction step in Red2 triggered by y.

In addition we assume that b 6∈ A. Then Red ′ = (Red1 ⊕
sr,a−−→);

sr,b−−→; Red2;
Red3;Red4 is also a thread-normalized reduction sequence to a successful process
with srnrpNA (Red) = srnrpNA (Red ′).

Proof. Since there are no conflict possibilities (since b 6∈ {(pmvar), (tmvar)}) the

reduction
sr,b−−→ can be shifted to the left. Since b 6∈ A, this rearrangement does

not change srnrpNA .

Note that it is not correct to shift the reduction to the right, due to potential
conflicts. Note also that shifting reductions b ∈ A but b 6∈ {(pmvar), (tmvar)}
can be done, but there is a danger of increasing the number of parallel reduction
steps for A, or the number of processors, since Red3 may contain an A-step.

Improvements for Concurrent Haskell with Futures 23

Lemma 5.17. Let A = Anoncp, Red = Red1,1;(Red1,2 ⊕
sr,a1−−−→); . . . ; Redn,1;

(Redn,2 ⊕
sr,an−−−→) and N be the number of processors where the following holds:

1.
sr,ai−−−→ are triggered by thread y for all i;

2. Red i,1; Red i,2 do not contain single reductions triggered by thread y for all i;
3. for i < n, it holds ai ∈ Acp,
4. an 6∈ {(pmvar), (tmvar)}

Then the reduction sequence can be rearranged as Red ′ =
sr,a1−−−→; . . . ;

sr,an−1−−−−−→;

Red1,1; Red1,2; . . .Redn,1; Redn,2 ⊕
sr,an−−−→ without changing the measure, i.e.,

srnrpNA (Red) = srnrpNA (Red ′).

In the case an ∈ Acp, for the shift result Red ′ =
sr,a1−−−→; . . . ;

sr,an−−−→; Red1,1; Red1,2;
. . .Redn,1; Redn,2 it holds srnrpNA (Red) = srnrpNA (Red ′).

Proof. There are no conflicts in shifting Acp-reductions to the left, and this does
not change the srnrpNA -measure.

Reusing a class of (sequential) forking diagrams can be done as follows:

Lemma 5.18. A forking diagram with left-down chain L1;L2 and right-down
chain R1;R2 where L1;R1 are sequences of Acp-reductions, and L2, R2 are at
most of length 1, can be applied to a thread-normalized parallel reduction sequence
Red, where a thread y is fixed, as follows:

1. Rearrange Red such that it is structured as follows: Red1; Red2; Red3 ⊕ r; Red4,
where Red1 triggered by thread y is the reduction sequence according to L1,
r (triggered by y) is the reduction according to R1, where Red2; Red3 do not
contain reduction steps triggered by thread y.

2. Replace this by Red ′1; Red2; Red3 ⊕ r′1, where Red ′1 (triggered by y) are the
reductions according to the diagram-labels R1, and r′1 (triggered by y) is the
reduction step according to R2.

Theorem 5.19. All the transformations treated up to this point for sequential
reductions are also improvements for parallel reductions for sets A ⊆ Anoncp
and any number N of processors. These are all standard reductions with the
exception of {(sr, pmvar), (sr, tmvar)}, and (gc), (gc)−, (ucp), (ucp)−, (cp),
(lbeta), (case), (cpcxa), (cpcxb), (mkbinds), (cse), (lunit), (dtmvar), (dpmvar).

Proof. The arguments for induction are almost the same as for sequential reduc-
tions. The differences are that the reduction steps that are not instances of the
diagram reductions are the same before and after the transformation.

Looking at all diagrams, we see that these satisfy the preconditions of Lemma
5.18. We explicitly mention all the diagrams where the left down-side has more
than one standard reduction:

1. the forking diagram of (ucp) number 3: the left-down reductions are in Acp;
2. the third diagram of (ucpt): the given reductions are in Acp;
3. the third and 6th diagram of (cse); the first n − 1 left-down reductions are

in Acp, and the last is in Anoncp \ {(pmvar), (tmvar)}

24 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

mainMon = calcMon someTree

calcMon (Leaf n) =

let res = (g n)

in seq res (return res)

calcMon (Node l r) = do

lres <- (calcMon l)

rres <- (calcMon r)

let res = (lres ’f’ rres)

seq res (return res)

mainPure’ = return (calcPure’ someTree)

calcPure’ (Leaf n) = (g n)

calcPure’ (Node l r) =

let

lres = (calcPure’ l)

rres = (calcPure’ r)

res = (lres ’f’ rres)

in seq res res

Fig. 8. Intermediate Programs for Transforming mainFut into mainPure from Fig. 1

4. The fourth diagram of lunit: the arguments are the same as for (cse).

Note that there are more diagrams not printed in the paper, but in the supple-
mentary material in the appendix: The fourth forking diagram of (cp); the fifth
forking diagram for (cpcxb); and the fifth forking diagram for (mkbinds), which
all satisfy the preconditions of Lemma 5.18. Hence the improvement results for
sequential reductions also hold for parallel reduction sequences.

Transformation (drfork) which removes the future-actions is a sequential
improvement whereas the inverse, which parallelizes MVar-access-free actions,
is a parallel improvement if the reductions (fork) and (unIO) are not counted.
This does not contradict Theorem 5.19, since the arguments are not by a set of
forking diagrams, but by an analysis of the rearrangement of the reductions.

6 Conclusion and Further Research

6.1 Applying Improvements

As a part of our conclusion we show how our improvement results enable us to
prove detailed properties of concurrent programs. Consider the example program
calcFut for folding (summing) the values in a tree in the introduction again.
We consider the definition of mainFut and mainPure in Fig. 1 and the programs
in Fig. 8. Applying the transformation (drfork) to the future-expressions trans-
forms it into calcMon. This is justified, since we assume that the tree someTree

only consists of data. This is a sequential improvement by our results. The
transformation calcMon to calcPure’ is a bit more involved, since the recursion
has to be restructured. A proof that mainPure’ is a sequential improvement of
mainMon can be done by induction on the depth of the tree someTree (we omit
the details, which are in the appendix in Section C) and under the further as-
sumption of strictness of f, i.e. that it requires the value of both arguments, and
that values behave like numbers. The comparison of calcPure’ with calcPure

shows that calcPure is a proper sequential improvement of calcPure’, since
less (seq), (lunit)-, and (lbeta)-reductions have to be performed, and where other
reductions like let-shifting are not counted.

Improvements for Concurrent Haskell with Futures 25

6.2 Related Work on Improvements in Functional Languages

The analysis of improvements for functional languages started with [31] where
improvements for call-by-name functional languages are analyzed (for an exten-
sion of the lazy lambda calculus see [1] and for the more general lazy computation
systems see [13]). An analysis of a non-deterministic call-by-name lambda cal-
culus and an improvement relation based on may- and must-convergence is in
[16]. for an untyped call-by-need lambda calculus with letrec and data con-
structors the improvement theory w.r.t. runtime was developed in [20] where
also a so-called to tick-algebra was introduced to algebraically compute with
improvement laws. A similar investigation, focusing on a formal proof that com-
mon subexpression is an improvement w.r.t. runtime, and for a higher-order
functional language including Haskell’s seq-operator, was done in [33] and for
a typed variant of the language in [35]. Proof techniques and specific improve-
ment laws for list-processing functions are presented in [34] and [30]. A theory
of improvements was developed for a class of languages with structured opera-
tional semantics in [32]. Hackett and Hutton [11] used the improvement theory
of [20] to argue that optimizations are indeed improvements, with a particular
focus on worker/wrapper transformations. This work was extended with a focus
on a result which is independent of a concrete programming language (using
categorical notions) in [12]. Improvements w.r.t. the space behavior of programs
of call-by-need functional programming languages are analyzed by Gustavsson
and Sands in [9, 10]. Analyzing space-improvements was recently revived in [5,
6] where a system is presented that supports to measure and analyze the space
behavior of typed functional programs w.r.t. call-by-need evaluation.

6.3 Summary and Further Research

We motivated and applied two resource models to the process calculus CHF ∗

which is a core language for Concurrent Haskell extended by concurrent fu-
tures. While sequential improvements consider the interleaved (but sequential)
evaluation of concurrent threads, parallel improvements allow parallel execution
of concurrent threads. We demonstrated how to show that a specific program
transformation is a sequential- and/or a parallel improvement. We proved for a
considerable set of transformations that these are sequential and/or a parallel
improvements, i.e., optimizations of work and the time of a concurrent evalua-
tion, even for any fixed number of processors. We expect that our optimization
methods could also be used in automated and semi-/automated tools for pro-
gram optimization of Haskell-programs like the tool HERMIT [15, 37]. Our tools,
methods and proofs could also be applied if only correctness w.r.t. ∼c,↓ is re-
quired, i.e., without the precondition of (full) correctness w.r.t. ∼c. We look
forward to see applications in these directions.

Future research is proving further and also more complex transformations to
be improvements, and to invent and explore further transformation and proof
methods. Also a cross-analysis of other resources like space-usage is left for fur-
ther work. It is also worth studying parallelizations and optimizations during
runtime.

26 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

References

1. Abramsky, S.: The lazy lambda calculus. In: Research topics in functional pro-
gramming. pp. 65–116. Addison-Wesley (1990)

2. Ariola, Z.M., Felleisen, M., Maraist, J., Odersky, M., Wadler, P.: A call-by-need
lambda calculus. In: POPL’95. pp. 233–246. ACM Press, San Francisco, CA (1995)

3. Baker-Finch, C., King, D.J., Trinder, P.: An operational semantics for parallel lazy
evaluation. SIGPLAN Not. 35, 162–173 (2000)

4. Concurrent Clean: Homepage (2017), http://clean.cs.ru.nl/
5. Dallmeyer, N., Schmidt-Schauß, M.: An environment for analyzing space optimiza-

tions in call-by-need functional languages. In: Cirstea, H., Escobar, S. (eds.) Proc.
3rd WPTE 2016. EPTCS, vol. 235, pp. 78–92. Open Publishing Association (2017)

6. Dallmeyer, N., Schmidt-Schauß, M.: Space improvements and equivalences in a
functional core language (2017), in Informal Proceedings of 4th WPTE 2017, eds.
D. Sabel and H. Cirstea

7. Flanagan, C., Felleisen, M.: The semantics of future and an application. J. Funct.
Programming 9, 1–31 (1999)

8. Glasgow parallel Haskell: Homepage (2017), http://www.macs.hw.ac.uk/ dsg/gph/
9. Gustavsson, J., Sands, D.: A foundation for space-safe transformations of call-by-

need programs. ENTCS 26, 69–86 (1999)
10. Gustavsson, J., Sands, D.: Possibilities and limitations of call-by-need space im-

provement. In: Pierce, B.C. (ed.) Proc. Sixth ACM ICFP 2001. pp. 265–276 (2001)
11. Hackett, J., Hutton, G.: Worker/wrapper/makes it/faster. In: Jeuring, J.,

Chakravarty, M.M.T. (eds.) Proc. 19th ICFP 2014. pp. 95–107. ACM (2014)
12. Hackett, J., Hutton, G.: Programs for cheap! In: Proc. 30th ACM/IEEE LICS. pp.

115–126. IEEE Computer Society, Washington, DC, USA (2015)
13. Howe, D.J.: Equality in lazy computation systems. In: Proc. Fourth LICS 1989.

pp. 198–203. IEEE Computer Society (1989)
14. Hughes, J.: Why functional programming matters. Comput. J. 32(2), 98–107 (1989)
15. Kansas-University, F.P.G.A.: The Haskell equational reasoning model-to-

implementation tunnel (hermit) (2017), http://ku-fpg.github.io/software/hermit/
16. Lassen, S.B., Moran, A.: Unique fixed point induction for McCarthy’s Amb. In:

Kutylowski, M., Pacholski, L., Wierzbicki, T. (eds.) Proc. 24th MFCS’99. LNCS,
vol. 1672, pp. 198–208. Springer (1999)

17. Loogen, R., Ortega-Mallén, Y., Peña Maŕı, R.: Parallel functional programming in
Eden. J. Funct. Programming 15, 431–475 (2005)

18. Marlow, S., Newton, R., Jones, S.L.P.: A monad for deterministic parallelism. In:
Claessen, K. (ed.) Proc. 4th Haskell Symposium 2011. pp. 71–82. ACM (2011)

19. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I & II. Inform.
and Comput. 100(1), 1–77 (1992)

20. Moran, A.K.D., Sands, D.: Improvement in a lazy context: An operational theory
for call-by-need. In: Proc. 26th ACM POPL 1999). pp. 43–56. ACM Press (1999)

21. Niehren, J., Sabel, D., Schmidt-Schauß, M., Schwinghammer, J.: Observational se-
mantics for a concurrent lambda calculus with reference cells and futures. Electron.
Notes Theor. Comput. Sci. 173, 313–337 (2007)

22. Niehren, J., Schwinghammer, J., Smolka, G.: A concurrent lambda calculus with
futures. Theoret. Comput. Sci. 364(3), 338–356 (2006)

23. Peyton Jones, S.L.: Tackling the awkward squad: monadic input/output, concur-
rency, exceptions, and foreign-language calls in Haskell. In: Engineering theories of
software construction. pp. 47–96. IOS-Press (2001)

Improvements for Concurrent Haskell with Futures 27

24. Peyton Jones, S.L., Gordon, A., Finne, S.: Concurrent Haskell. In: Proc. 23rd ACM
POPL 1996. pp. 295–308. ACM (1996)

25. Peyton Jones, S.L., Singh, S.: A tutorial on parallel and concurrent programming in
Haskell. In: Advanced Functional Programming, 6th International School, Revised
Lectures. Lecture Notes in Comput. Sci., vol. 5832, pp. 267–305. Springer (2009)

26. Peyton Jones, S.L., Wadler, P.: Imperative functional programming. In: Proc. 20th
ACM POPL 1993. pp. 71–84. ACM (1993)

27. Sabel, D.: An abstract machine for concurrent Haskell with futures. In: Jähnichen,
S., Rumpe, B., Schlingloff, H. (eds.) Software Engineering 2012 - Workshopband,
Fachtagung des GI-Fachbereichs Softwaretechnik, 27. Februar - 2. März 2012 in
Berlin. LNI, vol. 199, pp. 29–44. GI (2012)

28. Sabel, D., Schmidt-Schauß, M.: A contextual semantics for concurrent Haskell with
futures. In: Schneider-Kamp, P., Hanus, M. (eds.) Proc. 13th ACM PPDP 2011.
pp. 101–112. ACM (2011)

29. Sabel, D., Schmidt-Schauß, M.: Conservative concurrency in Haskell. In: Der-
showitz, N. (ed.) Proc. 27th IEEE LICS 2012. pp. 561–570. IEEE (2012)

30. Sabel, D., Schmidt-Schauß, M.: A call-by-need lambda calculus with scoped work
decorations. In: Zimmermann, W., et.al. (eds.) Software Engineering Workshops
2016. CEUR Workshop Proceedings, vol. 1559, pp. 70–90. CEUR-WS.org (2016)

31. Sands, D.: Operational theories of improvement in functional languages (extended
abstract). In: Heldal, R., Holst, C.K., Wadler, P. (eds.) Proc. 1991 Glasgow Work-
shop on Functional Programming. pp. 298–311. Workshops in Computing, Springer
(1991)

32. Sands, D.: From SOS rules to proof principles: An operational metatheory for
functional languages. In: Lee, P., Henglein, F., Jones, N.D. (eds.) Proc. 24th ACM
POPL 1997. pp. 428–441. ACM Press (1997)

33. Schmidt-Schauß, M., Sabel, D.: Improvements in a functional core language with
call-by-need operational semantics. In: Falaschi, M., Albert, E. (eds.) Proc. 7th
PPDP 2015. pp. 220–231. ACM (July 2015)

34. Schmidt-Schauß, M., Sabel, D.: Sharing-aware improvements in a call-by-need func-
tional core language. In: Lämmel, R. (ed.) Proc. 27th IFL 2015. pp. 6:1–6:12. ACM,
New York, NY, USA (2015)

35. Schmidt-Schauß, M., Sabel, D.: Improvements in a call-by-need functional core
language: Common subexpression elimination and resource preserving translations.
Science of Computer Programming 147, 3–26 (2017)

36. Schmidt-Schauß, M., Schütz, M., Sabel, D.: Safety of Nöcker’s strictness analysis.
J. Funct. Programming 18(04), 503–551 (2008)

37. Sculthorpe, N., Farmer, A., Gill, A.: The HERMIT in the tree: Mechanizing pro-
gram transformations in the GHC core language. In: Proc. 24th IFL 2013. LNCS,
vol. 8241, pp. 86–103. Springer (2013)

38. Sestoft, P.: Deriving a lazy abstract machine. J. Funct. Programming 7(3), 231–264
(1997)

39. Trinder, P.W., Hammond, K., Loidl, H.W., Peyton Jones, S.L.: Algorithm + Strat-
egy = Parallelism. J. Funct. Programming 8(1), 23–60 (1998)

40. Wadler, P.: Monads for functional programming. In: First International Spring
School on Advanced Functional Programming Techniques. LNCS, vol. 925, pp.
24–52. Springer (1995)

28 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

A Equivalence of CHF and CHF ∗

Theorem A.1. The calculi CHF and CHF ∗ are equivalent w.r.t. may- and
should-convergence, and also w.r.t. correctness of transformations.

Proof. Let transformation (cpx) be defined as T[x]|x = y → T[y]|x = y where
we assume that it is closed w.r.t. D-contexts and ≡. It suffices to show that
P ↓CHF∗ ⇐⇒ P ↓CHF and P ⇓CHF∗ ⇐⇒ P ⇓CHF (or equivalently P ↑CHF

⇐⇒ P ↑CHF∗) for all processes P . Thus we have to show four implications:

1. P ↓CHF∗ =⇒P ↓CHF : Let P
CHF∗,∗−−−−−→ Q, where Q is successful. Then the

reduction can be translated into P
CHF−−−→ cpx,∗←−−→ gc,∗←−→ P2

CHF−−−→ cpx,∗←−−→ gc,∗←−→
. . . Q. Since the reductions (cpx) and (gc) are correct in CHF [28, 29], it is

easy to show by induction on the number of
CHF−−−→-reductions, that P ↓CHF .

2. P ↓CHF =⇒P ↓CHF∗ : Let P
sr,∗−−→ Q, where Q is successful. We transform it

into a mixture of reductions and transformations in CHF ∗. All sr-reductions
are the same, with the exception of (cpcx) which is (cpcxa); (cpcxb) plus

equivalences using
cpx,∗←−−− and

gc,∗←−−. The reduction P1[x]|x = c y1 . . . yn
cpcx−−−→

P1[c z1 . . . zn]|x = c z1 . . . zn|z1 = y1|. . .|zn = yn is translated into

cpcxb−−−→ P1[c y1. . .yn]|x = c y1 . . . yn
gc,∗←−− P1[c y1. . .yn]|x = c y1 . . . yn|z1=y1|. . .|zn=yn
cpx,∗←−−− P1[c z1. . .zn]|x = c z1 . . . zn|z1=y1|. . .|zn=yn.

where we omit ν-binders. A step-wise transformation of the reduction se-

quence with the same intermediate processes is of the form P
CHF∗−−−−→ gc,∗←−− cpx,∗←−−−

P2
CHF∗−−−−→ gc,∗←−− cpx,∗←−−− . . . Q. This reasoning is also applicable to (cpcxa)-

reductions that only abstract some subexpressions. We modify the sequence
into a CHF ∗-reduction sequence to a successful process: Scanning all possi-
bilities of interference with the sr-reductions of CHF ∗ are:

P

sr,a
��

cpx // P ′

sr,a
��

P1
cpx,T
// P ′1

P

sr,cpcxb ��

cpx // P ′

sr,cpcxb��
P1 cpx

// ·
cpx,T
// P ′1

P
sr,cp

��

cpx// P ′

P1

P

sr,a
��

gc // P ′

sr,a
��

P1 gc
// P ′1

We use these diagrams to shift (gc) and (cpx) to the right, only over CHF ∗-
reductions. We start with the rightmost of (cpx),(gc). This may increase the
cpx-reductions, or it may also remove a cp-reduction using the third dia-

gram. Finally, it leads to a sequence P
CHF∗,∗−−−−−→ Q′ (

gc,∗←−− · cpx,∗←−−−)∗ Q. This
shifting terminates since the number of CHF ∗-reductions is not increased.
It is easy to see that also Q′ must be successful, since (cpx) and (gc) do no
change this property. Hence we have shown that P ↓CHF∗ .

3. P↑CHF∗=⇒P↑CHF : Analogous to part (1), whereQ is CHF*-must-diverging,
which is CHF-must-diverging, since part (2) implies Q⇑CHF =⇒ Q⇑CHF∗ .

4. P↑CHF =⇒P↑CHF∗ : Let P be a process with a reduction sequence P
CHF ,∗−−−−→

Q, where Q ⇑CHF . We use the same transformation as in part (2), which

Improvements for Concurrent Haskell with Futures 29

leads to a mixed reduction and transformation sequence P (
CHF∗−−−−→ · cpx,∗←−−−

· gc,∗←−−)∗ Q. The diagrams and the shifting process is the same as in part

(2), and leads to a sequence P
CHF∗,∗−−−−−→ Q′ (

cpx,∗←−−− · gc,∗←−−)∗ Q. Now
we have to argue that also Q′ is CHF ∗-must-divergent. Since Q is CHF -
must-divergent, and since (cpx), (gc) are correct, we also obtain that Q′ is
CHF -must-divergent, and part (1) implies Q′ ⇑CHF =⇒ Q′ ⇑CHF∗ and thus
Q′ is also CHF ∗-must-divergent. ut

B Detailed Improvement Proofs

B.1 Garbage Collection

Proposition B.1. (gc) is a sequential A-improvement w.r.t. all sets A.

Proof. Transformation (gc) is correct (Theorem 5.2). We show that (gc) has the
improvement-property for all reduction kinds: Let P be a process with P↓ and
let A be a set of reduction kinds. We obtain the following complete set of forking
diagrams for overlaps of (gc) against standard reduction sequences by scanning
all cases:

P
sr,a ��

gc // P ′

sr,a��
P1

gc // P2

P
sr,mkbinds ��

gc // P ′

P1

gc 99 P
sr,cp ��

gc // P ′

sr,cp ��
P1

gc // ·
gc // P2

P
sr,a ��

gc // P ′

sr,ayy
P1

The second case occurs when the whole letrec environment is garbage, the third
case occurs, when the redex of the (gc) is within an abstraction, and the fourth
case occurs, when the transformation takes place for example in an alternative of
a case-expression. In order to show the lemma, we use induction on the number
µ of all reduction sequences to show that (i) the number of all reduction steps is
not increased, and (ii) that for every reduction kind, the number of reductions is
not increased by (gc). The base case is that P is already successful. Then P ′ is
also successful and the claim holds. For the induction step we apply one of the
diagrams and the induction hypothesis. The only non-standard case is the third
diagram, where we can apply the induction hypothesis twice. ut

Now we analyze the inverse reduction of (gc), denoted as (gc)−. Instead of
forking diagrams for (gc) we write the diagrams as commuting diagrams for (gc).

Proposition B.2. Transformation (gc)− is a sequential A-improvement for all
A such that (mkbinds) 6∈ A.

Proof. Since the transformation (gc) is correct, also (gc)− is correct. We show
that (gc)− has the improvement property w.r.t. all A with (mkbinds) 6∈ A. Let P
be a process with P↓ and let A be a set of reduction kinds with (mkbinds) 6∈ A.

30 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

We obtain the following complete set of forking diagrams for overlaps of (gc)−

against standard reduction sequences by scanning all cases:

P
sr,a ��

gc // P ′

sr,a��
P1

gc // P2

P
sr,mkbinds ��

gc // P ′

P1

gc 99 P
sr,cp ��

gc // P ′

sr,cp ��
P1

gc // ·
gc // P2

P
sr,a ��

gc // P ′

sr,ayy
P1

We allow the (exceptional) second diagram which acts like a repeater for a

reduction step. This is no problem, since the number of successive
sr,mkbinds−−−−−−−→ is

finite. In order to show that (gc)− has the improvement property w.r.t. reduction
kinds A for A with (mkbinds) 6∈ A, we use induction for the pair (P, P ′) and
the chosen reduction sequence Red(P ′), and the measure µ = (µ1, µ2, µ3), where
µ1 is the number of all reductions kinds with the exception of (mkbinds) of
Red(P ′), µ2 is the number of all reduction kinds in Red(P ′), and µ3 is the
number of letrec-symbols in P ′. The claim is that the number of all reductions
6= (mkbinds) is not increased by (gc)−. If there is no reduction sequence, then
we see that (gc) does not change successfulness. For diagram 1, the induction
hypothesis is applicable. For diagram 2, µ1, µ2 are the same, but µ3 is strictly
decreased, and we can apply the induction hypothesis. For the third diagram,
we apply the induction hypothesis twice. For the fourth diagram, the conclusion
is immediate. ut

B.2 Unique Copying

We present the proof for (ucp), since inlining is an often used transformation
also used in other proofs. The transformation (ucp) may increase the number of
(cpcxa)-steps in a reduction sequence, since it is the immediate inverse in certain
cases.

Proposition B.3. (ucp) is a sequential A-improvement for all A s.t. (cpcxa) 6∈A.

Proof. Transformation (ucp) is correct (Theorem 5.2). We show that (ucp) has
the improvement-property for reduction sequences for all sets A of reduction
kinds with (cpcxa) 6∈ A. Let P be a process with P↓ and let (cpcxa) 6∈ A. A
complete set of forking diagrams for thread-normalized reduction sequences is:

P

sr,a

��

ucp // P ′

sr,a

��
P1

ucp // P ′1

P

sr,cp

��

ucp // P ′

sr,cp

��
P1

ucp // ·
ucp// P ′1

P
sr,cpcxa
��

ucp // P ′

P1

sr,cpcxb��
P2 gc

// P3

ucp,+

OO P

sr,cpcxb

��

ucp // P ′

sr,cpcxa
��

P1 P ′2sr,cpcxb
oo

P

sr,a

��

ucp // P ′

P1

gc

AA

where

a∈{cp, cpcxb}

P

sr,a

��

ucp// P ′

sr,a
��

P1

Note that the third diagram can only be used for thread-normalized reduction

sequences, where the left down-arrows are for a common thread. Let P
ucp−−→ P ′

and let Red be a thread-normalized reduction sequence of P to a successful

Improvements for Concurrent Haskell with Futures 31

process, where P
sr,a−−→ P1 is the first reduction of Red . We use µ = (µ1, µ2)

as measure for induction, where µ1 is the number of all reductions with the
exception of (cpcxa), and µ2 is the number of all reductions, and the pair is
ordered lexicographically. We show two claims: (i) that there is a reduction
sequence Red ′ of P ′ such that µ1(Red ′) ≤ µ1(Red); and (ii) that for every
reduction kind a 6= (cpcxa) its number in the reduction sequence is decreased.
If µ1 = 0, then P is successful and then also P ′ is successful. If µ1 > 0, then we
apply a forking diagram. If the first diagram is applicable, then we can apply
the induction hypothesis to P1. In the cases of the second diagram, we can apply
the induction hypothesis twice, since the first claim holds, and then obtain the
two claims. In the case of the third diagram, since Red is thread-normalized, the
reduction (cpcxa) cannot be the last one for all threads y triggering it, hence
a (cpcxb) must be a later reduction for some of these threads. Proposition B.1
shows that we can apply the induction hypothesis to P3, and then several times
until P ′, which shows that first claim. The diagrams and Proposition B.1 then
also show the second claim. For the 4th diagram, we obtain immediately that the
reduction sequence for P ′ has not more reduction steps 6= cpcxa, and the second
claim on the number of occurrences of every reduction kind holds. For the 5th

diagram, Proposition B.1 can be applied and shows the claim. Also the second
claim holds. For the 6th diagram, the induction hypothesis can be applied, and
then the two claims hold. ut

We treat the inverse of (ucp), denoted as (ucp)− and first consider the inverse
(ucpt)−of (ucpt), and thereafter we consider the inverse (ucpd)− of (ucpd).

Proposition B.4. (ucpt)− is a sequential A-improvement for all A ⊆ Anoncp.

Proof. It suffices to show that (ucpt)− has the improvement-property for reduc-
tion sequences w.r.t. all A ⊆ Anoncp , since (ucpt)− is correct. A complete set of
forking diagrams for (ucpt)− is:

P

sr,a

��

ucpt // P ′

sr,a

��
P1

ucpt // P ′1

P

sr,a ""

ucpt // P ′

sr,a

��
P1

32 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

P

sr,cpcxb ��

ucpt // P ′

sr,cpcxa
��
P ′2
sr,cpcxb��

P ′1

P

sr,cpcxa
��

ucpt // P ′

sr,a

��

P2

sr,cpcxb
��
P3

sr,a
��
P1 gc

// P ′′1 ucpt,+
// P ′1

where a is monadic,
(case) or (seq).

P
sr,cpcxa��

ucpt // P ′

sr,lunit

��

P2

sr,cpcxb��
P3

sr,cpcxa��
P4

sr,cpcxb��
P5

sr,lunit��
P1 gc

// ·
ucpt,+
// P ′1

P

sr,a

��

ucpt // P ′

sr,b

��

P2

sr,b

��
P1

gc // P ′1
where

a ∈ {cp, cpcxb};
b ∈ Anoncp

Let P
ucpt−−−→ P ′ and let P ′↓ and let Red ′ be a thread-normalized reduction se-

quence to a successful process from P ′. We show two claims: (i) there is a reduc-
tion sequence Red of P such that µ1(Red) ≤ µ1(Red); where µ1 is the number
of all reductions in Anoncp ; (ii) for every reduction kind a 6∈ Anoncp its number
in the reduction sequence is decreased. We use µ = (µ1, µ2) as measure for in-
duction, where µ2 is the number of all reduction steps, and the pair is ordered
lexicographically. If P ′ is successful, then P is also successful, or a single (cpcxb)-

step makes P successful, hence the claim holds. Otherwise, let P ′
sr,a−−→ P ′1 be

the first reduction of Red ′. If the first diagram is applicable, then we apply the
induction hypothesis to P ′1. For the second diagram, the claim is trivial. For the
third diagram, we can assume that Red ′ is thread-normalized, and counting the
number of reductions shows the claim. For the fourth diagram, the induction hy-
pothesis is applied to P ′1 and then to the right until the claim holds for P ′′1 , but
with a strictly smaller µ1 than for P ′. Since (gc) is an improvement-equivalence,
P1 has a standard reduction sequence with a smaller µ1-measure than µ1(P ′1),
and we can count µ1 for the constructed reduction sequence of P , which shows
the claim. The same arguments can be applied to diagram 5. For the 6th dia-
gram, similar arguments show the claim. ut

Proposition B.5. (ucpd)− is a sequential A-improvement for all A ⊆ Anoncp.

Proof. Correctness of (ucpd)− holds by Theorem 5.2. To show the improvement-
property for reduction sequences for all A with A ⊆ Anoncp , let P be a process
with P↓ and let A ⊆ Anoncp . Since (ucpd) is applied only in abstractions, the
following is a complete set of forking diagrams:

P
sr,a ��

ucpd // P ′

sr,a ��
P1

ucpd // P ′1

P
sr,lbeta ��

ucpd // P ′

sr,lbeta ��
P1

ucpt // P ′1

P
sr,cp��

ucpd // P ′

sr,cp ��
P1

ucpd // ·
ucpd // P ′1

P
sr,a ��

ucpd // P ′

sr,ayy
P1

Now let P
ucpd−−−→ P ′. P is successful iff P ′ is, and in this case the claim holds.

If P is not successful, then let Red ′ be a reduction sequence of P ′ to a successful

Improvements for Concurrent Haskell with Futures 33

process, where P ′
sr,a−−→ P ′1 is the first reduction of Red ′. We use µ = (µ1, µ2)

as measure for induction, where µ1 is the number of (lbeta)-reductions, and µ2

is the number of non-(lbeta)-reductions before the first (lbeta)-reduction. and
the pair is ordered lexicographically. We show two claims: (i) that there is a
reduction sequence Red of P such that µ(Red) ≤ µ(Red ′); and (ii) that for
every set A ⊆ Anoncp the length w.r.t. A remains the same, i.e., srnrA(Red) =
srnrA(Red ′). First we show claim (i). If the first diagram is applicable, then the
induction hypothesis is applicable, and the claim can be shown. If the second
diagram is applicable, then Proposition B.4 can be applied for the reduction
(lbeta) which shows claim (i). If the third diagram applies, then we can apply
the induction hypothesis twice, and derive reduction sequences Red ′′1 and Red1

with µ(Red1) ≤ µ(Red′′1) ≤ µ(Red′1), and then claim (i) can be shown. For the
4th diagram, the claim 1 is obvious. Now we can show claim (ii) for reduction
kinds A ⊆ Anocp by induction on the measure µ using the already proved claim
(i) and Proposition B.4. ut

B.3 The Transformations (cp), (cpcxa), (cpcxb), (lbeta), (case),
(seq) and (mkbinds)

We consider the copy transformation (cp) and argue that it a sequential im-
provement using the tool of forking diagrams.

Proposition B.6. Transformation (cp) is a sequential A-improvement for all
reductions kinds A.

Proof. The transformation (cp) is correct (Theorem 5.2) and thus it suffices to
show that (cp) has the improvement-property for reductions for all sets A of

reductions kinds. Let P be an expression with P↓, P cp−→ P ′, and let Red be a
successful reduction for P . We show that there is a successful reduction for P ′

that is not longer than Red w.r.t. A: The case that P is successful is trivial. So
let us assume that P ′ is not successful. A complete set of forking diagrams is:

P

sr,a
��

cp // P ′

sr,a
��

P1 cp
// P ′1

P

sr,a
��

cp // P ′

sr,a~~
P1

P

sr,cp
��

cp

��
P1

P
sr,cp ��

cp // P ′

sr,cp

��

P1

sr,cp ��
P2 cp

// P ′2

P

sr,cp
��

cp // P ′

sr,cp
��

P1
cp // ·

cp // P ′1

The forking diagrams permit us to apply the induction hypothesis to the reduc-
tion sequence Red of P , where we use the number of all reductions as measure,
and the claims are: (i) that the number of all reductions is not increased, and
that for every reduction kind, its number of occurrences is not increased. In the
case of the diagram 5 we have to apply the induction hypothesis twice, and can
then show that the total number of reductions of P ′ is not greater. In case of
diagram 4, we replace Red by a thread-normalized reduction sequence, which is
possible due to Corollary 5.10, and can commute the reduction sequence such

34 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

that the diagram is applicable. This shows also that the minimal length of re-
ductions of P ′ is not larger than that of P . ut

The difference between (cpcxb) and (cp) is that (cpcxb) has (cpcxa) as an
inverse in special cases. Transformation (cpcxb) may increase the total number
of reductions by a number of (cpcxa)-reductions (see diagram 3 below), hence
the forking diagrams must be more detailed.

Proposition B.7. The transformation (cpcxa) is a sequential A-improvement
for all sets A of reductions kinds with (mkbinds) 6∈ A.

Proof. The transformation (cpcxa) is correct (Theorem 5.2) and thus it suffices
to show that (cpcxa) has the improvement-property for reductions w.r.t. all A
s.t. (mkbinds) 6∈ A. Let A be a set of reduction kinds with (mkbinds) 6∈ A. Let

P be an expression with P↓, P cpcxa−−−→ P ′, and let Red be a successful reduction
for P . We show that there is a successful reduction for P ′ that is not longer than
Red w.r.t. A. The cases that P or P ′ are successful is trivial. So let us assume
that P, P ′ are not successful. A complete set of forking diagrams for (cpcxa) is:

P

sr,a
��

cpcxa // P ′

sr,a
��

P1 cpcxa
// P ′1

P

sr,a
��

cpcxa // P ′

sr,a||
P1

P

sr,cpcxa
��

cpcxa

��
P1

P

sr,cp
��

cpcxa // P ′

sr,cp
��

P1 cpcxa
// ·

cpcxa
// P ′1

P

sr,mkbinds

��

cpcxa // P ′

sr,mkbinds
��
P ′2

sr,mkbinds
��

P1 cpcxa
// P ′1

The induction proof is done using the measure is µ = (µ1, µ2), where µ1 is the
number of all reductions 6= mkbinds, and µ2 is the number of all reductions. The
claims are: (i) µ1 is not increased by (cpcxa); and (ii) the number of reduction
kinds in A is not increased. The first claim is easy for diagrams 1,2,3. For the 4th

diagram, the induction hypothesis can be applied twice, since µ1 is not increased.
For diagram 5, the induction hypothesis is applicable. The second claim follows
by an easy induction using the same measure. ut

The transformation (cpcx0) is used in the improvement proof of (cpcxb). It
is defined as follows where c is a constructor or monadic operator:

T[y]|y = c x1 . . . xn|u = c x1 . . . xn → T[u]|y = c x1 . . . xn|u = c x1 . . . xn

Proposition B.8. (cpcx0) is a sequential A-improvement for all sets A.

Proof. Correctness of (cpcx0) follows from [28, 29] and Theorem A.1. We show
that (cpcx0) has the improvement-property for reduction sequences w.r.t. all A.

Let P↓, P cpcx0−−−→ P ′, and Red be a successful reduction sequence for P . We show
that there is a successful reduction sequence for P ′ that is not longer than Red
w.r.t. A: The cases that P or P ′ are successful are trivial. Assume that P, P ′ are
not successful. A complete set of forking diagrams for (cpcx0) is as follows:

Improvements for Concurrent Haskell with Futures 35

P

sr,a
��

cpcx0 // P ′

sr,a
��

P1
cpcx0

// P ′1

P

sr,a
��

cpcx0// P ′

sr,a~~
P1

P

sr,a
��

cpcx0 // P ′

sr,a
��

P1
cpcx0

// ·
cpcx0
// P ′1

The induction for the claim that there is a successful reduction sequence of P ′

with the same number of A-reductions is straightforward using the number of all
reduction steps as measure. This shows the claim on the improvement property.

ut

Proposition B.9. The transformation (cpcxb) is an improvement for every set
A of reduction kinds with {(mkbinds), (cpcxa)} ∩A = ∅.

Proof. The transformation (cpcxb) is correct (Theorem 5.2) and thus it suffices
to show that (cpcxb) has the improvement-property for reduction sequences
w.r.t.. all A s.t. {(mkbinds), (cpcxa)} ∩A = ∅. Let P be an expression with P↓,
P

cpcxb−−−→ P ′, and let Red be a successful reduction sequence for P . We show that
there is a successful reduction sequence for P ′ that is not longer than Red w.r.t.
A. The case that P or P ′ are successful is trivial. So let us assume that P is not
successful. A complete set of forking diagrams for (cpcxb) is as follows:

P

sr,a
��

cpcxb // P ′

sr,a
��

P1
cpcxb

// P ′1

P
sr,a

��

cpcxb// P ′

sr,a~~
P1

P

sr,cpcxb

��

cpcxb // P ′

sr,cpcxa
��
·

sr,cpcxb ��
P1
cpcxb
// ·
cpcxa
// ·
cpcx0
// P ′1

P

sr,cp
��

cpcxb // P ′

sr,cp
��

P1
cpcxb
// ·
cpcxb
// P ′1

P
sr,cp
��

cpcxb // P ′

sr,cpcxb

��

P1

sr,cpcxb
��
P2

cpcxb
// P ′2

P

sr,cpcxb
��

c
p
c
x
b��

P1

We assume that the reduction sequence of P is thread-normalized. The in-
duction measure is µ = (µ1, µ2) where µ1 is the number of reduction steps not
of reduction kind (cpcxa) or (mkbinds). and µ2 is the number all reductions.
The claims are: (i) that the measure µ1 is not increased, and (ii) that for every
reduction kind a 6∈ {(cpcxb), (mkbinds)}, the length of reduction sequences is
decreased w.r.t. a.
This can be shown using the diagrams for (cpcxb): In case of the first diagram,
we apply the induction hypothesis to P1. For the second diagram, the proof is
immediate. For the 3rd diagram, the induction hypothesis can be applied to P1.
Using Propositions B.7 and B.8, we see that that µ1(Red(P ′1)) ≤ µ1(Red(P1)),
hence µ1(Red(P ′)) ≤ µ1(Red(P)), where Red(..) means the given or constructed
reduction sequence. Note that (mkbinds) have to be excluded from the count-
ing, since (cpcxa) may increase the number of (mkbinds). For the 4th diagram,
the induction hypothesis can be applied twice, since cp 6∈ {cpcxa,mkbinds}. For
the 5th diagram, the induction hypothesis can be applied. Here we have exploit
that the reduction sequence can be thread-normalized and rearranged without
making it longer. For the 6th diagram, the proof is immediate.

36 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

The second claim is proved easily. Thus, the improvement property follows,
since we have proved the non-increasing property for all reductions. ut

Proposition B.10. (mkbinds) is a sequential A-improvement for all A.

Proof. This is similar to previous simple proofs. We display the forking diagrams:

P

sr,a
��

mkbinds// P ′

sr,a
��

P1
mkbinds

// P ′1

P
sr,a

��

mkbinds// P ′

sr,a||
P1

P

sr,mkbinds
��

m
k
b
in
d
s��

P1

P

sr,cp
��

mkbinds // P ′

sr,cp
��

P1
mkbinds

// ·
mkbinds

// P ′1

P

sr,mkbinds ��

mkbinds// P ′

sr,mkbinds

��

P1

sr,mkbinds ��
P2

An induction on the number of all reductions shows the claim. ut

Treating the transformations (lbeta), (case), and (seq) is straightforward.
An induction on the length of a standard reduction sequence, where the forking
diagrams are of a shape where the methods can be applied as usual, can be used
to show:

Proposition B.11. (lbeta), (case), and (seq) are sequential A-improvements
for all A.

Proposition B.12. We summarize the results:

1. Transformation (cp) is a sequential A−improvement for all A.

2. Transformation (cpcxa) is a sequential A-improvement if (mkbinds) 6∈ A.

3. The program transformation (cpcxb) is a sequential A-improvement for all
A with A ⊆ Aall \ {(mkbinds), (cpcxa)}.

4. (lbeta), (case), and (seq) are sequential A-improvements for all A.

B.4 Common Subexpression Elimination

We write
Acp−−→ and

Acp,∗−−−→ for a reduction or a sequence, respectively, where the

reduction kinds are in Acp. Correspondingly, we use
Anoncp−−−−→ and

Anoncp,∗−−−−−→.

Proposition B.13. (cse) is a sequential A-improvement for all A ⊆ Anoncp.

Proof. Theorem 5.2 shows that (cse) is correct. For proving that (cse) has the

improvement-property for reductions w.r.t. all A with A ⊆ Anoncp , let P
cse−−→ P ′,

Red be a successful reduction for P , and A ⊆ Anoncp . We show that there is a
successful reduction Red ′ for P ′ that is not longer w.r.t. A than Red : The case
that P is successful is trivial. Assume that P is not successful. We compute a
complete set of forking diagrams, where we distinguish between (cse) applied at

Improvements for Concurrent Haskell with Futures 37

positions that are not in a body of an abstraction, and (cse) applied within a
body of an abstraction as (cseλ).

P

sr,a
��

cse // P ′
sr,a
��

P1 cse
// P ′1

P

sr,a ��

cse // P ′

sr,a��
P1

P
sr,Acp,∗��

cse // P ′

sr,Acp,∗ ��
P1

sr,a��

P ′1
sr,a,0∨1 ��

P2
Acp,∗
// P ′′2 cse,∗

// P ′2

where a ∈ Anoncp

P
sr,Acp,∗��

cse // P ′

sr,Acp,∗
��

P1

(success)
P ′1

(success)

P

sr,mkbinds
��

cse // P ′

P1

cse

>>

P
sr,Acp,∗��

cse // P ′

Acp,∗ ��
P1

sr,b��

P ′1
sr,b ��

P2

Acp,∗// P ′2
b // P ′′2

cse,∗// P ′′′2
b is a non-monadic
reduction in Anoncp

P
sr,a

��

cseλ// P ′

sr,a ��
P1

cseλ
// P ′1

P
sr,a

��

cseλ// P ′

sr,a��
P1

P
sr,lbeta

��

cseλ // P ′

sr,lbeta ��
P1 cse

// P ′1

P
sr,cp��

cseλ // P ′

sr,cp ��
P1

cseλ
// ·

cseλ
// P ′1

First we prove the improvement property for (cse) that is not applied in ab-
stractions. The proof of the improvement property is by induction on the length
µ(Red) = (µ1(Red), µ2(Red)) of a reduction Red , µ1(Red) = srnrAnoncp

(Red)
and µ2(Red) is the number of all reductions. Let P, P ′ be processes with P↓ and

P
cse−−→ P ′. If P is successful, and P ′ is not, then

cse−−→ is an application of (cse)
immediately to the top expression in the expression of the main thread. At most

two standard reductions
sr,Acp−−−−→ are sufficient to again get a successful process.

If P is not successful, then we fix a thread-normalized reduction Red to a suc-
cessful process. It suffices to look at diagrams 3 and 4, 5, 6 which cover all cases. If
Red does not contain a reduction from Anoncp ,then thread-normalization and re-
arrangement of the reduction permit to apply diagram 4, which shows that there
is a reduction from P ′. In the other case Red is a thread-normalized reduction
that contains a reduction step from Anoncp . After applying a rearrangement, di-
agrams 3, 5, or 6 can be applied: In case of diagram 3, the induction hypothesis
can be applied to P2. The diagram shows that there is a transformation se-

quence P2
Acp,∗−−−→ P ′′2

cse,∗−−−→ P ′2. Then Propositions B.12 and B.3 show that there
is a (successful) reduction Red ′′ of P ′′2 with srnrAnoncp

(Red ′′) ≤ srnrAnoncp
(Red),

hence the induction hypothesis is also applicable to P ′′2 , and also for the other
intermediate processes, which shows that there is a (successful) reduction Red ′

of P ′2 with srnrAnoncp
(Red ′) ≤ srnrAnoncp

(Red ′′) ≤ srnrAnoncp
(Red). In case of

diagram 5, the reasoning is easy. In case of diagram 6, reasoning is similar to
the case of diagram 4, however, we also need Proposition B.12 for the horizon-

tal
b−→-reduction. The missing arguments are similar to the previous ones. This

concludes the induction proof for (cse).
Now we prove the property for (cseλ) using the result for (cse) not applied

within abstractions. We use induction on µ(Red) = (µ1(Red), µ2(Red)) of a
reduction Red , where µ1(Red) = srnrAnoncp

(Red) and µ2(Red) is the number

38 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

of Acp-reductions before the first noncp-reduction. Here we do not use rear-
rangement of reductions. The claim is that the measure is not changed by the
diagrams. Looking at the diagrams for (cseλ): for 1,2 this can be proved by ap-
plying the induction hypothesis. For diagram 3, the previous result for (cse) can
be applied, and for diagram 4, the induction hypothesis can be applied twice. ut

B.5 Transformation (lunit)

Correctness of (lunit) requires typing, since for instance, the untyped process

P := y
main⇐== caseBool ((return True) >>= (λx.x)) (True→ return True) . . .) gets

stuck, and is non-converging, while P can be transformed by (lunit) into the pro-

cess y
main⇐== (caseBool ((λx.x) True) (True→ (return True) . . .), which reduces to

the successful process y
main⇐== return True. We distinguish (lunit) into trans-

formations (lunitS) and (lunitd), where the first is (lunit) applied in surface
contexts, and the latter is (lunit) applied within abstractions.

Proposition B.14. (lunit) is a sequential A-improvement for every A ⊆ Anoncp

Proof. A complete set of forking diagrams for (lunitS) is:

P

sr,a
��

lunitS // P ′

sr,a
��

P1
lunitS

// P ′1

P

sr,a
��

lunitS// P ′

sr,a~~
P1

P

sr,lunitS
��

lunitS
��

P1

P
sr,cpcxb∨cpcxa,∗��

lunitS // P ′

P1

sr,lunit��
P2 ucp,∗

// P ′2 lunitS
// P ′′2 cse

// P ′′′2

ucp,∗

BB

Let P be an expression with P
lunitS−−−−→ P ′, and let Red be a successful reduction

for P . Let A ⊆ Anoncp . We show that there is a successful reduction Red ′ for
P ′ that is not longer w.r.t. A than Red : The case that P is successful is trivial.
So let us assume that P is not successful. We use the complete set of forking
diagrams for (lunit) to make the induction, which is on the following measure of
a reduction Red : µ(Red) = (µ1(Red), µ2(Red)), where µ1 is srnrAnoncp (Red) and
µ2 is srnrAall

(Red), and the measure is ordered lexicographically.

The claims are (i) that there is a reduction Red ′ of P ′ with srnrAnoncp
(Red) ≥

srnrAnoncp
(Red ′) and (ii) that this reduction satisfies srnrA(Red) ≥ srnrA(Red ′).

We check the diagrams in turn. Diagram 1 permits application of the induction
hypothesis to P1, and the claim is easy. For diagram 2 and 3 the proof is obvious.
For diagram 4, Red can be assumed to be thread-normalized. For Red2 at P2,
the application of Proposition B.3 shows that there is a reduction Red ′2 at P ′2
with µ1(Red ′2) < µ1(Red). Thus the induction hypothesis can be applied, and
we obtain a reduction Red ′′ of P ′′2 with µ1(Red ′′2) ≤ µ1(Red ′). Now propositions
B.13 and B.3 show that there is a reduction Red ′ from P ′ with µ1(Red ′) <
µ1(Red). This proves the claim for transformation (lunitS). Now we inspect the

Improvements for Concurrent Haskell with Futures 39

transformation (lunitd). A complete set of forking diagrams for (lunitd) is:

P

sr,a
��

lunitd // P ′

sr,a
��

P1
lunitd

// P ′1

P

sr,a
��

lunitd// P ′

sr,a~~
P1

P

sr,cp
��

lunitd // P ′

sr,cp
��

P1
lunitd

// ·
lunitd
// P ′1

P

sr,lbeta
��

lunitd // P ′

sr,lbeta
��

P1
lunitS

// P ′1

The claim is that for A ⊆ Anoncp, P with P↓, and P
lunitd−−−−→ P ′, and a reduction

Red of P , there is a reduction Red ′ of P ′ such that srnrA(Red ′) ≤ srnrA(Red).
We use induction with the measure: µ(Red) = (µ1(Red), µ2(Red)), ordered lex-
icographically, where µ1 is is the number of lbeta-reductions in Red and µ2 is
the number of other reductions before the first (lbeta)-reduction.

First we prove that (lunitd) does not increase the measure µ: Scanning the
diagrams, we see: For diagram 1 we apply the induction hypothesis. For diagram
2 the reasoning is obvious. For diagram 3, the induction hypothesis can be ap-
plied twice; and for diagram 4, we can apply the induction hypothesis and the
result above for (lunitS). This shows the first claim.

The main claim can now be proved using the same schema and steps. ut

B.6 Proof of Lemma 5.9

Lemma 5.9. Let A ⊆ Aall, P be a process, Red be a reduction sequence from P
to a successful process. Then there is also a thread-normalized reduction sequence
Red ′ from P to a successful process that is not longer than Red w.r.t. A.

Proof. Let S be the last reduction step in Red among the reduction steps that
violate Definition 5.7 of thread-normalized. If S is a monadic computation dif-
ferent from (sr,unIO), (sr,pmvar), or (sr,tmvar), then it is triggered by a single
thread y, and the reduction Red ′ constructed by omitting S also leads to a
successful process, since no thread different from y can see the effect of the re-
duction. If S is a functional computation, then it may be triggered by several
threads y1, . . . , yn, and there is no later reduction in Red triggered by any of
the threads y1, . . . , yn. Then again we can construct a reduction sequence Red ′,
where the reduction step S is omitted, and since no thread requires the result of
S, the reduction Red ′ leads to a successful process. ut

B.7 More Monadic Transformations

We investigate (nmvar), and the deterministic versions (dtmvar), (dpmvar) of
take and put on an MVar, and show that these are improvements.

Proposition B.15. (nmvar) is a sequential A-improvement for all A.

40 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

Proof. The transformation (nmvar) is correct,. Computing the forking diagrams
results only in the trivial diagrams, since there are no conflicts.

P

sr,a
��

nmvar // P ′

sr,a
��

P1 nmvar
// P ′1

P

sr,a
��

nmvar // P ′

sr,ayy
P1

P

sr,nmvar
��

(nmvar)
��

P1

Now it is easy to see by induction that for every reduction sequence of a
process P , there is also one for process P ′ where the number of reductions is not
increased, for all reduction kinds. ut

Proposition B.16. The transformations (dtmvar) and (dpmvar) are sequential
A-improvements for all A.

Proof. The transformations are correct. Let P
dtmvar∨dpmvar−−−−−−−−−−−→ P ′. Due to the

conditions on the transformations, for every reduction sequence of P , there is also
one for P ′ which is the same, but only the (tmvar) or (pmvar) that corresponds
to the transformation is omitted. Hence both transformations are improvements.

ut

It is obvious that (sr,tmvar), (sr,pmvar) in general are not correct. Trans-
formation (sr,fork) is correct and an improvement, however, (fork) as a non-
standard reduction is in general not correct, since for instance, the process
main⇐ (takeMVar x) >>= λ .(λy.return True)(fork (takeMVar x))|xm True

is should-convergent, but the transformation result main⇐ (takeMVar x) >>=

λ .(λy.return True)(return z)|xm True|z⇐ takeMVarx is may-divergent: If
thread (z⇐ takeMVar x) fires first, reduction is blocked. Hence, the (fork) trans-
formation can only be correct and an improvement under further restrictions.

B.8 The Transformation (drfork)

Proposition B.17. The transformation (drfork) is correct.

Proof (Sketch). Let P
drfork−−−−→ P ′ and Red be a successful reduction sequence

of P . Assume that P = D[y⇐ future e], P ′ = D[y⇐ e]. We make an analy-
sis of the changes due to by (drfork): Let us first assume that Red does not

contain further (fork)-reductions for e. Then P
sr−→ P1, which is of the form

D[νz.(y⇐ return z|z⇐ e)]. We can assume that Red is minimal in the sense
that there are no reduction steps that can be erased without changing the prop-
erty of being successful. The reduction sequence Red can be rearranged such
that the reduction steps for z are preferred. This holds, since there are no MVar-
accesses triggered by thread z due to the assumption on (drfork). The minimality
assumption now shows that the reduction sequence for thread z ends with an
(unIO). The reduction steps before (unIO) can also be done for P ′. Then on
the P side we obtain a process P2, and on the P ′-side a process P ′2, such that

Improvements for Concurrent Haskell with Futures 41

P2
ucp−−→ P ′2. Since P2 has a successful reduction sequence, we see that also P ′2

has a successful reduction sequence, since (ucp) is correct.

This argument can be extended to more occurrences of (deterministic) (fork)
in the reduction sequence. Let Red be a successful reduction sequence of P . Again
we can assume that Red is minimal in the sense that there are no reduction steps
that can be erased without changing the property of being successful. Now we
modify the reduction sequence Red as follows: We start with the reduction steps
of a forked (deterministic) thread. Due to the assumption that there are no
MVar-accesses triggered by the thread, say z, shifting reduction steps permits to
have the reduction steps triggered by z in a contiguous sequence. We add a final
(ucp) to remove the created binding for z and inline it again. This can be done
for all deterministic threads, where the intermediate reduction sequence may
also have interspersed (ucp)-transformations. Finally, the reduction sequence for
P ′ is constructed by working backwards through the reduction sequence: remove
(unIO) and (fork) coming from to deterministic threads, and use the correctness
and improvement equivalence of (ucp) to create a (ucp)-free reduction sequence
for P ′ to a successful process. An analogous analysis shows that a successful
reduction sequence for Red ′ of P ′ can be transferred into a reduction sequence
Red of P , by inserting the necessary (fork)- and (unIO)-reductions and using
(ucp)−. This shows that P↓ ⇐⇒ P ′↓.

The same analysis can be made for may-divergence in both directions, which
shows that P and P ′ are equivalent w.r.t. may- and should-convergence. ut

Proposition B.18. (drfork) is a sequential A-improvement for all A ⊆ Anoncp.

Proof. Let P
drfork−−−−→ P ′ and Red be a successful reduction sequence of P . The

analysis in the previous proof shows that only reduction steps are removed and
ucp−−→ is used. Hence there is shorter reduction sequence of P ′ w.r.t. Anoncp. ut

Remark B.19. The transformation (drfork) is a not a parallel improvement, since
the modification of a parallel reduction sequence by omitting a fork leads to an
increase of the length of the reduction sequence.

The inverse transformation of (drfork), which can be seen as a parallelization,
is in general not a parallel improvement, since reductions (fork) and (unIO)
may be added in reduction sequences. However, there is a good chance that the
parallelization may have an advantage over interleaved reduction sequences.

Proposition B.20. The inverse (drfork)− of the transformation (drfork) is a
parallel A-improvement for all A ⊆ (Anoncp \ {(fork), unIO}).

Proof. The analysis of reductions as above shows that (ignoring the reduction
kinds Anoncp), only (fork) and (unIO) are added. ut

42 M. Schmidt-Schauß, D.Sabel, and N. Dallmeyer

C Arguments for Examples

We show the relation between mainFut, mainMon, mainMon’, and mainPure’’:

mainMon = calcMon someTree

calcMon (Leaf n) =

let res = (g n)

in seq res (return res)

calcMon (Node l r) =

do lres <- (calcMon l)

rres <- (calcMon r)

let res = (lres ‘f‘ rres)

seq res (return res)

mainMon’ = calcMon’ someTree

calcMon’:: Tree -> IO Integer

calcMon’ (Leaf n) =

let res = (g n)

in seq res (return res)

calcMon’ (Node l r) =

(calcMon’ l) >>=

(\lres -> (calcMon’ r)

>>=

(\rres -> let

res =

(lres ‘f‘ rres)

in return res))

mainPure’ =

return (calcPure’ someTree)

calcPure’ (Leaf n) = (g n)

calcPure’ (Node l r) =

let

lres = (calcPure’ l)

rres = (calcPure’ r)

res = (lres ‘f‘ rres)

in seq res res

mainPure’’ :: IO Integer

mainPure’’ =

let res =

(calcPure’’ someTree)

in seq res (return res)

calcPure’’:: Tree -> Integer

calcPure’’ (Leaf n) = (g n)

calcPure’’ (Node l r) =

(\lres ->

(\rres ->

(lres ‘f‘ rres))

(calcPure’’ r))

(calcPure’’ l)

The comparison between mainMon’ and mainPure’’ results in:

Lemma C.1. The results of mainPure’’ and mainMon’ are identical. The trans-
formation of mainMon’ into mainPure’’ is a sequential improvement: it requires
two more (lunit)-reductions per node of sumTree.

Proof. An induction proof on the depth of the tree someTree shows that the
result of let res=(calcPure’’ someTree) in seq res (return res) is identical
to (calcMon’ someTree). Correctness follows from correctness of (lunitS). The
improvement property follows from Proposition B.14. ut

Lemma C.2. The transformation from calcPure’’ into calcPure’ is a se-
quential and parallel improvement:

Proof. This follows from the improvement property of (lbeta) and the improve-
ment equivalence of the let-transformations. ut

