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There was a long history of speculation
that in quantum gravity,

unlike Einstein’s classical theory,

it might be possible for the

topology of spacetime to change.

— Edward Witten [82]

Dedicated to the search of Quantum Gravity.






ABSTRACT

In thesis I investigate the possibility that at the smallest length scale
(Planck scale) the very notion of “dimension” needs to be revisited.
Due to quantum effects spacetime might become very turbulent at
these scales and properties like those of fractals emerge, including
a scale dependent dimension. It seems that this “spontaneous dimen-
sional reduction” and the appearance of a minimal physical length
are very general effects that most approaches to quantum gravity
share. Main emphasis is given to the spectral dimension and its cal-
culation for strings and p-branes.

ZUSAMMENFASSUNG

In dieser Arbeit untersuche ich die Moglichkeit, dass bei den kleins-
ten Abstdnden (Planck Skala) sogar der Begriff der ,,Dimension” tiber-
dacht werden muss. Durch Quanteneffekte kann die Raumzeit auf die-
sen Langen sehr stark fluktuieren und Eigenschaften von Fraktalen,
wie eine skalenabhingige Dimension, annehmen. Diese ,spontane di-
mensionale Reduktion” und das Aufkommen einer minimalen physi-
kalischen Lange scheinen allgemeine Effekte zu sein, die die meisten
Ansitze zu einer Theorie der Quantengravitation gemeinsam haben.
Das Hauptaugenmerk liegt auf der sogennannten spektralen Dimensi-
on und ihrer Berechnung fiir Strings und p-Branen.






Ah, if we could only do the integral [...]. But we can't.
— Anthony Zee [91]
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Part I

INTRODUCTION

In this part we are going to review the most successful
physical theories that have been developed by mankind
so far: Einstein’s General Theory of Relativity (GR) describ-
ing Gravity, and Quantum Field Theory (QFT) describing all
other known fundamental forces.






SETTING THE STAGE

General Relativity (GR) and Quantum Field Theory (QFT) are the most
complete and best tested theories we currently have. GR describes the
large distances such as a satellite orbiting the Earth, the Earth orbiting
the Sun or even bigger: Cosmology. QFT on the other hand describes
the small distances like an electron moving in a wire, “orbiting” a nu-
cleus in an atom or particles hitting each other in colliders.

In their respective domains they (GR and QFT) are predicting ex-
periments exceptionally well. They have been tested over and over
again with ever growing experimental efforts and succeeded every
time. So there is one theory for the small scales and one for the big
scales. The natural thing to ask is then: Is there a physical situation
for which both are important simultaneously and is there a more com-
plete theory combining General Relativity and Quantum Theory?

It turns out the quest of finding such a combination is harder than
their founders imagined. Black Holes (BHs) are relevant for address-
ing the questions, because at small scales (BH center) gravity becomes
very intense. The singularity in a GR Black Hole means that GR pre-
dicts its own breakdown. Another example is the Big Bang singular-
ity. At the earliest stages of our universe densities were so high that
QFT and GR are both relevant. Those singularities are problems that
cannot be solved without a theory of Quantum Gravity (QG).

There also exists the information loss problem of BHs. It turns out
that when working with QFT in the presence of black holes, they emit
radiation and have a temperature as well as an entropy. The problem
is that no information can exit the BH. So where did the information
that fell into the BH go, when it has completely evaporated?

The hope is that a theory of Quantum Gravity will make these and
more things clearer and solve the problems. For the last half century
many different theories have been developed with the aim of unify-
ing Quantum Theory and Gravity. One such theory is String Theory.
Despite several approaches to Quantum Gravity on the market, each
of them has its own problems. We believe there may exist model inde-
pendent features of Quantum Gravity. In this thesis we explore one
of such possible model independent features: Dimensional flow, i.e. a
spacetime dimension that is scale dependent.



SETTING THE STAGE

It has been realized that quantum fluctuations of the spacetime
itself can lead to the fractalization of spacetime and thus the possi-
bility for the dimension to change with scale. The standard notion
of a smooth manifold breaks down and a new quantum manifold is
needed. There is a connection between quantum fluctuations, loss of
resolution, minimal length and dimensional flow. The quantum fluc-
tuations of spacetime are shown in an artistic view on the title page
of this thesis.

We mention String Theory here, because the initial proposal of a
variable dimension of spacetime was in a String paper by Atick and
Witten [14] in 1988 where they showed that a gas of strings above the
Hagedorn temperature only has two degrees of freedom and thus
behaves effectively as if spacetime was two dimensional. The Nobel
laureate 't Hooft [47] in 1993 argued that Black Holes at the Planck
scale behave as if they were living on a two-dimensional lattice. This
is connected to the entropy of a Black Hole and the idea behind holog-
raphy.

Those indications of a dimensional reduction led to new notions of
dimension and its investigation in basically all theories of Quantum
Gravity. Interestingly a common feature in many theories is that at
small scales the dimension decreases to the value two. Although, as
we will show, not all theories have this behaviour.

Dimensional reduction is not only such a fascinating topic because
it is a common feature of theories of Quantum Gravity. It also gives
a hint at solving the problem of quantizing Gravity. If one naively
tries to quantize Gravity in the framework of QFT, then one quickly
realizes that GR in 3 + 1 dimension is non-renormalizable and thus of
limited use. Interestingly in two dimensions this problem goes away
and Gravity is renormalizable. In the following this dimensional flow
and how it behaves for different theories will be investigated.



GENERAL RELATIVITY

In order to understand the problems of GR a basic understanding
of differential geometry and curved spacetime is needed. In this chapter
a small review of Einsteins Theory of Relativity, also known as Gen-
eral Relativity (GR), will be given. It is based on the two books [30,
61]. This review has two purposes: The first purpose is to make the
reader familiar with the notations and conventions used in this thesis.
The second is to highlight some particular details in GR that are less
often covered in introductory text books and will be needed in the
following chapters about Quantum Gravity.

2.1 REVIEW OF THE BASIC EQUATIONS

Einstein developed his Special Theory of Relativity (SR) [36] in 1905,
where he introduced the speed of light ¢ as constant (same in every
reference frame) and combined space and time into the notion of
spacetime. SR basically replaced Newtonian mechanics. In the limit
¢ — oo Newtonian mechanics (not Gravity) is recovered from SR.

Ten years later, in November 1915, he presented his General Theory
of Relativity [37] (published in 1916). Gravitation is implemented into
SR by letting spacetime be curved. The effect of this curvature is what
one usually thinks of as the gravitational force. For small curvatures
Newtonian Gravity can be recovered.

Let us now dive into the mathematics: Observer A sees a source
that instantaneously emits light out into every direction. This gives
us a sphere of light. Now we have observer B moving with speed v
relative to A and let the positions of A and B be the same for the
instant that light is sent out. Since the speed of light is the same
in every frame, he will also see a sphere of light. This gives us the
equation

—(cAt)? + (AX)? + (Ay)? + (Az)? = —(cAt)? + (AX') 2 + (Ay')2 + (Az')? .
(1)
The left hand side describes the sphere of light that observer A sees

and the right hand side the one that observer B sees. In the follow-
ing we will set ¢ = 1. Motivated by this we introduce the spacetime



Geodesic: As
straight as possible
in curved spacetime
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interval (As)? = —(At)? + (Ax)? + (Ay)? + (Az)?, which describes the
spacetime distance between two events. We write

(As)? = Nuv AxHAXY . (2)

with {x*} = (t,x,y,z) and the metric n,, = diag(—1,1,1,1). Until
now the distances Ax* were finite. The step to general relativity is to
make them infinitesimal and let spacetime be curved. What curvature
exactly means will be explained later. Then generally the metric will
depend on position in spacetime, though a position dependent metric
does not imply curved spacetime.” We end up with

(ds)? = g(x)uvdxHdx". (3)

The metric g(x), describes how spacetime is curved and for the
special case guv = Ny, which we call flat or Minkowski spacetime,
we recover Special Relativity.

Equation (3) describes the spacetime distance between two infinites-
imally separated events. To make this clear we look at a particle of
mass m. This particle moves on a curve C. To get the length of the
curve we add the spacetime distances from the start to the end of the
curve. In our convention (ds)? < 0 for physical particles. Thus we
define (dt)? = —(ds)?, then we integrate d:

T Tt Tt dxH* dxv
= = v 38 v — v————— ,
T L. dt Jn vV guvdxrdx Li \/9u I de dt, (@)

where we have parametrized the curve x"(t). A reparametrization of
the curve is always possible, but the special choice where the square
of the 4-velocity is one

2 _ dx(T)* dx(1), _ (5)
dt dt
is the proper time 7 and defines a preferred parameter along the curve
C.

The next step is to find out on what trajectories a particle moves
in curved spacetime. We take a given metric g, and calculate when
the proper time (4) is extremal. It turns out that this is the case if the
Geodesic Equation

x| dx P
dr2  *B dt dp
is fulfilled. The Christoffel symbols F&LB are defined by

=0 u,VHu* =0 (6)

1
FSV = EgpA (augv?\ +0vgun — a?\guv) (7)

and we will soon explain the covariant derivative V. The geodesic
equation (7) describes how a test particle will move in a given space-
time g,,v. The second part says that a geodesic is the curve where the

E.g. in polar coordinates g, depends on x, but we have flat space just in curvylinear
coordinates.
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derivative of its tangent along the curve vanishes, i.e. a geodesic is
the generalization of a straight in a curved manifold.

It is of importance to understand that in in the formulation of Gen-
eral Relativity Gravity is not a force. Particles always follow the path
that is as straight as possible, but since spacetime might be curved,
this path might be not a straight line, though no force is acting on the
particle.

The Christoffel symbols also appear when one defines the covariant
derivative, which is e. g. for a vector given by

VWY =0, VY + T VA, (8)

The covariant derivative is introduced here, because the partial deriva-
tive of a tensor does not transform as a tensor. The Christoffel sym-
bols are also no tensors. However the combination of the two terms
in equation (8) transforms like a tensor, i.e. the non-tensorial parts
cancel each other out in the transformation. It is important to note
that I' is a special choice by making the assumptions [30]:

1. V(T+S) = VT + VS,
2. V(T®S) = (VT) @S+ T®(VS),

3. Vu(T3,) = (VT) M\,

4. Vud =0,¢ for scalar ¢,
5. Fﬁv = Ff,‘u: no torsion,
6. Vguy = 0: metric compatibility.

Assumption (5) is a big one, namely that the torsion tensor TZ:V =
M, —TJ,, vanishes. There are theories which incorporate torsion and
it is even possible to formulate General Relativity only with torsion
and without curvature, called Teleparallel Gravity [32]. From these as-
sumptions and especially from the equation of metric compatibility
one can derive equation (7) for the Christoffel symbols I', which are
also often called Levi-Civita connection (if the torsion vanishes). In the
following we will restrict ourself to spacetimes without torsion.

Now we know how particles move when they are subject to a spe-
cific spacetime metric. But how do we determine the metric? It turns
out one can again use the action principle, but we need to do some
work in before. We need to get a measure for curvature, so what are
the effects of curvature?

* Loss of parallelism: Two (free) particles with initially parallel
momenta will not move on parallel lines. Parallel transporting
a vector in a closed loop will not yield the same vector.

¢ There no longer exist global inertial frames, only locally.
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We are going to parallel transport a vector along a closed loop and
measure the difference to the initial vector. We infinitesimally trans-
port a vector along A", then along BY. Afterwards we transport it
back along —A" and —BY. The difference in the vector should have
the generic form

5VP =RP . VIAHBY. (9)

The coefficient R?,y in equation (9) is the Riemann tensor, which is
of big importance in differential geometry. From the above consider-
ations we end up with

Vw, VyVP =RP VO (10)

ouv

and evaluating the covariant derivatives leaves us with

RP Gy = OulOL +TO TN — (e v). (11)

ouv uA' vo

The Riemann Tensor ng tells us all about the curvature. From it one
can construct the Ricci Tensor Rgy = Rgpv and the Ricci Scalar R = Rﬁ.
The Ricci Scalar leads us to the Einstein-Hilbert action

SEH:]KJd4XV_9 R, (12)

where g is the determinant of the metric and « is a constant in or-
der to make the action dimensionless (which will become important
when talking about the renormalizability of Gravity). The action equa-
tion (12) is not the only possible action, but it is the simplest one.
Variation of the action S = ﬁSEH + Sm yields the Einstein Field
Equations (EFEs)

1
Ruv - ERguv = SWGTuV ’ (13)

with the energy momentum tensor T, = _fzg g gsft/‘v. Adding a con-

stant to R gives rise to the cosmological constant A.

The left hand side of the EFEs describes how spacetime curves
due to the presence of matter/energy and the right hand side de-
scribes the matter distributions. With the Geodesic Equation (6) and
the EFEs (13) we know how matter moves and how spacetime reacts
to matter.

2.2 BLACK HOLES AND THE BREAKDOWN OF GR

Shortly after Einstein published his work on General Relativity the
German physicist Karl Schwarzschild found a solution that is now
called the Schwarzschild Solution [77]. It is mysterious how Schwarzschild
was able to find this solution, since at that time he was at war doing
ballistics calculations. Back then Einstein himself did not believe that
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an analytic solution existed. It is unclear how Schwarzschild could
have had the time and clarity to find a solution to them while at war.
Birkhoff’s Theorem tells us that:

Let the geometry of a given region of spacetime (1) be
spherically symmetric, and (2) be a solution to the Einstein
field equations in vacuum. Then that geometry is necessar-
ily a piece of the Schwarzschild geometry [61],

where the term vacuum has led to much confusion, and will be ex-
plained below. The Schwarzschild geometry is given by

—1
ds? = — (1 — 2M> dt? — (1 — 2;“) dr? +r2dQ?, (14)

T

with the angular part dQ? = d6? +sin® @ d$?. Outside a spherically
symmetric mass distribution the metric is always Schwarzschild, this
is what was meant in the quote above.

There has been a lot of confusion about the source of the curva-
ture of this solution (14). Vacuum means T,, = 0, but what curves
spacetime? One reason for this confusion might be the derivation of
the metric. One starts with vacuum (T, = 0) and calculates a generic
spherically symmetric metric. The integration constant M can be iden-
tified with the mass by requiring that the weak field limit gives New-
ton’s potential. The problem is that one only has the manifold without
one point, namely the singularity. A careful calculation with distribu-
tions shows that actually the Schwarzschild geometry is curved by a
point source, namely [17, 66]

TR) = -Ms® (). (15)

Often people forget about the distributional nature of the mass den-
sity and think that the Schwarzschild metric is a solution in vacuum
everywhere [31].

The Schwarzschild Metric (14) has two singularities:

e v = 2M = rg: This is the Schwarzschild radius. In Schwarzschild
coordinates as in equation (14) there is a singularity, but it can
be removed by adopting Kruskal-Szekeres coordinates. It is only
a coordinate singularity. Nevertheless something interesting hap-
pens here: Once one gets closer than rs, there is no way back.

What falls in, stays in. Not even light can escape, thus the name
black hole.

e v = 0: Here we have a true singularity. A simple check reveals
RHYPOR Voo = 48%# — o0. This is connected to the fact that
there is a delta source at the origin. It is reasonable to believe
that Quantum Gravity would do something with this singular-
ity. One could say that here General Relativity announces its

Schwarzschild is no
vacuum solution!

Singularities in
Schwarzschild
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own demise. Quantum Gravity considerations, e.g. the Gener-
alized Uncertainty Principle (GUP, section 5.3) or Noncommu-
tative Geometry (section 5.4), handle this central singularity by
smearing out the delta source, although in the GUP case the
singularity is only smoothened and not completely removed.

This singularity might be one of the most urgent problems why
a theory of Quantum Gravity is needed.

The important point is that in Black Holes General Relativity and
Quantum Mechanics both have to play a role and thus Black Holes
are a good candidate for testing Quantum Gravity.



QUANTUM FIELD THEORY

In this chapter a small introduction/review of quantum field theory
will be given. The quantization will only be performed in the Feyn-
man Path Integral formalism and not the canonical or the Schwinger
way. A small teaser of renormalization will be given in view of the
non-renormalizability of General Relativity. Of special interest is the
notion of propagator, since the spectral dimension is basically a prop-
erty of the propagator.

3.1 QUANTIZATION OF THE SCALAR FIELD IN THE PATH INTE-
GRAL FORMALISM

Many books on Quantum Field Theory [20, 72, 76] are using the met-
ric N,y = diag(+1,—1,—1,—1), however here we will stick with the
one we used in General Relativity, namely n,,, = diag(—1,+1,+1,+1)
and most of this chapter will be based on [83].

We start with a complex scalar field ¢. The field ¢(x) = $(t,X) has
one complex value at every point x in spacetime. The Lagrangian of
the free field theory of a scalar field is

Lo(d,dud) =0, ¢ —m?d*d, (16)

which determines the action S = [ d*x £. Note that S is scale invari-
ant only if m = 0. The equation of motion from the Lagrangian (16)
is the Klein-Gordon equation

(O4+m?)d(x) =0, O=-n"Vdmudy. (17)

We have the path integral

Zo[J] = (0l0)y = JD¢eifd4x[Lo+]¢] 8)

_ 3 Jda X T()A X (x') (19)

where D¢ means that one integrates over all possible field configura-
tions and A(x —x') is the Feynman propagator

d*x eik~(xfx’)
(2m)* k2 +m2 —1ie’

Alx —x") :J (20)

11
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which is a Green’s function of the Klein-Gordon equation (16), i.e. it
fulfills

(O+m?)A(x—x") =8 (x—x'). (21)

In equation (20) the ie moves the poles of the integrand such that
the Feynman propagator is obtained. Using another pole prescription
gives another propagator with different properties.

The Feynman propagator is the two-point function

OTo0x1)6(x2)10) = 1ALk —x1), 22)

where T means time ordering. Equation (22) is consistent with the ie
pole prescription. General n-point functions can be generated from
Z[j] generates the generating functional Zy[J] by

n-point functions
1 9 1 96
Zol]] (23)

18](x1)  18J(xan) j=0

1
= ey Z A(Xi1 _Xiz) cee A(Xian _Xizn) .

pairings

OTd(x1) -+ - d(x2n)l0) =

The last equality in equation (23) is also called Wick’s theorem.
For interacting field theories one adds an interaction term £ to the

Lagrangian
L(b,0.¢0) =Lo+ L1, (24)
for example £1 = —%d)“(x) in the so called d)4—theory. Usually one
cannot evaluate the path integral directly, thus a trick is used:
Z[ﬂ = JD¢eiId4X(LO+LI+J¢) (25)
— eifd4XLI<%zs]?x)> JD¢eifd4X(Lo+Jd>) (26)
. 1_3
= etaaltats) 7 @)
_ eifd4xﬁ1<17 6]?)()) e% [d*xd?*x J(x)A(x—x")](x') ) (28)

The trick is to write ¢ in the interaction term as derivative with re-
spect to the source J. Then the exponential with the derivatives can
be applied order by order (Taylor expansion) to Zy[J]. Feynman dia-
grams are nothing else than a nice way to do a double Taylor expan-
sion of equation (28) with pictures. The order of expansion of the first
exponential gives the number of vertices and the second exponential
gives the number of propagators. This is the idea behind perturbation
theory in Quantum Field Theory, which only converges for small cou-
Feynman diagrams pling constant (A in this case).
are a double Taylor In order to describe other particles like fermions, photons and glu-
expansion of Z[] ons other kinds of fields need to be introduced, but the idea stays
the same. Here we will not go into detail how to calculate scattering
amplitudes, but address one more important point: Renormalization.
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3.2 RENORMALIZATION

In calculations one quickly encounters terms involving A(0), i.e. a
propagator that ends where it started, a loop. A look at the definition
of the propagator shows that A(0) diverges in the ultraviolet (large
momenta). The first step to handling those infinities is to separate
the finite part from the infinite for example in A(0). This is called
regularization.

REGULARIZATION: In [83] an ultraviolet “cutoff” is implemented
by changing the propagator to

d4k eik-(xfy) /\2 2
( > (29)

Alx —
(x y)%J(Zn)“kz—i-mz—ie kZ2 + A2 —ie

This extra term goes away in the limit A — oo and for finite A it
acts as a momentum suppression in the integral. For A > m the loop
integral (29) with x =y goes like [’ dkk3A% ~ A% and

A0) = 1 6;2 A?. (30)

Of course this still diverges if A — oo, but we now found a way to
extract the infinity and later we will show how to handle it. Interest-
ingly the factor in equation (29) is the square of the factor that nat-
urally arises in the context of the Generalized Uncertainty Principle
(GUP), see section 6.4.4.

RENORMALIZATION: Another way of extracting the infinities is
dimensional reqularization. Here we will give a quick sketch of dimen-
sional regularization in ¢p#-theory and what renormalization is about.
In d-dimensional spacetime it turns out that the singularity of the
propagator is a simple pole in d —4. Introducing an arbitrary mass
parameter p we get [76] for the O(g)-correction to the free propagator

Q 1 4_dJ dip 1

:EglvL (Zﬂ)dm’ (31)

which, introducing d =4 — €, can be shown to be [76]

- igm?
- lémte

+ finite . (32)

The (connected) 2-point function ng)(p) is the free 2-point function
Go(p) plus loop corrections. Summing all loop corrections one ob-
tains

(2) i
G = ,
¢ p2—m?2—Z(p)

(33)

13
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with the self energy L(p) given by the sum of all 1PI (one particle
irreducible) graphs

1Z(p)=j—+ ﬁ+—@—+.... (34)

Looking at equation (33) we recognize that the self energy changes
the mass to

m? — m?+Z(p). (35)

To O(g) the self energy is given by equation (32). Now we interpret the
original mass m to be infinite and of no direct physical significance

2

me = mj + mnge%m% (1+16g26> ’ (36)
where the second step is correct in order O(g). The renormalized mass
m; is finite. The same game can be played for the coupling constant
and for second order one needs something called “wave function
renormalization”, but the idea stays the same. Another way of achiev-
ing the same thing is by not changing m to m;, but by introducing
counter terms in the Lagrangian with the same effect. If this can be
done to all orders then the theory is renormalizable.

RENORMALIZABILITY: Following [83] we are going to use dimen-
sional analysis to give an argument for the non-renormalizability of
General Relativity. Remember that h = ¢ = 1. Counting in dimensions

of mass we have [m] = +1, [x*] = —1,[0"] = +1,[d4x] = —d. Since
ZJl = [Dpe’ = [Dpexp [i [dIx(L + )] the action S must have
dimension zero [S] = 0, because it appears in the exponent. Then

S=] d4xL leads us to [£] = d, [¢] = %(d — 2). Interaction terms like
gn¢™ require

1
[gnl =d—5n(d—2). (37)

The dependence of a scattering amplitude on the coupling g must
be given by a dimensionless parameter g- m~!9) or for high energies
(s > m?) g- s~ 1912 with the Mandelstam variable s. Here we see,
that if [g] < O the term depends on s to a positive power and diverges.
Such theories are non-renormalizable. From equation (37) we also see
that in d = 4 dimensions theories with n > 4 fail. Thus for example
¢° theory is non-renormalizable.
Gravity has the Einstein Hilbert action (12)

szljd“xﬁk (38)
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With [R] = 2 we have that also [k] = 2 in order to render S dimension-

less. Thus the coupling constant 1 has dimension —2 and the theory

is power counting non-renormalizable. Note that if spacetime had

only (14 1) dimensions, then the coupling constant would be dimen-

sionless and the theory power counting renormalizable. This is the

reason why it is so exciting that in many approaches one finds that

at the Planck scale (high energies) spacetime seems to be effectively

two dimensional. Then Gravity would be renormalizable! General Relativity is

Thus there are at least three possibilities of solving the problem of  non-renormalizable

non-renormalizability for Gravity:

1. Quantum Gravity is perturbatively nonrenormalizable, but maybe
just perturbation theory breaks down. In perturbation theory
one would need an infinite amount of parameters. Weinberg
realized that if the theory at high energies only needs a finite
amount of finite parameters then everything is fine [87]. This is
called Asymptotic Safety.

2. A whole new theory of Quantum Gravity is needed and the
naive way of quantizing Gravity is doomed.

3. At the Planck scale spacetime becomes two dimensional and
Gravity is renormalizable.

This thesis is about the third possibility and the dimensional flow, i.e.,
how the very dimension can depend on scale.






Part II

THE SHOWCASE

This part is all about what happens when General Relativ-
ity and Quantum Theory (QT) meet. An introduction to
Quantum Field Theory in curved spacetime and to String
Theory will be given. Then the focus will be on the very
notion of dimension. Not only does String Theory — a can-
didate theory for combining GR and QT — predict 10 or
11 dimensions, but also there exist good arguments that
at the Planck scale spacetime itself will be fluctuating so
rapidly that it cannot be described by the methods of GR
anymore. We will show arguments that the dimensional-
ity of spacetime in this very rapidly fluctuating regime
will change and that the spacetime will become a fractal.






COMBINING GR AND QFT

This chapter is about the combination of General Relativity and Quan-
tum Field Theory. String Theory, Loop Quantum Gravity and other
proposals basically all try to achieve this goal. In the following sec-
tions it will be shown what the features and problems of the combi-
nation of GR and QFT are and why maybe a fundamentally different
theory (like String Theory, LQG, ...) seems to be needed.

4.1 QFT IN CURVED SPACETIME

Quantum Field Theory in curved spacetime means that fields are
quantized on a curved background. The background itself is not quan-
tized, only the fields on the background are quantized and no backre-
action to the curvature is considered. For free matter fields interacting
with gravity (gravitons) truncating at the one loop level is equivalent
to one loop quantum gravity [20], i. e., first order quantum corrections
to GR. This is because the one-loop calculation contains all the terms
of the “complete theory” up to order h.

SCALAR FIELD IN CURVED SPACETIME: QFT in curved spacetime
has some striking differences to QFT in Minkowski space. In the fol-
lowing we will develop some of the new features by means of a free
scalar field [20].

The Lagrangian density is generalized to

L(x) = %\/—g(x) g(xJuv(Vad(x)(Vyd(x)) — %[m2 +ER(X)] D% (%),
(39)

with the metric g(x)"", its determinant g(x), the covariant derivative
V.. (which is in the case of the scalar field the same as the partial
derivative) and the Ricci scalar R(x). The coupling & of the field to the
Ricci scalar is a priori unknown. Special choices are & = 0 (minimal
coupling) and & = (n—=2)/4(n—1) (conformal coupling).

The vanishing of the variation of the action S = [d™xL(x) gives
the Klein Gordon Equation in curved spacetime (0 = g"*VV V)

[Ox +m? + ER(x)] d(x) =0. (40)

19
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The notion of
particle number is ill
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COMBINING GR AND QFT

The problem or new feature arises when the field ¢ is expanded in
modes. Say we expand the field in a complete orthonormal set of
mode solutions u;(x)

o0 =) [aawi(x) +afui], (41)

i

with the usual properties. The standard way now is to identify posi-
tive and negative frequency modes. Then the operators a; and a} are
identified as lowering and raising (annihilation and creation) opera-
tors respectively.

In GR one has to identify the positive frequency modes with respect
to a Killing vector (d¢ in Minkowski space). We can state that if some
timelike Killing vector field & exists, then positive frequency modes
u; can be identified by

Leuy = —iwy;, w>0 (42)

where L is the Lie derivative with respect to the vector &.

Generally such a Killing vector will not exist, but even if we have
one, new phenomena appear: Because of the principle of general co-
variance physically it does not matter what coordinate system is used.
Thus let us use another complete orthonormal set of modes 1i;(x) and
expand the field in them. There exists the possibility of relating the
two sets of modes via a Bogolubov transformation (see [20])

aj = Z (ajidj + Bj*iﬁD , (43)
j

6 3 (s ) w

1

Since in general 3;; # 0, the two observers will not even agree on the
vacuum

aif0) =) BT #0, (45)
j

which is a result of the mixing of creation and annihilation operators
in the transformation. The expectation value of the number operator
N; = ai a; for the ti-vacuum [0) is

(0IN3/0) = Z|f3ji|2- (46)

)

Two different observers will not agree on the particle number and not
even on the vacuum. Where one observer sees vacuum, the other sees
a boiling see of particles.

This means that the very notion of particles is not a good concept in
curved spacetime. One might ask why we still count particle numbers
in flat space. The answer is that Minkowski space has as a symmetry
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group the Poincaré group and inertial observers agree on the vacuum
state (and particle number). As long as 1i; are only a linear combina-
tion of u; and not uj then B4; = 0 and both will agree on the vacuum.

Disagreements on the vacuum arise also in flat space. It is suffi-
cient to look at a particle detector on a trajectory with constant accel-
eration’ a*. If we take as vacuum the Minkowski vacuum then this
detector will see a bath of thermal radiation (this is called “Unruh”
effect) with temperature [20]

a
T= .
ZT[kB

(47)

From the Unruh effect one quickly gets to the “Hawking temper-
ature” [45] of a Schwarzschild Black Hole. Assume the vacuum is
what a free falling observer would see as vacuum. Close to the hori-
zon of the Black Hole a static observer would need to be accelerated
with [30]

- GM
- 1/T—2GM
in order to be static. An observer at infinity will see thermal radiation

emitted from the Black Hole that is proportional to a~! and (includ-
ing the redshift) we arrive at

(48)

K

T=—
2’

(49)
with the surface gravity k = 1/46M. Denoting the mass of our sun
with M and plugging in the numbers one gets as a quick rule of
thumb [55]

he

M
ToH=-————~617-108 [ -2 ) K,
BH = 8k GM <M ) (50)

BH

which leads to a temperature of ~ 10~ 7K for a Black Hole of 10 solar
masses, much less than the Cosmic Microwave Background of about
3K.

GRAVITY IS NOT QUANTIZED: We stress again that in this section
Gravity is not quantized. We were solely looking at quantum fields
propagating on a curved background. Also this is only valid as long
as the backreaction of the fields on the curved background is ne-
glected. Matter does not only respond to gravity, but it also curves
spacetime, i.e., it also creates gravity. QFT in curved spacetime ne-
glects the latter one. There are very good reasons to believe that Grav-
ity should be quantized at the fundamental level. General Relativity
is in remarkable good agreement with observations, but at least at
the Planck scale it breaks down. Gravity is troubled by problems like

1 this is commonly dubbed “Rindler space”.
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singularities and the information loss problem. Quantum theory and
thus a quantization of gravity might be the solution. Other (and more
detailed) arguments for why the gravitational field must be quantized
are given in [3, 55].

4.2 QUANTIZATION OF GRAVITY: MAIN APPROACHES

Quantum Field Theory in a curved background makes interesting pre-
dictions as shown in the previous section. A full Theory of Quantum
Gravity however is a much bigger task, also because of the paucity
of experimental data. There are many approaches that people are cur-
rently investigating and this section is to give an overview.

Claus Kiefer organizes the main approaches as follows [54]:

* Quantum General Relativity: One starts from classical GR and ap-

plies quantization rules as for example with the electromagnetic
field.

— Covariant approaches make use of 4d covariance and include
perturbation theory, effective field theories, renormalization-
group approaches and path integral methods.

— Canonical approaches apply the Hamiltonian formalism and
include Quantum Geometrodynamics and Loop Quantum
Gravity.

e String Theory: The basic idea is that all particles (and thus also
forces) are some excitation of a fundamental object that is a
string. Chapter 5 gives a short introduction to String Theory.

¢ Other approaches like quantization of topology and causal sets.

Here a few examples of those theories will be described in order to
give a feeling for the problems of Quantum Gravity and why we still
do not posses a full theory.

PERTURBATIVE QUANTUM GRAVITY AND ASYMPTOTIC SAVETY:
One starts by splitting the metric into a background part g, and
a small perturbation h.:

Juv = Guv T hyv . (51)

This framework is an effective field theory for Quantum Gravity and
for example gravitational waves can be calculated from the classical
version. For the quantum theory the field h,, is quantized as in any
other Quantum Field Theory. As mentioned in section 3.2 this the-
ory is non-renormalizable. To every loop order there are more di-
vergences that need to be renormalized and appropriate parameters
need to be introduced and fixed by measurements. In the end an infi-
nite amount of parameters would be needed which makes the theory
useless [55].
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Even if this ansatz gives a non-renormalizable theory, it might give
useful results for low energies. A high energy cutoff is used and be-
yond this one does not expect the theory to hold any more. This
framework is called effective field theory and it is possible to calculate
first order corrections to the Newton potential [21].
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Also there is the possibility that Gravity in the end is non-perturbatively

renormalizable, i.e. a nontrivial UV fixpoint in the renormalization
group flow could cure divergencies. Thus the hope is that only per-
turbative description breaks down for Gravity, but not the Quantum
Theory itself.

The other way of quantization is by means of path integrals. Also
in this approach gravity makes problems [55]. The path integral

Zlgl = JDQW (x)eiSlouv()I/M -

even in the euclidean formalism t — —it does not converge, because
it is unbounded from below. One attempt of doing the Lorentzian
calculation is called dynamical triangulation. Here spacetime is divided
into small pieces called simplices they are numerically summed via
Monte Carlo calculations.

LOOP QUANTUM GRAVITY: A similar framework is Loop Quan-
tum Gravity (LQG) where also Monte Carlo simulations are used
heavily. The idea behind LQG is that space itself is granular at very
small scales because it is quantized. Space and time are just semiclas-
sical approximations and quantum states are no quantum states on
spacetime, but quantum states of spacetime [75]. In this framework
space is a network of loops called spin network and its time evolution
has the name spin foam. LQG still lacks the limit to GR (semiclassical
limit), but it describes a quantized spacetime.






STRING THEORY

Quantum mechanics brought

an unexpected fuzziness

into physics because of quantum uncertainty,
the Heisenberg uncertainty principle.

String theory does so again

because a point particle

is replaced by a string,

which is more spread out.

— Edward Witten [35]

In String Theory the basic idea is that there are no point particles,
but only one kind of “matter”, namely strings. Those relativistic,
quantum mechanical strings can vibrate and the different vibration
modes correspond to different elementary particles, see figure 1. A
string endpoint can also meet its other endpoint which gives rise to
the distinction of “open strings” and “closed strings”. Closed strings
always exist in the theory one massless mode of the closed string is
identified with the graviton.

Figure 1: Different excitations of strings give different particles.

In this chapter a short introduction to String Theory will be given.
The goal is to show the following points that will be important for
the rest of the thesis:

* The necessity of extra dimensions in String Theory,

* Why String Theory introduces a minimal length,
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string action =
world sheet area

STRING THEORY

e How the Generalized Uncertainty Principle emerges from the
scattering of strings,

¢ What connects noncommutative geometry to String Theory.

The biggest part of this chapter is based on the String Theory text-
book [18].

5.1 BRIEF INTRODUCTION TO STRING THEORY
5.1.1  The “Why”

In the introduction to this thesis it has already been shown that there
are problems unifying Quantum Mechanics and Gravitation. Why is
String Theory such a big research area and why are people so in-
terested in it? There are some convincing general features of String
Theory:

THE NATURAL INCORPORATION OF GRAVITY: First when String
Theory was introduced to describe the strong nuclear force, people
could not get rid of a spin 2 particle that they did not want in the
theory. It turns out that this particle is the graviton and String Theory
naturally incorporates Gravity. Quantum Field Theory has problems
with Gravity, but String Theory even requires it.

A NATURAL UV CUTOFF: Because of the spatial extension of strings,
as opposed to point particles, the interactions do no longer happen at
a single point, but are also extended. There are no short-distance sin-
gularities. This is connected to renormalization, minimal length and
the GUP.

5.1.2 The “How”

As a starting point an action for the string is needed. Recall that the
action for a relativistic particle is basically its world line length. Thus
it is very natural to have the world sheet area playing the role of the
action in String Theory. Let the string be parametrized by 7, o that are
also written as oo, o1 and X" (7, o) give the position in D-dimensional
spacetime. This is shown in figure 2. The “Nambu-Goto action” is in
a flat background metric

SNG :—TJdeT\/(X-X’)Z—XZX’z, (53)

where X - Y = X"Y,, is the scalar product. The dot and prime denote
a derivative with respect to T and o respectively. This action contains
a square root and thus is not well suited for quantization. One can
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X[)

X"(o,7)

Figure 2: The worldsheet is parametrized by T and o.

find a classical equivalent action called the “Polyakov” action. The
modern name for it is the “string sigma-model action”

;
5. :_zjdzm/_hhtxﬁa“x.aﬁx. (54)

The indices o and 3 take values T and o (or equivalently 0 and 1). The
metric h*P is the world sheet metric and h denotes its determinant.
One recovers the Nambu-Goto action by plugging the equations of
motion for h*P into S,. Thus the two actions are classically equiva-
lent.

Since there is no kinetic term for h,g, the world-sheet energy-
momentum tensor Toqg vanishes

2 1 8Se
Tap = TT /h 5hoP (55)
1
:a“x.aBX—ihaﬁwéayx.az—,X:o. (56)

It is possible to use the symmetries’ of S, in order to gauge hyp =

Nap = diag(—1,1).
The equations of motion are

0?2 02
AV I T T v TR
0,0%X < 372 + 602> X 0 (57)
Because a gauge has been chosen, T,y = 0 has to be imposed as
constraint equations

Tor =Tio=X-X'"=0,

1 .
Too=Tq1 = 3 (X2 +X"?) =0. (58)

Poincaré, Reparametrization and Weyl, here the last two are needed. By fixing hyp
a residual symmetry, namely reparametrizations that are also Weyl transformations,

remains.
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When deriving the equations of motion from the action S by vari-
ation and 8S = 0 boundary terms appear. Thus suitable boundary
conditions have to be chosen. The possibilities are

e Closed string: X" (o, 1) = X*(0 47, T)

=0, no mo-
o=0,7T

mentum is flowing through the endpoints of the string.

* Open String, Neumann boundary conditions: X|,

* Open String, Dirichlet boundary conditions: 6X“‘ = 0, mean-

o=0,7

ing that the endpoints of the string are fixed at D-branes.

For an open string one can choose Neumann or Dirichlet boundary
conditions for every u separately. In light-cone coordinates

Gi:T:tO', (59)

the equations of motion (57) and the constraints (58) are

0=10,0_X", (60)
O - T++ - a+Xua+Xu 7 (61)
0=T _ =0 X"3_X,, (62)

and T, _ = T_; = 0 is fulfilled identically.

Equation (57) and equivalently (60) is a wave equation solved by
XH"(0,1) = Xk (t—0) + XI'(t+ 0). For simplicity we will focus on the
closed string. Expanding X" in modes

1 1 i i
Xk = sx*+ S 2pH(t—0) + 1 Z I o—2in(v-0) (63)
2 2 2 n
n+#0
Xt = Ly 112]3“(’(—!- o)+ 11 > S 2in(ria) (64)
L2 2° 2 Sn#) n ’

with the center-of-mass position x* and the total momentum of the
string p*. Since Xk and X' have to be real, «*,, = (a«})* and &", =
(& )*. For historical reasons there are three equivalent constants that
are often used: The string length s, the string tension T and the Regge
slope o’. Note that the prime in o’ is just a label and no o-derivative.
The three constants are related by the equations

i

T and ?S =uo'. (65)

= 2o
It turns out that ak, = ﬁocﬁl and ol = ﬁo&m fulfill the same

algebra as the raising/lowering operators for a harmonic oscillator

[ak, axl] = [ak, anT =n"Yémn, m,mn>0. (66)
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The important difference to the harmonic oscillator is that [a%l, a?TI] =

—1, leading to negative norm states like
<O ‘ a® aft ’ O> =—1. (67)

States with a negative norm would violate causality and unitarity
and are thus a bad sign. Nevertheless it is possible to handle them.
In order to get rid of those negative norm states one first needs to
introduce the Virasoro generators

1 1

Lim =

N
N

o0
Z Xm-n- -&n and L, =
n=—oo

D> &mon-&n. (68)
n—=——oo

One can show that T, = 0 needs L,,, = 0 (classically).

For the quantization here only a brief sketch will be given. The
details can be found in [18]. From the classical theory we do not know
in what order the «!y should be. Because of this we normal-order the
Virasoro generators

1T & . T &
Lm:i Z Tm_n-&n: and L=z Z T &mom o K

2
(69)

n=-—oo n=—oo

Only L, is affected by normal-ordering, it gets an additive constant a
which represents our ignorance of the order of operators. Also quan-
tum mechanically the constraint L,, = 0 becomes

Linlp)=0 for m>0 and(dp|L,n =0 for m<0, (70)

since L_., = Lin. The mass-shell condition is

(Lo —a)lp) = (Lo —a)lp) =0, (71)

leading to the level-matching condition

(Lo —Lo)lp) =0, (72)

relating left- and right-moving modes. Equations (70) and (71) char-
acterize physical states in the quantum theory.

Without proof (see e.g. [41] or [18]) we state that all negative norm
states decouple from the physical states and the physical states all
have positive norm for the special case a = 1 and D = 26. This special
case in Bosonic String Theory goes by the name “critical”. It is the
reason why String Theory predicts 26 dimensions. If Supersymmetry
is included (Super String Theory) the same reasoning gives D = 10.

The spectrum of Bosonic String Theory contains

Historically «’ was the slope of the squared mass as a function of spin, so in this
sense the prime was a derivative.
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a Tachyon with M? < 0 which is removed when Supersymme-
try is included,

¢ amassless spin 2 particle which can be identified with the gravi-
ton3,

* a photon (open string),
¢ Dilaton, Kalb-Ramond field, ...

We have seen that Bosonic String Theory predicts 26 dimensions
when quantized in the form of covariant quantization. Another method
is light-cone quantization which also gives a =1 and D = 26. Here we
summarize the two quantization schemes [60, 86].

* Covariant quantization is manifest Lorentz invariant. All X" are
treated as operators with commutator relations and the con-
straints Tog = 0 are imposed on the states. This method is
analogous to the Gupta-Bleuler quantization in Quantum Elec-
tro Dynamics and introduces negative norm states which can
be removed by the correct choice of a and D.

* Light-cone quantization does not have negative norm states, but
also is not manifest Lorentz invariant because of the appear-
ance of a Weyl anomaly. A gauge is chosen before quantization
and the constraints are solved in the classical theory. Thus only
the physical degrees of freedom are quantized and no negative
norm states appear. In the end Lorentz invariance is recovered
by setting a =1 and D = 26 which cancels the Weyl anomaly.

5.2 EXTRA SPATIAL DIMENSIONS

As motivated in the above section, String Theory needs extra dimen-
sions (XDs) for being mathematically consistent. The need for XDs in
String Theory basically arises because of the relative minus sign of the
time coordinate. Thus additional spatial dimensions are considered,
because an additional time dimension would only make the situation
worse. Timelike extra dimensions have been considered in the litera-
ture and even proven to give a well-posed initial value problem [34],
but here we will only consider spacelike extra dimensions.

The first theory with XDs was by Nordstrom in 1914 [68]* in an
attempt of unifying gravity with Special Relativity before Einstein’s
General Relativity. Kaluza and Klein [52, 56] introduced an extra spa-
tial dimension in order to unify gravity and electromagnetism. This
theory has some problems and is no longer considered in its original
form, but the idea has survived.

3 Actually massless spin 2 particles are equivalent to General Relativity [86].
4 translated version from 2007 given here.
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Figure 3: Plot of the Generalized Uncertainty Principle according to equa-
tion (73) for different values of 3. One can see that there exists a
minimal position uncertainty depending on f3.

Of course the question arises: If there are more than 3+1 dimen-
sions, why do we not see them? The standard answer is that they are
curled up, i.e. compact, and their radius is so small that they have
not been observed yet. The way of compactification determines many
properties of the theory. In contrary to these universal extra dimensions
are the ADD-extra dimensions [13] that allow particles to only live
on a 4D submanifold (brane) and gravity can reach into the whole
“bulk”. The ADD model is a candidate for solving the weak hier-
archy problem>. Another model has been proposed by Randall and
Sundrum [73] and it is often called warped extra dimensions.
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5.3 GENERALIZED UNCERTAINTY PRINCIPLE AND MINIMAL LENGTH

String Theory introduces a generalization [6, 57] of the Heisenberg
Uncertainty Principle (HUP). This Generalized Uncertainty Principle
(GUP) has the form

AxAp > % (1+B(Ap)?) (73)

and there are many indications that such a modification is necessary
in the Quantum Gravity regime.

MINIMAL LENGTH: The basic idea is that equation (73) has a min-
imum (see figure 3) for Ax, namely Axpin = /B . Thus the minimum
of the position uncertainty is nonzero and the theory contains a mini-
mal length. When strings are scattered they do not interact at a single
point, since the string has an extension. Thus one can argue that the

The weak hierarchy problem is the strange fact that gravity is about 24 orders of
magnitude weaker than the electroweak force.
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GUP is a way to introduce a minimal length (motivated by Quantum
Gravity) into Quantum Mechanics. The idea of a minimal length is
not so far-fetched, even Heisenberg [46], Pauli [71], Snyder [80] and
Yang [9o0] have thought about it. A review of minimal length scale
scenarios and how in different theories a minimal length emerges is
given in [50].

GEDANKEN EXPERIMENT: The HUP appears in the gedanken ex-
periment of the Heisenberg Microscope. Including the gravitational
force a modification in the form of the GUP arises [2]. The modifica-
tion is due to the energy of the photon. When trying to probe smaller
distances, photons of higher energies are used, but eventually their
energy becomes so large that they disturb spacetime strong enough
to influence the measurement.

More easily imagine the scattering of two particles. Bigger energy
relates to higher spatial resolution®, i.e. smaller Ax. If the energy be-
comes large enough, eventually a Black Hole will form. Thus no dis-
tances smaller than this Black Hole can be probed. The radius of a
Schwarzschild Black Hole is rg = 2M in natural units and since the
mass is related to the momentum of the photon we arrive at a grav-
itational uncertainty Axg ~ Ap. The GUP is obtained by adding the
usual HUP Ax ~ ﬁ and the gravitational uncertainty linearly.

STRING THEORY: The first argument for the GUP from String The-
ory is as above mentioned that strings do not interact at a single point.
Another one was developed by Susskind in [84, 85] and summarized
in [50]. Looking at the string in light-cone gauge, its transverse exten-
sion of the ground state is (AX)? ~ 12log(lsE). In the longitudinal
direction one gets

2 L) 2

(AX_)" =~ P E-. (74)
+

Again adding the HUP and the above uncertainty?, considering E ~ p

for high energies, we arrive at the GUP. Also from studies that looked

at the scattering of strings [5, 42] the same conclusions can be drawn.

OTHER THEORIES OF QUANTUM GRAVITY: A minimal length (and
thus also the GUP) arise in other theories of Quantum Gravity, too [50].
For example Loop Quantum Gravity [75] has a minimal area and vol-
ume which is a strong indicator for a minimal length.

6 in the sense of the usual HUP.
7 adding the AX_-uncertainty, since it grows faster with energy/momentum.
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5.4 NONCOMMUTATIVE GEOMETRY

When a physicist talks about Noncommutative Geometry (NCG), the
implementation of some kind of “fuzziness” of spacetime in the form
of noncommuting coordinates

X', x] =109, oY =—o't, (75)

is meant. Although even the founders of Quantum Theory considered
noncommuting coordinates in order to cure infinities®, NCG started
being researched again when it was realized that in certain circum-
stances in string theory the target spacetime coordinates become non-
commuting [78, 89]. In NCG a minimal length arises since the matrix
0Y discretizes spacetime analogue to how phase space is discretized
by the Planck constant h. A large review of NCG and its applica-
tions with special attention to Black Holes is [64]. For the purposes of
this thesis it is enough to note that the effects of NCG can be imple-
mented by a modification of the momentum measure of the form [64,
79] exp (—972) with 0 being the average magnitude of the elements
of Y.

5.5 STRING AND P-BRANE PROPAGATOR

In section 6.4 we will be talking about the spectral dimension which is
deeply linked to the notion of a propagator and especially the “heat
kernel”. In this section an introduction to the closed bosonic string
propagator in a loop space representation [10] will be given as well
as the generalization to p-branes [12].

STRING PROPAGATOR: Here another way of looking at the dynam-
ics of a string is taken. Other than the usual approach of quantizing
the string from the Polyakov action (54), in [10] the space of all possi-
ble loop configurations (loop space) is looked at. I.e., we are looking
at a non self-intersecting spatial loop Cy in loop space evolving to
a final, also non self-intersecting loop C. Basically the Quantum Me-
chanics of strings in this loop space is developed in the Hamiltonian
formalism. The propagator is derived by a path integral approach
and is in agreement to a derivation using a loop space functional
wave equation approach (both in [10]).

The resulting closed string propagator in loopspace is given by a
integral over an “area-lapse” A of the kernel K

1 i

G(C, Co) =WL dA e T2 K(x(s), xo(x); A) . (76)

The infinities were handled by renormalization and noncommutativity was no
longer needed.
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The Kernel K can be computed to be

m? : im2 54y (C_Cy)E iy (C—Co)
K(x(s),xo(s);A) = A eThA 0)&py ol (77)

where X"V is defined as the change of the oriented surface element (or
loop coordinates) o

oY (C) E% xHdxY, (78)
c
IHY(C—Co) = a*V(C) — o™V (Co), (79)

and m? = 1/2na’. Actually K(x(s),xo(s); A) does not depend on s, but
is a functional of the functions x(s) and x¢(s). The proper area A of
the world sheet takes the role of an evolution parameter. The kernel
fulfills the kernel wave equation

in2 K(x(s), xo(s); A) =

0A
1
hZ 1 > 1 ds 52
T omZ (L ds Vix J PONTTIIIME )K(X(S)IXO(S)/A) ,
(80)
and has the initial value
K(x(s),xo(s); A =0) = d(x —xo), (81)

where the right hand side is a functional delta, i. e. it is is only nonzero
when the two functions are the same. With equations (76, 8o, 81) we
see that the propagator fulfills

(L)

The 6(C — Cy) is the same as in equation (81), only x(s) has been given
the name C. Equation (82) is a Klein Gordon type equation integrated
over the whole string. It is noted [10] that the propagator (76) with the
kernel (77) are exact solutions and there has been no approximation
in the derivation.

—1

J1 ds 52
Vx/2 OxH(s)dx . (s)
(82)

P-BRANE PROPAGATOR: Here we follow [12, 15] and also adopt
h = 1 as opposed to the previous part on the string propagator. In
order to generalize the string propagator (76) to p-branes one makes
two approximations [12, 15]:

* The minisuperspace approximation from Quantum Cosmology
allows the separation of the center of mass dynamics from the
deformations of the p-brane as we will see in the resulting prop-
agator (83).

+m*| G(C,Cy) = —58(C—Co).



5.5 STRING AND P-BRANE PROPAGATOR

¢ The quenching is an approximation from lattice QCD where the
weak quark flavours are ignored. Basically one looks at the sys-
tem restricted to a large box and quantizes only long wave-
lengths, leaving short wavelengths “frozen”.

The resulting propagator for a p-brane in the quenched minisuper-
space approximation

Gy (x —x0,0) = — J ds €™ (PHIK L (x — o3 8)Kp (035) (83)

is not so different from the one corresponding to a string (76). The
“effective point particle mass” My is defined as

Mo=mp 1V, (84)

with the brane tension m,, ;1 and the proper volume V,, of the p-dimensional

boundary of the brane world manifold. The p-brane propagator (83)
contains two kernels: The center of mass kernel

D
M 2 My(x—x )2
) e )

Kem(x —x0;8) = ( -

is

describing the center of mass of the brane like a point particle with
mass My, and the volume propagator
1(D ,

Mo ) 2 (p+1) emzt/liv()%o-ll].‘.up+1 Ol bt 1 .

s /2
mVp S

Kp(o;s) = < (86)

Here (p%) denotes the binomial coefficient. The volume propagator
in the form (86) describes the transition between vacuum (zero vol-
ume state) and a state with one brane of proper volume V,,. In the
quenching approximation the shape of the p-branes is ignored and
only the volume distinguishes two branes.

The volume multivector o*1---#»+1 is the generalization of the loop
coordinates "V defined in equation (79). Given the coordinates of
the world manifold boundary y H(u!,- .-, uP) the volume multivector

1S
gH1- M = Jymdym /- ./\dyup+1, P2 1. (87)

It represents the target spacetime volume that is enclosed by the
p-brane. In the following we will be using the shorthand notation
oM Hpt1 GH] SRTI =0-0.

Note the limit K,—o(0;s) = 8(0) with a proper definition of the
delta function for o*'--#»+1 and thus the propagator reduces to the
point particle propagator in the case p = 09 except for a diverging
factor 6(0).

One takes o = 0, because a point has no volume. This is in contrast to the definition
of o (87) where p > 1 is needed.
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Setting p = 1 in equation (83) yields

Mo )ge) My g
e

i OO isM .
Gp:1 J dse OKem (X —%0; 8) <17'c2\/1zs

~ 2Mo Jo
(88)

where V; is the string proper length. We see that this is not exactly
the propagator as calculated before for the string equation 76, but the
kernel now includes K¢m and also m?/2 is switched with M.

In [15] the authors play the game even further. If at the Planck scale
the very notion of dimension breaks and becomes scale dependent,
then also the dimension of a p-brane (i.e. the p) should become vari-
able. In [15] a new object dubbed “Planckion” with a polydimensional
propagator is introduced. It is a quantum superposition of p-branes
with different dimensions. Since this Planckion ansatz has not gained
any traction in the research here we will also not follow it any further.
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The fractional dimension of an object

is not unlike the artificial description

of the average family in Canada,

which for population description purposes
can be regarded as having 2.2 children.

—Brian H. Kaye [53]

6.1 MOTIVATION

From experiments we know that General Relativity describes our uni-
verse very good at large distances. It is only at short distances when
General Relativity meets Quantum Mechanics that we run into trou-
bles. General Relativity describes Gravity as the curvature of space-
time. Thus quantizing Gravity means that spacetime itself will get
quantum properties. We can expect the smooth geometry to change
to some sort of quantum geometry. This quantum geometry should
also have some connection to a minimal length scale.

In the past years many papers have been written about how the
dimension of spacetime could change with the probed scale. This
change of dimension is often titled as “dimensional flow” or “Spon-
taneous Dimensional Reduction” [28]. It is an interesting observation
that in many theories of Quantum Gravity the spectral dimension™ for
short distances goes to 2 [29]. This is not only a remarkable that those
very different approaches lead to the same spectral dimension in the
UV, but also because in two dimensions Gravity is renormalizable.

For the dimension to flow from 4 or more to 2 it obviously needs
to take on fractal or non-integer values. This leads to the question on
how to perform differentiation, integration and differential geometry
on spaces with fractal dimension. Interestingly this can be done and
a theory of this has been developed that is called “multi-fractional
spacetime [22].

The spectral dimension will be explained later, for now take it as the dimension of
spacetime.
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Figure 4: The Koch curve has fractal (Hausdorff) dimension Dy =
In(4)/In(3). Picture from [88].

This chapter will give an introduction to the various definitions of
dimension that have been used to describe the dimensional flow. For
this purpose we will also bring up the notion of a fractal.

6.2 WHAT IS A DIMENSION

When talking about the dimensional flow and quantum gravity one
should first think about what the notion of a dimension really means.
New definitions of dimensions first became popular when the theory
of fractals was developed. Here we will follow Mandelbrot [59].

In many cases the other definitions of dimension will be the same
as the topological dimension of the space, but often they are not. An
example is be the Koch curve* with topological dimension Dt = 1 (it
is a curve) and Hausdorff dimension Dy = log(4)/log(3) ~ 1.26 > 1
which will be derived in the following section.

One further thing to consider is how the different notions of di-
mension came up. The Hausdorff dimension has been developed by
a mathematician, whereas the spectral dimension and thermal dimen-
sion have been introduced by physicists with some physical system
in mind. Not every definition is applicable to every situation and they
also need not coincide. The spectral dimension for example depends
on the kind of particle used to “probe” spacetime.

63 HAUSDORFF DIMENSION AND FRACTALS

The probably most famous definition of dimension is the so called
“Hausdorff (-Besicovitch) dimension” that was introduced by the Ger-
man mathematician Felix Hausdorff (1868-1942) [44] and refined by
Besicovitch [19]. We will introduce the Hausdorff dimension by the
example of the Koch curve in figure 4. The Koch curve is constructed
step by step. In each step each “segment” is split equally into three
segments and the middle one becomes a “spike” consisting of 2 equal
line segments of the same length as the outer two. Thus in each step

2 See next section.
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the length of the curve gets multiplied by 4/3. The Koch curve is the
limit for infinitely many steps and it is a fractal. The curve is every-
where continuous, but nowhere differentiable. Obviously the length
of the Koch curve is infinite, which turns out to be a general feature
of fractals.

When looking at the curve with only a finite resolution €, the length
is finite, since all “spikes” that are smaller than the resolution are not
seen. If we note the length for a given resolution € as £(e), we have
that

lim £(e) = 0. (89)
€e—0

It is possible to identify fractals with being scale divergent3 [70]. In
order to motivate the Hausdorff dimension let us consider a straight
line and a square. If we divide the line in N equal lines, their length
will be 7(N) = (1/N)"/P,D = 1. If we divide a square into 4 equal
squares then the length of one side of one square will be r(4) =
(1/4)/P, D = 2 and generally r(N) = (1/N)/P or D = —1&((]:])).
Thus for “ordinary” objects their dimension D says something about
their scaling behaviour. We call r the scale factor and N the number
of segments.

Back to the Koch curve: In each step the length of every segment
becomes 1/3 of the length of each segment before, but we have 4
times the number of segments. Thus v = 1/3, N = 4 and the Hausdorff
dimension*

In(4) In(4) _
(/3 " InG3) ~126>1. (90)

Dy =

PATH OF A QM PARTICLE: Interestingly Hausdorff dimensions
greater than the topological dimension are nothing as exotic as one
might think. In deed, even in 1980 Abbott and Wise [1] have shown
that the path of a quantum mechanical particle has Hausdorff dimension
two and thus is a fractal. Let us retrace the calculation in [1]. We start
with a particle at rest (V = 0) at the origin with wave function

L (AaE o dPp o 1PlAXY e
II)AX(X) — h3 J (27_{)%11) ( h > e , (91)

where 1 needs to have a form that localizes the particle around
the origin with width Ax. We will just assume a Gaussian P(K) =

This definition by Nottale is more restrictive than Mandelbrot’s definition. We will
however not discuss about definitions of fractals. For our purposes it is enough to
define fractals as having a fractal dimension other than the topological one.
Hausdorff developed a mathematically more rigorous procedure with the Hausdorff
measure and by covering the curve with spheres. We won’t go into detail here. Our
definition gives in the limit € — 0 the same result in most cases.
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3 —
()" e~ ¥, where we switched to K = £x5. Next we want the aver-

age distance (Af) that the particle moves per time At, thus we time
~ . . _ik2__hAt
evolve P with etH% = ¢~ Zmax?,

X — (Ax)iJ' d3p T () SikE *ﬂzzzh:titx)z
bax(X At) = = (ZW)z‘b('k')e e , 92)
Then
(A0 = [ @3 Mo (R AP, ©3)

Performing the integrals we get

1
hAt 2m(Ax)2\ 2 At
Al) ~ 1 T 1A —
(A mAx\/ +( hAt > Ay hmAx (94)

Now that we know the average distance traveled per time step At, we
can measure the particle N-times with At between each measurement
and get for the length of the path

h o, h

) = N {(ALl) ~ NAt = .
) (A0 mAx mAx

(95)

The length diverges for an infinite resolution Ax — 0 and thus the
path is a fractal. Also the interpretation of the divergence is natural:
Since Ax is the width of the wavepackage it is linked to the momen-
tum uncertainty of the particle by AxAp ~ 1. For vanishing Ax the
momentum uncertainty diverges and the average distance the particle
moves in a little time step At diverges.

The Hausdorff length is

(L) = () (Ax)Pr— T ~ (Ax)Pr—2, (96)

and in order for it to be independent of Ax the Hausdorff dimension
the path of a quantum mechanical particle has to be Dy = 2.

From here on we will differ from the original paper [1] and give
another derivation of Dy = 2 closer to the definition of the Hausdorff
dimension for the Koch curve, see equation (90). Using the uncer-
tainty relation

AtAE=h, AxAp=h, (97)
2
At me") . (98)

The reasoning is like follows: We perform N = - measurements
with resolution Ax and measurement time T. For the next run we use
a better resolution Ax and leave the time T the same, thus resulting in
N’ = ATt, measurements, with At and Ax linked by equation (98). The
Hausdorff dimension can be obtained by analogy to the Koch curve>.

In the QM case the constant factors are left out, since only the change of N and (Af)
from one resolution to another is important and thus constant factors cancel out.
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Koch-curve, s is the number of QM particle, no “resolution steps,
“resolution steps”: since the resolution can be varied con-
tinuously:
N =43 T 1
1\°* At (Ax)?
Al = <> At
3 (A ~ ~ Ax
4 S <I S ]
e:sNAe::<) -mqs()
£) = N(Al) ~ A
In4 !
H= i3 n 2
In3 Dy = 1 ( 1X) )
M%)
N: Number of line segments N: Number of measurements
Al: Length of each segment (Al): Length of each segment

Abbott [1] also calculated the Hausdorff dimension for nonzero
average momentum with results

1 for Ax > Tfl‘, classical,
Dy = “ : (99)
2 for Ax < ‘p%, quantum mechanical.

Between those limits there has to be a transition between QM and
classical.

HAUSDORFF DIMENSION IN A QUANTUM MANIFOLD: The Haus-
dorff dimension of the path has also been studied for a quantum
particle with noncommutative geometry. This means that again the
momentum measure has been modified with exp(—%pz). Following
the same steps as before the length turns out to be

d+1 I

hT 2 N\ 02\ % 4m2(Ax)*
(1)~mAX <]+(Ax)2> \/]+<1+(Ax)2> R2(AD2 (100)
where d is the number of space dimensions. The general form of the

Hausdorff dimension can be obtained by choosing Dy such that the
Hausdorff length

(Lu) = (1) (Ax)Pr! (101)
is independent of Ax. Then
d+1

14 8%

di—2- (102)

flows from dyg = 2 for { < Ax <€ /hAt/m to dg = 1—4d for
Ax < {. Thus in the UV limit the Hausdorff dimension is dg < 0
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Figure 5: Plot of the Hausdorff dimension for NCG as in equation (102). D
is the number of space dimensions. Plot from [65].

which corresponds to an empty set and can be interpreted as a com-
plete “dissolution” of the path for scales smaller than the minimal
length [65]. A plot of the Hausdorff dimension is figure 5. Also it has
been shown [11] that the Hausdorff dimension of the world sheet of
a string or more generally a p-brane changes at length scales close to
' tody = p+2.

6.4 SPECTRAL DIMENSION

The spectral dimension is a more physically motivated definition of
dimension, namely by diffusion. The diffusion is not in Lorentzian
spacetime, but in Euclidean spacetime with diffusion time variable s.

The first part of this chapter will be an introduction to the spectral
dimension following [25] and in the second part an overview of the
spectral dimension of different approaches to Quantum Gravity will
be given. The third part will be calculations that have not been done
in the literature about the spectral dimension measured by p-branes
followed by other proposed notions of dimension.

6.4.1 Introduction to the Spectral Dimension

Starting from a Lagrangian £ the propagator G is the inverse of the
operator in the kinetic term® £ > —¢pX(—0)¢. The poles of this op-
erator, i.e. X(k?) = 0, give the dispersion relation. We wrote a general
expression with X here, since in the theories we are going to investi-
gate the usual operator OJ will be deformed. The deformed operator

The symbol D in this context means that we do not write all summands of £, but
only the one of current interest. This notation is rather sloppy but handy, since A > B
usually means B is a subset of A.
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will generally contain higher order derivatives and be a nonlocal op-
erator X that is called form factor [25].

In the following only flat spacetime is used, because we are inter-
ested in “quantum features” of spacetime. Considering curved space-
time there would be contributions to the spectral dimension due to
curvature. The spectral dimension of a curved spacetime will be dis-
cussed in section 6.4.3.

The Schwinger representation of the (Fourier transformed) propaga-
tor in momentum space for a massless scalar field in D spacetime
dimensions is

3 ] o
61K%) =~ :_L ds esX0<) (103)

where s has dimensions of length?. Fourier transforming to position
space gives

G(X X’) _ J'OO dSJ dPxk eik.(x—x/)e_st(kZ) _ JOO ds K(x x"s)
4 (ZTI)D O 4 4 4

(104)

where in the last step we introduced the heat kernel K(x,x’;s) as

dPk :
K(X X/'S) :J elk.(xfx )efst(kZ) ‘ (105)

4 7 (27_[)D

The heat kernel K(x,x’;s) got its name because it is a solution to
the diffusion equation?

[0s + K(—Ox ) K(x,x;8) =0, K(x,x;0) =8P (x—x"), (106)

as can be checked by plugging equation (105) into (106). The initial
condition K(x,x’;0) = §(P)(x —x’) comes from the fact that G is a
Green function

0= st 05 + K(—O4)] K(x,x';s)

= K(x,x’;00) — K(x,x";0) + K(—Ox)G(x,x') . (107)
5(D) (x—x')
Assuming that K(x,x’;00) = 0 we see the consistency with equa-

tion (106). The heat kernel K(x,x’; s) represents the probability den-
sity of diffusing from x to x’. Consequently the return probability
P(s) is the trace of the heat kernel over spacetime normalized over
the whole volume

1

B dPk .
~ [dPx

g " Go8)

P(s)

Jde K(x,x;s) = K(x,x;8) = J

7 The spreading of heat is a form of diffusion.
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In curved spacetime there would be factors of \/—g and P(s) has a
different form, see section 6.4.3. From the return probability P(s) the
spectral dimension of spacetime measured by a diffusion with form
factor X is defined as

0InP(s)
dg(s) = —-2—-, 10
s(5) = 275 (109)
in order to reproduce ds = D for a standard massless scalar particle,
Spectral dimension as will be shown now:
is defined through For a massless scalar particle the dispersion relation is K (k?) =
diffusion in k? = 0. This gives the diffusion equation

Euclidean spacetime

s — O K(x,x;8) =0, K(x,x;0) =8P (x—x'), (110)

with solution

2
/ ei(x 42)
K(x,x;8) = ——. (111)

(47s) 2

The return probability P(s) = K(x,x;s) plugged into equation (109)
yields the spectral dimension ds = D as required. Basically the defi-
nition of the spectral dimension (109) extracts the scaling with s from
P(s).

MODIFICATIONS OF THE DIFFUSION EQUATION: Inmany approaches
to Quantum Gravity the diffusion equation [0s —Oy] K(x,x’;s) = 0
gets modified in various ways:

Modification of

¢ the Laplacian [J, i. e. a nonstandard form factor X,
¢ the diffusion operator 0,

e the initial condition (source) K(x,x’;0) = &(P)(x —x’) of the
diffusion.

MASSIVE PARTICLES: It turns out that probing spacetime and get-
ting a meaningful definition of a spectral dimension is only possible
with massless test particles [67]. Including mass would multiply the
heat kernel K(x,x’;s) by e—ms’ leading to a term of 2sm? C dg in the
spectral dimension. This diverges for large s, where the limit should
be 4 (or D). Fractals posses the property of being self-similar. They are
also scale-invariant, since there is always a smaller piece of the fractal
which is similar to the whole fractal. Mass breaks scale invariance and
thus massive particles fail to probe the spectral dimension of space-
time. In [67] massive scale invariant particles named “un-particles”
are used to calculate the “un-spectral dimension”. We will return to
this point later.
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6.4.2 Review of Examples in the Literature

Mathematically the spectral dimension ds is defined only in the limit
s — 0, but it has turned out to be a good idea to not take the limit and
have a running spectral dimension ds(s). In this chapter we will review
the spectral dimension for different theories in the literature, includ-
ing Causal Dynamical Triangulations, Asymptotically Safe Gravity
and Loop Quantum Gravity.

New calculations will be then presented for the Generalized Uncer-
tainty Principle and for p-branes. In the case of the standard massless
scalar particle the s-dependence drops out in the spectral dimension,
so here one still has ds(s) = ds = D. An interesting observation is,
that the majority of theories predict a spectral dimension of ds = 2 in
the UV regime, even though the theories are following vastly different
approaches.

CAUSAL DYNAMICAL TRIANGULATIONS (CDT): One could argue
that the first time people recognized the spectral dimension to be a
useful tool was when the paper [8] appeared in 2005. In this paper
the spectral dimension ds(s) was “measured” by Monte Carlo sim-
ulations in the framework of Causal Dynamical Triangulations. Here
only the resulting spectral dimension will be given, an introduction
to CDT is e.g. [7].
The numerical results [8] for the spectral dimension fit best with

ds(s) :4.02—73, (112)

flowing from ds(s — oo0) =4.02£0.1 to ds(s = 0) = 1.80 £ 0.25. This
result has basically ignited the research in the spectral dimension.
People started calculating ds for their favourite theory of Quantum
Gravity and surprisingly the results are very often consistent with
each other.

ASYMPTOTICALLY SAFE GRAVITY: Shortly after the CDT paper,
the spectral dimension was calculated in the theory of Asymptotically
Save Gravity [58]. Asymptotic Safety or “nonperturbative renormal-
izability” tackles the problem stated in section 3.2, namely that by
counting dimensions (coupling constant) one concludes that Gravity
is non-renormalizable. This is however based on perturbative meth-
ods. The basic idea behind Asymptotic Safety is that there might ex-
ist a nontrivial fixed point in the renormalization group flow which
leads to finite quantities.

The spectral dimension in this framework has been calculated in [58].

Here no exact form for ds(s) is given, only the limits

ds(s — o) =4, (113)
ds(s =0) =2, (114)
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which fits with what other theories predict and also what one would
want for gravity to be (power counting) renormalizable in the UV.

LOOP QUANTUM GRAVITY (LQG): The main idea behind LQG is
that space itself is granular at very small scales. Thus looking at the
spectral dimension is a good idea, since the whole purpose of the
spectral dimension is to see effects of a quantized spacetime on the
dimension.

In LQG the spectral dimension flows in the context of spin foam
models from 4 in the IR to 2 in the UV [62]. There have been other
studies [26, 74] in LQG with similar results.

It is reassuring that in LQG which quantizes spacetime directly,
one gets about the same results as in other theories, where only ef-
fects of spacetime quantization are built into QFT without actually
quantizing spacetime.

QUANTUM GRAVITY AT A LIFSHITZ POINT: Hotava-Lifshitz grav-
ity [48] is an attempt at a UV-completion of gravity by treating space
and time not equivalent in the UV (this is dubbed “anisotropic”) with
Lorentz-Invariance being recovered in the IR. The spectral dimension

ds=1+ b-1 (115)
z
is obtained [49]. In the theory z = 3 in the UV and z = 1 in the IR,
thus Hofava-Lifshitz gravity obtains the same limits ds(s — oo0) =
4,ds(s = 0) = 2 as the other theories, even though it has a very
different approach.

MINIMAL LENGTH SCENARIOS: In order to describe the irregular
path of the diffusion on a quantum spacetime, an minimal length is
implemented [63]. This minimal length { is averaging the quantum
fluctuations of spacetime. In this approach the condition K(x,x’;0) =
5(P)(x —x') is changed to K(x,x’;0) = pe(x,x’), a Gaussian with
width £ (the minimal length). The motivation behind this smooth-
ing out of the initial condition of the diffusion is: The introduction of
a minimal length { forbids a localization to a delta distribution and
thus the closest possible localization is given by a Gaussian. This is
consistent with the theory of noncommutative geometry, where one can
calculate that the delta distribution is smeared out to a Gaussian.
The resulting spectral dimension is

S

dg = D,
ST 112

(116)

running (for D = 4) from ds(s — oo) = 4 to ds(s = ¢2) = 2. Smaller
scales than s = { give even smaller dg and finally ds(s = 0) = 0. It is
argued that in the regime s < € the spacetime completely dissolves
and the very notion of spacetime becomes ill defined.
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Spectral dimension d; for ®=1

Large scales d;=4

Planck scale d,=2

0 i | | | | | b
0 5 10 15 20 25 30

Figure 6: The spectral dimension as equation (116) of noncommutative ge-
ometry for ¢ =0 = 1.

UN-SPECTRAL DIMENSION: As an addition to the minimal length
spectral dimension, the un-spectral dimension has been proposed [67].
It is the spectral dimension an un-particle [39] probe would measure.
The key point of un-particles is that they are scale-invariant though
they posses a nonzero mass. Usually mass breaks scale-invariance.
Un-particles have a continuous, scale-invariant mass spectrum and

introduce a non-integer particle number. Un-particles are
The Green function for a scalar un-particle is [38] massive and scale
invariant
(e¢]
Gulx—y) = Agy | ~dlm?) (m})® 260 —yim?), (17

with G the standard Green function of a scalar particle, m the mass,
dy the scale dimension of the un-particle field and A4, some energy
scale dependent factor whose exact form does not matter here. Usu-
ally 1 < dy < 2. Using G(x —y;m?) = [ dsK(x,y;s) with K the heat
kernel, we have

Gulx—y) =L ds Ky (x,y; s) (118)
=gy [ dm?) ()% [Tdskinyie). (9
0 0

Upon exchanging the integrals in s and m? we get the heat kernel for
scalar un-particles

Kulouis) = Agy | dim?) ()% 2K(x,yis). (120)
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The diffusion equation for an un-field takes the form

0
AuKu(x,y;s) = a*SKU(X,y;S) , (121)

with the un-Laplacian Ay = A — (dy — 1)/s. This is in analogy to a
bar with a time dependent, spatially uniform “heat source” (dy —1)/s
that preserves the scale invariance [67].

Using K(x,y;s) = (4ms)~P/2 exp[-m?s + (x —y)?/(4s)], where D
is the spacetime dimension, the un-particle heat kernel (120) can be
calculated and the return probability in flat spacetime is

K(x,x;8) = Agy <]>zs1_dUF(dU—1). (122)
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From the definition of the spectral dimension we see that the term
s'~dU gives a contribution 2dy — 2 and the spectral dimension reads

dsu =D +2dy —2. (123)

This is consistent with the fact that un-particle corrections go away
for dy =1 [40].

6.4.3 Spectral Dimension and Curved Spacetime

The curvature of spacetime also has an effect on the heat equation and
thus on the spectral dimension. It has been argued [25] that these con-
tributions due to curvature should not be seen as fundamental and
thus be left out. Otherwise one could not distinguish spurious cur-
vature effects from genuine new Quantum Gravity effects [25]. This
point is not very clear and nevertheless it is good to know how the
curvature contributions behave, since there is always curvature when
there is matter. The contribution of curvature to the noncommutative
case has been calculated as follows [63]:
The return probability in a background metric g is

_ [d9xy/detgqp K(x,x;s) (124)

J ddx\/detgqb ' 4
Then the Laplace operator gets a modification proportional to the
Ricci scalar

Pg(s)

A—Ag=A—-E4R, with Edzldi_z, (125)
4d—1
and the choice of & is called conformal coupling. The minimal length ¢
is an invariant scalar, but it can in general get a spacetime dependence
{(x). The heat kernel for this scenario has been calculated [81] and at
x =x'itis
se2(x) s2(x)

&aR A
apes T 4 est T 37 5™ ap (x, x)

7 (s + 02(x))] 2

Ke(x,x;8) = (126)
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Basically the expansion of the heat kernel in Seeley-De Witt coeffi-
cients has been used. Now the calculation of the spectral dimension
is straightforward: Get the return probability by plugging the heat
kernel (126) into (124) and then derive the spectral dimension accord-
ing to (109). The result is to leading order

N e )
ds,g ~ JR dS(X) — ZS JR <€2(x)+s> (t—vdR (127)
2s 0% (x) 2 s%
" ao JAQ [fh () + <s + Bz(x)> Agr(x) - s+ |
(128)
where
450 = A (129)

is the spectral dimension coming from noncommutative geometry
with spacetime dependent minimal length {(x) and the notion

2
\/det gq ‘Se g 4R
J f(x) Jat mngfam e e f(x)
X)) =
R d v/ det gqp Si%%&dl{
Jd XGrezx)naz ©
2
/det Ja s€-(x) A
J f(x) [ ax i ppgjar e 1) (131)
X) = 131
s@z(x) 4
Ag J‘ddx( Vdet gap esti? x)adR

s+402(x))4/2

s (130)

has been introduced. Again as in the flat noncommutative model
limg_,0 ds g(s) = 0 and limg_,o ds g(s) = d. For s = 02 the spectral
dimension fluctuates around 2.

6.4.4 Generalized Uncertainty Principle

As already mentioned in equation (73), the Generalized Uncertainty
Principle (GUP) introduces a minimal length by modifying the Heisen-
berg Uncertainty Principle to

AxAp > 1+ B(Ap)? (132)

Thus the Dirac Delta must be smeared out. In the framework of the
GUP this is not a Gaussian, but

D o 5 B

1+ pp? X

(2m)
(133)

with the modified Bessel function of the second kind Ky (x). In 3+1
dimensions (D = 3) this has the form

=3 (134)
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Spectral Dimension for d=4
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Figure 7: The spectral dimension for the GUP with D = 4 spacetime dimen-
sions.

which is the energy density one would take to calculate e.g. the GUP
modified Schwarzschild Black Hole [51].

For the spectral dimension in D spacetime dimensions one has to
take the density (133) in D-dimensional Euclidean spacetime. This

leads to
B -D/2
1 2s e /P ()

ds = — =7 —H-FO_%E)

(2mP/2 B
running from dg(s — 0) = 2 in the UV to ds(s — oo) =4 in the IR. A
plot of the spectral dimension for different 3 and D = 4 can be seen in
figure 7. Actually the limit s — 0 has no meaning, since there exists a
minimal length lyin = +/B in the theory. For this limit we have dg(s —
12. ) > 2. Interestingly GUP momentum-suppression (1 + pp?)~!
is not as strong as in the noncommutative case exp (—9p?) which
changes the UV spectral dimension. The noncommutative spectral di-
mension has dsg(s — 0) = 0 and dg(s — 12. ) = 2, while the GUP has

min
ds(s = 12, ) > 2.

min

, (135)

6.4.5 Effective Quantum Gravity

Although Gravity is not renormalizable it is possible to analyze some
effects in the framework of effective field theories and make predic-
tions. The idea is to separate the scale of interest from the unknown
physics at much higher energies [33] without unwarranted assump-
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tions about the higher energies regime. In effective Quantum Gravity
the resummed graviton propagator is given by [16]

i (LORLBY 4 LoVLBR [ XPLRY)

iD“B'”V(qZ) = , (136)
22 (1- X538 108 (- %))
where

L&B _ B q:gﬁ
is a projector which is not of interest for our calculation. This propa-
gator has additional poles and has e.g. been used to discuss the con-
sequences of Effective QG on gravitational waves from astrophysical
sources [27].

The important part is that the propagator goes like

(137)

1
q?2 (1 + Aq?log (+5HL§)> ’

where we have switched to Euclidean spacetime in order to calculate
the spectral dimension. This is the propagator in momentum space,
but for the spectral dimension we need it in position space. Thus we
do a Fourier transform (and do not care about prefactors). From now
onD =4.

00 . 2 00
D(x) NJ' dSJd4q elq-x—sq2[1+Aqllog<—fﬁ)] :J dSK(X;S) ] (139)
0 0

D(q?) ~

(138)

The return probability in flat spacetime is P(s) = K(x —x; s) and thus
we leave out the x-term in equation (139)

P(s) = Jd“q ems[1+Aa?log(— ) (140)
~ qu q3efsq2[1+Aq21°g(ff§)] , (141)

up to prefactors (volume of sphere). Numerical evaluation of the spec-
tral dimension from this return probability equation (141) is shown in
figure 8. Numerically some problems occur when going to s — 0 even
in the standard case D ~ 1/ pz, so in this regime the calculation cannot
be trusted®. From looking at the numbers we get ds(s — 0) =~ 1.65,
but in this region numerical errors become very big. In [25] the same
propagator has been used with the same results. Analytical approxi-
mations are given and the limit ds(s — 0) = 2 is calculated although
the plot given in the paper shows a number smaller than 2.

8 Smaller than the Planck length.
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Figure 8: Plot of the spectral dimension from the effective Quantum Gravity
propagator (136) calculated numerically with Mathematica.

6.4.6 Strings and p-Branes

CALCULATION OF THE SPECTRAL DIMENSION FROM THE HEAT
KERNEL: In this section we are using the heat kernel as introduced
in section 5.5 by using the quenched and minisuperspace approxima-
tion for a p-brane living in D dimensions. In Euclidean spacetime
(s — —is) the heat kernel of the propagator (83) is

1 Mo ™ D/2

K / ooy — s> (p+1) 0

(x,x’,0,0';s) MG © — (142)
1(D o—o’)-(o—0o’
e—%(x—xo)2 < Mo >2(PH) e MO((p+1)!]ZS(V% : )
nV3s
(143)
With the definition of the spectral dimension (109) we get
D
=D -M 1)s.

as =0+ ()~ Mofp-+ s (149

The mass dependent term (~ M) is set to zero, since one cannot
probe the spectral dimension with massive particles/branes. Alterna-
tively we could modify the heat equation to be suited for a massive
state (see [67]), which would cancel the mass term in the spectral
dimension. This leaves us with

®:D+QBJ. (145)

In table 1 the spectral dimension is calculated for different values
of D and p. The case p = —1 is an instanton [43]. Note that the spec-
tral dimension it is always bigger than D. This differs from what one
would expect. Since a minimal length follows from string theory we
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D=3 D=4 D=5 D=6 D=y D=8 D=9 D=10 D=11

p=-1| 4 5 6 7 8 9 10 11 12
p=o0 | 6 8 10 12 14 16 18 20 22
p=1 | 6 10 15 21 28 36 45 55 66
p=2 | 4 8 15 26 42 64 93 130 176
p=3 |3

p=4 4 6 12 28 64 135 262 473

5 10 21 42 78 135 220 341

Table 1: Spectral dimension for different spacetime dimensions D and p-
brane dimensions p calculated from equation (145). A p-brane in
a D < p dimensional space of course does not make much sense.

had expected that the spectral dimension would be modified simi-
lar to the previous examples where for s comparable to the Planck
length one gets a spectral dimension of two. It turns out that our re-
sult is that a string (p = 1) sees a spectral dimension of ID = 10 for
spacetime dimension D = 4. This number coincides with the space-
time dimension that is needed in the various superstring theories that
are part of 11-dimensional M-theory. This way no extra dimensions
are needed. We have 4 spacetime dimensions and the string sees 10
spectral dimensions.

A new feature is that the spectral dimension is actually larger than
the topological dimension and it does not depend on the scale. The
interpretation is as follows: The propagator equation (83) contains a
center of mass and a volume part in the kernel. The center of mass part
gives exactly the same spectral dimension as a standard quantum
mechanical particle: D. The volume part gives (p% ). This means that
in the approximation that was used more dimensions are seen by
the brane, since it can probe spacetime as a particle and also as a
p dimensional volume. The string/brane just has more degrees of
freedom to move and wiggle in spacetime and this is measured by
the spectral dimension.

Since all we were looking at is a quantum mechanical string/brane
propagating on a classical background, there is no quantized space-
time and also no minimal length in spacetime. The minimal length
would only be observed by scattering strings, but this is not hap-
pening here. Therefore it makes sense that no quantum gravitational
running of the spectral dimension is observed.

This is in contrast to the thermal considerations in [14], where ther-
modynamic properties of a gas of strings suggest two dimensions in
the high temperature regime. The differences can have two causes:

1. The propagator used in this work may be not suited to the spec-
tral dimension. The propagator is calculated in loop space and
so also the “diffusion” is in loop space.
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2. The spectral dimension just measures degrees of freedom of
the diffusion in Euclidean spacetime. Implementing Quantum
Gravity effects in this spacetime leads to a running spectral di-
mension. As stated above our results have an easy and plau-
sible explanation. The difference to the other works with two
dimensions stems from not quantizing spacetime in String The-
ory. Nevertheless some properties like in [14] of String Theory
imply a dimensional reduction to effectively two dimensions. It
might be the case that just another definition of dimension is
needed here.

THE POINT PARTICLE LIMIT PROBLEM: Looking at table 1, we
immediately see one problem: The point particle limit p — 0 gives 8
and not 4. In section 5.5 was noted that the kernel K,_o = 8(0)Kcm.
Except for a diverging factor the kernel and propagator approach
the correct limit, so why not the spectral dimension? There are two
methods that do not give the same result:

1. First calculating the spectral dimension and then doing the limit
p—0,

2. First doing the limit p — 0 and then calculating the spectral
dimension.

The heart of the problem lies in the volume heat kernel equation (86)

M G2 Mo e
0 > e(p+1)!25\,% HT-Hp g1

c /2
17th S

Kp(o;s) = ( (146)
The point particle limit is p = 0 and V}, — 0. The delta distribution
can be seen as the limit of the sequence of functions. These functions
can be for example Gaussians

1 e
Se(x)( ) = e 2, (147)

There are also other such functions. Also replacing e — ie works and
is called the Fresnel representation.
Thus in equation (146) making the replacements

2 .
o 2 iMo 1 D
T, e ~4q, 8
CESE sVZ e <p+1> (148)

as done in [12] (note that they had a factor 4 wrong in €) leads to

N

1 x
Kp — Te 2¢ e—_ﬂf 6(d)(x) (149)
(re)2
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which is §(0) (and not §(0?) as in [12]). The “loop coordinate” o is
not defined for p < 1, but it is assumed to vanish for a point particle.
So finally

Ky, <29 5(0), (150)

where the 6 is a delta distribution in (?) = D dimensional loopspace

with the problem that o (which defines this space) is not defined for
p = 0. This might rise some concern. Note the fact that € ~ sVé. What
happens for s — oo, namely in the IR limit? We plan to address these
issues in the future.

The spectral dimension is defined in equation (109)

0InK(x,x;s) 1 0K(x,x;s)
=—2—""—=-2 .
ds dlns SK(X,X;S) 0s (151)
For the volume heat kernel equation (146) one obtains
D p—0
dsp = <p+1> — D, (152)

but if one first does the point particle limit, the dependence on s in
the volume kernel goes away and ds,, = 0. Obviously the two limits
(point particle limit and the derivative in ds) do not commute. One
could also argue that since e ~ sVé the limit V, — 0 includes or is
equivalent to s — 0.

A way out would be to manually set ds = D in the point particle
limit and leave the rest of the table the same. Then we end up with
table 2.

D=3 D=4 D=5 D=6 D=y D=8 D=9 D=10 D=11

p=-1 |4 5 6 7 8 9 10 11 12
p=o |3 4 5 6 7 8 9 10 11
p=1 | 6 10 15 21 28 36 45 55 66
p=2 | 4 8 15 26 42 64 93 130 176
pP=3 | 3 10 21 42 78 135 220 341
pP=4 4 6 12 28 64 135 262 473

Table 2: p-brane spectral dimension with dg = D manually set, since the
limits do not commute.

6.4.7 Problems Interpreting the Spectral Dimension and New QFT Inter-
pretation

It seems that most Quantum Gravity motivated deformations of the
heat (or diffusion) equation (106) lead to a spectral dimension that
asymptotes the spacetime dimension in the IR and a lower value like
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2 or 3 in the UV. For the string or a p-brane this is not the case, see
equation (145).

The discrepancy between the spectral dimension from String The-
ory and from Noncommutative Geometry or the Generalized Uncer-
tainty Principle can be interpreted as a big hit for the spectral dimen-
sion. Independent of this result the spectral dimension has been criti-
cized before [9, 25]. We will give a summary of the critics followed by
a introduction to a newly proposed dimension, the “thermal dimen-
sion” [9].

This section will be about the problems of the interpretation of the
spectral dimension. A problem arising for f(E? —p?)-theories and off-
shell modes will be mentioned in the next section when the thermal
dimension will be discussed.

PROBLEMS WITH THE SPECTRAL DIMENSION: The biggest two
struggles with the spectral dimension can be called the “diffusion-
time problem” and the “negative-probabilities problem” [25].

* The diffusion-time problem: This addresses the very approach to
the spectral dimension. The heat kernel fulfills a diffusion equa-
tion and the time variable s in it. What is the physical meaning
of s, P(s) and ultimately the spectral dimension? The diffusion
equation itself comes from the Schwinger representation of the
propagator. It is not clear what exactly s tells us, since it is a fic-
titious time of a diffusion equation in D-dimensional Euclidean
spacetime. It is not clear how is can be interpreted physically.

 The negative-probabilities problem: The heat kernel K(x,x';s) is
usually interpreted as the probability density for a diffusing
particle in Euclidean spacetime with fictitious diffusion time s.
From K(x, x’; s) the spectral dimension is calculated, but K(x, x’; s)
is not in all theories positive definite [24] and thus the interpre-
tation as a probability density is in trouble.

There has been an attempt at solving those interpretation problems
by reinterpreting the spectral dimension as a “quantum spectral di-
mension in QFT” [25] and what follows is a quick overview of this. It
is important to note that here we are solely talking about the interpre-
tation. The way of calculating the spectral dimension is unchanged.

PROPOSED SOLUTION TO THE INTERPRETATION PROBLEMS: We
completely forget about the diffusion interpretation and look at the
spectral dimension from a different perspective: Take |G|? and not
K(x,x’;s) as a probability density. In this picture s is not a diffusion
time parameter, but a resolution scale. The return probability P(s) also
gets a new meaning. If we look at vacuum-to-vacuum diagrams the term

_% JdDX G(0)=—G(0) = L ds P(s) (153)
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describes the one-loop bubble diagram (for G the tree-level propa-
gator). Thus P(s) is the bubble contribution of scale s to the vacuum-
energy of the particle. The spectral dimension is how this contribution
scales with s assuming a massless particle.

Since there is no probability interpretation of K(x,x’;s) any more,
there is no negative-probabilities problem. On the other hand the
probability for the propagation of a particle from x’ to x is propor-
tional to |G(x — x’)|? and

Jde IG(x —x)? = J:o ds sP(s). (154)

Not G(x,x’; s) needs to be positive definite, but the return probability
P(s). This is fulfilled in all known examples [25].

65 OTHER PROPOSED DEFINITIONS OF DIMENSION

In 2016 the “thermal dimension” [9] has been proposed and applied
to generalized Horava-Lifshitz scenarios as well as to theories where
the d’Alembertian is modified to a function of itself E? —p? — f(E? —
p?). The definition is via a standard calculation in thermal field theory.
From the thermodynamic partition function

log Q = _(227\:)3 JdEd3p §(Q)O(E)2Elog (1—e FE) ,  (155)

where O = Q(E,p) is the eventually modified d’Alembertian and
= k;—T is the inverse temperature. From equation (155) the energy
density p and pressure P can be calculated

I )

p:—vﬁlogQ, (156)
10

PEEWIOgQ' (157)

The temperature scaling of p defines the thermal dimension p ~ TI.
For a gas of radiation in classical spacetime with 3 + 1 topological
spacetime dimensions the Stefan Boltzmann law states that the inter-
nal energy U is proportional to T4 or in D + 1 dimensions

u~T1P+, (158)

This means that for the standard d’Alembertian the thermal dimen-
sion and the topological one agree.

Also the equation of state parameter w = % with the pressure P
isin D + 1 dimensions w = 1/D = 1/(dt — 1). Modifications to the
d’Alembertian will introduce modifications to w and to p and thus to
the corresponding dimensions. In summary the thermal dimension is

given by

p~ Tdr , and w = (159)

and both definitions must agree to make sense.
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HORAVA-LIFSHITZ GRAVITY: In [9] this procedure has been car-
ried out for the generalized Horava-Lifshitz scenario in D = 3 dimen-
sions. The effects are basically encoded in a modified d’Alembertian

Qyt'yx(E/p) — EZ - pZ + ef'Yth(] +Ye) _ einyz(]JFYX) . (160)

The calculation of p, ., and P, gives for both the consistent result
for the thermal dimension in the high temperature limit

1+Yt

dr=1+3
! T+vx

. (161)

The UV (— hight temperature) spectral dimension for the same model
is

ds(0) = ] _:% + i _PYX . (162)
Spectral and thermal dimension coincide for y¢ = 0.
f(E2 —p?) D’ALEMBERTIAN: Taking the modification

Qy(E,p) = E>—p? =02V (E* —p*)' "7, (163)
the UV spectral dimension isin D = 3

ds = ij , (164)

but this has a problem. Equation (163) states that in the UV vy has
no effect on the on-shell properties of the massless theory, since then
E2 = p2. This is a problem for the spectral dimension ds, it depends
on v and thus on the off-shell modes. The high temperature (=UV)
thermal dimension in this case dt = 4 is in agreement with the dis-
cussion above. There is still dimensional flow, but only close to the
Planck temperature, the plot is given in figure 9. This running of the
dimension only at about the Planck temperature is something that
might be worth more investigation. Also the thermal dimension has
some better properties concerning active diffeomorphisms in momen-
tum space, the interested reader can find the discussion in [9].

As a conclusion the thermal dimension can be a better candidate in
some scenarios. Also its definition on the scaling of p with T is more
related to actual measurements than the interpretation of the spectral
dimension as mentioned in the last section.

Nevertheless the spectral dimension’s definition does not depend
on thermodynamics and the notion of a temperature or a pressure. To
date no other paper on the thermal dimension has been published.
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Figure 9: The thermal dimension for the d’Alembertian as in equation (163)
as a function of the inverse temperature 3. Plot from [9].






DISCUSSION AND CONCLUSIONS

In this thesis I have addressed the issue of the very small scale struc-
ture of spacetime. At the Planck scale quantum mechanical fluctua-
tions of spacetime become so strong, that the very notion of a smooth
spacetime breaks down and the term “spacetime foam” has been
introduced for this effect. A smooth Riemannian geometry cannot
describe this fuzzy geometry of the Quantum Gravity regime and
should be augmented to some “quantum geometry”. The title page
shows this as an artist imagined it.

This thesis has been an overview of the combination of General Rel-
ativity and Quantum Field Theory. First I have reviewed GR and QFT,
followed by a chapter on how to quantize fields in a curved back-
ground without backreaction of the field to the background. I have
shown the arguments why GR and QFT do not fit together. However,
there is always Gravity as long as there is matter. Thus Gravity and
Quantum Mechanics do need to interact and Gravity at a fundamen-
tal level needs to be quantum. If one tries to quantize GR with the
means of QFT the theory is nonrenormalizable in 4 spacetime dimen-
sions, which is why there is still no full theory of Quantum Grav-
ity. The main approaches to Quantum Gravity have been described
followed by a brief introduction to String Theory where emphasis
was given to the Generalized Uncertainty Principle and Noncommu-
tative Geometry. I have also reviewed the loop space formalism for
String Theory, which is a completely different formalism than usu-
ally used and it allows the calculation of an exact propagator for
closed bosonic strings. There is also an approximate propagator for
p-branes. The main part of this thesis was about dimensional flow and
in particular the spectral dimension. Very general arguments show
that dimensional flow occurs at very small scales in Quantum Gravity.
I have reviewed the spectral dimension in several Quantum Gravity
candidates and done new calculations regarding the Generalized Un-
certainty Principle and strings/p-branes in the loop space formalism.
The results of the former match with the other candidates, whereas
String Theory in this formulation has no dimensional flow and a spec-
tral dimension of 10.

The introduction of the spectral dimension allows two ways out of
the nonrenormalizability of Gravity:
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1. It seems to be a rather general feature of theories of Quantum
Gravity that the spectral dimension flows from 4 in the IR to 2 in
the UV. GR is renormalizable in 2 dimensions, which is why this
dimensional flow to 2 spacetime dimensions is so interesting.

2. In this thesis I have shown that at least for the exact propaga-
tor calculated in the formalism of loop coordinates for a closed
bosonic string, the spectral dimension is 10 for topological di-
mension 4. The reason that there is no dimensional reduction
lies in how the propagator is constructed and that there is no
directly quantized spacetime in this model. The number 10 for
the spectral dimension is interesting, since Super String Theory
requires 10 dimensions for internal consistency.

One could argue that the spectral dimension might be the more phys-
ical quantity than the topological dimension of spacetime, whose no-
tion breaks down in the Planck regime, because there the smooth
Riemannian manifold can no longer describe the quantum manifold.
Then the problem of unifying Gravity and Quantum Theory certainly
will be closely connected to the spectral dimension or other notions
of dimension. I have also reviewed other proposed notions of dimen-
sion and regarding them some aspects of dimensional flow. The field
of dimensional flow is still young and diffuse, but it could turn out
to be the key ingredient to Quantum Gravity,

There are a lot of topics for further research in the area of dimen-
sional reduction in Quantum Gravity. The proposed Planckion [15] has
not yet been investigated in the literature and intrinsically contains a
variable dimension and thus fits well with the notion of dimensional
flow. Scale Relativity [69] combines Quantum Mechanics with the frac-
tal properties of spacetime and one could investigate the connection
to dimensional flow and to minimal length theories. Also calculations
of the thermal [9] and Unruh [4] dimension in terms of noncommutative
geometry and the GUP are an option. Multifractional spacetimes [23] in-
trinsically contain a changing dimension of spacetime. One could try
to implement the dimensional flow of the various theories into QFT as
an energy dependent dimension d(E). It got suggested to have d(E) in
the integral for the propagator in order to see what happens with di-
vergencies and how the renormalizability of Gravity is affected. Since
the spectral dimension is deeply connected to the propagator a math-
ematical study of Impulse Response Functions in Nonlocal Gravity
can be of great interest.
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