
1

SUPPLEMENTARY INFORMATION

Supplementary Note 1, basics of deep neural network

Feedforward neural network learns one target function x : f(x, θ) → y that maps the

input vector x to output vector y with parameter θ. Elements of x and y form the neurons

in the input and output layers respectively. In-between there can be multiple hidden layers

with the numbers of neurons as hyper-parameters. The connections between two layers form

a trainable weight matrix W. Each layer (except the input layer) learns representations of its

previous layer through firstly a linear operation z = xW+b and then use it as the argument

of an activation function σ(z). The linear operation can perform various operations, such as

scaling, rotating, boosting, increasing or decreasing dimensions, on the vector x, with the

bias b a trainable parameter. σ(z) activates the neurons of the present layer with their values

and computes the correlations between the neurons of the previous layer. For classification

network, softmax activation function σ(z)j = exp(zj)/
∑K
k=1 exp(zk) is usually used in the

final layer to compute the probability of each category. By stacking with multiple hidden

layers, the deep neural network may learn high-level representations that can be classified or

interpreted easily. The activation functions used in our study are shown in Supplementary

Figure 1.

Loss function l(θ) is the difference between the true value y (from the input of supervised

learning) and the predicted value ŷ = f(x, θ) by the neural network in a forward pass. The

simplest loss function is the mean square error l(θ) =
∑
i(ŷi− yi)2. In this paper we use the

cross entropy loss function from information theory,

l(θ) = − 1

N

N∑

i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (1)

With L1 or L2 regularizations, the loss function receives another term used to constrain the

values of θ from going wildly,

L1 : l(θ) = l(θ) + λ||θ||1 (2)

L2 : l(θ) = l(θ) + λ||θ||22 (3)

where λ is the regularization strength, ||θ||p ≡
(∑n

j |θj|p
)1/p

is the p-norm of the parameters

θ = (θ1, θ2, ..., θn). Larger λ leads to smaller θ, especially for high orders in the target

function, which increases the generalizability of the neural network.

2

0

1

0 0

(a) Sigmoid (b) ReLU (c) PReLU

�(z) =
1

1 + exp(�z)
�(z) =

⇢
z, z > 0
az, z  0

�(z) =

⇢
z, z > 0
0, z  0

Supplementary Figure 1. Activation functions related to the present study. (a) Sigmoid, the logistic

function which has a S shaped curve (b) ReLU, rectified linear unit that activates the neuron when

z > 0 and (c) PReLU parametric rectified linear unit that additionally activates leaky neurons at

z < 0 with learnable parameter a.

Back propagation indicates the gradients of the loss function in parameter space propagate

in the backward direction of a neural network in order to update θ. For example, in the

stochastic gradient decent (SGD) method, θ is updated with fixed learning rate ε

θ
′
= θ − ε∂l(θ)

∂θ
(4)

In practice we train the network in batches, where θ is updated once for all the samples in

one batch,

θ
′
= θ − ε

m

m∑

i=1

∂li(θ)

∂θ
(5)

where m is the batchsize, li is the loss given by the ith training sample in a batch. In our

study, we use the AdaMax method [1], which computes adaptive learning rates for different

parameters based on estimating the first and second moments of the gradients. We initially

set the learning rate as α = 10−4 and keep the other parameters the same as in [1].

Batch normalization solves the internal covariate shift problem, which is a common issue

in DL that hinders the learning efficiency [2]. Using the batch mean µB = 1
m

∑m
i=1 xi and

batch variance σ2
B = 1

m

∑m
i=1(xi−µB)2, the input vector x is normalized as x̂i = xi−µB√

σ2
B+ε

that

has mean 0 and variance 1, with ε a small number preventing divergence. The x̂ is further

scaled and shifted by γx̂ + β before going to the next layer, where γ and β are trainable

3

parameters. Note that during the testing, population mean and variance of the training

dataset are used.

Dropout is a regularization technique that reduces overfitting by randomly discarding a

fraction of neurons (features) and all their associated connections to prevent co-adaption [3]

of neurons for each training sample .

Prediction Difference Analysis is a method to visualize the difference between the log-

odds of the prediction probability p(y|ρ) and p(y|ρ\i), where y is the class value, ρ is the real

image and ρ\i is the imperfect image without the knowledge of the ith pixel. The prediction

difference is dubbed as weight of evidence [4, 5],

WEi(y|ρ) = log2 (odds(y|ρ))− log2

(
odds(y|ρ\i)

)
, (6)

where odds(z) = p(z)/(1−p(z)) is used to symmetrize log2 p and − log2(1−p), with Laplace

correction p← (pn+1)/(n+m) to avoid zero probability, where n is the number of training

instances and m is the number of classes. The p(y|ρ\i) is approximated by,

p(y|ρ\i) ≈
mi∑

s

p(ρi)p(y|ρ← ρi = as) , (7)

with the ith pixel replaced with all the possible values as weighted by its value probability.

The importance map is given by the mean weight of evidence over many events that have

the same class label.

Supplementary Note 2, results from traditional machine learning methods

Many observables are designed from the raw spectra ρ(pT, φ) during the last two decades.

The most widely applied observables to constrain QGP properties are the transverse mo-

mentum distributions and the Fourier decomposition coefficients vn along the azimuthal

angle direction. We computed 85 such observables – mean transverse momentum 〈pT〉, mul-

tiplicity dN/dY at mid-rapidity (rapidity Y = 0), pT integrated vn, event plane angles ψn,

and vn(pT) at 15 different pTs for n in one of the 2, 3, 4, 5. As shown in Supplementary

Figures 2, 3 and 4, the event-by-event distribution of a few important observables – 〈pT〉,
vn and event angles ψn – do overlap for 2 different EoS cases and can not be distinguished

by the traditional methods developed in high-energy heavy-ion science.

4

Note that for the training data from CLVisc+AMPT Monte Carlo model, the magnitude

of the initial entropy densities is adjusted such that relativistic hydrodynamics with two dif-

ferent EoSs produces degenerate results on the traditional observables. While for the testing

data from the CLVisc+IP-Glasma model, hydrodynamics starting with equal initial condi-

tions and freeze-out temperatures produces more particles and higher 〈pT〉 for the EOSQ

case due to longer lifetime. The effect of shear viscosity in the CLVisc+IP-Glasma model is

also distorted by employing different longitudinal distributions for EOSL and EOSQ. These

setups are made to prevent over-fitting to one specific group of model parameters. Deep

CNN trained with data from CLVisc+AMPT model (the first column) has very good gen-

eralizability on data from the iEBE-VISHNU (the second column) and CLVisc+IP-Glasma

(the third column) models, as shown in Supplementary Figures 2, 3 and 4.

The correlation matrix of pairs of important distinct observables is shown in Supple-

mentary Figure 5, The correlation matrix shows the strength of big data analysis for the

simulated data. The results are shocking – correlations between various observables are re-

vealed by a few lines of python codes. It took several years of effort for high energy physicists

to find some of these correlations, one after another: the strong correlation between v2 and

v4 had been known for more than 10 years at the RHIC [6]. The strong correlations between

v2 and v5, v3 and v5 have been only verified quite recently at the LHC [7]. The data show

negative correlations between v2 and dN/dy, and almost zero correlation between v2 and

〈pT〉. These results are physically understandable. The strong positive correlation between

〈pT〉 and v5 is a new type of correlation which has not been discovered before. Scientists

in the heavy-ion community usually only use the mean value of these observables or the

correlation between these observables searching for constraints of the properties of the hot

and dense quantum chromodynamics matter.

Concerning traditional machine learning tools, we have systematically checked the pre-

diction accuracies with various classifiers using scikit-learn. As shown in Supplementary

Table 1, the best performance (with good generalization capability) is obtained by a linear

support vector machine classifier (linear-SVC) – on average 80% prediction accuracy using

the best estimator from a grid search on pre-defined observables. The ensemble methods

of random forest and gradient boosting trees get higher score than a single decision tree.

Gaussian Naive Bayes classifier and pca + linear SVC have poor generalization capability

on two groups of testing data – with less than 50% accuracy.

5

Prediction Accuracies GROUP1 GROUP2

obs + Gaussian Naive Bayes 46.2% 47.6%

obs + Decision Tree 57.5% 64.9%

obs + Random Forest 62.5% 69.8%

obs + Gradient Boosting Trees 66.9% 81.9%

obs + linear SVC 75.8% 84.6%

obs + SVC rbf kernel 60.9% 56.7%

raw + linear SVC 65.2% 84.3%

pca + linear SVC 46.4% 47.7%

Supplementary Table 1. The prediction accuracies of traditional machine learning algorithms.

Prediction accuracies from Gaussian Naive Bayes, Decision Tree, Random Forest, Boosting Trees

and Support Vector Machine (SVC) using scikit-learn [8]. Where obs stands for 85 pre-defined

observables, raw stands for raw spectra ρ(pT, φ) and pca denotes the first 150 components from

principle component analysis (PCA) on raw spectra.

For the trained linear-SVC classifier with pre-defined observables, we list the 20 most im-

portant features in descending order – ptspec-bin4, ptspec-bin5, ptspec-bin8, ptspec-bin7,

ptspec-bin6, ptspec-bin1, dN/dy, ptspec-bin2, ptspec-bin3, ptspec-bin11, v2-ptbin5, v2-

ptbin6, v2-ptbin4, ptspec-bin9, v5-ptbin12, ptspec-bin10, v5-ptbin11, ptspec-bin12, ptspec-

bin0, v2-ptbin7. Apparently both the shape of the pT spectra and the azimuthal angle

distribution at different pTs dominated by the bins 4 - 8 (correspond to pT range 0.3 ∼ 1.0

GeV) are decisive for the classification capability of this linear-SVC. Trained with the pre-

defined observables, the shape of the pT spectra is more important than the azimuthal angle

distribution. The important pT range obtained from the linear-SVC agrees with the impor-

tance map from the prediction difference analysis of the deep convolution neural network.

The important features of this linear-SVC trained with raw spectra is shown in the

Supplementary Figure 6. The pT range in this importance map covers part of that of the

deep CNN. However, the most important features along the azimuthal angle direction are

centered at φ = π/2 and φ = 3π/2. Since we want to confirm that the dynamical evolution

is indeed encoded in the final state particle spectra, a deep neural network works much

better: the prediction accuracy is much higher and the importance region follows intuition.

6

Our analysis shows that not only deep learning, but also some traditional big data analysis

with machine learning tools now bring novel insights to the heavy-ion community, provided

relativistic heavy-ion collisions have accumulated a huge amount of data.

[1] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization”,

https://arxiv.org/abs/1412.6980 (2014).

[2] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Re-

ducing Internal Covariate Shift”, https://arxiv.org/abs/1502.03167 (2015).

[3] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdi-

nov, “Improving neural networks by preventing co-adaptation of feature detectors”,

https://arxiv.org/abs/1207.0580 (2012).

[4] M. Robnik-Sikonja and I. Kononenko, “Explaining classifications for individual instances”,

Knowledge and Data Engineering, IEEE Transactions on, 20(5):589-600, (2008).

[5] L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling, “Visualizing deep neural network deci-

sions: prediction difference analysis”. https://arxiv.org/abs/1702.04595 (2017).

[6] J. Adams et al. [STAR Collaboration], “Azimuthal anisotropy in Au+Au collisions at

s(NN)**(1/2) = 200-GeV,” Phys. Rev. C 72, 014904 (2005).

[7] G. Aad et al. [ATLAS Collaboration], “Measurement of the correlation between flow harmonics

of different order in lead-lead collisions at
√
sNN=2.76 TeV with the ATLAS detector,” Phys.

Rev. C 92, no. 3, 034903 (2015).

[8] Pedregosa et al., “Scikit-learn: Machine Learning in Python”, Journal of Machine Learning

Research, 12, 2825-2830 (2011).

7

Supplementary Figure 2. The event-to-event distribution of mean pT and vn. The distribution of

〈pT〉 (the first row) and vn (n=2, 3, 4, 5 for the nth row) for the CLVisc+AMPT (first column), the

iEBE-VISHNU+MCGlauber (the second column) and the CLVisc+IP-Glasma (the third column)

models.

8

Supplementary Figure 3. The event-to-event distribution of event planes. The distribution of

ψ2 (the first row), ψ3 (the second row), ψ4 (the third row) and ψ5 (the fourth row) for the

CLVisc+AMPT (first column), the iEBE-VISHNU (the second column) and the CLVisc+IP-

Glasma (the third column) models.

9

Supplementary Figure 4. The scatter plots between several pairs of observables. The scatter plots

between v2 and v3 (the first row), v2 and v4 (the second row), v2 and v5 (the third row), 〈pT〉

and v5 for the CLVisc+AMPT (first column), the iEBE-VISHNU (the second column) and the

CLVisc+IP-Glasma (the third column) models.

10

〈
pT

〉
v2 v3 v4 v5 dN/dY

〈 p T〉
v 2

v 3
v 4

v 5
d
N
/d
Y

1 0.03 0.18 0.33 0.43 0.61

0.03 1 -0.053 0.39 0.26 -0.22

0.18 -0.053 1 0.063 0.44 -0.048

0.33 0.39 0.063 1 0.26 0.032

0.43 0.26 0.44 0.26 1 0.13

0.61 -0.22 -0.048 0.032 0.13 1

Supplementary Figure 5. The correlation matrix between many observables. The correlations ma-

trix between 〈pT〉, v2, v3, v4, v5 and dN/dY on testing data GROUP1, reveals various correlations

that were found one after another in the last two decades.

11

Supplementary Figure 6. The important features from linear support vector machine. The linear

support vector machine is trained with raw spectra ρ(pT, φ) and the intensity of this importance

map is given by the square of the linear support vector machine weights.

	 Supplementary Information
	 Supplementary Note 1, basics of deep neural network
	 Supplementary Note 2, results from traditional machine learning methods

	 References

