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Abstract

It is a common notion in neuroscience research that the brain and neural systems
in general “perform computations” to generate their complex, everyday behavior
[1]. Understanding these computations is thus an important step in understanding
neural systems as a whole [1-4]. It has been proposed that one way to analyze these
computations is by quantifying basic information processing operations necessary
for computation, namely the transfer, storage, and modification of information
[5-8]. A framework for the analysis of these operations has been emerging [9],
using measures from information theory [10] to analyze computation in arbitrary
information processing systems (e.g. [11]). Of these measures transfer entropy (TE)
[12], a measure of information transfer, is the most widely used in neuroscience
today (e.g. [13-22]). Yet, despite this popularity, open theoretical and practical
problems in the application of TE remain (e.g. [13, 23]). The present work addresses
some of the most prominent of these methodological problems in three studies.

The first study presents an efficient implementation for the estimation of TE from
non-stationary data. The statistical properties of non-stationary data are not invariant
over time such that TE can not be easily estimated from these observations. Instead,
necessary observations can be collected over an ensemble of data, i.e., observations
of physical or temporal replications of the same process [24]. The latter approach
is computationally more demanding than the estimation from observations over
time. The present study demonstrates how to handles this increased computational
demand by presenting a highly-parallel implementation of the estimator using
graphics processing units.

The second study addresses the problem of estimating bivariate TE from multivariate
data. Neuroscience research often investigates interactions between more than two
(sub-)systems. It is common to analyze these interactions by iteratively estimating
TE between pairs of variables, because a fully multivariate approach to TE-estimation
is computationally intractable [25-27]. Yet, the estimation of bivariate TE from
multivariate data may yield spurious, false-positive results [25, 28, 29]. The present
study proposes that such spurious links can be identified by characteristic coupling-
motifs and the timings of their information transfer delays in networks of bivariate
TE-estimates. The study presents a graph-algorithm that detects these coupling
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motifs and marks potentially spurious links. The algorithm thus partially corrects
for spurious results due to multivariate effects and yields a more conservative
approximation of the true network of multivariate information transfer.

The third study investigates the TE between pre-frontal and primary visual cortical
areas of two ferrets under different levels of anesthesia. Additionally, the study
investigates local information processing in source and target of the TE by estimating
information storage [30] and signal entropy. Results of this study indicate an
alternative explanation for the commonly observed reduction in TE under anesthesia
[31-35], which is often explained by changes in the underlying coupling between
areas. Instead, the present study proposes that reduced TE may be due to a reduction
in information generation measured by signal entropy in the source of TE. The study
thus demonstrates how interpreting changes in TE as evidence for changes in causal
coupling may lead to erroneous conclusions. The study further discusses current
bast-practice in the estimation of TE, namely the use of state-of-the-art estimators
over approximative methods and the use of optimization procedures for estimation
parameters over the use of ad-hoc choices. It is demonstrated how not following
this best-practice may lead to over- or under-estimation of TE or failure to detect TE
altogether.

In summary, the present work proposes an implementation for the efficient estima-
tion of TE from non-stationary data, it presents a correction for spurious effects in
bivariate TE-estimation from multivariate data, and it presents current best-practice
in the estimation and interpretation of TE. Taken together, the work presents solu-
tions to some of the most pressing problems of the estimation of TE in neuroscience,
improving the robust estimation of TE as a measure of information transfer in neural
systems.
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1.1

Introduction

Background

In neuroscience it is often stated that the brain “performs computations” or “processes
information” to generate its complex, everyday behavior. The assumption underlying
these statements is that the brain—and biological systems in general—represent
their environment in terms of physical variables, e.g., a cell membrane potential or
pheromone concentration; on the basis of these variables, “every physical system
performs a computation by realizing a solution to the dynamic equations that govern
its physical behaviour.” [1]. Understanding these computations is thus an important
step in understanding the behavior of the system as a whole—yet, analyses explicitly
targeting these computations are lacking or only just emerging [1-4]. As an example,
one may consider the model organism C. elegans: its neural architecture [36, 37]
and neural dynamics (e.g., graded membrane potentials [38, 39]), i.e., the physical
variables representing the organism’s environment, are well described. However,
despite this detailed knowledge, it remains impossible to predict the organism’s
behavior or learning [2]. In other words, despite detailed knowledge about physical
variables and observable behavior, it is not possible to explain how behavior is
generated on the basis of these variables. The example shows further that neither a
detailed description of physical representations, nor a detailed description of global
behavior seem to be sufficient to explain how the first gives rise to the latter. Here,
the analysis of an “intermediate level [...] of neural computation” is missing to
investigate how the algorithmic manipulation of physical representations give rise to
the behavior of the organism as a whole [1, 2].

Yet, while the notion of computation is well defined and can be formally analyzed
in traditional computing systems like digital computers, it is not clear how to find
similar definitions and analysis tools for biological systems like neural systems [6,
71. A first step to defining computations and their analysis in biological system was
taken by David Marr [40] (Table 1.1): he proposed a theoretical framework for
the analysis of arbitrary information processing systems, which assumes that three
levels of analysis are needed to understand such a system in its entirety': (1) the
functional level, which describes the task a system solves; (2) the algorithmic level,

!A similar idea has been put forward by Pylyshyn [41]; I will restrict my explanation to the description
of Marr’s theory. The theory introduced by Pylyshyn [41] are conceptually similar (e.g., [42]).



Tab. 1.1 Marr’s levels of analysis for information processing systems [40].

I - Functional level
What the system does and why.

What is the goal of the computa-
tion, i.e., the task to be solved?
This task imposes constraints
on what the system does: “the
resulting operation is defined
uniquely by the constraints it
has to satisfy”.

The cash register performs addi-
tion, because that’s the best math-
ematical implementation of what
is expected of it to do.

IT — Algorithmic level?
How the system does it.

Representation of input and out-
put, and an algorithm that trans-
forms the input such that it real-
izes the task defined on the first
level, both are usually related.

Different number systems require
different algorithms for addition,
but for a fixed representation, we
can often choose a variety of dif-

III - Implementational level?

The system’s physical character-
istics.

Physical characteristics of the
system carrying out the task.

Addition may be implemented by
a mechanical calculator, an aba-
cus, or a digital calculator.

ferent algorithms, depending on
efficiency or the hardware avail-
able.

a Marr does not use a name for this level.

which describes how the system represents information and how it operates on these
representations to generate the desired output; and (3) the implementational level,
which describes the biophysical implementation or realization of the system.

Marr thus clearly distinguishes a “level of computations” (i.e., the algorithmic
level) from the level of global behavior and function, and the level of physical
phenomena®. He further states that these levels pose only little constraints on
each other, i.e., knowledge about phenomena on one level hardly increase our
knowledge about phenomena on another level. Adopting this separation into levels
of analysis, it becomes clear that neuroscience is often concerned with investigating
the implementational and functional level (c.f. the example of C. elegans) [2],
while neglecting the algorithmic level, which corresponds to the level of neural
computations—yet, following Marr, a transfer of knowledge from one level of
analysis onto another may impossible. Hence, an independent analysis of neural
computations is needed for a complete understanding of how physical phenomena
enable function in neural systems.

ZNote that Marr proposed levels of analysis not levels of system organization [43]; the term “level”
may be misleading here and it should be kept in mind that “the deeper contribution made by Marr
and Poggio was the idea that it is valid, fruitful, and even necessary to analyze cognition by forming
abstraction barriers” [44].
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An attempt to describe computations in biological systems was made by Mitchell
[6]: Biological systems typically consist of collections of agents (e.g., swarms or
neurons in a brain) or sub-systems (e.g., plants or cortical areas), which process
information in a distributed fashion to generate collective behavior; examples are
insect swarms like ants or wasps (e.g., [45]), flocks of birds (e.g., [46]), plants [47],
fish (e.g., [48]), gene regulatory networks [49, 50], or neural systems (e.g., [51,
52]). To characterize information processing in these systems, Mitchell introduced
the term biological computation [6], which describes information processing in
biological systems as highly distributed, parallel, dynamic, and stochastic. In other
words, global behavior arises from the non-trivial combination of collective activity
of many sub-systems, distributed across space; furthermore, individual sub-system
serve different computational tasks over time. Local information processing—with
respect to space or time or both—performed by individual sub-systems, may not
serve a human-understandable task or implement universal computation—the two
common intuitions when we speak about computation. This local information
processing has been termed intrinsic computation [7]. Classical tools like complexity
theory or a description in terms of function may be ill-equipped to describe this
intrinsic computation and how it gives rise to the behavior of the system as a
whole. Instead, new methodological approaches are required—here, Mitchell and
colleagues proposed to quantify the intrinsic computation performed by single agents
or arbitrary sub-systems in terms of generic information processing operations: the
transfer, storage, and modification of information. Together, these operations enable
universal computation and a decomposition of computation into this building blocks
has already been proposed by Alan Turing [5, 7].

However, measures for the quantification of the basic operations of computation
have been lacking; only recently, a complete framework was proposed by Lizier
[9], choosing information theory as the “language of computation” to quantify
each of the three operations. Here, information theory—as introduced by Claude
Shannon [10]—is a natural choice for measures of computation, because it provides a
mathematical rigorous definition of information and derived measures in an abstract,
semantics-free way—hence, we do not have to understand the “meaning” of a signal
(which is highly dependent on the observer) to measure its information content. This
property is especially desirable to measure the aforementioned intrinsic computation
performed on arbitrary organizational levels of a computing system.

Even though information theory has been used extensively in neuroscience (e.g., [13,
53-63]), the framework proposed by Lizier [9] provides the most comprehensive
and well defined approach to the generic investigation of computations in distributed
systems until today. Lizier proposed the three measures transfer entropy (TE) [12]
as a measure of information transfer, active information storage (AIS) [30] as a
measure of information storage, and information modification [64] as a measure

1.1 Background
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of the processing of information into a new form. These measures can be localized
in time and space to capture distributed and dynamic aspects of computations.
The framework has been used successfully to describe the computations performed
in cellular automata (CA) [11]. CAs are an important example system in the
analysis of distributed computation—here, the authors resolved a debate around
rule 22, finding evidence for a complex rather than chaotic behavior of this CA
by quantifying information storage and transfer over time. This behavior was
not evident from observing the CAs activity directly, but only by investigating
the performed computations using the measures presented above. Following this
example, it has been proposed to apply Lizier’s framework in a similar fashion to the
analysis of computations in neural systems [8].

Even though the framework by Lizier [9] provides a mathematically well-defined
approach to the investigation of neural computation, adapting information theoreti-
cal measures to neural data is far from trivial—among the three basic operations
of computation, only TE and AIS have been successfully applied in neuroscience.
Here, TE is especially popular as a measure of dependency between neural sites
(see [13, 65] and references in [23] for an overview of applications), while AIS has
been used to a lesser extend (e.g. [66, 67]). Information modification has not been
applied yet, because no agreed-upon information-theoretic measure exists yet (see
next section).

Yet, even though TE is theoretically well defined and frequently used, open practical
and conceptual problems to its application in neuroscience persist: often approx-
imations and ad-hoc solutions are used with detrimental effects to the estimated
quantities (see for example Vicente et al. [13] for some practical problems); also,
the interpretation of TE as a measure of computation is often not clear [68]. To
some extend, these problems also concern the estimation of AIS (e.g., the setting
of estimation parameters as discussed in [30], or its interpretation as discussed in
[66]).

The present work addresses the most pressing open problems in the estimation of TE
in neuroscience. Before I discuss these problems in more detail, I will first introduce
the mathematical background of information theory (Section (1.2, Information
theoretic preliminaries), before I introduce the information-theoretic measures of
TE, AIS, and information modification used in the framework of local information
dynamics [9] (Section 1.3, Measuring information processing). In the last two
sections, I will describe open problems in the estimation of TE from neural data,
which partially apply to the estimation of AIS as well (Section 1.4, Open problems
in estimating information processing measures in neuroscience); I will close with an
overview over how the present work addresses the most pressing among these

Chapter 1 Introduction
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challenges to allow for a robust estimation of information theoretic measures, in
particular TE, in neuroscience (Section 1.5, Contribution of the present work).

Information theoretic preliminaries

Introduction Information theory as introduced by Claude Shannon [10] is con-
cerned with quantifying the “information content” of a message that is transferred
over some channel of communication. In neuroscience, we are most interested in
the idea of measuring the information content in a “message”, where often this
term is defined more loosely, such that a message may be the observed spike trains
sent over an axon or the membrane potential of a cell over time. To model these
messages mathematically, we adopt a probabilistic approach and define a “message”
as a random variable X that describes the state of some physical system X (e.g.,
a cell or cortical area). A random variable is a mapping of the outcome of some
event, i.e., the state of X, onto a value x € Ay, where the set Ax is called the
variable’s alphabet with number of elements |Ax/|. A single outcome or realization z
is observed with some probability p(X = z), while p(X) is the probability density
function of the random variable X. In the following I will write p(z) as a shorthand
for p(X = x).

For two systems, X and ), described by two random variables X and Y, the joint
probability p(x,y) is defined as the probability of two outcomes being observed
together. To describe the probability of observing an outcome given that a second
outcome was observed before, we define the conditional probability as p(x|y), i.e.,
the probability of observing = after y was observed. Two random variables are said
to be independent if p(z,y) = p(z)p(y).

Shannon information content and entropy Shannon’s information content quantifies
the reduction in uncertainty when observing the outcome x of a random event
described by a random variable X as

h(z) = —logy p(z). (1.1

In other words, h(z) quantifies the amount of information we gain when observing
outcome x. Here, the logarithm is the function of choice to define an information
measure that captures our intuitive understanding of information: first, additivity
of the information content of two independent events and sub-additivity for non-
independent events; and second, h is a continuous and monotonic function of the
probability of the occurrence of an event, such that rare events are more informative

1.2 Information theoretic preliminaries
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than frequent ones and events with probability 1 are not informative at all (h(z) = 0).
For a complete axiomatic definition of the information content see [69].

The choice of the base of the logarithm b is arbitrary, but popular choices are b = 2 or
b = e, yielding the information content in bits or nats. In the remainder of this work,
we will use b = 2 if not stated otherwise . This allows us a second characterization
of the information content as the minimal number of bits that are needed to encode
or represent the outcome z.

From this basic measure of information content, all other information-theoretic
quantities are derived: by taking the average over all outcomes = € Ax, weighted
by their probability, we obtain the average or expected information content of X,
the Shannon entropy

H(X):=EhX)]=- Z p(z) logy p(x). (1.2)
r€Ax

The Shannon entropy thus describes the average amount of information we expect
to obtain from observing outcomes of X.

For two variables X and Y, we can define their joint entropy to quantify the informa-
tion content of the joint distribution of X and Y":

HX,Y)=—= Y plz,y)logyp(z,y). (1.3)
zeAX7y6Ay

The joint entropy then describes the expected reduction in uncertainty that can be
obtained from the joint distribution of X and Y.

We may further define the conditional entropy of X given Y, which quantifies the
average information we can still gain from X after having observed Y, or the average
uncertainty that remains about the outcome of X when the outcome Y is known:

HXY)== > pla,y)logyp(zly). (1.4)
JJEAx,yE.AY

H(X|Y') may take on any value between O (if the outcome of X is completely
determined by the outcome of Y) and H(X) (if the outcome of X is independent of
Y, i.e., the two random variables are independent).

Chapter 1 Introduction



Fig. 1.1

Mutual information Based on Shannon’s measures of entropy we can define the
mutual information (MI) as a measure of the information that is shared between
two variables. From this measure, we will then derive the measures of information
processing used in this work, which are all variants of the basic MI.

H(X, Y)

H(X)

H(Y)

HX|Y) I0X: Y) H(Y[X)

Relationship between joint entropies, conditional entropies, and mutual information (from
[70D).

The MI between X and Y measures the average reduction in uncertainty about X
that results from observing the value of Y, or vice versa. The MI is complementary
to the conditional entropy with respect to a variable’s entropy: when observing two
variables X, Y with entropies H(X), H(Y'), the average uncertainty about X that
remains when observing Y is quantified by the conditional entropy H(X|Y); the
average uncertainty about X that is reduced when observing Y is quantified by the
MI (Fig. 1.1):

Y)=H(Y)-H(Y|X)
= H(X) - H(X|Y) (1.5)
p(z)loggp(z) + Y. p(z,y)logy p(z(y).
rzeAx reAx,yeAy

The MI is symmetric, such that I(X;Y) = H(X) - HX|Y) =1(Y;X)=H(Y) —
H(Y|X). The sum in last line can be rewritten as a fraction, which in turn can be
rewritten after applying the chain rule for probabilities:

VY — 2 ) low, PEIY)
I(X,Y) _xeAXZZ;EAYp( 7y)1 g2 p(l‘)

= Y sy HEU.

(1.6)

From this formulation, we can see that the MI may also be defined as the Kullback-
Leibler divergence of the joint probability distribution of X and Y from the product

1.2 Information theoretic preliminaries
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of their marginal distributions. Hence, the MI measures the dependence between
two variables by quantifying their deviation from independence:

I(X;Y) = Drr(p(z,y)|lp(x)p(y))- (1.7)

Conditional mutual information We can extend the MI to define the conditional
mutual information between X and Y given Z as the MI between X and Y when Z
is known:

I(X;Y|Z) = 1(X;Y,2) - I(X; Z)

x|y, z
- Z p(:r?wa) 10g2 p((:ETZ)) (1.8
meAX7y€AY, p
z€EAZ

Importantly, there are cases where I(X;Y|Z) > I(X;Y), i.e., conditioning on a
third variable will increase the MI between two variables. As an example, consider a
binary xor gate with inputs X and Y, and output Z. If X and Y are two random,
independent inputs, the MI I(X;Y") is zero, while conditioning on the output leads
to a conditional mutual information of I(X;Y|Z) = 1. Here, observing the common
effect induces a dependency between the two causes, which is also called explaining
away in the theory of Bayesian networks (see for example [71]).

The increase in MI when conditioning on a third variable has also been described
in the framework of partial information decomposition (PID) [72]. PID describes
how the information two or more variables have about a third can be decomposed
into unique information, i.e., information about the target that is contained solely
in one variable; shared information, i.e., information that is redundantly present in
two or more variables about the target; and synergistic information, i.e., information
contained jointly in two or more variables, which can not be derived from looking
at any subset of the variables alone (see also Fig. 1.2C). Synergistic information is
present, whenever additionally considering the information from a second variable
Y, increases the information we gain from X about Z, hence I(X; Z|Y) > I(X; Z).
In the the xor example, the MI between one input and the output, /(X; Z), is zero,
while conditioning on the second input leads to I(X; Z|Y) = 1—thus, X and Y can
be said to have synergistic information about Z. Intuitively, synergistic information
can be understood as the information in X that is needed to “decode” the information
Y has about Z, and vice versa (see also Section 1.3.1, Transfer entropy below).
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1.3

1.3.1

All presented measures of information content readily generalize to multivariate
variables X.

Measuring information processing

In the next sections, I will present the three measures of information processing,
namely, TE for quantifying information transfer, AIS for quantifying information
storage, and information modification. While TE and AIS are readily derivable from
traditional information theory, the same is not possible for information modification
and here no equivalent measure exists. For the sake of completeness, I will briefly
introduce the current state of research in this area.

To allow for a mathematical definition of the time-dynamics aspect of TE and AIS, I
extend the basic definition from Section 1.2: if we observe two physical systems X’
and ) over time, observations can be described as realizations z,,, ¥, of two random
processes X = {X1,...,X,,..., Xy} and Y = {¥1,...,Y,,..., Yy}, where each
random processes is a collection random variables indexed by some integer.

Transfer entropy

Transfer entropy (TE) quantifies how much our prediction of the future of a process
Y improves, if we not only look at Y’s own past, but also the past of a second process
X [12] (Fig. 1.2A). TE is defined as a conditional mutual information between the
future of the target process Y and the past of the source process X, conditional on
the past of Y’

TEspo (X —Y,n,u,k, l)
= lim (Y X, |[YE )

k,l—)oo
palynots Xnw)
e k;]llm Z p (yn7 XTZ—U7 yn—l) 10g2 n( n’ 9 n) m
J—o0 yn€AY, Xn—uw€AX, . (Yn|Yn_1
Y'nfle.AYnil

where Y, is the future value of the random process Y and X! _,, Y*_, are the past
states of X and Y respectively. Past states are collections of k£ and [ past variables,

respectively
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Yﬁ_l = {Ynfh Ynflfﬂ'yv ) Yn—(k—l)Ty},

l (1.10)
Xn—u = {Xn—’u,, XTL—U—Tx) oo 7X7’L—u—(l—1)7'x}7

which form a delay-embedding of dimension k£ and [ (k and [ are also called the
history lengths), where 7. denotes the delay between samples entering the past state
[73]3. For the target process Y, the embedding has to be chosen such that the
constructed past state renders Y,, conditionally independent of variables at time
points further in the past than n— (k— 1)y samples. The past state is then maximally
informative about Y,,, which is an assumption that must hold when estimating both
information storage and transfer. In the case of TE, failure to construct the two past
states correctly may lead to an overestimation of TE or failure to correctly identify
the direction of information transfer (see also Chapter 4).

The variable u is the assumed information transfer delay between both processes
and accounts for some physical delay dx y > 1 between the processes, X and ). By
accounting for arbitrary delays between processes our estimator differs from the
initial formulation of TE in [12] where TE was defined for « = 1 only, such that
we have an identical delay of 1 time step for both past states in source and target
process. In contrast, our estimator allows for a delay other than 1 between the
present value and source past state, while preserving the delay of 1 between present
value and target past state; thus, our estimator accounts for possible physical delays
between source and target system, while preserving self prediction optimality within
the target (hence the subscript SPO) [75]. Self prediction optimality here means
that the past state is maximally informative about the future value Y,,. The true
delay 0,y may be recovered by “scanning” various assumed delays and keeping the
delay that maximizes T'Espo as shown in [75]

dxy = arg max (TEspo (X — Y,n,u,k,1)). (1.11)

TE is measured by a conditional mutual information and as mentioned in Section
1.3, conditioning on Y% _, may lead to cases, where limy,; ;. I (Yn; Xf%u|Yf§_1) >
!

limy, ;oo I (Yn; Xﬁl,u) In this case, the past states X! ., Y* | have synergistic
information about Y,, [72]. Hence, conditioning on X!, when calculating TE has
two effects: first, information about Y; that is redundantly present in both X!, and
YF_, is conditioned out or removed; while second, synergistic information jointly

present in X! and Y*_; is “conditioned in”.

3More elaborate embedding schemes exist (e.g., the non-uniform embedding [74]) and are presented
in Chapter 5, General discussion.
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Fig. 1.2 Information dynamics measures. (A) Transfer entropy (TE): TE quantifies the information

transfer (red arrow) from time series X to time series Y by quantifying how much better
the present value of Y, Y,,, (red sample) can be predicted, if not only its own past, YX_;,
(red, dashed box), but also the past of X, X/ (red box) is taken into account (a delay

ux_y between X!, and Y, accounts for the information transfer delay between X and
Y). (B) Active information storage (AIS): AIS quantifies how well the present value of
time series X (blue sample) can be predicted from its immediate past, X ; (blue box.)
(C) Information modification measured by synergistic information (modified from [76]):
synergistic information quantifies the information two variables, X and Y, have jointly
about a third variable Z, where this information can not be obtained from one of the two
variables alone (gray area). Note that this information may thus be higher (represented by a
larger area) than the information in the two variables X and Y (white circles). Synergistic
information was defined in the framework of partial information decomposition [72], that
proposed a decomposition of the information two variables have about a third, into the
components of unique information, { X}, {Y'}, shared information { X }{Y}, and synergistic
information {X,Y} (see main text).

1.3 Measuring information processing
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Active Information Storage

Active information storage (AIS) quantifies how well we can predict the outcome of
a random variable X, at a certain point in time from its immediate past (Fig. 1.2B)
[30, 66]. AIS is defined as the MI between X,, and its immediate past state Xihﬁ

AIS(X,n) = lim I (Xﬁl_l; Xn>

J—00
: Tn, X 1.12
= lim Z p(ajn, ng—l) ]0g2 p(n—”j_1)7 ( )
—00
’ Ooleﬂe«‘\xj an€AX, p(zn)p(x5, 1)
n—1

where the past state Xflfl is again a collection of past random variables, e.g., a delay
embedding (c.f. Eq. 1.10),

X! = X1, X torgs s X1 (o 1)rx ) (1.13)

AIS may then be interpreted as the reduction in uncertainty about the outcome
X, that we gain from X,,’s immediate past, or the past information that is actively
in use for the next state update of the system [66]; in other words, AIS may be
characterized as a measure of how much information in the past of X is being used
to compute the next state at X,,, or the amount of information in X,, predictable
from its immediate past.

AIS has to be distinguished from related information-theoretic measures that have
been used to quantify information storage in neuroscience and other areas: first, AIS
is related to the so-called excess entropy (see [77] and references therein)

E(X,n)= lim I(X)_;X}"), (1.14)

jmgt—oo” N

where bold fonts indicate again state variables of lengths k+, k—, with X/* =
{Xn, Xn+1,..., Xntj+}, describing a collection of future random variables, relative
to time point n. The excess entropy measures the average information about the
whole future of X that is obtainable from X’s past. While, AIS quantifies the amount
of past information in use at the next point in time, n, only, the excess entropy
quantifies the amount of past information in use at any point in time > n.
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Second, AIS is complementary to the so-called entropy rate [77]

H,(X,n) = lim H(X,|X]_,), (1.15)

j—00

which quantifies the information in X, that can not be predicted from its immediate
past. The entropy rate is complementary to AlS, i.e., H(X,,) = AIS(X,n)+H,(X,n)
[30]. Thus, AIS quantifies “how much structure can be resolved rather than how
much cannot” [66].

Information modification

Information modification describes the “interaction” between transmitted and/or
stored information and its “processing into a new form” [5, 78]. A measure of
information modification is lacking, because it is not directly derivable from tradi-
tional information theoretic measures [9]. Existing work instead used proxies like
separable information [64].

In more recent work, Lizier et al. [78] proposed to build on the theoretical framework
of PID, in particular synergistic information, for a proper definition of a measure of
information modification (see also Section 1.2 and Fig. 1.2C). Synergistic informa-
tion quantifies the intuitive notion of information processing, namely the non-trivial
combination of two or more sources into an output that is not obtainable from one
source or a sub-set of sources alone. Yet, a practical measure of unique, redundant,
or synergistic information, and its estimation from experimental data, is still missing
and the definition of such a measure is an area of active research* [8, 72, 78-81]. I
discuss the current state of research in Section 5.2.1, Quantification of information
modification and its relevance to the interpretation of transfer entropy in Chapter 5,
General discussion).

Open problems in estimating information
processing measures in neuroscience

The presented measures of information transfer and storage are theoretically well-
defined, yet their estimation from limited, experimental data is highly non-trivial;
also, their conceptual integration with other levels of research is often challenging. I
will here describe the estimation of TE (and to some degree AIS) in neuroscience

“*Note that a measure of one quantity is sufficient to calculate the remaining three.

1.4 Open problems in estimating information processing measures in neuroscience
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research and outline the most pressing open problems. These problems have already
been discussed in greater detail by Vicente et al. [13].

Lack of data in the estimation of TE As introduced in Section 1.2, information-
theoretic measures are functionals of probability distributions. When applying
these functionals to variables observed in experimental neuroscience—but also
other fields—these probability distributions are typically not known. Hence, the
distributions or the functionals have to be estimated from the collected, finite data,
which are typically noisy and relatively sparse. We thus have to choose a suitable
estimator that yields robust results despite the listed limitations. For TE and AIS, we
either require an estimator of entropies and conditional entropies, or of MI (because
TE can easily be decomposed into respective terms, see Section 2.2).

The “quality” of an estimator can be described by its bias, variance, and convergence:
An estimator of a parameter ¢ is a function of the data that maps i.i.d. samples
z € {x1,...,xy} from a sample space to a set of estimates 7" : 2 — 0. The bias of

this estimator is then the expected difference between the estimator and the true

value to be estimated

B(T) == Ex |[0(z) - 0] . (1.16)

An estimator with zero bias is called unbiased.

The variance of the estimator is the expected value of the squared deviation from
the expected value

var(T) := Ex [(é(x) - EX(H))2] . (1.17)

and quantifies how far the set of estimates deviates on average from the expected

value.
The estimator is called consistent, if for increasing amounts of data the estimate

converges to the true value of the parameter

lim P(IT(X) ~ 0] <o) = 1. (1.18)
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In other words, with increasing sample size, the probability of the estimate being
close to the true value 6 increases as well. See, for example, [82] for an introduction
to information theory and its estimation in neuroscience.

It is desirable to chose an estimator which has low bias and variance, and quickly con-
verges to the true value of the parameter to be estimated. Furthermore, estimators
differ with respect to the type of data—continuous or discrete—they are designed
for, such that an estimator appropriate for the data at hand should be chosen. Since
the present work mostly concerns continuous electrophysiological data, a continuous
estimator should be preferred—here, a nearest-neighbor based estimator by Kraskov,
Stogbauer, and Grassberger (KSG-estimator [83]) for the estimation of MI has the
most favorable bias properties [13, 84, 85]. The estimator is furthermore suitable
for the estimation of TE from high-dimensional data [13, 85] and for the detection
of small information transfer in noisy data [75]; it has thus become a standard for
the estimation of TE and AIS [13, 86, 87].

One downside of the KSG-estimator is that it requires a considerable amount of
realizations of the involved random variables for the estimation of TE. This amount
of data may not always be available in neuroscience experiments, for example, where
recording times have to account for tiring of subjects. A common approach is here to
pool recorded data over time to obtain a sufficient amount of realizations; however,
this practice requires stationarity of the underlying processes, which may not be
guaranteed in neuroscience experiments (see [13]). Here, the applicability of TE
suffers because of the lack of available data—if stationarity is wrongly assumed, the
estimated values may be erroneous.

Spurious TE estimates due to multivariate effects The presented TE functional
(Eq. 1.9) quantifies the information transfer between one source process X and
one target process Y. This has also been termed apparent transfer entropy by
Lizier et al. [65], and may lead to spurious results if apparent TE is estimated
in systems of more than two interacting sub-systems (which is often the case in
neuroscience applications). Here, it is likely that information transfer X — Y does
not happen in an isolated manner, i.e., it is influenced by third variables Z. In
this case, to detect the “true” information transfer X — Y, the influence of Z has
to be accounted for by an additional conditioning: TEspo (X — Y|Z,n,u, k1) =
limy ;o0 1 (Yn; Xt Yk Z). Yet, the computational demand of calculating TE
in such a multivariate fashion increases exponentially in the problem size—hence,
an exhaustive solution may not be tractable for arbitrary problem sizes. Here,
approximative methods have to be found to alleviate the impact of multivariate
effects on estimates of apparent TE.

1.4 Open problems in estimating information processing measures in neuroscience
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Failure to properly optimize estimation parameters As described in Section 1.3.1,
when considering random processes for the estimation of TE, we have to construct
past states to fully describe the state of a system. Failure to do so may result in
over- or under-estimation of TE, or even in the detection of spurious information
transfer in the wrong direction. Furthermore, information transfer delays have
to be accounted for, such that TE is not underestimated or not missed at all [75].
Also, in systems with bi-directional coupling, the reconstruction of the transfer
delay is crucial, especially when comparing the strength of information transfer
between directions [75]. Existing research often neglects the proper reconstruction
of embedding parameters and information transfer delays, which potentially leads
to erroneous results when estimating TE.

Misinterpretation of TE as a measure of causal interaction Lastly, TE has been used
extensively in neuroscience as a connectivity measure [23, 88], i.e., as a measure
to infer dependencies between neuronal sites like single cells [15] or cell assem-
blies in cortical areas of several millimeter in diameter [14]. In these applications
TE has often been interpreted as a measure of causal interactions (e.g., [89-91]),
i.e., a measure of a mechanistic effect between the sub-systems under investiga-
tion. This interpretation has been repeatedly criticized and it has been shown that
causal connections and information transfer are two distinct concepts [68, 92];
yet, the interpretation of TE in terms of causal connections remains prevalent in
neuroscience.

Contribution of the present work

The present work addresses the challenges listed above in three chapters:

Chapter 2 — Efficient transfer entropy analysis of non-stationary neural time series
This chapter describes how to estimate TE from non-stationary neural data. The
estimation of TE typically requires a considerable amount of data to estimate the
involved—and typically unknown—probability density functions p(-). In neuro-
science, we often assume stationarity of the observed processes and pool observed
realizations of these processes over time to obtain the necessary amount of real-
izations per random variable. This assumption of stationarity may not always be
justified—to still be able to estimate TE (but also other information-theoretic mea-
sures), it is possible to pool data over an ensemble of physical or temporal copies of
the processes under investigation. This approach readily accommodates the data
structure typically encountered in neuroscience experiments, were the same task is
repeated many times to generate temporal copies of the process under investigation
(so called “trials”). Trials are “cyclostationary”, i.e., they are temporal copies of
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the same initial process. By aligning trials, realizations can be pooled over trials to
obtain a sufficient amount of data for information-theoretic estimates. Pooling over
trials may be combined with temporal pooling in arbitrarily small time-windows to
obtain time-resolved estimates of TE over the course of an experiment.

Yet, there is a technical disadvantage to pooling data over trials when estimating TE
or other information-theoretic measures: when pooling data over time alone, such
that we obtain one estimate per trial, we can exploit the trial structure to perform
necessary statistical tests of our estimates. This is done by estimating TE once for
each trial and once for permuted versions of the same trial; we can then perform a
permutation t-test between the two data sets (original and surrogate data). When
pooling data over trials, this structure gets lost, and with it the ability to perform
the permutation test over trials. Instead, each estimate has to be tested against a
distribution of estimates from suitable surrogate data. This means, that a sufficient
number of surrogate data have to be created, for each of which the estimation has to
be repeated. This multiplies the computational demand by the number of surrogates
used.

Previous implementations of TE estimators did not allow for an estimation of TE
from large surrogate data in feasible time. We therefore used an implementation
of the core routines of TE estimation for graphical processing units (GPUs), which
allow to handle simple computations in a highly parallel fashion. This highly parallel
implementation allowed us to handle the increased computational demand when
estimating TE from an ensemble of time series. Enabling the estimation of TE from
an ensemble of time series thus allows the estimation this measure from arbitrarily
small time windows while still allowing for the necessary statistical testing. The
estimation of information-theoretic measures is especially relevant in neuroscience,
where data can be expected to be non-stationary, such that an estimation over time
does not warrant valid estimates. We presented a reference implementation of
the proposed method and demonstrate its application to magnetoencephalographic
data.

Chapter 3 — A graph algorithmic approach to separate direct from indirect neural
interactions In the second chapter we present a method for the post-hoc cor-
rection for multivariate effects in apparent or bivariate TE estimates. Commonly,
neuroscience data consists of multiple sources of neural activity that are recorded
simultaneously. Yet, existing implementations of TE estimation mostly consider a
bivariate case, where information is transferred from one source to one target in
an isolated fashion. This assumption is typically not true for neuroscience data;
yet, a truly multivariate approach, where all possible combinations of sources are
considered, poses a NP-hard problem. However, if multivariate interactions are not

1.5 Contribution of the present work
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taken into account, the estimated bivariate interactions may be spurious, i.e., pose
false positives.

To reduce the number of false positives in bivariate TE estimates, we presented a

post-hoc correction for bivariate TE estimates from multiple—potentially interacting—
sources that were analyzed iteratively. The correction consists of a graph-algorithmic

approach that investigates the network of bivariate interactions for characteristic

timing-signatures that arise from spurious interactions. This requires the reconstruc-
tion of information transfer or interaction delays u for each link in the network.

In the identified sub-networks, potentially spurious links are flagged and may be

removed from the network to obtain a more conservative approximation of a network

of truly multivariate interactions.

The presented approximative method allows for the inference of multivariate in-
formation transfer from multiple time series. The algorithm is in theory applicable
to any bivariate connectivity measure that allows for the reconstruction of inter-
action delays. We demonstrated the algorithm’s application and discuss potential
application scenarios.

Chapter 4 — Anesthesia-related changes in information transfer may be caused by
changes in local information processing In the third chapter, we demonstrate how
cortical information transfer measured by TE may be influenced by local information
processing in source and target processes of the TE. We investigated TE in two ferrets
under different levels of anesthesia, which is known to have an effect on long-range,
cortical information transfer. Additionally, we measured local information processing
in the source and target of the TE by estimating active information storage and
signal entropy.

TE has been found to decrease under anesthesia and this has often been explained
by a change in the underlying, physical coupling. Yet, by demonstrating that local
information processing in source and target is altered as well, we provide an alterna-
tive explanation of reduced TE, which is unrelated to the underlying anatomy. We
thus demonstrate that mistaking TE for a causal measure, may lead to erroneous
interpretations of experimental results.

Additionally, we confirm existing findings on TE under anesthesia, while applying
current best-practice in TE estimation, namely TE estimation using the KSG-estimator
and by additionally applying a novel Bayesian estimator for information-theoretic
measures. We discuss current best-practices for TE estimation and point out pitfalls
that are especially common in anesthesia research and may have detrimental effects
on estimated quantities; in particular, we show how under-embedding leads to over-
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or underestimation of TE, failure to properly reconstruct interaction delays leads to
failure to identify the dominant direction of information transfer, and we discuss
how symbolic TE as a proxy to TE estimation on continuous data may miss actual
information transfer.

Our results indicate that reduced information transfer under anesthesia may be
caused by a reduction in information production in either the source or the target,
rather than by changes in cortical coupling. We thus show, how an implicit mixing
of levels of explanation, i.e., misinterpretation of TE as a causal measure may lead
to erroneous interpretations of the obtained results.

1.5 Contribution of the present work 19
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Abstract

Information theory allows us to investigate information processing in neural systems in terms
of information transfer, storage and modification. Especially the measure of information
transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating
transfer entropy from two processes requires the observation of multiple realizations of these
processes to estimate associated probability density functions. To obtain these necessary
observations, available estimators typically assume stationarity of processes to allow pooling
of observations over time. This assumption however, is a major obstacle to the application of
these estimators in neuroscience as observed processes are often non-stationary. As a solution,
Gomez-Herrero and colleagues theoretically showed that the stationarity assumption may
be avoided by estimating transfer entropy from an ensemble of realizations. Such an
ensemble of realizations is often readily available in neuroscience experiments in the form
of experimental trials. Thus, in this work we combine the ensemble method with a recently
proposed transfer entropy estimator to make transfer entropy estimation applicable to non-
stationary time series. We present an efficient implementation of the approach that is suitable
for the increased computational demand of the ensemble method’s practical application.
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In particular, we use a massively parallel implementation for a graphics processing unit to
handle the computationally most heavy aspects of the ensemble method for transfer entropy
estimation. We test the performance and robustness of our implementation on data from
numerical simulations of stochastic processes. We also demonstrate the applicability of
the ensemble method to magnetoencephalographic data. While we mainly evaluate the
proposed method for neuroscience data, we expect it to be applicable in a variety of fields
that are concerned with the analysis of information transfer in complex biological, social,
and artificial systems.

Introduction

We typically think of the brain as some kind of information processing system, albeit
mostly without having a strict definition of information processing in mind. However,
more formal accounts of information processing exist, and may be applied to brain
research. In efforts dating back to Alan Turing [93] it was shown that any act of
information processing can be broken down into the three components of information
storage, information transfer, and information modification [5, 93-95]. These
components can be easily identified in theoretical or technical information processing
systems, such as ordinary computers, based on the specialized machinery for and the
spatial separation of these component functions. In these examples, a separation of
the components of information processing via a specialized mathematical formalism
seems almost superfluous. However, in biological systems in general, and in the
brain in particular, we deal with a form of distributed information processing based
on a large number of interacting agents (neurons), and each agent at each moment
in time subserves any of the three component functions to a varying degree (see
[66] for an example of time-varying storage). In neural systems it is indeed crucial
to understand where and when information storage, transfer and modification take
place, to constrain possible algorithms run by the system. While there is still a
struggle to properly define information modification [64, 78] and its proper measure
[72, 80, 81, 96, 971, well established measures for (local active) information storage
[30], information transfer [12], and its localization in time and space [65, 98]
exist, and are applied in neuroscience (for information storage see [66, 67, 99], for
information transfer see below).

Especially the measure for information transfer, transfer entropy (TE), has seen a
dramatic surge of interest in neuroscience [13-18, 22, 23, 91, 100-113], physiology
[74, 114, 115], and other fields [18, 64, 65, 116, 117]. Nevertheless, conceptual
and practical problems still exist. On the conceptual side, information transfer has
been for a while confused with causal interactions, and only some recent studies
[68, 92, 118] made clear that there can be no one-to-one mapping between causal
interactions and information transfer, because causal interactions will subserve
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all three components of information processing (transfer, storage, modification).
However, it is information transfer, rather than causal interactions, we might be
interested in when trying to understand a computational process in the brain [68].

On the practical side, efforts to apply measures of information transfer in neuro-
science have been hampered by two obstacles: (1) the need to analyze the infor-
mation processing in a multivariate manner, to arrive at unambiguous conclusions
that are not clouded by spurious traces of information transfer, e.g. due to effects of
cascades and common drivers; (2) the fact that available estimators of information
transfer typically require the processes under investigation to be stationary.

The first obstacle can in principle be overcome by conditioning TE on all other
processes in a system, using a fully multivariate approach that had already been
formulated by Schreiber [12]. However, the naive application of this approach
normally fails because the samples available for estimation are typically too few.
Therefore, recently four approaches to build an approximate representation of the
information transfer network have been suggested: Lizier and Rubinov [25], Faes
and colleagues [115], and Stramaglia and colleagues [119] presented algorithms for
iterative inclusion of processes into an approximate multivariate description. In the
approach suggested by Stramaglia and colleagues, conditional mutual information
terms are additionally computed at each level as a self-truncating series expansion,
following a suggestion by Bettencourt and colleagues [120]. In contrast to these
approaches that explicitly compute conditional TE terms, we recently suggested an
approximation based on a reconstruction of information transfer delays [75] and a
graphical pruning algorithm [121]. While the first three approaches will eventually
be closer to the ground truth, the graphical method may be better applicable to very
limited amounts of data. In sum, the first problem of multivariate analysis can be
considered solved for practical purposes, given enough data are available.

The second obstacle of dealing with non-stationary processes is also not a funda-
mental one, as the definition of TE relies on the availability of multiple realizations
of (two or more) random processes, that can be obtained by running an ensemble
of many identical copies of the processes in question, or by running one process
multiple times. Only when obtaining data from such copies or repetitions is impossi-
ble, we have to turn to a stationarity assumption in order to evaluate the necessary
probability density functions (PDF) based on a single realization.

Fortunately, in neuroscience we can often obtain many realizations of the processes
in question by repeating an experiment. In fact, this is the typical procedure in
neuroscience - we repeat trials under conditions that are kept as constant as possible
(i.e we create a cyclostationary process). The possibility to use such an ensemble of
data to estimate the time resolved TE has already been demonstrated theoretically
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by Gomez-Herrero and colleagues [24]. Practically, however, the statistical testing
necessary for this ensemble-based method leads to an increase in computational cost
by several orders of magnitude, as some shortcuts in statistical validation that can
be taken for stationary data cannot be used for the ensemble approach (see [86]):
For stationary data, TE is calculated per trial and one set of trial-based surrogate
data may be used for statistical testing. The ensemble method does not allow for
trial-based TE estimation as TE is estimated across trials. Instead, the ensemble
method requires the generation of a sufficiently large number of surrogate data sets,
for all of which TE has to be estimated, thus multiplying the computational demand
by the number of surrogate data sets. Therefore, the use of the ensemble method has
remained a theoretical possibility so far, especially in combination with the nearest
neighbor-based estimation techniques by Kraskov and colleagues [83] that provide
the most precise, yet computationally most heavy TE estimates. For example, the
analysis of magnetoencephalographic data presented here would require a runtime
of 8200 h for 15 subjects and a single experimental condition. It is easy to see that
any practical application of the methods hinges on a substantial speed-up of the
computation.

Fortunately, the algorithms involved in ensemble-based TE estimation, lend them-
selves easily to data-parallel processing, since most of the algorithm’s fundamental
parts can be computed simultaneously. Thus, our problem matches the massively
parallel architecture of Graphics Processing Unit (GPU) devices well. GPUs were
originally devised only for computer graphics, but are routinely used to speed up
computations in many areas today [122, 123]. Also in neuroscience, where applied
algorithms continue to grow faster in complexity than the CPU performance, the use
of GPUs with data-parallel methods is becoming increasingly important [124] and
GPUs have successfully been used to speedup time series analysis in neuroscientific
experiments [125-130].

Thus, in order to overcome the limitations set by the computational demands of
TE analysis from an ensemble of data, we developed a GPU implementation of
the algorithm, where the neighbor searches underlying the binless TE estimation
[83] are executed in parallel on the GPU. After parallelizing this computationally
most heavy aspect of TE estimation we were able to use the ensemble method for
TE estimation proposed by [24], to estimate time-resolved TE from non-stationary
neural time-series in acceptable time. Using the new GPU-based TE estimation tool
on a high-end consumer graphics card reduced computation time by a factor of 50
compared to the CPU optimized TE search used previously [131]. In practical terms,
this speedup shortens the duration of an ensemble-based analysis for typical neural
data sets enough to make the application of the ensemble method feasible for the
first time.
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2.2

2.2.1

2.2.2

Background

Our study focuses on making the application of ensemble-based estimation of TE
from non-stationary data practical using a GPU-based algorithm. For the convenience
of the reader, we will also present the necessary background on stationarity, TE
estimation using the Kraskov-Stogbauer-Grassberger (KSG) estimator [13], and
the ensemble method of Gomez-Herrero et al. [24] in condensed form in a short
background section below. Readers well familiar with these topics can safely skip
ahead to the Implementation section below.

Notation

To describe practical TE estimation from time series recorded in a system of in-
terest X (e.g. a brain area), we first have to formalize these recordings math-
ematically: We define an observed time series x = (z1,22,...,%,...,2N) @S a
realization of a random process X = (X1, Xo,...,X},..., Xn). A random process
here is simply a collection of individual random variables sorted by an integer index
t € {1,..., N}, representing time. TE or other information theoretic functionals
are then calculated from the random variables’ joint PDFs px.y,(Xs = a;,Y: = b;)
and conditional PDFs px |y,(Xs = a;|Y; = b;) (with s,z € {1,...,N}), where
Ax, ={ai,a2,...,a;,...,ar} and By, = {b1,b,...,b;,...,b;s} are all possible out-

comes of the random variables X and Y;, and where px |y, (Xs = a;|Y; = b;) =

Px,v, (Xs=a;,Yr=b;)
Py, (Ye=b;) ’

We call information theoretic quantities functionals as they are defined as functions
that map from the space of PDFs to the real numbers. If we have to estimate the
underlying probabilities from experimental data first, the mapping from the data to
the information theoretic quantity (a real number) is called an estimator.

Stationarity and non-stationarity in experimental time series

PDFs in neuroscience are typically not known a priori, so in order to estimate
information theoretic functionals, these PDFs have to be reconstructed from a
sufficient amount of observed realizations of the process. How these realiza-
tions are obtained from data depends on whether the process in question is sta-
tionary or non-stationary. Stationarity of a process means that PDFs of the ran-
dom variables that form the random process do not change over time, such that
px, (Xt = aj) = px, (Xy = a;), Vt,t' € N. Any PDF px, (-) may then be estimated
from one observation of process X by means of collecting realizations x; over time
t'e{l,...,N}.
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For processes that do not fulfill the stationarity-assumption, temporal pooling is not
applicable as PDFs vary over time ¢ and some random variables X;, X, (at least
two) are associated with different PDFs px, (-), px.(-) (Fig. 2.1). To still gain the
necessary multiple observations of a random variable X; we may resort to either
run multiple physical copies of the process X or—in cases where physical copies
are unavailable—we may repeat a process in time. If we choose the number of
repetitions large enough, i.e. there is a sufficiently large set R of time points ©, at
which the process is repeated, we can assume that

FRCNAR#D: pxe,.(aj) =px,, ., (a;) Yt €Nt <min(|©— o),

2.1)
V0,0’ € R, Va; € Ay,

i.e. PDFs px,_,(-) at time point ¢ relative to the onset of the repetition at © are
equal over all R = |R| repetitions. We call the repeated observations of a process
an ensemble of time series. We may obtain a reliable estimation of px,,(-) from
this ensemble by evaluating p.(-) over all observations zg;,V® € R. For the
sake of readability, we will refer to these observations from the ensemble as x;(r),
where ¢ refers to a time point ¢, relative to the beginning of the process at time
©, and r = 1, ..., R refers to the index of the repetition. If a process is repeated
periodically, i.e. the repetitions are spaced by a fixed interval 7', we call such a
process cyclostationary [132]:

ar . vt px,(a;) = px,r..(aj) Vn,t € Nt < T, Va; € Ax,. (2.2)

In neuroscience, ensemble evaluation for the estimation of information theoretic
functionals becomes relevant as physical copies of a process are typically not avail-
able and stationarity of a process can not necessarily be assumed. Gomez-Herrero
and colleagues recently showed how ensemble averaging may be used to neverthe-
less estimate information theoretic functionals from cyclostationary processes [24].
In neuroscience for example, a cyclostationary process, and thus an ensemble of
data, is obtained by repeating an experimental manipulation, e.g. the presentation
of a stimulus; these repetitions are often called experimental trials. In the remainder
of this article, we will use the term repetition, and interpret trials from a neuro-
science experiment as a special case of repetitions of a random process. Building on
such repetitions, we next demonstrate a computationally efficient approach to the
estimation of TE using the ensemble method proposed in [24].
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Fig. 2.1 Pooling of data over an ensemble of time series for transfer entropy (TE) estimation.
(A) Schematic account of TE. Two scalar time series X, and Y, recorded from the rt"
repetition of processes X and Y, coupled with a delay § (indicated by green arrow). Colored
boxes indicate delay embedded states x2* _(r), y&¥, (r) for both time series with dimension
dx = dy = 3 samples (colored dots). The star on the Y time series indicates the scalar
observation y; that is obtained at the target time of information transfer ¢. The red arrow
indicates self-information-transfer from the past of the target process to the random variable
Y; at the target time. u is chosen such that « = § and influences of the state x{*_(r) arrive
exactly at the information target variable Y;. Information in the past state of X is useful
to predict the future value of ¥ and we obtain nonzero TE. (B) To estimate probability
density functions for x{*_(r), y&¥, () and y,(r) at a certain point in time ¢, we collect their
realizations from observed repetitions » = 1, ..., R. (C) Realizations for a single repetition
are concatenated into one embedding vector and (D) combined into one ensemble state
space. Note, that data are pooled over the ensemble of data instead of time. Nearest
neighbor counts within the ensemble state space can then be used to derive TE using the
Kraskov-estimator proposed in [83].
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Transfer entropy estimation from an ensemble of time series

Ensemble-based TE functional. When independent repetitions of an experimental
condition are available, it is possible to use ensemble evaluation to estimate various
PDFs from an ensemble of repetitions of the time series [24]. By eliminating the need
for pooling data over time, and instead pooling over repetitions, ensemble methods
can be used to estimate information theoretic functionals for non-stationary time
series. Here, we follow the approach of [24] and present an ensemble TE functional
that extends the TE functional presented in [13, 14, 75] and also takes into account
an extension of the original formulation of TE, presented in [75], guaranteeing self
prediction optimality (indicated by the subscript SPO). In the next subsection, we
will then present a practical and data-efficient estimator of this functional. The
functional reads

TEspo (X — Y, t,u) = I(Yy; XX YY) (2.3)

where I(-;-|-) is the conditional mutual information, and Y7, Yffl, and Xtdfu are the
current value and the dy-dimensional past state variables of the target process Y,
and the dx-dimensional past state variable at time ¢ — u of the source process X,
respectively (see next paragraph for an explanation of states).

Rewriting this, taking into account repetitions r of the random processes explicitly

we obtain:
_ dy dx
TEspo (X Y,t,u) = S () v ), xE )
ye(r)y Y, (1) x¢X (r)
v xix, 2.4)

p (e (P)lye () xi%, ()
p (w()lyi (1)

log

Here, u is the assumed delay of the information transfer between processes X
and Y [75]; y:(r) denotes the future observation of Y in repetition r = 1,..., R;
yffl(r) denotes the past state of ¥ in repetition r and x?*,(r) denotes the past
state of X in repetition r. Note, that the functional TEgpo used here is a modi-
fied form of the original TE formulation introduced by Schreiber [12]. Schreiber
defined TE as a conditional mutual information TF (X — Y,t) = I(Y}; XfﬁﬂY?ﬁl),
whereas the functional in Eq. 2.3 implements the conditional mutual information
TEspo (X — Y, t,u) = I(Yt;X,‘fiu\Yfﬁl) [75]. The latter functional, T Espp, con-
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tains the definition of Schreiber as a special case for © = 1. Note that the two
functionals are identical if T Espo is used with the physically correct delay § (i.e.
u = ¢) and a proper embedding for the source, and the Schreiber measures is used
with an over-embedding such that the source state at (¢ — 9) is still fully covered by
the source embedding.

In addition to the original formulation of T Espo in [75], here we explicitly state that
the necessary realizations of the random variables in question are obtained through
ensemble evaluation over repetitions r—assuming the underlying processes to be
repeatable or cyclostationary. Furthermore, we note explicitly that this ensemble-
based functional introduces the possibility of time resolved TE estimates.

We recently showed that the estimator presented in [75] can also be used to re-
cover an unknown information transfer delay § between two processes X and Y,
as TEspo (X — Y, t,u) is maximal when the assumed delay u is equal to the true
information transfer delay § [75]. This holds for the extended estimator presented
here, thus

d = arg max (TEspo (X — Y, t,u)). (2.5)

State space reconstruction and practical estimator. Transfer entropy differs from
the lagged mutual information I(Y;; X% ) by the additional conditioning on the past
of the target time series, Yffl. This additional conditioning serves two important
functions. First, as mentioned already by Schreiber in the original paper [12], and
later detailed by Lizier [95] and Wibral and colleagues [23, 75], it removes the
information about the future of the target time-series Y; that is already contained
in its own past, Yf_yl. Second, this additional conditioning allows for a discovery
of information transfer from the source X% to the target that can only be seen
when taking into account information from the past of the target Y?*, [76]. In the
second case, the past information from the target serves to “decode” this information
transfer, and acts like a key in cryptography. As a consequence of this importance of
the past of the target process it is very important to take all the necessary information
in this past into account when evaluating the TE as in Eq. 2.4.

To this end we need to form a collection of past random variables

Y = (Yo, Yiciors o Y gy 1)) (2.6)
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such that their realizations,

Y ) = W1 (r), g1 - Yt-1—(dy—1)7) » (2.7)

are maximally informative about the future of the target process, Y;.

This task is complicated by the fact the we often deal with multidimensional systems,
of which we only observe a scalar variable (here modeled as our random processes
X,Y). To see this, think for example of a pendulum (which is a two dimensional
system) of which we record only the current position Y;. If the pendulum is at its
lowest point, it could be standing still, going left, or going right. To properly describe
which state the pendulum is in, we need to know at least the realization of one more
random variable Y;_; back in time. Collections of such past random variables whose
realizations uniquely describe the state of a process are called state variables.

Such a sufficient collection of past variables, called a delay embedding vector, can
always be reconstructed from scalar observations for low dimensional deterministic
systems, such as the above pendulum, as shown by Takens [73]. Unfortunately, most
real world systems are high-dimensional stochastic dynamic systems (best described
by non-linear Langevin equations) rather than low-dimensional deterministic ones.
For these systems it is not obvious that a delay embedding similar to Takens’ approach
would yield the desired results. In fact, many systems can be shown to require an
infinite number of past random variables when only a scalar observable of the high-
dimensional stochastic process is accessible. Nevertheless, as shown by Ragwitz
and Kantz [133], the behavior of scalar observables of most of these systems can be
approximated very well by a finite collection of such past variables for all practical
purposes; in other words, these systems can be approximated well by a finite order,
one-dimensional Markov-process.

For practical TE estimation using Eq. 2.4, we therefore proceed by first reconstructing
the state variables of such approximated Markov processes for the two systems X,
Y from their scalar time series. Then, we use the statistics of nearest ensemble
neighbors with a modified KSG estimator for TE evaluation [83].

Thus, we select a delay embedding vector of the form Yffl = Y—1,Yie1-1ry .-,
Y,—1—(dy—-1)r) from Eq. 2.6 as our collection of past random variables—with realiza-
tions in repetition r given by yffl (1) = We-1(r), Yt—1—75 - -+, Yt—1—(dy —1)7)- Here, dy
is called the embedding dimension and 7 the embedding delay. These embedding
parameters dy and 7, are chosen such that they optimize a local predictor [133], as
this avoids an overestimation of TE [75]; other approaches related to minimizing
non-linear prediction errors are also possible [74]. In particular, dy - 7 is chosen
such that YfY is conditionally independent of any Y% with e < t —d - 7 given Yffl.
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The same is done for the process X at time ¢ — w.
Next, we decompose T Espo into a sum of four individual Shannon entropies:

TESPO (X—) Y, t, u) =H (Yle, X(tii(u) - H (Y;fa Ygfl? ngu) 2.8
e (vvin) - (vl P

The Shannon differential entropies in Eq. 2.8 can be estimated in a data efficient way
using nearest neighbor techniques [134, 135]. Nearest neighbor estimators yield a
non-parametric estimate of entropies, assuming only a smoothness of the underlying
PDF. It is however problematic to simply apply a nearest neighbor estimator (for
example the Kozachenko-Leonenko estimator [134]) to each term appearing in Eq.
2.8. This is because the dimensionality of each space associated with the terms
differs largely over terms. Thus, a fixed number of neighbors for the search would
lead to very different spatial scales (range of distances) for each term. Since the error
bias of each term is dependent on these scales, the errors would not cancel each
other but accumulate. We therefore use a modified KSG estimator which handles this
problem by only fixing the number of neighbors k in the highest dimensional space
(k-nearest neighbor search, kNNS) and by projecting the resulting distances to the
lower dimensional spaces as the range to look for and count neighbors there (range
search, RS) (see [83], type 1 estimator, and [86, 88]). In the ensemble variant of
TE estimation we proceed by searching for nearest neighbors across points from all
repetitions instead of searching the same repetition as the point of reference of the
search—thus we form an ensemble search space by combining points over repetitions.
Finally, the ensemble estimator of TE reads

t—1

_¢ (nyt 5+ 1) (2.9)

—¥ <”y§’Y1<r) X () T 1) r

TEspo (X — Y, t,u) =¢ (k) + (¢ (nde ) + 1)

where ¢ denotes the digamma function and the angle brackets (< - >,) indicate an
averaging over points in different repetitions r at time instant ¢. The distances to the
k-th nearest neighbor in the highest dimensional space (spanned by Y;, Yffl, Xffu)

define the radius of the spheres for the counting of the number of points (n.) in
these spheres around each state vector () involved.

In cases where the number of repetitions is not sufficient to provide the necessary
amount of data to reliably estimate Shannon entropies through an ensemble average,
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one may combine ensemble evaluation with collecting realizations over time. In
these cases, we count neighbors in a time window ¢ € [t7,¢t"| with ¢t~ < ¢/ < ¢T,
where A; = tT — ¢~ controls the temporal resolution of the TE estimation:

TEspo (X— Y, t',u) =¢ (k) + (¥ (n Ay + 1)

yt/—l

—y (nyt/ 0y o 1) (2.10)

Y (nyzlel(r) x?/)fu(r) * 1>>T’t/ '

Implementation

The estimation of TE from finite time series consists of the estimation of joint and
marginal entropies as shown in equations 2.9 and 2.10, calculated from nearest
neighbor statistics, i.e. distances and the count of neighbors within these distances.
In practice we obtain these neighbor counts by applying kNNS and RS to recon-
structed state spaces. In particular, we use a KNNS in the highest dimensional space
to determine the k-th nearest neighbor of a data point and the associated distance.
This distance is then used as the range for the RS in the marginal spaces, that
return the point counts n.. Both searches have a high computational cost. This cost
increases even further in a practical setting, where we need to calculate TE for a
sufficient number of surrogate data sets for statistical testing (see [13] and below
for details). To enable TE estimation and statistical testing despite its computational
cost, we implemented ad-hoc kNNS and RS algorithms in NVIDIA® CUDA™ C/C+ +
code [136]. This allows to run thousands of searches in parallel on a modern GPU.

To allow for a better understanding of the parallelization used, we will now briefly
describe the main work flow of TE analysis in the open source MathWorks® MAT-
LAB® toolbox TRENTOOL [86], which implements the approach to TE estimation
described in the Background section. The work flow includes the steps of data
preprocessing prior to the use of the GPU algorithm for neighbor searches as well as
the statistical testing of resulting TE values. In a subsequent section we will describe
the core implementation of the algorithm in more detail and present its integration
into TRENTOOL.
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2.3.1 Main analysis work flow in TRENTOOL

Practical TE estimation in TRENTOOL. The practical GPU-based TE estimation in
TRENTOOL 3.0 is divided into the two steps of data preparation and TE estimation
(see Fig. 2.2 and the TRENTOOL 3.0 manual: http://www.trentool.de). As a
first step, data is prepared by optimizing embedding parameters for state space
reconstruction (Fig. 2.2A). As a second step, TE is estimated by following the
approach for ensemble-based TE estimation lined out in the preceding section
(Fig. 2.2B). TRENTOOL estimates T'Espo (X — Y, t,u) (Eq. 2.4) for a given pair of
processes X and Y and given values for u and ¢. For each pair, we call X the source
and Y the target process.

After data preparation TEspo (X — Y, t,u) (Eq. 2.9 and 2.10) is estimated in six
steps: (1) using optimized embedding parameters, original data is embedded per
repetition and repetitions are concatenated forming the ensemble search space of
the original data, (2) S sets of surrogate data are created from the original data
by shuffling the repetitions of the target process Y, (3) each surrogate dataset is
embedded per repetition and concatenated forming S additional ensemble search
spaces for surrogate data, (4) all S + 1 search spaces of embedded original and
surrogate data are passed to a wrapper function that calls the GPU functions to
perform individual neighbor searches for each search space in parallel (in the
following, we will refer to each of the S + 1 ensembles as one data chunk), (5)
TE values are calculated for original and surrogate data chunks from the neighbor
counts using the KSG-estimator [83], (6) TE values for original data are tested
statistically against the distribution of surrogate TE values.

The proposed GPU algorithm is accessed in step (4). As we will further explain
below (see paragraph on Input data), the GPU implementation uses the fact that
all of the necessary computations on surrogate data sets and the original data are
independent and can thus be performed in parallel.

2.3 Implementation

33


http://www.trentool.de

A

dataprepared =
TEprepare(cfgTEP,data)

Check data and inputs
Optimize embedding parameters

.
TEpermtest =

TEsurrogatestats_ensemble(cfgTESS,dataprepared)
Check data and inputs
(1) Embed original data per trial and combine into

ensemble state space

TEembedding

loop over

(2) Create surrogate data
@ by trial shuffling
w 3) Embed surrogate data
Ensemble of =X ®) : g e
original data 1< per trial and combine into
trial 1 ‘g ensemble state space
trial 2 %)
i . 5
trial_r g > N
o © TEembedding
17 53 8
S e |2
®
£
Qo
£
9]
8 = bie of
g surrogate data
5 trial 1
S trial_2'
5 i
2 trial r' 'S
3 -
aQ 1°
o
o
(4) GPU nearest neighbor search
Neighbor counts TEcallGPUsearch
original data
surrogate_1 fnearneigh_gpu.mex
surrogate_s
= range_search_all_gpu.mex

A L3 (5) Calculate TE
TEcalc

TE values
original data

(6) Statistical test against
- surrogate data

TEpvalue

¥

c TEpermtest.TEpermvalues with columns:

1 - p-value

2 - significance at alpha level

3 - significance at corrected alpha level

4 - difference between TE and median of
the surrogate distribution

5 - volume conduction

surrogate_1

L surrogate_S

Fig. 2.2 Transfer entropy estimation using the ensemble method in TRENTOOL 3.0. (A) Data
preparation and optimization of embedding parameters in function TEprepare.m;

TE calculation and statistical testing against surrogate data. Estimated TE values
need to be tested for their statistical significance [86] (step (6) of the main TREN-
TOOL work flow). For this statistical test under a null hypothesis of no information
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Fig. 2.2 Transfer entropy estimation using the ensemble method in TRENTOOL 3.0

(continued). (B) transfer entropy (TE) estimation from prepared data in
TEsurrogatestats_ensemble.m (yellow boxes indicate variables being passed between
sub-functions). TE is estimated via iterating over all channel combinations provided in the
data. For each channel combination: (1) Data is embedded individually per repetition and
combined over repetitions into one ensemble state space (chunk), (2) S surrogate data
sets are created by shuffling the repetitions of the target time series, (3) each surrogate
data set is embedded per repetition and combined into one chunk (forming S chunks in
total), (4) S + 1 chunks of original and surrogate data are passed to the GPU where nearest
neighbor searches are conducted in parallel, (5) calculation of TE values from returned
neighbor counts for original data and .S surrogate data sets using the KSG-estimator [83], (6)
statistical testing of original TE value against distribution of surrogate TE values; (C) output
of TEsurrogatestats_ensemble.m, an array with dimension [no. channelsx5], where rows
hold results for all channel combinations: (1) p-value of TE for this channel combination, (2)
significance at the designated alpha level (1 - significant, O - not significant), (3) significance
after correction for multiple comparisons, (4) absolute difference between the TE value for
original data and the median of surrogate TE values, (5) presence of volume conduction (this
is always set to 0 when using the ensemble method as instantaneous mixing is by default
controlled for by conditioning on the current state of the source time series z;(r) [137]).

transfer between a source X and target time series ¥, we estimate T Espo (X — Y, t,u)
and compare it to a distribution of TE values calculated from surrogate data sets.
Surrogate data sets are formed by shuffling repetitions in Y to obtain Y, such that
vy (1) = y™ (¢(r)) and y,(r) — y:(¢(r)), where ¢ denotes a random permutation
of the repetitions  (Fig. 2.3). From this surrogate data set, we calculate surrogate
TE values TEspo (X — Y’,t,u). By repeating this process a sufficient number of
times S, we obtain a distribution of values T Espo (X — Y’,t,u). To asses the statis-
tical significance of T Egpo (X — Y,t,u), we calculate a p-value as the proportion of
surrogate TE values T Egspo (X — Y’,t,u) equal or larger than T'Egpp (X — Y, t,u).
This p-value is then compared to a critical alpha level (see for example [86, 138]).
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Creation of surrogate data sets. (A) Original time series with information transfer (solid

arrow) from a source state x?t u)( r) to a corresponding target time point y;(r), given the

time point’s history y(tyfl)( r). Solid arrows indicate the direction of transfer entropy (TE)
analysis, while information transfer is present. (B) Shuffled target time series, repetitions
are permutes, such that y;(¢(r)) and y?tyfl) (¢(r)), where ¢ denotes a random permutation.

Dashed arrows indicate the direction of TE analysis, while no more information flow is
present.

Reconstruction of information transfer delays. 7T Espo (X — Y,¢,u) may be used
to reconstruct the interaction transfer delay dyy between X and Y (Eq. 2.5, [75]).
dxy may be reconstructed by scanning possible values for u: TEspo (X — Y, t,u) is
estimated for all values in u; The value that maximizes the TEgpo (X — Y,t,u) is
kept as the reconstructed information transfer delay. We used the reconstruction of
information transfer delays as an additional parameter when testing the proposed
implementation for correctness and robustness.

Implementation of the GPU algorithm

Parallelized nearest neighbor searches. The KSG estimator used for estimating
TEspo (X — Y,t,u) in Eq. 2.9 and 2.10 uses neighbor (distance-)statistics obtained
from KNNS and RS algorithms to estimate Shannon differential entropies. Thus, the
choice of computationally efficient KNNS and RS algorithms is crucial to any practical
implementation of the T'Espo estimator. kNNS algorithms typically return a list
of the k nearest neighbors for each reference point, while RS algorithms typically
return a list of all neighbors within a given range for each reference point. KNNS
and RS algorithms have been studied extensively because of their broad potential for
application in nearest neighbor searches and related problems. Several approaches
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have been proposed to reduce their high computational cost: partitioning of input
data into k-d Trees, Quadtrees or equivalent data structures [139] or approximation
algorithms (ANN: Approximate Nearest Neighbors) [140, 141]. Furthermore, some
authors have explored how to parallelize the kNNS algorithm on a GPU using
different implementations: exhaustive brute force searches [142, 143], tree-based
searches [144, 145] and ANN searches [145, 146].

Although performance of existing implementations of kNNS for GPU was promising,
they were not applicable to TE estimation. The most critical reason was that existing
implementations did not allow for the concurrent treatment of several problem
instances by the GPU and maximum performance was only achieved for very large
kNNS problem instances. Unfortunately, the problem instances typically expected in
our application are numerous (i.e. S + 1 problem instances per pair of time series),
but rather small compared to the main memory on a typical GPU device in use today.
Thus, an implementation that handled only one instance at a time would not have
made optimal use of the underlying hardware. Therefore, we designed an implemen-
tation that is able to handle several problem instances at once to perform neighbor
searches for chunks of embedded original and surrogate data in parallel. Moreover,
we aimed at a flexible GPU implementation of kKNNS and RS that maximized the use
of the GPU’s hardware resources for variable configurations of data—thus making
the implementation independent of the design of the neuroscientific experiment.

Our implementation is written in CUDA (Compute Unified Device Architecture)
[136] (a port to OpenCL™ [147] is work in progress). CUDA is a parallel computing
framework created by NVIDIA that includes extensions to high level languages such
as C/C++, giving access to the native instruction set and memory of the parallel
computational elements in CUDA enabled GPUs. Accelerating an algorithm using
CUDA includes translating it into data-parallel sequences of operations and then
carefully mapping these operations to the underlying resources to get maximum
performance [122, 123]. To understand the implementation suggested here, we will
give a brief explanation of these resources, i.e. the GPU’s hardware architecture,
before explaining the implementation in more detail (additionally, see [122, 123,
136]).

GPU resources. GPU resources comprise of massively parallel processors with up
to thousands of cores (processing units). These cores are divided among Stream
Multiprocessors (SMs) in order to guarantee automatic scalability of the algorithms
to different versions of the hardware. Each SM contains 32 to 192 cores that execute
operations described in the CUDA kernel code. Operations executed by one core are
called a CUDA thread. Threads are grouped in blocks, which are in turn organized
in a grid. The grid is the entry point to the GPU resources. It handles one kernel call
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at a time and executes it on multiple data in parallel. Within the grid, each block of
threads is executed by one SM. The SM executes the threads of a block by issuing
them in groups of 32 threads, called warps. Threads within one warp are executed
concurrently, while as many warps as possible are scheduled per SM to be resident
at a time, such that the utilization of all the cores is maximized.

Input data. As input, the proposed RS and kNNS algorithms expect a set of data
points representing the search space and a second set of data points that serve as
reference points in the searches. One such problem instance is considered one data
chunk. Our implementation is able to handle several data chunks simultaneously to
make maximum use of the GPU resources. Thus, several chunks may be combined,
using an additional index vector to encode the sizes of individual chunks. These
chunks are then passed at once to the GPU algorithm to be searched in parallel.

In the estimation of T'Espp (X — Y,t,u), according to the work flow described in
paragraph Practical TE estimation in TRENTOOL, we used the proposed implementa-
tion to parallelize neighbor searches over surrogate data sets for a given pair of time
series x and y and given values for u and ¢. Thus, in one call to the GPU algorithms
S + 1 data chunks were passed as input, where chunks represented the search space
for the original pair of time series and S search spaces for corresponding surrogate
data sets. Points within the search spaces may have either been collected through
temporal or ensemble pooling of embedded data points or a combination of both
(Eq. 2.9 or 2.10).

Core algorithm. In the core GPU-based search algorithm, the kNNS implementation
is mapped to CUDA threads as depicted in Fig. 2.4 (the RS implementation behaves
similarly). Each chunk consists of a set of data points that represents the search
space and are at the same time used as reference points for individual searches. Each
individual search is handled by one CUDA thread. Parallelization of these searches
on the GPU happens in two ways: (1) the GPU algorithm is able to handle several
chunks, (2) each chunk can be searched in parallel, such that individual searches
within one chunk are handled simultaneously. An individual search is conducted
by a CUDA thread by brute-force measuring the infinity norm distance of the given
reference point to any other point within the same chunk. Simultaneously, other
threads measure these distances for other points in the same chunk or handle a
different chunk altogether. Searching several chunks in parallel is an essential feature
of the proposed solution, that maximizes the utilization of GPU resources. From
the GPU execution point of view, simultaneous searches are realized by handling
a variable number of KNNS (or RS) problem instances through one grid launch.
The number of searches that can be executed in parallel is thus only limited by the
device’s global memory that holds the input data and the number of threads that can
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be started simultaneously (both limitations are taken into account). Furthermore,
the solution is implemented such that optimal performance is guaranteed.

CPU
Linear o il
memo N
vooe Chunk 0
| Chunk 1
: 1
GPU  » 1 1 2 | 1 1 l ] 1
Global —V ¥ ¥ ¥ ¥ TV
- % SoA | SoA | SoA |SoA| | SoA | SoA | SoA [SoA
Yol L LUl L 1 1 Ul
i A i padding 5 i ¢ padding
Thread g [03:83s[ 133333 (2333333433334 sasa[B sasas[o sasadf7saass]
Blocks | #8888 #3883 $338%) $383%) 3833 $388%) $3333 23888
* *
Shared § distanvces distances | distances | distances distan'ces distances | distances | distances
Memory § indexes | indexes | indexes | indexes | indexes | indexes | indexes | indexes

Fig. 2.4 GPU implementation of the parallelized nearest neighbor search in TRENTOOL 3.0.

Chunks of data are prepared on the CPU (embedding and concatenation) and passed to the
GPU. Data points are managed in the global memory as Structures of Arrays (SoA). To make
maximum use of the memory bandwidth, data is padded to ensure coalesced reading and
writing from and to the streaming multiprocessor (SM) units. Each SM handles one chunk
in one thread block (dashed box). One block conducts brute force neighbor searches for all
data points in the chunk and collects results in its shared memory (red and blue arrows and
shaded areas). Results are eventually returned to the CPU.

Low-level implementation details. There are several strategies that are essential
for optimal performance when implementing algorithms for GPU devices. Most
important are the reduction of memory latencies and the optimal use of hardware
resources by ensuring high occupancy (the ratio of number of active warps per SM to
the maximum number of possible active warps [122]). To maximize occupancy, we
designed our algorithm’s kernels such that always more than one block of threads
(ideally many) are loaded per SM [122]. We can do this since many searches
are executed concurrently in every kernel launch. By maximizing occupancy, we
both ensure hardware utilization and improve performance by hiding data memory
latency from the GPU’s global memory to the SMs’ registers [136]. Moreover, in
order to reduce memory latencies we take care of input data memory alignment and
guarantee that memory readings issued by the threads of a warp are coalesced into
as few memory transfers as possible. Additionally, with the aim of minimizing sparse

data accesses to memory, data points are organized as Structures of Arrays (SoA).
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Finally, we use the shared memory inside the SMs (a self-programmed intermediate
cache between global memory and SMs) to keep track of nearest neighbors associated
information during searches. The amount of shared memory and registers is limited
in a SM. The maximum possible occupancy depends on the number of registers and
shared memory needed by a block, which in turn depends on the number of threads
in the block. For our implementation, we used a suitable block size of 512 threads.

Implementation interface. The GPU functionality is accessed through MATLAB
scripts for KNNS (‘fnearneigh_gpu.mex’) and RS (‘range_search_all_gpu.mex’),
which encapsulate all the associated complexity. Both scripts are called from TREN-
TOOL using a wrapper function. In its current implementation in TRENTOOL (see
paragraph Practical TE estimation in TRENTOOL), the wrapper function takes all
S + 1 chunks as input and launches a kernel that searches all chunks in parallel
through the mex-files for kKNNS and RS. The wrapper makes sure that the input
size does not exceed the GPU device’s available global memory and the maximum
number of threads that can be started simultaneously. If necessary, the wrapper
function splits the input into several kernel calls; it also manages the output, i.e. the
neighbor counts for each chunk, which are passed on for TE calculation.

Evaluation

To evaluate the proposed algorithm we investigated four properties: first, whether
the speedup is sufficient to allow the application of the method to real-world neural
datasets; second, the correctness of results on simulated data, where the ground
truth is known; third, the robustness of the algorithm for limited sample sizes; fourth,
whether plausible results are achieved on a neural example dataset.

Ethics statement

The neural example dataset was taken from an experiment described in [148]. All
subjects gave written informed consent before the experiment. The study was ap-
proved by the local ethics committee (Johann Wolfgang Goethe University, Frankfurt,
Germany).

Evaluation of computational speedup
To test for an increase in performance due to the parallelization of neighbor searches,

we compared practical execution times of the proposed GPU implementation to
execution times of the serial kKNNS and RS algorithms implemented in the MATLAB
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toolbox TSTOOL (http://www.dpi.physik.uni-goettingen.de/tstool/). This
toolbox wraps a FORTRAN implementation of kNNS and RS, and has proven the
fastest CPU toolbox for our purpose. All testing was done in MATLAB 2008b (MATLAB
7.7, The MathWorks Inc., Natick, MA, 2008). As input, we used increasing numbers
of chunks of simulated data from two coupled Lorenz systems, further described
below. Repetitions of simulated time series were embedded and combined to form
ensemble state spaces, i.e. chunks of data (c.f. paragraph Input Data). To obtain
increasing input sizes, we duplicated these chunks the desired number of times.
While the CPU implementation needed to iteratively perform searches on individual
chunks, the GPU implementation searched chunks in parallel (note that chunks are
treated independently here, so that there is no speedup because of the duplicated
chunk data). Note that for both, CPU and GPU implementations, data handling prior
to nearest neighbor searches is identical. We were thus able to confine the testing of
performance differences to the respective KNNS and RS algorithms only, as all data
handling prior to nearest neighbor searches was conducted using the same, highly
optimized TRENTOOL functionalities.

Analogous to TE estimation implemented in TRENTOOL, we conducted one kNNS
(with k = 4, TRENTOOL default, see also [85]) in the highest dimensional space
and used the returned distances for a RS in one lower dimensional space. Both
functions were called for increasing numbers of chunks to obtain the execution
time as a function of input size. One chunk of data from the highest dimensional
space had dimensions [30 094x17] and size 1.952 MB (single precision); one chunk
of data from the lower dimensional space had dimensions [30094x8] and size
0.918 MB (single precision). Performance testing of the serial implementation was
carried out on an Intel Xeon CPU (E5540, clocked at 2.53 GHz), where we measured
execution times of the TSTOOL kNNS (functions ‘nn_prepare.m’ and ‘nn_search.m’)
and the TSTOOL RS (function ‘range_search.m’). Testing of the parallel imple-
mentation was carried out three times on GPU devices of varying processing power
(NVIDIA Tesla C2075, GeForce GTX 580 and GeForce GTX Titan). On the GPUs, we
measured execution times for the proposed kKNNS (‘fnearneigh_gpu.mex’) and RS
(‘range_search_all_gpu.mex’) implementation. When the GPU’s global memory
capacity was exceeded by higher input sizes, data was split and computed over
several runs (i.e. calls to the GPU). All performance testing was done by measuring
execution times using the MATLAB functions tic and toc.

To obtain reliable results for the serial implementation we ran both kNNS and RS
200 times on the data, receiving an average execution time of 1.26 s for KNNS and
an average execution time of 24.1 s for RS. We extrapolated these execution times to
higher numbers of chunks and compared them to measured execution times of the
parallel searches on three NVIDIA GPU devices. On average, execution times on the
GPU compared to the CPU were faster by a factor of 22 on the NVIDIA Tesla C2075,
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by a factor of 33 for the NVIDIA GTX 580 and by a factor of 50 for the NVIDIA GTX
Titan (Fig. 2.5).
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Practical performance measures of the ensemble method for GPU compared to CPU.
Combined execution times in s for serial and parallel implementations of k-nearest neighbor
and range search as a function of input size (number of data chunks). Execution times
were measured for the serial implementation running on a CPU (black) and for our parallel
implementation using one of three GPU devices (blue, red, green) of varying computing
power. Computation using a GPU was considerably faster than using a CPU (by factors 22,
33, and 50 respectively).

To put these numbers into perspective, we note that in a neuroscience experiment the
number of chunks to be processed is the product of (typical numbers): channel pairs
for TE (100) x number of surrogate data sets (1000) x experimental conditions (4)
x number of subjects (15). This results in a total computational load on the order
of 6 x 10°s chunks to be processed. Given an execution time of 24.1s/50 on the
NVIDIA GTX Titan for a typical test dataset, these computations will take 2.9 x 10°s
or 4.8 weeks on a single GPU, which is feasible compared to the initial duration
of 240 weeks on a single CPU. Even when considering a trivial parallelization of
the computations over multiple CPU cores and CPUs, the GPU based solution is
by far more cost and energy efficient than any possible CPU-based solution. If in
addition a scanning of various possible information transfer delays is important,
then parallelization over multiple GPUs seems to be the only viable option.

Evaluation on Lorenz systems

To test the ability of the presented implementation to successfully reconstruct in-
formation transfer between systems with a non-stationary coupling, we simulated
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various coupling scenarios between stochastic and deterministic systems. We intro-
duced non-stationary into the coupling of two processes by varying the coupling
strength over the course of a repetition (all other parameters were held constant).
Simulations for individual scenarios are described in detail below. For the estimation
of TE we used MathWork’s MATLAB, and the TRENTOOL toolbox extended by the
implementation of the ensemble method proposed above (version 3.0, see also [86]
and http://www.trentool.de). For a detailed testing of the used estimator T'Espo
(Eq. 2.4) refer to [75].

Coupled Lorenz systems. Simulated data was taken from two unidirectionally
coupled Lorenz systems labeled X and Y. Systems interacted in direction X — Y
according to equations:

Ui(t) = o(Vi(t) = Ui(t)),

Vi(t) = Ui(t)(pi — Wi(t)) = Vi(t) + > i Vi (t = 655),
=XY
Wit = UVt — Wict), @11)

where i, j = X, Y, §;; is the coupling delay and +;; is the coupling strength; o, p and
[ are the Prandtl number, the Rayleigh number, and a geometrical scale. Note, that
vyx = Yxx = yrr = 0 for the test cases (no self feedback, no coupling from Y to X).
Numerical solutions to these differential equations were computed using the dde23
solver in MATLAB and results were resampled such that the delays amounted to
the values given below. For analysis purposes we analyzed the V-coordinates of the
systems.

We introduced non-stationarity in the coupling between both systems by varying
the coupling strength ~ over time. In particular, a coupling ~vxy = 0.3 was set for a
limited time interval only, whereas before and after the coupling interval ~xy was set
to 0. A constant information transfer delay dxy = 45ms was simulated for the whole
coupling interval. We simulated 150 repetitions with 3000 data points each, with a
coupling interval from approximately 1000 to 2000 data points (see Fig. 2.6A).
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Transfer entropy reconstruction from non-stationary Lorenz systems. We used two
dynamically coupled Lorenz systems (A) to simulate non-stationarity in data generating
processes. A coupling vxy = 0.3 was present during a time interval from 1000 ms to
2000 ms only (vxy = 0 otherwise). The information transfer delay was set to dxy = 45ms.
Transfer entropy (TE) values were reconstructed using the ensemble method combined with
the scanning approach proposed in [75] to reconstruct information transfer delays. Assumed
delays u were scanned from 35 ms to 55 ms (1 ms resolution). In (B) the maximum TE values
for original data over this interval are shown in blue. Red bars indicate the corresponding
mean over surrogate TE values (error bars indicate 1 SD). Significant TE was found for the
second time window only; here, the delay was reconstructed as v = 49ms.

For each scenario, 500 surrogate data sets were computed to allow for statistical
testing of the reconstructed information transfer. Surrogate data were created by
permutation of data points in blocks of the target time series (Fig. 2.3), leaving each
repetition intact. The value k for the nearest neighbor search was set to 4 for all
analyses (TRENTOOL default, see also [85]).

Results. We analyzed data from three time windows from 200ms to 450 ms,
1600 ms to 1850 ms and 2750 ms to 3000 ms using the estimator proposed in Eq.
2.10 with A; = 250ms, assuming local stationarity (Fig. 2.6A). For each time win-
dow, we scanned assumed delays in the interval u = [35, 55]. Fig. 2.6B, shows the
maximum TE value from original data (blue) over all assumed v and the correspond-
ing mean surrogate TE value (red). Significant differences between original TE and
surrogate TE were found in the second time window only (indicated by an asterisk).
No significant information transfer was found during the non-coupling intervals. The
information transfer delay reconstructed for the second analysis window was 49 ms
(true information transfer delay dxy = 45ms). Thus, the proposed implementation
was able to reliably detect a coupling between both systems and reconstructed the
corresponding information transfer delay with an error of less than 10 %.
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Tab. 2.1

Evaluation on autoregressive processes

To asses the performance of the proposed implementation on non-abrupt changes in
coupling, we simulated various coupling scenarios for two autoregressive processes
X, Yof order 1 (AR(1)-processes) with variable couplings over time. In each scenario,
couplings were modulated using hyperbolic functions to realize a smooth transition
between uncoupled and coupled regimes. The AR(1)-processes were simulated

according to the equations

SL‘(t) = aXx(t — 1) + ’Yy)((t)y(t — 6)/)() + ﬁx(t)7 (212)
y(t) = apy(t — 1) + vxy(t)z(t — dxy) + ny(t), (2.13)

where ay, ay are the AR parameters, vyx(t), vxr(t) denote coupling strength, dyx, dxy
are the coupling delays and 7y, ny denote uncorrelated, unit-variance, zero-mean
Gaussian white noise terms.

Simulated coupling scenarios. We simulated three coupling scenarios, where the
coupling varied in strength over the course of a repetition (duration 3000 ms):
(1) unidirectional coupling X — Y with a coupling onset around 1000 ms; (2)
unidirectional coupling with a two-step increase in coupling X — Y at around
1000 ms and around 2000 ms; (3) bidirectional coupling X — Y with onset around
1000 ms and Y — X with onset around 2000 ms. See Table 2.1 for specific parameter

values used in each scenario.

Parameter settings for simulated autoregressive processes.

Testcase (656 Qy ﬁyx ﬁXy (Sy)( (SXy
Unidirectional 0.75 0.35 0 -0.35 0 10
Two-step unidirectional 0.75 035 0 -0.35 0 10
Bidirectional 0475 0.35 -04 -035 20 10

We realized a varying coupling strength ~xy(¢t) (and vyx(t) for scenario (3)) by
modulating coupling parameters (Syy, Sxy with a hyperbolic tangent function. No
coupling was realized by setting 5. = 0. For scenarios (1) and (3) we used the

coupling
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Yrx = Byx * 0.5 (1 4 tanh [0.05(¢ — 2000)]) (2.14)
Yxy = Bxy * 0.5 (1 + tanh [0.05(¢ — 1000)]) , (2.15)

where 0.05 was the slope and 2000 and 1000 are the inflection points of the
hyperbolic tangent respectively. Note that we additionally scaled the tanh function
such that function value ranged from O to 1. For coupling scenario (2), the two-step
increase in yyy was expressed as:

vy = Bxy % 0.5[0.5 (1 4 tanh [0.05(t — 1000)])

(2.16)
+0.5 (1 + tanh [0.05(¢ — 2000)])].

We chose the arguments of the hyperbolic function such that the function’s slope led
to a smooth increase in the coupling over an epoch of approximately 200 ms around
the inflection points at 1 and 2 s respectively (Fig. 2.7A-D). For each scenario, we
simulated 50 trials of length 3000 ms with a sampling rate of 1000 Hz. We then
estimated time resolved TE for analysis windows of length A; = 300 ms. Again,
we mixed temporal and ensemble pooling according to Eq. 2.10. For the scenario
with unidirectional coupling (1) we used four analysis windows to cover the change
in coupling (from 0.2s to 0.5s, 0.5s to 0.8s, 0.8s to 1.1s, and 1.1s to 1.4s, see
Fig. 2.7E), for the two-step increase (2) and bidirectional (3) scenarios, we used
eight analysis windows each (from 0.2s to 0.5s, 0.5st0 0.8s,0.8sto 1.1s, 1.1s to
1.4s,1.4st01.7s,1.7st0 2.0s,2.0sto 2.3s, and 2.3s to 2.65, see Fig. 2.7F-G). As
for the Lorenz systems, 500 surrogate data sets were used for the statistical testing
in each analysis. Surrogate data were created by blockwise (i.e. repetitionwise)
permutation of data points in the target time series. The value k for the nearest
neighbor search was set to 4 for all analyses (TRENTOOL default, see also [85]).
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Fig. 2.7 Transfer entropy reconstruction from coupled autoregressive processes. We simulated
two dynamically coupled autoregressive processes (A) with coupling delays dxy = 10ms
and dy x = 20ms, and coupling scenarios:
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Transfer entropy reconstruction from coupled autoregressive processes (continued).
(B) unidirectional coupling X — Y (blue line) with onset around 1 s, coupling ¥ — X set
to O (red line); (C) unidirectional coupling X — Y (blue line) with onset around 1s and
an increase in coupling strength at around 2s, coupling ¥ — X set to 0 (red line); (D)
bidirectional coupling X — Y (blue line) with onset around 1s and ¥ — X (red line) with
onset around 2 s. (E-G) Time-resolved transfer entropy (TE) for both directions of interaction,
blue and red lines indicate raw TE values for X — Y and ¥ — X respectively. Dashed lines
denote significance thresholds at 0.01 % (corrected for multiple comparisons over signal
combinations). Shaded areas (red and blue) indicate the maximum absolute TE values for
significant information transfer (indicated by asterisks in red and blue). (E) TE values for
unidirectional coupling; (F) unidirectional coupling with a two-step increase in coupling
strength; (G) bidirectional coupling.

Results — Scenario (1), unidirectional coupling. For scenario (1) of two unidirec-
tionally coupled AR(1)-processes with a delay dyy = 10ms, we used a scanning
approach [75] to reconstruct TE and the corresponding information transfer delay.
We scanned assumed delays in the interval v = [1, 20] and used four analysis win-
dows of length 300 ms each, ranging from 0.2s to 1.4s. For the first two analysis
windows, no significant information transfer was found (0.2s to 0.5s and 0.5s to
0.8 s). For the third and fourth analysis window we detected significant TE, where
we found a maximum significant TE value at 7 ms for the third analysis window
(0.8s to 1.1s) and a maximum at 9 ms for the fourth window (1.1s to 1.4s). Thus,
the proposed implementation was able to detect information transfer between both
processes if present (later than 1.15s). During the transition in coupling strength
between 0.8 and 1.1 s TE was detected, but the method showed a small error in the
reconstructed information transfer delay. This may be due to too little data to detect
the weaker coupling at this epoch of the simulated coupling (see below).

Results — Scenario (2), unidirectional coupling with two-step increase. For scenario
(2), we again used the scanning approach for TE reconstruction, using an interval of
assumed delays u = [1, 20|, where the true delay was simulated at dxy = 10ms. No
TE was detected prior to the coupling onset around 1 s. TE was detected for analysis
windows 4, 5, and 6 (1.1sto 1.4s, 1.4sto 1.7s, 1.7s to 2.0s) with reconstructed
information transfer delays of 10, 4, and 7 ms respectively. Further, significant TE
was found for analysis windows 7 and 8 (after the second increase in coupling
strength around 2s). Here, the correct coupling of 10 ms was reconstructed. One
false positive result was obtained in window 6 (1.7 s to 2.0s), where significant TE
was found in the direction ¥ — X.

Note, that the method’s ability to recover information transfer from data depends on
the strength of the coupling relative to the amount of data that is available for TE
estimation. This is observable in the reconstructed TE in the third analysis window
for scenario (1) and (2): in scenario (2) no TE is detected, whereas in scenario (1)
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weak information transfer is already reconstructed for the third window. Note, that
in scenario (2) the simulated coupling between 1 and 2 s is much weaker than the
coupling in the unidirectional scenario (1) (Fig. 2.7B-C). This resulted in smaller
and non-significant absolute TE values and in reconstructed information transfer
delays that were less precise.

Results — Scenario (3), bidirectional coupling. For scenario (3), we used the scan-
ning approach for TE reconstruction, using an interval of assumed delays v = [1, 30],
where the true delay was simulated at dxy = 10ms and dyy = 20ms. No TE in either
direction was detected prior to the first coupling onset around 1 s. TE for the first
direction X — Y was detected after coupling onset around 1 s for analysis windows
4, 5, 6, 7, and 8. Reconstructed information transfer delays were 8 and 2 ms for
analysis windows 4 and 5. For each of the following analysis windows 6 to 8 the
correct delay of 10 ms was reconstructed.

TE for the second direction ¥ — X was detected after coupling onset around 2s
for analysis windows 7 and 8, where also the correct coupling of 20 ms was recon-
structed. Thus, the proposed implementation was able to reconstruct information
transfer in bidirectionally coupled systems.

Evaluation of the robustness of ensemble-based
TE-estimation

We tested the robustness of the ensemble method for cases where the amount of data
available for TE estimation was severely limited. We created two coupled Lorenz
systems X, Y from which we sampled a maximum number of 300 repetitions of
300 ms each at 1000 Hz, using a coupling delay of dxy = 45ms (see Eq. 2.11). We
embedded the resulting data with their optimal embedding parameters for different
values of the assumed delay « (30 ms to 60 ms, step size of 1 ms, also see Eq. 2.4).
From the embedded data, we used subsets of data points with varying size M
(M = {500, 2000, 5000, 10000, 30000}) to estimate TE according to Eq. 2.10 (we
always used the first M consecutive data points for TE estimation). For each u
and number of data points M, we created surrogate data to test the estimated TE
value for statistical significance. Furthermore, we reconstructed the corresponding
information transfer delay for each M by finding the maximum TE value over all
values for u. A reconstructed TE value was considered a robust estimation of the
simulated coupling if the reconstructed delay value was able to recover the simulated
information transfer delay of 45 ms with an error of =5 %, i.e. 45+1.125 ms.
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A sufficiently accurate reconstruction was reached for 10 000 and 30 000 data points
(Fig. 2.8). For 5000 data points estimation was off by approximately 7 % (the re-
constructed information transfer delay was 48 ms), less data entering the estimation
led to a further decline in accuracy of the recovered information transfer delay
(here, reconstructed delays were 50 ms and 54 ms for 2000 and 500 data points
respectively).
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Robustness of transfer entropy estimation with respect to limited amounts of data.
Estimated transfer entropy (TE) values T Ex _,y for estimations using varying numbers of
data points (color coded) as a function of u. Data was sampled from two Lorenz systems
X and Y with coupling X — Y. The simulated information transfer delay dxy = 45ms is
indicated by a vertical dotted line. Sampled data was embedded and varying numbers of
embedded data points (500, 2000, 5000, 10000, 30 000) were used for TE estimation. For
each estimation, the maximum T Fy_, y values for all values of u are indicated by solid dots.
Dashed lines indicate significance thresholds (p < 0.05).

Evaluation on neural time series from
magnetoencephalography

To demonstrate the proposed method’s suitability for time-resolved reconstruction of
information transfer and the corresponding delays from biological time series, we
analyzed magnetoencephalographic (MEG) recordings from a perceptual closure
experiment described in [148].
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Subjects. MEG data were obtained from 15 healthy subjects (11 females; mean +
SD age, 25.4 +5.6 years), recruited from the local community.

Task. Subjects were presented with a randomized sequence of degraded black and
white picture of human faces [149] (Fig. 2.9A) and scrambled stimuli, where black
and white patches were randomly rearranged to minimize the likelihood of detecting

a face. Subjects had to indicate the detection of a face or no-face by a button press.

Each stimulus was presented for 200 ms, with a random inter-repetition interval
(IRD) of 3500 ms to 4500 ms (2.9E). For further analysis we used repetitions with
correctly identified face conditions only.
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Fig. 2.9 Transfer entropy reconstruction from electrophysiological data. Time resolved recon-
struction of transfer entropy (TE) from magnetoencephalographic (MEG) source data,
recorded during a face recognition task. (A) Face stimulus [149].
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Fig. 2.9 Transfer entropy reconstruction from electrophysiological data (continued). (B) Corti-

cal sources after beamforming of MEG data (L, left; R, right: L orbitofrontal cortex (OFC);
R middle frontal gyrus (MiFG); L inferior frontal gyrus (IFG left); R inferior frontal gyrus
(IFG right); L anterior inferotemporal cortex (aTL left); L cingulate gyrus (cing); R premotor
cortex (premotor); R superior temporal gyrus (STG); R anterior inferotemporal cortex (aTL
right); L fusiform gyrus (FFA); L angular/supramarginal gyrus (SMG); R superior parietal
lobule/precuneus (SPL); L caudal ITG/LOC (cITG); R primary visual cortex (V1)). (C)
Reconstructed TE in three single subjects (red box) in three time windows (0 ms to 150 ms,
150 ms to 300 ms, 300 ms to 450 ms). Each link (red arrows) corresponds to significant TE
on single subject level (corrected for multiple comparisons). (D) Thresholded TE links over
15 subjects (blue box) in three time windows (0 ms to 150 ms, 150 ms to 300 ms, 300 ms to
450 ms). Each link (black arrows) corresponds to significant TE in eight and more individual
subjects (p << 0.0001***, after correction for multiple comparisons). Blue arrows indicate
differences between time windows, i.e. links that occur for the first time in the respective
window. (E) Experimental design: stimulus was presented for 200 ms (gray shading), during
the inter stimulus interval (ISI, 1800 ms) a fixation cross was displayed.

MEG and MRI data acquisition. MEG data were recorded using a 275-channel
whole-head system (Omega 2005, VSM MedTech Ltd., BC, Canada) at a rate of
600 Hz in a synthetic third order axial gradiometer configuration. The data were
filtered with 4th order Butterworth filters with 0.5 Hz high-pass and 150 Hz low-pass.
Behavioral responses were recorded using a fiber optic response pad (Lumitouch,
Photon Control Inc., Burnaby, BC, Canada).

Structural magnetic resonance images (MRI) were obtained with a 3 T Siemens
Allegra, using 3D magnetization-prepared rapid-acquisition gradient echo sequence.
Anatomical images were used to create individual head models for MEG source
reconstruction.

Data analysis. MEG data were analyzed using the open source MATLAB toolboxes
FieldTrip (version 2008-12-08; [150]), SPM2 (http://www.fil.ion.ucl.ac.uk/
spm), and TRENTOOL [86]. We will briefly describe the applied analysis here, for a
more in depth treatment refer to [148].

For data preprocessing, data epochs (repetitions) were defined from the continuously
recorded MEG signals from —1000 ms to 1000 ms with respect to the onset of the
visual stimulus. Only data repetitions with correct responses were considered for
analysis. Data epochs contaminated by eye blinks, muscle activity, or jump artifacts
in the sensors were discarded. Data epochs were baseline corrected by subtracting
the mean amplitude during an epoch ranging from —500ms to —100 ms before
stimulus onset.

To investigate differences in source activation in the face and non-face condition,
we used a frequency domain beamformer [151] at frequencies of interest that
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had been identified at the sensor level (80 Hz with a spectral smoothing of 20 Hz).
We computed the frequency domain beamformer filters for combined data epochs
(“common filters”) consisting of activation (multiple windows, duration, 200 ms;
onsets at every 50 ms from 0 ms to 450 ms) and baseline data (—350 ms to —150 ms)
for each analysis interval. To compensate for the short duration of the data windows,
we used a regularization of A = 5% [152].

To find significant source activations in the face versus non-face condition, we first
conducted a within-subject t-test for activation versus baseline effects. Next, the
t-values of this test statistic were subjected to a second-level randomization test at
the group level to obtain effects of differences between face and no-face conditions; a
p-value <0.01 was considered significant. We identified 14 sources with differential
spectral power between both conditions in the frequency band of interest in occipital,
parietal, temporal, and frontal cortices (see Fig. 2.9B, and [148] for exact anatomical
locations). We then reconstructed source time courses for TE analysis, this time
using a broadband beamformer with a bandwidth of 10Hz to 150 Hz.

We estimated TE between beamformer source time courses using our ensemble
method with a mixed pooling of embedded time points over repetitions r and time
windows ¢ (Eq. 2.10). We analyzed three non-overlapping time windows A; of
150ms each (Oms to 150 ms, 150 ms to 300 ms, 300 ms to 450 ms, Fig. 2.9C). We
furthermore reconstructed information transfer delays for significant information
transfer by scanning over a range of assumed delays from 5 ms to 17 ms (resolution
2ms), following the approach in [75]. We corrected the resulting information
transfer pattern for cascade effects as well as common drive effects using a graph-
based post-hoc correction proposed in [121].

Results. Time-resolved GPU-based TE analysis revealed significant information
transfer at the group-level (p <« 0.001 corrected for multiple comparison; binomial
test under the null hypothesis of the number of occurrences & of a link being
B(k|po, n)-distributed, where py = 0.05 and n = 15), that changed over time (Fig.
2.9D and Table 2.2 for reconstructed information transfer delays). Our preliminary
findings of information transfer are in line with hypothesis formulated in [153],
[154] and [148], and the time-dependent changes show the our method’s sensitivity
to the dynamics of information processing during experimental stimulation, in line
with the simulation results above.
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Tab. 2.2 Reconstructed information transfer delays for magnetoencephalographic data. Mean
over reconstructed interaction delays for significant information transfers in three analysis
windows. Information transfer delays were investigated in steps of 2 ms, from 5ms to 17 ms.
Fractional numbers arise from averaging over subjects.

Source Target 0-150ms 150-300ms 300 -450 ms

SPL IFG left 5.00 - 5.50
SPL cITG - - 5.00
cITG IFG left 5.00 5.00 5.00
cITG FFA 5.00 5.00 5.00
cITG SMG - 5.00 -
STG aTL right 5.00 5.00 5.00
STG Premotor - - 5.83
STG FFA - 5.50 -
aTL right STG 5.00 5.00 5.00
aTL right Premotor 5.00 5.60 -
SMG SPL 5.00 - -
SMG V1 5.00 - -
SMG IFG left - 5.20 -
SMG FFA - 5.22 5.20
OFC IFG left 5.18 5.00 5.00
OFC FFA - 5.00 5.20
MiFG IFG right 5.00 5.00 5.00
MiFG Premotor 5.00 5.00 5.00
IFG right MiFG 5.00 5.00 5.00
IFG right Premotor 5.00 5.00 5.00
IFG left SPL 5.00 5.00 -
IFG left cITG 5.00 - 5.00
IFG left SMG 5.00 5.40 5.00
IFG left OFC 5.00 5.00 5.00
IFG left FFA 5.00 5.00 5.00
FFA cITG 5.00 5.00 5.22
FFA OFC 5.00 - -
FFA IFG left 5.00 - -
FFA SMG - 5.00 -
V1 cITG 5.25 - 5.25
Vi1 SMG - - 5.00
Premotor STG 5.00 - -
Premotor MiFG 5.00 5.00 5.00
Premotor IFG right 5.00 5.00 5.00
Cing STG 5.25 - -
Cing FFA - - 5.67
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Discussion

Efficient transfer entropy estimation from an ensemble of time
series

We presented an efficient implementation of the ensemble method for TE estima-
tion proposed by [24]. As laid out in the introduction, estimating TE from an
ensemble of data allows to analyze information transfer between time series that
are non-stationary and enables the estimation of TE in a time-resolved fashion.
This is especially relevant to neuroscientific experiments, where rapidly changing
(and thus non-stationary) neural activity is believed to reflect neural information
processing. However, up until now the ensemble method has remained out of reach
for application in neuroscience because of its computational cost. Only with using
parallelization on a GPU, as presented here, the ensemble method becomes a viable
tool for the analysis of neural data. Thus, our approach makes it possible for the
first time to efficiently analyze information transfer between neural time series
on short time scales. This allows us to handle the non-stationarity of underlying
processes and makes a time- resolved estimation of TE possible. To facilitate the use
of the ensemble method it has been implemented as part of the open source toolbox
TRENTOOL (version 3.0).

Even though we will focus on neural data when discussing applications of the ensem-
ble method for TE estimation below, this approach is well suited for applications in
other fields. For example, TE as defined in [12] has been applied in physiology [74,
114, 115], climatology [155, 156], financial time series analysis [116, 157], and
in the theory of cellular automata [68]. Large datasets from these and other fields
may now be easily analyzed with the presented approach and its implementation in
TRENTOOL.

Notes on the practical application of the ensemble method for
TE estimation

Applicability to simulated and real world experimental data. To validate the pro-
posed implementation of the ensemble method, we applied it to simulated data as
well as MEG recordings. For simulated data, information transfer could reliably be
reconstructed despite the non-stationarity in the underlying generating processes.
For MEG data the obtained speed-up was large enough to analyze these data in
practical time. Information transfer reconstructed in a time-resolved fashion from
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the MEG source data was in line with findings by [148, 153, 154], as discussed
below.

Note, that even though our proposed implementation of the ensemble method
reduces analysis times by a significant amount, the estimation of TE from neural
time series is still time consuming relative to other measures of connectivity. For the
example MEG data set presented in this paper, TE estimation for one subject and
one analysis window took 93 hours on average (when scanning over seven values
for the assumed information transfer delay u and reconstructing TE for all possible
combinations of 14 sources). Thus, for 15 subjects with three analysis windows each,
the whole analysis would take approximately six months when carried out in a serial
fashion on one computer equipped with a modern GPU (e.g. NVIDIA GTX Titan).
This time may however be reduced by parallelizing the analysis over subjects and
analysis windows on multiple GPUs, as it was done for this study.

Available data and choice of window size. As available data is often limited in
neuroscience and other real-world applications, the user has to make sure that
enough data enters the analysis, such that a reliable estimation of TE is possible. In
the proposed implementation of the ensemble method for TE estimation the amount
of data entering the estimation directly depends on the size of the chosen analysis
window and the amount of available repetitions of the process being analyzed.
Furthermore, the choice of the embedding parameters lead to varying numbers
of embedded data that can be obtained from scalar time series. When estimating
TE from neural data, we therefore recommend to control the amount of data in
one analysis window that is available after embedding and to design experiments
accordingly. For example, the presented MEG data set was sampled at 600 Hz, with
137 repetitions of the stimulus on average, which - after embedding - led to 8800
data points per analysis window of 150 ms. In comparison, for simulated data TE
was reconstructed correctly for 10 000 data points and more. Thus, in our example
MEG data set, shorter analysis windows would not have been advisable because of
an insufficient amount of data per analysis window for reliable TE estimation. If
shorter analysis windows are necessary, they will have to be counterbalanced by a
higher number of experimental repetitions.

Thus, the choice of an appropriate analysis window is crucial to guarantee reliable
TE estimation, while still resolving the temporal dynamics under investigation.
A further data limiting factor is the need for an appropriate embedding of the
scalar time series. To embed the time series at a given point ¢, enough history for
this sample (embedding dimension times the embedding delay in sample points)
has to be recorded. We call this epoch the embedding window. The need for an
appropriate embedding thus constitutes another constraint for the data necessary for
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TE estimation. Thus, the choice of an optimal embedding dimension (e.g. through
the use of Ragwitz’ criterion [133]) is crucial as the use of larger than optimal
embedding dimensions wastes available data and may lead to a weaker detection
rate in noisy data [86].

Note, that the embedding window should not be confused with the analysis window.
The analysis window strictly describes the data points, for which neighbor statistics
enter TE estimation—where neighbor counts may be averaged over an epoch A,
or may come from a single point in time ¢ only. The embedding window however,
describes the data points that enter the embedding of a single point in time. Thus,
the temporal resolution of TE analysis may still be in single time steps ¢ (i.e. only
one time point entering the analysis), even though the embedding window spans
several points in time that contain the history for this single point.

Repeatability of neuronal processes

When applying the ensemble method to estimate TE from neural recordings, we
treat experimental repetitions as multiple realizations of the neural processes under
investigation. In doing so, we assume stationarity of these processes over repeti-
tions. We claim that in most cases this assumption of stationarity is justified for
processes concerned with the processing of experimental stimuli and that the as-
sumption also holds for stimulus-independent processes that contribute to neural
recordings. We will first present the different contributions to neural recordings and
subsequently discuss their individual statistical properties, i.e. their stationarity over
repetitions. Note, that the term stationarity refers to the stability of the probability
distribution underlying the observed realizations of contributions over repetitions
and does not require individual realizations to be identical; i.e. stationarity does not
preclude a variability in observed realizations, but rather implies some variance in
observed realizations, that is reflective of the variance in the underlying probability
distribution.

Contributions to neural recordings may either be stimulus-related (event-related
activity) or stimulus-independent (spontaneous ongoing activity). Within the category
of event-related activity, contributions can be further distinguished into phase-locked
and non phase-locked contributions (the latter is commonly called induced activity).
Phase-locked activity has a fixed polarity and latency with respect to the stimulus
and—on averaging over repetitions—contributes to an event-related potential or field
(ERP/F). Phase-locked activity is further distinguished into two types of contributions,
that are discussed as mechanisms in the ERP/F-generation (e.g. [158-160]): (1)
additive evoked contributions, i.e. neural activity that is in addition to ongoing activity
and represents the stereotypical response of a neural population to the presented
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stimulus in each repetition [161-163]; (2) phase- reset contributions, i.e. the phase
of ongoing activity is reset by the stimulus, such that phase-aligned signals no longer
cancel each other out on averaging over repetitions [164-167]. In contrast to these
two subtypes of phase-locked activity, induced activity is event-related activity that
is not phase-locked to the stimulus, such that latency and polarity vary randomly
over repetitions and induced activity averages out over repetitions.

We therefore have to consider four types of contributions to neural recordings: (1) ad-
ditive evoked contributions, (2) phase-reset contributions, (3) induced contributions
and (4) spontaneous ongoing contributions, the last being stimulus-independent.
Stationarity can be assumed for all these contributions if no learning effects occur
during the experiment. Learning effects may lead to slow drifts, i.e. changing
mean and variances, in the recorded signal. Such learning effects may easily be
tested for by comparing the first and second half of recorded repetitions with respect
to equal variances and means. If variances and means are equal, learning effects
can most likely be excluded. Empirically, the stationarity assumption, specifically
of phase-locked contributions, can also be verified using a modified independent
component analysis recently proposed in [168].

To sum up the statistical properties of different contributions to neural data and their
relevance for using an ensemble approach to TE estimation, we conclude that all
contributions to neural recordings can be considered stationary over repetitions by
default. Non-stationarity over repetitions will only be a problem in paradigms that
introduce (slow) drifts or trends in the recorded signal, for example by facilitating
learning during the experiment. Testing for drifts may be done by comparing mean
and variance in a split-half analysis.

Relation of the ensemble method to local information
dynamics

We will now discuss the relation of the ensemble approach suggested here to the
local transfer entropy (LTE) approach of Lizier [65, 95]. This may be useful as both
approaches at first glance seem to have a similar goal, i.e. assessing information
transfer more locally in time. As we will show, the approaches differ in what
quantities they localize. From this difference it also follows that they can (and
should be) combined when necessary.

In detail, the ensemble approach used here tries to exploit cyclostationarity or
repeatability of random processes to obtain multiple PDFs from the different (quasi-
) stationary parts of the repeated process cycle, or a PDF for each step in time
from replications of a process, respectively. In contrast, local information dynamics
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localizes information transfer in time (and space) given the PDF of a stationary
process.

The local information dynamics approach to information transfer computes informa-
tion transfer for stationary random processes from their joint and marginal PDFs for
each process step, thereby fully localizing information transfer in time. The quantity
proposed for this purpose is the LTE [65]:

LTE(X— 1.1,6) = logPWilYi-1:Xt-5) (2.17)
p(ytb’t—l)

LTE relates to TE in the same way Shannon information relates to Shannon entropy—
by means of taking an expected value under the common PDF p(y;,y:—1,x;_s) of
the collection of random variables {X;}, {Y;} that form the processes X, Y, which
exchange information. Stationarity here guarantees that all the random variables
X1,Xo,... (Y1,Y,...) have a common PDF (as the PDF is not allowed to change

over time):

TE(X— Y,t,0) =< LTE(X— Y,t,0) > (2.18)

P(Yt,yt—1,X¢—5)

In contrast, the approach presented here does not assume that the random processes
X, Y are stationary, but that either replications if the process can be obtained, or
that the process is cyclostationary. Under these constraints a local PDF can be
obtained. The events drawn from this PDF may then be analyzed in terms of their
average information transfer, i.e. using TE as presented here, or by inspecting them
individually, computing LTE for each event. In this sense, the approach suggested
here is aimed at extracting the proper local PDFs, while local information dynamics
comes into play once these proper PDFs have been obtained. We are certain that
both approaches can be fruitfully combined in future studies.

Relation of the ensemble method to other measures of
connectivity for non-stationary data

Linear Granger causality (GC) is—as has been shown recently by [103]—equivalent
to TE for variables with a jointly Gaussian distribution. Thus, for data that exhibit
such a distribution, information transfer may be analyzed more easily within the GC
framework. Similar to the ensemble method for TE estimation, extensions to GC
estimation have been proposed that deal with non-stationary data by fitting time-

Chapter 2 Efficient transfer entropy analysis of non-stationary neural time series



variant parameters. For example, Moller and colleagues presented an approach that
fitted multivariate autoregressive models (MVAR) with time-dependent parameters
to an ensemble of EEG signals [169]. Similar measures, that fit time-dependent
parameters in autoregressive models to data ensembles, were used by [170] and
[171]. A different approach to dealing with non-stationarity was taken by Leistritz
and colleagues [172]. These authors proposed to use self-exciting threshold au-
toregressive (SETAR) models to model neural time series within a GC framework.
SETAR models extend traditional AR models by introducing state-dependent model
parameters and allow for the modeling of transient components in the signal.

The presented methods for the estimation of time-variant linear GC may yield a
computationally less expensive approach to the estimation of information transfer
from an ensemble of data. However, linear GC is equivalent to TE regarding the full
recovery of information transfer for data with a jointly Gaussian distribution only. For
non-Gaussian data, linear GC may fail to capture higher order interactions. As neural
data are most likely non-Gaussian, the application of TE may have an advantage for
the analysis of information transfer in this type of data. The non-Gaussian nature of
neural data can for example be seen, when comparing brain electrical source signals
from physical inverse methods to time courses of corresponding ICA components
[173]. Here, ICA components and extracted brain signals closely match. Given that
ICA components are as non-Gaussian as possible (by definition of the ICA), we can
infer that brain signals are very likely non-Gaussian.

We also note that a nonstationary measure of coupling between dynamic systems
building on repetitions of time series and next-neighbor statistics was suggested
by Andrzejak and colleagues [174]. The key difference of their approach to the
ensemble method suggested here is that the previous states of the target time series
are not taken into account explicitly in their method. Hence, their measure is not
(and was not intended to be) a measure of information transfer (see [75] for details
why a measure of information transfer needs to include the past state of target
time series, and [68] for the difference between measures of (causal) coupling
and information transfer). In addition, their methods explicitly tries to determine
the direction of coupling between to systems. This implies that there should be
a dominant direction of coupling in order to obtain meaningful results. Transfer
entropy, in contrast, easily separates and quantifies both directions of information
transfer related to bidirectional coupling, under some mild conditions related to
entropy production in each of the two coupled systems [75].
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Relation of the ensemble method to the direct method for the
calculation of mutual information of Strong and colleagues

The ensemble method proposed here shares the use of replications (or trials) with the
so called “direct method” of Strong and colleagues [175]. The authors introduced
this method to calculate mutual information between a controlled stimulus set
and neural responses. Similarities also exist in the sense that the surrogate data
method for statistical evaluation used in our ensemble method builds on trial-to-
trial variability, as does Strong’s method (by looking at intrinsic variability versus
variability driven by stimulus changes).

However, the two methods differ conceptually on two accounts: First, the quantity
estimated is different—symmetric mutual information in Strong’s method compared
to inherently asymmetric conditional mutual information in the case of TE. Second,
the method of Strong and colleagues requires a direct intervention in the source
of information (i.e. the stimuli) to work, whereas TE in general is independent of
such interventions. This has far reaching consequences for the interpretation of the
two measures: The intervention inherent in Strong’s method places it somewhat
closer to causal measures such as Ay and Polani’s causal information flow [118],
whereas intervention-free TE has a clear interpretation as the information transfered
in relation to distributed computation [68]. As a consequence, TE maybe easily
applied to quantify neural information transfer from one neuron or brain area to
another even under constant stimulus conditions. In contrast, using Strong’s method
inside a neural system in this way would require precisely setting of the activity of
the source neuron or brain area, something that may often be difficult to do.

Application of the proposed implementation to other
dependency measures

The use of ensemble pooling of observations for the estimation of time-resolved
dependency measures has been proposed in a variety of frameworks. For example,
Andrzejak and colleagues [174] use ensemble pooling of delay-embedded time
series in combination with nearest neighbor statistics as a general approach to the
estimation of arbitrary non-linear dependency measures. However, the practical
application of ensemble pooling and nearest neighbor statistics together with the
necessary generation of a sufficient amount of surrogate data sets (typically >1000
in neuroscience applications where correction for multiple comparisons is necessary)
was always hindered by its high computational cost. Only with the presentation of
a GPU algorithm for nearest neighbor searches, we provide an implementation of
the ensemble method that allows its practical application. Note that even though
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we use ensemble pooling and GPU search algorithms to specifically estimate TE, the
presented implementation may easily be adapted to other dependency measures
that are calculated from (conditional) mutual informations estimated from nearest
neighbor statistics.

Application to MEG source activity in a perceptual closure
task

Application of the ensemble-based TE estimation to MEG source activities revealed a
time varying pattern of information transfers, as expected in the nonstationary setting
of the visual task. While a full discussion of the revealed information transfer pattern
is beyond the scope of this study, we point out individual connections transferring
information that underline the validity of our results. Notable connections in the
first time window transfer information from the early visual cortices (V1) to the
orbitofrontal cortex (OFC)—in line with earlier findings by Bar an colleagues [153],
that suggest a role of the OFC in early visual scene segmentation and gist perception.
Another brain area receiving information from early visual cortex is the caudal
inferior temporal gyrus (cITG)[176], an area responsible for the processing of shape-
from-shading information, which is thought to be essential for perception of Mooney
stimuli as they were used here. Both of these areas, OFC and cITG at later stages of
processing exchange information with the fusiform face area, which is essential for
the processing of faces [177-179], and thereby expected to receive information from
other areas in this task. Indeed, FFA seems to be an essential hub in the task-related
network investigated in this study and receives increasing amounts of incoming
information transfer as the task progresses in time. This is in line with the fact that
the most pronounced task-related differences in FFA activity were found at latencies
>200 ms previously [148].

Our data also clearly show a great variability in information transfer pattern across
subjects, which we relate to the limited amount of data per subject, rather than to
true variation. Moreover, future investigations will have to show whether more fine
grained temporal segmentation of the neural information processing in this task is
possible and whether it will provide additional insights.

Conclusion and further directions

We presented an implementation of the ensemble method for TE presented in [24],
that uses a GPU to handle computationally most demanding aspects of the analysis.
We chose an implementation that is flexible enough to scale well with different
experimental designs as well as with future hardware developments. Our imple-
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mentation was able to successfully reconstruct information transfer in simulated
and neural data in a time-resolved fashion. Nearest neighbor searches using a GPU
exhibited substantially reduced execution times. The implementation has been made
available as part of the open source MATLAB toolbox TRENTOOL [86] for the use
with CUDA-enabled GPU devices.

We conclude that the ensemble method in its presented implementation is a suitable
tool for the analysis of non-stationary neural time series, enabling this type of
analysis for the first time. It may also be applicable in other fields that are concerned
with the analysis of information transfer within complex dynamic systems.
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Abstract

Network graphs have become a popular tool to represent complex systems composed of
many interacting subunits; especially in neuroscience, network graphs are increasingly used
to represent and analyze functional interactions between multiple neural sources. Interac-
tions are often reconstructed using pairwise bivariate analyses, overlooking the multivariate
nature of interactions: it is neglected that investigating the effect of one source on a target
necessitates to take all other sources as potential nuisance variables into account; also com-
binations of sources may act jointly on a given target. Bivariate analyses produce networks
that may contain spurious interactions, which reduce the interpretability of the network
and its graph metrics. A truly multivariate reconstruction, however, is computationally
intractable because of the combinatorial explosion in the number of potential interactions.
Thus, we have to resort to approximative methods to handle the intractability of multivariate
interaction reconstruction, and thereby enable the use of networks in neuroscience. Here,
we suggest such an approximative approach in the form of an algorithm that extends fast
bivariate interaction reconstruction by identifying potentially spurious interactions post-hoc:
the algorithm uses interaction delays reconstructed for directed bivariate interactions to
tag potentially spurious edges on the basis of their timing signatures in the context of the
surrounding network. Such tagged interactions may then be pruned, which produces a
statistically conservative network approximation that is guaranteed to contain non-spurious
interactions only. We describe the algorithm and present a reference implementation in
MATLAB to test the algorithm’s performance on simulated networks as well as networks
derived from magnetoencephalographic data. We discuss the algorithm in relation to other
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approximative multivariate methods and highlight suitable application scenarios. Our ap-
proach is a tractable and data-efficient way of reconstructing approximative networks of
multivariate interactions. It is preferable if available data are limited or if fully multivariate
approaches are computationally infeasible.

Introduction

Complex systems are often composed of many interacting simpler subunits. To
summarize our knowledge about such a system in an accessible format we frequently
draw on its representation as a network graph, where the subunits become nodes and
the identified interactions become links. Indeed, this way of summarizing knowledge
has become so successful that we witness a rapidly increasing interest in the graph-
properties of such network depictions [180-183]. The use of networks as a tool
to represent and analyze functional interactions has been gaining importance also
in neuroscience [180, 184-188]. In neuroscience, however, it is often overlooked
that all derived graph measures are only as good as the reconstruction of the
underlying interactions. This reconstruction may suffer, because the identification of
all interactions in a multi-node network is fundamentally intractable since it poses
a problem in the complexity class of so called “NP-hard” problems [26, 27]. Thus,
true network graphs of interactions must be recovered using approximations if we
do not want to forgo the use of network representations altogether.

To see why the identification of all interactions in a multi-node network is fundamen-
tally intractable, we have to consider that next to the interactions from one node
simply to one other node (a bivariate or pairwise interaction), there may well be
interactions from a set of two (or more) source nodes to a target node. Moreover,
this multivariate nature of the interactions makes it necessary to control for a parallel
influence from any other source in the network when trying to determine whether
a particular set of source nodes interacts with the target node in question. It is
the enormous number of combinations of potential sources and parallel influences
that makes it impossible to search all possibilities in reasonable time for any but
the smallest systems (e.g. n < 20, [25, 27]). In fact, it can be shown formally
that the problem belongs to the class of NP-hard problems, which are believed to
lack algorithms that produce solutions for arbitrary input sizes in polynomial time
[189].

To nevertheless apply graph theory and network models in neuroscience we need to
resort to approximate representations of the true multivariate interactions. Here,
the term approximation implies that we will have to commit errors. These errors
can be of two types—falsely identifying an interaction that is physically absent, or
missing an interaction that is physically present. While both types of errors may
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have detrimental effects on interpretability of popular graph metrics, we may still
ask which type of error to prefer, and how to build fast and efficient approximations
that predominantly show the preferred type of error.

Here, we suggest that missing out on interactions instead of including spurious
ones may be preferable because the nature of the obtained network becomes more
“reliable” in the sense that all the depicted links do exist. This knowledge can then
be built upon in future work. Therefore we present an algorithm that can prune the
most frequent spurious interactions from graphs obtained by a simple and efficient
bivariate analysis of interactions (this idea was first proposed in [121] in abstract
form).

Our focus here is specifically on corrections of graphs obtained from bivariate
(i.e., pairwise) analysis methods as these have most often been used to overcome
the intractability of the full network reconstruction described above. Despite their
popularity, iterative bivariate analyses introduce well known methodological artifacts
in the reconstructed interactions [25, 28, 29]: (1) Bivariate analysis may detect
spurious interactions (false positives) whenever the dependency between two time
series is caused or mediated by one or more additional nodes in the network; (2)
bivariate analysis may miss synergistic effects [72, 76] that two or more time series
have on a third. These two problems diminish not only the reliability of individual
links in a network but also compromise graph metrics of the global network.

In this study we investigate a solution to the first problem above. Our solution
builds on the possibility of reconstructing the delays of interactions (e.g. [75]
and similar approaches), and on specific interaction-delay based fingerprints that
potentially spurious interactions must leave even in a bivariate analysis. Our method
allows to tag potentially spurious interactions for further testing (e.g. by a targeted
multivariate analysis) or to remove them entirely from the graph to obtain its
most reliable core. Our method thus keeps the advantages of bivariate methods
in terms of data efficiency and computational tractability over approaches that are
approximately or fully multivariate.

In the following we first provide the necessary background on delay reconstruction
by information theoretic methods, and on graphs. Then we present our algorithm
and a reference implementation as part of the open source toolbox TRENTOOL
([86], http://www.trentool.de). Subsequently, we characterize its properties
and limitations based on theoretical considerations, simulations and application
to magnetoencephalographic (MEG) data. We discuss the relative merits of our
approach and other possible approximations to a fully multivariate analysis of
networks, and close by outlining possible strategies to deal with the identified
potentially spurious links in the network.

3.1 Introduction
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Background and Implementation

Before we outline the algorithm in more detail, we will provide some background
information by reviewing the recovery of interaction delays in an information theo-
retic framework. We will also describe the coupling motifs leading to the detection
of spurious interactions. Subsequently, we will formalize the network concept in
mathematical terms and complement the common undirected and unweighted net-
work representation used for neural data [180, 190] by introducing the weighting
of network connections with their respective interaction delays (using the estimator
provided in [75]). We will then describe the rationale underlying the algorithm and
its implementation. We conclude this section with the validation of the algorithm
using simulated as well as experimental data.

Background

Interaction delay reconstruction. Our algorithm is based on the availability of the
interaction delays for bivariately reconstructed interactions. We will systematically
use the term “bivariate interaction” to indicate that in the bivariate analysis setting
there is no guarantee that a reconstructed interaction is actually present in the
underlying data; nevertheless, even for a spurious interaction a meaningful delay
can be assigned (see examples in [75]). One possibility to obtain the delays for
bivariate interactions is to use delay-sensitive measures of information transfer,
i.e., transfer entropy (TE) estimators. In [75] we presented a delay-sensitive TE
functional:

1, X4
TEspo (X =Y, tu)= > p(yt,yt_1,xt_u)logp(yt|Yt 1, Xt—u)

) 3.1
Y, Yt—1,Xt—u P (yelyi-1) .1

which quantifies the mutual information between the past state x;_,, of a source X
and the present value y; of a target Y at a specific time delay u—conditional on the
past state of the target, yt_1.

This functional can be used to recover the physical interaction delay d x y by scanning
over possible values for u, and by taking the value of u where TE reaches a maximum
as the (bivariate) interaction delay:

dx,y =argmax (T Egpo (X = Y,t,u)). (3.2)
u
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A similar approach may be used for Granger causality as TE is equivalent to Granger
causality for data with a jointly Gaussian distribution [103].

Note, that reconstructed interaction delays incorporate not only the mere transfer
time between two neural processes, but also the time needed for local computation,
if we only obtain one channel per subunit (see Fig. 3.1 for further explanation).
Thus, interaction delay reconstruction as proposed in [75], captures the total delay
between two measurement points, which in a neural system may consist of transfer
time along an axonal connection but also of time needed for information transfer

within the local neural microcircuit.

z W(vg,vy)
?

L1

L2/3 Ut

L4 <.|

L5

L6

55 St/

Fig. 3.1 Reconstructing delay times from electrophysiological recordings. The physiological

delay between two measurement points v, v; consists of the time needed for information
transfer via axonal connections (Js) and internal computation within populations of
neurons (0;",), such that in a network representation of reconstructed interactions we

find wy, v,) = 0s,¢0 + §ir,. Black arrows represent information transfer within the neural
microcircuits.

Spurious interactions in bivariate analysis of multivariate data sets. Spurious inter-
actions may arise in bivariate analysis from one of two distinct coupling motifs: In
the first coupling motif (Fig. 3.2A) the dynamics of two or more nodes, representing
neural sources, are simultaneously driven by processes in a third node. A bivariate
analysis may detect an interaction between the two driven nodes. We term this a
common drive (CD, also “common cause” [25]). In the second coupling motif (Fig.
3.2B) an interaction between two nodes is mediated by one or more intermediate
nodes in the network and information transfer from source node to target node is
routed via these intermediate nodes. A bivariate analysis may detect an interaction
between the source and target node. We term this a cascade effect (CE, also “pathway
effect” [25] or “indirect causal pathways” [28]). The detection of spurious interac-

3.2 Background and Implementation

69



Fig. 3.2
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tions by bivariate analysis have been demonstrated for simulated data as well as in
neural recordings [28, 29, 91, 191, 192].

A S = B c

/@ N0 )

 W(vg,vp)

Spurious Interactions. (A) Common drive effect: A spurious interaction due to common
drive may be potentially present if the processes at vertices v, and v, are driven by vy with
differential delays, such that the bivariate information transfer between v, and v is a result
of the common input from vy; (B) Cascade effect: Spurious interaction due to cascade
effects may be potentially present for all cascades of information transfer in a “chain” of
sources. In the example here, the bivariate information transfer between v, and v, (edge
(s,t)) can be explained by an alternative routing of information via vertices v; and vy. The
summed weight of the alternative routing is equal to wy, ;); (C) “Triangle” motif: This is the
most simple motif potentially giving rise to either of the above spurious interactions: (v, v;)
could be a result of a cascade effect with respect to the path (vs, v1,v¢), and (v, v¢) could be
the result of a common drive of v; and v; by v,. At most one of these interactions can be
spurious.

Coupling motifs leading to spurious interactions due to CD and CE exhibit a specific
timing signature in the network of bivariately reconstructed interactions. We found
an example for such a timing signature in experimental data recorded from the turtle
(Fig. 3.3C) [75]. Here, a spurious interaction was detected between the light source
and the optic tectum. This spurious interactions resulted from a CE, i.e., an actual
routing of information from light source to tectum via an intermediate node, namely
the retina. Information transfer delays reconstructed with the TE estimator proposed
in [75], revealed this CE: The summed interaction delays in the actual routing of
information equaled the delay of the spurious information transfer.
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Fig. 3.3 Directed interactions in the turtle brain during visual stimulation with random light

pulses (modified from [75], creative common attribution license CC BY). (A) Raw
traces recorded in the tectum (blue) and from the retina (green) overlaid on the light pulses
(yellow). (B) Turtle brain explant with eyes attached. Transfer entropy was found from the
retina of the right eye to the left tectum, as well as from the light source (yellow) to the

retina and to the tectum (***** denotes p < 10(~5)). P-values for the opposite directions

were not significant (n.s.). Note, that the interaction between light source and optic tectum
shows a interaction delay roughly equal to the summed interaction delay between light
source and retina and retina and optic tectum (deviation < 5 %).

Graph representation of neural data and notation. As a last preliminary, we will
present the mathematical formalization of a network to give a precise account of the
algorithm and its functionality in the subsequent section. Table 3.1 lists the most
important variables. In mathematical terms, a network is described by a (directed)
graph G = {V,E}, where V denotes a set of vertices or nodes and E C V x V
represents a set of connections between nodes, called edges [193]. In a neuroscience
application, V may represent a set of individual functional units v;, e.g. neurons,
sources in MEG analysis, or voxels in functional magnetic resonance imaging data;
E may represent some sort of connection between two units, for example significant
functional interactions. An edge is written as a tuple (v;, v;), representing an edge
between any two sources v; and v;. Note, that such a tuple (v;, v;) defines an edge as
an ordered pair of two vertices and as such indicates a directed connection between
these two sources (the two elements of the tuple are not interchangeable, such
that (v;,v;) # (vj,v;)). We further assume that edges are weighted by a weighting
function w : E — N that maps the set of edges to the natural numbers. Here, these
natural numbers are chosen proportionally to the timing information as precisely
and as parsimoniously as possible. We call w(,, ,) the weight of edge (v;, v;).
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Notation

Graph representation

G graph, consisting of the sets V and E

AY set of vertices

E set of edges

v; vertex with index 3

(vi,v5) edge from v; to v;

Wy, v;) weight of edge (v;, vj)

Vi~ U; path from v; to v;

v v} path from v; to v; with summed weight &

l path length, i.e. no. edges in a path

Algorithm

(vq, vp) edge under investigation in current algorithmic iteration

Wy ,0p) weight of the edge under investigation
threshold to account for imprecisions in interaction delay recon-
struction

Werit critical path weight, we.;+ = W(y,,vp) + 0 (target weight of the
algorithm)

Vg, Vg start and target node (vs = vq, v = vp)

L} (w;;~ vj) set of solutions in algorithmic step n, that solve the subproblem
Vs «% Vj

For any edge (v;, v;), v; is considered the predecessor of v;. v; is called the child of v;.
A path vy ~ vy is defined as a sequence of vertices (vg, v1,...,v;,...,v_1,v;), Wwhere
every two consecutive vertices v; v;+1 are connected by an edge (v;, v;11). We call
[ the length (number of edges) of the path and we will refer to this length [ as a
path’s graphical length, describing the number of edges used to graphically represent
the path in the graph. The total weight of a path is the sum of the weights of all
individual edges comprising the path, >=; w(,, v, ,)-
Fig. 3.4 gives a schematic overview of the construction of a graph from time series
data recorded from a set of neural sources. Edges in the graph represent significant
interactions between sources (vertices); edge weights represent reconstructed inter-
action delays. We here use TE to analyze directed interactions, using the estimator
proposed in [75] to recover significant TE and corresponding interaction delays, but
other approaches are possible.

Rationale and implementation of the algorithmic solution

Rationale of the algorithm. Based on the graph representation of reconstructed
directed interactions, their delays, and the theoretical preliminaries presented in the
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Fig. 3.4 Graph representation of neural data. (A) Recorded signals from various sources in the
brain; (B) Pairwise estimation of transfer entropy (TE) and reconstruction of interaction
delays u between any two sources; (C) Adjacency matrix: representation of estimated delay
times between all source combinations, every entry represents an information transfer from
the ith row to the jth column; (D) Adjacency matrix after test for statistical significance; (E)
Visualization of the graph represented by the connectivity matrix: every source is represented
by a vertex, every significant information transfer is represented by an edge. (The blue circle
indicates the respective representation of an exemplary interaction between source 1 and
source 3 throughout all steps of graph reconstruction.)
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last subsection, we will now propose an algorithm that detects potentially spurious
interactions by exploiting the timing signature of CE and simple CD.

As input the algorithm expects a directed, delay-weighted graph G := {V, E}, rep-
resented by its connectivity matrix. Connections are weighted with the estimated

interaction delays w, = O(v,,p)> 1-€., the estimated physical delays between the

VayVb
processes represented by)va and vp,. Note that such a graph needs to be constructed
from a connectivity measure, which is (a) directed and (b) allows for the recon-
struction of interaction delays. Additionally, the user has to provide a threshold 6
to account for noise in empirical measurements as well as imprecision in analysis
methods (described in detail below). We furthermore assume that weights have
been linearly scaled, such that they do not have any decimal places and can be

represented by integer values.

As a first step, we identify potential CEs by assuming that if a CE is present in the
data, the bivariate interaction represented by any edge (vq,vy) € E with weight
W(y, ) €an be explained by an alternative routing of information via intermediate
vertices (see an example in Fig. 3.2B). Thus, iteratively for every edge (v, vp) in
E the algorithm sets v, = v as the starting and v, = v; as the target node of the
current iteration. Then the algorithm searches for an alternative path for (vs, v;),
where a path is assumed to be an alternative path if the summed delay interaction
times >, wy of all edges in the path are (approximatively) equal to w;

Vi, Vig1) Vs,V¢)?

Le., Wiy, ) — 0 < 20 Wy 0i41) < Wog,wy) + 0. For an example see Fig. 3.2B, where
edge (vs,v;) (dashed arrow) has a graphically longer, alternative path (vs, v1, va, v¢)
with equal summed weight (solid arrows). If the algorithm finds such an alternative
path, the edge currently under investigation is tagged as potentially spurious.

In a second step, the algorithm additionally identifies potential simple CD effects
based on the results from the first analysis step. Simple CD effects occur in graph
motifs that form acyclic “triangles” (Fig. 3.2C). We define an acyclic triangle as any
three nodes that are acyclic, pairwise connected. We suspect a spurious link due to
simple CD if a triangle motif exhibits a suspicious timing signature; these suspicious
triangles are identified from the results of the first analysis step by listing all edges
with alternative paths of graphical length two. We propose to tag two edges in
each of these identified triangles: (1) the direct edge due to a CE (edge (vs, v;) in
Fig. 3.2C) and (2) the second edge due to a simple CD (edge (v;,v;) in Fig. 3.2C).
Note however, that of both tagged edges one has to be a non-spurious interaction
for this rationale to hold: if the CE link (v, v;) is rejected, a possible driver-target
relationship between nodes vs and v; is destroyed, thus nullifying the argument for
the simultaneous rejection of edge (vi,v¢). The same argument holds vice versa:
a rejection of the tagged edge (v1,v;) due to CD destroys the information cascade
from v, to v; and thus cancels the CE causing the detection of (vs, v;). Thus, tagging
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both edges in a triangle motif yields a slightly too conservative approach to network
representation. For the treatment of tagged links in neuroscience we refer to the
Discussion section.

A further important consideration is that once the algorithm has detected an alterna-
tive path v, ~ v, for an edge (v,, vp), this alternative path stays intact, even if, at a
later step, some edge in v, ~ vy, is tagged (and probably removed). Assume, that
we have an edge (v,, vp) with an alternative path v, ~» v, and that at a later step,
one or more edges in this path get tagged. Then, for each of these tagged edges,
leaving a “gap” in v, ~~ vy, an alternative path of equal summed weight exists by
definition of the algorithm. This alternative path closes the “gap” in v, ~ v, such
that nodes v, and vj, are still connected by a new path v, ~~ vy. This new path has
the same summed delay as v, ~ vp, but is graphically longer. Therefore, alternative
paths identified at some step in the algorithm remain intact even if links within the
paths are tagged at a later point in the algorithm’s execution.

Implementation overview. We now present the implementation of the strategy
described above; more precisely, we present an algorithm that finds all alternative
paths for any given edge (v4,vp) € E, given a directed, weighted graph G = {V,E}.
See Fig. 3.5 for an overview of the algorithm.
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Fig. 3.5 Overview of the proposed algorithm. The algorithm expects a weighted and directed
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Input:

graph G = {V,E}
threshold 0

Y

Preprocessing:
create G’ from G:

remove edge (va,vs) from G

relabel nodes v,, vy as vg, vt

reorder nodes, such that vs = v and v; = vy
represent G’ as inverted adjacency list
—» set target weight: werit = Wy, v,) + 0

test next edge
(vm Ub) €E

v

search for alternative paths in G’
using dynamic programming

Jalterna-
tive path

reconstruct alternative
paths using a DFS

Y

yes path con-

tains loop

e

keep edge

tag edge (vq,vp) @s
potentially spurious

graph G = {V,E} and a threshold 6 as input.

In a preprocessing step, the algorithm creates graph G’ from input G, as an input for the dy-
namic programming algorithm, by removing edge (v,,v;) and by relabeling and reordering
nodes. Then, in the next step, alternative paths for (v,,vp), are searched through dynamic
programming (see also main text). If at least one alternative path is found, paths are
reconstructed using a depth first search (DFS, [194]) to ensure that alternative paths do
not contain loops. If an alternative path contains no loops, the currently investigated edge
(vq, vp) is tagged as potentially spurious. If no alternative edge is found, (v,, vy) is considered

non-spurious.

The algorithm then enters the next iteration, in which the next edge (v,, vs) € E is investi-

gated for alternative paths.
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As a preprocessing step, we construct a graph G’ by removing the edge (v,, vp) from
G and relabeling nodes v,, v, as starting and target nodes v, v; of the current
iteration of the algorithm. The target weight of the alternative path is set to
Werit = W(y, ) + 0. Furthermore, G’ is represented as an inverted adjacency
list, i.e., a list of all nodes in V, where for every node all of its predecessors are
listed. v, is set as the first node in this list (note that we assume that v, has index
1), v, is set as the last node (has index |V|). Therefore, for all other nodes v; in the
adjacency list it now holds that 2 < j < |V].

After preprocessing the input, alternative paths vs ~ v; with weight w,_ ,,) & 0 are
detected in two steps: (1) a memoized dynamic programming approach [194] is
used to determine, whether any path v ~~ v; of a total weight w,_ ,,) & ¢ exists; (2)
a modified depth first search (DFS, see [194] for a description) is used to reconstruct
all paths with weights in the interval w,, ,,) + 0 from the solution obtained in step
(1). The second step is necessary to reject paths that contain loops and to allow for
further analysis (for example the identification of triangle motifs).

The algorithm was implemented as part of the open source toolbox TRENTOOL
[86].

Dynamic programming. We use a dynamic programming approach in step (1) to
handle the inherent complexity of the problem at hand (see Discussion). Dynamic
programming allows for the solution of a complex problem by decomposing it
into easily solvable subproblems. By starting with trivial base cases, subproblems
of increasing complexity are solved iteratively by taking recourse to tabulated
solutions of previous (more simple) subproblems. This reduces computational
demand and is repeated until the algorithm reaches the most complex subproblem,
which represents the input problem. In the following, we will first define the
subproblems to the present problem, and then describe the algorithmic solution to
an individual subproblem. A detailed, graphical account of both steps is presented
in Fig. 3.6.
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Visualization of the proposed algorithm. Search for alternative paths to edge (1, 6) (dotted
arrow), i.e., v, = 1 and v; = 6. Solutions L;j (w;; ~ v;) to subproblems are managed in a
two dimensional solution array indexed by path weight w; and vertex number v;. Solutions
are calculated iteratively over w; (rows) and v; (columns). (A) Solution matrix after first
iterative step (subproblem L} (1;~- v3)): There are two edges leading to vertex 2 of which
only edge (1, 2) yields a valid solution by pointing to an earlier solved subproblem (green
box), whereas edge (5,2) has a weight of 7 leading to a negative difference in weights
i — ws,2) (red box) for which no earlier solution exists; (B) Solution matrix after third
iterative step L3 (1;~» v3): Here, no valid solution exists (none of the arrows leading to
vertex 2 are part of a path with summed weight 1); (C) Solution array after iteration over all
vertices v; for w; = 1 (all vertices have been checked for a path of weight 1, originating from
the start vertex 1); (D) Solution to subproblem L, (6;~ vg): edge (4,6) together with the
solution L,,_(5;~~ v4) form a valid path, whereas edge (5, 6) is not part of a valid solution as
Ly, (3;~ v5) is empty;
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Fig. 3.6 Visualization of the proposed algorithm (continued). (E) The algorithm terminates after

iteration over all vertices v; and path weights up to w,_ ,,) + ¢, where 0 is a user defined
threshold of 1. Backtracking is conducted for all entries in the reconstruction interval
Wy, v,y £ 0 (entries marked blue); (F) Reconstructed alternative path by backtracking of
subproblems.

Formulation and ordering of subproblems. The overall problem of finding a path
from v, to v; with weight wy,_ ) & ¢ is divided into subproblems by asking, whether
a “simpler” path v ~% v; exists; v; is any node in V and w; is any path weight
Wi < Werit = Wy, ,v,) + 0. FOr example, finding a path v; 2 v3 is a subproblem to

. 9
finding path v; ~ v1g where v; = v, and vig = v;.

The presented algorithm solves subproblems iteratively for increasing complexity
using a dynamic programming approach. It is thus necessary to order the subprob-
lems by their complexity and to make their solutions immediately accessible for
reuse in subsequent algorithmic steps. This is realized by organizing solutions in a
two-dimensional solution array, in which solutions are ordered by path weights and
node indices, the two parameters determining complexity. Starting with the most
simple base case where w; = 0 and v, = v; = v; (this subproblem describes a path
Vg 2, vs), subsequent subproblems are formulated by increasing path weights and
node indices in integer steps. Thus subproblems are formulated for all combinations
w; = 1,2,...,wery and v; € V (see for example Fig. 3.6C for the first iteration of
path weights and a complete iteration over all vertices). Individual solutions to
subproblems are tabulated in the solution array of size [0; we,i¢] by [1;|V|] and are
indexed by the current values for w; and v;. This organization of subproblems allows
for the easy retrieval of solutions from earlier iterations to solve the subproblem
currently at hand (see below and Fig. 3.6).

Finding solutions to subproblems. For any given subproblem v ~ v; the algorithm
determines whether a path of weight w; leads into node v;. The algorithm does
this by testing whether any single edge leading into v; together with the solution
to a simpler subproblem forms the path v, ~3 vj. In particular, for every edge
(vp,v;) leading into v; (where v, is a predecessor of v;), the algorithm checks if this
edges extends a path leading into v, such that the resulting path solves the current
subproblem v, ~* v; (see Fig. 3.7A). We call the treatment of one edge (v, v;) an
algorithmic step. In one algorithmic step, the algorithm checks (1) if there exists
a path to v, and if so, (2) whether the path has length w, = w; — w(,, ). If both
conditions are met, the currently considered edge (v, v;) together with the path to
predecessor v, solves the current subproblem v, hedd vj (because a path v, ~E v, exists,
that together with (vp, v;) forms a path of summed weight w; = wj, + w(,, ,,))- The
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algorithm terminates once the most complex subproblem has been investigated, i.e.,
it has been tested if a path of length w,,.;+, connecting node v, to v; can be found.

Wiop05) )
@ W’—» ARt 2@
'wp,vp
N
Wi ,Vj o Wp,Vp U w(vpv'vj)

Schematic example of a subproblem of the proposed algorithm. (A) Example subprob-
lem L, 0,0 At the n*" algorithmic step, we search for all paths of weight w; leading to node
vj; (B) Finding a solution for the current subproblem by investigating solutions to prior
subproblems: We investigate all predecessors v, of the current node v;; if there exists a

M
solution to Ly, ,

of weight w, leading from s 10 vp, and wy, + wyy,
subproblem L7, .

i.e., there is a solution to the prior subproblem v, ~ v,, of finding a path

v;) = w;i, we find a solution to the current

Note that “checking” if a path of weight w,, to node v, exists corresponds to looking
up whether a solution to the subproblem vy v vp, exists in the solution array; i.e.,
the algorithm has to look up the entry in the solution array at row p (for node
vp) and column w; — W(vy,v;) (for weight w,). In doing so, the algorithm solves
the subproblem by reusing earlier solutions. Note also, that relevant subproblems
are guaranteed to have been solved at an earlier point in the execution of the
algorithm as the algorithm treats subproblems in the order of increasing complexity:
subproblems are solved by first iterating over all path weights w; = 1,2, ..., wepit
in an outer loop, and second iterating over all nodes from v, := v to v¢ := v}y in
an inner loop; a relevant subproblem v, ~% vp is guaranteed to have been solved
because it always holds that w, < w; per definition of w,,.

To tabulate solutions to subproblems, for every edge solving the subproblem and its
weight, we add a tuple (w(ij),vp) to a set of solutions. More specifically, when
iterating over all N potential incoming edges (v,,v;), we enter valid solutions in a
sequence of sets indexed by the current algorithmic step n: Lngj C...CLY,,., €

Lyt, C ... C Ly, .. Each tuple in Ly , then indicates the existence of one

alternative path for the subproblem. The collection later allows the reconstruction
of all alternative paths for the overall problem.

Formally, after initially setting L?Ui’vj = (), we can define each algorithmic step n as
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For every edge (vp, v;) leading into v;:

L v, Y (Wi, 050, vp) i 05 # vs A L{\i’% #0 3.3)
Lmj =qL7 if L{){p vy =10
(0,'[)5) lf Uj = Vs.

Here, Ly, . denotes the current set of tuples contributing to the solution of the
subproblem v, ~* vj, i.e., a path leading from v, to v;, that has a summed weight
of w; in algorithmic step n. L{‘U{M is a set of solutions to the subproblem vy 8 Up
investigated earlier (where solutions were collected over M algorithmic steps).
Formula 3.3 expressed that for every edge (v, v;), it is tested if two conditions are
met (see also Fig. 3.7B):

(1) there exists a solution to the previous subproblem L]Vi i.e., a path to the

Wp,Vp?

predecessor v, with weight wy, = w; — Wy, +,);

(2) the edge (vp,v;) from predecessor to current node has a weight such that

Wp + Wiy ;) = Wi

If both conditions are met, then the tuple (w(vpm].), vp> is added to L, .. When

all edges (vp, v;) have been tested, the next subproblem v ot vj4+1 (inner loop) or
1 . . . .
vy v; (outer loop) is considered. The algorithm terminates once all subproblems

have been investigated.

Backtracking. In a second step, the algorithm uses backtracking to reconstruct
relevant paths from the solution array returned by the dynamic programming step
described in the last subsection (see Fig. 3.6F). Paths are considered relevant, if
y £ 0.
Thus, paths are reconstructed from all entries that correspond to the solutions to

they lead to the current target node v; and have a summed weight of w,, ,
subproblems vs ~ v; with weight wy,, ,,) & 0 (we call these relevant entries in the
solution array reconstruction interval).

The backtracking algorithm uses depth first search (DFS, for a more detailed de-
scription see for example [194]) to reconstruct all paths starting from one entry
in the reconstruction interval at a time; it is therefore called for each entry in the
reconstruction interval individually (for example, in Fig. 3.6F, this corresponds
to three calls of the backtracking algorithm for fields [5, 6], [6,6] and [7,6]). The
backtracking is done by recursively expanding each entry in the currently considered
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field (i.e., visiting the next field, indicated by the currently considered solution to
a subproblem). For example, in Fig. 3.6F, the field [6, 6] points to the field [5, 4],
which points to [3, 3] and so on. While expanding one path, the algorithm checks,
whether a node in the currently reconstructed path has already been visited during
the recursion. If this is the case, the path contains a loop, i.e., a node is visited twice
in one path, and the respective path is discarded as it is not a valid solution to the

overall problem.

All remaining reconstructed paths are considered alternative paths to the edge
(vs, v¢). If at least one such alternative path exists, (v, v;) is considered potentially
spurious due to a CE.

Additional analysis of triangle motifs. As laid out in the subsection Rationale of the
algorithm, the algorithm identifies simple CD in an additional step. Simple CD occurs
in triangle motifs, which can be identified by listing all edges with valid alternative
paths of length two. In each triangle, the second edge of the alternative path is
considered as potentially spurious due to a simple CD effect additionally to the edge
considered spurious due to CE (see coupling motifs shown in Fig. 3.2C).

Output. The algorithm returns a list of potentially spurious edges in E, and tags
these spurious edges as a CE (identified by an alternative path) or a simple common
drive effect (identified in a triangle motif).

Evaluation

To test the proposed algorithm for correctness and performance in terms of execution
times, we simulated networks of different sizes and densities to serve as input graphs.
To further demonstrate the algorithm’s applicability to neuroscience data, we applied
it to networks derived from electrophysiological recordings during a face recognition
task.

Performance of the algorithm in simulated networks

We simulated networks of different types: small-world networks [195], scale-free
networks [196] and random networks of different densities [197, 198]. We chose
these topologies because small-worldness and scale-freeness have frequently been
reported to occur in functional and anatomical networks derived from neuroscience
experiments [190, 199, 200] (for a review see also [186] and [201]).
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The performance of the proposed algorithm on the simulated networks was tested
by (1) varying the size |V| of simulated networks and (2) varying the critical path
weight for alternative paths w..;;. Higher values for both parameters increased
computational demand by either increasing input size directly (higher values for
|V]) or by increasing the likelihood for the detection of an alternative path (higher
values for wepit).

The dependency of the likelihood of detecting an alternative path on w.; is es-
pecially relevant in random network topologies: here, the number of possible
alternative paths increases exponentially in w.,.;;, as higher values for w,.;; (relative
to individual path weights) increase the number of possible combinations of edges

that form a path of weight w,,;;. More precisely, given a random graph G = {V,E}
_ __|E|

— IVIVI-D)
(where p is the density of G); furthermore, the probability of the edge having weight

_1
Wmaz

and weix > |V, the probability for the existence of an edge is p(e) = p
w is uniformly distributed with p(w) = The number of possible alternative
paths can then be calculated as

Werit [w <<qj/__11> ,p(w)jp@)j)] ’ (3.4)
w'=1 |j=1

where Z}‘il (“;/__11) is the number of compositions, i.e., the number of ordered
sequences of integers that sum to w’, the currently considered summed edge weight.
The inner sum is dominated by the growth of the number of compositions given by

2:1 (;:11) = 2~1, Thus, the number of alternative paths grows in Q(2%<rit), i.e., it
grows exponentially in the critical path weight given a sufficiently dense, random

network topology.

Small-world networks. For the simulation of small-world networks we modified
the rule for network generation proposed by Watts and Strogatz in [195]. The
network generation was done in two steps with parameters |V| (number of nodes),
n (neighborhood coefficient) and p (rewiring probability):

1. Construct a regular ring lattice with V nodes, where every node v; € V is
connected to its n nearest neighbors v; (such that (v;,v;) € E). Given that
V = wv1,...,vv|, each node v; is connected to its neighbors v 1, ..., v;y/2

and Vi—1y--- 7v’i—n/2'
2. For every node v; all edges (v;, v;) are rewired with probability p by replacing

(vi, vj) with (v;,v;) where n is chosen randomly with uniform probability from
V\v; while avoiding loops and multiple edges.
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3. Every edge is weighted by a random weight w, drawn from an interval

i,0;)

[1; Winaz] With uniform probability

Note, that we made two extensions to the original generation rule proposed in
[195]: we simulated network edges as directed and weighted, while the original
work by Watts and Strogatz assumes undirected and unweighted edges. We defined
connections from every node v; to its n nearest neighbors as directed and weighted
them with values randomly drawn from an interval [1; wy,az]. We set w4, to the
maximum interaction delay found in an MEG data set also used as a second test
case described below. Thus, strictly speaking, only the undirected and unweighted
network underlying our test cases had small-world properties (i.e., a high clustering
coefficient and a short characteristic path length). We used this approximation of
small-world properties in a weighted and directed network, as there is no agreement
over how directedness and edge weights are to be incorporated into the original no-
tion of small-worldness (as both parameters may alter the global behavior commonly
observed in undirected and unweighted small-world networks) [202].

Scale-free networks. Scale-free networks were simulated using an algorithm pro-
posed in [203], following an implementation of the rationale by Barabdasi and
Albert[196] in [204] (see also [205]).

Scale-free networks resemble small-world networks in their topology, i.e., they
exhibit high local clustering and low characteristic path lengths. Both network types
differ however in their degree distributions p(n), the probability that a node interacts
with n other nodes in the network: in small-world networks the degrees are normally
distributed, while in scale-free networks the degrees follow a power law p(n) ~ n~7
(where v may vary for different networks) [196].

Random networks. We created random networks of size |V| by independently
including weighted edges with probability p [198], where p denotes the density or
edge probability of a graph:

E|

- = 3.5
NED (3-5)

p

i.e., the the ratio of edges actually present in a graph to the number of possible
edges [206]. Compared to small-world networks, a random graph typically exhibits
a small average minimum path length and small average clustering coefficient [202],
depending on the graph’s density. In the present study, we created two test cases
with p = 0.25 and p = 0.50 respectively.
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Performance results for simulated networks. Running times of the algorithm in-
creased as a function of graph size |V| and critical path weight w.,;; (Fig. 3.8). For
the dynamic programming part of the algorithm, running times increased in a linear
fashion in both network size |V| (Fig. 3.8A) and critical path weight (Fig. 3.8B).
Running times thus correspond to theoretically expected running times. The time
needed for backtracking the obtained solutions grew exponentially in | V| (Fig. 3.8C)
and critical path weight (Fig. 3.8D) for random networks and scale-free networks,
where running times were least favorable for random networks. For small-world
networks on the other hand, running times did not increase dramatically for higher
values |V| and wy.
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Fig. 3.8 Results running time. Running times [log(s)] for dynamic programming (A, B) and back-

tracking (C, D) by number of vertices |V| and maximum path weight w,,;;. Running times
are shown for different graph types (SW: small-world, SF: scale-free, RN: random networks
with density p). Red markers indicate cases of intractability (execution was aborted after a
pre-defined limit of reconstructed alternative paths was reached).

Running times for backtracking depend on the number of alternative paths to
be reconstructed from the solution array. Since the number of paths increases
exponentially in w.,;; (given a sufficient graph size |V|), exponential running times
were expected for higher values for both parameters. We therefore defined an a
priori limit of 20 000 for the number of alternative paths to be reconstructed. If this
limit was reached, the algorithm’s execution was aborted. These problem instances
were considered intractable (red markers in Fig. 3.8). Intractable test cases were
found for random graphs only and occurred earlier for graphs with higher densities
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of p = 0.50 (for comparison: the scale-free graphs had a density of approx. 0.15,
small-world graphs of approx 0.5). Cases of intractability were found for random
graphs of sizes |V| > 65 with a density p = 0.50 and |V| > 130 for graphs with
density p = 0.25 respectively. Furthermore, intractable cases occurred for path
weights w,;+ > 21 for random graphs with density p = 0.50 and for path weights
werit > 25 for random graphs with density p = 0.25.

Thus, network size as well as network structure influenced the computational
demand of a given input to the presented algorithm. Note that intractable cases may
well occur in a neuroscience application, where inputs can not be assumed to be
bounded in any respect (e.g. in terms of graph density or graph size). Here, the
network size may be used to determine whether an input may prove intractable.
In the present simulation, network sizes smaller than 25 nodes posed no problem
for the algorithm; of course, these limits are subject to moderate changes with
increasing computational power.

Detection of spurious interactions in networks derived from
electrophysiological time series

Ethics statement. To test the algorithms applicability to biological time series, we
used MEG data recorded from 15 healthy human subjects during a face recognition
task as described in [148]. All subjects gave written informed consent before the
experiment. The study was approved by the local ethics committee (Johann Wolfgang
Goethe University, Frankfurt, Germany).

Preparation and MEG data acquisition. MEG data was obtained from 30 healthy
subjects, recruited from the local community. All participants had normal or
corrected-to-normal vision and were right-handed (assessed by the Edinburgh Hand-
edness Inventory [207]).

MEG data were recorded using a 275-channel whole-head system (Omega 2005,
VSM MedTech Ltd., BC, Canada) at a rate of 600 Hz in a synthetic third order
axial gradiometer configuration (Data Acquisition Software Version 5.4.0, VSM
MedTech Ltd., BC, Canada). Data were filtered with 4th order butterworth filters
with 0.5Hz high-pass and 150 Hz low-pass. Behavioral responses were recorded
using a fiber-optic response pad (Lumitouch, Photon Control Inc., Burnaby, BC,
Canada). Trials with excessive head movement (more than 5 mm) were excluded
from further analysis.
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Structural magnetic resonance images were obtained with a 3 T Siemens Alle-
gra, using 3D magnetization-prepared rapid-acquisition gradient echo sequence.
Anatomical images were used to create individual head models for MEG source

reconstruction.

Task. The participants were presented with a randomized sequence of degraded
two tone images of human faces (Mooney Faces, [149], see Fig. 3.9C for an example
stimulus) and scrambled stimuli, where black and white patches were randomly
rearranged to minimize the likelihood of detecting a face. The participants had to
indicate the detection of a face by button press. Only trials in which faces were
correctly identified entered further analysis.
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Results empirical data sets. (A) Running time of the complete algorithm by number of
nodes plus number of edges |V| + |E|; (B) Mean percentage of tagged, potentially spurious
edges by chosen threshold 6 after application of the algorithm, error bars indicate 1 standard
deviation (SD); the value for # obtained from bootstrapping in two example data sets is
marked in red; (C) Mooney Stimulus [149]; (D) Cortical sources after beamforming of MEG
data (1.,left; r., right: 1. orbitofrontal cortex (OFC); r. middle frontal gyrus (MiFG); 1. inferior
frontal gyrus (IFG left); r. inferior frontal gyrus (IFG right); 1. anterior inferotemporal
cortex (aTL left); I. cingulate gyrus (cing); r. premotor cortex (premotor); r. superior
temporal gyrus (STG); r. anterior inferotemporal cortex (aTL right); 1. fusiform gyrus (FFA);
1. angular/supramarginal gyrus (SMG); r. superior parietal lobule/precuneus (SPL); 1. caudal
ITG/LOC (cITG); r. primary visual cortex (V1)), see also [148];
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Fig. 3.9 Results empirical data sets (continued).

(E) Example of removal of tagged edges: MEG data of a face detection task in two subjects.
First column shows transfer entropy values prior to detection of potentially spurious edges
(Pre). The second column shows color-coded tagged edges (red: Potential cascade effects,
blue: potential common drive effects; § = 3ms). The third column shows the network of
directed interactions after removal of all tagged edges (Post).

Data analysis. MEG data were analyzed using MathWorks® MATLAB® (2008b,
The MathWorks, Natick, MA) and the open source MATLAB® toolboxes FieldTrip
(version 2008-12-08; [150]), SPM2 (http://www.fil.ion.ucl.ac.uk/spm), and
TRENTOOL [86]. We will briefly describe the applied analysis here, for a more in
depth treatment refer to [148].

For data preprocessing, we defined experimental trials from the continuously
recorded MEG data. A trial was defined as the epoch from —1000ms prior to
stimulus presentation until 1000 ms after stimulus presentation. Trials contami-
nated by artifacts (eye blinks, muscle activity, or jump artifacts in the sensors) as
well as trials with wrong responses were discarded. Trials were baseline corrected
by subtracting the mean amplitude between —500 ms to —100 ms before stimulus
onset.

To investigate differences in source activation in the face and non-face condition,
we used a frequency domain beamformer [151] at frequencies of interest identified
at the sensor level (80 Hz with a spectral smoothing of 20Hz). We computed
the frequency domain beamformer filters for combined trials (“common filters”)
consisting of activation (multiple windows, duration, 200 ms; onsets at every 50 ms
from Oms to 450 ms) and baseline data (—350ms to —150ms). To compensate
for the short duration of the data windows, we used a regularization of A = 5 %
[152].

To find significant source activation in the face versus non-face condition, we first
conducted a within-subject t-test for activation versus baseline effects. Next, the
t-values of this test statistic were subjected to a second-level randomization test at
the group level to obtain effects of differences between face and no-face conditions; a
p-value <0.01 was considered significant. We identified 14 sources with differential
spectral power between both conditions in the frequency band of interest in occipital,
parietal, temporal, and frontal cortices (see Fig. 3.9D and [148] for exact anatomical
locations). Namely, our network representing information flow between sources has
14 nodes. We then reconstructed source time courses for TE analysis, this time using
a broadband beamformer with a bandwidth of 10 Hz to 150 Hz.
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We estimated TE between beamformer source time courses [86, 208] within an
analysis window of 500 ms (—50 ms to 450 ms) and tested resulting TE values for
their statistical significance [86]. We furthermore reconstructed information transfer
delays for significant information transfer by scanning over a range of assumed
interaction delays from 5ms to 17 ms (resolution 2 ms), following the approach in
[75] and parameters used in a similar analysis in [208]. We thus obtained a delay
weighted, directed network of information transfer during a face recognition task,
consisting of 14 nodes and edges with weights in the range from 5 to 17. We then
applied the proposed algorithm to the resulting delay-weighted networks of directed
interactions. For two example data sets, we used bootstrapping (1000 resampled
cases) to obtain an estimate of the standard error of the delay estimation [209] and
used this estimated standard error as input parameter € for a more detailed example
application of the algorithm.

Performance results for “empirical” networks. For empirical data running times
increased almost linearly in |V| + |E| (Fig. 3.9A). We chose to present running
times as function of the sum of the number of nodes and number of edges because a
systematic variation of network size was not possible here (rather, network size was
determined by previous source reconstruction). Cases of intractability did not occur
even though some data sets exhibited high network densities (ranging from 0.07 to
0.43 with a mean of 0.24 and a SD of 0.09).

The percentage of potentially spurious edges increased with higher thresholds 6
up to 32% of potentially spurious edges for § = 7ms (Fig. 3.9B). Edges were
considered potentially spurious if at least one alternative path existed or a simple
CD was present. Note, that the threshold serves to adjust the algorithm’s sensitivity
and may lead to the erroneous exclusion of edges if chosen too high. Thus, the
value for # should be chosen such that imprecisions in interaction reconstruction are
accounted for, while the false discovery rate is not increased. As a rule of thumb, a
user may use prior knowledge about the minimum interaction delay to be expected
in the data as an upper bound for 6 or use bootstrapping to obtain an error estimate
for reconstructed delays.

In Fig. 3.9E, we show results for two example MEG data sets from the validation test-
set before and after analysis with the proposed algorithm. We used bootstrapping to
estimate the standard error in the reconstruction of the interaction delays. We found
an average error over channels of 2.6 ms for subject one and 2.9 ms for subject two.
Accordingly, we set § = 3ms as this corresponded to the next integer value in ms.
The average reconstructed interaction delay was found to be 7.06 ms (SD: 3.57 ms)
for subject one and 6.94ms (SD: 3.32ms) for subject two. We also calculated the
average path length as the average weight of the shortest path for each node to
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every other node in the network; the average path length was 6.84 ms for subject
one and 6.81 ms for subject two. Note that the graphs are highly connected prior to
the application of the algorithm, such that the shortest path between any two nodes
consists of just one edge; thus the average path length is close to the average edge
weight.

After application of the algorithm, the recovered networks of information transfer
consisted of 20 links for subject one and 34 links for subject two; networks showed
an overlap of nine edges, which corresponds to an 45 % overlap and is 20 times
higher than an overlap of 2 % expected purely by chance. Thus, the network can be

considered highly consistent.

Discussion

Algorithmic detection of potentially spurious edges in delay
weighted networks

We have presented an algorithm that finds potentially spurious links arising from
bivariate analysis of multi-node networks based on interaction timing. The algorithm
identifies the most common motifs causing the reconstruction of spurious links,
such that identified links can be subjected to further testing, or removed. By
removing all potentially spurious edges, the user obtains a sub-network that is
guaranteed to contain only non-spurious edges; this improves the validity of the
network representation itself as well as the validity of potential subsequent network
analysis. The algorithm thus allows the user to find an approximate representation of
multivariate interactions in the data, using only bivariate interaction reconstruction
and avoiding the computationally heavy problem of an approximately or even fully
multivariate approach.

The presented algorithm may be used in neuroscience to post-process any network
of reconstructed bivariate interactions, where interactions are directed and weighted
by their estimated delays. We demonstrated the application of the algorithm us-
ing a reference implementation in MATLAB® as part of the open source toolbox
TRENTOOL [86].

Application in neuroscience

Based on findings in [75], we propose to identify spurious links by their characteristic
timing signatures in networks of reconstructed bivariate interactions [121]. In
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particular, we propose that a link is likely to be spurious if an alternative path with
identical timing exists (Fig. 3.2).

We assume that a bivariate information transfer between two nodes and a correspond-
ing alternative path constitute a redundant routing of information. Such a redundant
routing conflicts with the hypothesis that the brain evolves under the objective of
maximizing economy and efficacy [185, 210] while minimizing biological costs [211,
212] (see for example the “save-wire hypothesis” in [213]). We thus argue that
any redundant routing of information between two sources of neural activity—with
identical timing—would be implausible, given the brain’s organizational principles.
Therefore, whenever a redundant routing for a bivariate information transfer is
found, our rationale implies spuriousness of either the bivariate information transfer
or the alternative path. Of the two, we consider the bivariate interaction spurious,
because (1) spurious bivariate interactions are a likely artifact in bivariate analysis of
multi-node networks; and (2) if a bivariate and thereby direct means of information
transfer between a source and a target existed, the maintenance of a physiologically
more costly alternative path of identical information transfer would be unlikely.

Note, that this rationale exclusively applies to neural systems. Also remember, that
the algorithm does not tag all alternative routings of information, but only those
with a certain timing signature; alternative routings with different delays than the
bivariate interaction are not considered redundant and are not tagged.

Treatment of tagged links in neuroscience applications

Our algorithm tags potentially spurious edges to let the user decide if a tagged
edge should be ultimately excluded from the network representation. To minimize
erroneous exclusions, the user may inform the decision by additional evidence, e.g.
previous anatomical or functional findings. If such previous findings do not exist,
we recommend the exclusion of tagged edges.

We consider the erroneous rejection of links favorable over erroneous inclusion,
i.e., we suggest to rather commit a false negative error if in doubt. We favor false
negative errors because in statistical terms, false negatives are considered less severe
than false positives (erroneously including a spurious link), as they yield more
conservative results. If the user removes all tagged links, the resulting network is
guaranteed to contain non-spurious links only, but some links may be missing from
the network.

In triangle motifs, the exclusion of all tagged links will definitely lead to false
negatives: Here, two links are tagged but the exclusion of both edges is mutually
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exclusive; more precisely, the exclusion of one of the two tagged edges destroys the
motif giving rise to the second, potentially spurious link. This is illustrated in Fig.
3.2C, where the exclusion of link (v, v;) destroys the CE leading to the tagging of
edge (vs, v¢), and on the other hand, the exclusion of (vs, v;) destroys the CD leading
to the tagging of (v1,v;). In triangle motifs, the rejection of both edges thus produces
a false negative error; here, prior anatomical or functional evidence are required to
decide which of the two tagged edges is non-spurious.

It is further possible to use modeling approaches to test if tagged links are actually
present in the network of bivariate interactions. For example dynamic causal model-
ing (DCM, [214-216]) may be used to test whether a model containing a certain
link is favorable given the observed data over a second model missing this link.

Types of multivariate effects not identified by the algorithm

The correction performed by the presented algorithm is not exhaustive with respect
to all types of multivariate interactions potentially occurring in neuroscience data.
The interactions not targeted by the algorithm are of two types: (1) more general
cases of CD; (2) synergistic effects [72], i.e., combined effects of two or more sources
on a third source. In the following we will discuss the conceptual and practical
limitations that prevent an exhaustive algorithmic correction for these two types of
multivariate interactions.

Detection of general common drive effects. The presented algorithm detects simple
CD in triangle motifs by listing all links with alternative paths of length two. Our
algorithm can theoretically be extended to explicitly search for general cases of CD,
where two nodes are commonly driven via arbitrarily long cascades of information
transfer (Fig. 3.2A).

General CD may be identified by searching for paths of equal summed interaction
delays that have a common source and target node. We again assume that equal
summed delays hint at redundant and therefore spurious information transfer. It can
then be tested if the source node is a common driver for the last and second to last
node in one of the two paths by looking at the information transfer delay between
these last two nodes. For an example, see Fig. 3.2A, where the bivariate information
transfer in the network forms two paths of equal delays connecting nodes vy and
ve: The link (vs,v;) is tagged as spurious because its weight corresponds to the
difference in the summed path weights v g vs and vy ~> v Wy, p) = ¢ — . In
this scenario, vy is a common driver of nodes v and v;. This approach also allows to
test for higher order CD, i.e., one source driving three or more nodes simultaneously.

A similar algorithm was proposed by Marinazzo and colleagues [217] to identify
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spurious bivariate links using a network of multivariately reconstructed interactions
(see next section).

Even though an extension to general CD is hypothetically possible, its realization
is not feasible in practice: The extension requires that for each network node all
originating paths of arbitrary length need to be listed. An algorithm fulfilling this
task would have an asymptotic running time many times higher than the algorithm
presented in this work: For each node in V, O(|V — 1|!) paths of arbitrary length
and weight exist (in the first step O(|V| — 1) nodes can be reached from the current
starting node, in the second step O(|V| — 2) nodes can be reached, and so forth).
The asymptotic running time of such an algorithm thus amounts to O(|V| - |V — 1]!).
Such a factorial running time is commonly not considered feasible in practice and
would limit the application to networks of very small size.

Detection of synergistic effects. Synergistic effects describe information that is
transferred from a set of sources to a common target, whereby information is
combined in a non-trivial fashion [72, 76, 79, 81]. In this case, looking at the
set of sources simultaneously provides information about the target that is not
obtainable from looking at each source separately. As a toy example, one can think
of three nodes implementing a logical XOR operator, where two nodes serve as
binary input and the third node serves as output node. Each state of the output
node is the exclusive OR of the two previous input states. A bivariate analysis of
every pairwise interaction between the three nodes will not detect any significant
interaction, because the pairwise mutual information between any two nodes is 0.
Analyzing the triplet of nodes simultaneously will however detect an interaction;
e.g. the conditional mutual information (TE) will be greater than zero, because it
“decodes” the information in one source by conditioning on the second source.

Consequently, synergistic effects between a set of sources and a target node can
only be revealed if the whole set is considered simultaneously in some multivariate
reconstruction of interactions or by explicitly reconstructing synergistic interactions
[76, 80]. Such synergistic effects are not targeted by design of our algorithm as it
simply post-processes results from bivariate network analyses. To include synergistic
effects, a multivariate interaction analysis would have to replace the estimation
of bivariate interactions. Note however, that any fully multivariate method for
interaction reconstruction would need to identify the optimal subset of sources that
exert some meaningful influence on a given target node. The identification of such
an optimal set of sources would require the exhaustive testing of the power set P(V)
of all network sources, due to the non-additivity of information contributions from
individual sources (because of redundant and synergistic effects). The power set has
size |P(V)| = 2/V1, i.e., testing all sources brute force has a theoretical running time

Chapter 3 A Graph Algorithmic Approach to Separate Direct from Indirect Neural



3.4.5

of O (2‘V|). In fact, it has been shown that optimal subset selection in regression is
an NP-hard problem [27]. This proof extends to source selection for TE due to the
equality of TE with Granger causality for jointly Gaussian variables [103]. Thus, the
reconstruction of truly multivariate interactions in arbitrarily large networks poses
a computationally intractable problem (if P # NP). In the next subsection we will
present approaches that try to approximate fully multivariate methods to circumvent
the inherent computational complexity of the problem at hand.

Comparison to other approximative methods for multivariate
network reconstruction

The proposed algorithm provides an approximative method for the inference of
networks of multivariate interactions to handle the computational intractability of
exact network reconstruction. Methods with a similar purpose have been proposed
by various authors. In the following we will review some of these methods and list
scenarios that may benefit from the application of our algorithm.

Multivariate reconstruction of effective networks by Lizier and Rubinov. Lizier and
Rubinov [25] proposed a greedy algorithm which for each network node Y (the
target) infers a set of influential source variables Vy. A source is considered
influential if it adds significantly to the information transfer from Vy to Y. The set
Vv is thus built by iteratively adding sources, which have significant information
transfer into Y, conditional on the previously included sources. Finally, information
transfer is re-evaluated conditional on the complete set of included sources:

TE(X - Y[Vy) =1(X;Y[Vy\X),

i.e., the mutual information between each source X € Vy and target Y while
conditioning on all remaining relevant sources in Vy, except X. If a source fails
to provide statistically significant information about the present of Y, it is removed
from Vy. After this “pruning step”, the set Vy consists of all relevant sources
that contribute information about the target. The approach is robust against the
detection of spurious interactions due to CD and CE, because for each interaction
reconstruction it conditions on all relevant sources in the network.

Note that the greedy strategy used by Lizier and Rubinov is approximative insofar as
it does not guarantee a maximal informative set Vy over all sets P(V). For example,
purely synergistic effects between two or more sources may be missed. The authors
propose to extend their greedy method by also testing tuples and higher order
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combinations of sources, but they note that this requires considerable computational
resources, which may not be worth the gain in information. The testing of tuples
may however be feasible for small networks.

Partial conditioning of information transfer by Marinazzo and colleagues. Mari-
nazzo and colleagues [217] proposed a greedy algorithm resembling the approach by
Lizier and Rubinov. Again, the algorithm tries to account for other relevant network
sources when evaluating the information transfer from a source X to a target Y’
in a multivariate system. To identify relevant sources, Marinazzo et al. propose
to iteratively construct a “partial conditioning set” Z from all sources V\{X,Y}.
In each iterative step k the algorithm includes the source Z; that maximizes the
mutual information between Zj and the source X, i.e., Z; = maxy (I(X;Zy)),
where Zy = Zy_1 U Z.

The partial conditioning approach may miss interactions if sources share a lot of
redundant information about a target: If an existing source-target relationship is
evaluated while conditioning on sources providing redundant information about the
target, the source-target relationship under investigation is not detected. Therefore,
Stramaglia and colleagues [218] extended partial conditioning with a graph algo-
rithm that identifies these missed interactions. The authors proposed to reconstruct
interactions multivariately (e.g. with partial conditioning) and bivariately. The mul-
tivariate network is then used to algorithmically separate bivariate links in two sets:
(1) links explained by an indirect path of information transfer in the multivariate
network (CE), and (2) links not explained by an indirect path. Bivariate links in
the second group, which are missing from the multivariate network, are assumed
to reflect non-spurious information transfer that was missed by the multivariate
approach. These bivariate links are then merged with the multivariate network.

Note that the rationale underlying the algorithm proposed in [218] resembles
the rationale presented in this paper because spurious bivariate interactions are
identified by alternative paths; however, the aim of both approaches differs: The
algorithm presented by Stramaglia and colleagues improves multivariate interaction
reconstruction, while the algorithm presented in this paper tries to approximate a
multivariate approach from bivariate interaction reconstruction alone. The approach
proposed by Stramaglia thus still requires the potentially intractable reconstruction
of multivariate interactions from data.

Non-uniform multivariate embedding by Faes and colleagues. Faes and colleagues
[74] proposed a non-uniform embedding technique to estimate the information
transfer from one source variable to a target in the presence of further potentially
relevant sources of information transfer. The authors propose to iteratively build a
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non-uniform embedding vector from a set of candidate time points from the past
of all sources in a network up to a certain predefined limit. Points are included
in the vector if they add significant information about the next state of the target.
Information transfer between a source and a target may then be estimated while
conditioning on this non-uniform embedding vector.

The iterative construction of the embedding vector follows a greedy strategy that
is similar to the strategies discussed above [25, 217]. Accordingly, the returned
embedding vector is not guaranteed to yield the set of maximally informative source
time points with respect to the target, as it will miss purely synergistic contributions
of two or more points to the target. As said above, an exhaustive testing of all
possible subsets of source time points poses an intractable computational problem.
This is explained next.

Exhaustive brute force analysis. A brute force analysis of interactions between all
possible subsets (m-tuples) in a set of nodes would yield an exact solution to the
problem of inferring the network of multivariate interactions from data. For the
example of m = 3, one would enumerate all 3-tuples or triplets in the set of nodes
and for each triplet evaluate the six possible interaction motifs—three potential
targets and for each target two possible combinations of source and conditioning

node. Note that here the mandatory conditioning takes care of potential synergies.
VI

For the general case of m-tuples, this would generalize to (',

) possible subsets
of size m, where for each tuple m - (m — 1) possible interaction motifs exist. As
for approximative approaches, such an analysis is feasible for small numbers of m

only.

Application scenarios for the proposed algorithm

The most basic application scenario for the proposed algorithm is as post-processing
step after bivariate reconstruction of directed, delay-weighted interactions from a
set of neural sources. Here, the algorithm helps to prune potentially spurious edges
to obtain an approximative, statistically conservative network representation of the
physical interactions. In this scenario, our algorithmic correction is favorable over
multivariate interaction reconstruction whenever available data is limited or high-
dimensional, such that data points are not sufficient to estimate highly multivariate
interactions. Here, our algorithm is more data-efficient because it relies on bivari-
ate interaction reconstruction only. Such data-efficiency is especially relevant for
information theoretic measures, where quantities are often estimated using kernel
estimators or neighbor methods (as for example proposed in [83]); applying these
kernel estimators to the estimation of highly multivariate data may lead to very high
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dimensional search spaces, which suffer from the curse of dimensionality, hindering
a reliable estimation of the quantities of interest.

The application of our algorithm may prove beneficial prior to calculating graph
theoretical measures from networks of reconstructed interactions. We argue that
these measures are more reliable when applied to a statistically conservative network
representation.

The algorithm may further be used in conjunction with modeling approaches such
as DCM, where it serves to limit the model space to be tested. DCM may also help
to identify the most plausible network representation from models, after in- and
excluding individual tagged edges respectively.

The presented algorithm may further serve as a preprocessing step for trivariate
estimation of information transfer: By testing only the triangle motifs identified by
the algorithm, the number of necessary information transfer estimations reduces
drastically compared to the brute-force approach discussed in the last subsection.
Necessary estimations include bivariate interaction reconstruction (|V]- (|V]| —1)
calculations for |V| nodes) and subsequent multivariate interaction reconstruction
for identified triangle motifs. The actual number of multivariate reconstructions
depends on the number of motifs: The approach is asymptotically faster if 90 % or
less of the possible ('g') triangle motifs are actually present in the data (for network
sizes |V| > 12). Trivariate estimation of TE has been implemented in TRENTOOL
[86], which also includes the reference implementation of the proposed algorithm.
Thus, both analyses may be used in conjunction to estimate multivariate TE of
order three. An extension to higher orders is theoretically possible although not
implemented as it is not deemed feasible for practical purposes.

Finally, the algorithm is especially suitable for the application in simulated networks

where all information transfers have a delay of unity, such as elementary cellular
automata, and spurious interactions are therefore easily found.
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Abstract

The disruption of coupling between brain areas has been suggested as the mechanism
underlying loss of consciousness in anesthesia. This hypothesis has been tested previously by
measuring the information transfer between brain areas, and by taking reduced information
transfer as a proxy for decoupling. Yet, information transfer is influenced by the amount
of information available in the information source—such that transfer decreases even for
unchanged coupling when less source information is available. Therefore, we reconsidered
past interpretations of reduced information transfer as a sign of decoupling, and asked
whether impaired local information processing leads to a loss of information transfer. An
important prediction of this alternative hypothesis is that changes in locally available
information (signal entropy) should be at least as pronounced as changes in information
transfer. We tested this prediction by recording local field potentials in two ferrets after
administration of isoflurane in concentrations of 0.0 %, 0.5 %, and 1.0 %.

We found strong decreases in the source entropy under isoflurane in visual area V1 and the
prefrontal cortex (PFC)—as predicted by the alternative hypothesis. The decrease in source
entropy was more pronounced in PFC compared to V1. In addition, information transfer
between V1 and PFC was reduced bidirectionally, but with a more pronounced decrease
from PFC to V1. This links the stronger decrease in information transfer to the stronger
decrease in source entropy—suggesting that the reduced source entropy reduces information
transfer. Thus, changes in information transfer under isoflurane seem to be a consequence
of changes in local processing more than of decoupling between brain areas. Our results fit
the observation that the synaptic targets of isoflurane are located in local cortical circuits
rather than on the synapses formed by interareal axonal projections.

Introduction

To this day it is an open question in anesthesia research how general anesthesia
leads to loss of consciousness (LOC). Several recent theories agree in proposing that
anesthesia-induced LOC may be caused by the disruption of long range inter-areal
information transfer in cortex [31, 219-222]—a hypothesis supported by a series
of recent studies [31-35]. In all of these studies, information transfer is quantified
using transfer entropy [12], an information theoretic measure, which has become a
quasi-standard for the estimation of information transfer in anesthesia research, or
by transfer entropy’s linear implementation as a Granger causality. In many of these
studies reduced information transfer has been interpreted as a sign of inter-areal
long range connectivity being disrupted by anesthesia.

Yet, information transfer between a source of information and a target depends on

information (entropy) being available at the source in the first place. Considering
constraints of this kind we can easily conceive of cases where a decrease in informa-
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tion transfer under anesthesia is observed despite unchanged long range coupling,
e.g., when the available information at the source decreases due to an anesthesia-
related change in local information processing. Ultimately, this dissociation between
information transfer and causal coupling just reflects that information transfer is one
possible consequence of physical coupling, but not identical to it [68, 92, 118].

Therefore, we consider it necessary to evaluate the hypothesis that the reduced
inter-areal information transfer observed under anesthesia possibly originates from
disrupted information processing in local circuits rather than from disrupted long
range connectivity. This alternative hypothesis receives additional support for the
case of isoflurane, which potentiates agonist actions at GABA 4-receptors and
inhibits nicotinic acetylcholine (nAChR) receptors. Conversely, evidence on direct
inhibitory effects of isoflurane on AMPA and NMDA synapses, which are the dominant
mediators of long-range cortico-cortical interactions, is sparse at best (see Table 2 in
[223]). Under the alternative hypothesis of changed local information processing, a
decrease in transfer entropy under anesthesia must be accompanied by:

1. areduction in locally available information per brain area, i.e. in the sources
of information transfer,

2. and the fact that the strongest decrease in locally available information is
found at the source of the link with the strongest decrease in information
transfer, rather than at its target (i.e. the end point).

Here, we perform tests of these predictions by estimating local information process-
ing in and information transfer between local field potentials (LFPs) simultaneously
recorded from primary visual cortex (V1) and prefrontal cortex (PFC) of two ferrets
under different levels of isoflurane. We quantify local information processing by
estimating the signal entropy (measuring available information) and quantified
information transfer between recording sites by estimating transfer entropy. Addi-
tionally, to demonstrate the effect of reduced source entropy on transfer entropy,
we estimated transfer entropy on simulated data with a constant coupling between
processes, but a varying source entropy.

To better understand potential changes in local information processing we also
quantified the active information storage, a measure of the information available at a
recording site that can be predicted from past signals at that site, i.e. the information
stored from past to present.

Because the estimation of such information theoretic quantities from finite data is
difficult in general, we employ two complementary strategies: (i) probability density
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estimation based on nearest-neighbor searches in continuous data, and (ii) Bayesian
estimation based on discretized data.

We also test whether the previously reported decrease of transfer entropy under
anesthesia can indeed be replicated when avoiding some recently identified pitfalls
in estimation of information transfer related to the use of symbolic time series,
suboptimal embedding of the time series, and the use of net transfer entropy without
identification of the individual information transfer delays (for problems related to
these approaches see [75]).

Our results provide first evidence for the alternative hypothesis of altered local infor-
mation processing causing reduced information transfer, as the above predictions
were indeed met. We suggest to consider the alternative hypothesis as a serious
candidate mechanism for LOC, and to use causal interventions to gather further
experimental evidence.

Preliminary results for this study were published in abstract form in [224].

Results

Existence of information transfer between recording sites

Before analyzing differences in information transfer induced by isoflurane, we tested
for the existence of significant information transfer between the recording sites
(Table 4.1). For both animals, T'Espo was significant in the top-down direction,
while the bottom-up direction was significant for animal 1 only. A non-significant
information transfer in bottom-up direction for animal 2 may be explained by the
dark experimental environment, i.e., the lack of visual input.

Results significance test of TEspo estimates in both animals and for both directions of
interaction.

direction of interaction p-value
PFC — V1 <0.01**
V1 — PFC <0.05*
PFC — V1 <0.05*
V1 — PFC 0.2262 n.s.

*p < 0.05; **p < 0.01; **p < 0.001; Bonferroni-corrected
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4.2.2 Changes in information theoretic measures under
anesthesia

Overall, for higher isoflurane levels both locally available information and informa-
tion transfer were decreased, while information storage in local activity increased.

As the estimation of information theoretic measures from finite length neural record-
ings poses a considerable challenge we present detailed, converging results from
two complementary strategies to deal with this challenge—nearest-neighbor based
estimators, and a Bayesian approach to entropy estimation suggested by Nemenman,
Shafe, and Bialek (NSB-estimator) [225, 226]. This latter approach required a dis-
cretization of the continuous-valued LFP data, but yields principled control of bias,
while the first approach allows the estimation of information-theoretic measures
directly from continuous data, and thus conserves the information originally present
in those data. Statistical testing was performed using a nonparametric permutation
ANOVA (pANOVA), and a linear mixed model (LMM). The LMM approach was used
in addition to the main pANOVA for the purpose of comparison to older studies using
parametric statistics.

Results based on next neighbor-based estimation from continuous data. For higher
isoflurane levels, we found an overall reduction in the locally available information
(H), and in the information transfer (7' Espp). We found an increase in the locally
predictable (stored) information (AIS) (Table 4.2 and Fig. 4.1).

Tab. 4.2 Results of permutation analysis of variance for information theoretic measures (p-values).

measure effect Ferret 1 Ferret 2
TEspo isoflurane level <0.0001*** <0.00071***
direction 0.0003*** 0.9345
interaction 0.0052** 0.2486¢
AIS isoflurane level ~ 0.0017** <0.0001***
recording site 0.6774 <0.0001***
interaction <0.0001*** 0.0029**
H isoflurane level ~ 0.0010** <0.0001***
recording site 0.9326 <0.0001***
interaction <0.0001*** 0.0243*

*p < 0.05; **p < 0.01; **p < 0.001;
2This effect was significant when using LMM for statistical testing

In general, H decreased in both animals under higher isoflurane levels (main effect
isoflurane level, p < 0.01** for ferret 1 and p < 0.001*** for ferret 2), indicating
a reduction of locally available information for higher isoflurane concentrations.
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PANOVA results for nearest-neighbor based estimates of transfer entropy (7' Espo),
active information storage (AIS), and entropy (H). Left columns show interactions
isoflurane level x direction and isoflurane level x recording site for both animals; right columns
show main effects isoflurane level. Grey lines in interaction plots indicate T Espo from
prefrontal cortex (PFC) to primary visual areas (V1), or H and AIS in PFC; black lines
indicate T Espo from V1 to PFC, or H and AIS in V1. Error bars indicate the standard
error of the mean (SEM); stars indicate significant interactions or main effects (*p < 0.05;
**p < 0.01; ***p < 0.001). Axis units for all information theoretic measures based on
continuous variables are z-normalized values across conditions.

Yet, an isoflurane concentration of 0.5% (abbreviated as iso 0.5%, with other
concentrations abbreviated accordingly) led to a slight increase in H for ferret 1,
followed by a decrease for concentration iso 1.0 %, which was below initial entropy
values. This rise in H in condition iso 0.5 % was present only in V1 of ferret 1, while
H decreased monotonically in PFC. In ferret 2, H increased monotonically in both
recording sites, with a stronger decrease in PFC. The interaction effect (isoflurane
level x brain region) was significant for both animals (p < 0.001*** for ferret 1 and
p < 0.01** for ferret 2).

The information transfer as measured by the self prediction optimal transfer entropy

(TEspo, [75]) decreased significantly with higher levels of isoflurane in both an-
imals (main effect isoflurane level, p < 0.001***), indicating an overall reduction
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in information transfer. This reduction was stronger in the top-down direction
PFC — V1 (significant interaction effect isoflurane level x direction in ferret 1,
p < 0.01"). In ferret 2 this interaction was not significant in the permutation
ANOVA (pANOVA) on aggregated data, but was highly significant using the LMM
approach (see next section).

The stored information as measured by the active information storage (AIS, [30])
increased in both animals under higher isoflurane levels (main effect isoflurane
level, p < 0.01** for ferret 1 and p < 0.001*** for ferret 2), indicating more pre-
dictable information in LFP signals under higher levels of isoflurane. In ferret 1
the concentration iso 0.5 % led to a slight decrease in AIS, followed by an increase
compared to initial levels for concentration iso 1.0 %. This initial decrease in AI.S
in condition iso 0.5 % was present only in V1 of this animal, while in its PFC AI.S
increased monotonically. In ferret 2, AIS increased monotonically in both recording
sites, with a stronger increase in PFC. The interaction effect was significant for both
animals (p < 0.001*** for ferret 1 and p < 0.01** for ferret 2). Overall, AIS behaved
complementary to H for all animals and isoflurane levels, despite the fact that AIS is
one component of H [30].

Alternative statistical testing using linear mixed models We additionally performed
a parametric test, using linear mixed models (LMM) on non-aggregated data from
individual epochs of recording sessions (adding recording as additional random
factor to encode the recording session) to enable a comparison to results from earlier
studies using parametric testing.

For both animals, model comparison showed a significant main effect of factor
isoflurane level on T Espp, AIS, and H as well as a significant interaction of factors
isoflurane level and direction (see Table 4.3). The only exception to this was the
factor direction in the evaluation of TEspp in Ferret 2. Thus, the results of this
alternative statistical analysis were in agreement with those from the pANOVA.
The detailed Table 4.3 reports the Bayesian Information Criterion with BIC =
—2logp(x|M, a) + k(a)log(N), where x are the observed realizations of the data, a
are the parameters that optimize the likelihood for a given model M, k(a) is the
number of parameters and N the number of data points. The BIC becomes smaller
with better model fit. In addition, Table 4.3 gives the deviance, —2log p(x|M,a),
which is higher for better model fit, and the x? with the corresponding p-value,
describing the likelihood ratio, which follows a x?2-distribution.

Bayesian estimation on discretized data In addition to the neighbor-distance based
estimators for T'Espo, AIS, and H used above, we also applied Bayesian estimators
recently proposed by Nemenman, Shafe, and Bialek (NSB) [225, 226] to our data.

4.2 Results
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Tab. 4.3 Results of parametric statistical testing using model comparison between linear mixed
models. Simple effects of factors isoflurane level and direction or recording site were tested
against the null model; interaction effects isoflurane level times direction and isoflurane level
times recording site were tested against the additive models isoflurane level + direction and
isoflurane level + recording site, respectively. *** as defined in Table 4.2
animal measure effect BIC deviance X2 X df D
Ferret1 TEgspo null model 345430.8 345401.7 NA NA NA
isoflurane level 345421.5 345373.1  28.58 2 <<0.000***
direction 342828.4 342789.7 2612.04 1 <<0.000***
isoflurane . + direction 342819.3 342761.3 NA NA NA
isoflurane I. x direction 342139.9 342062.4 698.84 2 <<0.000%**
AIS null model 37581.2  37551.8 NA NA NA
isoflurane level 37555.8  37506.8 46.00 2 <<0.000***
recording site 33296.2 332569 4294.82 1 <<0.000***
isoflurane l. + recording site  33270.9  33212.1 NA NA NA
isoflurane I. x recording site  30754.3  30675.8 2536.29 2 <<0.000***
H null model 353650.8 353621.8 NA NA NA
isoflurane level 353653.1 353604.7 17.03 2 <0.000***
recording site 353446.8 353408.1 213.64 1 <<0.000***
isoflurane . + recording site 353449.1 353391.1 NA NA NA
isoflurane . x recording site  347204.7 347127.2 6263.85 2 <<0.000***
Ferret 2 TEspo null model 131164.7 131135.3 NA NA NA
isoflurane level 131152.3 131103.2  32.06 2 <<0.000***
direction 131168.9 131129.6 5.66 1 0.020
isoflurane . + direction 131109.5 131097.5 NA NA NA
isoflurane I. x direction 130871.5 130793.0 304.56 2 <<0.000***
AlIS null model 109203.1 109173.7 NA NA NA
isoflurane level 109183.1 109134.1  39.63 2 <<0.000***
recording site 105827.2 105788.0 3385.68 1 <<0.000***
isoflurane l. + recording site  105807.3 105748.4 NA NA NA
isoflurane . x recording site 104173.5 104095.0 1653.46 2 <<0.000***
H null model -14074.8 -14104.2 NA NA NA
isoflurane level -14088.6  -14137.7  33.43 2 <0.000***
recording site -18423.0  -18462.3 4358.04 1 <<0.000***
isoflurane l. + recording site  -18436.7 -18495.6 NA NA NA
isoflurane I. x recording site  -19867.2 -19945.7 1450.09 2 <<0.000***

106

The Bayesian approach promises to yield unbiased estimators when priors are chosen
appropriately. However, one has to keep in mind that these estimators currently
require the discretization of continuous data, and therefore may loose important
information.

When applying the NSB estimator to the discretized LFP time series with Ny,
discretization steps, we observed that for N;,s > 8 the results were qualitatively
consistent for different choices of numbers of bins. We present results for Ny;,s = 12
(Fig. 4.2), which provides a reasonable resolution of the signal while still allowing

for a reliable estimation of entropies within the scope of available data.

We confirmed the reliability of the estimator by systematically reducing the sample
size and found no substantial impact on our estimates (Fig. 4.3).
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Fig. 4.2 pANOVA results for Bayesian estimates of transfer entropy (T'Espo), active informa-
tion storage (AIS), and entropy (H). Left columns show interactions isoflurane level x
direction and isoflurane level x recording site for both animals; right columns show main
effects isoflurane level. Grey lines in interaction plots indicate T Espo from prefrontal cortex
(PFC) to primary visual areas (V1), or H and AIS in PFC; black lines indicate T Espo from
V1 to PFC, or H and AIS in V1. Error bars indicate the standard error of the mean (SEM);
stars indicate significant interactions or main effects (*p < 0.05; **p < 0.01; ***p < 0.001).

The estimation of H, AIS, and T Espo by Bayesian techniques for the binned signal
representations provided results that were qualitatively consistent with results from
the neighbor-distance based estimation techniques (compare Figs. 4.1 and 4.2, and
Tables 4.2 and 4.4). While the Bayesian estimates showed larger variances across
different recordings and sample sizes, on average, we saw a decrease of T'Espo
and H for higher concentrations of isoflurane (main effect isoflurane level), while
AIS increased for higher concentrations. For ferret 1 we also found an interaction
effect for TEspo, with a stronger reduction in information transfer in top-down
direction.

Note that we also applied an alternative Bayesian estimation scheme based on

Pitman-Yor-process priors [227]. However, for this estimation procedure, we ob-
served that the data were insufficient to allow for a robust estimation of the tailing
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Fig. 4.3 Examples for estimates of entropy (H) terms for transfer entropy calculation (Eq.
4.12) by number of data points N, using the Nemenman-Shafee-Bialek-estimator
(NSB). (A) entropies for ferret 1, V1, iso 0.5%: estimates are stable for N > 100, 000;
(B) entropies for ferret 2, PFC, awake: an insufficient number of data points does not allow
for verification of the estimate’s robustness (recording was excluded from further analysis).
Variables labeled X reflect data from the source variable, Y from the target variable. ¢ is an
integer time index, and bold typeface indicates the state of a system (see Methods).

Tab. 4.4 Results of permutation analysis of variance for information theoretic measures obtained
through Bayesian estimation (p-values).

measure effect Ferret 1 Ferret 2
TEspo isoflurane level  0.0549 0.0013*
direction 0.0272*  0.0002***
interaction 0.6627 0.0616
AIS isoflurane level  0.2148  <0.0001***
direction 0.0788 0.0032**
interaction 0.0026** 0.0153*
H isoflurane level 0.0184* <0.0001***
recording site 0.2738  <0.0001***
interaction 0.0017** 0.0053

*p < 0.05; *p < 0.01; **p < 0.001

behavior of the distribution as indicated by large variances and unreasonably high
estimates across different sample sizes.

Simulated effects of changed source entropy on transfer entropy To test the effect
of reduced source entropy on T'Espo between a source and target process, we
simulated two test cases with high and low source entropy respectively. In both
test cases signals were based on the original recordings, and the coupling between
source and target was held constant (see Methods).

We found significantly higher T'Espo in the case with high source entropy than in
the case with low source entropy (Fig. 4.4A). The simulation thus demonstrated
that a lower source entropy does indeed lead to a reduction in T Espo despite an
unchanged coupling. Information transfer in the high-entropy case was similar to the
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Fig. 4.4

42.3

average information transfer found in recordings under an isoflurane concentration
of 0.0 %, indicating that the simulation scheme mirrored information transfer found
in the experimental recordings.
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Simulated effects of changed source entropy on transfer entropy (T'Espo). (A) TEspo
for two simulated cases of high (H-high) and low (H-low) source entropy (**p < 0.01, error
bars indicate the standard error of the mean, SEM, over data epochs). Dashed lines indicate
the average T Fspo estimated from the original data under 0.0 % isoflurane + SEM; (B)
source entropy H(X?*,) (dashed bars) and target entropy H(Y;) (empty bars) for the two
simulated test cases of high (gray bars) and low entropy (white bars), error bars indicate
the SEM over data epochs. Source entropy was higher in the high-entropy simulation, while
target entropy was approximately the same for both cases. Results are given as z-values
across estimates for all epochs from both simulations.

Optimized embedding parameters for T Espp and AIS
estimation

As noted in the introduction, the estimation of information theoretic measures from
finite data is challenging. For the measures that describe distributed computation
in complex systems, such as transfer entropy, estimation is further complicated
because the available data are typically only scalar observations of a process with
multidimensional dynamics. This necessitates the approximate reconstructions of
the process’ states via a form of embedding [133], where a certain number of past
values of the scalar observations spaced by an embedding delay are taken into
account (e.g. for a pendulum swinging through its zero position one additional
past position values will clarify whether it’s going left or right). An important part
of proper transfer entropy estimation is, thus, optimization of this number of past
values (embedding dimension), and of the embedding delay. These two embedding
parameters then approximately define past states, whose correct identification is
crucial for the estimation of transfer entropy [13], but also for the estimation of
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active information storage. Without it information storage may be underestimated
and, erroneous values of the information transfer will be obtained; even a detection
of information transfer in the wrong direction is likely (see [13, 75, 86] and Methods
section). Existing studies using transfer entropy often omitted the optimization
of embedding parameters, and instead used ad-hoc choices, which may have had
a detrimental effect on the estimation of transfer entropy—hence the need for a
confirmation of previous results in this study.

In the present study, we therefore used a formal criterion proposed by Ragwitz
[133], to find an optimal embedding defined by the embedding dimension d (the
number of values collected) and delay 7 (the temporal spacing between them), to
find embeddings for the T'Espp and AIS past states. We used the implementation
of this criterion provided by the TRENTOOL toolbox. Since the bias of the estimators
used depends on d, we used the maximum d over all conditions and directions of
interaction as the common embedding dimension for estimation from each epoch to
make the estimated values statistically comparable. The resulting dimension used
was 15 samples, which is considerably higher than the value commonly used in the
literature [32, 33], when choosing the embedding dimension ad-hoc or using other
criteria as for example the sample size [35]. The embedding delay = was optimized
individually for single epochs in each condition and animal as it has no influence on
the estimator bias.

Relevance of individual information transfer delay estimation

Several previous studies on information transfer under anesthesia reported the
sign of the so called net transfer entropy (T E,..;) as a measure of the predominant
direction of information transfer between two sources. T E,,.; is essentially just the
normalized difference between the transfer entropies measured in the two direction
connecting a pair of recording sites (see Methods). When calculating T'E,,;, it
is particularly important to individually account for physical delays ¢ in the two
potential directions of information transfer, because otherwise the sign of T E,,.;
may become meaningless (see examples in [75]). As this delay is unknown a priori
it has to be found prior to the actual estimation of information transfer. We have
recently shown that this can be done by using a variable delay parameter « in a
delay sensitive transfer entropy estimator T'Egspo (see Methods); here, the u that
maximizes the transfer entropy over a range of assumed values for u reflects the
physical delay [75].

The necessity to individually optimize « for each interaction is not a mere theoretical

concern but was clearly visible in the present study: Fig. 4.5C shows representative
results from ferret 1 under 0.0 % isoflurane, where apparent T'Espo values strongly
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varied as a function of the delay u. As a consequence, T'E,,.; values also varied if
a common delay u was chosen for both directions. In other words, the sign of the
TE,,.; varied as a function of individual choices for uprc_v1 and uy1_ prc for each
direction of information transfer and hence became uninterpretable (Fig. 4.5D).
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Fig. 4.5 Estimation of information transfer delays. (A, modified from [75]) estimation of transfer
entropy (T'Espo) depends on the choice of the delay parameter w, if » is much smaller or
bigger than the true delay §, information arrives too late or too early in the target time
series and information transfer is not correctly measured; (B, modified from [75]) TEspo
values estimated from two simulated, bidirectionally coupled Lorenz systems (see [75]
for details) as a function of u for both directions of analysis, TEspo(X — Y,t,u) (black
line) and TEspo (Y — X, t,u) (gray line): T Egpo values vary with the choice of v and so
does the absolute difference between values; using individually optimized transfer delays
for both directions of analysis yields the meaningful difference A (dashed lines), where
TEspo(X — Y, t, uop) > TEspo(Y — X, t,uep); (C) example transfer entropy analysis
for one recorded epoch: T'Espo values vary greatly as a function of u, optimal choices of u
are marked by dashed lines; (D) sign (gray: negative, white: positive) of T'E,,.,; for different
values of uppc_,y1 (x-axis) and uy1_, pre (y-axis), calculated from T'Espo values shown in
panel C: the sign varies with individual choices of u; the black frame marks the combination
of individually optimal choices for both parameters that yields the correct result.

As a consequence of the above, we here individually optimized u for each direction
of information transfer in each condition and animal to estimate the true delay
of information transfer following the mathematical proof in [75]. We individually
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optimized u to obtain estimates of transfer entropy that were not biased by a non-
optimal choice for u. We used the implementation in TRENTOOL [86] and scanned
values for u ranging from 0 ms to 20 ms. Averages for optimized delays ranged from
4ms to 7 ms across animals and isoflurane levels (Fig. 4.6).
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Optimized information transfer delays u for both directions of interaction and three
levels of isoflurane, by animal. Bars denote averages over recordings per condition; error
bars indicate the standard error of the mean (SEM). There was a significant main effect of
isoflurane level for ferret 1 (p < 0.05).

Note that in Fig. 4.5C, T Espo as a function of u shows multiple peaks, especially for
the direction V1 — PFC. Since these peaks resembled an oscillatory pattern close
to the low-pass filter frequency used for preprocessing the data, we investigated the
influence of filtering on delay reconstruction by simulating two coupled time series
for which we reconstructed the delay with and without prior band-pass filtering
(Fig. 4.7). For filtered, simulated data T'Egpo as a function of « indeed showed
an oscillatory pattern for certain filter settings. However, broadband filtering—as
used here for the original data—did not lead to the reconstruction of an incorrect
value for the delay § (Fig. 4.7C). Yet, when filtering using narrower bandwidths, the
reconstruction of the correct information transfer delay failed (Fig. 4.7D-F). This
finding supports the general notion that filtering, especially narrow-band filtering,
may only be applied with caution before estimating connectivity measures [228,
229].

Yet, since broad-band filtering did not lead to the observed oscillatory patterns in
the simulated data, alternative explanations for multiple peaks in T Espo are more
likely: one alternative cause of multiple peaks in the T'Egpo are multiple information
transfer channels with various delays between source and target (see [75], especially
Fig. 6). Each information transfer channel with its individual delay will be detected
when estimating T Espo as a function of u (see simulations in [75]). A further
possible cause for multiple peaks in the T Egpo is the existence of a feedback loop
between the source of T Espo and a third source of neural activity [75]. In such a
feedback loop, information in the source is fed back to the source such that it occurs
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Fig. 4.7 Simulated effects of filtering on the reconstruction of information transfer delays (u).
(A) Cross-correlation Rxy between two simulated, coupled time series (N = 100000,
drawn from a uniform random-distribution over the open interval (0, 1), true coupling delay
10 samples, indicated by the red dashed line), the simulation was run 50 times, black lines
indicate the mean over simulation runs, gray lines indicate individual runs; (B) TEspo
as a function of information transfer delay « before filtering the data; (C-D) T Espo as a
function of u after filtering the data with a bandpass filter (fourth order, causal Butterworth
filter, implemented in the MATLAB toolbox FieldTrip [150]); red dashed lines indicate the
simulated delay ¢, blue lines indicate the average reconstructed delay u over simulation runs,
histograms (inserts) show the distribution of reconstructed values for u over simulation
runs in percent; (C) broadband filtering (0.1 Hz to 300 Hz) introduced additional peaks
in TEgpo values, however, the maximum peak indicating the optimal » was still at the
simulated delay for all simulated runs; (D) filtering within a narrower band (0.1 Hz to
200 Hz) led to an imprecise reconstruction of the correct § in each run with an error of 1
sample, i.e. § tended to be underestimated; (E-F) narrow-band filtering in the beta range
(12Hz to 30 Hz) and theta range (4 Hz to 8 Hz) led to a wide distribution of « with a large
absolute error of up to 10 samples.

again at a later point in time, leading to the repeated transfer of identical bits of
information. Both causes are potential explanations for the occurrence of multiple
peaks in the T Egpo in the present study—yet, deciding between these potential
causes requires additional research, specifically interventional approaches to the
causal structure underlying the observed information transfer.
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In sum, our results clearly indicate the necessity to individually optimize informa-
tion transfer delays and that often employed ad-hoc choices for « may result in
spurious results in information transfer.The additional simulations of filtering effects
showed that narrow-band filtering may have detrimental effects on this optimization
procedure and should thus be avoided.

Relation of information-theoretic measures with other
time-series properties

The information-theoretic measures used in this study are relatively novel and have
been applied in neuroscience research rarely. It is, thus, conceivable that these
measures quantify signal properties that are more easily captured by traditional
time-series measures, namely, the autocorrelation decay time (ACT), the signal
variance, and the power in individual frequency bands. To investigate the overlap
between information-theoretic and traditional measures, we calculated correlations
between AIS and ACT, between H and signal variance, between T'Fspo and ACT,
between T'Espo and signal variance, and between AIS, H, and TEspo and the
power in various frequency bands, respectively. Fig. 4.8 shows average ACT, signal
variance, and power over recordings, for individual isoflurane levels and recording
sites, and for both animals.

Detailed tables showing correlation coefficients and explained variances are provided
as supporting information S2. In summary, for AI.S and ACT we found significant
correlations in both animals, however the median of the variance explained, EQ, over
individual recordings was below 0.1 for each significant correlation in an animal,
recording site and isoflurane level. Hence, even though there was some shared
variance between ACT and AIS, there remained a substantial amount of unexplained
variance in AIS, indicating that AI.S quantified properties other than the signal’s
ACT—in line with results from our earlier studies [67]. This is expected because
the autocorrelation (decay) time ACT measures how long information persists in
a time series in a linear encoding, while AIS, in contrast, measures how much
information is stored (at any moment), and also reflects nonlinear transformations
of this information. The fact that there is still some shared variance between the
two measures here may be explained by the construction of the AIS’s past state
embedding, where the time steps between the samples in the embedding vector are
defined as a fractions of the ACT.

Between H and signal variance, we found no significant correlation; moreover,
correlations for individual recordings were predominantly negative.
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. 4.8 Autocorrelation decay time (ACT), signal variance, and power by isoflurane level and

recording site for both animals. Averages over recordings per isoflurane level and record-
ing site; error bars indicate one standard deviation.

The T Espo was significantly correlated with source ACT for an isoflurane level
of 1.0%. Also for the correlation of TEgpo and the source’s variance, we found
significant correlations for the bottom-up direction under 0.5 % and 1.0 % isoflurane
in animal 1, and for both directions under 1.0 % isoflurane in animal 2. For all
significant correlations we found R? < 0.015, again indicating a substantial amount
of variance in T Espo that was not explained by ACT or signal variance.

When correlating band power with information-theoretic measures, we found signif-
icant correlations between AIS and all bands in both animals animals (see Table
4.8 as part of supporting information S2, R? < 0.16); for H and band power, we
found correlations predominantly in higher frequency bands (beta and gamma, see
Table 4.9 as part of supporting information S2, R? < 0.1); for TEgpo and band
power, we found significant correlations predominantly in the gamma band and one
significant correlation in the delta band for animal 2 and in the beta band for animal
1, respectively (see Table 4.10 as part of supporting information $2, R? < 0.024). In
sum, we found relationships between the power in individual frequency bands and
all three information-theoretic measures. For all measures, the variance explained
was below 0.2, indicating again that band power did not fully capture the properties
measured by TEspp, AIS, and H.
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We analyzed long-range information transfer between areas V1 and PFC in two
ferrets under different levels of isoflurane. We found that transfer entropy was indeed
reduced under isoflurane and that this reduction was more pronounced in top-down
directions. These results validate earlier findings made using different estimation
procedures [31-35]. As far as information transfer alone was concerned our results
are compatible with an interpretation of reduced long-range information transfer
due to reduced inter-areal coupling. Yet, this interpretation provides no direct
explanation for the findings of reduced locally available information as explained
below. In contrast, the alternative hypothesis that the reduced long range information
transfer is a secondary effect of changes in local information processing provides a
concise explanation for our findings both with respect to locally available information,
and information transfer.

Reduction in transfer entropy may be caused by changes in
local information processing

To test our alternative hypothesis we evaluated two of its predictions about changes
in locally available information, as measured by signal entropy, under administration
of different isoflurane concentrations. First, entropy should be reduced; second, the
strongest decrease in information transfer should originate from the source node
with the strongest decrease in entropy, rather than end in this node. Indeed, we
found that signal entropy decreased; the most pronounced decrease in signal entropy
was found in PFC. In accordance with our prediction, we found that PEC—the node
with the larger decrease in entropy—was also at the source, not the target, of the
most pronounced decrease in transfer entropy. This is strong evidence against the
theoretical possibility that in a recording site, entropy decreased due to a reduced
influx of information—because in this latter scenario the strongest reduction in
entropy should have been found at the target (end point) of the most pronounced
decrease in information transfer. Hence, our hypothesis that long-range cortico-
cortical information transfer is reduced because of changes in local processing must
be taken as a serious alternative to the currently prevailing theories of anesthetic
action based on disruptions of long range interactions. We suggest that a renewed
focus on local information processing in anesthesia research will be pivotal to
advance our understanding of how consciousness is lost.

Our predictions that reductions in Entropy should potentially be reflected in reduced

information transfer derives from the simple principle that information that is not
available at the source cannot be transferred. We may thus in principle reduce
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TEspo to arbitrarily low values by reducing the entropy of one of the involved
processes, without changing the physical coupling between the two systems, just
by changing their internal information processing. This trivial but important fact
has been neglected in previous studies when interpreting changes in information
transfer as changes in coupling strength. Even when this bound is not attained, e.g.
because only a certain fraction of the local information is transferred even under
0.0 % isoflurane, it seems highly plausible that reductions in the locally available
information affect the amount of information transfered.

A possible indication of how exactly local information processing is changed is given
by the observation of increased active information storage in PFC and V1 (also see
the next paragraph). This means that more “old” information is kept stored in a
source’s activity under anesthesia, rather than being dynamically generated. Such
stored source information will not contribute to a measurable transfer entropy under
most circumstances because it is already known at the target (see [8], section 5.2.3,
for an illustrative example).

Relation between changed locally available information and
information storage

In general, AIS increases if a signal becomes more predictable when knowing it’s
past, but is unpredictable otherwise. This also means that the absolute AIS is upper-
bounded by the system’s entropy H (see Methods, Eq. 4.5). Thus, a decrease in H
can in principle lead to a decrease in AIS, i.e., fewer possible system states may lead
to a decrease in absolute AI.S. However, in the present study, we observed an increase
in AIS while H decreased—this indicates an increase in predictability that more than
compensates for the decrease in locally available information. In other words, the
system visited fewer states in total but the next state visited became more predictable
from the system’s past. Thus, a reduction in entropy and increase in predictability
points at highly regular neural activity for higher isoflurane concentrations. Such
a behavior in activity is in line with existing electrophysiological findings: under
anesthesia signals have been reported to become more uniform, exhibiting repetitive
patterns, interrupted by bursting activity (see [222] for a review). For example,
Purdon and colleagues observed a reduction of the median frequency and an overall
shift towards high-power, low-frequency activity during LOC [230]. In particular,
slow-wave oscillatory power was more pronounced during anesthesia-induced LOC.
LOC was also accompanied by a significant increase in power and a narrowing of
oscillatory bands in the alpha frequency range in their study.
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Limitations of the applied estimators and measures

Unfortunately a quantitative comparison between different information theoretic
estimates that would directly relate H, AIS and T'Espo is not possible using the
continuous estimators applied in this study. Their estimates are not comparable
because the bias properties of each estimator differ. For each estimator, the bias
depends on the number of points used for estimation as well as on the dimensionality
of involved variables—however, the exact functional relationship between these
two quantities and the bias is unknown and may differ between estimators. (In our
application, the dimensionality is determined mainly by the dimension of the past
state vectors, and by how many different state variables enter the computation of a
measure).

This lack of comparability makes it impossible to normalize estimates; for example,
transfer entropy is often normalized by the conditional entropy of the present
target state to compare the fraction of transferred information to the fraction of
stored information. We forgo this possibility of comparison for a greater sensitivity
and specificity in the detection of changes in the individual information theoretic
measures here. New estimators, e.g. Bayesian estimators like the ones tested here,
promise more comparable estimates by tightly controlling the biases. Yet, these
estimators were not as reliable as expected in our study, displaying a relatively high
variance.

A further important point to consider when estimating transfer entropy between
recordings from neural sites, is the possibility of third unobserved sources influencing
the information transfer. In the present study, third sources (e.g., in the thalamus)
may influence the information transfer between PFC and V1—for example, if a third
source drove the dynamics in both areas, the areas would become correlated, leading
to non-zero estimates of T Egpo. This T Egpo is then attributable to the correlation
between source and target, but does not measure an actual information transfer
between sources. Hence, information transfer estimated by transfer entropy should
in general not be directly equated with a causal connection or causal mechanism
existing between the source and target process (see also [68] for a detailed discussion
of the difference between transfer entropy and measures of causal interactions).

Potential physiological causes for altered information transfer
under anesthesia

We here tested the possibility that changes in local information processing lead to
the frequently observed reduction in information transfer between cortical areas
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under isoflurane administration, instead of altered long-range coupling. Results on
entropies and active information storage suggest that this is a definite possibility
from a mathematical point of view.

This is supported by the neurophysiology related to the mode of action of isoflurane,
because a dominant influence of altered long-range coupling on T'Espo would
mandate that synaptic terminals of the axons mediating long range connectivity
should be targets of isoflurane. Such long range connectivity is thought to be
dominated by glutamatergic AMPA receptors for inter-areal bottom-up connections,
and glutamatergic NMDA receptors for inter-areal top-down connections, building
upon findings in [231] and [232] (but see [233] for some evidence of GABAergic
long range connectivity). Yet, evidence for isoflurane effects on AMPA and NMDA
receptors is sparse to date (Table 2 in [223]). In contrast, the receptors most strongly
influenced by isoflurane seem to be GABA,4 and nicotinic acetylcholine (nAChR)
receptors. More specifically, isoflurane potentiates agonist interactions at the former,
while inhibiting the latter.

Thus, if one adopts the current state of knowledge on the synapses involved in
long-range inter-areal connectivity, evidence speaks against a dominant effect of
modulation of effective long-range connections by isoflurane. This, in turn, points at
local information processing as a more likely reason for changed transfer entropy
under isoflurane anesthesia. This interpretation is perfectly in line with our finding
that decreases in source entropy seem to determine the transfer entropy decreases,
instead of decreases in transfer entropy determining the target entropies.

Nevertheless, targeted local interventions by electrical or optogenetic activation of
projection neurons, combined with the set of information theoretic analyses used
here, will most likely be necessary to reach final conclusions on the causal role of
local entropy changes in reductions of transfered information.

How may altered long-range information transfer lead to loss
of consciousness?

Investigating long-range information transfer under anesthesia is motivated by the
question how changed information transfer may cause LOC. To that effect, our
findings—a dominant decrease in top-down information transfer under anesthesia,
and a decrease in locally available information possibly driving it—may be inter-
preted in the framework of predictive coding theory [3, 234, 235]. Predictive coding
proposes that the brain learns about the world by constructing and maintaining an
internal model of the world, such that it is able to predict future sensory input at
lower levels of the cortical hierarchy. Whether predictions match actual future input
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is then used to further refine the internal model. It is thus assumed that top-down
information transfer serves the propagation of predictions [236]. Theories of con-
scious perception within this predictive coding framework propose that conscious
perception is “determined” by the internal prediction (or “hypothesis”) that matches
the actual input best [234, p. 201]. It may be conversely assumed that the absence
of predictions leads to an absence of conscious perception.

In the framework of predictive coding theory two possible mechanisms for LOC
can be inferred from our data: (1) the disruption of information transfer, predom-
inantly in top-down direction, may indicate a failure to propagate predictions to
hierarchically lower areas; (2) the decrease in locally available information and
in entropy rates in PFC may indicate a failure to integrate information in an area
central to the generation of a coherent model of the world and the generation of the
corresponding predictions. These hypotheses are in line with findings reviewed in
[221] and [237], which discuss activity in frontal areas and top-down modulatory
activity as important to conscious perception.

Future research should investigate top-down information transfer more closely; for
example, recent work suggests that neural activity in separate frequency bands may
be responsible for the propagation of predictions and prediction errors respectively
[236, 238]. Future experiments may target information transfer within a specific
band to test if the disruption of top-down information transfer happens in the
frequency band responsible for the propagation of predictions.

Last, it should be kept in mind that different anesthetics may lead to loss of con-
sciousness by vastly different mechanisms. Ketamine, for example, seems to increase,
rather than decrease, overall information transfer—at least in sub-anesthetic doses
[21].

Comparison of the alternative approaches to the estimation of
information theoretic measures and to statistical testing

The main analysis of this study was based on information theoretic estimators relying
on distances between neighboring data points and on a permutation ANOVA. As
each of these has its weaknesses we used additional alternative approaches, first,
a Bayesian estimator for information theoretic measures, and second, statistical
testing of non-aggregated data using LMMs. Both approaches returned results
qualitatively very similar to those of the main analysis. Specifically, replacing
neighbor-distance based estimators with Bayesian variants, we replicated the main
finding of our study—a reduction in information transfer and locally available
information, and an increase in information storage under anesthesia. However,
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using the Bayesian estimators we did not find a predominant reduction of top-down
compared to bottom up information transfer. In contrast, using LMMs for statistical
testing instead of a pANOVA additionally revealed a more pronounced reduction in
top-down information transfer also in ferret 2 (in this animal, this effect was not
significant when performing permutation tests based on the aggregated data).

The Bayesian estimators performed slightly worse than the next neighbor-based
estimators in terms of their higher variance in estimates across recordings. Thus,
even though Bayesian estimators are currently the best available estimators for
discrete data, they may be a non-optimal choice for continuous data. A potential
reason for this is the destruction of information on neighborhood relationships
through data binning. This is, however, necessary to make the current Bayesian
estimators applicable to continuous data.

In sum, we obtained similar results through three different approaches. This makes
us confident that locally available information and information transfer indeed
decrease under anesthesia, while the amount of predictable information increases.

On information theoretic measures obtained from from
continuous time processes via time-discrete sampling

When interpreting the information theoretic measures presented in this work, it must
be kept in mind that they were obtained via time-discrete sampling of processes
that unfold in continuous time (such as the LFP, or spike trains). This time-discrete
sampling was taken into account in recent work by Spinney and colleagues [239],
who could show that the classic transfer entropy as defined by Schreiber is indeed
ambiguous when applied to sampled data from time-continuous processes—it can
either be seen as the integral of a transfer entropy rate in continuous time over one
sampling interval, and is then given in bits, or it can be seen as an approximation
to the continuous time transfer entropy rate itself, and be given in bits/sec. In our
study we stick with the first notion of transfer entropy, and note that our results
will numerically change when using different sampling intervals. In contrast to the
case of transfer entropy covered in [239], corresponding analytical results for AIS
are not known at present, as this is still a field of active research. To nevertheless
elucidate the practical dependency of AIS on the sampling rate, when using our
estimators, we have taken the original data and have up- and down-sampled them.
Indeed the empirical AIS depended on the sampling rate (supporting information
S3). Yet, all relations of AIS values between different isoflurane concentrations, i.e.,
the qualitative results, are independent of sampling. Thus, sampling effects do not
affect the conclusions of the current study.
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A cautionary note on the interpretation of information theoretic
measures evaluated on local field potential data

When interpreting the results obtained in this study it should be kept in mind that
LFP signals are not in themselves the immediate carriers of information relevant to
individual neurons. This is because from a neuron’s perspective information arrives
predominantly in the form postsynaptic potentials generated by incoming spikes and
chemical transmission in the synaptic cleft (but see [240] for a potential influence of
LFPs on neural dynamics and computation). Thus, LFP signals merely reflect a coarse
grained view of the underlying neural information processing. As a consequence, our
results only hold in as far as at least some relevant information about the underlying
information processing survives this coarse graining in the recording process, and
little formal mathematical work has been carried out to estimate bounds on the
amount of information available after coarse graining (but see [241]).

Yet, the enormous success that brain reading approaches had when based on local
field potentials or on even more coarse grained magnetoencephalography (MEG)
recordings (e.g. [242]) indicates that relevant information on neural information
processing is indeed available at the level of these signals. However, successful
attempts at decoding neural representations of stimuli or other features of the
experimental setting should not lead us to misinterpret the information captured
by information theoretic measures of neural processing as necessarily being about
something we can understand and link to the outside world. Quite to the contrary, the
larger part of information captured by these measures may be related to intrinsic
properties of the unfolding neural computation.

Conclusion

Using two different methods for transfer entropy estimation, and two different
statistical approaches, we found that locally available information and information
transfer are reduced under isoflurane administration. The larger decrease in the
locally available information was found at the source of the larger decrease of
information transfer, not at its end point, or target. Therefore, previously reported
reductions in information transfer under anesthesia may be caused by changes in
local information processing rather than a disruption of long range connectivity.
We suggest to put this hypothesis more into the focus of future research effort to
understand the loss of consciousness under anesthesia. This suggestion receives
further support from the fact that the synaptic targets of the anesthetic isoflurane, as
used in this study, are most likely located in local circuits.
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4.4 Methods

4.41 Electrophysiological Recordings

We conducted simultaneous electrophysiological recordings of the local field poten-
tial (LFP) in primary visual cortex (V1) and prefrontal cortex (PFC) of two female
ferrets (17 to 20 weeks of age at study onset) under different levels of isoflurane (Fig.
4.9). The choice of the animal model is discussed further in [243]. Recordings were
made in a dark environment during multiple, individual sessions of max. 2 h length,
during which the animals’ heads were fixed. For recordings, we used single metal
electrodes acutely inserted in putative layer IV, measured 0.3 mm to 0.6 mm from
the surface of cortex (tungsten micro-electrode, 250 um shank diameter, 500 k{2
impedance, FHC, Bowdoin, ME). The hardware high pass filter was 0.1 Hz and
the low pass filter was 5000 Hz. A silver chloride wire placed between the skull
and soft tissue was used as the reference electrode. The reference electrode was
located approximately equidistant between the recording electrodes. This location
was selected in order to have little shared activity with either recording electrode.
The same reference was used for both recording locations; also the same electrode
position was used for both animals and all isoflurane concentrations. To verify that
electrode placement was indeed in V1, we mapped receptive fields by eliciting visu-
ally evoked potentials in a separate series of experiments. We confirmed electrode
placement in PFC by lesioning through the recording electrode after completion
of data collection and post-mortem histology (as described in [243]). Details on
surgical procedures can be found in [244]. Unfiltered signals were amplified with
gain 1000 (model 1800, A-M Systems, Carlsborg, WA), digitized at 20 kHz (Power
1401, Cambridge Electronic Design, Cambridge, UK), and digitally stored using
Spike2 software (Cambridge Electronic Design). For analysis, data were low pass
filtered (300 Hz cutoff) and down-sampled to 1000 Hz.

(< P
PFC
Vi

Fig. 4.9 Recording sites in the ferret brain. Prefrontal cortex (PFC, gray dot): anterior sigmoid
gyrus; primary visual area (V1, black dot): lateral gyrus. Arrows indicate analyzed directions
of information transfer (gray: top-down; black: bottom-up).
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All procedures were approved by the University of North Carolina-Chapel Hill Insti-
tutional Animal Care and Use Committee (UNC-CH IACUC) and exceed guidelines
set forth by the National Institutes of Health and U.S. Department of Agriculture.

LFPs were recorded during wakefulness (condition iso 0.0 %, number of recording
sessions: 8 and 5 for ferret 1 and 2, respectively) and with different concentrations of
anesthetic: 0.5 % isoflurane with xylazine (condition iso 0.5 %, number of sessions:
5 and 6), as well as 1.0 % isoflurane with xylazine (condition iso 1.0 %, number
of sessions: 10 and 11). In the course of pilot experiments, both concentrations
iso 0.5% and iso 1.0 % lead to a loss of the righting reflex; however, a systematic
assessment of this metric during recordings was technically not feasible. Additionally,
animals were administered 4.25 mL/h 5 % dextrose lactated Ringer and 0.015 mL/h
xylazine via IV.

LFP recordings from each session were cut into epochs of 4.81 s length to be able
to remove segments of data if they were contaminated by artifacts (e.g., due to
movement). We chose a relatively short epoch length to avoid removing large
chunks of data when there was only a short transient artifact. This resulted in 196
to 513 epochs per recording (mean: 428.6) for ferret 1, and 211 to 526 epochs
(mean: 472.8) for ferret 2. epochs with movement artifacts were manually rejected
(determined by extreme values in the LFP raw traces). In the iso 0.0 % condition,
infrared videography was used to verify that animals were awake during the whole
recording; additionally, iso 0.0% epochs with a relative delta power (0.5Hz to
4.0 Hz) of more than 30 % of the total power from 0.5 Hz to 50 Hz were rejected to
ensure that only epochs during which the animal was truly awake entered further
analysis.

Information theoretic measures

To measure information transfer between recording sites V1 and PFC, we estimated
the transfer entropy [12] in both directions of possible interactions, PF'C' — V1 and
V1 — PFC. To investigate local information processing within each recording site,
we estimated active information storage (A7S) [30] as a measure of predictable
information, and we estimated differential entropy (H) [245] as a measure of
information available locally. We will now explain the applied measures and esti-
mators in more detail, before we describe how these estimators were applied to
data from electrophysiological recordings in the next section. To mathematically
formalize the estimation procedure from these data, we assume that neural time
series recorded from two systems X and ) (e.g. cortical sites) can be treated as
collections of realizations z; and y; of random variables X, Y; of two random pro-
cesses X = {Xy,...,Xy,....,Xn}tand Y = {Y3,...,Y,, ..., Yn}. The index ¢ here
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indicates samples in time, measured in units of the dwell time (inverse sampling
rate) of the recording.

Transfer entropy Transfer entropy [12, 13] is defined as the mutual information
between the future of a process Y and the past of a second process X, conditional on
the past of Y. Transfer entropy thus quantifies the information we obtain about the

future of Y from the past of X, taking into account information from the past of Y.

Taking this past of Y into account here removes information redundantly available in
the past of both X and Y, and reveals information provided synergistically by them
[76]. In this study, we used an improved estimator of transfer entropy presented in
[75], which accounts for arbitrary information transfer delays:

TEspo(X = Y tu) = I (Y X, [Y,), (4.1)

where I is the conditional mutual information (or the differential conditional mutual
information for continuous valued variables) between Y; and X?X , conditional on

Y|, V; is the future value of random process Y, and X¢¥,, Y7, are the past states

t—u>

of X and Y, respectively. Past states are collections of past random variables

Y = (Y, Yiotr o Y —ay 1)) » (4.2)

that form a delay embedding of length dy [73], and that render the future of the
random process conditionally independent of all variables of the random process
that are further back in time than the variables forming the state. Parameters 7
and d denote the embedding delay and embedding dimension and can be found
through optimization of a local predictor as proposed in [133] (see next section on
the estimation of information theoretic measures). Past states constructed in this
manner are then maximally informative about the present variable of the target
process, Y;, which is an important prerequisite for the correct estimation of transfer
entropy (see also [75]).

In our estimator (Eq. 4.1), the variable u describes the assumed information transfer
delay between the processes X and Y, which accounts for a physical delay 6xy > 1

[75]. The estimator thus accommodates arbitrary physical delays between processes.

The true delay dxy must be recovered by “scanning” various assumed delays and
keeping the delay that maximizes T Espo [75]:
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SX,Y = argmax (TEspo (X — Y, t,u)). (4.3)

Active Information Storage AIS [30] is defined as the (differential) mutual infor-
mation between the future of a signal and its immediate past state

AIS(Y) =1 (YY), 4.4)

where Y again is a random process with present value Y; and past state Yffl (see
Eq. 4.2). AIS thus quantifies the amount of predictable information in a process
or the information that is currently in use for the next state update [30]. AIS is
low in processes that produce little information or are highly unpredictable, e.g.,
fully stochastic processes, whereas AIS is highest for processes that visit many
equi-probable states in a predictable sequence, i.e., without branching. In other
words, AIS is high for processes with “rich dynamics” that are predictable from the
processes’ past [66]. A reference implementation of AI.S can be found in the Java
Information Dynamics Toolkit (JIDT) [87]. As for T Espo estimation, an optimal
delay embedding Yffl may be found through optimization of the local predictor
proposed in [133].

Note, that AIS is upper bounded by the entropy as:

AIS(Y)=1 <Yt§Y?Z1) (4.5)
= H () - H (¥|Y{). |

Differential entropy The differential entropy H (see for example [245]) expands
the classical concept of Shannon’s entropy for discrete variables to continuous
variables:

== [ X% log F(X{%,) X, (4.6)

t—u
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where f(Y;) is the probability density function of Y; over the support Y. Entropy
quantifies the average information contained in a signal. Based on the differential
entropy the corresponding measures for mutual and conditional mutual information
and, thereby, active information storage and transfer entropy can be defined.

Entropy as an upper bound on information transfer

The transfer entropy from Eq. 4.1 can be rewritten as:

d d d d ’
:H(thu‘Ytzl) - H(Xti(u’thh Y;f) :

By dropping the negative term on the right hand side we obtain an upper bound
(as already noticed by [113, p. 65]), and by realizing that a conditional entropy is
always smaller than the corresponding unconditional one, we arrive at

TEspo(X — Y,t,u) < H(X{,). (4.8)

This indicates that the overall entropy of the source states is an upper bound. Several
interesting other bounds on information transfer exist as detailed in [113], yet
these are considerably harder to interpret and were not the focus of the current
presentation.

Estimation of information theoretic measures

In this section we will describe how the information theoretic measures presented
in the last section may be estimated from neural data. In doing so, we will also
describe the methodological pitfalls mentioned in the introduction in more detail
and we will describe how these were handled here. If not stated otherwise, we used
implementations of all presented methods in the open source toolboxes TRENTOOL
[86] and JIDT [87], called through custom MATLAB® scripts (MATLAB 8.0, The
MathWorks® Inc., Natick, MA, 2012). Time series were normalized to zero mean
and unit variance before estimation.
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Estimating information theoretic measures from continuous data Estimation of in-
formation theoretic measures from continuous data is often handled by simply
discretizing the data. This is done either by binning or the use of symbolic time
series—mapping the continuous data onto a finite alphabet. Specifically, the use of
symbolic time series for transfer entropy estimation was first introduced by [246]
and maps the continuous values in past state vectors with length d (Eq. 4.2) onto
a set of rank vectors. Hence, the continuous-valued time series is mapped onto an
alphabet of finite size d!. After binning or transformation to rank vectors transfer
entropy and the other information theoretic measures can then be estimated using
plug-in estimators for discrete data, which simply evaluate the relative frequency
of occurrences of symbols in the alphabet. Discretizing the data therefore greatly
simplifies the estimation of transfer entropy from neural data, and may even be
necessary for very small data sets. Yet, binning ignores the neighborhood relations
in the continuous data and the use of symbolic times series destroys important
information on the absolute values in the data. An example where transfer entropy
estimation fails due to the use of symbolic time series is reported in [156] and dis-
cussed in [75]: In this example, information transfer between two coupled logistic
maps was not detected by symbolic transfer entropy [156]; only when estimating
T Espo directly using an estimator for continuous data, the information transfer
was identified correctly [75]. To circumvent the problems with binned or symbolic
time series, we here used a nearest-neighbor based T'Espp-estimator for continuous
data, the Kraskov-Stogbauer-Grassberger (KSG) estimator for mutual information
described in [83]. At present, this estimator has the most favorable bias properties
compared to similar estimators for continuous data. The KSG-estimator leads to
the following expression for the estimation of T'Espo as introduced in Eq. 4.1 [13,
247]:

TEspo(X =Y, t,u) = I(Y; : XX, [Y{)

u

= (k) + <¢(nyffl +1) — w(nytyggl +1) — ¢(nyfflxtd§u + 1)),
(4.9)

where 1) denotes the digamma function, k is the number of neighbors in the highest-
dimensional space spanned by variables Y;, Y, XX  and is used to determine
search radii for the lower dimensional subspaces; n. are the number of neighbors
within these search radii for each point in the lower dimensional search spaces
spanned by the variable indicated in the subscript. Angle brackets indicate the
average over realizations r (e.g. observations made over an ensemble of copies of
the systems or observations made over time in case of stationarity, which we assumed

here). We used a k of 4 as recommended by Kraskov [85, p. 23], such as to balance
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the estimator’s bias—which decreases for larger k—and variance—which increases
for larger k (see also [84] for similar recommendations based on simulation studies).
For a detailed derivation of T'Espp-estimation using the KSG-estimator see [13, 83,
247].

The KSG-estimator comes with a bias that is not analytically tractable [85], hence,
estimates can not be interpreted at face value, but have to be tested for their
statistical significance against the null-hypothesis of no information transfer [13, 86].
We thus performed a permutation test on the T'Espo estimates against surrogate
data to assess the statistical significance of the estimated information transfer [86].
We used the ensemble-method for transfer entropy estimation [208], implemented
in TRENTOOL [86]. The ensemble method allows to pool data over epochs, which
maximizes the amount of data entering the estimation, while providing an efficient
implementation of this estimation procedure using graphics processing units (GPU).
We tested the statistical significance of T Espo in both directions of interaction in
the iso 0.0 % condition. We only tested this condition, because T'Espp was expected
to be reduced for higher isoflurane levels based on the results of existing studies.
Because the estimation of T'Egpo is computationally heavy, we used a random
subset of 50 epochs to reduce the running time of this statistical test (see supporting
information S4 for theoretical and practical running times of the used estimators).
We first tested information transfer estimates (T'Espo) for their significance within
individual recording sessions, and then used a binomial test to establish the statistical
significance over recordings. We used a one-sided Binomial test under the null
hypothesis of no significant T Espo estimates, where individual estimates [ were
assumed to be B(l, pg, n)-distributed, with py = 0.05 and n = 5 for animal 1 and
po = 0.05 and n = 8 for animal 2.

As the KSG-estimator used for estimating T Espo (Eq. 4.9) is an estimator of mutual
information it can also be used for the estimation of AIS:

AIS(Y) = I(Y:: Y{¥))

= (k) = 1/k + &(N) = {ih(ny,) +d(n_ay ), (4.10)

t—1

where again 1) denotes the digamma function, k is the number of neighbors in the
highest-dimensional space, N is the number of realizations, and n. denotes the
number of neighbors for each point in the respective search space. Again, we chose
k = 4 for the estimation of AIS (see above). Note that the sampling rate has an
effect on the estimated absolute values of AIS (a simulation of the effect of sampling
on AIS estimates are shown as supporting information S3)—however, qualitative
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results are not influenced by the choice of sampling rate; in other words, relative
differences between estimates are the same for different choices of sampling rates.
As a consequence, for AIS estimation the sampling rate should be constant over data
sets if the aim is to compare these estimates.

A conceptual predecessor of the KSG-estimator for mutual information is the Kozachenko-
Leonenko (KL) estimator for differential entropies [134]. The KL-estimator also
allows for the estimation of H from continuous data and reads

N
H(X) = —(1) +9(N) + Y log(e(d)), (4.11)
=1

where (i) is twice the distance from data point 7 to its k-th nearest neighbor in the
search space spanned by all points.

Bayesian Estimators for discretized data For Bayesian estimation we converted the
continuous LFP time series to discrete data by applying voltage bins as follows: The
voltages +3 standard deviations around the mean of the LFP were subdivided into
N equally spaced bins. We added two additional bins containing all the values that
were either smaller or larger than the 3 SD region, amounting to a total number of
bins Ny;,,s = N + 2. We then calculated H, AIS and T Espo for the discrete data.
For AIS and T Espo estimation states were defined using the same dimension d and
7 as for the KSG-estimator, optimized using the Ragwitz criterion. We decomposed
T Espo into four entropies (Eq. 4.9), and AIS into three entropies, which we then
estimated individually [248]. To reduce the bias introduced by the limited number of
observed states, we used the NSB-estimator by Nemenman, Shafee, and Bialek [225],
which is based on the construction of an almost uniform prior over the expected
entropy using a mixture of symmetric Dirichlet priors Pg. The estimator has been
shown to be unbiased for a broad class of distributions that are typical in Pz [226].

We further applied the recently proposed estimator by Archer et al. [227] that uses
a prior over distributions with infinite support based on Pitman-Yor-processes. In
contrast to the NSB prior, this prior also accounts for heavy-tailed distributions that
one encounters frequently in neuronal systems and does not require knowledge of
the support of the distribution.

When estimating entropies for the embedding dimensions used here, the number

of possible states or “words” is between K = 124 and K = 123!. This is much
larger than the typical number of observed states per recording of around N =
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5-10°. As a consequence, a precise estimation of entropies is only possible if the
distribution is sparse, i.e. most words have vanishing probability. In this case,
however, the estimates should be independent of the choice of support K as long
as K is sufficiently large and does not omit states of finite probability. We chose
K’ = 10" for the results shown in this paper, which allowed a robust computation
of the NSB estimator instead of the maximum support K that results from simple
combinatorics.

Finding optimal embedding parameters The second methodological problem raised
in the introduction was the choice of embedding parameters for transfer entropy
estimation. One important parameter here is the choice of the total signal history
when constructing past states for source and target signal (see Eq. 4.1 and 4.2).
Failure to properly account for signal histories may lead to a variety of errors, such
as underestimating transfer entropy, failure to detect transfer entropy altogether,
or the detection of spurious transfer entropy. Transfer entropy is underestimated
or missed if the past state of the source time series does not cover all the relevant
history, i.e., the source is under-embedded. In contrast, spurious transfer entropy
may be detected if the past state of the target time series is under-embedded, such
that spurious detection of transfer entropy is a false positive and therefore the
most serious error. One scenario where spurious transfer entropy results from
under-embedding is shown in Fig. 4.10.

The choice of an optimal embedding is also relevant for the estimation of AIS, where
under-embedding leads to underestimation of the true AIS. Note that on the other
hand, we can not increase the embedding length to arbitrarily high values because
this leads to computationally intractable problem sizes and requires exponentially
more data for estimation.

Optimal embedding parameters d and 7 may be found through the optimization of a
local predictor proposed by Ragwitz [133]. Ragwitz’ criterion tests different combi-
nations of a range of values for d and 7. The current combination is used to embed
each point in a time series, then, the future state for each point is predicted from
the future states of its neighbors. The parameter combination that leads to the best
prediction on average is used as the optimal embedding. To determine the neighbors
of a point, we used a k-nearest-neighbor search with k& = 4, i.e., the same value for k
as was used for k-nearest-neighbor searches when estimating information-theoretic
measures. We minimized the mean squared error when optimizing Ragwitz’ local
predictor. Further details on Ragwitz’ criterion can be found in the documentations
of the TRENTOOL [86] and JIDT [87] toolbox.
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Fig. 4.10 Spurious information transfer resulting from under-embedding (modified from [13]).
(A) Actual coupling between processes X and Y. (B) Mutual information between the present
value in X, z;, and a value in the far past of X, z;_(,.q), conditional on all intermediate

values xffl (shaded box), the mutual information is non-zero, i.e., 2;_(,.q) holds some
information about x;. (C) Both directions of interaction are analyzed; (D) Information in

r4_(r.q) (White sample point) is transferred to Y (solid arrow), because of the actual coupling

X — Y. The information in z;_(,.q) about x; is thus transferred to the past of Y, yffu,

which thus becomes predictive of x; as well. Assume now, we analyzed information transfer
from Y to X, I(z; : yi¥,|x?*), without a proper embedding of X, x* : Because of the
actually transferred information from z;_ ;.4 to y?¥ ., the mutual information I(z; : x{%,) is

non-zero. If we now under-embed X, such that the information in x,_ .4 is not contained

in x¢* and is not conditioned out, I(z; : y**,|x?X,) will be non-zero as well. In this case,

under-embedding of the target X will lead to the detection of spurious information transfer
in the non-coupled direction Y — X. (E) Information transfer is falsely detected for both
directions of interaction, the link from Y to X is spurious (dashed arrow).

Other approaches for embedding parameter optimization have been proposed, see
for example non-uniform embedding using mutual information to determine all
relevant past samples as proposed by [115].

Reconstruction of information transfer delays The third methodological problem
raised in the introduction was failure to account for a physical delay § between
neural sites when estimating transfer entropy. In our estimator T'Espo (Eq. 4.9) we
account for § by introducing the parameter u. The delay u needs to be optimized
to correctly estimate T'Espo. If u is not optimal, i.e., u is not sufficiently close to §
(Fig. 4.5 and [75]), information transfer may be underestimated or not measured
at all. This is because choosing the parameter u too large (u > ) means that
the information present in the evaluated samples of the source is also present in
the history of the target already, and conditioned away. In contrast, choosing the
parameter u too small means that the information of the evaluated samples of the
source will only arrive in the future of the current target sample, and is useless for
providing information about it (Fig. 4.5A).
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It can be proven for bivariate systems that 7'Espo becomes maximal when the true
delay ¢ is chosen for u [75]. Therefore, the true delay )—and thus an optimal choice
for u—can be found by using the value for « that maximizes T Espo [75]. This
optimal u can be found by scanning a range of assumed values. In the present study,
we scanned values ranging from O ms to 20 ms. (Note that assumed values should
be physiologically plausible to keep the computations practically feasible.)

Accounting for the information transfer ¢ by finding optimal parameters u for T'Espo
estimation has important consequences when calculating indices from estimated
TFEspo, such as T E,,:

TEspo(X = Y, t,uxoy) —TEspo(Y = X, t,uy_x)

TE, . =
" TEspo(X — Y, t,uxy) + TEspo(Y — X, t,uy_x)’

4.12)

or variations of this measure. The T E,,.; is popular in anesthesia research [33, 35]
and indicates the predominant direction of information transfer between two bidi-
rectionally coupled processes X and Y (T'Eye; > 0if TEspo(X — Y, t,ux—y) >

TESP()(Y — X,t, uY_>X) and TEnet <0 ifTESP()(Y — X,t,uY%X) > TEgpo(X —

Y,t,ux_y)). However, if values for ux_,y and uy_, x are not optimized individually,
TFE,. may take on arbitrary signs: In Fig. 4.5B, we show a toy example of two
coupled Lorenz systems [75], where the absolute difference between raw T'Espo
values changes as a function of a common u for both directions and where the
difference even changes signs for values u > 65. To obtain a meaningful value from
TE,e: we thus need to find the individually optimal choices of u for both directions
of transfer—in the example, these optima are found at ux_,y = 46 and uy _, x = 76,
leading to the “true” difference.

Simulating the effect of filtering on information transfer delay reconstruction To
simulate the effects of filtering as a preprocessing technique on the ability of the
T Espo estimator to reconstruct the correct information transfer delay, we simulated
two coupled time series, for which we estimated transfer entropy before filtering and
after band-pass filtering with different bandwidths. The simulation was repeated 50

times.

We simulated two time series with 100 000 samples each, which were drawn from a
uniform random distribution over the open interval (0,1). We introduced a coupling
between the time series by adding a scaled version (factor 0.2) of the first time series
to the second with a delay of 10 samples. We estimated T'Fspo from the first to the
second time series using the KSG-estimator implemented in the JIDT toolbox, with
k = 4 and a history of one sample for both source and target.
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We estimated T'Espo with and without band-pass filtering the data for different
values of u, ranging from 1 to 20 samples. We filtered the data using a fourth
order, causal Butterworth filter, implemented in the MATLAB toolbox FieldTrip
[150]. We filtered the data using four different bandwidths: from 0.1 Hz to 300 Hz
(corresponding to the filtering done in this study), from 0.1 Hz to 200 Hz, from
12 Hz to 30 Hz (corresponding to the beta frequency range), and from 4 Hz to 8 Hz
(corresponding to the theta frequency range).

Statistical testing using permutation testing

To test for statistically relevant effects of isoflurane levels and direction of interaction
or recording site on estimated measures, we performed two-factorial permutation
analyses of variance (pANOVA) for each animal and estimated measure [238, 249-
251]. We used a MATLAB® implementation of the test described in [251], which is
compatible with the FieldTrip toolbox data format [150].

The permutation ANOVA can be used if the normality assumptions of parametric
ANOVA are violated or—as in the present study—if assumptions are not testable
due to too few data points per factor level. The permutation ANOVA evaluates the
significance of the main effect of individual factors or their interaction effect under
the null-hypothesis of no experimental effect at all. The significance is evaluated
by calculating a F-ratio for the effect from the original data; this original F-ratio is
then compared against a distribution of F-ratios obtained from permuted data. The
F-ratio’s p-value is calculated as the fraction of ratios obtained from permuted data
that is bigger than the original F-ratio. When permuting data, it is crucial to only
permute data in such a way that the currently investigated effect is destroyed while
all other effects are kept intact [249]: for example, consider a two-factorial design
with factors A and B—if the main effect of factor A is to be tested, the assignment
of levels of A to data points has to be permuted; yet, the permutation of levels of
A can only happen within levels of factor B such as to not simultaneously destroy
the effect of factor B. Thus, when testing for the effect of one factor, the effect
of all other factors is preserved, making sure that variability due to one factor is
tested for while the variability due to the other factor is held constant. However,
this permutation scheme is not applicable to the interaction effect because it leaves
no possible permutations—destroying the interaction effect through permutation
always also destroys the main effects of individual factors. Here, both factors have
to be permuted, which yields an approximative test of the interaction effect (see
[251] for a discussion of permutation strategies and simulations).

The factors in the permutation ANOVA were isoflurane level and direction for T Espo
estimates, and isoflurane level and recording site for AIS and H estimates. The
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4.4.6

number of permutations was set to 10 000. In the present study, data was recorded
in different sessions and segmented into epochs. As a result, estimates for individual
epochs should not be pooled over recordings for statistical analysis (see for example
[252], and also the next paragraph for a discussion). We therefore aggregated esti-
mates over epochs to obtain one estimate per recording session. We used the median
to aggregate the estimated values for each recording session over individual epochs,
because the distribution of measures over epochs was skewed and we considered
the median a more exact representation of the distributions’ central tendencies. The
aggregation of data resulted in relatively few observations per ANOVA cell and also in
unequal number of observations between cells, thus violating two basic assumptions
of parametric ANOVA (too few observations make it impossible to test for parametric
assumptions like homogeneity of variances). Therefore, we used the non-parametric
permutation approach over a parametric one, because the permutation ANOVA does
not make any assumptions on data structure.

Statistical testing using linear mixed models

As described above, LFP recordings were conducted in epochs over multiple recording
sessions. This introduces a so-called “nested design” [252], i.e., a hierarchical
structure in the data, where data epochs are nested within recordings, which are
nested in animals. Such structures lead to systematic errors or dependence within
the data. This violates the assumption of uncorrelated errors made by the most
common tests derived from the general linear model and leads to an inflation of
the type I error [252]. A measure of the degree of dependence is the intraclass
correlation coefficient (ICC), which was 0.35 for ferret 1 and 0.19 for ferret 2,
indicating a significant dependency within the data (see [252] for a discussion of
this measure). Thus, we performed an additional statistical tests where we again
tested for a significant effect of the two factors isoflurane level and direction as well as
their interaction, but we additionally modeled the nested structure in our data by a
random factor recordings. Such a model is called a linear mixed effects model [253],
and may yield higher statistical power than aggregating data within one level of the
nested design (as was done for the permutation ANOVA). We used the following
model for both animals separately:

yij = Bo + 75 + B1D; + B ALY + g ANY 1 ey,

where y;; is the TEgpo value from the i-th epoch in recording j, modeled as a
function of isoflurane level and direction of interaction, where 3y describes the
model intercept, ), are the regression coefficients and describe fixed effects, ~; is
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the random deviation of recording j from the intercept 3y, and ¢;; describes random
noise. D;, A,EO'S), and Agl'o) are predictor variables, encoding factors direction as

1 if direction is PFC — V1,
D, = (4.13)
—1 if directionis V1 — PFC,
and factor isoflurane level as
1 if isoflurane level is iso 0.5 %,
AP = & ’ 4.14)
0 else,
1 if isoflurane level is iso 1.0 %,
A0 A ’ (4.15)
0 else.

Note that we used dummy coding for factor direction so that the the estimated
effect 8; can be interpreted like the simple or main effect in a standard ANOVA
framework. We used contrast coding for factor isoflurane level which allows to
interpret estimated effects 8> and (3 as deviations from a reference group (in
this case the condition iso 0.0%). We further assume that noise was i.i.d. and

e ~ N (0,02) and 7; ~ N (0,02).

We used the R language [254] and the function 1mer from the 1me4-package [255]
for model fitting. We assessed statistical significance of individual factors by means
of model comparison using the maximum likelihood ratio between models [256]. To
allow for this model comparison, we used maximum likelihood estimation, instead
of restricted maximum likelihood estimation, of random and fixed effects. To test
for main effects, we compared models including individual factors isoflurane level
(fm_a) and direction (fm_d) to a Null model (fm_0) including only the random
effect; to furthermore test for an interaction effect, we compared the model including
an interaction term (fm_axb) to a model where both factors only entered additively

(fm_ab).

The models were fitted to 15973 T Espo values from ferret 1 and 18 202 T Egpo
values from ferret 2, respectively.

Chapter 4 The relation of local entropy and information transfer suggests an origin of



447

4.4.8

Simulating the effect of reduced source entropy on transfer
entropy

To test whether changes in source entropy influenced the transfer entropy despite
unchanged coupling, we simulated two test cases, with high and low source entropy,
respectively, while the coupling between source and target process were held con-
stant. To simulate the two test cases, we randomly selected two recordings—one
from the iso 0.0 % condition, which on average showed higher source entropy, and
one from the iso 1.0 % condition, which on average showed lower source entropy
(Figs. 4.1 and 4.2). In the recording from the iso 0.0 % condition, we permuted
epochs in the target time series to destroy all information transfer present in the
original data. From the permuted data, we simulated two cases of artificial coupling,
first, using the high-entropy source time course from the iso 0.0 % condition; and
second, using the low-entropy source time course from the iso 1.0 % condition.
The coupling was simulated by adding a filtered, scaled and delayed version of
the respective source time course to the target time course for each epoch. For
filtering, we used a Gaussian filter with a smoothing of 10 samples; for the scaling
factor, we used a value of 0.2, which resulted in a T Espo value for the high-entropy
test case that was close to the T'Egpo in the iso 0.0 % condition. By replacing the
original coupling in both recordings with a simulated coupling, we made sure that
the coupling was constant for both test cases.

For both test cases, we estimated T Espo and H(X/X ) following the estimation
procedures described above. We tested differences in T'Espo using a permutation
independent samples t-test with 10 000 permutations. To make sure that our simu-
lation reflected information transfer found in the original data, we further tested
for a significant difference between T'Espo in the original data from the iso 0.0 %
recording and T'Espo in the high-entropy test case (using the source time iso 0.0 %
condition). Here, we found no significant difference, indicating that the transfer
entropy in our test case did not differ significantly from the transfer entropy found

in the original data.

Correlating information-theoretic measures with other
time-series properties

We correlated TEspp, AILS, and H with more conventional measures from time-
series analysis, namely, the autocorrelation decay time (ACT), signal variance, and
power in individual frequency bands. This correlation was performed to investigate
whether information-theoretic measures captured signal properties that could be
described equally well by more simple measures.
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The ACT was calculated by finding the lag at which the autocorrelation coefficient
decayed below e~!. The signal variance was calculated as the variance over time
for each recording after subtracting the mean of the time series. The band power
was calculated for individual frequency bands (delta = 0.5 Hz to 4 Hz, theta = 4 Hz
to 8 Hz, alpha = 8 Hz to 12 Hz, beta = 12 Hz to 30 Hz, gamma = 30Hz to 40 Hz,
following [244]), using the multitaper method with discrete prolate spheroidal
sequences (Slepian sequences) as tapers (smoothing = 1Hz) implemented in the
MATLAB toolbox FieldTrip [150].

We calculated correlations between information-theoretic measures and conven-
tional measures for individual isoflurane levels and recording sites or direction of
interaction, respectively. For each correlation, we pooled data over recording ses-
sions for the respective isoflurane level and calculated Spearman’s rank correlation.
We tested the correlation for significance using a restricted permutation test, where
permutations were allowed only within one recording, accounting for the nested
experimental design (see [252] and section Statistical testing using linear mixed
models, below). Additionally, we calculated the correlation as well as the variance
explained, R?, for individual recordings, because calculating R? for the coefficient
calculated from pooled data does not yield interpretable results.

Supporting Information

S1 Dataset Group statistical data and estimated information-theoretic values
entering statistical tests.

S2 Correlation tables Correlation between information-theoretic measures and
traditional measures of time-series properties.
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Tab. 4.5

Tab. 4.6

Correlation of AIS with autocorrelation decay time (ACT). R? and max(R?) indicate the
median and maximum of R? over recordings per condition, respectively.

R? (max(R2)

animal isoflurane recording D
level site
1 is0 0.0 %  PFC 1.0000  0.024 (0.289)
\2! 0.1028  0.003 (0.153)
is0 0.5%  PFC 0.0013**  0.001 (0.122)
V1 0.0000*** 0.014 (0.114)
iso 1.0%  PFC 0.0000***  0.005 (0.271)
\2! 0.9998  0.004 (0.051)
2 is0 0.0 %  PFC 0.0000*** 0.022 (0.116)
V1 0.0000***  0.029 (0.175)
is0 0.5%  PFC 0.7672  0.007 (0.018)
V1 0.0000*** 0.017 (0.076)
iso0 1.0%  PFC 0.0000*** 0.008 (0.121)
V1 0.8247  0.009 (0.214)

*p < 0.05; **p < 0.01; **p < 0.001

Correlation of H with signal variance. R? and maz(R?) indicate the median and maximum

of R? over recordings per condition, respectively.

R? (max(R2)

animal isoflurane recording D
level site
1 is0 0.0 % PFC 1.0000 0.087 (0.705)
V1 1.0000 0.079 (0.452)
is0 0.5%  PFC 1.0000 0.036 (0.093)
V1 1.0000 0.062 (0.217)
iso 1.0%  PFC 1.0000 0.010 (0.474)
V1 1.0000 0.018 (0.083)
2 is0 0.0 % PFC 1.0000 0.042 (0.699)
\! 1.0000 0.162 (0.363)
is0 0.5%  PFC 1.0000 0.041 (0.130)
Vi1 1.0000 0.031 (0.289)
iso 1.0%  PFC 1.0000 0.118 (0.602)
V1 1.0000 0.018 (0.578)

*p < 0.05; **p < 0.01; ***p < 0.001
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Tab. 4.7 Correlation of TEspo with source autocorrelation decay time (ACT) and source signal
variance. R? and maz(R?) indicate the median and maximum of R? over recordings per
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condition, respectively.

animal isoflurane direction ACT signal variance
level
D R? (maxz(R?) P R? (maxz(R?)
1 is00.0% PFC—V1 1.0000 0.035(0.110) 0.9861  0.009 (0.060)
V1 — PFC 0.9996 0.029 (0.215) 0.6644  0.024 (0.089)
iso0.5% PFC—V1 1.0000 0.016 (0.110) 1.0000 0.024 (0.033)
V1 —PFC 0.7310 0.003 (0.014) 0.0063* 0.005 (0.011)
iso1.0% PFC—V1 1.0000 0.006 (0.047) 0.5836  0.002 (0.037)
V1 — PFC 0.0069* 0.001 (0.032) 0.0000*** 0.005 (0.092)
2 is00.0% PFC—V1 1.0000 0.063 (0.105) 0.8315 0.008 (0.025)
V1l — PFC 0.9996 0.006 (0.041) 0.0434 0.005 (0.031)
iso0.5% PFC—V1 1.0000 0.115(0.155) 0.0440 0.017 (0.103)
V1 — PFC 1.0000 0.022 (0.125) 0.9985 0.005 (0.086)
iso 1.0% PFC — V1 0.0000** 0.011 (0.111) 0.0000*** 0.012 (0.058)
V1 — PFC 0.0076* 0.009 (0.031) 0.0000*** 0.015 (0.032)

*p < 0.05; **p < 0.01; **p < 0.001
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Tab. 4.8 Correlation of AIS with band power. R? and maz(R?) indicate the median and maximum
of R? over recordings per condition, respectively.

animal level site 0 0 a
D R? (maz(R?) P R? (max(R?) D R? (maz(R?)
1 is0 0.0 % PFC 1.0000 0.068 (0.418) 0.0000*** 0.021 (0.201) 0.0000*** 0.022 (0.258)
V1 0.0000***  0.041 (0.275) 0.0003**  0.020 (0.160) 0.0000*** 0.029 (0.166)
is0 0.5% PFC 0.0000*** 0.019 (0.174) 0.0000*** 0.005 (0.040) 0.0000*** 0.003 (0.075)
V1 0.0000***  0.008 (0.129) 0.0093 0.024 (0.060) 0.0986 0.009 (0.090)
iso 1.0% PFC 0.0000*** 0.006 (0.036) 0.8710 0.005 (0.093) 0.0445 0.003 (0.028)
V1 0.2751 0.010 (0.303) 0.0000*** 0.002 (0.054) 0.0000*** 0.002 (0.030)
2 iso 0.0 % PFC 0.0000*** 0.158 (0.359) 0.0000*** 0.044 (0.089) 0.0000*** 0.025 (0.075)
V1 0.0000***  0.005 (0.303) 0.0000*** 0.023 (0.228) 0.0000***  0.042 (0.238)
is0 0.5% PFC 0.0000*** 0.019 (0.255) 0.0000*** 0.007 (0.018) 0.0000*** 0.006 (0.074)
V1 0.0000***  0.025 (0.098) 0.6476 0.024 (0.068) 1.0000 0.017 (0.045)
iso 1.0% PFC 0.0000*** 0.005 (0.298) 0.9729 0.005 (0.021) 0.9999 0.004 (0.151)
V1 0.0063*  0.043 (0.302) 0.7462 0.001 (0.039) 1.0000 0.003 (0.051)
animal level site 153 0%
D R? (maxz(R?) D R? (max(R?)
1 is0 0.0 % PFC 0.1179 0.016 (0.154) 1.0000 0.036 (0.089)
V1 0.0001***  0.039 (0.163) 1.0000 0.018 (0.331)
is0 0.5% PFC 0.0000*** 0.003 (0.023) 0.5147 0.007 (0.068)
V1 0.9981 0.025 (0.081) 1.0000 0.005 (0.009)
is0 1.0 % PFC 0.7781 0.001 (0.044) 0.9392 0.004 (0.063)
V1 0.1122 0.003 (0.045) 0.8076 0.003 (0.061)
2 is0 0.0 % PFC 0.0000*** 0.005 (0.047) 1.0000 0.006 (0.077)
V1 0.2450 0.015 (0.185) 1.0000 0.027 (0.060)
iso 0.5% PFC 0.0000*** 0.007 (0.094) 0.0000*** 0.014 (0.088)
V1 1.0000 0.036 (0.087) 1.0000 0.010 (0.080)
iso 1.0 % PFC 1.0000 0.007 (0.073) 1.0000 0.008 (0.227)
V1 1.0000 0.001 (0.062) 1.0000 0.017 (0.147)

*» < 0.05; **p < 0.01; ***p < 0.001
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Tab. 4.9 Correlation of H with band power. R? and max(R?) indicate the median and maximum of
R? over recordings per condition, respectively.

animal level site 1) 0 !
D R? (maz(R?) D R? (maz(R?) D R? (maz(R?)
1 is0 0.0 % PFC 1.0000 0.095 (0.458) 1.0000 0.015 (0.201) 1.0000 0.020 (0.271)
Vi1 1.0000 0.091 (0.706) 0.9998 0.037 (0.109) 1.0000 0.041 (0.097)
is0 0.5 % PFC 1.0000 0.046 (0.202) 1.0000 0.004 (0.036) 1.0000 0.003 (0.059)
Vi 1.0000 0.035 (0.133) 0.9100 0.040 (0.051) 0.8029 0.002 (0.086)
iso 1.0 % PFC 1.0000 0.020 (0.079) 0.0359 0.005 (0.082) 0.9198 0.004 (0.023)
V1 1.0000 0.010 (0.461) 0.9941 0.003 (0.061) 0.9991 0.004 (0.032)
2 is0 0.0 % PFC 1.0000 0.171 (0.395) 1.0000 0.058 (0.110) 1.0000 0.024 (0.060)
A\ 1.0000 0.031 (0.723) 1.0000 0.036 (0.135) 1.0000 0.048 (0.170)
is0 0.5 % PFC 1.0000 0.035 (0.298) 1.0000 0.011 (0.016) 1.0000 0.015 (0.088)
A\ 1.0000 0.038 (0.135) 0.0428 0.021 (0.073) 0.0000***  0.016 (0.045)
iso 1.0 % PFC 1.0000 0.015 (0.580) 0.0000*** 0.006 (0.076) 0.0000*** 0.008 (0.219)
A\ 1.0000 0.112 (0.601) 0.1329 0.003 (0.062) 0.0000***  0.009 (0.094)
animal level site 15} v
P R2 (max(R?) P R2 (max(R?)
1 is0 0.0 % PFC 0.9665 0.018 (0.165) 0.0000***  0.052 (0.097)
A\l 0.9999 0.046 (0.121) 0.0000*** 0.014 (0.358)
is0 0.5 % PFC 1.0000 0.007 (0.020) 0.5510 0.013 (0.064)
V1 0.0000***  0.028 (0.089) 0.0000*** 0.006 (0.011)
is0 1.0 % PFC 0.2144 0.005 (0.056) 0.0269 0.006 (0.082)
A"l 0.4394 0.002 (0.040) 0.2250 0.003 (0.053)
2 is0 0.0 % PFC 1.0000 0.011 (0.043) 0.0000*** 0.001 (0.068)
V1 0.5631 0.022 (0.094) 0.0000*** 0.037 (0.061)
is0 0.5 % PFC 1.0000 0.013 (0.107) 1.0000 0.012 (0.095)
A\ 0.0000***  0.034 (0.096) 0.0000*** 0.010 (0.102)
iso 1.0% PFC 0.0000*** 0.007 (0.051) 0.0000*** 0.012 (0.290)
A\ 0.0017* 0.011 (0.072) 0.0000***  0.013 (0.103)

“p < 0.05; **p < 0.01; **p < 0.001
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Tab. 4.10 Correlation of T Egpo with band power. k2 and maz(R?) indicate the median and maximum

of R? over recordings per condition, respectively.

animal level direction ) 0 e
D R? (maz(R?) D R? (max(R?) D R? (maz(R?)
1 is0 0.0% PFC — V1 1.0000 0.024 (0.101) 1.0000 0.034 (0.122) 1.0000 0.061 (0.146)
V1 — PFC 0.9662 0.030 (0.230) 0.8389 0.009 (0.045) 1.0000 0.008 (0.047)
is0 0.5% PFC — V1 1.0000 0.033 (0.090) 1.0000 0.073 (0.132) 1.0000 0.013 (0.117)
V1 — PFC 0.1319 0.001 (0.010) 1.0000 0.018 (0.058) 0.9097 0.001 (0.015)
iso 1.0% PFC — V1 1.0000 0.009 (0.058) 1.0000 0.009 (0.029) 1.0000 0.012 (0.038)
V1 — PFC 0.0947  0.002 (0.024) 1.0000 0.003 (0.116) 0.9996 0.004 (0.058)
2 is0 0.0 % PFC — V1 1.0000 0.060 (0.102) 1.0000 0.055 (0.121) 1.0000 0.036 (0.052)
V1 — PFC 0.9998 0.006 (0.038) 1.0000 0.012 (0.056) 0.9998 0.010 (0.040)
iso 0.5% PFC — V1 1.0000 0.108 (0.157) 1.0000 0.115 (0.166) 1.0000 0.079 (0.160)
V1 — PFC 1.0000 0.026 (0.149) 1.0000 0.015 (0.052) 0.6675 0.003 (0.009)
iso 1.0% PFC — V1 0.0000*** 0.009 (0.095) 1.0000 0.010 (0.037) 1.0000 0.007 (0.030)
V1 — PFC 0.0153 0.008 (0.023) 1.0000 0.006 (0.035) 0.7369 0.001 (0.017)
animal level site 153 ¥
P R? (maz(R?) P R? (maz(R?)
1 is0 0.0 % PFC — V1 1.0000 0.069 (0.157) 0.0352 0.005 (0.044)
V1 — PFC 0.9612 0.010 (0.040) 0.0009**  0.010 (0.028)
is0 0.5% PFC — V1 1.0000 0.033 (0.121) 0.0611 0.031 (0.038)
V1 — PFC 0.9991 0.010 (0.039) 0.0014** 0.021 (0.028)
iso 1.0% PFC — V1 0.0000*** 0.004 (0.019) 0.0000*** 0.007 (0.054)
V1 — PFC 0.0912 0.002 (0.063) 0.0000*** 0.006 (0.109)
2 is0 0.0% PFC — V1 1.0000 0.021 (0.040) 0.3062 0.015 (0.036)
V1 — PFC 0.9998 0.002 (0.039) 0.2046  0.002 (0.041)
is0 0.5% PFC — V1 1.0000 0.107 (0.132) 0.6054  0.006 (0.013)
V1 — PFC 0.0186 0.004 (0.019) 0.0000*** 0.022 (0.041)
iso 1.0% PFC — V1 0.9940 0.004 (0.039)  0.0025*  0.003 (0.027)
V1 — PFC 0.9122 0.002 (0.013) 0.0000*** 0.002 (0.058)

*p < 0.05; **p < 0.01; **p < 0.001
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S3 The effect of sampling on AlS-estimation AIS estimates for data sampled at
different rates.
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Estimates of active information storage (AIS) from data sampled at different rates.
AIS estimates from three random recordings in animal 1 under three levels of Isoflurane;
estimated from data with the sampling rate used for analysis in the present work (1000 Hz)
and re-sampled at 2000 and 600 Hz respectively; note that qualitative results did not change
due to re-sampling, but absolute estimates increased for higher sampling rates; the number
of data points was held approximately constant by selecting a subset of trials for estimation
such that the number of points entering the analysis was equal to the smallest number of
points over all isoflurane levels.

S4 Theoretical and practical running time of nearest-neighbor based estimators The
KSG-estimator used in this work is computationally demanding, because as a nearest-
neighbor based estimator it requires the execution of k-nearest-neighbor as well
as range searches for all data points N. Hence, the algorithms used to perform
these searches determine the asymptotic time complexity of the estimator. In this
work, we used two different implementations published as part of the TRENTOOL
toolbox: a CPU-based estimator for the estimation of T Espo from epochs or tri-
als of data [86], and a GPU-based estimator for the estimation of TEspo from
data pooled over epochs or trials [208]. We used the CPU-based work-flow for
the epoch-wise estimation of TEspo and the GPU-based work-flow when testing
for statistical significance of TEspo to maximize the number of points entering
the estimation. The CPU-based estimator uses a neighbor-search algorithm that—
depending on data-properties—requires for neighbor-searches on all N points at
maximum O(kN log(N)) time. The GPU-based estimator does not make use of fast
data structures used for the CPU-based estimator, but uses a linear search which
results in a worse time complexity of O(dN?). However, in the implementation used
in this study [208] the linear neighbor search is performed in parallel over points
and problem instances, which significantly improves the overall running time when
using the estimator on multiple problem instances—a comparison of the running
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times of the serial CPU-algorithm and the parallel GPU-algorithm can be found in
[208].

Additionally, we used the KL-estimator for entropy estimation. This estimator
requires the execution of a k-nearest-neighbor search for all data points N—we used
the estimator’s implementation published as part of the JIDT toolbox [87], which
has a time complexity of O(kN log(N)).

We also measured practical running times of the estimators to provide a point of
reference when planning similar analyses. Approximate, average running times for
the estimation of AIS, TEspo, and H are presented in Table 4.11. The presented
running times include the estimation of each measure for both directions of inter-
actions or recording site, for one recording; presented running times are averages
over recordings. We measured the total time needed for estimation, including data
preparation (e.g., the optimization of embedding parameters for the estimation of
TFEspo). All estimation procedures that did not require a GPU, were executed on a
Intel(R) Xeon(R) CPU clocked at 2.90 GHz. The GPU-implementation of the T Espo
estimator was run on a Intel(R) Xeon(R) CPU clocked at 2.00 GHz and a NVIDIA
GeForce GTX TITAN. Both machines were running 64-bit Ubuntu Linux. Note that
the GPU estimation was performed on 50 trials only, because here the computational
demand was higher due to more data points entering one estimation of T'Espo
(pooled over epochs).

Practical average running times for estimation of information-theoretic measures from one
recording session and two recording sites or directions of interaction in animal 1.

measure toolbox/implementation mean running time [min]
TEspo TRENTOOL/GPU-implementation 2235.93 (314.27 SD)
TEspo TRENTOOL/CPU-implementation 1871.51 (926.56 SD)
AIS TRENTOOL/CPU-implementation 2.83 (1.51 SD)
H JIDT/CPU-implementation 1.55 (0.56 SD)

SD = standard deviation
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5.1

General discussion

The present work introduced three studies on the application of TE in neuroscience.
In the first two studies, we presented two improvements for the estimation of TE,
which solved two of the most pressing problems in the estimation of bivariate TE in
neuroscience: first, we presented an approach to estimate TE from non-stationary
data, which is commonly encountered in neuroscience experiments; second, we
presented an algorithmic correction for multivariate effects when estimating bivariate
TE in a multivariate setting. In the third study, we discussed current best-practice in
the estimation of TE and its interpretation, also providing an example of how the
misinterpretation of TE as a causality measure may lead to erroneous explanations
of neural phenomena.

In the first section of the general discussion (5.1, Application of transfer entropy
in neuroscience), I will discuss the current state of TE as a measure of information
transfer in neuroscience research, in particular in the light of the improved estimation
techniques presented in Chapters 2 and 3. In the second section (5.2, Future
directions), I will present possible directions for future research. In the third section
(5.3, Application of the proposed methods), 1 will present applications of the proposed
methods in neuroscience and briefly discuss applications of TE outside neuroscience.
I will close the general discussion with an outlook (5.4, Conclusion and outlook).

Application of transfer entropy in neuroscience —
review of the current status

Since its first formulation by Shannon [10], information theory has been adopted
as a tool for data analysis in a variety of disciplines. Also neuroscience has used
information theory to perform a variety of tasks, one of them being the quantification
of information transfer between two sources of neural activity by estimating TE [257].
Today, TE has become an important analysis method in a variety of neuroscience
sub-fields: it is frequently applied to investigate the neurophysiological correlates
of different stages of consciousness [20, 258] and anesthesia [31, 221, 222, 237,
259]; it is used to investigate oscillatory activity in MEG data [22], brain-organ
interactions [19], auditory perception [15], selective attention [260], and auditory
short-term memory [14].
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Yet, the transfer of information theoretic measures from man-made communication
systems to biological, especially neural systems, is not trivial resulting in ongoing
debates about the correct application of TE [75, 261] (see also Chapter 4, The relation
of local entropy and information transfer suggests an origin of isoflurane anesthesia
effects in local information processing), its interpretation [68, 262], and whether
it is justifiable to use information theory at all when investigating information
processing in neural systems [263]. In the following, I will review key problems
in the application of TE in neuroscience research, discuss existing and potential
solutions, and how the present work contributes to solving these problems: I will
first discuss conceptual problems when applying TE to neuroscience data (Section
5.1.1), before I go on to discuss more practical problems when applying TE (Section
5.1.2).

Operationalizing neural information transfer as transfer
entropy—conceptual considerations

Existence of a channel In its original form, Shannon’s information theory is con-
cerned with quantifying information and its communication from a sender to a
receiver over some channel [10]. However, many of the more recent practical
applications of information theory do not concern man-made systems, hence it is
not immediately clear if a channel between assumed sender and a receiver exists
(here, “channel” means any form of physical mechanism that enables the transfer of
information). If no channel exists, TE or other information-theoretic dependency
measures may still be non-zero for reasons discussed below. In these scenarios,
estimated TE has to be considered spurious. Consequently, estimated TE may not
reflect true information transfer and should thus in general not be used to infer the
existence of an underlying channel.

In general, TE may be detected between any two correlated source, irrespective of
whether the correlation is caused by an actual information transfer or by effects third
processes have on the two sources in question (e.g., a common driving input). The
detection of spurious TE due to the effect of third sources may only be prevented
by accounting for all relevant processes in the system (see Chapter 3, A Graph
Algorithmic Approach to Separate Direct from Indirect Neural Interactions). Yet,
accounting for all sources requires the estimation of TE in a multivariate fashion,
which is—when done exhaustively—a NP-hard problem—thus, estimating fully
multivariate TE for arbitrary input sizes is not feasible if P # NP. Consequently, we
can only use approximations when estimating multivariate TE and thus minimize
the risk of detecting spurious TE, as presented in Chapter 3.
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Thus, in practice, the erroneous detection of spurious, bivariate TE due to corre-
lated sources can not be avoided with absolute certainty in multivariate settings—
accordingly, we can not infer the existence of a channel from non-zero TE. More
generally speaking, estimating bivariate TE does not allow for the inference of the
causal structure underlying the transfer of information between multiple sources (see
also next section). Instead, additional methods, targeted directly at the investigation
of causal structure, like tract tracing or dynamic causal modeling (DCM) [214],
should be used. Gathering additional causal evidence, in turn, provides additional
evidence for information transfer, because it infers the existence of an underlying
channel. This approach is presented in detail in Section 5.3.2, Transfer entropy
estimation as preprocessing step in DCM analysis [264], below.

A further potential cause for spurious TE are estimation problems due to limited data
(this problem has practical reasons which will be discussed in more detail in the next
section). In short, estimators of TE or MI come with a finite sample bias (see Section
1.4, Open problems in estimating information processing measures in neuroscience),
hence, non-zero estimates may be due to the bias rather than information transfer.
This problem is solved by using the estimated quantity as a statistic that is tested
against a suitable surrogate distribution to infer the statistical significance of the
estimate.

In summary, non-zero estimates of information-theoretic dependency measures do
occur in the absence of a channel or other means of communication—Ilike for all
correlative measures, it holds for information theoretic quantities that a correlation
does not indicate causation. Thus, in general we can not infer the existence of
a channel—the causal mechanism enabling information transfer—from non-zero
estimates of bivariate TE. Accordingly, we also have to be careful when interpreting
estimated TE as information transfer if no additional knowledge about an underlying
channel exists (e.g., from anatomical studies), or if the potential error due to
multivariate effects has not been minimized.

Transfer entropy is not a measure of causality TE quantifies how much information
we can gain about the next state of a target process, if we not only look at the target
process’s past alone, but also at the past of a second source process. This definition
of TE implements a notion of “causality” introduced by Norbert Wiener [265].
Wiener was the first to formally describe a measure of causality for experimental
observations, also termed “observational causality” [75, 266]; his definition required,
first, temporal precedence of cause over effect and, second, an increase in the
predictability of the effect given the observation of the cause. Wiener’s abstract
idea was later realized by Granger in the form of a statistical, autoregressive model,
the so-called Granger causality [267]. Granger causality has been shown to be
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equivalent to TE for jointly Gaussian variables [103]—hence, both measures are
implementations of observational causality as defined by Wiener.

Accordingly, both TE and Granger causality have been used as measures of “causality”
in the past (see for example [89-91, 268, 269]). Yet, in newer research, competing
definitions of causality have been formulated. These definitions replaced Wiener’s ob-
servational causality by definitions and measures that rely on physical interventions,
i.e., the mechanistic manipulation of causes [118, 270]. Following this definition,
Ay and Polani [118] presented a measure of causal information flow, which relies
on the evaluation on so-called interventional conditional probabilities, p(a|$), where
the “-operator indicates the imposing of the value of s. In the light of this newer
definitions, TE (and Granger causality) can no longer be considered measures of
“causality”, because they do not rely on physical intervention [68, 92, 271]: While TE
quantifies the amount of information “being transferred into the computation taking
place at the destination” [68] and thus quantifies predictive information transfer [68],
causal measures like causal information flow [118] aim at inferring the physical
structure underlying these computations. In the terms of Marr [40], TE is a measure
of computations performed on the algorithmic level, while causal measures are
measures of the physical structure on the implementational level.

Differentiating between these two measures and levels of analysis is highly bene-
ficial for neuroscience research, because it allows for the analysis of two distinct
phenomena: first, physical structure (implementational level), and second, computa-
tional tasks performed on this structure (algorithmic level). Mixing these two levels
when analyzing or interpreting neuroscience data by trying to answer questions on
one level using evidence collected on another level, may lead to erroneous results,
because knowing a system’s physical structure does not reveal which type of com-
putational tasks is being performed on it [68, 272]. Rather, one physical structure
may serve different computational tasks over time. This has already been stated
by Marr [40], who observed that levels hardly constrain each other (see Chapter 1,
Introduction). Accordingly, transferring findings on one level of analysis to answer
questions on another level of analysis may remain speculative and may lead to
erroneous conclusions.

As an example for such erroneous conclusions, one may consider an axonal con-
nection between two neurons, over which spikes are conveyed. It may seem likely
that the connection serves the transfer of information, i.e., without making the
different levels of explanation explicit, it may be self-evident that neurons travel-
ing along the axon (the implementational level) serve the transfer of information
(the algorithmic level). Yet, this conclusion may be false—for example, if the two
neurons are part of a recurrently connected ensemble of neurons, which together
serve the computational task of storing information. Thus, whether spikes traveling
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along an axon serve information transfer or storage is not answered by knowing
the causal structure alone (i.e., the axonal connection and spikes traveling along
this connection). Rather, the computational task being performed on this structure
has to be investigated separately. One approach to accomplish this is by estimating
TE between the two neurons and estimating AIS within the two neurons. If the
connection serves information storage, TE will be zero for a sufficient embedding
because information travels recurrently through the two neurons (the next state in
the target neuron will be perfectly predictable from its own past, so observing the
source neuron does not add to the prediction and no new information is transferred
from the source to the target); furthermore, AIS will be high, because given a proper
embedding, information in one neuron is highly predictable from its own past. In
sum, the transfer of information requires causal interactions [68], yet, the existence
of a causal interaction does not imply information transfer.

An example for an artificial neural network where connections serve information
storage, rather than transfer has been presented in [273]. In the present work,
we further demonstrated the need to differentiate between physical structure and
computations in the analysis of real-world data in Chapter 4, The relation of local
entropy and information transfer suggests an origin of isoflurane anesthesia effects
in local information processing: we showed that a measured reduction in TE under
anesthesia may not be caused by changes in the underlying physical structure, but
in changes in the information processing performed on this physical structure. The
reduction in TE was often explained by changes in underlying coupling in existing
anesthesia research, thus mixing the two explanatory levels of computation and
implementation. However, by distinguishing these levels and by explicitly analyzing
the information processing performed, potential alternative explanations for the loss
of consciousness under anesthesia could be generated.

In summary, in neuroscience, it is fruitful to adopt a definition of causality that
is based on physical interventions and to distinguish measures of causality from
measures of computation. When adopting this distinction, TE is a measure of
information processing and thus a measures of computations. Furthermore—as
discussed in the last subsection—non-causal or correlative measures of TE are not
suitable to infer the existence of a channel underlying information transfer, i.e.,
they are not able to infer the causal structure enabling the transfer of information.
Hence, the independent investigation of the implementational and algorithmic level
provides complementary insights into information processing systems and is crucial
to their understanding.

Investigating neural computation with transfer entropy In the last section, I moti-
vated an independent analysis of computations, i.e., the algorithmic level, in neural

5.1 Application of transfer entropy in neuroscience
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systems. Yet, even though the notion of computation has been widely adapted for
neural systems in the sense that these systems represent and process information,
and that this information processing generates the observable function or behavior
of the system [1, 2, 4, 6], a clear definition of computation and its explicit analysis
is often missing [1, 2, 4]. Instead, neuroscience typically analyzes the implementa-
tional and the functional level of neural systems, aiming to link the findings on both
levels—these links are then often formulated in terms of “neural computations” or
“algorithms” that enable function on the basis of the implementation [2, 44]. Yet, as
already noted by Marr, these levels of explanation pose only little constraints on each
other, such that a transfer of knowledge from one level to the other remains mostly
speculative [40]. Hence, a novel approach to the explicit investigation of neural
computations is needed to understand how neural dynamics give rise to function.
Such an approach requires, first, a definition of computation applicable to neural
systems, and second, methods for the quantitative analysis of computation in neural
data.

As briefly described in the introduction, a definition of computations performed by
neural systems—and biological systems in general—has been provided by Melanie
Mitchell [6], who coined the term biological computation. Biological computation
is described as “massively parallel, stochastic, inexact, and on-going, with no clean
notion of a mapping between ‘inputs’ and ‘outputs’.” [6]. This distributed nature is
the defining property of neural computation, where single agents or arbitrary sub-
systems perform computations independently and in parallel [7]. The computations
performed by single agents may—opposed to computation performed by traditional
computing systems—not be understood in terms of the two most common notions
of computation: (1) the solution of a specific task, where an input is transformed
into an output and both states have a clear mapping to some human-understandable
problem and its solution (e.g., visual input and the recognition of a face from
this input); (2) universal computation, a system that, depending on the input, is
capable of computing any function that is computable by a Turing machine. Mitchell
terms this computation performed by a single agent “intrinsic computation” [7]. An
alternative way to describe or analyze intrinsic computation may be to decompose it
into so-called “generic structural elements”, i.e., the basic information-processing
operations of information storage, transfer, and modification [6]. Decomposing
computation in such a fashion has already been proposed by Alan Turing (see
Langton [5]).

Following the proposal to investigate information processing by quantifying its basic
operations, it has been proposed that information theory provides natural quantita-
tive measures of these operations [9]. Information theory provides a mathematically
rigorous description of information and its processing in a semantics-free fashion.
Hence information-theoretic measures do not require knowledge about the meaning
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of the information being transferred or stored, to quantify the amount of information
being processed. This property is especially desirable when trying to investigate
information processing in distributed systems, because it allows to analyze intrinsic
computation, which may not be describable in terms of function or semantics. The
first comprehensive framework for quantitatively measuring all three information-
processing operations named by Mitchell [6] has been proposed in the form of the
information-theoretic framework of local information dynamics [9].

Information theory has been popular in neuroscience since its formulation by Shan-
non. Attempts to quantify information processing date back to the first application
of information theory in neuroscience by Attneave [53] and Barlow [54], who in-
vestigated the encoding of given stimuli in neural responses of single cells or cell
populations (see for example [55-59] for reviews). Further applications quantified
the entropy of neural signals as an upper limit to the information about a stimulus
that can be transferred by a neural signal (e.g. [274]). These early applications of
information theory are however limited to the analysis of neural representations of
external stimuli and—in terms of Marr’s framework—tried to link the implementa-
tional level (spike trains) to the functional level (representing objects in the external
world). Only newer applications extended the application of information theory
beyond the analysis of neural representations and began to investigate information
processing in neural populations more directly, for example, by deriving dependency-
measures between activity in individual neural sub-systems [13, 23, 60]. A further
prominent example for the application of information theory to investigate neural
computations is the formulation of the Infomax principle [61-63, 275]. Infomax pro-
poses a generic algorithm for cortical information processing; it states that the brain
aims at maximizing the MI between its sensory input and internal representation,
while maximizing the efficiency of this representation (minimizing redundancy).
Here, information theory is used to formulate an algorithmic description of neural
activity.

In contrast to these earlier applications of information theory in neuroscience, the
framework of local information dynamics [9] presents a comprehensive approach
to the quantification of generic information processing operations. For example, in
comparison to the Infomax principle, the framework allows to quantitatively describe
information processing, while, the Infomax principle explains neural function using
information theory, i.e., in the latter application information theory is used as a
“normative theory” [276]. The framework of local information dynamics in contrast
can thus be used to define how any neural computation should be reflected by its
information-processing profile (e.g., is information storage in a sub-system expected
to be high, given a certain algorithm); this in turn allows to formulate testable
hypotheses about the dynamics of information processing measures. Hence, local
information dynamics allows to formulate constraints under which an arbitrary
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algorithm is performed by a system—this approach has successfully been applied to
artificial systems like cellular automata [11] or boolean networks [277]. It has since
been proposed to transfer this approach to neural systems [8].

We provided a first demonstration of how this approach can be applied to neural
systems in a recent study [278], where we applied the measures proposed by Lizier
[9] to investigate neural computations, following the theoretical considerations of
Mitchell [6] and Wibral et al. [8]. We used local versions of AIS and TE to investigate
the “algorithm” governing the information processing at the retinogeniculate synapse
of the cat. We tested two alternative algorithms by formulating hypotheses about
their respective information processing profiles.
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Fig. 5.1 Predictive coding theory. Schematic representation of predictive coding theory (PCT, see
also main text): The brain tries to infer the high-level causes of its sensory input in the
outside world (gray circles). It accomplishes this by building an internal, hierarchical model
(white boxes), from which—on each level—it tries to predict incoming input (see also
[236]). The model is refined by matching actual input (red arrows) against predictions
(green arrows). Within this hierarchical model, lower areas generate predictions about lower
level input, while higher levels generate predictions about higher-level input.

The assumed algorithms were derived from predictive coding theory (PCT, Fig. 5.1),
which is arguably, the most comprehensive theory on brain function today [3, 235,
279]. PCT tries to explain how the brain solves the problem of representing the
external causes of its sensory input. The difficulty of this task lies in the fact that
the brain never has direct access to these causes, but only to their effects—namely;,
the neural signals generated at the sensory organs. PCT proposes that the brain—
instead of trying to reconstruct the causes of the sensory signals—tries to predict
signals generated in the future. The basis of this theory is that natural input exhibits
statistical regularities, which are reflected in the generated sensory signals. These
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regularities are learned by the brain to build an internal model of the world. From
this model, the brain generates predictions about future input. Predicted and actual
future input are then compared to further refine the internal model with the goal of
minimizing the error in the prediction. For this abstract idea of error minimization
as a computational goal of brain function, several concrete realizations have been
proposed. These realizations differ in how the brain updates its internal model when
comparing prediction and actual future input (Fig. 5.2B): either, on the basis of the
mismatching features (e.g., [280-282]), or on the basis of the matching features (e.g.,
[283-285]). Both realizations have been shown to be equivalent in terms of the
computational task they solve—the minimization in the error between prediction and
input [286-289]. The two realizations only differ in the signal that is propagated up
the cortical hierarchy: the signal either represents predicted or unpredicted features
of the input. Hence, even though evidence for predictive coding has been found
on the behavioral (e.g., [282]) and the implementational level (e.g., [236]), none
of these findings could resolve the conflict in theories of how this mechanism is
realized algorithmically. In our study, we aimed at solving this conflict by directly
investigating the algorithmic level by quantifying the information processing at the
retinogeniculate synapse of the cat.
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Fig. 5.2 Realization of predictive coding theory in cortex (adapted from [290]). Possible algo-
rithms realizing PCT in the cortex: Grey boxes denote cortical areas A; and As. A; receives
bottom-up input from a lower processing stage in the hierarchy and top-down input from
As, which is higher in the processing hierarchy. A; compares predictions coming from A,
against actual input. Two theories describe how this comparison is used to refine the model
and predictions in area A,: propagation of the prediction error, where non-matching input
is communicated up the hierarchy (red bars and arrows); and propagation of the predicted
input, where matching input is enhanced and communicated up the hierarchy (blue bars
and arrows).
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To test the two potential algorithms against each other, we formulated hypotheses
about the information processing resulting from either of the two algorithms [278]:
if predictable features of the synapse’s input were predominantly transferred up
the cortical hierarchy, transfer should be high when predictability was high; if non-
predicable features of the input were predominantly transferred, transfer should
be high when predictability was low. We measured transfer and predictability with
local versions of TE and AIS, respectively. We hypothesized that by evaluating the
correlation between local AIS and TE, the two algorithms should be distinguishable.
We found a positive correlation in all investigated cell pairs, indicating that transfer
was higher when predictability was high—hence favoring a transfer of predictable
input. We thus demonstrated how information-theoretic measures of information
processing can be used to directly investigate computations in neural systems and to
infer constraints on the algorithms being performed.

Formulating testable hypotheses about the neural computations performed is a
promising alternative to existing approaches to the investigation of neural computa-
tions in the context of PCT. These existing approaches were criticized by De-Wit et al.
[291]: the authors discuss a study by Alink et al. [292], who aimed to demonstrate
the transfer of mismatching over the transfer of matching input by investigating
neural correlates of violated predictions using functional magnetic resonance imag-
ing (fMRI). The authors tried to generate a mismatch between assumed prediction
and actual input, and analyzed the neural dynamics accompanying the thus gen-
erated “prediction error”—yet, as De-Wit et al. [291] point out, the interpretation
of neural activity as an error or confirmed prediction is, in principle, a circular
argument, because the interpretation depends on the a-priori point of view, about
what the brain should predict, which is then experimentally “validated”. Whether
the observed neural activity actually represents a mismatch or match is not clear
from the recorded data or quantities computed from it [291]. In their study, Alink
et al. [292] thus attempted to interpret findings on the implementational level in
terms of their functional meaning [291]. This approach to the interpretation of
findings on the implementational level is common in neuroscience (e.g., our own
study, [238]), however, it contradicts the theoretical considerations described earlier:
first, computations performed by neural systems, especially arbitrary sub-systems,
may not be describable in terms of a human-understandable computation [4, 6, 71;
second, phenomena on different levels of explanation may hardly constraint each
other, such that findings on one level do not increase our understanding of another
level [40, 44]. Here, the direct investigation of neural computations, demonstrated
in [278], may be a promising alternative.

In summary, the application of information-theoretic measures to formulate and test

hypotheses on information processing necessary to perform assumed computations
in neural systems is a promising approach to investigate the algorithmic level of

Chapter 5 General discussion



neural systems. Information theory as a tool to investigate generic computational
operations may provide ways to directly investigate computations in neural systems,
an approach that has been claimed to be missing in neuroscience research [2, 4]. In
particular, the definition of biological computation by Mitchell [6], together with
the framework of local information dynamics by Lizier [9] provide a comprehensive
approach to the analysis of neural computation, which has been applied to a variety
of systems, i.a., neural systems [278]. Future research should aim at extending the
application of information theory and local information dynamics in neuroscience to
gain a broader understanding of neural computations.

Utilization of transferred information When quantifying information transfer in a
neural system by estimating TE, we typically make the implicit assumption that the
receiver of the information (e.g., a single neuron) makes use of the whole amount
of estimated information transfer; in other words, we assume that the numerical
value of information transfer we estimate is actually what the receiver utilizes for its
local computation. Yet, this is not necessarily the case in neural systems, especially
under experimental conditions: here, the probability density functions estimated
from data collected during an experiment may differ from the natural probability
density functions that the receiver learned under natural conditions over its lifetime
[293]. Accordingly, TE calculated from distributions estimated during an experiment
may over- or underestimate the information truly usable by the receiver.

To illustrate this, assume that we quantify information transferred by spike trains
traveling from a source neuron X to a target neuron Y. The transfer of informa-
tion is quantified by estimating TE as I(Y;; X!_,|YF ;) (Eq. 1.9), where informa-
!

tion is transfered from a realization x!_,, to a realization y;, if p(yn|y¥ 1, x}_,) >
p(yn|y¥ ), i.e., information is transferred if it is more likely to observe outcome
yn after observing outcomes x._,, y¥ , together, than observing y,, after observ-
ing y¥ , alone. The amount of information transferred depends on the fraction
p(ynlyt 1, %) /p(ynlyF 1) and its weighting by the joint probability p(yn, X,—u,
yn—1). Hence, the amount of information transferred depends on some reference
distribution p(-) from which the conditional probabilities and the weighting factor

are derived.

The reference distribution is encoded in the target neuron(s) [293] (see [294] and
[295] for potential encoding mechanisms for single neurons and neural popula-
tions, respectively) and is typically unknown when estimating TE from experimental
data. Hence, probabilities entering TE estimation have to be estimated from exper-
imental observations to obtain p (4., Xn—u, Yn_1)> D(¥n|y¥ 1, %\ _,), and p(yn|yF ;).
Accordingly, only states occurring under experimental stimulation and their observed
frequencies enter the estimated distributions. The estimated distributions may thus
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differ from the Neuron’s true or “natural” reference distribution, p,.(-), formed
by biological learning from natural inputs over the neuron’s lifespan [293]. As a
consequence, the estimated distributions, p(-), may differ substantially from the
true distributions under p,q(-), leading to differences in the amount of information
transfer estimated and the amount of information transfer actually “seen” by the
target neuron.

To solve this problem, the distributions used to evaluate TE may be estimated from
samples collected under natural stimulation of the neuron to obtain an estimate of
the natural reference distribution, p,..(-), yielding the so-called neurally accessible
information transfer [293]. p,q:(-) may then be used to evaluate the data collected
during an experiment by using pn.:(-) to evaluate the probability of individual
experimental outcomes weighted by their probability to occur during the experiment,
yielding the neurally accessible TE
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The necessity to quantify neurally accessible information has also been recently
formulated by De-Wit et al. [4]: the authors criticize that often, neuroscience research
focuses on how neural activity can be interpreted by the experimenter (termed the
“experimenter-as-receiver” perspective), instead of focusing on how information
encoded in this activity is used by computations in other cortical areas (termed
“cortex-as-receiver” perspective). The latter perspective may be more relevant to the
understanding of neural computations. Measuring neurally accessible TE implements
this perspective, because it aims at quantifying the amount of information other
cortical areas can utilize instead of quantifying information transfer with respect to
the experimental condition alone.

Yet, also the estimation of TE from purely experimental data is legitimate as an
approximation of the neurally accessible TE [4, 293], while its estimation may
be more feasible in practice. How well the experimental TE approximates the
neural accessible TE depends on the ecological validity of the experiment—i.e.,
whether the frequencies of neural states occurring during the experiment mirror the
frequencies of their occurrence under natural stimulation. In sum, estimating TE
from experimental data alone is justified, yet, using approaches like the one proposed
by Wibral et al. [293] may provide additional insight into neural computations.
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Alternative measures of information transfer Above, I discussed that TE is equiva-
lent to Granger causality for jointly Gaussian variables [103]. Granger causality is
thus a measure of information transfer, imposing a linear model on the measured
interaction. This raises the question, whether information transfer may be quan-
tified by other measures of statistical dependency than the implementation of TE
used in this work—measures that may have more desirable properties, like less
computational demand or less requirements in term of data size.

In general, measures of statistical dependency may be categorized into two classes:
directed and non-directed measures of dependency (see for example [296] for a
“taxonomy” of measures; see also [297-299] for reviews). The class of non-directed
measures includes linear as well as non-linear measures of dependency. These
measures have been used in the past in early attempts to quantify information
transfer between two processes, X and Y: for example, MI and lagged MI have
been used to quantify the dependency between two neural areas (e.g., [300-302]).
However, MI—like all non-directed, correlative measures—is a static measure of
information shared between two processes; hence, this shared information does not
have to be the result of a transfer of information, but may also be the result of a
common driving input or inner dynamics that are similar. This problem holds for
all non-directed dependency measures. In an attempt to tackle this problem, the
lagged ML, I(X;_,;Y:), was introduced. However, also the lagged MI will not reveal
the full information transfer in cases, where information transferred from X to Y
is mostly synergistic [23] (see also [303] for a practical comparison of lagged MI
and TE). Also, in bidirectionally coupled systems, the lagged MI and other measures
of cross-correlation may be hard to interpret, because of multiple, significant peaks
in these measures for both directions of interaction [296]. In sum, non-directed
correlative measures are ill-suited to measure the transfer of information because
they fail to model the sender-receiver relationship of information transfer.

In contrast to non-directed measures, directed measures explicitly model the sender
and the receiver of information transferred, when estimating the dependency be-
tween two processes. Amongst these directed measures, TE (and also Granger
causality) are the most popular measures of information transfer, because they
explicitly quantify how much information from a source process X is used in com-
puting the next state of a target process Y'; in other words, TE and Granger causality
quantify the influence of X on the transition probabilities of Y [12]. This influence
is quantified by estimating the mutual information between the past of X and the
present value of Y while conditioning on the past of Y—in doing so, both measures
introduce a directional aspect and allow to infer which of two interacting processes
is the sender and which the receiver of the information transfer, or if information
transfer is bidirectional such that both processes send and receive information.

5.1 Application of transfer entropy in neuroscience
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The difference between TE and Granger causality is that Granger causality imposes
a linear model on the dependency between two processes, while TE is model-
free. The linearity-assumption underlying Granger causality makes its calculation
computationally less demanding and thus attractive as an alternative measure
of information transfer. However, even though Granger causality is the preferable
method if linear interactions can be expected, linearity can in general not be assumed
for neuroscience data. We discussed this limitation in Section 2.5.5, Relation of the
ensemble method to other measures of connectivity for non-stationary data. Hence, for
neural data, linear approaches like Granger causality and derived measures (e.g.,
the directed transfer function [304] or partial directed coherence [305]) may fail in
the detection of non-linear information transfer.

A further alternative to measuring information transfer with TE is the use of symbolic
TE. Symbolic TE is often used because—like Granger causality—its estimation is
computationally less demanding. However, as discussed in Chapter 4, The relation
of local entropy and information transfer suggests an origin of isoflurane anesthesia
effects in local information processing, symbolic TE fails in some cases, where data
discretization destroys important information about neighborhood relationships (see
also [75]). Hence, TE in its original formulation is preferable over symbolic TE for
continuous data in most application scenarios.

Further alternative directed information-theoretic measures been proposed for mea-
suring information transfer. Two examples are the momentary information transfer
and the directed information. However, momentary information transfer has been
shown to fail to identify the correct information transfer delays in some cases [75,
257], while directed information has been shown to be equivalent to TE when
applied in practice [257].

A last class of alternative measures of information transfer are measures investi-
gating neighborhood-relationships in the reconstructed state spaces of observed
systems. Measures include convergent cross mapping [306, 307] or generalized
synchronization (e.g., [308]). These measures seem promising for the application
in neuroscience—for example, an implementation of convergent cross mapping
introduced in Schumacher et al. [307] models the influence of an unobserved global
driving system on information transfer. This assumption may address the problem
of unobserved sources, often present in neuroscience research. Yet, these measures
are novel and have been so far less often applied than TE—hence it remains open
whether their application is feasible in neuroscience research.

In summary, TE estimated from continuous data is the most robust estimator of

information transfer in neuroscience today (see simulation studies in [84, 268]).
Other measures of dependency are conceptually different and do not measure
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5.1.2

information transfer in the sense of Wiener’s principle of predictive information
transfer [68, 265]. They may also fail due to methodological problems. The current
practical drawbacks of TE estimation, for example, its high computational demand,
may be improved by novel estimation techniques; these problems and potential
solutions are discussed in the next section.

Practical problems in the estimation of transfer entropy

When estimating TE from experimental data, not only conceptual, but also practical
problems arise. In the following I will review the most pressing of these problems
and discuss potential solutions.

Estimator bias and bias-correction methods Central to the inference of TE from
experimental data is the choice of a suitable estimator of entropy or MI. The quality
of an estimator is judged by its bias-properties, variance, and consistency (see Section
1.4, Open problems in estimating information processing measures in neuroscience).
Also—specifically when estimating TE or AIS using an embedding to represent
past states—a further criterion is the estimator’s ability to perform well on high-
dimensional data. These requirements have to be considered when choosing an
estimator to obtain valid and robust estimates of information-theoretic quantities.

The listed requirements are met by the KSG-estimator for MI used throughout the
present work. The KSG-estimator is an estimator for continuous data, which was the
data type primarily investigated in the present work (MEG recordings and LFPs), and
is a data type frequently encountered in neuroscience research. Amongst continuous
estimators for MI, the KSG-estimator shows the most favorable bias properties [83,
84], is sensitive to small dependencies in noisy data [75], performs well on high-
dimensional data [85], and showed to be consistent in simulation studies [85, p. 25]
(see also [90])—however, its consistency has not yet been formally proven. Overall,
in simulation studies the KSG-estimator has performed well in comparison to other
continuous estimators across various data sizes and noise levels [84]. The estimator
relies on the setting of one parameter only, namely, the number of nearest-neighbors
k, while being relatively robust against various values of & [83, 261, 309].

A downside of the KSG-estimator is its bias that is not analytically tractable. Through
simulation studies, it has been demonstrated that the bias depends on the dimen-
sionality of the data d, the number of the nearest neighbors k, and the number
of samples N [85]; also bias and variance are reciprocally influenced by k, where
smaller values for & lead to smaller bias and larger variance, while larger values lead
to smaller variance and larger bias [84, 85]—vet, a functional relationship between
these parameters and the bias could not be established [85].

5.1 Application of transfer entropy in neuroscience
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A consequence of the intractability of the bias is that no correction exists, such
that obtained estimates can not be interpreted at face value. Instead, estimates
are commonly used as a statistic and tested for their statistical significance [13,
101]. Such a test requires the bias to be constant over all sets of data tested against
each other, such that differences in the estimates can be attributed to differences in
information transfer rather than to differences in estimator bias. The bias can be
held constant by using the same estimation parameters (see last paragraph) for the
estimation in each group.

When testing estimates for their statistical significance, two tests are common [86]:
first, estimates can be tested for statistical significance under a null-hypothesis of no
information transfer, by testing them against estimates from surrogate data; second,
estimates from two or more sets of data can be tested for significant differences by
comparing them against each other. Tests are usually performed as permutation tests,
because estimated TE values are not known to follow a certain distribution [13].
Surrogate data for permutation testing are typically created by shuffling realizations
X;—, against realizations of (y;, y;—1) to keep dynamics within processes intact, while
breaking up the dependencies between processes [86, 101]. Testing estimates for
their statistical significance instead of interpreting them directly, shifts the research
question from quantitative to qualitative—instead of quantifying the precise amount
of information transfer, it is asked if information transfer is higher in one group over
the other, or if information is transferred at all. For an example application of a
permutation test between groups of data, see [21].

Next to the remaining bias, an important limitation of the KSG-estimator (but also
other continuous estimators of MI) is its high demand in data and computing time
(see also Chapter 2, Efficient transfer entropy analysis of non-stationary neural time
series). Due to these limitations, studies often revert to discretization of continuous
data to apply discrete estimators, which require less data and computing time.
However, as discussed in Section 4.4.4, Estimation of information theoretic measures,
the use of discrete estimators should be avoided, because the necessary discretization
of continuous data causes data-loss, namely, the loss of neighborhood-relationships
between samples. Furthermore, discrete estimators also have unfavorable bias-
properties—it has been shown that the maximum likelihood or plug-in entropy
estimator is negatively biased, albeit consistent, while the MI estimator has a positive
bias [310]. Even though various bias-correction methods have been proposed (see
[311] for a review), bias-problems remain, especially in the so-called under-sampled
regime, where N < |A|. Simulation studies showed that in the under-sampled
regime bias-corrected plug-in estimators as well as the Bayesian NSB-estimator
showed a bias when estimating MI [57, 274]. Only in the asymptotic sampling-
regime, where the number of observations is close to the alphabet size of the sampled
variable, estimates approached the true value. Here, estimators required a number of
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samples N > 2 — 4 - | A| to obtain unbiased estimates [274]. Such a sample size may
not always be obtainable in neuroscience experiments—this is especially the case
when estimating information-theoretic measures using state-variables, for which the
alphabet size grows exponentially in the state’s dimension.

In conclusion, the KSG-estimator provides a powerful approach to the estimation
of TE from noisy data when its practical limitations are accounted for. It has
often been applied in neuroscience research [14, 18-22, 312] and implementations
in numerous software packages exist [86, 87, 313]. The estimator’s limitations
have to be carefully considered: for example, because of the intractable bias, it
excludes the ability to quantify the exact amount of information transfer, which
may be desirable to relate different information-theoretic measures (as discussed in
Chapter 4); furthermore, the estimator requires a considerable amount of data to
obtain reliable estimates. Here, novel developments such as the Bayesian estimator
proposed by Nemenman et al. [225] (see also [226]), as used in Chapter 4, The
relation of local entropy and information transfer suggests an origin of isoflurane
anesthesia effects in local information processing, promise an alternative approach
that yields interpretable values. Yet, further research is needed to establish the
bias properties of this estimator (see [274]) and to provide recommendations for
parameter settings, e.g., for the discretization of continuous data. Here, data loss
has to be balanced against feasible alphabet sizes, such that important information is
retained while a proper sampling of variables is guaranteed (see also Section 4.4.4,
Estimation of information theoretic measures). In the application presented in Chapter
4, KSG- and NSB-estimators showed qualitatively similar results, indicating that the
NSB-estimator may be a viable alternative to the estimation of information-theoretic
measures in future research.

Monotonicity of used estimators As discussed in the last subsection, the bias of
the KSG-estimator is typically handled by using estimates as a test-statistic in a
comparison between groups of data. Here, the question asked shifts from precise
estimates to relative statements about information transfer in two or more groups.
This approach tacitly assumes that estimates are monotone in the strength of the
dependency, i.e., stronger dependencies will result in higher estimates and vice
versa, such that the order of dependencies is preserved in the order of the respective
estimates. Yet, this assumption may not hold for the KSG-estimator.

In a recent study, Gao et al. [314] demonstrated that the relationship between
the dependency in the data and estimates from the KSG-estimator is potentially
non-monotone. The authors showed that the KSG-estimator demands exponentially
more data to correctly estimate stronger relationships between two variables (given
constant dimensionality d and a number of nearest neighbors k£ > 1): the estimator

5.1 Application of transfer entropy in neuroscience
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required a number of samples N > Cexp (Isf_)f> + 1, where C = exp(—%) to

approximate the true MI (i.e., |[xsq r(x) — I(x)| < €). Thus, for two sets of data of
equal size and a sufficient difference in the true MI, the error of the KSG-estimator
may be higher for estimates of the higher MI, than for estimates of the weaker
MI. This may be problematic when comparing the estimates from groups of data
if the error in the estimate of a stronger dependency overlaps with the estimate of
a weaker dependency—in such a case, stronger dependencies may not necessarily
result in higher estimates of MI.

Gao et al. [314] furthermore introduced an algorithmic correction for the estimator
bias—yet, their solution is computationally costly. Thus, before adopting this solution,
further research and simulations are needed to determine the impact of the bias on
neuroscience data. Here, dependencies may be typically weak enough such that the
available data sizes are sufficient to not suffer from estimation bias due to stronger
true dependencies. Gao et al. [314] provide theoretical and empirical lower bounds
for N for different values of I, where 100 to 1000 samples were sufficient to estimate
a MI of 2.5 nats or approx. 3.6 bit. Hence, if the true dependency is weak such that
sufficient data can be obtained, the bias in the estimate is not dependent on the
strength of the dependency (but only determined by the choice of %, d, and N, see
last section). Also, the KSG-estimator is especially suitable to detect independence
[85]; other estimation techniques may be more suitable to distinguish the strength of
dependency between groups. One may first test for a deviation from independence
with the KSG-estimator and, in a second step, test for a difference in the strength of
dependency with another estimator, e.g., the NSB-estimator [225, 226].

Required data sizes To robustly estimate TE from finite data it is important for
the collected samples to contain a sufficient amount of realizations of each involved
random variable. Yet, it may not be clear what number of realizations is sufficient
if—as is often the case in neuroscience—the ground truth is unknown. In theory,
a sufficient amount of samples is defined such that, first, observations cover the
whole process of interest, i.e., span the whole attractor of a dynamical system or its
“characteristic period”; second, the sampling rate should be high enough to capture
relevant high-frequent features of the system, i.e., the sampling rate should be
higher than the Nyquist rate [84]. Even though these criteria provide a theoretical
basis for defining what amount of data is sufficient for reliable estimation, they
may be difficult to evaluate in practice—as for neural processes this ground truth
is unknown. Here, data obtained from computational models may help to validate
measures like TE, but respective frameworks just begin to evolve [315]. In the
present work, we used the reconstructed delay u as a criterion for the exactness of
estimated values (Section 2.4.5, Evaluation of the robustness of ensemble-based TE-
estimation), given different amounts of data; here 10 000 data points collected from
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two coupled Lorenz systems, sampled at 1000 Hz, were required for a sufficiently
accurate reconstruction.

Obtaining several thousand samples in the observation of a single process is dif-
ficult in neuroscience, because processes are typically non-stationary and evolve
on a millisecond time scale (see Chapter 2, Efficient transfer entropy analysis of
non-stationary neural time series). Typical sampling rates range from 600 Hz to
1200 Hz such that only a few hundred samples can be recorded from a process
of interest; also, processes may only be stationarity within short time-windows.
The present work provided a practical solution to this problem by presenting an
efficient implementation of the ensemble method proposed by Gomez-Herrero et al.
[24] (Chapter 2). The implementation allows to efficiently estimate TE—or other
information-theoretic measures—from an ensemble of temporal repetitions of a
process. The ensemble estimation increases the amount of available samples per
estimate by the number of repetitions, which drastically improves the robustness
of the estimate and allows the estimation from small data-windows. Furthermore,
the implementation allows to estimate measures from short time-windows in which
stationarity can be assumed. As an example, in human studies the length of an exper-
iment is designed such as to prevent tiring of the subject; here, the application of the
ensemble method can increase the number of available data points for estimation
by an order of magnitude. Respective applications of the method are described in
Sections 5.3.1, Transfer entropy in resting state networks under ketamine [21] and
5.3.3, Transfer entropy estimation during a face-recognition task [316], below.

The required data size when estimating TE and also AIS also heavily depends on the
dimensionality of the variables used, which in turn depends on the embedding of the
past states in both measures. For discrete variables, higher embedding dimensions
lead to an exponential increase in the alphabet size, |Ax| = O(b’) (where b is
the base of the discrete random variable X and j is the embedding dimension).
Increasing j and thus | A x| while keeping N fixed leads to an under-sampling; for
an example, see Fig. 5.3, where AIS estimates are plotted as a function of history
length j: in general, after an initial increase and saturation in AIS, AIS begins to
slowly increase again, indicating the onset of overestimation of AIS with a plug-in
estimator due to increasing under-sampling.

5.1 Application of transfer entropy in neuroscience
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Active information storage (AIS) as a function of history length ;j, modified from [30].
AIS estimates are shown for different rules for elementary cellular automata. The dashed
line indicates the history length for rule 110, for which the majority of the information
storage seems to be captured (5 > 7) according to [30].

For continuous data, higher embedding dimensions lead to similar estimation prob-
lems: when using nearest-neighbor estimators like the KSG-estimator, higher em-
bedding dimensions lead to higher-dimensional search spaces for nearest-neighbor
searches. High-dimensional search spaces may lead to searches becoming “unstable”
(this may already be the case for d > 15) [317]. A neighbor search becoming
unstable means that the differences in distances between a query point and most
other points approach zero—making the concept of a nearest neighbor meaningless;
more formally, “a nearest neighbor query is unstable for a given ¢ if the distance
from the query point to most data points is less than (1 + ¢) times the distance
from the query point to its nearest neighbor” [317]. A further consequence of
high-dimensional spaces is an increase in the required amount of data, i.e., the data
needed to “fill” a space increases exponentially in the number of dimensions until
the space becomes virtually empty for a very high number of dimensions [318].
These effects of a high number of dimensions on neighbor searches are also called
the “curse of dimensionality” [318, p. 33].

To reduce the problems due to high-dimensional data, embedding schemes that
lead to sparse, yet, maximally informative past state vectors should be used. In the
present work, we used a uniform embedding with an embedding delay 7 to be able
to cover a relatively long history while not including all samples up to the sample
furthest in the past. Future work may use more flexible embedding schemes as,
for example, non-uniform embedding proposed by Faes and colleagues [319]. In
non-uniform embedding, a candidate set of past samples is defined (e.g., all samples
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from n — 1 to samples at maximum lag of n — k;,4,). Each of these samples is
then iteratively tested for a significant contribution in information about the target’s
present at time n, conditional on all samples already included in the embedding
vector. In an average-case scenario, this scheme may produce more sparse and
hence lower-dimensional embedding vectors (see also Section 5.2.2, Multivariate
approaches to the estimation of transfer entropy below).

Stationarity and (truly) local transfer entropy As discussed in the last paragraph,
the estimation of information-theoretic quantities requires a sufficient amount of
realizations to estimate underlying probability distributions. In practice, these
realizations are often collected over time, that is, by pooling data over an observation
period assuming stationarity. However, stationarity can often not be assumed in
neuroscience processes, hence, we introduced the ensemble-method for estimating
information-theoretic quantities from an ensemble of repetitions, which allows for
the estimation from short temporal windows (Chapter 2).

Being able to estimate information-theoretic measures from an ensemble allows
to estimate from time-windows that are arbitrarily small (given the ensemble is
sufficiently large). Hence, the approach allows for a time-resolved estimation of
information-theoretic quantities, where—in the extreme case—the resolution can be
set to produce sample-wise estimates. Sample-wise estimates—as discussed in Chap-
ter 2—enable the estimation ofso-called local measures of information processing

[9].

Local measures of information processing are measures that quantify information
storage or transfer locally in time or space, i.e., for individual samples [9]. It has
been shown that these measures have meaningful interpretations in their own right
and that they can be calculated by evaluating AIS and TE for individual realizations
of the involved random variables (see [9] for the full derivation of this relationship).
Local activity information storage (LAIS) is then written as (cf. Eq. 1.12)

J
LAIS(X,n,j) = lim log, P15 Tn) (5.2)

J—roo P(sz—ﬂp(%)

and local transfer entropy (LTE) is written as (cf. Eq. 1.9)

p(ynlxt .y yE 1)
p(ynlyE_1)

LTEspo(X — Y,n,u, k,1) = lim log (5.3)
—00
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When estimating local measures, like for the estimation of their non-local counter-
parts, probability density functions p(-) have to be estimated from multiple real-
izations of the random variables in question. If probability density functions are
estimated from realizations pooled over time (assuming stationarity), local measures
become non-local in the sense that their estimation relies on realizations collected
from different points in time. In contrast, if instead of temporal pooling ensemble-
estimation is used, local measures become “truly” local because then their estimation
relies on local realizations only.

Being able to compute truly local measures of information processing from neuro-
science data allows to quantify the dynamics of information processing over time,
and thus adds an important aspect to the investigation of neural computation (see
for example the application in Wibral et al. [278], discussed above).

Common input and other multivariate effects A major practical problem in the
estimation of TE in neuroscience is the estimation of TE between more than two
processes that interact in a multivariate fashion. These multivariate interactions
comprise of common drive effects, cascade effects, and synergistic information
transfer from two or more sources to a target (see also Chapter 3, A Graph Algorithmic
Approach to Separate Direct from Indirect Neural Interactions). The detection of these
interactions requires a fully multivariate approach to the estimation of TE—yet, such
an approach is computationally complex, hence, often bivariate TE between all pairs
of processes is estimated as an approximation. When taking this approximative
approach (as was done in the present study), two classes of errors have to be
expected: first, the detection of spurious information transfer between sources that
are correlated due to common drive and cascade effects (see Chapter 3 and Section
5.1.1); second, the failure to detect synergistic information transfer from two or
more sources to a target.

Errors of the first class, i.e., spurious bivariate TE, can be partially corrected for. We
presented such a correction in Chapter 3, and discussed further correction methods.
These corrections increase the validity of TE as a measure of information transfer.
Yet—as the underlying problem of inferring the true multivariate interactions is NP-
hard—we can not hope to find an exact solution to the inference of multivariate TE
in all but the smallest problem instances in polynomial time if P # NP. Accordingly,
we can not be sure if bivariate TE estimated from observational data is non-spurious
and does represent true information transfer; rather, we can only decrease the
probability of detecting false positives.

Errors of the second class, i.e., failure to detect synergistic information transfer, are
not as easily corrected for post-hoc. The detection of synergistic information requires
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the simultaneous consideration of multiple sources when estimating information
transfer. Hence, detecting synergy necessarily requires the estimation of some form
of multivariate TE. Since a fully multivariate approach is not feasible, because of its
computational complexity, approximative solutions have to be developed. Hence,
future efforts should aim at improving existing approximations of multivariate TE
(presented in Chapter 3). I will discuss potential future developments in Section
5.2.2, Multivariate approaches to the estimation of transfer entropy, below.

Information transfer delays In practical applications, the physical transfer of infor-
mation between two processes requires time, causing a delay ¢ between information
leaving the source process and arriving at the target process. For example, in neural
systems information is transferred by spike trains traveling along axonal connections
with specific conduction velocities. Hence, when estimating TE, the delay between
source and target process has to be accounted for, such as to not underestimate
information transfer (discussed in Chapter 4).

The problem of accounting for § was solved by extending the original TE-functional
by a delay parameter w [75]. This parameter accounts for the delay between
informative observations in the source’s past state and the target’s present [75] (see
also Eq. 1.11 in Section 1.3.1, Transfer entropy and Section 4.4.4, Estimation of
information theoretic measures). An optimal value for u can be found by estimating
T Espo using a range of candidate values, and using the « that maximizes T Espo
(see Eq. 1.11); this u then reconstructs the true delay ¢, given the true delay is
amongst the candidate values.

Optimizing u when estimating TE from experimental data is crucial to avoid the
underestimation of TE (discussed in Section 4.4.4, Estimation of information theoretic
measures). Furthermore, the detection of the primary direction of information trans-
fer hinges on optimizing u for both directions of information transfer independently.
In sum, the information transfer delay should always be taken into account when
estimating TE in practice.

Optimization of embedding parameters Lastly, when estimating TE and AIS past
states have to be accounted for by constructing an embedding from the variables
in the past of the process under investigation. We discussed the impact of under-
embedding of past states in Chapter 4, The relation of local entropy and information
transfer suggests an origin of isoflurane anesthesia effects in local information processing,
namely, the under-estimation of TE or AIS, and—for TE—the detection of spurious
information transfer in the wrong direction. Optimization procedures to construct
past states exist (e.g., [74, 133]) and have been discussed in Chapter 4 as well as in
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this section—these optimization procedures should always be chosen over ad-hoc
choices for embedding parameters.

Summary

I have discussed conceptual and practical problems in the operationalization of
neural information transfer as TE. In summary, TE is a robust measure of informa-
tion transfer in neural systems; it has been established as a measure of (neural)
information processing and as such directly targets a level of analysis that has to be
distinguished from levels of causal and functional analysis, but has been addressed
rarely. TE thus fills an important methodological gap in the analysis of neural systems
and information processing systems in general.

The estimation of TE from neural data is non-trivial—it requires the prior opti-
mization of delay and embedding parameters, as well as the careful evaluation of
available data in terms of sample size, stationarity, and dimensionality. Optimization
procedures for these parameters exist and have been discussed extensively in the
present work. If data requirements are met, estimators such as the KSG-estimator
provide a robust way of estimating TE from neural data, while being virtually
parameter-free and exhibiting favorable bias-properties that are controlled for by
permutation testing. The present work provided an important contribution to the es-
timation of TE by presenting an efficient implementation dealing with non-stationary
data. Emerging alternative estimators like the Bayesian NSB-estimator may further
improve the estimation of TE in the future, especially in the asymptotically- and
under-sampled regime.

A problem that remains partially open are multivariate effects when estimating
information transfer from neural data—despite the correction method proposed
in the present work and by others, not all multivariate effects, e.g., synergistic
information transfer, are considered by current estimation methods. Here, more
research is needed to extend existing multivariate approaches.

Future directions

In the last section, I discussed how the present work improved the estimation and
interpretation of TE in neuroscience research. In the following, I will point out
directions for future research.
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5.2.1 Quantification of information modification and its relevance to
the interpretation of transfer entropy

As described in Chapter 1, Introduction, measures of information transfer and storage
are theoretically well-defined in the framework of information theory [9]; however,
for information modification an equivalent definition and measure is lacking. Finding
such a measure is desirable in neuroscience, because it would allow to quantify the
third of the three proposed building blocks of computation, information transfer,
storage, and modification [5, 7]. Taken together, these measures would allow to fully
describe how the next state of a system is computed from information transferred
into the system, information stored in the system, and the modification of stored
or transferred information or both into a new form. Thus, finding a measure of
information modification allows for a complete description of information processing
in the framework of local information dynamics [9].

A candidate measure for information modification has been proposed in the theo-
retical framework of partial information decomposition (PID), namely, synergistic
mutual information [72]. Synergistic information captures the intuitive notion of
information modification—“a non-trivial processing of information from two or more
(storage or transfer) sources” into a new form [78]—yet, a practical measure of
this quantity is lacking. Measures of synergistic information have been proposed
[76, 79, 80], however, none of these measures meets all theoretical requirements
for a measure of information modification as formulated in the framework of local
information dynamics [9, 78]. The most promising candidate measure at the time of
writing is a measure of synergistic information recently introduced by Bertschinger
et al. [81]. Yet, the measure is limited by the fact that it is currently only applicable
to the decomposition of the joint mutual information of two input and one output
variable (which can both be multivariate themselves, however) [8]. Hence, the
development of a theoretically sound and computationally feasible measure, as well
as its estimation, is still an area of active research.

Operationalizing information modification as synergistic information and developing
an appropriate measure is not only desirable in its own right, but also has important
implications for the interpretation of TE: when calculating TE, information shared
by both past states is “conditioned out”; on the other hand, synergistic information
between both past states is “conditioned in” [76] (Fig. 5.4). Hence, using PID, TE can
be decomposed into two information contributions about the target: first, the unique
information present only in the source past state; second, the synergistic information
present jointly in the source and target past states. These two components have
also been termed state-independent TE (SITE)—the unique information from the
source—and state-dependent TE (SDTE)—the synergistic information in source and
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target [76]. Being able to distinguish these two contributions allows for additional
insights into performed computations; for example, Williams and Beer [76] provide
an example application of the decomposition of TE to the analysis of heart and breath
rates—the authors found that TE was almost entirely due to synergistic information
transfer from heart to breath rate, which was highest for low chest volumes—thus
adding substantially to the interpretation of TE from one physiological marker to
the other.

I(Yn; Xn-ur Yn-1 )

TEX—’Y = |(Yn; Xn-u | Yn-1) = {xn-u} + {Yn-1r Xn-u}

Decomposition of transfer entropy (TE) into state-dependent and state-independent
information transfer. Information that two variables, Y,,_1, X,,_,, have about a third, Y,,,
can be decomposed into unique information contributed by each of the two variables, {Y,,—1},
{Xn—u}; synergistic information contributed jointly by the two variables, {Y,_1,Xn—u};
and shared information contributed redundantly be the two variables, {Y,,—1 }{X,—.}. TE
from process X to process Y (gray area) can be decomposed into the unique information
from the source, {Y,_1}, called state-independent TE (SITE); and the synergistic informa-
tion, {Y,—1,X,_.}, called state-dependent TE (SDTE). Shared information and unique
information in the target’s past is conditioned out (white area).

Furthermore, separating TE into SITE and SDTE may help to resolve a problem in
the interpretation of TE recently raised by James et al. [262]: the authors criticize
the common interpretation of TE as information transfer into a target from one
source alone, because this interpretation “localizes” the source of information transfer
in a single process. However, this localization may be misleading if TE is mainly
due to synergistic information the past states of source and target have about the
target. James et al. [262] state that in such a scenario, the interpretation of TE as
information originating from the source alone may be flawed. They further state that
this localization has consequences for the network representation of neural activity,
because synergistic information transfer is falsely labeled as transfer from a single
source: when adding this transfer as a directed edge to the network, a spurious link
is introduced. However, in the terminology of Williams and Beer [76], synergistic
information—SDTE—may be viewed as information that is only transferred if the
target process is in a given state (represented by its past state); in other words,
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information is only transferred from a source if it can be “decoded” by the past state
of the target. When adapting this view on synergistic information, “localizing” the
source of information transfer seems justified.

In summary, finding a measure of synergistic information as defined in the PID
framework [72], complements existing measures of information transfer and stor-
age, and holds potential for further insights into (neural) information processing.
Furthermore, being able to measure information modification allows for additional
insight into information transfer measured by TE, because it allows to quantify the
information transfer due to information synergistically present in both past states.

Multivariate approaches to the estimation of transfer entropy

When discussing limitations of the TE-estimator used in the present work (section
5.1), I discussed its restriction to the estimation of bivariate TE. Bivariate TE does
not address multivariate effects in information transfer; in particular, it misses
synergistic information transfer from two or more sources to a target. This omission
can not be easily corrected for; thus, approaches to the estimation of multivariate
TE are needed. However, as stated before, a fully multivariate approach to finding
multivariate information transfer into a target is intractable due to the computational
complexity of identifying the subset of all informative sources from a set of candidate
processes (Chapter 3, A Graph Algorithmic Approach to Separate Direct from Indirect
Neural Interactions and Section 5.1.2, Practical problems in the estimation of transfer
entropy). Hence, only approximative approaches to the estimation of multivariate TE
are feasible in practice. We reviewed existing approximative methods in Chapter 3—
yet, these approaches have conceptual limitations or implementations are lacking.

Hence, future research should aim at improving approximative methods for mul-
tivariate TE estimation. Among the methods reviewed in Chapter 3, the most
promising approach is the greedy algorithm proposed by Lizier and Rubinov [25]:
it calculates multivariate TE by identifying informative sources for a given target
process by iteratively testing each candidate source for significant information about
the target’s present, y,. If a source has significant information about y,, (conditional
on all sources already included), it is added to the set of informative sources. Then
the next source is tested and so on. If no candidate provides any new information
about y,, the algorithm terminates. Multivariate TE is then calculated from the set
of informative sources by estimating TE between a single informative source and the
target, conditional on all remaining informative sources. Note that the algorithm
considers individual source samples, which, in the average case, results in a maxi-
mally sparse representation of the informative sources. A sparse representation is
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crucial, because the estimation of TE may become intractable if the dimension of the
involved variables is too high (see Section 5.1.2).

The greedy algorithm by Lizier and Rubinov [25] shares similarities with an algorithm
for non-uniform multivariate embedding proposed by Faes et al. [74]. The non-
uniform embedding also selects informative sources from a set of candidates by
iteratively testing for the contribution in information about some present value y,.
However, when searching for informative sources, past samples from the sources’
and target’s past are simultaneously tested for their information contribution. Hence,
the algorithm does not first test exhaustively for informative past samples in the
target’s past, before testing the samples in the sources’ past. The algorithm thus
jeopardizes self-prediction optimality which is an important requirement for the
correct estimation of TE and its interpretability as predictive information transfer
in the Wiener-Granger sense [75]. If the full information present in the target’s
own past is not included before evaluating the information present in other sources,
information transfer from these other sources may be overestimated.

An implementation of the non-uniform embedding [74] can be found in the MuTE
toolbox [313]. In addition to the conceptual problems when interpreting the esti-
mated quantity as a TE, the implementation has two shortcomings: first, a correction
for multiple statistical testing during the iterative evaluation of individual samples is
lacking; second, estimators do not make use of the multi-trial structure commonly
encountered in experimental data (especially in neuroscience). The latter shortcom-
ing prevents an application of the ensemble method (Chapter 2, Efficient transfer
entropy analysis of non-stationary neural time series) to allow for the estimation of
TE from small time-windows, for example, in the case of non-stationary data.

Thus, future research should aim at developing an efficient and conceptually sound
implementation of approximative, multivariate TE. A promising starting point for
such a development is the greedy algorithm by Lizier and Rubinov [25]!, which
provides a tractable approach to the representation of multiple sources of information
transfer, while implementing the Wiener-Granger principle. Furthermore, future
software implementations should make use of the methods presented in Chapter 2
to allow for the estimation from ensembles of time series and to handle the costly;,
iterative statistical testing. In general, implementations could benefit from the
massively parallel capacities provided by GPUs as presented in Chapter 2, to ensure
a favorable scaling for bigger data size?. In this work, we have shown that the
respective GPU-implementations significantly lessen the computing time required

'Note that the greedy algorithm is similar to the approach by Marinazzo et al. [217], which was
also presented in Chapter 3, A Graph Algorithmic Approach to Separate Direct from Indirect Neural
Interactions.

2Note that in the meantime also a OpenCl implementation of the presented neighbor searches for
GPU was developed [320]
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for TE estimation; future software should expand this approach to allow for the
estimation of multivariate TE and information-theoretic measures.

On a cautionary note, the approach to multivariate TE estimation proposed here, is
approximative because, first, sources are tested iteratively, i.e., single sources will be
missed if they provide significant synergistic information together with other sources,
but no significant unique information; secondly, because information transfer from a
candidate source is tested conditionally on all sources already included, redundant
information transfer will be missed [25]. The presented approaches aim at producing
a so-called minimal computationally equivalent network [25]. This means, the
approaches reconstruct the minimal information transfer needed to reproduce the
dynamics found in the data. In other words, the approach infers the minimal
network of information transfer that is computationally equivalent to the original
network inasmuch as the reconstructed network is able to produce the observed
dynamics in the data. As an example for missed redundant information transfer,
consider information transfer A — Y and B — Y, where both sources have a lot of
redundant information, i.e., both links transfer redundant information. Depending
on which link is reconstructed first, the respective second link will not be detected,
because the information transferred is already accounted for. Hence, the approach
will find a network that is equivalent with respect to the dynamics it enables,
yet, not all links present are necessarily reconstructed. In contrast, the approach
presented by Marinazzo et al. [217] and extended by Stramaglia et al. [218] aims
at post-hoc reconstructing interactions missed due to shared information. Thus,
the latter approach aims at inferring a network that is more true to the underlying
causal information flow [118] and thus closer to the actual causal connections.
However, we here propose to opt for a more computational approach, where the
reconstruction of information transfer is given precedence over the reconstruction of
causal interactions. The computational approach may be more desirable, because
we are ultimately interested in investigating the computations carried out by the
observed dynamics, rather than reconstructing the underlying causal structure—the
latter being most likely not attainable by the estimation of TE (see section 5.1.1).

Application of the proposed methods

The methods proposed in Chapters 2, Efficient transfer entropy analysis of non-
stationary neural time series, and 3, A Graph Algorithmic Approach to Separate Direct
from Indirect Neural Interactions, have successfully been applied in neuroscience
studies, reviewed in the following.

5.3 Application of the proposed methods
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Transfer entropy in resting state networks under ketamine
[21]

Both methods presented in Chapters 2 and 3 were applied in the analysis of resting
state MEG activity under administration of ketamine and under administration
of a placebo [21]. Bivariate TE was estimated between all identified, relevant
sources of neural activity. Here, the ensemble method was used to allow for the
estimation of TE from a significantly higher amount of data by pooling data over
experimental trials. The resulting TE network showed a high initial connectivity.
This connectivity could not be explained by volume conduction or other zero-lag
interactions, because this was accounted for by using a method proposed by Faes
et al. [137] that additionally conditions on the present value in the source process,
X, when estimating T Espo(X — Y'), and thus conditions out any influence with a
zero lag relative to time point ¢t. However, when applying the post-hoc correction for
multivariate effects a substantial amount of potentially spurious links were identified.
By removing these links, the network could be reduced to an interpretable size.

In sum, using the ensemble method together with the post-hoc graph-correction
led to estimates with higher robustness, due to more data entering the estimation
and due to the removal of all links flagged as potentially spurious. The study was
the first application of both methods proving their feasibility in the analysis of real-
world neuroscience data with TE. TE was estimated using the TRENTOOL toolbox,
including the implementations of both presented methods [86, 321].

Transfer entropy estimation as preprocessing step in DCM
analysis [264]

In a second study [264], we used bivariate TE estimation together with the graph-
algorithm (Chapter 3) as a preprocessing method for dynamic causal modeling
(DCM) for MEG/EEG data [214, 215]. DCM is a method that tries to infer causal
connectivity between neural areas, underlying the neural activity measured during
an experiment. DCM achieves this through a combination of realistic, biophysical
modeling and statistical data analysis [214, 322, 323]. We used TE estimation to
inform the a-priori choice of a model, as has been proposed in Chapter 3 and by
Friston et al. [324].

When trying to infer causal connectivity from experimental data with DCM analysis,
first, a biophysical network model of involved areas and their connections has to
be formulated; second, through Bayesian model inversion, this model is tested for
its likelihood to have generated the observed experimental data. In the biophysical
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model, neural areas are represented by network nodes, whose activity is described
by a “neural mass model” [325]. Neural mass models describe the combined activity
of thousands of neurons that underlies the measured MEG/EEG signal. The variation
of this activity under experimental manipulation is described by ordinary differential
equations. Through a further set of equations, the nodes’ activity is then mapped
onto MEG/EEG signals measurable at the scalp. Through Bayesian model inversion,
parameters for both sets of equations are inferred. DCM thus formulates a realistic,
biophysical model of brain areas and their connections, and combines this causal
model with a statistical model of how the biophysical architecture gives rise to
signals measured during an experiment. DCM thus allows for two analyses: first,
parameter estimation for a given model to answer how connectivity in this model
changes under the given experimental manipulation; second, comparison of various
hypothesized models to find the model architecture most likely to have generated
the observed data.

The latter analysis strategy is important in cases where multiple possible models exist.
Models are typically formulated based on existing, anatomical evidence about brain
connectivity. However, this evidence may be lacking for certain connections, in which
case multiple models become possible (if no evidence about a single connection
exists, two candidate models, one with and one without the connection in question,
can be formulated). Hence, often multiple candidate models for DCM analysis
exist. If this is the case, it is possible to use Bayesian model comparison to test these
candidate models against each other. In this test, Bayesian model comparison tries to
identify from a set of candidate models the model with the highest model evidence,
which is the probability of observing the data given this particular model.

Bayesian model comparison finds the model with the highest relative evidence given
the set of candidate models and the observed activity [322, 326]. In other words,
Bayesian model comparison does not yield an absolute assessment of whether an
individual model is “true” or even adequate, but it will only determine the “best”
model given the candidate models and the data. The relative nature of model
comparison has to be considered such as to avoid the selection of a poor model.
Here, poor means that the model either has a bad absolute model fit, or that the
model has high fit but is highly implausible in the context of neural data. In the
former scenario a model with poor fit is selected because it is compared to models
with even worse fit. In the latter scenario, an implausible model is selected because
it has higher model evidence than all other (plausible) models or is over-fitted to
the data—in general, for every formulated (plausible) model it is probable that
the theoretical search space of all possible (implausible) models contains many
more models with very similar or better fit to the observed data (see [326] and
references therein for a critical discussion of this issue). In sum, it is central to
Bayesian model comparison that the the a-priori formulated candidate models are
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biologically plausible such as to minimize the risk of unknowingly selecting a poor
model either in terms of fit or interpretability [322].

A straightforward strategy for the formulation of plausible candidate models is the
use of existing, anatomical evidence—but if no such evidence is available, alternative
approaches have to be found. One alternative proposed is the sampling of the full
space spanned by all potential models [322]. However, this potential model space
may quickly become too large and the number of models to be tested intractable.
Also, not all models in the theoretical space are plausible ones, violating the central
premise of DCM discussed above. Hence, it has been proposed instead, to use
“exploratory”, i.e., data-driven, methods like Granger causality or TE to define an
initial model [327, 328].

In the second application study, we therefore used bivariate TE estimation to inform
the formulation of a set of candidate models for DCM-analysis to analyze MEG data
recorded during the presentation of an audio-visual stimulus (sound-induced flash
illusion (SiFi)) [264]. We estimated TE between all reconstructed sources of neural
activity using the ensemble method presented in Chapter 2 and its implementation in
[86, 321]. We used the algorithm presented in Chapter 3 to identify coupling motifs
characteristic of potentially spurious information transfer. The set of candidate
models fro DCM was then defined by iteratively removing potentially spurious links
from the TE network. We then used DCM to test these models against each other
through Bayesian model comparison. Because in a triangle motif, the link to be
removed is ambiguous, we encoded simultaneously removable links as a Boolean
function: the function was formulated such that it evaluated to true if no “forbidden”
links were removed, when removed links were represented by assigning “false” to a
variable. We thus made sure not to violate the rationale underlying our algorithm
(i.e., at any given time, one of the two links leading to a common drive or cascade
effect was preserved while the other was removed from the triangle).

In conclusion, in this study we not only used TE as a preprocessing step for DCM
analysis, but we also used DCM to validate bivariate TE results: as stated in Section
5.1, Application of transfer entropy in neuroscience, bivariate TE may be spurious due
to multivariate effects. Here, DCM allowed us to test for spuriousness of individual
TE-links by inferring their underlying causal connection—if no causal connection
existed, TE could be assumed to be spurious, because the causal connection necessary
for information transfer was lacking. Thus, we successfully demonstrated the
combination of the two approaches for the first time—TE meaningfully reduced the
model space prior to DCM analysis in the absence of additional evidence for causal
connectivity; DCM validated results from bivariate TE estimation by testing for the
existence of potentially spurious links with DCM.
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5.3.3 Transfer entropy estimation during a face-recognition task
[316]

In a third study [316], we used AIS and TE to investigate the theory of predictive
coding (PCT) in data collected in the MEG during a face detection task. TE was
estimated using the ensemble method presented in Chapter 2, using the implemen-
tation in [86, 321]. AIS was estimated using the JAVA information dynamics toolkit
[87].

PCT assumes that the brain constantly infers the external causes of its sensory inputs
by internally maintaining a model of the potential causes and trying to predict future
inputs under this model [3, 235, 279]. The model is constantly refined by matching
predictions against novel input, thus incorporating novel knowledge into the model
about the world. Future input is then in turn matched against predictions derived
from the updated model, i.e, it is matched against “prior knowledge”. Thus, PCT
assumes that the brain processes input in an iterative fashion, where the brain tries
to predict novel input by activating “prior knowledge”.

We investigated the activation of prior knowledge in MEG activity, recorded during a
face/house detection task to test PCT as a theory of brain function. We used AIS to
quantify activated prior knowledge in task-relevant areas, because AIS quantifies the
amount of information actively in use to compute the next state of the system—AIS
thus captures the notion of knowledge actively in use to predict the next state of
a neural area, representing novel, incoming input. Hence, AIS should be high in
content-specific areas (areas concerned with the detection of houses or faces), and
AIS should facilitate behavioral performance. Additionally, we used TE to quantify
the amount of information being transferred into areas concerned with the detection
of a face or house. TE should be high in top-down direction, especially for areas
with high AIS, indicating the transfer of information related to predictions. Results
supported PCT as a general principle underlying the detection of faces: increases
in AIS were found in task-related areas for face processing, also increased AIS was
related to better performance in face detection.

In summary, information theory allowed for the formulation of precise and testable
hypotheses about information processing in service of PCT: first, about the storage of
information for the prediction of future events; second, about the transfer of novel
information for the update of activated knowledge. The use of information-theoretic
measures allowed to formulate hypotheses that did not rely on assumptions on the
semantics of neural activity, i.e., they did not require assumptions regarding which
features encoded or represented predictions or novel input (discussed in Section
5.1.1, Operationalizing neural information transfer as transfer entropy—conceptual
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considerations). The analysis was made possible by using the ensemble method
(Chapter 2), which enabled the precise estimation of TE during the baseline period
(prior to the task). A future extension of the TRENTOOL toolbox should include a
similar implementation for AIS estimation.

Conclusion and outlook

In this work, we presented methods for the estimation and interpretation of TE
and, partly, other information theoretic measures in neuroscience data. We showed
how to efficiently estimate TE from non-stationary data and how to correct for
multivariate effects when estimating bivariate TE in a multivariate setting. We thus
contributed significant improvements in the estimation of TE and solved two of the
most pressing practical problems in the estimation of bivariate TE in neuroscience.
Implementations of all developed methods are published in an open-source software
package to be used by other researchers. We furthermore presented work on current
best-practice in applying and interpreting TE in neuroscience research, and discussed
consequences of violating this practice.

I discussed these methodological improvements as well as the necessity of an
information-theoretic analysis framework in neuroscience. Future research should
aim at further improving the estimation of TE by developing new estimators and
porting the presented methods to high-performance computing hardware. Also
future work should extend the theoretical framework of information dynamics,
in particular by developing measures of information modification, to enable an
exhaustive analysis of information processing operations in neuroscience data.
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Deutsche Zusammenfassung

Einleitung

In der Neurowissenschaftlichen Forschung spricht man haufig davon, dass neuronale
Systeme , Berechnungen“ durchfiihren oder ,Information verarbeiten“, um kom-
plexes Verhalten zu ermoglichen. Diesen Aussagen liegt die Annahme zugrunde,
dass neuronale Systeme ihre Umwelt in Form physikalischer Variablen reprasen-
tieren (z.B. als Membranpotential oder Pheromonkonzentration) [1], und die in den
Variablen gespeicherte Information nutzen und verarbeiten, um durch Verhalten
mit der Umwelt zu interagieren [1]. Das Verstehen dieser Informationsverarbeitung
ist damit wichtig, um zu verstehen, wie Verhalten aus physiologischen Prozessen
entsteht.

Die Informationsverarbeitung in neuronalen Systemen wird in der bestehenden
Forschung jedoch kaum direkt untersucht. Stattdessen wird haufig versucht, aus
der Beobachtung von Verhalten oder von physiologischen Prozessen Riickschliisse
auf die zugrundeliegende Informationsverarbeitung zu ziehen [1-4]. Diese indi-
rekte Untersuchung ist oft wenig erfolgreich—selbst dann nicht, wenn detaillierte
Beschreibungen von Verhalten und Physiologie vorliegen [2]. So sind beispielsweise
die neuronale Architektur sowie viele neuronale Prozesse des Modellorganismus
C. elegans vollstandig beschrieben [36-39]; es ist jedoch weiterhin nicht moglich
auf Grundlage dieses Wissens um die physiologische Implementierung, Verhalten
oder Lernen des Organismus vorherzusagen. Als eine mogliche Ursache fiir den
fehlenden Ubertrag zwischen Implementierung und Verhalten, wurde vorgeschlagen,
dass es sich bei Informationsverarbeitung, Verhalten und Implementierung um drei
abgegrenzte Erkldarungsebenen eines Systems handelt [2, 40]. Dabei sind diese
Ebenen voneinander unabhéngig, sodass sich Phdnomene auf einzelnen Ebenen
kaum gegenseitig beschranken: beispielsweise lasst sich das selbe Verhalten durch
eine Vielzahl moglicher, informationsverarbeitender Algorithmen erklédren, sodass
sich der Algortihmus aus dem Verhalten nicht eindeutig ableiten lasst [40]. Da unter
dieser Annahme eindeutige Schliisse von einer Erkldrungsebene auf die andere nicht
moglich sind, muss die Informationsverarbeitung als eigenstidndige Erklarungsebene
explizit untersucht werden [2].

Die Informationsverarbeitung und ihre formale Beschreibung ist fiir klassische infor-
mationsverarbeitende Systeme wie Computer oder abstrakte Rechnermodelle klar
definiert. Dagegen fehlt eine entsprechende Definition fiir biologische Systeme [6,
7] wie z.B. Schwiarme [45, 46], Genregulationsnetzwerke [49, 50] oder neuronale
Systeme [51, 52]. Im Gegensatz zu traditionellen, informationsverarbeitenden Sys-
temen sind biologische Systeme verteilte Systeme, welche Information hoch-parallel
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und stochastisch reprasentieren und verarbeitet, um globales Verhalten zu generieren
[6]. Dabei ist es fiir einen externen Betrachter nicht notwendigerweise ersichtlich,
welche (Teil-)Funktion die lokale Informationsverarbeitung in einzelnen Subsystem
erfiillt. Weiterhin ist es moglich, dass sich die lokale Informationsverarbeitung iiber
die Zeit verdndert. Es miissen daher neue Werkzeuge zur Analyse dieser verteilten
und dynamischen Informationsverarbeitung in biologischen Systemen gefunden
werden, die {iber die Beschreibung von Implementierung und Funktion hinaus gehen
und erkldren, wie diese Art der Informationsverarbeitung zu globalem Verhalten
fiihrt.

Einen moglicher Ansatz zur Analyse dieser biologischen Informationsverarbeitung
beschreiben Mitchell et al. [7]: Die Autoren schlagen vor, Informationsverarbeitung
nicht als ,,eine ,sinnvolle‘ Transformation einer Eingabe in eine Ausgabe“ [7] oder die
Moglichkeit universeller Programmierbarkeit zu interpretieren, sondern die sogenan-
nte intrinsische Informationsverarbeitung eines Systems zu untersuchen. Die Analyse
dieser intrinsischen Informationsverarbeitung versucht, Berechnungen durch die
Quantifizierung basaler, informationsverarbeitender Operationen zu beschreiben.
Diese Operationen sind der Transfer, die Speicherung sowie die Modifikation von
Information. Die Implementierung dieser drei Funktionen wurde als notwendige
Voraussetzung fiir universelle Informationsverarbeitung in beliebigen Systemen
beschrieben [5]. Es wurde weiterhin vorgeschlagen, iiber die Quantifizierung
der Operationen die stattfindende Informationsverarbeitung einzugrenzen und zu
beschreiben [8, 11]. Eine konkrete Umsetzung dieses Ansatzes wurde von Lizier
[9] vorgestellt, welcher Mal3e aus der Informationstheorie nutzte, um die vorgestell-
ten Operationen in verteilt rechnenden Systemen zu untersuchen. U.a. wurde die
erfolgreiche Anwendung dieser Maf3e in der Analyse Zelluldrer Automaten, einem
Modellsystem fiir verteilte Informationsverarbeitung, demonstriert [11]. Die Infor-
mationstheorie ist hier eine natiirliche Wahl fiir MaRe der Informationsverarbeitung,
da sie eine mathematisch vollstdndige Beschreibung der intuitiven Vorstellung von
Information und ihrer Kommunikation bietet [10]. Weiterhin erlaubt die Informa-
tionstheorie eine Quantifizierung von Information, die unabhéngig von der Semantik,
d.h. der Bedeutung fiir einen Beobachter, ist. Somit ist die Informationstheorie
besonders fiir die Anwendung in biologischen (Sub-)Systemen geeignet, in denen
die Funktion lokaler Informationsverarbeitung unklar ist.

Die von Lizier [9] vorgeschlagenen Malf3e stellen den ersten umfassenden Ansatz
zur direkten Untersuchung von Informationsverarbeitung in beliebigen, verteilten
Systemen dar und sind damit ein vielversprechender Ansatz zur Untersuchung der
Informationsverarbeitung in neuronalen Systemen [8]. Bisher hat insbesondere
das vorgeschlagene Malf3 fiir den Informationstransfer, die sogenannte Transfer-
entropie (TE) [12], Beachtung in den Neurowissenschaften gefunden (z.B. [14—
221). Die TE kann als MaR fiir den Transfer von Information zwischen einem Quell-



und einem Zielprozess verstanden werden. TE quantifiziert, inwiefern sich die
Vorhersagbarkeit des Zielprozesses verbessert, wenn nicht nur die Vergangenheit
dieses Prozesses zur Vorhersage genutzt wird, sondern auch die Vergangenheit eines
zweiten Quellprozesses. Die TE ist ein modellfreies Maf3, welches auch nicht-lineare
Zusammenhéinge erfasst. Die TE ist damit ein attraktives und vielfach verwendetes
Maf fiir Informationstransfer in neuronalen Systemen. Jedoch existieren trotz dieser
Vorziige und der Popularitdt der TE noch immer eine Vielzahl praktischer Probleme
in ihrer Schatzung und Interpretation (z.B. [13, 23]).

Ein Problem liegt in der grofen Menge bendtigter Daten, um TE zu schitzen.
Dieses Problem verstarkt sich in den Neurowissenschaften, da beobachtete Prozesse
héufig nicht-stationér sind (d.h. die den einzelnen Zufallsvariablen zugrunde liegen-
den Wahrscheinlichkeitsverteilungen sind nicht invariant iiber die Zeit), sodass
die benotigten Datenmengen nicht aus Beobachtungen tiber die Zeit gewonnen
werden konnen. Ein weiteres Problem ergibt sich aus der multivariaten Natur neu-
rowissenschaftlicher Datensédtze und Fragestellungen: Da multivariate Ansitze zur
Schétzung der TE zu rechenaufwéndig sind, wird TE oft nur bivariat zwischen Vari-
ablenpaaren geschitzt. Dieses Vorgehen kann zu fehlerhaften Ergebnissen fiihren
[25, 28, 29]. Ein drittes Problem entsteht bei der Anwendung der TE wenn Schétzpa-
rameter nicht optimiert und durch heuristische Werte ersetzt werden (z.B. [32, 33]).
Dies kann zur Unter- oder Uberschitzung des tatsichlichen Informationstransfers
fiihren [13]. Zuletzt entstehen noch immer Probleme bei der Interpretation der TE:
héufig wird TE als Mal} fiir kausale Interaktion, d.h. ein Maf3 fiir einen physikalis-
chen oder mechanistischen Zusammenhang zwischen beobachteten Prozessen, in-
terpretiert (z.B. [89-91]). Es wurde jedoch gezeigt, dass diese Interpretation nicht
korrekt ist [68, 92] und somit zu Fehlschliissen auf Grundlage der beobachteten
Daten fithren kann.

Die vorliegende Arbeit adressiert die vorgestellten Probleme in drei Studien: In
der ersten Studie wird eine effiziente Implementierung zur Schiatzung der TE aus
nicht-stationdren Daten vorgestellt. In der zweiten Studie wird eine Korrektur fiir
Fehler in der Schitzung bivariater TE aufgrund multivariater Effekte vorgeschlagen.
In der dritten Studie werden Moglichkeiten zur Optimierung von Schatzparametern
diskutiert und es wird gezeigt, welche Konsequenzen die Wahl nicht-optimaler
Schétzparametern hat. Weiterhin wird diskutiert, wie die Interpretation der TE als
Mal3 fiir kausale Zusammenhéngen zu inkorrekten Schliissen fiihren kann.

Studie 1

Die erste Studie beschreibt eine effiziente Implementierung zur Schitzung von TE
aus nicht-stationdren, neuronalen Daten.
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Die Schatzung von TE erfordert eine erhebliche Menge an Daten, um die dem Malf}
zugrunde liegenden und typischerweise unbekannten Wahrscheinlichkeitsdichte-
funktionen zu schitzen. In den Neurowissenschaften werden diese Beobachtungen
héufig tiber die Zeit gewonnen. Dieses Vorgehen setzt jedoch voraus, dass die zu-
grunde liegenden Prozesse stationér, d.h. statistische Eigenschaften iiber die Zeit
invariant sind. Diese Annahme ist fiir neuronale Daten hiufig nicht zutreffend.
Um auch im Fall nicht-stationdrer Daten TE robust schitzen zu konnen, besteht
die Moglichkeit, Daten iiber physischen oder zeitlichen Kopien der beobachteten
Prozesse (sog. Ensembles) zusammenzufassen [24]. Ein Ensemble von zeitlichen
Kopien liegt in neurowissenschaftlichen Daten typischerweise in Form von , Trials*,
d.h. einer Vielzahl von beobachteten Wiederholungen der experimentellen Aufgabe,
vor. Trials sind ,zyklostationar®, d.h. sie sind Beobachtungen wiederkehrender,
zeitlicher Kopien des selben Prozesses. Somit konnen Beobachtungen iiber das
Ensemble der Trials zusammengefasst werde, um eine ausreichende Datenmenge
fiir informationstheoretische Schéatzungen zu erhalten. Damit kann TE bei einer
geniligend groflen Anzahl vorliegender Trials fiir beliebig kleine Zeitfenster, d.h.
geitaufgelost, geschitzt werden (wobei bei hinreichend kleinen Zeitfenstern von

Stationaritit ausgegangen werden kann).

Ein technischer Nachteil des Zusammenfassens von Beobachtungen iiber Trials
ist, dass fiir individuelle Trials keine Einzelschiatzungen mehr vorliegen, welche
fiir effiziente statistische Tests der geschétzten TE genutzt werden konnen. Ein
statistischer Test der geschétzten TE ist notwendig, um den systematischen Fehler
des TE-Schatzers zu korrigieren (welcher nicht analytisch korrigierbar ist) [85].
Hierzu wird der geschitzte TE-Wert auf Signifikanz gegeniiber einer Nullverteilung
getestet. Liegen Schétzungen fiir einzelne Trials vor, kann diese Nullverteilung
effizient konstruiert werden [86]. Fehlen diese Einzelschdtzungen jedoch, muss eine
Nullverteilung generiert werden, indem TE wiederholt aus Daten geschéatzt wird, in
denen Beobachtungen des Ziel-Prozesses in einem Trial mit Beobachtungen eines
zuféllig gewéahlten weiteren Trials vertauscht werden. Durch dieses Permutieren
der Beobachtungen wird der Informationstransfer zwischen den Prozessen zerstort,
wiahrend die statistischen Eigenschaften der beobachteten Zeitserien erhalten bleiben.
Durch wiederholtes Permutieren und Schéitzen von TE entsteht eine Nullverteilung
von TE-Schitzwerten bei nicht vorhandenem Informationstransfer, gegen die die
TE-Schétzung aus den originalen Daten auf Signifikanz getestet werden kann.

Diese Art der Generierung einer Nullverteilung erfordert das wiederholte Schétzen
von TE bis die gewiinschte Verteilungsgrolde erreicht ist. Hierdurch multipliziert
sich der Berechnungsaufwand der Schéitzung und Testung der TE mit der Grofde der
Nullverteilung. Aufgrund dieses erhohten Berechnungsaufwands erreichen bisherige
Implementierungen von Schétzern keine praktikablen Laufzeiten wenn sie fiir die
Ensemble-Schitzung von TE eingesetzt werden. Die vorliegende Studie adressiert



dieses Problem, indem sie eine neue Implementierung der zentralen Algorithmen
der TE-Schatzung vorschlagt: diese Algorithmen sind Néichste-Nachbarn-Suchen
[83], fiir die eine hoch-parallele Implementierung fiir Grafikprozessoren (GPUs)
verwendet wird. Diese Implementierung erlaubt es, den erhohten Rechenaufwand
durch Parallelisierung der Suchen iiber Datensitze (bspw. original und mehrere
Hundert permutierte Datensdtze) zu bewaltigen.

Diese effiziente Implementierung der Ensemble-Methode ermoglicht somit die
Schitzung informationstheoretischer Malde aus nicht-stationdren Daten, wie sie
héufig in den Neurowissenschaften vorkommen. Dies erlaubt auch das Schatzen
von zeitaufgeloster TE in beliebig kleinen Zeitfenstern bei ausreichender Grofde des
Ensembles. Es wird eine Referenz-Implementierung des vorgeschlagenen Verfahrens
vorgestellt, sowie die Anwendung der Implementierung zur Schitzung von TE aus
magnetoenzephalographischen Daten.

Studie 2

Die zweite Studie beschreibt eine Methode zur post-hoc Korrektur von multivariaten
Effekten in bivariaten TE-Schitzungen.

Neurowissenschaftliche Fragestellungen befassen sich haufig mit einer Vielzahl
beobachteter Variablen (z.B. simultane Beobachtungen mehrerer Neurone oder
kortikaler Areale). Typischerweise wird der Informationstransfer zwischen diesen
Variablen durch iteratives Schitzen bivariater TE (von einem Quell- zu einem Ziel-
Prozess) rekonstruiert, da eine vollstdndig multivariate Schatzung von TE ein NP-
hartes Problem ist [25-27]. Dieses Vorgehen lasst multivariate Interaktionen aufer
Acht und kann zu fehlerhaften Ergebnissen fiihren; besonders gravierend sind
hierbei falsch-positive Ergebnisse, d.h., das Auftreten signifikanter TE, ohne dass ein
tatsdchlicher Informationstransfer vorliegt [25, 28, 29]. Diese Fehler entstehen dann
z.B. dann, wenn zwei Prozesse gleichzeitig Information von einer gemeinsamen
Quelle erhalten: hier kann félschlicherweise TE zwischen den Prozessen gefunden
werden, wenn der Input aus der gemeinsamen Quelle zu einer Korrelation in den
beobachteten Zeitserien fiihrt.

Die vorliegende Studie stellt einen approximativen Ansatz zur Identifizierung poten-
tieller falsch-positiver Ergebnisse in bivariaten TE-Schitzungen aus multivariaten
Datenséatzen vor. Der Ansatz geht davon aus, dass falsch-positive Ergebnisse durch
charakteristische Graph-Motive im Netzwerk der bivariaten Interaktionen identi-
fiziert werden konnen; die Motive zeichnen sich insbesondere durch Muster in
der Latenz u der Informationstransfers zwischen Prozess-Paaren aus. Die bivariat
geschitzte TE wird deshalb als Graph reprisentiert, der mit den rekonstruierten
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Werten fiir u gewichtet wird. Es wird ein Algorithmus vorgestellt, welcher den
so konstruierten Graph nach charakteristischen Motiven durchsucht. In den iden-
tifizierten Motiven werden potenziell falsche Verbindungen markiert, welche aus
dem Graph entfernt werden konnen, um eine konservativere Approximation des
tatsdchlichen Informationstransfer-Netzwerks zu erhalten.

Der vorgestellte Ansatz erlaubt die approximative Rekonstruktion multivariaten Infor-
mationstransfers in multivariaten Datensédtzen. Der beschriebene Graph-Algorithmus
kann auf jedes Netzwerk gerichteter, bivariater Zusammenhangsmalf3e angewendet
werden, dessen Verbindungen mit Interaktions-Latenzen gewichtet wurden. Die
Anwendbarkeit des Algorithmus auf simulierte und magnetoenzephalographische
Datensdtze wird demonstriert, auerdem werden mogliche Anwendungsszenarien
in den Neurowissenschaften diskutiert.

Studie 3

Die dritte Studie untersucht, inwieweit sich lokale Informationsverarbeitung im
Quell- und Ziel-Prozess der TE auf den Informationstransfer zwischen den Prozessen
auswirkt. Es wird diskutiert, wie sich eine ungiinstige Wahl der Schatzparameter auf
die geschéatzte TE auswirken und wie die Interpretation der TE als Kausalitdtsmaf}
zu Fehlschliissen bei der Interpretation von Ergebnissen fiihren kann.

Die Studie untersucht die TE zwischen zwei lokalen Feldpotentialen, aufgezeichnet
in priméren visuellen und prafrontalen kortikalen Arealen zweier Frettchen. Die
Aufnahmen wurden simultan und unter verschiedenen Anéasthesie-Konzentrationen
durchgefiihrt. Zusétzlich zur TE wurde die lokale Informationsverarbeitung in
beiden Arealen, d.h. dem Quell- und dem Ziel-Prozess der TE, gemessen, indem
die aktive Informationsspeicherung (der sogenannte ,active information storage“
oder AIS [30]) und die Signalentropie geschitzt wurden. Bisherige Studien fan-
den Belege fiir eine Reduktion der TE bei hoheren Anéasthesie-Konzentrationen
(z.B. [31-35]). Die Reduktion von TE wird hierbei oft durch eine Verdnderung
der zugrundeliegenden physiologischen Kopplung der Prozesse erkliart. Die vor-
liegende Studie legt dagegen eine alternative Erkldrung fiir eine Abnahme der TE auf
Grundlage der gemessenen, lokalen Informationsverarbeitung nahe: unter hoheren
Anisthesie-Konzentrationen wurde neben einer Abnahme der TE eine Abnahme
der Signalentropie gefunden. Die Signalentropie im Quell-Prozess der TE ist eine
mathematische, obere Schranke fiir die TE; die Reduktion der Signalentropie kann
somit eine Reduktion der TE verursachen. Die Studie zeigt durch diese Untersuchung
der lokalen Informationsverarbeitung eine potentielle alternative Ursache fiir die
Reduktion von Informationstransfer unter Anésthesie auf.



Die Studie diskutiert weiterhin aktuelle Empfehlungen fiir die optimale Schitzung
von TE und weist auf methodische Problem existierender Anésthesie-Forschung hin:
Zum einen kann die Nutzung approximativer Schéatzer (der sogenannte ,,symbolic
transer entropy“ [109]) dazu fiihren, dass Informationstransfer nicht gefunden wird.
Die vorliegende Studie nutzt deshalb zwei alternative TE-Schétzer, welche unter
den derzeit verfiigbaren Schitzern die giinstigsten Fehlereigenschaften aufweisen:
ein Nachste-Nachbarn-basiertes Verfahren nach Kraskov et al. [83] und ein Bayes-
Schatzer nach Nemenman et al. [225] und Nemenman et al. [226]. Beide Verfahren
kamen zu qualitativ gleichen Ergebnissen, welche auch existierenden Befunden zur
Verdnderungen von TE unter Anésthesie entsprechen [31-35] (welche zum Teil mit
approximativen Methoden gewonnen wurden [32-35, 259]). Zum anderen wird die
Wahl optimaler Schétzparameter diskutiert, insbesondere wie die Verwendung nicht-
optimaler Parameter zu einer Uber- oder Unterschitzung der TE fiihrt, wodurch
u.a. die dominante Richtung des Informationstransfers zwischen zwei bidirektional
gekoppelten Prozessen nicht identifiziert werden kann.

Zusammenfassend zeigen unsere Ergebnisse, dass eine verringerte Informations-
iibertragung unter Anésthesie durch eine verringerte Informationsproduktion, vor
allem im Quell-Prozess der TE, verursacht werden kann. Die Verdnderung in der
TE wire damit unabhéngig von Verdnderungen in der physiologischen Verbindung
zwischen den beteiligten kortikalen Arealen. Dieser Befund wird gestiitzt durch
das Wissen, dass das verwendete Anésthetikum Isofluran die Signaliibertragung
iiber weitreichende axonale Verbindungen, wie sie in der Studie untersucht wurden,
kaum beeinflusst [223]. Die Studie zeigt damit, wie die (implizite) Interpreta-
tion von TE als kausales Mal3, d.h. als MaR fiir den physikalischen Mechanismus,
der Informationstransfer ermoglicht, zu fehlerhaften Interpretationen fiihren kann.
Weiterhin unterstiitzt die Studie existierende Befunde zur Reduktion der TE unter
Anésthesie und diskutiert aktuelle Empfehlungen fiir die prazise Schiatzung von TE
aus neuronalen Daten.

Diskussion

Zusammenfassend stellt die vorliegende Arbeit zwei — besonders fiir die neurowis-
senschaftliche Anwendung relevante — methodische Ergdnzungen fiir die Schatzung
von TE vor: zum einen eine effiziente Implementierung fiir die zeitaufgeloste
Schatzung von TE aus nicht-stationdren Daten, zum anderen eine post-hoc Kor-
rektur fiir multivariate Effekte in bivariat geschétzter TE. Weiterhin wird das empfoh-
lene Vorgehen bei der Schéatzung von TE aus experimentellen Daten, insbesondere
im Hinblick auf die Wahl des Schéatzers und der Optimierung von Schitzparame-
tern, diskutiert. Zuletzt wird demonstriert, wie die Interpretation von TE als Mal}
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physikalischer Interaktion zu Fehlschliissen bei der Interpretation von Ergebnissen
fithren kann.

Es werden damit zwei wichtige methodische Probleme in der Schiatzung der TE
aus neurowissenschaftlichen Daten gel6st, sowie Voraussetzung fiir die korrekte
Schitzung und Interpretation von TE diskutiert. Die vorgestellte Methode zur
Schatzung aus nicht-stationdren Daten sowie einige Aspekte der methodischen
Empfehlungen haben weiterhin Giiltigkeit fiir die Schatzung anderer informations-
theoretischer Mal3e, wie z.B. des AIS als Mal? fiir Informationsspeicherung. Fiir das
offene Problem einer vollstindig multivariaten Schiatzung von TE und die offene
Frage nach einem verbesserten Mal® der Informationsmodifikation werden der ak-
tuelle Stand der Forschung sowie mogliche zukiinftige Entwicklungen vorgestellt.

Unter Beriicksichtigung der diskutierten methodischen Erweiterungen und Empfehlun-
gen, ist die TE ein etabliertes Mal} fiir den Informationstransfer in neuronalen und
anderen informationsverarbeitenden Systemen: zentral sind hier vor allem die Ver-
wendung etablierter Schéatzer, die Optimierung der Schétzparameter sowie eine
entsprechende Planung der Datenerhebung. Wird diesen methodischen Empfehlun-
gen gefolgt, bietet die TE ein robustes Mal3 des Informationstransfers, mit dem auch
schwache, nicht-lineare Zusammenhénge, wie sie hdufig in neuronalen Systemen
vorkommen, erfasst werden konnen. Ein weiterer Vorzug der TE gegeniiber an-
deren Zusammenhangsmafen ist ihr Ursprung in der Informationstheorie, wodurch
sie mit anderen informationstheoretischen Gré3en in Verbindung gesetzt werden
kann; so erméglicht die TE insbesondere in Verbindung mit Maf3en der Information-
sspeicherung und -modifikation [9] eine umfassende Analyse neuronaler Informa-
tionsverarbeitung, die eingebettet ist in eine exakte mathematische Definition von
Information und ihrer Kommunikation.
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