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The view of evolution as a chronic bloody competition among individuals and species, 

a popular distortion of Darwin's notion of "survival of the fittest," dissolves before a 

new view of continual cooperation, strong interaction, and mutual dependence among 

life forms. Life did not take over the globe by combat, but by networking. Life forms 

multiplied and complexified by co-opting others, not just by killing them. 

	
LYNN MARGULIS, MICROCOSMOS: FOUR BILLION YEARS OF EVOLUTION FROM 

OUR MICROBIAL ANCESTORS (1986)
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Abstract	
The	 lichen	 symbiosis	 –	 consisting	 of	 fungal	 mycobionts	 and	 photoautotroph	
photobionts	 (green	 algae	 or	 cyanobacteria)	 –	 is	 globally	 successful.	 It	 covers	 an	
estimated	6%	of	the	global	surface	with	habitats	ranging	from	deserts	to	the	arctic.	
This	 success	 is	 reflected	 in	 the	diversity	of	 the	mycobionts,	with	around	21%	of	all	
fungal	 species	participating	 in	 lichen	 symbioses	 that	 can	be	 facultative	or	obligate.	
Lichenization	 is	 furthermore	 evolutionary	 old,	 with	 fossil	 evidence	 for	 lichens	
reaching	 back	 415	 million	 years.	 For	 an	 individual	 fungal	 lineage,	 the	
Lecanoromycetes,	 the	 lichenization	 happened	 around	 300	 million	 years	 ago.	 This	
longstanding	 symbiotic	 relationship	 and	 the	 diversity	 of	 observed	 symbiotic	
dependency	make	them	promising	models	to	study	the	genomic	consequences	that	
follow	 the	establishment	of	 symbioses.	Despite	 this,	only	 little	 is	 known	about	 the	
genomic	effects	of	lichenization	and	extreme	symbiotic	dependency.	To	fill	this	gap	
we	 sequenced	 the	 hologenome	 of	 the	 lichen	 Lasallia	 pustulata,	 where	 the	
mycobiont	 could	 so	 far	 not	 been	 cultivated,	 suggesting	 that	 it	 might	 be	 more	
dependent	on	its	symbionts.		
As	 the	poor	culturability	of	 lichen	symbionts	renders	 their	genomes	 inaccessible	to	
standard	 sequencing	 practices,	 we	 evaluated	 the	 extent	 to	 which	 different	
metagenome	sequencing-	and	de	novo	assembly-strategies	can	be	used	to	sequence	
and	 reconstruct	 the	 genomes	 of	 the	 individual	 symbionts.	 We	 find	 that	 the	
abundances	 of	 individual	 genomes	 present	 in	 the	 L.	 pustulata	 hologenome	 vary	
substantially,	 with	 the	 mycobiont	 being	 most	 abundant.	 Using	 in	 silico	 generated	
data	 sets	 and	 real	 Illumina	 sequencing	 data	 for	 L.	 pustulata	we	 observe	 that	 the	
skewed	 abundances	 prevent	 a	 contiguous	 assembly	 of	 the	 underrepresented	
genomes	 when	 using	 only	 short-read	 sequencing.	 We	 conclude	 that	 short-read	
sequencing	can	offer	first	insights	into	lichen	hologenomes.	The	fragmentation	of	the	
reconstructions	 hinders	 downstream	 analyses	 into	 the	 genomic	 consequences	 of	
lichenization	though,	as	these	are	focused	on	identifying	the	gain	and	loss	of	genes.		
We	 thus	 demonstrate	 a	 hybrid	 genome	 assembly	 strategy	 that	 is	 based	 on	 both	
short-	and	 long-read	sequencing.	We	show	that	 this	strategy	 is	capable	of	creating	
highly	contiguous	genome	reconstructions,	not	only	 for	 the	L.	pustulata	mycobiont	
but	also	its	photobiont	Trebouxia	sp.,	along	with	substantial	amounts	of	the	bacterial	
microbiome.	A	subsequent	analysis	of	 the	microbiome	of	L.	pustulata	–	performed	
over	 nine	 different	 samples	 collected	 in	 Germany	 and	 Italy	 –	 showed	 a	 stable	
taxonomic	 composition	 across	 the	 geographic	 range.	 We	 find	 that	
Acidobacteriaceae,	 which	 are	 known	 to	 thrive	 in	 nutrient	 poor	 habitats,	 are	 the	
dominant	taxa.	These	would	make	them	well	adapted	for	 the	co-habitation	with	L.	
pustulata,	 which	 largely	 grows	 on	 rocks.	 Whether	 the	 Acidobacteriaceae	 are	
functionally	involved	in	the	lichen	symbiosis	is	unclear	so	far.		
As	 further	 comparative	 genomic	 studies	 rely	 on	 comprehensive	 genome	
annotations,	we	evaluate	the	completeness	and	fidelity	of	the	gene	annotations	for	
the	mycobiont	L.	pustulata	as	well	as	four	further	Lecanoromycetes.	This	reveals	that	
un-	and	mis-annotated	genes	 impact	all	evaluated	genomes,	with	artificially	 joined	
genes	and	unannotated	genes	having	the	largest	impact.	In	addition	to	these	factors	
we	find	that	the	sequence	composition	–	especially	G/C-rich	inverted	repeats	–	lead	



 

 

ii 

to	 sequencing	 errors	 that	 interfere	 with	 the	 gene	 prediction.	 We	 minimize	 the	
effects	of	these	artifacts	through	a	rigorous	curation.		
Given	 the	 extremely	 sparse	 taxon	 sampling	 of	 available	 green	 alga	 genomes,	 we	
focus	our	search	for	the	genomic	footprints	of	lichenization	on	the	mycobionts.	We	
compare	 the	 genomes	 of	 the	 Lecanoromycetes	 to	 their	 closest	 relatives,	 the	
Eurotiomycetes	and	Dothideomycetes.	This	reveals	that	the	last	common	ancestor	of	
the	Lecanoromycetes	has	lost	around	10%	of	its	genes	after	they	split	from	the	non-
lichenized	 ancestor	 they	 share	 with	 the	 Eurotiomycetes.	 These	 losses	 are	
furthermore	 enriched,	 showing	 an	 excessive	 loss	 of	 genes	 involved	 with	 the	
degradation	 of	 polysaccharides.	 The	 loss	 of	 these	 genes	 fits	 a	 change	 from	 an	
ancestral	saprotrophic	lifestyle	that	depends	on	degrading	complex	plant	matter,	to	
the	symbiotic	lifestyle	that	relies	on	simpler	nutrients	provided	by	the	photobionts.	
While	the	last	common	ancestor	of	the	Lecanoromycetes	additionally	gained	around	
400	 genes	 these	 could	 so	 far	 not	 be	 further	 characterized	 due	 to	 a	 lack	 of	
functionally	annotated	reference	data.		
As	 the	mycobiont	 L.	 pustulata	 could	 so	 far	 not	 been	 grown	 in	 axenic	 culture,	 we	
initially	 expected	 to	 find	 an	 extensive	 genomic	 remodeling	 compared	 to	 the	other	
mycobionts	that	easily	grow	in	culture.	We	do	not	find	evidence	for	this.	Analyzing	
both	 the	 contraction	 of	 gene	 families	 and	 the	 loss	 of	 genes,	 we	 observe	 that	 L.	
pustulata	and	Umbilicaria	muehlenbergii	 –	 its	 close	 relative	 that	 is	 easily	 grown	 in	
culture	–	share	most	of	these.	Furthermore,	L.	pustulata	does	not	show	an	excessive	
loss	of	evolutionary	old	and	well-conserved	genes.	These	effects	are	mirrored	on	the	
functional	 level,	 as	 neither	 gene	 family	 contractions	 nor	 gene	 losses	 show	 a	
functional	enrichment.	This	 is	partially	due	to	the	lack	of	functional	reference	data,	
analogous	 to	 the	 genes	 gained	 in	 the	 Lecanoromycetes,	 rendering	 their	
characterization	 hard.	 Thus,	 further	 studies	 on	 the	 genomic	 consequences	 of	
lichenization	 and	 differences	 in	 symbiotic	 dependence	 will	 have	 to	 be	 conducted,	
including	larger	taxon	sets.	This	will	be	even	more	important	for	the	photobionts,	as	
the	 Chlorophyta	 are	 even	 more	 sparsely	 sampled	 today,	 hindering	 an	 effective	
functional	and	evolutionary	study.	
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Zusammenfassung	
Flechten	 bilden	 eine	 global	 erfolgreiche	 Gemeinschaft.	 Sie	 sind	 symbiotische	
Organismen	 die	 aus	 einem	 Pilz	 (Mykobionten)	 und	 einem	 oder	 mehreren	
photoautotrophen	 Photobionten	 bestehen.	 Die	 Photobionten	 können	 dabei	
Grünalgen	oder	Cyanobakterien	sein.	Schätzungen	zufolge	bedecken	Flechten	etwa	
6%	 der	 Erdoberfläche.	 Dabei	 besiedeln	 Flechten	 diverse	 Habitate,	 die	 auch	
nährstoffarme	 arktische	 Regionen	 und	 Wüsten	 umfassen.	 Der	 Erfolg	 der	
Flechtengemeinschaft	 zeigt	 sich	 darüber	 hinaus	 auch	 an	 der	 Diversität	 der	
beteiligten	 Symbionten:	 Geschätzte	 21%	 aller	 Pilzarten	 sind	 als	 Mykobionten	 an	
Flechten	 beteiligt.	 Darüber	 hinaus	 ist	 Lichenisierung	 ein	 altes	 Phänomen.	 Fossile	
Evidenzen	für	Flechten	lassen	sich	auf	über	415	Millionen	Jahre	vor	heute	datieren.	
Des	weiteren	gibt	es	molekulare	Studien	die	zeigen,	dass	die	Lecanoromyceten,	eine	
Klasse	von	Pilzen	die	 fast	ausschließlich	aus	Mykobionten	besteht,	vor	 in	etwa	300	
Millionen	Jahren	entstanden	ist	und	bereits	lichenisiert	war.	
Die	 symbiotische	 Abhängigkeit	 einzelner	 Mykobionten	 variiert.	 Einige	 lichenisierte	
Pilze,	 wie	 Cladonia	 grayi	 oder	 Umbilicaria	 muehlenbergii,	 sind	 physiologisch	
fakultative	Symbionten	und	können	vergleichsweise	einfach	 in	axenischen	Kulturen	
gehalten	 werden.	 Dies	 war	 bislang	 nicht	 möglich	 für	 Mykobionten	 wie	 Lasallia	
pustulata	und	Vertreter	der	Peltigerales.	Sowohl	das	evolutionäre	Alter	der	Flechten,	
als	 auch	 die	 Variabilität	 ihrer	 symbiotischen	 Abhängigkeit	 macht	 sie	 dabei	 zu	
interessanten	Modellorganismen	um	die	genomischen	Auswirkungen	von	Symbiosen	
zu	 untersuchen.	 Die	 relativ	 kompakten	 Genome	 von	 sowohl	 den	Mykobionten	 als	
auch	 den	 Photobionten	 machen	 Flechten	 darüber	 auch	 von	 einem	 technischen	
Standpunkt	 aus	 interessant.	 Dies	 gilt	 insbesondere	 im	 Vergleich	 zu	 anderen	
langanhaltenden	Symbiosen	–	wie	denen	zwischen	Mykorrhizapilzen	und	vaskulären	
Pflanzen.	 Dank	 der	 geringen	Größe	 ist	 es	 daher	 auch	möglich	 das	 Hologenom	 der	
Flechte	zu	analysieren.	Neben	dem	Photobionten	und	Mykobionten	kann	daher	auch	
das	 bakterielle	 Mikrobiome	 betrachtet	 werden.	 Dem	 zu	 trotz	 gibt	 es	 bislang	 nur	
wenige	Studien	zu	den	genomischen	Auswirkungen	der	Lichenisierung.	Die	meisten	
Studien	 haben	 sich	 bislang	 auf	 vereinzelte	 Mykobionten	 beschränkt	 und	 gezielt	
einzelne	Genen	oder	Genfamilien	untersucht.		

Unser	 Ziel	 ist	 es	 daher	 das	 Feld	 der	 Flechtengenomik	 zu	 erweitern	 und	 zu	
analysieren	 welche	 genomischen	 Konsequenzen	 die	 Lichenisierung	 hat.	 Darüber	
hinaus	 wollen	 wir	 untersuchen	 in	 wie	 weit	 die	 genomischen	 Änderungen	 sich	
zwischen	 individuellen	 Symbionten	 unterschiedet.	 Wir	 sequenzieren	 daher	 das	
Hologenom	 der	 Flechte	 L.	 pustulata,	 für	 die	 der	 Mykobiont	 bislang	 nicht	 in	
axenischer	 Kultur	 gehalten	 werden	 konnte.	 Dies	 deutet	 auf	 weitergehende	
genomische	 Konsequenzen	 hin.	 Da	 das	 separate	 Sequenzieren	 der	 einzelnen	
Symbionten	 ob	 der	 schlechten	 Kultivierbarkeit	 nicht	 möglich	 ist,	 ist	 es	 hier	 nötig	
metagenomische	 Sequenzierungsverfahren	 zu	nutzen	welche	 alle	Genome	 in	 einer	
Sequenzierlibrary	 vereinen.	 Die	 Rekonstruktion	 einzelner	 Genome	 aus	 solchen	
Datensätzen	 hat	 sich	 bereits	 in	 bakteriellen	 Metagenomen	 als	 komplex	 erwiesen.	
Daher	 entwickeln	 wir	 einen	 simulationsbasierten	 Ansatz	 um	 zu	 evaluieren	 ob	
metagenomische	Daten	aus	einer	einzelnen	Illumina	Sequenzierlibrary	geeignet	sind	
um	die	Genome	von	Photobiont	und	Mykobiont	zu	rekonstruieren.	Dazu	entwickeln	
wir	 die	 Idee	 von	 Twin	 Data	 Sets	 –	 in	 silico	 generierte	 Sequenzreads	 die	 auf	 den	
Parametern	 einer	 echten	 Sequenzierlibrary	 basieren.	 Mit	 diesen	 Twin	 Data	 Sets	
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testen	 wir	 in	 wie	 weit	 die	 Genomrekonstruktionsqualität	 verschiedener	 de	 novo	
Genomassembler	 von	 dem	 Readcoverageverhältnis	 zwischen	 Mykobiont	 und	
Photobiont	abhängt.	Die	Twin	Data	Sets	zeigen,	dass	ein	Ungleichgewicht	zwischen	
den	 beiden	 Genomen	 einen	 erheblichen	 Einfluss	 auf	 die	 Qualität	 der	
Genomrekonstruktionen	 hat.	 Bei	 starken	 Ungleichgewichten	 sind	 sowohl	 die	
Kontiguität,	als	auch	die	assemblierte	Genomgröße,	beeinträchtigt.	Dieser	Effekt	 ist	
ein	Resultat	der	geringen	Readcoverage	für	das	unterrepräsentierte	Genome,	welche	
dazu	führt	das	genomische	Regionen	nicht	ausreichend	tief	sequenziert	wurden	um	
sie	 eindeutig	 zu	 rekonstruieren	 oder	 sogar	 gar	 nicht	 in	 den	 Sequenzreads	
repräsentiert	sind.	Nicht	alle	Genomassembler	sind	dabei	in	gleichem	Maße	sensibel	
gegenüber	 solchen	 Ungleichgewichten.	 Sowohl	 der	 Overlap-basierte	 Assembler	
MIRA	 als	 auch	 der	 multi-k-mer	 basierte	 Assembler	 SPAdes	 sind	 dabei	 besonders	
unempfindlich	 für	 solche	 geringen	 Readcoverages.	 Darüber	 hinaus	 zeigt	 die	 Twin	
Data	 Set-Studie,	 dass	 die	 oft	 zur	 Assemblyparameteroptimierung	 verwendete	
Methode	 der	 N50-Maximierung	 problematisch	 ist	 wenn	 sie	 auf	 metagenomische	
Datensätze	 angewandt	 wird.	 Bei	 einer	 extremen	 Ungleichverteilung	 der	
Readcoverages	 zwischen	 den	 beiden	 Genomen	 finden	 wir,	 dass	 die	 N50-
Maximierung	 dazu	 führt	 dass	 das	 unterrepräsentierte	 Genom	 überhaupt	 nicht	
rekonstruiert	 wird.	 Die	 Parameteroptimierung	 für	 metagenomische	 Assemblies	 ist	
daher	nicht	trivial.	

Wir	 wenden	 die	 verschiedenen	 Genomassemblierungsmethoden	
nachfolgend	auf	ein	einen	echten	 Illumina	Datensatz	von	Lasallia	pustulata	an.	Die	
Assemblies	sind	fragmentierter	als	erwartet	gegeben	den	Twin	Data	Sets	und	zeigen	
ein	komplexes	bakterielles	Mikrobiome	sowie	ein	deutliches	Ungleichgewicht	in	der	
Readcoverage	 zugunsten	 des	Mykobionten.	 Beide	 Eigenschaften	 führen	 dazu	 dass	
die	 Readcoverages	 insbesondere	 für	 Trebouxia	 sp.	 –	 den	 Photobionten	 von	 L.	
pustulata	 –	 so	 weit	 reduziert	 werden,	 dass	 die	 Genomrekonstruktion	 extrem	
fragmentiert	 bleibt.	 Frühere	 Studien,	 basierend	 auf	 einzelnen	 Genomen	 haben	
gezeigt,	 dass	 längere	 Sequenzreads	 bei	 der	 Genomrekonstruktion	 unterstützend	
wirken	 können.	 Aus	 diesem	 Grund	 entwickeln	 wir	 eine	 erweiterte,	 hybride	
Assemblierungsstrategie	 welche	 neben	 kurzen	 Illumina	 Sequenzreads	 auch	 lange	
PacBio	 Sequenzreads	 benutzt.	 Dazu	 verwenden	 wir	 verschiedene	
Assemblierungsmethoden,	 welche	 die	 längeren	 Sequenzreads	 auf	 mehrere	 Arten	
verwenden.	Dies	erlaubt	uns	die	verschiedenen	Genome	mit	ihren	unterschiedlichen	
Readcoverages	 ideal	 zu	 assemblieren.	 Die	 resultierenden	 Assemblies	 werden	
nachträglich	 miteinander	 kombiniert	 und	 führen	 zu	 einem	 hologenomweiten	
Assembly	welches	für	alle	Organismen	vollständiger	und	weniger	fragmentiert	ist	als	
die	 individuellen	 Assemblies.	 Diese	Methodik	 ist	 daher	 vielversprechend	 um	 auch	
weitere	 Hologenome	 und	 komplexe	 Mikrobiome	 mit	 starken	 Differenzen	 in	 den	
Readcoverages	zwischen	einzelnen	Taxa	zu	assemblieren.		

Die	 Verwendung	 verschiedener	 Sequenzierlibraries	 erlaubt	 uns	 darüber	
hinaus	 das	 bakterielle	 Mikrobiom	 von	 L.	 pustulata	 besser	 zu	 charakterisieren.	
Insgesamt	nutzen	wir	dafür	Sequenzdaten	aus	neun	verschiedenen	Libraries	welche	
von	 Flechtenthalli	 aus	 Deutschland	 und	 Italien	 generiert	 wurden.	 Der	 Vergleich	
dieser	 Daten	 zeigt,	 dass	 es	 ein	 stabiles	 Mikrobiome	 gibt,	 welches	 über	 alle	
Datensätze	 und	 damit	 auch	 die	 gesamte	 geographische	 Breite	 zu	 finden	 ist.	
Acidobacteriaceae	 dominieren	 das	 Mikrobiom	 in	 alle	 Libraries.	 Diese	 Familie	 von	
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Bakterien	 ist	 tolerant	 gegenüber	 starken	 Änderungen	 in	 der	Wasserverfügbarkeit.	
Darüber	 hinaus	 können	 sie	 ihre	 metabolische	 Rate	 anpassen	 wenn	 die	
Nährstoffverfügbarkeit	 gering	 ist.	 Durch	 diese	 Eigenschaften	 sind	 sie	 potentiell	
adaptiert	 auf	 das	 Zusammenleben	 mit	 L.	 pustulata,	 welche	 kahlen	 Fels	 in	
Südrichtung	 als	 Habitat	 bevorzugt.	 Obwohl	 das	 konsistente	 Vorkommen	 der	
Acidobacteriaceae	 für	 eine	 funktionelle	 Involvierung	 an	 der	 Flechtensymbiose	
spricht,	 so	 kann	 eine	 geteilte	 Habitatpräferenz	 als	 einziger	 Grund	 für	 das	
gemeinsame	 Auffinden	 nicht	 ausgeschlossen	 werden.	 Weitere	 Studien	 zur	
Lokalisation	 auf	 bzw.	 im	 Flechtenthallus	 sowie	 zu	 den	 funktionellen	Möglichkeiten	
der	 Acidobacteriaceae	 werden	 nötig	 sein	 um	 dies	 abschließend	 zu	 klären.	 Unsere	
Genomrekonstruktionen	 der	 Acidobacteriaceae	 bieten	 dafür	 ideale	
Ausgangsbedingungen.	

Tiefergehende	 evolutionäre	 Analysen	 erfordern	 komplette	 und	 korrekte	
Genomannotationen.	 Dies	 trifft	 insbesondere	 auf	 die	 korrekte	 Vorhersage	 von	
hinzugewonnen	und	verloren	Genen	zu.	Aus	diesem	Grund	annotieren	wir	nicht	nur	
die	 Gene	 für	 die	 Symbionten	 von	 L.	 pustulata,	 sondern	 evaluieren	 darüber	 hinaus	
auch	 die	 Performance	 einzelner	 Genvorhersagemethoden	 und	 potentielle	
Annotationsfehler.	 Ein	Vergleich	der	Allzweck-Genvorhersagesoftware	MAKER2	mit	
der	 pilzspezifischen	 Annotationspipeline	 funannotate	 zeigt	 deutliche	Unterschiede.	
Vor	allem	MAKER2	sagt	zusätzliche	Gene	vorher,	welche	weder	durch	RNAseq-Daten	
noch	Orthologe	 in	anderen	Taxa	unterstützt	werden,	und	verpasst	Gene	die	durch	
diese	Evidenzen	unterstützt	werden.	Als	weitere	Vorbereitung	auf	die	evolutionären	
Analysen	des	genomischen	Fußabdrucks	der	Lichenisierung	untersuchen	wir	darüber	
hinaus	 die	 Genauigkeit	 der	 Genvorhersage	 in	 L.	 pustulata	 sowie	 in	 vier	 weiteren,	
bereits	annotierten	Lecanoromyceten.	Für	den	Vergleich	nutzen	wir	das	evolutionär	
interessante	 Set	 an	 Genen	 die	 bereits	 im	 letzten	 gemeinsamen	 Vorfahren	 der	
Lecanoromyceten	vorhanden	waren	und	nur	in	einem	der	Genome	verloren	gingen.	
Der	 seltene	 Verlust	 alter	 Gene	 weist	 dabei	 auf	 eine	 wichtige	 Rolle	 für	 die	
Lecanoromyceten	 hin,	 ein	 Verlust	 ist	 daher	 ein	 Hinweis	 für	 weitreichende	
genomische	 Konsequenzen.	 Ihre	 zentrale	 Rolle	 bedeutet	 allerdings	 auch,	 dass	 ein	
beobachteter	 Verlust	 eine	 hohe	 Wahrscheinlichkeit	 hat	 eine	 falsch-positive	
Vorhersage	zu	sein.	Wir	fokussieren	uns	daher	auf	Genen	die	 in	einer	ersten	Suche	
als	ein	privater	Genverlust	erkannt	wurden.	Solch	privat	verlorene	Gene	suchen	wir	
dann	mit	weiteren	Methoden	während	wir	schrittweise	die	Suchsensitivität	erhöhen.	
Dabei	 können	 für	die	 verschiedenen	Genome	nur	 zwischen	9%	und	25%	der	 initial	
beobachteten	Genverluste	 nicht	 als	 falsche	 Vorhersagen	 bestätigt	werden.	 Unsere	
extensive	 Analyse	 der	 Falsch-positiven	 zeigt	 das	 verschiedene	 Artefakte	 dazu	
beitragen.	 Vor	 allem	artifizielle	Genfusionen	beeinträchtigen	dabei	 das	 Finden	 von	
Genverlusten.	 Dabei	 führen	 kurze	 Intergenbereiche	 und	 überlappende,	
untranslatierte	 5’-	 und	 3’-Regionen	 dazu	 das	 Genannotationen	 von	 benachbarten	
Genen	von	den	Genannotationsmethoden	als	ein	durchgehendes	Gen	vorhergesagt	
werden.	 Weitere	 Faktoren	 sind	 unannotierte	 Gene,	 welche	 in	 den	 assemblierten	
Genomen	 vorhanden	 sind	 aber	 nicht	 annotiert	 wurden,	 sowie	 nicht-assemblierte	
Genomregionen.	 Darüber	 hinaus	 finden	 wir	 das	 die	 bislang	 häufig	 vernachlässigte	
Sequenzkomposition	 einen	 starken	 Einfluss	 auf	 die	 korrekte	 Genvorhersage	 und	
damit	 die	 korrekte	 Identifizierung	 von	 Genverlusten	 hat.	 Insbesondere	 stark	 G/C-
haltige	 Genomregionen,	 in	 besonders	 pathogenen	 Fällen	 mit	 invertierten	 Repeats	
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gepaart,	führen	dabei	zu	in	silico	nicht	leicht	zu	identifizierenden	Sequenzierfehlern,	
welche	 artifizielle	 Insertionen	und	Deletionen	 erzeugen.	Diese	 erzeugen	 künstliche	
Stop-Codons,	welche	die	Genvorhersage	beeinträchtigen.	In	extremen	Fällen	können	
G/C-reiche	invertierte	Repeats	sogar	dazu	führen,	dass	die	entsprechenden	Regionen	
nicht	 sequenziert	 werden	 können,	 entsprechende	 Gene	 in	 diesen	 Regionen	 sind	
dann	 im	Assembly	 nicht	 repräsentiert.	 Eine	 extensive	 Kuratierung	 von	 annotierten	
Genen	 ist	 daher	 nötig	 um	 sicherzustellen	 das	 Genverluste	 korrekt	 vorhergesagt	
werden	können.	

Die	 funktionelle	 Annotation	 der	 Gene	 der	 Lecanoromyceten	 und	 des	
photobionten	Trebouxia	 sp.	 zeigt	deutliche	Unterschiede.	Während	etwa	50%	aller	
Gene	der	Lecanoromyceten	mit	Gene	Ontology-Terms	annotiert	werden	können,	so	
ist	 dies	 nur	 möglich	 für	 35%	 der	 Trebouxia	 sp.-Gene.	 Dies	 deutet	 auf	 einen	
markanten	Unterschied	 in	der	Verfügbarkeit	von	Referenzdaten	hin,	welche	für	die	
für	 die	 funktionelle	 Annotation	 benötigt	 werden.	 Dies	 spiegelt	 sich	 auch	 in	 der	
funktionellen	Kapazität	wieder	die	wir	 in	den	Lecanoromyceten	und	den	Grünalgen	
finden.	 Die	 betrachteten	 Lecanoromyceten	 zeigen	 ein	 stark	 überlappendes	 Set	 an	
Genfunktionen.	 In	 etwa	 80%	 der	 in	 den	 Lecanoromyceten	 annotierten	 Funktionen	
werden	 in	 allen	 Mykobionten	 gefunden.	 Die	 Chlorophyta	 hingegen	 zeigen	 eine	
deutlich	 größere	 Diversität	 zwischen	 verschiedenen	 Taxa,	 was	 auf	 eine	 größere	
Divergenz	 zwischen	 den	 repräsentierten	 Grünalgen	 hindeutet.	 Eine	
Phylogenierekonstruktion	die	sowohl	die	Lecanoromyceten	als	auch	die	Chlorophyta	
umfasst	bestätigt	dies.	Die	Lecanoromyceten,	welche	 intern	relativ	kurze	Astlängen	
aufzeigen,	werden	in	ein	dichtes	Taxonsampling	zu	den	nächst	verwandten	Gruppen,	
den	 Dothideomyceten	 und	 Eurotiomyceten,	 platziert.	 Die	 Chlorophyta	 hingegen	
zeigen	 lange	 Astlängen	 auf,	 trotz	 der	 Verwendung	 aller	 verfügbaren	 Genome	 von	
einzelligen	 Grünalgen.	 Ob	 dieses	 Mangels	 an	 Referenzdaten	 fokussieren	 wir	 uns	
daher	 auf	 die	 Lecanoromyceten	 bei	 der	 Suche	 nach	 genomischen	 Änderungen	 im	
Zusammenhang	mit	der	Lichenisierung.		

Der	Wechsel	von	einem	solitären	Organismus	zu	einem	symbiotischen	führt	
zu	einer	genomischen	Adaptation.	Vorhandene	Gene	werden	obsolet,	während	neue	
Gene	für	die	Interaktion	mit	den	Symbionten	benötigt	werden.	Solche	Anpassungen	
im	Zuge	einer	Symbiose	und	die	damit	erweiterte	bzw.	eingeschränkte	 funktionale	
Kapazität	wurden	für	Bakterien	und	Mykorrhiza	bereits	gezeigt.	Wir	erwarten	daher,	
dass	 die	 Lichenisierung	 einen	 vergleichbaren	 Effekt	 auf	 die	 Genome	 der	
Lecanoromyceten	 hat.	 Aus	 diesem	Grund	 nutzen	wir	 komparative	Genomanalysen	
zwischen	 den	 Lecanoromyceten,	 Eurotiomyceten	 und	 Dothideomyceten	 um	
entsprechende	 Effekte	 zu	 identifizieren.	 Darüber	 hinaus	 untersuchen	 wir	 die	
Diversität	der	genomischen	Anpassungen	an	die	Flechtensymbiose.	Wir	erwarten	das	
der	 Mykobiont	 L.	 pustulata,	 welcher	 bislang	 nicht	 kultiviert	 werden	 konnte,	
weitreichendere	genomische	Effekte	zeigt	als	 leicht	kultivierbare	Mykobionten.	Wir	
vergleichen	 daher	 das	 Genom	 von	 L.	 pustulata	 mit	 anderen	 Lecanoromyceten,	
welche	bereits	erfolgreich	in	axenischen	Kulturen	gehalten	wurden.	

Der	 Vergleich	 der	 Lecanoromyceten	 mit	 nicht-lichenisierten	 Verwandten	
zeigt	 keine	 Anzeichen	 für	 eine	 rapide	 Kontraktion	 von	 Genfamilien	 in	 der	 frühen	
Evolution	 der	 Lecanoromyceten.	 Die	 Anzahl	 kontrahierter	 Genfamilien	 ist	
vergleichbar	für	alle	drei	Klassen.	Auf	Ebene	individueller	Gene	hingegen	finden	wir,	
dass	 der	 letzte	 gemeinsame	Vorfahre	der	 Lecanoromyceten	 in	 etwa	800	der	Gene	
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verloren	 hat	 welche	 im	 Vorfahren	 der	 Eurotiomyceten	 und	 Lecanoromyceten	
vorhanden	 waren	 (10%).	 Diese	 Genverluste	 zeigen	 eine	 funktionelle	
Überrepräsentierung	 und	 enthalten	 Gene	 welche	 in	 der	 Degradation	 von	
Polysacchariden	 involviert.	Der	Verlust	dieser	Gene	kann	durch	die	Adaptation	von	
einem	 saprotrophen	 zu	 einem	 symbiotischen	 Lebenswandel	 erklärt	 werden.	
Während	der	gemeinsame	Vorfahre	der	Lecanoromyceten	und	Eurotiomyceten	auf	
die	 Zersetzung	 von	 komplexen	 Pflanzenstoffen	 angewiesen	 war,	 so	 können	 die	
lichenisierten	 Lecanoromyceten	 auf	 simplere	 Nährstoffe	 von	 ihren	 Photobionten	
zurückgreifen.	 Darüber	 hinaus	 finden	 wir	 in	 etwa	 400	 Gene	 welche	 der	 letzte	
gemeinsame	 Vorfahre	 der	 Lecanoromyceten	 hinzugewonnen	 hat.	 Mangels	
Referenzdaten	 können	 wir	 die	 meisten	 dieser	 Gene	 nicht	 funktionell	
charakterisieren.	 Dementsprechend	 gibt	 es	 keine	 Anzeichen	 für	 eine	
Überrepräsentierung	einzelner	Funktionen.		

Die	 komparative	Analyse	der	Genome	der	 Lecanoromyceten	 zeigt	deutliche	
Unterschiede	 in	 der	 Anzahl	 der	 sekretierten	 Proteine	 zwischen	 den	 individuellen	
Taxa.	 Während	 die	 Sekretomgrößen	 von	 L.	 pustulata	 und	 U.	 muehlenbergii	
vergleichbar	sind	mit	denen	der	überwiegend	parasitisch	lebenden	Eurotiomyceten,	
so	 sind	 die	 Sekretome	 der	 restlichen	 Lecanoromyceten	 deutlich	 größer	 und	
vergleichbar	 mit	 den	 saprotroph	 lebenden	 Dothideomyceten.	 Diese	 Unterschiede	
korrelieren	mit	dem	präferierten	Substrat	auf	dem	die	einzelnen	Lecanoromyceten	
wachsen.	Während	L.	pustulata	und	U.	muehlenbergii	auf	Felsen	zu	 finden	sind,	so	
leben	 die	 restlichen	 Lecanoromyceten	 überwiegend	 auf	 pflanzlichem	 Substrat,	wie	
lebenden	oder	 toten	Bäumen.	Dies	deutet	darauf	hin	dass	das	organische	Substrat	
von	den	entsprechenden	Lecanoromyceten	genutzt	wird.	

Für	 das	 Genom	 von	 L.	 pustulata	 finden	 wir	 keine	 deutlichen	 Hinweise	 auf	
eine	 extensive	 Remodellierung	 des	 Genoms	 welche	 die	 schlechte	 Kultivierbarkeit	
erklären	würde.	Die	Genfamilienevolution	 von	L.	 pustulata	 ist	 vergleichbar	mit	der	
des	 nahen	 verwandten	 Mykobionten	 U.	 muehlenbergii.	 Die	 meisten	 Expansionen	
und	 Kontraktionen	 von	 Genfamilien	 findet	 man	 entsprechend	 im	 gemeinsamen	
Vorfahren	der	beiden.	Ein	ähnliches	Bild	ergibt	sich	für	den	Verlust	einzelner	Gene:	
U.	 muehlenbergii	 und	 L.	 pustulata	 zeigen	 ähnlich	 viele	 Genverluste,	 während	
deutlich	 mehr	 Genverluste	 im	 gemeinsamen	 Vorfahren	 zu	 beobachten	 sind.	
Darüberhinaus	hat	L.	pustulata	nicht	deutlich	mehr	evolutionär	alte	Gene	verloren	
als	die	anderen	Lecanoromyceten.	Die	Suche	nach	einer	funktionellen	Anreicherung	
unter	 den	Genverlusten	 und	Veränderungen	 der	Genfamilien	 zeigt	 darüber	 hinaus	
keine	 signifikante	Veränderung	 in	 der	 funktionalen	 Kapazität	 von	 L.	 pustulata.	 Der	
Mangel	an	funktionell	annotierten	Referenzdaten	ist	potentiell	daran	beteiligt,	da	ein	
Großteil	der	verlorenen	Gene	nicht	eindeutig	klassifiziert	werden	kann.	Daher	 lässt	
sich	kein	abschließendes	Urteil	 fällen	wieso	L.	pustulata	bislang	nicht	 in	axenischer	
Kultur	 gehalten	 werden	 konnte.	 	 Weitere	 Studien	 zu	 den	 genomischen	
Konsequenzen	 der	 Lichenisierung	 und	 der	 unterschieden	 in	 der	 symbiotischen	
Abhängigkeit	 sind	 daher	 nötig,	 insbesondere	 unter	 Berücksichtigung	 das	 bessere	
Referenzdatensätze	 benötigt	 werden	 um	 eine	 bessere	 funktionale	 Auflösung	 zu	
erreichen.	 Dies	 wird	 vor	 allem	 für	 Trebouxia	 sp.,	 und	 die	 Chlorophyta	 allgemein,	
zentral.	 Die	 Abwesenheit	 von	 brauchbaren	 Referenzen	 macht	 eine	 Analyse	 der	
genomischen	 Auswirkungen	 einer	 entstehenden	 Symbiose	 für	 die	 Chlorophyta	
bislang	unmöglich.	
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1 Introduction 

Fungi are a diverse kingdom with an estimated 2.2 to 3.8 million species 

(Hawksworth and Lücking 2017), found in almost all terrestrial habitats 

(Mueller et al. 2007; Treseder and Lennon 2015). Their diversity and global 

distribution is reflected in their wide range of lifestyles, allowing them to 

utilize highly different energy and nutrient sources (Lewis 1973). While it is 

estimated that around half of fungi survive by degrading dead organic 

material (saprophytes), there is a considerable diversity of fungi that are 

living in symbioses with other eukaryotic organisms (biotrophes) 

(Hawksworth 1988). A sizeable fraction of these symbiotic fungi live as 

parasites, using other fungi (Lawrey and Diederich 2003), animals (Fisher et 

al. 2012; Spatafora et al. 2007) or plants (Newton et al. 2010) as their hosts. 

Partially, these fungi are living as hemibiotrophes that parasitize and kill their 

respective hosts, and subsequently live saprotrophically (Horbach et al. 2011).  

The parasitic fungi of vascular plants have been shown to form specialized 

hypha that invade cells and tissues to tap into their hosts’ metabolism 

(Strange and Scott 2005; Dean et al. 2012).  

In contrast to these parasitic interactions, a substantial amount of fungi live in 

commensalistic or mutualistic symbioses (Lewis 1973). Mycorrhiza-forming 

fungi, and particularly the arbuscle-forming representatives found in the 

Mucoromycotina (K. J. Field et al. 2015) and the Glomeromycotina (Schüβler, 

Schwarzott, and Walker 2001), are closely studied cases of mutualistic 

symbioses. In these groups, fungi and their vascular plant hosts form a 

symbiosis that is well adapted to living at the interface of soil and 

atmosphere, with the plant partner utilizing light and CO2 to produce 

carbohydrates, and the fungal partner exploiting resources like nitrogen and 

phosphates from the rhizosphere (Bonfante and Genre 2010). This type of 
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interaction has been shown to be so successful that around 80% of vascular 

land plants engage in mycorrhizal symbioses (Smith and Read 2008).  

1.1 The lichen symbiosis 

Mutualistic interactions between fungi and photoautotrophic organisms 

extend beyond the vascular land plants. Lichens are communities that largely 

consist of fungi (mycobionts) and photosynthesizing photobionts, which 

belong to either the green algae or cyanobacteria (Lewis 1973) . The exact 

nature of the symbiosis between the mycobiont and photobiont is unclear, 

and the proposed symbiotic interactions range from parasitic or 

commensalistic to mutualistic (Lewis 1973; Ahmadjian and Jacobs 1981; 

Ahmadjian 1993; Lücking et al. 2009). The interplay between mycobionts and 

photobionts is so close that they were initially classified as plants (Honegger 

2000); and it was only in the late 19th century – thanks to early lichenologists 

like Simon Schwendener and Beatrix Potter – that their symbiotic nature was 

recognized (Margulis 2003). 

Traditionally, lichens have been seen as the symbiosis of a single mycobiont 

and one or two photobionts, but recent studies have shown that both 

additional fungi (Spribille et al. 2016) as well as a bacterial microbiome 

(Hodkinson et al. 2012) can be involved in the lichen symbiosis. It appears 

that this symbiosis makes lichens globally successful, with lichens playing a 

key role in making fungi an integral part of terrestrial biodiversity in nearly 

all ecosystems (Ahmadjian 1993). Lichens cover an estimated 6% of the global 

surface (Gadd 2010) and their habitats range from arctic (Muller 1952) to 

desert environments (Kidron and Temina 2010). Furthermore, lichens are 

often amongst the first to colonize new terrestrial habitats (Caruso and 

Rudolphi 2009).  

The success of the lichenized lifestyle is reflected in the diversity of the 

mycobionts, with an estimated 21% of all fungi being lichenized (Lewis 1973). 
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Their spread over 39 orders suggests between 20-30 independent 

lichenization events (Lucking, Hodkinson, and Leavitt 2016). Lichenization 

itself appears to be an evolutionarily old phenomenon, with fossil evidence 

reaching back 415 million years (Honegger, Edwards, and Axe 2013). 

Individual lineages, like the fungal class of the Lecanoromycetes, are 

especially indicative of the long-standing lichen symbiosis. Nearly all 

members of the Lecanoromycetes, which started diverging around 300 million 

years ago (Amo de Paz et al. 2011), are living as mycobionts, suggesting that 

the last common ancestor of them was already living in a lichen symbiosis.  

1.2 The genomic consequences of symbiosis 

The establishment of biotrophic interactions has been shown to often lead to a 

drastic genomic remodeling, for both parasitic as well as mutualistic 

interactions (Bonfante and Genre 2010; Newton et al. 2010; S. M. Schmidt and 

Panstruga 2011). Adapting from a solitary to a symbiotic lifestyle frequently 

requires the gain of new functions, and thus new genes, to interact with 

respective symbionts (F. Martin et al. 2008; Kohler et al. 2015; Bonfante and 

Genre 2010). At the same time, the symbiosis renders some functions obsolete, 

as the symbionts can provide these, leading to a loss of genes and thus 

molecular functionality (Kohler et al. 2015; McCutcheon and Moran 2011; 

Ochman and Moran 2001; F. Martin et al. 2008). These effects have been the 

subject of study for parasitic fungi (Chaudhari et al. 2014; S. M. Schmidt and 

Panstruga 2011; Lowe and Howlett 2012) and mycorrhizal fungi (Garcia et al. 

2015; F. Martin et al. 2008; Kohler et al. 2015; Tisserant et al. 2013). For the 

mutualistic mycorrhizal fungi, studies have found a gain of secreted proteins 

linked to the interaction with their plant symbionts, as well as a contraction of 

gene families involved in plant cell wall degradation (F. Martin et al. 2008). 

This contraction of gene families has also been related to the inability to grow 

solitarily for some mycorrhizal fungi (Tisserant et al. 2013).  
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It is increasingly recognized that a thorough study of symbiotic interactions 

needs to take the hologenome, which includes all participants involved in a 

symbiotic ecosystem, into account (Theis et al. 2016). A comparative analysis 

then often depends on the completeness and fidelity of the genome 

reconstructions (Denton et al. 2014). Performing such a comprehensive, 

hologenome-wide study of the genomic consequences of symbiosis is 

problematic in the case of mycorrhiza. This has two reasons: 1. Their 

symbiotic plants have sizeable genomes, ranging from 500 Mbp (Tuskan et al. 

2006) to over 20 Gbp (Neale et al. 2014), rendering a complete reconstruction 

of their photoautotroph symbionts challenging. 2. Their soil-based ecosystem 

often does not allow for a clear demarcation of the hologenome as 

accidentally sampled species lead to confounding. The symbiotic dependence 

of lichens is similar to that of mycorrhizal fungi – with some lichenized fungi 

only growing poorly in culture (McDonald, Gaya, and Lutzoni 2013). But in 

contrast to mycorrhiza, the individual genomes found in lichen hologenomes 

are rather small; with even the photobiont genomes having sizes of around 50 

Mbp. Additionally, many lichens grow on virtually uncolonized surfaces like 

rocks that are poor in nutrients, allowing for an easy demarcation of the 

lichen hologenome. Thus, lichens can make a promising model system to 

study the genomic effects of symbioses. 

 

1.3  Studying the genomic effects of lichenization 

Despite these interesting characteristics, the hologenomes of lichens have so 

far not been studied in depth. DNA barcoding studies have investigated the 

diversity of mycobionts and photobionts (Magain and Sérusiaux 2015; P. 

Moya et al. 2017). The genomes of physiologically facultative symbionts – that 

can be grown in axenic cultures (Martínez-Alberola 2015) – have been 

investigated for various aspects: The genome of the mycobiont Cladonia 
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uncialis has been mined for gene clusters for the synthesis of polyketides that 

are of biotechnological interest (Abdel-Hameed et al. 2015). A genome 

reconstruction of the mycobiont Endocarpon pusillum revealed some genetic 

mechanisms of drought-tolerance along with first indications that secreted 

proteins and transporters facilitate the communication between mycobiont 

and photobiont (Wang et al. 2014). Additionally, metagenomic sequencing is 

frequently utilized for the study of mycobiont genomes. Metagenomic data 

were used to identify novel microsatellite markers (Lutsak et al. 2016); 

analyze the evolution of ammonium transporters and ammonia permeases 

amongst different mycobionts (McDonald et al. 2013); and to investigate 

adaptations to different habitats and climates (Dal Grande et al. 2017; Junttila 

and Rudd 2012). Metagenomic sequencing has furthermore allowed a first 

characterization of the bacterial microbiome found in lichens (Grube and Berg 

2009; Grube et al. 2015; Hodkinson et al. 2012). 

Yet, so far there have been only limited efforts to gain a comprehensive 

picture of how lichenization shaped the genomes of the participating 

organisms and how the degree of symbiotic dependence influences the 

genome evolution. The mycobionts belonging to the Lecanoromycetes offer 

an interesting model to study these genomic consequences. It is assumed that 

their change to a lichenized lifestyle already took place in their last common 

ancestor, after their split from the lineage to the Eurotiomycetes (Gueidan et 

al. 2008). Thus, the species in the Lecanoromycetes have experienced long-

term adaptations to the lichenized lifestyle over a period of around 300 

million years (Amo de Paz et al. 2011), resulting in ample of time for genomic 

effects to manifest in their genomes. Additionally, inside the Lecanoromycetes 

the degree of symbiotic dependence varies between species. A comparative 

study of physiologically facultative and obligate symbionts (Lewis 1973; 

McDonald, Gaya, and Lutzoni 2013) furthermore allows the investigation of 
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more extreme symbiotic dependences and the accompanying genomic 

remodeling. 

 

We thus sequenced the hologenome of the rock-dwelling lichen Lasallia 

pustulata (Hestmark et al. 1997) to facilitate evolutionary comparative 

genomics studies into the genomic consequences of lichenization. To the best 

of our knowledge it was so far not possible to grow the mycobiont L. pustulata 

in culture. Given this we expect that this will furthermore allow the analysis 

of different degrees of symbiotic dependence and genomic remodeling. 

Earlier studies based on metagenomic data have often been hampered by the 

fragmentation of the resulting draft genomes (McDonald et al. 2013). In 

Chapter 2, “in silico evaluation of the assembly problem in metagenomic 

contexts”, we therefore investigated to what extent genome skimming can be 

applied to characterize the eukaryotic genomes of a lichen community and the 

quality of the genome reconstructions one can expect given such data. We do 

this by applying a simulation-based framework, which models in silico-

generated sequencing data mirroring the results of a real sequencing 

experiment. Subsequently we evaluate de novo assembler performance and its 

implications for the reconstruction of the hologenomes of lichens.  

In Chapter 3, “Assembly & characterization of the L. pustulata metagenome”, 

we describe our approaches to sequence, assemble and characterize the 

taxonomic composition of the L. pustulata hologenome. We demonstrate the 

utility of a hybrid de novo assembly strategy, which uses both long and short 

read sequencing data, to comprehensively assemble the hologenome of L. 

pustulata. This approach allows us to cope with the different genome 

coverages observed in our sequencing data. After the initial reconstruction of 

the hologenome we characterize its taxonomic diversity. We compare the 

taxonomic composition found in the bacterial microbiome observed in 

different L. pustulata thalli sampled from different sampling sites. 
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Chapter 4, “Genome annotation, artifacts and solutions”, describes the 

annotation of the hologenome of L. pustulata, predicting genes and 

functionally annotating them. As both assembly and gene annotation artifacts 

can bias further evolutionary inferences, we describe a detailed, stepwise 

procedure to estimate and minimize the artifacts we observe in L. pustulata as 

well as in four other, public Lecanoromycetes genomes. 

Subsequently, we perform detailed evolutionary genomics analyses as 

described in Chapter 5, “Evolutionary consequences of lichenization”, to 

search for both the evolutionary footprint of lichenization in general, as well 

as the genomic origins of the poor culturability observed in L. pustulata. To 

that end, we investigate the evolution of secreted proteins and gene families, 

as well as the gain and loss of individual genes between the Lecanoromycetes 

and their closest relatives, the Eurotiomycetes and the Dothideomycetes.
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2 in silico evaluation of the assembly problem in 

metagenomic contexts 

2.1 Introduction 

The successful commercialization of second-generation sequencing 

techniques, generating millions of short sequencing reads, has enabled genetic 

and genomic studies in a large number of fields (Mardis 2008; Schatz, Delcher, 

and Salzberg 2010). Second generation sequencing facilitates the de novo 

assembly of a large number of new genomes (R. Li et al. 2010; Read et al. 2013; 

Gnerre et al. 2011; Quail et al. 2012), the comparative study of transcriptomes 

to investigate niche adaptations (H. Schmidt et al. 2013; Feldmeyer et al. 2015; 

Elmer et al. 2010), as well as population-scale resequencing projects (Dal 

Grande et al. 2017; Auton et al. 2015; Lek et al. 2016). Second generation 

sequencing methods are not only used for sequencing individual taxa, but are 

also being applied to survey the genetic complexity of metagenomic 

communities (Tully et al. 2016; Sangwan et al. 2016). Metagenomic sequencing 

has been used to study the taxonomic and functional diversity as well as the 

evolutionary history of microbial communities (Olm et al. 2017; Olson et al. 

2017).  

2.1.1 (Meta)genome skimming 

A popular method for assessing the genomes of so-far unsequenced 

organisms is genome skimming, which requires only a single sequencing 

library and limited sequencing coverage (Elgar et al. 1999). This enables rapid 

and low-cost genomic surveys that can be applied to studies ranging from 

phylogenomics or phylogeography to population genetics (Bock et al. 2014; 

Malé et al. 2014; Weitemier et al. 2015). A further application of the genome 

skimming approach is its use on metagenomic data sets instead of data 
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derived from a single organism. The sequencing of metagenomic samples 

facilitates the study of complex ecological niches (e.g. soil or gut) to 

characterize their functional and taxonomic diversity (e.g. Franzosa et al. 

2014; Forsberg et al. 2014; Rondon et al. 2000). While most metagenome 

skimming has focused on microbial communities, nascent metagenomic 

sequencing efforts of lichen communities (Grube and Berg 2009; Cardinale, 

Puglia, and Grube 2006; McDonald et al. 2013; Erlacher et al. 2015; Kampa et 

al. 2013) essentially resemble such metagenome skimming experiments. In 

contrast to many microbial communities though, lichens contain at least one 

eukaryotic member, often even more (Millanes, Diederich, and Wedin 2016; 

Spribille et al. 2016).  

2.1.2 Genome assembly strategies 

Genome skimming, like many other sequencing applications, relies on 

shotgun sequencing, in which the template nucleotide sequences are 

randomly fragmented, thus requiring an extensive post-sequencing 

reconstruction of the target sequences (Miller, Koren, and Sutton 2010). 

Depending on data availability, this can either be achieved by a reference-

based genome/transcriptome assembly (Chevreux, Wetter, and Suhai 1999; 

Trapnell et al. 2010) or through a de novo assembly of the sequenced data 

(Kumar and Blaxter 2010; Baker 2012). While the use of reference-based 

assemblies is typically preferred for its lower computational demands, this is 

often not possible due to a lack of reference data. For this reason a sizeable 

number of de novo genome assembly algorithms have been developed (Schatz 

et al. 2012; Magoc et al. 2013; Kajitani et al. 2014). Most of these tools fall 

conceptually into one of two categories, applying either overlap graphs (OLG) 

or de Bruijn graphs (DBG) (Miller, Koren, and Sutton 2010).  



 

 

11 

2.1.2.1 Evaluating genome assembly quality 

The first step after performing any de novo assembly is to address the question 

of how good the resulting genome reconstruction is. To address this, post-

assembly methods have been developed to assess the assembly quality, based 

on either comparisons to a known reference genome (E. Bao, Song, and Lan 

2017), or making use of inherent assembly statistics (Gurevich et al. 2013; 

Hunt et al. 2013). Frequently used metrics in the evaluation of de novo genome 

assemblies include: 

1. Total assembly length: Evaluates how closely the achieved assembly 

size resembles the expected assembly size. 

2. N50: The length of the contig that, along with all longer contigs, makes 

up 50% of the concatenated assembly length. 

3. NG50: Analogous to the N50, but taking the expected genome length 

instead of the assembly as the total length. 

4. NGA50: Analogous to the NG50, but only counting contig blocks that 

can be consistently aligned to the reference genome(s). 

5. Number of misassemblies: The number of splits that need to be 

performed to correctly map the assembly to the reference. 

In the absence of a reference, a focus is often put on both the total assembly 

length, as well as on the N50 as a proxy for the assembly contiguity. 

Furthermore, methods to evaluate the completeness of a genome have been 

developed. These are based on the recall of well conserved genes, which are 

either ubiquitously present in all genomes (Parra, Bradnam, and Korf 2007), 

or are clade-specific for a defined group of taxa (Simão et al. 2015). 

2.1.2.2 Overlap graph based methods  

Methods that rely on overlap graphs (OLGs) use each sequencing-read as a 

continuous stretch of a given template DNA that was sequenced. By finding 

reads that have pairwise overlaps, and subsequently arranging them in a 
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consistent layout, they reconstruct “contigs” (contiguous consensus 

sequences, i.e. free of gaps). Examples of OLG assemblers include the overlap 

layout consensus-based tools like CAP3 (X. Huang and Madan 1999) and 

Celera (Myers et al. 2000); and other implementations like MIRA (Chevreux, 

Wetter, and Suhai 1999). These assemblers often assume a uniform read 

coverage over the whole genome, which is not fulfilled in metagenomic data 

with varying abundances between taxa. As this can lead to individual 

genomes being misidentified as repetitive regions or sequencing errors, 

dedicated metagenome assemblers based on OLGs, like Omega (Haider et al. 

2014), have been developed.  

As OLGs allow for overlaps of varying size, these methods can in principle 

work with coverages close to 1, as long as the found minimal overlaps create 

unique joins between sequencing reads. At the same time, OLG-based 

methods often cannot be easily applied to eukaryotic whole genome 

sequencing projects that rely on large second generation sequencing data sets 

with high coverages (Shendure and Ji 2008). This is a result of the run time of 

OLG-based methods that increases quadratically with the amount of the input 

data, as all pairwise overlaps need to be calculated (Miller, Koren, and Sutton 

2010). Due to these limitations, alternative approaches have been developed, 

which either use a more efficient implementation of the overlap-criterion, like 

string graphs (Simpson and Durbin 2012; Simpson and Durbin 2010), or 

alternatively use de Bruijn graphs (DBG).  

2.1.2.3 De Bruijn graph-based methods 

Unlike OLG-based methods, DBG assemblers don’t overlap individual reads. 

Instead, they extract words of length k (k-mers) from the sequencing reads, 

representing the words that appear in the genomes, as well as words 

generated by sequencing errors. The word frequencies can then be used to 

differentiate between genomic and erroneous words. The k-mers are then 



 

 

13 

used to build a de Bruijn graph, with k-1-mers as nodes. Two nodes are 

connected if the k-mer formed by two overlapping k-1-mers is found in the list 

of genomic k-mers that was extracted from the sequencing data. Paths in the 

graph that don’t have any branches represent contiguous sequences stretches 

in the template DNA. There is a sizeable number of general-purpose DBG 

assemblers, such as Velvet (Zerbino and Birney 2008), SOAPdenovo2 (Luo et al. 

2012) or ABySS (Simpson et al. 2009). As most DBG assemblers – analogous to 

most OLG methods – assume a uniform read coverage that is not found in 

many metagenomic data, some DBG assemblers are specifically designed for 

metagenomic data. These, like MetaVelvet (Namiki et al. 2012) or IDBA-UD 

(Peng et al. 2012), use additional information to find sub-graphs representing 

the different genomes in the overall DBG, for example coverage differences 

and graph connectivity. As DBG-based assemblers don’t use a minimum 

overlap criterion but are mostly bound to a given k, the choice of the right 

value for k is central when using these methods. Finding an appropriate k is 

usually done by different rounds of trial-and-error, optimizing for a given 

assembly statistic. In absence of a known reference genome, a frequently used 

statistic is the contiguity as measured by the N50 size (Bradnam et al. 2013). 

Alternatively, an adequate k can be estimated through the overall number of 

observed k-mers that appear frequent enough to be likely of genomic origin 

rather than sequencing errors (Chikhi and Medvedev 2014; Q. Zhang et al. 

2014). Assemblers that use multi-sized DBGs, such as SPAdes (Bankevich et al. 

2012; Nurk et al. 2016), try to avoid the problem of having to choose a single 

“best” k, by iteratively increasing the size of k. This procedure allows the use 

of small values of k to assemble low coverage regions, while the subsequent 

use of larger k can enable the resolution of repetitive regions given that the 

coverage is high enough.  
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2.1.3 Choosing the right tools 

The different assembly approaches come with their own benefits and 

drawbacks. While OLG methods can be useful for metagenome skimming 

data, where coverages for individual genomes can be low, their run time and 

memory requirements can limit their use for larger data sets. In contrast, 

while DBG-based methods are more time and memory efficient, their frequent 

need to optimize parameters that are dependent on read coverage often limit 

their applicability for complex metagenomes. This, along with the large and 

growing number of different de novo genome and metagenome assemblers, 

makes it challenging for users to decide which tool and parameters should be 

used. This is especially problematic, as different assemblers can yield different 

assemblies, even when using identical input data (Earl et al. 2011). 

This problem has sparked numerous proposed solutions. There are various 

benchmarking approaches, such as the Assemblathons (Earl et al. 2011; 

Bradnam et al. 2013), GAGE (Schatz et al. 2012; Magoc et al. 2013), and the 

Critical Assessment of Metagenomic Interpretation (Sczyrba et al. 2017), 

which have evaluated assembler performance on simulated and real data sets. 

Furthermore, similar studies have been conducted for individual sequencing 

projects (Vollmers, Wiegand, and Kaster 2017; Z. Li et al. 2012; Kumar and 

Blaxter 2010). However, all these benchmarks differ in the sequencing method 

and chemistry employed; in sequencing library layouts and resulting read 

lengths/insert sizes; and in the complexity of the genomes under 

investigation. All of these factors influence key parameters of sequencing 

data, affecting different assemblers in different ways (Nagarajan and Pop 

2013). As a result, different assemblers perform optimal on different data sets, 

making it hard to generalize assembler performance based on these 

benchmarks (Bradnam et al. 2013). 

While tools have been developed to automate the large-scale creation of 

assemblies across a set of available genome assemblers (Mapleson, Drou, and 
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Swarbreck 2015), the creation of all these assemblies is still a time-consuming 

step, especially for large data sets. Additionally, these approaches rely on 

extensive sequencing data already being present, limiting how much the joint 

parameter space of different genomes, sequencing technologies and assembly 

methods can be explored.  

2.1.4 Simulating metagenome skimming data from lichens 

So far it has not been evaluated if and how metagenome-skimming data from 

lichens can be used for genome assemblies. Prior studies on lichen 

metagenomes were largely performed with data from a single Illumina or 454 

sequencing library that was subsequently assembled using general purpose 

assemblers (Kampa et al. 2013; Lutsak et al. 2016; McDonald et al. 2013). As 

lichens feature at least one eukaryotic genome they frequently contain more 

repetitive non-coding regions than bacterial metagenomes in addition to the 

differences in species abundances that impact all metagenomic assemblies. 

Thus it is unclear how the selection of different assembly methods and 

parameters influences the extent to which the individual genomes can be 

reconstructed from the sequencing data. For this reason we introduce the idea 

of twin data sets, which are in silico-generated data sets of genomes that are 

expected to be of a similar composition and complexity as the targeted 

genomes. Such twin sets furthermore specifically mirror the sequencing 

parameters of a particular real data set. Simulated data has already been used 

for benchmarking assemblers (Mende et al. 2012; Earl et al. 2011). 

Additionally, a large number of programs are able to simulate whole genome 

shotgun sequencing reads, according to empirical sequencing error models 

for different sequencing techniques (Döring et al. 2008; McElroy, Luciani, and 

Thomas 2012; Richter et al. 2008; W. Huang et al. 2012; H. Li et al. 2009). By 

simulating from related organisms, our twin data sets have the benefit of not 

only being similar to the real data set in terms of library layout and 
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sequencing method, but should also mirror the expected genomic complexity 

to at least some degree. At the same time, the assemblies done on these twin 

data sets can be directly compared to the seed genomes from which the data 

was simulated. This enables assessing the influence of both the sequencing 

strategy and the genome assembly method on the quality of the genome 

reconstruction, as measured by contiguity, completeness and correctness 

(Gurevich et al. 2013). This allows one to rank the different methods 

according to a gold standard, thereby identifying which assembler is most 

capable to cope with the complexities of the twin sets. Assuming that our 

references from which we simulated are not substantially different to the 

target genomes, this ranking can then be used to inform the assembly of the 

real data. It furthermore allows teasing out the effects that different parameter 

choices have on the assembly outcome. Lastly, this approach can help in 

estimating the quality that can be expected from an assembly done on real 

data under a given sequencing strategy, thus enabling more targeted 

sequencing approaches. Given a real Illumina sequencing experiment, done on 

the lichen Lasallia pustulata, we thus simulate 11 twin data sets - using the 

lichenized fungi Cladonia grayi and its photobiont Asterochloris sp. as templates 

for the simulations. Subsequently, we demonstrate how such twin sets can 

guide the planning and execution of metagenome skimming projects in 

lichens and evaluate the impact of the metagenomic complexity on the 

assembler performance. 
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2.2 Methods 

2.2.1 Metagenomic shotgun sequencing of Lasallia pustulata 

We collected a L. pustulata thallus with a diameter of 10 cm in Olbia, Sardinia, 

Italy, in May 2013. From this, genomic DNA was extracted with the CTAB 

method (Cubero and Crespo 2002) and subsequently purified using the 

PowerClean DNA Clean-Up Kit (MO BIO, Carlsbad, CA, USA). A metagenomic 

shotgun library was constructed by the Illumina TruSeq DNA Sample Prep v2 

(Illumina, San Diego, CA, USA), selecting for fragments of a mean length of 

450 bp with the SPRIselect reagent kit (Beckman Coulter, Krefeld, Germany). 

Members of the Schmitt group, at the Senckenberg Biodiversity and Climate 

Research Centre, performed the sampling and library preparation. The 

subsequent sequencing of 2 x 251 bp paired end reads was performed on an 

Illumina MiSeq machine by StarSEQ (Mainz, Germany). FASTQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used for the 

quality control of the generated reads. Sequencing adapters were removed by 

cutadapt (M. Martin 2011) and overlapping read pairs were merged into 

longer super reads with FLASH (Magoč and Salzberg 2011) if reads had a 

minimum overlap of 10 bp. From the observed super read lengths we 

calculated the insert size distribution of the library by fitting a Weibull 

distribution in R. 

2.2.2 Simulating lichen metagenome sequencing twin data sets 

We concatenated the draft genome scaffolds of the lichenized fungus Cladonia 

grayi (http://genome.jgi.doe.gov/Clagr2/Clagr2.home.html) and its photobiont 

Asterochloris sp. (http://genome.jgi-psf.org/Astpho1/Astpho1.home.html), 

removing all ambiguous bases, thus creating two pseudogenomes to simulate 

sequencing data sets from. To characterize these pseudogenomes we assessed 

the self-similarity of them through Gepard (Krumsiek, Arnold, and Rattei 

2007). Additionally, we annotated repetitive regions by generating libraries of 
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repetitive elements through RepeatScout v. 1.0.5 (Price, Jones, and Pevzner 

2005) and gave these as input to RepeatMasker v. 4.0.5 (Smit, Hubley, and 

Green 2015).  

We used ART v. 2.1.8 (W. Huang et al. 2012) to simulate whole-genome 

shotgun data sets from the pseudogenomes. Applying the Illumina MiSeq-250 

error profiles to simulate sequencing errors, we generated 2 x 250 bp paired-

end reads. To model the insert size distribution observed in our real data, we 

did separate simulations with insert sizes ranging from 250 bp to 664 bp in 

step sizes of 1. Each individual simulation was performed with ART’s 

standard deviation for the insert size set to 1. We simulated a total of 13.9 

million read pairs for each pseudogenome, following the average number of 

reads obtained through a single Illumina MiSeq run. Given the lengths of the 

pseudogenomes this yields mean coverages of 182x for the fungal and 125x 

for the algal genome. Furthermore we simulated 9 metagenomic MiSeq data 

sets, mixing reads from the pseudogenomes of Asterochloris sp. and Cladonia 

grayi. To estimate the influence of the coverage ratio between the genomes on 

downstream analyses we varied the fungal-to-algal coverage ratio from 1:9 

(algal sequences are highly overrepresented) to 9:1 (fungal sequences are 

highly overrepresented) in steps of 1, while keeping the total number of read 

pairs for the joint data set close to 13.9 million. 

2.2.3 Assembling the simulated data sets 

We selected 6 de novo genome assemblers to assemble the 11 simulated data 

sets. These assemblers represent both Overlap Layout graph (OLG) as well as 

de Bruijn graph (DBG) based methods and additionally cover metagenomic 

and general assemblers (see Table 2-1). We preprocessed the reads in 

accordance with the individual program’s instructions: For MIRA (Chevreux 

et al. 2004) and Omega (Haider et al. 2014), FLASH-merged super reads as well 

as unmerged read pairs were used as input, and all unmerged paired reads 
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were given for the other assemblers. While MIRA and Velvet (Zerbino and 

Birney 2008) come with internal error correction routines, we applied bbmap 

(http://sourceforge.net/projects/bbmap/) for correcting the reads prior to the 

assembly with Omega, and used BayesHammer (Nikolenko, Korobeynikov, and 

Alekseyev 2013) prior to the assembly with SPAdes (Bankevich et al. 2012). For 

sga (Simpson and Durbin 2010) we applied its internal error correction 

pipeline with a k-mer size of 31. 

Table 2-1:  The assemblers we evaluated and the respective methods they utilize. 

 Assembler Method Description Reference 

OLG1 MIRA Overlap Graph 

/ Alignment 

General purpose assembler (Chevreux, 

Wetter & Suhai 

1999) 
 Omega Overlap Graph Metagenome assembler, uses coverage to 

discern between organisms 

(Haider et al. 

2014) 

 sga String Graph Memory efficient implementation of 

overlap graphs 

(Simpson & 

Durbin 2012) 
DBG2 Velvet DBG General purpose assembler (Zerbino & 

Birney 2008) 
 MetaVelvet DBG Extension of Velvet for assembling 

metagenomics data, uses k-mer coverage 

to discern between organisms 

(Namiki et al. 

2012) 

 SPAdes Multisized 

DBG 

Merges DBGs of different 

k mer sizes to handle differences in 

coverage 

(Bankevich et al. 

2012) 

1OLG: Overlap layout graph; 2DBG: de Bruijn Graph 

 

Both Omega and sga require the specification of the minimum overlap length 

as an input parameter. Following the authors’ recommendations for Omega 

we tested minimum overlap lengths between 100 and 250 in steps of 50. For 

sga we followed the example applications provided by the developers and 

tested minimum overlap sizes of 71, 75, 81, 91 and 101 bp. Similarly, Velvet 

and MetaVelvet (Namiki et al. 2012) require the user to provide the size of k. 

Here we used VelvetOptimiser v. 2.2.5 (https://github.com/Victorian-
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Bioinformatics-Consortium/VelvetOptimiser/) to test k-mer sizes between 51 

and 221 in step sizes of 10. In case of Velvet, we set VelvetOptimiser to optimize 

the coverage cutoff parameter to maximize the total number of base pairs in 

contigs larger 1 Kbp. For all 4 assemblers we observed the change of the N50 

size for the different input parameters and used these parameters that 

maximized the N50 for each input data (Earl et al. 2011).  

Following the documentation, the quick-flags genome, denovo, accurate were set 

for MIRA, while SPAdes was started with –k 21,33,55,77,99,127 --careful. 

The assemblies were performed on a single machine with 4x Intel Xeon CPU 

E5-4607 @ 2.2 Ghz (24 cores, 48 threads) and 512 GB of RAM. Due to memory 

limits only a single size for k could be tested at a given time, instead of the 

standard parameter of four. As sga lacks a default setting, the number of 

threads was set to eight. For the other assemblers the default settings were 

used. 

2.2.4 Evaluating the assemblies 

We analyzed the resulting assemblies for the 6 different assemblers and 11 

different data sets with QUAST (Gurevich et al. 2013), giving the 

pseudogenomes of Asterochloris sp. and Cladonia grayi as references. 

Additionally we checked for contigs that contain uniquely mapping 

sequences stemming from both genomes. For this we mapped the simulated 

reads back to the assemblies, using bowtie2 (Langmead and Salzberg 2012), 

removing non-uniquely mapping reads using samtools (H. Li et al. 2009) and 

grep. The filtered mapping was then analyzed for the origin of the mapping 

reads using pysam (https://github.com/pysam-developers/pysam). 

AUGUSTUS (Stanke and Waack 2003) was trained with the 9588 Cladonia 

grayi reference genes and subsequently used to predict genes in the assembled 

genome sequences. We then matched the genes predicted in the assemblies to 

the reference genes with blastp (Altschul et al. 1997). 



 

 

21 

2.2.5 Assembling the metagenome of L. pustulata 

We de novo assembled the L. pustulata metagenome from the MiSeq data set 

following the same protocol as described for the simulated twin data sets. We 

assigned the taxonomy of the resulting contigs by first comparing them to a 

custom database of the proteomes with DIAMOND (Buchfink, Xie, and 

Huson 2014). To differentiate between the eukaryotic symbionts and identify 

potential eukaryotic contaminations, our database consisted of 121 fungi, 16 

plants and 8 animals (see Table A-1 on page 187 for the taxa included). We 

further enriched the database with 1,471 bacteria and 560 viruses downloaded 

from the NCBI genome database, randomly selecting one representative for 

each bacterial species if multiple strains were available. The results of the 

DIAMOND search were then used for the taxonomic assignment with 

MEGAN4 (Huson et al. 2011), with min-support = 1, min-score = 50, top-hit = 

10%, no low complexity filtering as parameters. For the assemblies of MIRA and 

SPAdes, we performed a bowtie2 mapping of the MiSeq data to the contigs that 

could be taxonomically classified. The average coverages over the fungal, 

algal and bacterial contigs were used to estimate the mean coverages for the 

respective genomes, ignoring short contigs with a length smaller 2 Kbp. 
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2.3 Results 

2.3.1 Simulating twin data sets mirroring a lichen metagenome 

2.3.1.1 Sequencing Lasallia pustulata 

Performing a single Illumina MiSeq sequencing run on a metagenomic 

shotgun library, we generated 14,013,249 read pairs with a read length of 251 

bp from a single thallus of Lasallia pustulata. By merging 12,107,565 

overlapping read pairs with FLASH (Magoč and Salzberg 2011) and 

subsequently analyzing the length distribution of the resulting super reads, 

we estimated the insert size distribution of our metagenomic library. Fitting a 

Weibull distribution, we found the mean insert size to be 336 bp with a 

standard deviation of 55 bp (Figure 2-1).  

 

Figure 2-1: Observed distribution (black) for the insert sizes of the metagenomic L. pustulata 
shotgun library and the fitted Weibull distribution (blue curve). The fit extrapolates the insert size 
distribution for ranges where paired end reads no longer overlap. 
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2.3.1.2 Pseudogenome templates 

We then simulated twin sets using our L. pustulata library, using the draft 

genomes of the lichenized fungus Cladonia grayi and its photobiont 

Asterochloris sp. as templates. Concatenating the 1,506 fungal and 153 algal 

contigs, we generated pseudogenomes for both, yielding a 38 Mbp fungal 

template (44% G/C) and a 55 Mbp algal template (58% G/C). The dot plot 

showed a rather large self-similarity in the pseudogenome of Cladonia grayi, 

which is pronounced towards the end, where the shortest contigs of the 

original assembly were concatenated (Figure 2-2 A). This finding was 

supported by our RepeatMasker (Smit, Hubley, and Green 2015) analysis, 

which found 5% of the overall sequence to be repetitive, with 4.2% of the 

genome falling in interspersed repeats. The visual inspection of the 

pseudogenome of Asterochloris sp. revealed less self-similarity (Figure 2-2 B), 

in line with the smaller fraction classified as repetitive (2.8%). 
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Figure 2-2: Dot plot for the pseudogenomes of Cladonia grayi (A) and Asterochloris sp. (B). 
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2.3.1.3 Twin data set creation 

Based on the pseudogenomes of Asterochloris sp. and C. grayi we simulated 

read sets for both organisms. Furthermore, we also simulated nine data sets, 

mixing reads from both genomes in different coverage ratios (see Table 2-2). 

We assembled all twin data sets using six different de novo genome assemblers 

to benchmark their respective performance and sensitivity to different 

coverages in a given dataset. We selected three assemblers that are based on 

overlap layout algorithms (Omega, MIRA and sga) and three that are based on 

de Bruijn graphs (Velvet, MetaVelvet and SPAdes). With MetaVelvet and Omega 

the set includes two assemblers that are designed for the de novo assembly of 

metagenomic data, the others are general-purpose de novo assemblers.  

Table 2-2: The eleven data sets simulated for the twin sets, with the number of reads used from 
Asterochloris sp. and Cladonia grayi. The differences in absolute coverages per organism are due to 
the different sizes of the two genomes. 

Coverage Ratio  

C. grayi : 

Asterochloris sp. 

Read Pairs  

C. grayi 

Read Pairs  

Asterochloris sp. 

Coverage  

C. grayi 

Coverage 

Asterochloris sp. 

0:10 - 13,976,839 0x 125x 

1:9 993,072 12,983,735 13x 116x 

2:8 2,052,139 11,924,657 26x 107x 

3:7 3,184,074 10,792,727 40x 97x 

4:6 4,396,524 9,580,266 56x 86x 

5:5 5,698,537 8,278,247 74x 74x 

6:4 7,100,343 6,876,442 92x 61x 

7:3 8,613,884 5,362,851 112x 48x 

8:2 10,253,117 3,723,658 134x 33x 

9:1 12,034,317 1,942,453 157x 17x 

10:0 13,976,783 - 182x 0x 
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2.3.1.4 Assembler parameter optimization 

We explored the assembler parameter space of minimum overlap lengths for 

OLG-based methods (sga and Omega), and of k-mer sizes for DBG-based 

methods (Velvet and MetaVelvet) for the eleven twin data sets. We found that 

both Omega and sga consistently favor a single minimum overlap length for 

all twin sets. There is more variability in case of Velvet and MetaVelvet, with 

especially the latter showing larger differences between different 

metagenomic twin sets (Table 2-3). A drop in k-mer size is especially 

noticeable for the 7:3 and 8:2 data sets, when compared to the 6:4 and 9:1 sets. 

Table 2-3: The selected parameter values yielding the highest N50 sizes for the individual 
assembler/data set combinations (All values given in base pairs). 

Data Set Velvet  

k-mer-size 

MetaVelvet  

k-mer-size 

sga 

overlap length 

Omega 

overlap length 

0:10 171 141 101 200 

1:9 171 131 101 200 

2:8 171 131 101 200 

3:7 161 141 101 200 

4:6 161 141 101 200 

5:5 161 91 101 200 

6:4 151 131 101 200 

7:3 151 51 101 200 

8:2 191 51 101 200 

9:1 191 151 91 200 

10:0 191 131 91 200 

 

2.3.2 Baseline assembler performance on single-species data sets 

In a first step we assembled the two single-species data sets, to establish a 

baseline performance of what the individual assemblers can achieve on a 

given genome skimming sequencing library, without the confounding factor 

of a species mixture. While all methods were successful in assembling the 

pseudogenomes over the full length, with no assembly differing more than 

2% in length from the reference (Figure 2-3, columns 10:0 and 0:10), there 
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were marked differences in the contiguity and number of misassemblies 

between the two pseudogenomes and the different assemblers. In case of the 

algal genome both the NG50, as well as the assembly-error corrected NGA50, 

ranged from a high of >4 Mbp for MIRA to a low of only 0.28 Mbp for sga 

(Figure 2-3, column 0:10). We observed a similar spread for the fungal 

genome (Figure 2-3, column 10:0), though here the NG50 and NGA50 were 

generally smaller by an order of magnitude.  

 
Figure 2-3: Assembler performance on the different data sets. Individual bars are centered at the total 
assembly lengths; the height of each bar represents the NG50 size. The orange lines give the 
reference genome lengths, 55.8 Mbp for the alga (0:10), 38.4 Mbp for the fungus (10:0) and 94.2 Mbp 
for the metagenomes (1:9 – 9:1), the NG50 is calculated with those numbers. The star denotes 
assemblies where the total assembly length is less than 50% of the target genome size, thus no NG50 
could be calculated. The bar height was thus set to a default value. 
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We explored the reason for this difference by mapping the contigs from the 

six fungal genome assemblies as well as the original contigs to the fungal 

pseudogenome. We noticed that the borders of our assembled C. grayi contigs 

largely coincide with contig borders of the original assembly that was used to 

generate the pseudogenome (Figure 2-4A), leading to a highly similar contig 

length distribution. Doing the same for the Asterochloris sp. assemblies, we did 

not observe the same correlation of contig boundaries and contig length 

distributions (Figure 2-4B). We further investigated the potential reason for 

this correlation in the C. grayi assemblies by analyzing the repeat content in 

the respective pseudogenome. We observed that there is a considerable 

enrichment of repetitive elements within 100 bp of the contig borders. While 

the sum of contig borders makes up only 1 % of the total genome length, we 

found that 14.5% of all identified repeats fall in these regions (see Appendix, 

Figure A-1 on page 215).  
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Figure 2-4: Mapping of the original contigs (JGI) and the contigs assembled from the C. grayi (A) and 
Asterochloris sp. (B) single species data sets. Red boxes indicate contigs with at least one 
misassembly. Erroneously fused contigs are split to map to the corresponding regions, boxes will be 
highlighted in red. The NGx plots give the length-ordered contig length distribution relative to the 
length of the target genome covered. All assemblies of C. grayi largely resemble the original input 
assembly, while the Asterochloris sp. assemblies in many instances extend over the contig borders of 
the JGI assembly. 
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In addition to the large differences in contiguity we also found substantial 

differences in the number of misassemblies between the assemblies of C. grayi 

and Asterochloris sp. data. While we did not find more than 10 errors in any of 

the algal assemblies, there were up to 258 misassemblies in the fungal 

assemblies (Table 2-4).  

Table 2-4: The number of misassemblies per data set and assembler. 

Data set MIRA Omega SPAdes sga Velvet MetaVelvet 

0:10 1 1 5 0 1 0 

1:9 839 3 753 27 45 2 

2:8 414 178 639 1 231 3 

3:7 339 246 172 0 535 57 

4:6 318 200 96 0 377 24 

5:5 130 222 96 0 40 30 

6:4 126 216 86 0 2 13 

7:3 94 311 94 0 4 124 

8:2 99 182 116 0 9 135 

9:1 151 117 295 0 8 5 

10:0 112 258 77 0 3 2 

 

We furthermore examined how method-dependent trade-offs between the 

contiguity and accuracy of an assembly influences the subsequent gene 

prediction. For this we predicted genes in all C. grayi assemblies with 

AUGUSTUS (Stanke and Waack 2003) and compared them to the gene 

predictions done on the pseudogenome (Table 2-5). Omega and MIRA, the two 

overlap-based assemblers, recovered the largest number of the reference 

genes, missing only 21 out of 10,740 genes, while all other assemblers were 

missing at least twice the amount. Furthermore, MIRA showed the smallest 

number of spurious gene predictions. 
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Table 2-5: Number of genes predicted in the different assemblies of C. grayi. The reference genes 
describe the genes predicted in the C. grayi pseudogenome. 

Assembly NGA50 # Gene predictions # Reference 

genes 

recovered 

# of additional gene 

predictions 

Reference n.a. 10,740 10,740 n.a. 

MIRA 263 kb 10,835 10,719 23 

Omega 101 kb 10,932 10,720 27 

sga 16 kb 12,333 10,679 117 

SPAdes 120 kb 10,903 10,694 33 

Velvet 32 kb 11,068 10,678 30 

MetaVelvet 77 kb 10,876 10,678 39 

 

2.3.3 Assembling the metagenomic twin data sets 

After estimating the baseline performance of the different assemblers on data 

sets of the individual genomes of C. grayi and Asterochloris sp. we continued to 

investigate the influence of mixing data from two eukaryotic species. To that 

end, we simulated data sets with different ratios of fungal to algal genomes 

(c.f. Table 2-2, page 26), as potentially encountered in metagenomic DNA 

isolates of lichens. We noticed that the performance of individual assemblers 

is highly affected by the species mixture in the metagenomic data sets, 

negatively affecting the total assembly length and the NG50 size. In all 

instances both assembly statistics became progressively worse when the 

coverage became skewed towards one of the two genomes (Figure 2-3, page 

28).  

MetaVelvet, and to a lesser extent Velvet and Omega, were strong examples for 

this trend. The MetaVelvet assemblies for the coverage ratios of 1:9 up to 4:6 

only reached a length that is close to that of the algal genome. This indicates 



 

 

33 

that the fungal genome was not or only partially assembled. Similarly, 

MetaVelvet did not reconstruct the algal genome over the full length once the 

fungal-to-algal coverage skew exceeded 6:4. MIRA, SPAdes, and sga on the 

other hand appeared to be less sensitive to highly skewed coverage ratios in 

the input data, as their assemblies reached the expected sizes even if one 

genome is strongly underrepresented. We additionally found large 

differences between the individual assemblers when looking at the other 

metrics to assess assembly quality. In terms of NG50 size, especially MIRA 

performed well, regardless of the coverage ratio. For the ratios of 3:7 to 8:2 it 

outperformed all other tested assemblers (Figure 3). We observed the same 

when correcting for misassemblies by taking the NGA50, which splits contigs 

at misassemblies (see Table 2-4 for misassemblies found in each 

assembler/data set combination).  

Only in three data sets, the algal-dominated 1:9/2:8 sets, and the fungal-

dominated 9:1 set, MIRA did not generate the assemblies with the largest 

NG(A)50. In case of the algal-dominated data MetaVelvet achieved higher 

NG(A)50 values. Comparing the total assembly lengths (Figure 2-3, page 28), 

we found that these higher NG(A)50 values for MetaVelvet are achieved 

through the exclusion of the fungal genome, which remained unassembled. 

For the fungal-dominated 9:1 data set SPAdes outperformed MIRA for both 

the total assembly length as well as the NG50 (MIRANG50: 33 Kbp, SPAdesNG50: 

154 Kbp.; MIRAAssembly length: 93,285,544, SPAdesAssembly length: 93,594,650). 

Additionally, we searched for chimeric contigs in all assemblies that consist of 

both fungal and algal data. For this, we mapped our simulated sequencing 

reads back to the individual assemblies. We then searched for contigs that 

have uniquely mapping reads of both the fungal and the algal fractions. In the 

229,256 contigs, spread over 54 assemblies, we identified only a single 

chimeric one. This misassembly is found in a 3,645,792 bp long contig 
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generated by the MIRA assembly of the 6:4 data set. A closer inspection of this 

contig revealed a 32 bp long dinucleotide repeat, found in both a fungal and 

an algal read, to be the source of this wrong join of the two contigs from 

different species.  

Table 2-6: The number of C. grayi reference genes recovered for the individual assembler/coverage 
ratio combinations. 

Assembly 1:9 2:8 3:7 

MIRA 10,348 10,715 10,718 

Omega 72 5,825 10,302 

sga 10,100 10,674 10,675 

SPAdes 10,656 10,666 10,683 

Velvet 2,845 8,817 10,530 

MetaVelvet 4 66 1,657 

 

In a last step, we analyzed how the downstream gene prediction is affected by 

the different genome coverage ratios in the sequencing data, and the choice of 

the assembler (Table 2-6). We limit our investigation to the fungal genome for 

the 1:9 to 3:7 data sets, as these show the highest differences in assembler 

performance, with Omega, Velvet and MetaVelvet having total assembly sizes 

much smaller than expected. As a consequence, we find that the assemblies of 

MetaVelvet, and to a lesser extent Velvet, and Omega, contained only a 

miniscule fraction of the reference genes of C. grayi. On the other hand, large 

parts of the reference genes were recovered from the assemblies done with 

MIRA, SPAdes and sga.  
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2.3.4 Assembling the metagenome of Lasallia pustulata 

We evaluated the performance of the individual assemblers on our 

metagenome skimming data set from Lasallia pustulata. In the L. pustulata data 

Omega, Velvet and MetaVelvet generated assemblies with total lengths between 

34 and 43 Mbp, while Mira and SPAdes yielded assemblies of 2x – 3x the size 

(Table 2-7). We noticed that the results largely resemble the findings of the 9:1 

twin data set analysis.  

Table 2-7: Results of the six assemblers on the L. pustulata data set. The N50-optimized parameters 
are given where applicable. Parameter optimization for sga and Omega was done for the minimum 
overlap length. For Velvet and MetaVelvet the k-mer size was optimized.  

 MIRA Omega sga SPAdes Velvet MetaVelvet 

Parameter (bp) - 150 101 - 211 191 

Number of contigs 11,758 4,438 14,164 15,530 3,532 2,434 

Total length (Mbp) 75.7 43.2 68.9 140.1 36.0  33.6 

Largest contig (bp) 520,743 180,979 256,303 1,303,928 115,444 144,213 

N50 (bp) 11,323 15,584 5,529 18,221 15,703 19,617 

 

After looking at the overall assemblies, we performed a taxonomic 

assignment on the different contig sets to estimate the assembly sizes and 

assembly contiguities of the different taxonomic fractions (Table 2-8). We 

found that there are substantial size differences for the fungal genome; on the 

lower end sga reconstructed only 27.7 Mbp in total (sga), compared to 39.6 

Mbp for SPAdes on the upper end. The assembly size spread is even more 

extreme for the algal genome, where the total assembly length spanned from 

0.17 Mbp generated by Velvet to 40.7 Mbp found in the SPAdes assembly. In 

addition to this we uncovered a sizeable bacterial fraction in the Lasallia 

pustulata metagenome, which ranged from 0.11 Mbp in the MetaVelvet 

assembly to 43.5 in the SPAdes contigs. Overall, we found that MIRA and 

SPAdes are best at recovering large fractions of the metagenome in their 

respective assemblies, with SPAdes leading in terms of both the assembly 
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lengths across the different taxonomic fractions as well as the N50 size, 

followed by MIRA as the runner-up. A subsequent mapping of our 

sequencing reads against the fungal and algal assembly fractions of SPAdes 

and MIRA revealed that the coverage distribution has its peak at 110x for the 

fungal and ~10x for the algal genome (see Appendix, Figure A-2 on page 215). 

Table 2-8: Assembly results for the different taxonomic fractions present in the L. pustulata 
metagenome. The largest contig and N50 are given in bp. 

   MIRA Omega sga SPAdes Velvet MetaVelvet 

Fungi 

# contigs 2,561 2,476 3,794 4,069 2,572 2,300 

Total length 
34.1 

Mb 
30.2 Mb 27.7 Mb 39.6 Mb 32.3 Mb 32.63 Mb 

Largest 

contig 
161,762 134,352 61,191 197,284 115,444 144,213 

N50 21,046 16,495 9,662 22,506 17,160 19,704 

Algae 

# contigs 3,008 208 3,579 2,606 17 15 

Total length 
10.3 

Mb 
0.76 Mb 12.1 Mb 40.7 Mb 0.17 Mb 0.19 Mb 

Largest 

contig 
26,589 101,190 21,759 129,862 63,433 63,393 

N50 3,382 3,229 3,372 23,085 30,739 20,075 

Bacteria 

# contigs 2,667 1,355 3,011 6,707 753 10 

Total length 
19.4 

Mb 
10.5 Mb 17.2 Mb 43,5 Mb 2.5 Mb 0.11 Mb 

Largest 

contig 
520,743 180,979 256,303 1,303,928 23,430 25,282 

N50 13,081 13,303 7,093 9,280 3,308 20,051 
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2.4 Discussion 

Genome skimming has previously been shown to be an effective way to 

quickly assess the genomes of individual species at a low cost (Elgar et al. 

1999; Malé et al. 2014; Bock et al. 2014). Additionally, metagenome skimming 

is now being applied to get insights into symbiotic communities, as found in 

lichens (McDonald et al. 2013; Sigurbjörnsdóttir et al. 2015; Grube et al. 2015). 

Our analysis provides insight into whether the data generated by such 

metagenome skimming approaches can be used for fine-grained comparative 

genomics studies and to what extent the answer to that depends on the choice 

of methods in processing this data. We additionally explore to what extent the 

composition of the data itself influences the potential assembly outcomes, as 

previously found in other genome assembly contexts (Earl et al. 2011; 

Bradnam et al. 2013; Deng et al. 2015). As the choice of optimal assembler is 

dependent on the underlying data that is being reconstructed, benchmarks 

cannot be generalized for the assembly of all data sets, limiting the 

applicability of general benchmarking efforts (Earl et al. 2011; Bradnam et al. 

2013).  

To minimize the biases from taxon-specific idiosyncrasies like G/C content or 

repeat content in the respective genomes we tried to generate twin data sets 

based on the already sequenced genomes of lichen symbionts. Given that the 

lineages of L. pustulata and C. grayi split about 250 million years ago (Amo de 

Paz et al. 2011), the twin data for the mycobiont can nevertheless only 

approximate the L. pustulata genome. These twin sets are furthermore 

generated to model the observed parameters from a given data set in terms of 

sequencing method and library layout. While the use of real data over 

simulated data for this kind benchmarking is generally preferable, the twin 

data come with their own benefits: As they can be generated quickly in silico, 

the twin sets facilitate rapidly testing various library layouts and 

combinations of different sequencing techniques. Additionally the use of 
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known reference genomes, which are ideally closely related to the genome of 

interest, allows evaluating the assembly results to a known ground truth of 

similar genomic complexity. We apply the idea of the twin data sets to a 

benchmark of assembler performance on lichen metagenomes. Using our 

metagenome skimming data from the lichen Lasallia pustulata we estimated 

the parameters of the Illumina MiSeq library. With these parameters we 

generated eleven twin data sets that mix simulated sequencing reads of the 

lichenized fungus Cladonia grayi and its algal photobiont Asterochloris sp. in 

different ratios.  

2.4.1 Assembling single-species twin sets 

Starting with the two data sets that contain only data of a single species, we 

established the baseline assembler performance for the individual genomes. 

This revealed that there are marked differences in the quality of the genome 

reconstructions between different assemblers, even when done on the same 

input data. While all assemblers are capable of assembling the full lengths of 

the genomes, the contiguity of these assemblies varies widely between 

methods. MIRA (Chevreux, Wetter, and Suhai 1999), the best-performing 

assembler for both the algal as well as the fungal genome, achieves N50 and 

NG50 values that are twice as large as the second-best methods, MetaVelvet 

(Namiki et al. 2012) and SPAdes (Bankevich et al. 2012) respectively.  

An earlier assembler benchmark on bacterial genomes had found that SPAdes 

outperforms MIRA (Magoc et al. 2013), highlighting the influence that the 

underlying data has on the performance of individual tools (Bradnam et al. 

2013). This point is also driven home by the differences in assembly quality 

between the fungal and algal genome. The N(G)50 sizes for the algal genome 

are nearly an order of magnitude larger than that for the repeat-rich fungal 

genome (Figure 2-3, page 28), despite the latter having a larger mean coverage 

(c.f. Table 2-2, page 26). It appears that the repetitive regions (Figure 2-2, page 
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25) cannot be resolved by any of the assemblers due to the lack of long-range 

information like mate pair libraries. This shows the importance of choosing 

sequencing strategies that are appropriate for the complexity of a given 

genome. Despite this, the relative assembler ranking remains largely 

unchanged, hinting that the choice of appropriate sequencing methods has a 

larger impact than the intrinsic characteristics of a given genome. 

The comparison of the fungal assemblies additionally allowed us to evaluate 

how the different kinds of assemblers treat repetitive regions. Classical DBG 

assemblers such as Velvet and MetaVelvet use a single value for k, thus 

adopting a conservative strategy. The ideal choice of k needs to strike a 

balance between resolving repetitive regions with a large value of k and 

avoiding disruptions in the graph caused by low coverage regions, achieved 

by small values for k. Following the graph simplification, only unambiguous 

parts will be returned as contigs (Zerbino and Birney 2008). This strategy 

helps to avoid repeat-induced misassemblies, at the cost of low NG50 values 

in repeat-rich genomes (Table 2-4 on page 31, Figure 2-3 on page 28). Overlap-

based assemblers, such as MIRA and Omega, and assemblers that use multiple 

values of k (SPAdes) on the other hand are more capable at resolving repeats, 

leading to higher NG50 values at the cost of introducing additional 

misassemblies (c.f. Table 2-4 on page 31, Figure 2-4 on page 30). This increase 

in observed misassemblies does not necessarily reflect a larger misassembly 

rate. Even given a constant misassembly rate the total number of 

misassemblies would linearly increase with the number of sequences that the 

assemblers join. Indeed, after splitting those misassemblies we find that the 

resulting NGA50 values remain larger for those assemblers that generate 

larger NG50 values, when compared to the more conservative DBG 

assemblers (see Appendix, Figure A-3 on page 216). Thus, we do not find 

evidence for a marked increase in the misassembly rate for MIRA and SPades. 
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In line with the previous observation, when comparing the AUGUSTUS gene 

predictions done on the different assemblies we find that an increase in NG50 

leads to an increase in the number of reference genes found despite the higher 

number of misassemblies. At the same time the higher NG50 decreases the 

number of genes being split on different contigs. This is despite the small 

average gene size of 1.8 Kbp for C. grayi, which will make it unlikely that a 

contig break will fall into the middle of gene. Rather most contig break points 

will fall into intergenetic regions, thus not affecting the gene prediction. Given 

the low occurrence of misassemblies (112 events over a length of 38 Mbp for 

MIRA), we hypothesize the benefit of longer NG50 values on gene predictions 

to increase with average gene length. We thus find evidence that, while these 

misassemblies might be generally unwanted, these are an acceptable trade-off 

in the case of metagenomic skimming.  

2.4.2 Assembling metagenomic twin sets 

The assembly of metagenomic data comes with additional complexities not 

present in single-species data. Most importantly, we find that the common 

practice of N50 maximization for selecting the optimal parameter choice (Cha 

and Bird 2016; Earl et al. 2011) fails when the coverages between the 

individual species are highly uneven. Given the lack of a known reference, the 

NG50 most often cannot be used, especially when working with metagenomic 

data, where the true total genome length is highly dependent on the species 

present in the data. We show that the practice of maximizing the N50 can lead 

to the partial or even complete exclusion of the underrepresented genome 

from the assembly (Figure 2-3, page 28). This not only happens for DBG 

assemblers like Velvet or MetaVelvet, but also for overlap-based assemblers 

like Omega that require the user to set a minimum overlap length. While the 

intention of the N50-maximizing parameter choice is to choose values that 

allow the bridging of repeats, it can alternatively choose values that favor 
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values that leave those regions unassembled which would lead to short 

contigs. This prevents the formation of short contigs, at the cost of missing out 

on parts of the genome.  

The N50-maximizing parameter choice for the 11 MetaVelvet assemblies (Table 

2-3 on page 27), compared to the overall assembly lengths (Figure 2-3) gives 

an idea of this interdependence between the choice of k, read coverage, k-mer 

coverage and the resulting assembly (Chikhi and Medvedev 2014; Compeau, 

Pevzner, and Tesler 2011). In the data sets with read coverages ranging from 

13x – 40x for the fungal genome (twin sets 1:9–3:7) basically the same value of 

k is chosen as for the data set that only consists of algal data (0:10). For these 

large values of k the k-mers of the fungal genome are found only so rarely, 

that their k-mer coverage is more or less the same as for the k-mers that are 

generated by sequencing errors. Consequently they are excluded as errors 

during the assembly procedure. We observe a similar effect in the data sets 

where the less repetitive algal genome is underrepresented. In the 7:3 and 8:2 

data sets, a k of 51 is still sufficient to assemble the algal genome, despite the 

low read coverage of 48x and 33x respectively. Only in the 9:1 data set the 

algal read coverage drops to 17x and the parameter optimization leads to a 

jump to 151 for the the value of k, thus preventing the formation of short algal 

contigs (Figure 2-5). 
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Figure 2-5: k-mer coverages for the 9:1 twin set. A k of 51 results in a clear bimodal distribution, with 
the two peaks representing the fungal and algal k-mers and a peak of 1 representing the sequencing 
errors (A). Increasing the k-mer size to 151 (B) shifts the distribution to the left, making the lower-
coverage algal k-mers overlap with the sequencing error k-mers. 

We further evaluated this effect by doing a MetaVelvet assembly of only the 

fungal data from the 9:1 twin set, again optimizing the value of k. Under these 

circumstances a k of only 131 is found as optimal, generating an NG50 size of 

70 kb, which is about 18 kb longer than what is achieved with the mixed 

species data and a k of 151. Thus a selection against the formation of short 

contigs comes at the cost of a suboptimal assembly even for the 

overrepresented genome. 

Given these results the parameter selection for metagenomic data should 

ideally not only take the N50, but also expected assembly size into account. In 

case of the 9:1 data set and MetaVelvet, a k of 51 does lead to an assembly that 

covers 99% of both genomes, with an N50 of 20 kb. Unfortunately, this 

approach is infeasible for most metagenomic data sets, as the joint target 

genome size is unknown, even with lichens, whose metagenome are 

supposedly simple, as they host a large number of different bacteria 

(Cardinale, Puglia, and Grube 2006; Erlacher et al. 2015; Grube et al. 2015). 

Possible solutions to this problem are the inspection of the k-mer coverage 

histograms as well as taking the number of unassembled/unmapped reads 
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into account. Lastly, the selection of an assembler less sensitive to uneven 

coverages can be helpful. 

2.4.3 Assembling the Lasallia pustulata metagenome skimming data 

Based on our study of assembler performance amongst the twin data sets we 

expect the best genome reconstructions for our Lasallia pustulata metagenome 

to be generated by MIRA – if the coverage ratio skew is not too extreme – or 

SPAdes, if the coverages in the metagenome are very uneven. Evaluating all 

six assemblers on this data set we find that SPAdes outperforms all other 

assemblers, with MIRA in second place (Table 2-7, Table 2-8). As the 

assembly-based coverage estimation for the fungal and algal genome shows 

an average read coverage of 110x for the former and of only 10x for the latter, 

we find that these results are fully in line with our predictions based on the 

simulated twin data sets. 

Given the twin data sets we did expect the SPAdes assembly to facilitate a 

comprehensive characterization of the genomes involved in the lichen L. 

pustulata. As the assembly length for the fungus Lasallia pustulata is in line 

with what we expected given other lichenized fungi (Wang et al. 2014; 

McDonald et al. 2013), we assume that most (if not all) of the genome could be 

assembled. In contrast, the N50 size of 23 Kbp that we could achieve for the 

fungal genome is smaller than the expected value of ~120 Kbp (Figure 2-3, 

page 28). This might either be a result of a higher repeat content or in L. 

pustulata when compared to the pseudogenome of C. grayi, due to the higher 

complexity of the assembly problem introduced by the presence of bacteria, 

or a combination of both. The presence of bacteria might also be the reason 

why the algal genome could only be assembled partially. With a total 

assembly length of 41 Mbp it is around 13 Mbp smaller than we would expect 

given the length of the Asterochloris sp. genome. Additionally, a preliminary 

gene annotation of the draft genome sequence of Trebouxia sp. yielded only 
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around 5,100 genes of an average length of 460 bp, in stark contrast to the 

10,025 genes (average length 1,379 bp) found in the draft genome of 

Asterochloris sp. (http://genome.jgi-psf.org/Astpho2/Astpho2.info.html). As 

about 1/3rd of all contigs are of bacterial origin, these do not only potentially 

increase the assembly complexity, but they also decrease the overall 

coverages for the fungus and alga. The low coverage could either result in 

parts of the genome not having being sequenced deeply enough or in contigs 

that are too short to reliably being identified as algal by MEGAN (Huson et al. 

2011). Additional sequencing to increase the overall coverage for the algal 

genome will need to be performed to recover the full length of the Trebouxia 

sp. genome.  
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2.5 Conclusions 

We have shown the suitability of simulated twin data sets to benchmark the 

performance of six different methods when assembling metagenome 

skimming sequencing libraries. This approach allows estimating the 

effectiveness of given combinations of assembly method, sequencing library 

layout and target genomes before undertaking extensive and expensive 

sequencing. We conclude that genome skimming can be suitable to facilitate a 

preliminary assembly and analysis of a metagenome. In fact, as long as the 

genome coverage ratios are close to being even, the choice of the assembler 

does not have a marked influence on the results of the genome assembly. 

However, this changes once the coverage ratios become skewed to a single 

organism. We found that some assemblers are highly sensitive to such uneven 

genome coverages in the metagenomic data, especially when a naïve N50-

maximization criterion is used to optimize the input parameters. This already 

applies in simple metagenomes where only two genomes are present.  

The assemblies done on the lichen metagenome of Lasallia pustulata revealed 

that the genome ratios inside the lichen are indeed highly skewed and contain 

a sizeable fraction of bacterial sequences in addition to the fungus and alga, 

adding to the complexity of the assembly problem. 
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3 Assembly & characterization of the L. pustulata 
metagenome 

3.1 Introduction 

Our initial exploration of the metagenome of the lichen Lasallia pustulata 

revealed that the species abundances of L. pustulata and Trebouxia sp. appear 

to be highly skewed towards the mycobiont. Our twin data set-based 

exploration showed that such extreme differences in abundances are hard to 

assemble, leading to fragmented and incomplete genome reconstructions. 

While we found that these consequences are more marked for the 

underrepresented genome, it even affects the highly covered genome, albeit to 

a lesser extent. This was reflected in the preliminary assembly done on the L. 

pustulata metagenome skimming data, which yielded only a heavily 

fragmented and probably incomplete genome for the photobiont Asterochloris 

sp.. The assembly of the mycobiont L. pustulata on the other hand reached the 

expected genome size, but remained largely fragmented as well. Given the 

results of the twin data sets we do not expect that further assembly methods 

based only on the metagenome skimming data would substantially improve 

the genome contiguity and completeness. 

Furthermore, we found that a sizeable fraction of sequencing reads belonged 

to bacterial taxa. This is not unexpected, as studies have shown associations of 

bacteria with lichens (Aschenbrenner et al. 2016). Bacterial communities have 

been described for a variety of lichens (Cardinale, Puglia, and Grube 2006; 

Cernava et al. 2015; Hodkinson et al. 2012; C. H. Park et al. 2016), with 

growing evidence that these plays a functional role in the lichen symbiosis 

(Erlacher et al. 2015; Grube et al. 2015; Kampa et al. 2013; Sigurbjörnsdóttir et 

al. 2015; Cernava et al. 2017). Thus a hologenome-wide perspective should be 

included when studying the lichen symbiosis.  
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3.1.1 Lichen microbiomes 

The composition of lichen microbiomes has been found to be influenced by 

their habitat and the type of photobiont present in them, with the orders of 

Acidobacteriales, Rhodospirillales, Rhizobiales and Sphingomonadales being 

dominant in different taxa (Hodkinson et al. 2012; C. H. Park et al. 2016). 

Investigations of the microbiome of Lobaria pulmonaria found that the 

Rhizobiales potentially play a functional role in auxin & vitamin production, 

nitrogen fixation, and stress protection (Erlacher et al. 2015). Furthermore, an 

antagonistic potential of the L. pulmonaria microbiome against pathogens was 

found (Cernava et al. 2015), while Chthoniobacterales are hypothesized to be 

additionally involved in the protection against oxidative stress (Cernava et al. 

2017). The Rhizobiales, which were found as key contributors in most lichens 

from temperate climates (Hodkinson et al. 2012), were rarely found in 

Antarctic lichens, which instead feature members of the Acidobacteria (C. H. 

Park et al. 2016). The Acidobacteria are a widespread and phylogenetically 

diverse phylum, with the first representative, Acidobacterium capsulatum, only 

recently discovered in 1991 (Kishimoto, Kosako, and Tano 1991) and the 

phylum classification following in 1997 (Kuske, Barns, and Busch 1997). So 

far, the ecology of the Acidobacteria is not well characterized, partially due to 

the difficulty of growing them in culture (Kielak et al. 2016). Work on arctic 

tundra soil hypothesized that they utilize and synthesize diverse 

polysaccharides and are resilient to the fluctuating temperatures and low-

nutrient conditions in those habitats (Rawat et al. 2012). While genomic 

studies have found hints for the use of nitrite as nitrogen source and 

responses to soil nutrients and soil acidity, physiological evidence for this is 

lacking so far, due to the poor culturability of Acidobacteria (Kielak et al. 

2016).  
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3.1.2 Improving de novo assemblies of metagenomes 

The complexity of the lichen hologenome, with eukaryotic symbionts as well 

as a diverse microbiome, has so far hindered the comprehensive sequencing 

of lichen metagenomes, leading to fragmented genome reconstructions 

(McDonald et al. 2013). For this reason, research has largely focused on the 

genomes of those lichenized fungi that can be grown in culture (S. Y. Park et 

al. 2014; S. Y. Park, Choi, Kim, Jeong, et al. 2013; S. Y. Park, Choi, Kim, Yu, et 

al. 2013; McDonald, Gaya, and Lutzoni 2013). While this facilitates the 

sequencing of the respective lichenized fungi, it only represents a fraction of 

the lichen diversity and does not allow an analysis of the hologenome. The 

use of new, third-generation sequencing methods can help to overcome these 

limitations. Sequences generated by these methods, while usually more error-

prone than short-reads, can reach lengths of some 10-100 Kbp in the case of 

SMRT sequencing with PacBio, or even up to 882 Kbp with Nanopore 

sequencing (H. Lee et al. 2016; Jain et al. 2017). These methods have largely 

been used to generate assemblies of large genomes as wheat (Clavijo et al. 

2017), or for the assembly of phased human genomes (Chin et al. 2016). 

Nevertheless, these techniques are also successfully being used for 

metagenomic data (Tsai et al. 2016; Edwards et al. 2016; Frank et al. 2016; 

Driscoll et al. 2017), where the long read length improves assembly 

contiguity, facilitating the downstream analysis.  

Due to the high error rates of third-generation sequencing, the data generated 

by these require processing for error removal (Bleidorn 2015). While there are 

different methods, their applicability depends highly on read coverage of the 

sequencing data. If the long-read coverage is high enough, the data can be 

intrinsically error corrected by generating consensus sequences prior to the 

assembly (Chin et al. 2016; Koren et al. 2017). In the absence of such high 

coverages less error-prone short read data can be used to extrinsically correct 

these errors (Berlin et al. 2015). In the case of metagenomic data this can be 
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challenging, as especially lichens contain species in markedly different 

abundances (Hodkinson et al. 2012), rendering assemblies done purely on 

long reads infeasible. At the same time, relying only on hybrid approaches 

does not make use of most of the benefits of long-reads. It has been proposed 

that meta-assemblies, which merge the results of different assemblies, can be 

a solution to facilitate the reconstruction of genomes (Wences and Schatz 

2015; Chakraborty et al. 2016). 

 

Here we demonstrate that a joint use of second and third generation 

sequencing data to assemble a lichen metagenome is feasible. Through a 

hybrid assembly strategy, using different assembly methods and 

subsequently merging them, we can generate highly contiguous, full-length 

genome reconstructions for the both the mycobiont and photobiont of L. 

pustulata. Additionally, we can also assemble large fractions of the lichen 

microbiome into contiguous sequences, facilitating a further microbiome 

characterization. Furthermore, we compare the bacterial microbiomes 

between 9 geographically different samples of L. pustulata, finding a stable 

bacterial microbiome that potentially supports the lichen. 
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3.2 Methods 

3.2.1 Estimating fungal-to-algal genome ratios 

Following up on the preliminary estimates for the ratio of fungal to algal 

genomes in thalli of L. pustulata, we further analyzed these ratios through 

quantitative polymerase chain reactions (qPCR), performed on single copy 

genes of the fungus (a MCM subunit) and the alga (the COP-II coat subunit). 

All steps of the fungal-to-algal ratio estimation were performed by the group 

of Thomas Hankeln, at the Institute of Molecular Genetics of the Johannes 

Gutenberg University in Mainz, Germany. We measured the DNA 

concentrations of four thalli with the Qubit dsDNA High Sensitivity Kit (Life 

Technologies) according to the manufacturer’s protocol. For the qPCRs, we 

used the GoTag qPCR Master Mix (Promega) with a total volume of 10 µl and 

performed a three-step PCR protocol with an annealing temperature of 55°C 

on an ABI 7500 Fast Real Time PCR system cycler (Applied Biosystems). 

Each sample was measured in three technical replicates, with each assay 

being measured in triplicate. Total copy numbers were estimated by a 

standard curve approach (Nolan, Hands, and Bustin 2006) with serial ten-fold 

dilutions of plasmids that were engineered to contain only single copy PCR 

templates. From this we calculated mean quantities for each run, as well as 

the mean quantities and standard deviations across the three technical 

replicates.  

3.2.2 Sample collection and sequencing strategies 

In addition to the Illumina MiSeq library generated from a single thallus of 

Lasallia pustulata, as discussed in 2.2.1 (page 17), we collected further thalli 

near Olbia (Sardinia, Italy) and Orscholz (Saarland, Germany) between May 

2013 and December 2014. We constructed additional libraries from these 

thalli, to perform sequencing on Illumina HiSeq, Illumina MiSeq and PacBio RS 

II machines. The sample collection, DNA isolation and the library preparation 
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for Illumina MiSeq sequencing was done by members of the Schmitt group, at 

the Senckenberg Biodiversity and Climate Research Centre in Frankfurt am 

Main, Germany. GenXPro GmbH (Frankfurt am Main, Germany) performed 

the library preparation and subsequent sequencing for the Illumina HiSeq. The 

group of Yahya Anvar at the Leiden Genome Technology Center of Leiden 

University Medical Center (Netherlands) did the library preparation and 

subsequent sequencing with the PacBio RS II. 

For the whole genome samples we extracted the DNA using the CTAB 

method (Cubero and Crespo 2002) and subsequently purified it with the 

PowerClean DNA Clean-Up Kit (MO BIO, Carlsbad, CA, USA) according to the 

manufacturer’s instructions. Additionally, we isolated RNA from one thallus 

with the method by Rubio-Piña & Zapata-Pérez (Rubio-Piña and Zapata-

Pérez 2011) and purified it with the RNeasy MinElute Clean-up Kit (Qiagen). 

We generated a whole-genome mate pair library with the Nextera Mate Pair 

Sample Prep Kit (Illumina, San Diego, CA, USA), aiming for an insert size of 

5,000 bp. The RNAseq library was created with the TrueSeq RNA Kit 

(Illumina, San Diego, CA, USA). Long-read sequencing was performed on the 

PacBio RS II system (Pacific Biosystems of California, Menlo Park, CA, USA), 

using 16 SMRT cells in total. Furthermore, we constructed PoolSeq libraries 

with a target insert size of 200-300 bp. PoolSeqs for 6 populations of L. 

pustulata, consisting of 100 thalli each, collected in Sardinia, Italy (Dal Grande 

et al. 2017) were sequenced on an Illumina HiSeq2000 machine, generating 

read pairs of 100 bp length. 

3.2.3 Preprocessing of the sequencing data 

3.2.3.1 Illumina data sets 

All Illumina read pairs were processed with Trimmomatic v0.32 (Bolger, Lohse, 

and Usadel 2014) to remove low quality 3’-ends as well as remaining adapter 

sequences. We used a library of Illumina sequencing adapters as well as 
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ILLUMINACLIP:2:30:10 as the parameters for the trimming. The mate pairs 

were processed with nextclip v0.8 (Leggett et al. 2014), to remove adapters and 

bin them according to their read orientation. We used  --min_length 25 --

number_of_reads 18978822 --trim_ends 0 --remove_duplicates as the parameters. 

3.2.3.2 PacBio data sets 

The PacBio data from 16 SMRT cells were pooled. Best practices for PacBio 

pre-processing depend on the read coverages available. As sequencing depths 

of individual species in the metagenomic L. pustulata data vary, we pre-

processed them by two different strategies to correct for the PacBio-specific 

sequencing errors. The data was intrinsically error corrected by generating 

consensus sequences by the pipeline of canu v1.20 (Berlin et al. 2015), 

employing standard parameters and estimating a total metagenome size of 

150 Mbp. To also correct reads stemming from less abundant genomes, we 

additionally used Illumina data as extrinsic information for the error 

correction. We first merged the Illumina read pairs with FLASH (Magoč and 

Salzberg 2011) using standard parameters, and subsequently de novo 

assembled the processed Illumina read- and mate-pairs with MIRA v.4.0 

(Chevreux, Wetter, and Suhai 1999) with the genome,denovo,accurate flags. 

With the help of ECTools (https://github.com/jgurtowski/ectools), the PacBio 

sequence reads were then error corrected according to those Illumina contigs, 

employing a minimum alignment length of 200 bp, a WIGGLE_PCT of 0.05 

(allowing 5% from the end of a contig to not match while calculating 

overlaps) and a CONTAINED_PCT_ID of 0.8 for the contig mappings. We 

kept only error-corrected PacBio reads of a minimum length of 1,000 bp and 

trimmed all regions where the mapping identity was below 96%.  
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3.2.4 A stepwise, targeted assembly of the L. pustulata metagenome 

As the uneven coverages in the metagenomic libraries require different 

assembly approaches (c.f. 2.3.3), we utilize different assembly methods and 

subsequently merge them to represent the different genomes of our 

metagenome (Chakraborty et al. 2016). A workflow for the data processing 

and subsequent assembly and merging is given in Figure 3-1. 

 
Figure 3-1: The complete preprocessing and assembly workflow, describing how the different data 
sets are used to target different genomes and are subsequently merged. 

3.2.4.1 Performing the individual assemblies  

The initial assembly of the L. pustulata metagenome was done with FALCON 

v0.2.1 (Chin et al. 2016). For this we used the unprocessed PacBio reads with a 

length_cutoff of 3,500 for the initial mapping and the pre-assembly steps. The 

pre-assembly was furthermore done with the  --min_idt 0.70 --min_cov 3 --

local_match_count_threshold 2 --max_n_read 200 flags. The subsequent overlap 
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filtering was performed with --max_diff 100 --max_cov 100 --min_cov 2 --bestn 

10 as parameters. 

To assemble also the lower coverage fractions, we employed two additional 

assembly strategies. For the first assembly we used the error-corrected PacBio 

reads as generated by ECTools and assembled them with the Celera assembler 

wgs v8.3rc2 (Berlin et al. 2015), using the default parameters. The second, 

hybrid-assembly was generated with SPAdes v3.5.0 (Bankevich et al. 2012). All 

processed whole genome Illumina libraries were given as input alongside both 

uncorrected and ECTools-preprocessed PacBio data. The standard parameters 

of SPAdes were applied. 

As none of the three assemblers reconstructed full-length organelles we 

subsequently made use of a baiting strategy for their assemblies: The canu-

corrected PacBio reads were aligned against the organelle genomes of Cladonia 

grayi and Asterochloris sp. by BLAT v35 (Kent 2002), using no cut-offs. All 

reads that were aligned were then extracted and the resulting bins were 

subsequently individually assembled with canu v1.20. The canu standard 

parameters were used; additionally setting the estimated target genome size 

parameter to 60 Kbp (L. pustulata mitochondrial genome), 120 Kbp (Trebouxia 

sp. mitochondrial genome) and 250 Kbp (Trebouxia sp. chloroplast genome) 

respectively. 

3.2.4.2 Merging & finishing the assemblies 

We first scaffolded the FALCON assembly with the raw PacBio reads and 

SSPACE-Long v1.1 (Boetzer and Pirovano 2014), run with standard 

parameters. The resulting scaffolds were then taxonomically classified. For 

this we mapped them against our custom database (see 2.2.5 on page 21 for a 

detailed description and Table A-1 on page 187 in the Appendix for 

taxonomic composition) using DIAMOND v.0.6.12.47 (Buchfink, Xie, and 

Huson 2014). MEGAN (Huson et al. 2011) subsequently assigned the scaffolds 
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to a taxonomic unit based on these mapping results. Alignments with a 

minimum bit-score of 50 were used for the LCA assignment, while no low-

complexity filtering was performed. In the same way, the sequences 

assembled by SPAdes and Celera were taxonomically classified. For the 

genome of the fungus L. pustulata, the fungal SPAdes contigs of a length 

greater 3 Kbp were used to further scaffold the FALCON assembly with 

SSPACE-Long.  For the algal genome we took the contigs that were assigned 

to the Viridiplantae from three assemblies and merged them into a single 

assembly using minimus2 (Treangen et al. 2011). The same procedure was 

applied to merge bacterial sequences generated across the different 

assemblers. For the organellar genomes we aligned the canu-corrected PacBio 

reads back to them and took those mappings to circularize them with circlator 

v.1.2.0 (Hunt et al. 2015). 

Additionally, we removed so far unidentified insertion and deletion (indel) 

errors, which are frequently found in PacBio-generated sequences 

(Chakraborty et al. 2016). We mapped the preprocessed metagenomic Illumina 

reads to the fungal, bacterial, algal and organellar assemblies and gave these 

as input to Pilon v1.15 (Walker et al. 2014). For the genomes of the fungus and 

the organelles, which have a high Illumina read coverage, we only mapped the 

mate pair library for the correction, as these are generated from a sample that 

is geographically close to the PacBio samples (c.f. Table 3-2, page 60). For the 

bacterial and algal assemblies we took both the read pairs as well as the mate 

pairs into account, as the Illumina coverage would not suffice otherwise. We 

performed a preliminary gene annotation for the fungal and bacterial 

assemblies with MAKER2 (Holt and Yandell 2011), see 4.2.1 (page 85) for 

details on the gene prediction methods. The predicted genes were 

subsequently taxonomically classified through MEGAN (Huson et al. 2011) to 

identify chimeric scaffolds, in which contigs of two different genomes were 

joined. We furthermore mapped the reads of all sequencing libraries back to 
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the finished assemblies. For this we used bowtie2 (Langmead and Salzberg 

2012) for the genomic Illumina libraries and bwa-mem (H. Li 2013) for the 

PacBio data. The read coverages across the different data sets were then 

visualized by anvi´o (Eren et al. 2015). 

3.2.5 Analyzing the microbiome composition 

To estimate the microbial diversity in L. pustulata we analyzed the taxonomic 

composition for each individual data set. We performed a standard 

DIAMOND search of all pre-processed genomic Illumina libraries, as well as 

the uncorrected PacBio reads against the NCBI nr database 

(ftp://ftp.ncbi.nlm.nih.gov/blast/db/nr, downloaded 2015-09-02). The results of 

that search were then used for the taxonomic assignment with MEGAN5. A 

minimum assignment score of 50 and no low complexity filtering were 

applied. All eukaryotic assignments were removed for subsequent analyses. 

The absolute read counts for each library where subsequently normalized in 

MEGAN5 using the sub-sampled counts function to enable comparisons 

between them. These counts were then used to visualize the joint 

metagenome across the samples with KronaTools v2.6 (Ondov, Bergman, and 

Phillippy 2011). A visual comparison of the taxonomic diversity across the 

different samples was done with the streamgraph package 

(https://github.com/hrbrmstr/streamgraph) for R. To estimate how an 

assembly changes the observed metagenomic diversity, the same MEGAN5 

and KronaTools workflow was applied to the finished bacterial scaffolds. We 

first calculated the abundances of the different taxa based on the number of 

contigs assigned to the respective taxonomic groups. In a second step we 

corrected these numbers by accounting for the read coverages. For this we 

calculate the sum of reads that map to given contig (see anvi´o procedure 

above) using samtools (H. Li et al. 2009) and visualize these numbers using 

KronaTools. This was done for the Illumina read pairs. 
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3.3 Results 

3.3.1 The fungus-to-alga ratio in L. pustulata 
Following the preliminary coverage ratio estimation for the fungal to algal 

genome, based on the read-coverage found in an Illumina MiSeq read pair 

library (see 2.3.4, page 35), we performed quantitative PCRs to gain further 

insight into the expected over- and underrepresentation of the two genomes 

in our data sets. Based on the measurements done on four thalli of L. 

pustulata, we found that 1 ng of DNA extracted from a thallus contained 

between 26,962 and 39,063 copies of the fungal genome, in stark contrast to 

the 1,568 and 2,730 algal genome copies we observed. We found that the DNA 

isolated from a given thallus contained on average 16 copies of the genome of 

the fungus L. pustulata for each genome of Trebouxia sp., the photobiont (Table 

3-1). 

Table 3-1: qPCR results from four thalli of L. pustulata. For each thallus the mean copy number of 
the triplicates was calculated and the mean fungal over algal copy number was calculated. 

 
 

Copy Number per 
Replicate 

 

Genome Thallus #1 #2 #3 Mean 
Mean 

Fungal:Algal 
Ratio 

Fungal 
 

#1 24,618 28,317 27,952 26,962.58 13,98288708 
#2 27,375 28,196 30,826 28,799.43 12,66489031 
#3 36,805 39,654 40,730 39,063.67 14,30774526 

#4 36,769 37,257 38,935 37,654.29 24,00854662 

Algal 

#1 1,868 1,972 1,943 1,928.26  
#2 1,994 2,368 2,458 2,273.96  

#3 2,581 2,863 2,745 2,730.25  
#4 1,478 1,531 1,694 1,568.37  

3.3.2 Hybrid-sequencing of the complex L. pustulata metagenome 

Given the complexity of the L. pustulata metagenome, which includes a 

sizeable bacterial fraction (c.f. 2.3.4, page 35), strong coverage skews (see 

above) and a potentially repeat rich fungal genome (c.f. 2.4.3, page 43), we 

chose a more complex, hybrid sequencing setup that complements further 
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Illumina data with PacBio long-read data. We sequenced a mate pair library on 

the Illumina MiSeq to obtain long-range information, in addition to long-read 

sequencing using the PacBio RSII system. Furthermore we sequenced an 

RNAseq library with Illumina MiSeq, to aid in the post-assembly gene 

prediction. Lastly we sequenced 6 PoolSeq samples, consisting of 100 thalli 

each, on an Illumina HiSeq 2000, to get an estimate of the diversity found in L. 

pustulata. The sequencing statistics for all libraries are given in Table 3-2. 

Table 3-2: Sequencing results for the individual libraries used.  

Sequencing 
Technology Library Sampling 

Site 
Read 

Length 
Number of 
Read Pairs 

Illumina 
MiSeq 

MiSeq 
Metagenome 

Sardinia, 
Italy 

250 bp 

14,013,249 

MiSeq Mate 
Pair 

Saarland, 
Germany 18,978,822 

MiSeq 
RNASeq 

Saarland, 
Germany 15,604,975 

Illumina 
HiSeq2000 

PoolSeq #1 

Sardinia, 
Italy 100 bp 

32,432,033 

PoolSeq #2 20,089,612 

PoolSeq #3 29,645,501 

PoolSeq #4 34,775,676 

PoolSeq #5 34,977,457 

PoolSeq #6 35,427,219 

PacBio RS II 16 SMRT 
Cells 

Saarland, 
Germany 

6452 ± 3642 
bp 1,851,141* 

The PoolSeq data was only used for taxonomic assignment and not trimmed prior to that. * PacBio data are unpaired, 
total read counts are given.  
 

The read pairs generated by Illumina MiSeq data were trimmed for low quality 

ends and sequencing adapters by Trimmomatic (Bolger, Lohse, and Usadel 

2014), removing between 0.5 and 6.3% of all nucleotides. The Illumina mate 
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pairs were trimmed and sorted according to the read orientation by nextclip 

(Leggett et al. 2014), which classified 13,461,793 (70.9 %) as reliable mate pairs.  

The 16 SMRT cells sequenced through the PacBio RS II yielded 1,851,141 

reads. As PacBio sequencing is performed on circular templates, individual 

fragments can be sequenced more than once. This leads to a primary read in 

the first pass of the sequencing and possibly to one or more sub-reads in 

subsequent passes. We found that 62.7% of our reads are being primary/main 

reads, with the remaining reads being sub-reads of those. As the PacBio RS II 

does not deliver fixed read lengths, we observed a marked difference in read 

lengths (Figure 3-2). The median primary read length is 7,194 bp (6,536 bp for 

sub-reads). 

 
Figure 3-2: Read lengths of the main reads (blue) and sub reads (yellow) generated by the 16 SMRT 
cells that were sequenced on the PacBio RS II. Vertical lines give median read lengths. 

We pre-processed the PacBio reads by error correcting them to reduce the 

methods inherently higher sequencing error rate. Depending on their 

coverage this can be achieved intrinsically, or extrinsically in hybrid-

assemblies that also utilize short-read data (Berlin et al. 2015; H. Lee et al. 

2014; H. Lee et al. 2016). An intrinsic error correction of our PacBio reads, 

performed with canu (Koren et al. 2017), yielded 594,604 error-corrected reads 
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with a mean read length of 7,726.9 bp (standard deviation 2,522.66 bp). An 

independent error correction, performed with a preliminary Illumina 

assembly, generated 1,328,383 reads with a mean length of 5,338.4 bp 

(standard deviation 3103.7 bp). 

3.3.3 A step-wise assembly of the L. pustulata metagenome 

To get the most out of the different types of sequencing data, it has been 

proposed to subsequently merge the results of different assembly strategies 

(Wences and Schatz 2015; Chakraborty et al. 2016). As we expected 

substantial coverage differences between the different genomes present in the 

L. pustulata metagenome, based on the qPCR and our preliminary assembly of 

a metagenomic shotgun data set (c.f. 2.3.4, page 35), we pursued both a pure 

PacBio sequencing approach as well as two hybrid-assembly approaches, 

subsequently merging those assemblies (c.f. Figure 3-1 on page 54 for the 

complete workflow).  

Initial assemblies were performed with FALCON (Chin et al. 2016), using only 

PacBio data; with the Celera assembler (Berlin et al. 2015), which takes 

extrinsically error corrected PacBio reads as input; and SPAdes (Bankevich et 

al. 2012), which works with Illumina reads as well as corrected and 

uncorrected PacBio reads. We then continued to perform a taxonomic 

assignment on the individual assemblies, using MEGAN (Huson et al. 2011). 

We observed marked differences between the initial assemblies, both in total 

assembly length as well as in the contiguity as measured by the N50 value 

(Table 3-3). Overall, FALCON produced the shortest, though most contiguous 

assembly, while Celera yielded the longest though least contiguous assembly.  

The taxonomic assignment of the individual contigs revealed marked 

differences to which degree the fungal, algal and bacterial fractions of the L. 

pustulata metagenome were assembled by the different methods. We found 

that FALCON preferentially assembled the highly abundant fungal genome, 
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with over 50% of the total assembly length coming from highly contiguous 

fungal sequences. Celera on the other hand assembled a much larger total 

sequence length for all three fractions. For the genome of the mycobiont L. 

pustulata it assembled 113 Mbp, while we expected a fungal genome size of 

around 35 Mbp. Celera furthermore yielded an assembly length 5.7x the size 

for the algal Trebouxia sp. genome compared to FALCON. The overall 

contiguity of the individual genomes is notably smaller for all fractions. We 

found that SPAdes performed especially well on the bacterial fraction of the L. 

pustulata metagenome, generating not only the longest total assembly length, 

but also the most contiguous bacterial fraction. Furthermore SPAdes 

generated the most contiguous algal fraction as well. 

Table 3-3: Assembly results of the three different assemblers. Number of scaffolds, length and N50 
are given for the total assembly plus the assigned fractions. 

Assembly Fraction # of Scaffolds Length N50 (bp) 

FALCON 

All 2,343 62 Mbp 322,812 

Fungal 120 32 Mbp 550,723 

Algal 709 9 Mbp 17,208 

Bacterial 790 15 Mbp 56,167 

Celera 

All 22,216 216 Mbp 11,162 

Fungal 12,230 113 Mbp 10,395 

Algal 3,557 52 Mbp 16,617 

Bacterial 2,804 17 Mbp 7,798 

SPAdes 

All 21,900 123 Mbp 224,806 

Fungal 5,736 35 Mbp 159,267 

Algal 257 47 Mbp 461,016 

Bacterial 1,193 26 Mbp 91,450 

 

We individually scaffolded and merged the fungal sequences generated by 

the different assemblers, using a combination of SSPACE-Long (Boetzer and 

Pirovano 2014) and minimus2 (Treangen et al. 2011), to generate maximally 
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complete and contiguous assemblies. We subsequently also performed 

scaffolding and merging individually for the algal and bacterial assembly 

fractions respectively. Even after an initial read-based error correction, 

insertion/deletion (indel) errors introduced through the PacBio sequencing 

remain in assemblies (Chakraborty et al. 2016). We used Pilon (Walker et al. 

2014), an Illumina mapping-based approach to correct for such indel errors. 

We found varying numbers of indel errors in the three assemblies. The fungal 

genome assembly included a total of 78,481 indel errors that were corrected 

by Pilon, while only 9,327 and 7,331 indel errors were observed in the algal 

and bacterial assembly respectively. 

To further correct for the potential creation of chimeric scaffolds, which join 

sequences originating from two different genomes, we performed a 

preliminary gene annotation for the fungal and algal genome, which was 

subsequently taxonomically assigned through MEGAN. We found three 

instances where the exclusive presence of bacterial genes indicate single 

bacterial contigs of length 40 Kbp, 66 Kbp and 80 Kbp, which had been joined 

to the ends of longer, fungal scaffolds (1.9 Mbp, 1.7 Mbp and 180 Kbp 

respectively). These instances were manually corrected by splitting the 

scaffolds at those joins.  

Table 3-4: Final assembly statistics after merging and correcting chimeric contigs. 

Fraction # of Scaffolds Length N50 (bp) 

Fungal 43 33 Mbp 1,808,250 

Algal 225 53 Mbp 848,255 

Bacterial 499 35 Mbp 250,871 

 

After this post-processing, we could reduce the total number of scaffolds to 

less than 800 (Table 3-4). The merging additionally resulted in a large increase 

in the assembly contiguity for all three taxonomic groups, with the fungal 

fraction having an N50 that is more than 3x larger than the individual 
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assemblies. Similar increases were found for the algal fraction, with a 1.8x 

increase; and the bacterial fraction (2.7x increase). The bacterial fraction 

furthermore includes two nearly complete genomes of species of the genus 

Acidobacterium (scaffolds 3.6 Mbp and 3.4 Mbp). As none of the assembled 

scaffolds included complete organelle genomes for L. pustulata and Trebouxia 

sp., we performed a targeted assembly approach. We mapped the error-

corrected PacBio reads to the organelle genomes of Asterochloris sp. and 

Cladonia grayi. This yielded 12,341 reads for the chloroplast of Trebouxia sp. 

and 6,017 and 18,315 reads for the mitochondrial genomes of Trebouxia sp. and 

L. pustulata respectively. Each of the three read sets was subsequently 

assembled with Canu, circularized with circlator (Hunt et al. 2015) and 

annotated with mfannot (https://github.com/BFL-lab/MFannot_data). This 

procedure led to gap-free, circularized genomes in all three cases, with 

lengths between 95 Kbp and 271 Kbp (Figure 3-3). 
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Figure 3-3: The organellar genomes of L. pustulata and Trebouxia sp. along with the respective gene 
predictions. Genes are color coded according to their function. 
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To investigate the compositional complexity of the lichen metagenome of L. 

pustulata, we mapped the reads from our different genomic sequencing 

libraries back to the finished genome assemblies and subsequently visualized 

those mappings (Eren et al. 2015). This revealed pronounced coverage 

differences between the genomes, which are rather consistent across the 

different sequencing libraries (Figure 3-4). Normalizing the coverages to the 

lowly abundant nuclear genome of Trebouxia sp., we observed that for each 

copy of it, there are 16 algal mitochondrial and chloroplast genomes on 

average. Furthermore, we calculated that nearly 20 nuclear and 290 

mitochondrial fungal genomes are found for each nuclear Trebouxia sp. 

genome (see Appendix, Table A-2 on page 191). 

 

 
Figure 3-4: The read coverages and G/C content across the different genomes and different 
sequencing libraries. Sequences were split into chunks of 20 Kbp, the bars in each ring give the 
mean G/C and coverage for each chunk. The two outer rings give the taxonomic classification on a 
higher level as well as on a finer level for the bacteria. 
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3.3.4 The microbiome of L. pustulata 

To further analyze the taxonomic composition of the bacterial fraction of the 

L. pustulata metagenome, we investigated the composition on the read level 

and across each of our sequencing libraries, including 6 PoolSeq experiments 

(see Table 3-2, page 60). By removing the eukaryotic fraction and normalizing 

the assignments – to account for the different number of sequences in the 

individual libraries – we generated a view of the joint microbiome of L. 

pustulata. This revealed that the Acidobacteriaceae, with 25% of all bacterial 

sequences being assigned to them, make up a substantial fraction of the L. 

pustulata microbiome. On the other hand, the Rhizobiales, which have been 

found as key contributors in other lichen microbiomes (Sigurbjörnsdóttir et al. 

2015; Erlacher et al. 2015; Hodkinson et al. 2012; Grube et al. 2015), made up 

only 4% of the L. pustulata microbiome (Figure 3-5), see Table A-3 (page 191) 

in the Appendix for the 20 most abundant taxa on the genus level.  

 
Figure 3-5: Taxonomic composition of bacterial pan-microbiome of L. pustulata based on nine 
sequencing libraries. Read-counts were normalized to account for differences in sequenced reads. 
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To estimate the compositional variation between different thalli and 

sequencing technologies, we additionally took the taxonomic assignments for 

the reads of each sequencing library and visually compared the abundances. 

We find that the taxonomic composition between the different samples is 

largely stable on the family level (Figure 3-6), even between samples from 

Germany (PacBio & Illumina read pair libraries) and Italy (Illumina PoolSeq 

and read pair libraries).  

 

 
Figure 3-6: Taxonomic composition of the bacterial microbiome between the different samples. 

We investigated the influence of methodological differences by additionally 

performing a taxonomic assignment in the same way on the 499 bacterial 

scaffolds. We found that the fraction of sequences assigned to the 

Acidobacteriaceae in this case dropped to 18%, while the proportion of the 

Rhizobiales increased to 11% (Figure 3-7 A). A total of 84 scaffolds were 

assigned to the Acidobacteriaceae, accounting for a total length of 10.8 Mbp, 

while the 48 scaffolds of the Rhizobiales sum up to 3 Mbp.  
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Figure 3-7: Taxonomic composition based on the assembled microbiome, without (A) and with (B) 
taking the read coverage into account. 
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To account for the differences in read coverages for the individual contigs, we 

mapped the read pair library back to the bacterial scaffolds (see Figure 3-8 on 

page 77 for a schematic of the different approaches of assigning the 

taxonomy) and corrected the taxonomic counts with the number of mapped 

reads for each sequence (Figure 3-7 B). This shifted the taxonomic 

composition markedly, with 45% of all sequences being assigned to the 

Acidobacteriaceae and only 1% to the Rhizobiales. Analyzing the coverages 

for the two groups we observed that the Rhizobiales only have a median 

coverage of 3x, while the Acidobacteriaceae have one of 19x.  
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3.4 Discussion 

The assembly of metagenomes is a computational challenging task, which has 

been evaluated on different microbial communities (Awad, Irber, and Brown 

2017; Mavromatis et al. 2007; Sangwan et al. 2016; Ghurye, Cepeda-Espinoza, 

and Pop 2016; Kyrpides et al. 2014; Marbouty et al. 2017). Based on our own 

research into the assembly of lichen metagenomes from genome skimming 

(c.f. 2.3.4, page 35), we further investigated the genome ratios found in thalli 

of L. pustulata, based on qPCR. We observe that the ratio between fungal and 

algal genome is even more skewed than estimated by the initial read 

mapping, hindering the generation of long, contiguous sequences for the 

underrepresented species in the assembly procedure. For this reason we 

approached the problem of lichen metagenome assembly with a hybrid-

strategy that makes extensive use of second- and third-generation sequencing 

methods. 

3.4.1 Assembling the metagenome of L. pustulata 

Third-generation sequencing methods are capable of generating long but 

error-prone reads, compared to second-generation methods (H. Lee et al. 

2016; Bleidorn 2015). Multiple ways of dealing with these errors have been 

proposed: Due to the largely uniform distribution of sequencing errors along 

these reads (Ross et al. 2013), these errors can be corrected by generating 

consensus sequences, given a high enough sequencing coverage (Chin et al. 

2016; Koren et al. 2017; H. Lee et al. 2014). In the absence of such high 

coverages, these errors can be corrected externally, by mapping short 

sequencing reads, which are less error prone, to the long reads to generate the 

consensus (H. Lee et al. 2016; Berlin et al. 2015).  

In case of the lichen metagenome, with the varying coverages for the 

individual genomes, we expect that no single assembly solution can utilize 

both PacBio long reads as well as Illumina short-read data to the full extent. 
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This is confirmed when looking at the assembly results generated by different 

methods (Table 3-3, page 63). An assembly performed with FALCON (Chin et 

al. 2016), using only PacBio data, generated a highly contiguous assembly for 

the fungal genome, while the algal and bacterial fractions are highly 

underrepresented. Similarly, a Celera assembly (Berlin et al. 2015) performed 

with PacBio data, which was error-corrected based on an Illumina assembly, 

could improve on both the algal as well as the bacterial fraction, but at the 

cost for the fungal genome, which is less contiguous. This might be a result of 

the pre-assembly error correction procedure, which shortens the PacBio reads, 

based on the mappings. An assembly with SPAdes, which uses the PacBio data 

largely for contig scaffolding, can thus further improve the contiguity of the 

bacterial/algal fraction, though at the cost of generating a shorter algal 

genome.  

By merging the results of these three assemblies we improved on the overall 

assembly outcome, in line with prior evidence for the utility of assembly 

merging (Aganezov and Alekseyev 2016; Chakraborty et al. 2016). Ultimately, 

this strategy yielded an algal assembly with an N50 of 848 Kbp and a fungal 

assembly with an N50 of 1.8 Mbp, in addition to two largely reassembled 

bacterial genomes of the genus Acidobacterium (Table 3-4, page 64). Despite 

these improvements, this approach failed to generate full-length organelle 

genomes for Trebouxia sp. and L. pustulata. For the mitochondrial genome of L. 

pustulata, this is potentially a result of the high coverage that is around 14.5 

times higher than the nuclear genome. For the organellar genomes of 

Trebouxia sp. it is so far unclear why the general assembly procedures did not 

yield full-length organelles, as their coverage is similar to that of the nuclear 

L. pustulata genome. Fully circularized organelle genomes could only be 

generated by using a baiting-based approach that simplified the assembly 

problem (Figure 3-3, page 66). This procedure further highlights the need for 

bespoke approaches when assembling complex metagenomes. 
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Following the assembly, we found that indel sequencing errors, most likely 

introduced by the PacBio sequences, remain despite a ~160x coverage for the 

fungal genome. Around 78,000 such indel errors (238 per 100 Kbp) were 

found by correcting the genome of L. pustulata through the Illumina data. This 

is in line with the error rate observed in an unpolished assembly of Drosophila 

melanogaster that was performed using uncorrected PacBio data and a 

dedicated PacBio assembler (HGAP), where 180 indel errors per 100 Kbp were 

observed (Chakraborty et al. 2016). In the algal and bacterial assemblies the 

number of detected indel errors is around a magnitude smaller (around 9,000 

and 7,000 respectively). This discrepancy can likely be explained by the 

different assembly methods that generated the bulk of the final assemblies for 

the individual taxa. As can be seen in Table 3-3 (page 63), FALCON managed 

to reconstruct virtually all of the final fungal assembly, using only the indel-

prone PacBio reads. The situation is different for the bacterial and algal 

assemblies; here FALCON generated only a fraction of the final assemblies. 

Instead most of the final assemblies of the bacteria and alga were generated in 

the two hybrid-assemblies that heavily rely on the less error-prone Illumina 

data. Thus, PacBio data is less used in these assemblies; consequently the 

PacBio indel error plays less of a role. We also need to consider a second 

explanation for the difference in corrected indel errors: Overall, the Illumina 

sequencing coverage is lower for the bacterial and algal genomes. As Pilon 

requires a minimum Illumina coverage for the error correction (Walker et al. 

2014), we might in individual cases miss indel errors as we do not have 

enough evidence to reliably identify and correct them. 

3.4.2 The diversity of the L. pustulata microbiome 

A first insight into the microbiome comes from mapping back the sequencing 

reads of all nine libraries back to our scaffolds. In line with our initial 

observations, based on a single Illumina MiSeq library and the qPCR results, 
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we find marked differences in the scaffold coverages between the algal and 

fungal genomes. We furthermore find large coverage differences between 

individual genomes present in the bacterial fraction. Interestingly, the 

abundances of individual taxa in the bacterial fraction appear to be rather 

consistent across samples, as seen in Figure 3-4 (page 67). Our further 

taxonomic classification on the read level, done across all genomic libraries, 

shows that there is a consistent microbiome found in L. pustulata, which stable 

on the family level across the nine libraries (Figure 3-5 on page 68, Figure 3-6 

on page 69).  

This stable taxonomic composition hints that the L. pustulata microbiome 

might have a functional role in the lichen symbiosis, as hypothesized for other 

lichen microbiomes (Erlacher et al. 2015; Grube et al. 2015). The microbiome 

of L. pustulata appears to be dominated by Acidobacteriaceae (25% of all 

bacterial assignments). In soils the presence of Acidobacteria is an indicator 

for oligotrophic conditions (Castro et al. 2010). Additionally, 

Acidobacteriaceae are capable of slow metabolic rates when faced with 

nutrient-deprived environments and are known to be tolerant to changes in 

hydration (Ward et al. 2009). These traits make them potentially well adapted 

to co-habitate with L. pustulata, which preferentially grows on nutrient-poor 

rocks (Hestmark et al. 1997; Dal Grande et al. 2017). While these 

characteristics would allow them to potentially play a functional role in the 

lichen symbiosis, we cannot rule out that their association with L. pustulata is 

only due to a shared habitat preference. Such co-occurrences, based on nice 

requirements, have been stipulated in earlier studies, which found that 

geography could explain differences in microbiome composition (Hodkinson 

et al. 2012). 

Strikingly, the Rhizobiales, key contributors in other lichen microbiomes, are 

largely absent, only making up 4% of all bacterial reads. In contrast, in Lobaria 

pulmonata (Grube et al. 2015; Erlacher et al. 2015) Rhizobiales make up 32.2% 
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of all identified bacteria. Assuming the methodology used for the assignment 

might explain this stark difference, we further analyzed the bacterial 

composition on the scaffold level, as the taxonomic assignment by Erlacher et 

al. (2015) was performed on the assembly level. It seems intuitive to perform 

an assembly prior to the taxonomic classification, as it increases the sequence 

lengths, thus facilitating an easier classification. At the same time, this 

procedure introduces biases. Reads for highly abundant taxa will be collapsed 

into few, long contigs which are highly covered, but will only be counted once 

in the typical MEGAN (Huson et al. 2011) workflow. Low-abundance taxa on 

the other hand will not be assembled at all, and are thus missing for the 

subsequent taxonomic assignment (Vollmers, Wiegand, and Kaster 2017). 

Figure 3-8 gives a hypothetical example of the effects of the different 

strategies. 

 

 
Figure 3-8: An overview over the potential biases introduced by the different taxonomic assignment 
strategies. Performing the assignment on the read level (top-right) ideally quantifies all reads present 
in the read set. A taxonomic assignment on the contig-level (middle-right) counts long contigs, 
consisting of many reads, only once, thus the abundance of the yellow fraction artificially decreases, 
while the orange and blue fractions increase in abundance. The red fraction was unassembled, and 
thus is completely missing. Correcting for the number of reads that could be mapped against the 
individual contigs (bottom-right) ameliorates this bias, the abundance of the yellow fraction 
increases again. Though, the red fraction remains absent as it was unassembled. 
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By estimating the taxon abundances on the scaffold level we observed exactly 

this effect. When looking at the number of scaffolds, regardless of length or 

coverage, the percentage for the Rhizobiales nearly triples to 11%, while it 

dorps to 18% for the Acidobacteriaceae drop (see Figure 3-7 A on page 70). 

This gives evidence for the effect of collapsing reads into contigs/scaffolds, as 

the counting the scaffolds ignores length and coverage differences, with the 

latter being more than 6 times larger for the Acidobacteriaceae. To counter 

this effect, we corrected these counts by using the number of mapped reads to 

each scaffold for the basis of the classification (Figure 3-7 B). In this case, the 

abundance of the Rhizobiales drops to 1%, while the Acidobacteriaceae grow 

to 45% of all bacterial sequences. This demonstrates the effect of unassembled 

sequences. While the highly abundant Acidobacteriaceae could be largely 

assembled (with the two largest contigs being species of the 

Acidobacteriaceae), low-abundance species could not be assembled to the 

same degree and thus no reads can be mapped against their contigs/scaffolds. 

This further highlights the potential sources of bias when analyzing the 

taxonomic composition of microbiomes (Nayfach and Pollard 2016).  
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3.5 Conclusion 

Our analyses show that the metagenome of L. pustulata is a diverse ecosystem, 

which not only consists of the mycobiont and photobiont, but also includes a 

rich bacterial community. The composition of this community is largely stable 

across a wide geographic range. This complexity of the L. pustulata 

metagenome renders the de novo genome assembly of all included genomes 

algorithmically challenging, as there are strong abundance differences 

between the individual taxa, leading to a highly skewed sequencing coverage. 

Despite this, we find that an assembly of such complex metagenomes is 

possible, by utilizing the strengths of different assembly algorithms and 

sequencing methods, thus facilitating comparative studies of lichen 

metagenomes.  
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4 Genome annotation, artifacts and solutions 

4.1 Introduction 

The annotation of newly sequenced genomes is a routine task performed 

subsequent to their assembly (Yandell and Ence 2012). The annotation links 

genomic subsequences to a variety of biological information. It includes, but 

is not limited to, identifying genes (Mathe et al. 2002), repetitive elements 

(Jiang 2013), regulatory motifs (D’haeseleer 2006), regulatory RNA elements 

like microRNAs (Carthew and Sontheimer 2009) or long non-coding RNAs 

(Signal, Gloss, and Dinger 2016). This annotation allows for insights into the 

biochemical and functional potential encoded in those genomes (Stein 2001). 

For this reason, a variety of in silico methods have been developed to facilitate 

the prediction of these sequence elements, making use of sequence modeling, 

reference databases or ab initio predictions based on inherent sequence 

information (Stein 2001; Klasberg, Bitard-Feildel, and Mallet 2016). For 

example, transposable elements like long-terminal repeats (LTR) and other 

interspersed elements are annotated by searching for their characteristic 

sequence motifs (Ellinghaus, Kurtz, and Willhoeft 2008); through reference 

databases (Hubley et al. 2016; W. Bao, Kojima, and Kohany 2015); by 

compiling own ab initio predictions for the repetitive elements (Price, Jones, 

and Pevzner 2005; Edgar and Myers 2005); or using a combination of these 

methods (Smit, Hubley, and Green 2015). 

Similarly, there is a broad set of methods for the de novo annotation and 

prediction of genes along genomic sequences (Hoff and Stanke 2015). Given 

the structural differences between eukaryotic and prokaryotic genomes, the 

individual methods do not only differ between their underlying strategies, 

but also in the organisms they are designed to annotate (Hyatt et al. 2010; 
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Seemann 2014). For eukaryotic genomes, gene annotation tools can be broadly 

classified into three categories (Hoff and Stanke 2015): 

1. Ab initio predictors, which require a set of already curated and known 

gene models to subsequently train statistical models for the prediction 

of additional genes (Stanke and Waack 2003; Korf 2004; Besemer and 

Borodovsky 2005). 

2. Transcript-based predictors, which map RNAseq sequencing data 

against the genome to identify the presence of genes (Trapnell et al. 

2010; Trapnell, Pachter, and Salzberg 2009). 

3. Homology-based predictors, which use the mapping of homologous 

genes against the unannotated genome to find genes (Birney, Clamp, 

and Durbin 2004; Slater and Birney 2005; Dunne and Kelly 2017; 

Wyman, Jansen, and Boore 2004). 

Benchmarks of the different methods – and the tools using them – have 

shown widely varying accuracy and sensitivity (Guigó et al. 2006; Steijger et 

al. 2013). Recent efforts have focused on developing ensemble-based methods, 

like MAKER2 (Holt and Yandell 2011), BRAKER1 (Hoff et al. 2016) or EVM 

(Haas et al. 2008), which combine the different strategies for gene predictions. 

Further benchmarking efforts have shown that these ensemble methods 

generally achieve higher accuracy than single methods (Coghlan et al. 2008). 

Given gene structure differences between taxonomic groups, there has been a 

recent trend to develop taxon-specific ensemble methods that try to further 

optimize the quality of gene predictions. For example, fungal genes are 

known to be rather short, but densely packed with overlapping untranslated 

regions (UTRs) (David et al. 2006). As this routinely leads to wrongly 

annotated genes, this has lead to fungal-specific gene prediction tools such as 

CodingQuarry (Testa et al. 2015), SnowyOwl (Min, Grigoriev, and Choi 2017), 

FunGAP (Min, Grigoriev, and Choi 2017), or funannotate 

(https://github.com/nextgenusfs/funannotate). This is of importance, as the 
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accurate and complete prediction of genes has been shown to be a necessary 

prerequisite for comparative genomic studies (Veeckman, Ruttink, and 

Vandepoele 2016; Denton et al. 2014; Dunne and Kelly 2017). To further 

increase the annotation accuracy, methods that help with the manual curation 

of predicted genes have been proposed (E. Lee et al. 2013; Drăgan et al. 2016). 

Subsequent to the prediction of genes, their functional annotation plays a 

relevant role in generating biological knowledge from newly sequenced 

genomes. Similar to the prediction of genes itself, annotation methods rely on 

various approaches and vary in their performance (Loewenstein et al. 2009; 

Radivojac et al. 2013). Hidden Markov Models (HMM) and neural networks 

have been trained to identify protein characteristics like subcellular 

localization, signal peptides, cleavage sites and transmembrane helices 

amongst genes (Emanuelsson et al. 2007). Furthermore, HMMs are widely 

used to quickly identify conserved domains across unannotated gene sets 

(Letunic et al. 2006; Finn et al. 2016; Hubbard et al. 1997). 

Sequence similarity-based methods are frequently employed to transfer 

functional annotations between already functionally annotated and so-far 

unannotated genes. Such functional annotation transfers are frequently 

performed with the Gene Ontology (Ashburner, Ball, and Blake 2000; Conesa 

et al. 2005) and KEGG (Kanehisa et al. 2006; Kanehisa, Sato, and Morishima 

2016). The Gene Ontology (GO) offers three ontologies that contain a 

standardized vocabulary of terms that describe molecular functions, 

biological processes and cellular compartments. Sequence similarity can be 

used to link unannotated genes to those that are already associated with GO 

terms (Conesa et al. 2005). KEGG (the Kyoto Encyclopedia of Genes and Genomes) 

contains information about biological pathways and the genes that are 

involved in them. Unannotated genes can be associated to functions and 

pathways by similarity to genes that are already available in KEGG 

(Kanehisa, Sato, and Morishima 2016). As homology-based methods are 
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limited by the availability of annotated homologous sequences, there are 

increasing efforts to enable ab initio functional prediction using Random 

Forests trained on sequence inherent features (Weber et al. 2015; Peled et al. 

2016). 

Predicting the functional capabilities found in hologenomes is central to 

understand their interactions and metabolic capacities (Frank et al. 2016; Bose 

et al. 2015). Here, we present an annotation of the lichen Lasallia pustulata by 

annotating the genomes of the mycobiont and the photobiont. Performing a 

repeat and gene annotation, we find considerable differences in both genome 

organization and gene structure for between the genomes of Trebouxia sp. and 

L. pustulata. Comparing the gene predictions done by MAKER2 and 

funannotate for the genome of L. pustulata we find marked differences in the 

prediction performance with respect to both the sensitivity and accuracy. A 

subsequent comparative analysis of the gene predictions of five 

Lecanoromycetes reveals how incomplete and inaccurate annotations impact 

downstream evolutionary analyses. 

  



 

 

85 

4.2 Methods 

4.2.1 Gene annotation 

The genes for the mycobiont of Lasallia pustulata were annotated with both 

MAKER2 v2.31.8 (Holt and Yandell 2011) and funannotate v0.5.7 

(https://github.com/nextgenusfs/funannotate). While MAKER2 is a general 

gene annotation pipeline, the funannotate pipeline was designed for fungal 

genomes, which makes extensive use of RNAseq data to avoid fungal-specific 

annotation errors (Hoff et al. 2016). For MAKER2 we followed an iterative 

procedure, which contains two rounds of annotation (Kumar 2013), as 

additionally outlined in the instructions available online at Github: 

https://github.com/sujaikumar/assemblage/blob/master/README-

annotation.md. For the first pass of MAKER2 we identified well-conserved 

genes with CEGMA v2.5 (Parra, Bradnam, and Korf 2007) and converted these 

predictions into Hidden Markov Models (HMMs) for SNAP v2006-07-28 (Korf 

2004). Additionally we ran GeneMark v4.21 (Besemer and Borodovsky 2005) 

on the fungal genome. Furthermore, we assembled RNAseq data from L. 

pustulata with Trinity release 2013-11-10 (Grabherr et al. 2011), using the –

jaccard-clip –normalize_reads parameters. The assembled transcripts, as well as 

the proteomes of Cladonia grayi (http://genome.jgi.doe.gov/Clagr3/) and 

Xanthoria parietina (http://genome.jgi.doe.gov/Xanpa2) were used as further 

evidence for MAKER2. The gene predictions of this first pass were 

subsequently converted to HMMs for SNAP and AUGUSTUS v3.1 (Stanke 

and Waack 2003; Stanke et al. 2006). For the second pass of MAKER2 the new 

HMMs of SNAP, GeneMark and AUGUSTUS were used, along with the 

RNAseq and proteome evidence.  

For funannotate the gene prediction was performed in accordance with the 

documentation (https://github.com/nextgenusfs/funannotate/wiki). In 

addition to the already de novo assembled RNAseq data, these were also 
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assembled using Trinity’s –reference-guided mode, using the assembly of L. 

pustulata as further input. The output of both Trinity runs was then the basis 

to identify transcript assemblies on the L. pustulata genome assembly, using 

TransDecoder in the PASA pipeline (Haas et al. 2008). Additionally HISAT2 

(Kim, Langmead, and Salzberg 2015) mapped the RNAseq data to the fungal 

genome, giving –max-intronlen 3000. Ultimately, the results of PASA, HISAT2, 

and Trinity were given as input to funannotate, along with the proteomes of X. 

parietina and C. grayi. The same workflow for funannotate was applied to an 

unpublished draft genome of Lasallia hispanica and the unannotated draft 

genome of Umbilicaria muehlenbergii (S. Y. Park et al. 2014).  

The gene prediction for Trebouxia sp. was done with MAKER2, analogous to 

the annotation described for L. pustulata above. Instead of Cladonia grayi and 

Xanthoria parietina, the protein set of the photobiont Asterochloris sp. 

(http://genome.jgi.doe.gov/Astpho2/) was used as external protein evidence.  

4.2.2 Comparing the fungal gene predictions 

The prediction results of MAKER2 and funannotate for L. pustulata were 

evaluated by comparing them to each other. In a first step, we used bedtools 

v2.17.0 (http://bedtools.readthedocs.io/) to find to which extent the gene 

predictions occur in the same/similar positions, by finding partially and 

completely overlapping regions in the predictions. We furthermore analyzed 

the RNAseq coverage for all predicted genes, based on the HISAT2 mapping 

generated for funannotate. In a last step, we analyzed the fidelity of the 

predicted genes by searching for orthologs in other species. We performed 3 

ortholog searches with OMA v1.0.3 (Altenhoff et al. 2015), searching for 

orthologs in X. parietina and C. grayi, additionally adding non-overlapping 

sets of 3 Dothideomycetes and 3 Eurotiomycetes each (Table 4-1). For the 

individual runs we counted how many of the genes exclusively predicted by 

MAKER2 and funannotate were assigned to orthologous groups (OG) and 
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what the group size of the OG is. Furthermore, we predicted in silico gene 

fusions using the Rosetta Stone approach (Marcotte and Marcotte 2002), 

which analyzes two genomes to find instances where a single gene present in 

one organism is found as two separate genes in another one. We applied the 

Rosetta Stone method to the gene predictions of L. pustulata and C. grayi to 

estimate their fidelity. 

Table 4-1: Taxon sets used for the orthology prediction with OMA to compare the gene predictions of 
MAKER2 and funannotate. 

 Set I Set II Set III 

Dothideomycetes Lepidopterella 

palustris 

Lentithecium 

fluviatile 

Lindgomyces 

ingoldianus 

Sporormia 

fimetaria 

Myriangium duriaei Massarina 

eburnea 

Zasmidium cellare Trichodelitschia 

bisporula 

Westerdykella 

ornata 

Eurotiomycetes Eurotium rubrum Gymnascella 

aurantiaca  

Coccidioides 

immitis 

Microsporum 

canis 

Histoplasma 

capsulatum 

Gymnascella 

citrina 

Trichophyton 

verrucosum 

Trichophyton 

rubrum 

Arthroderma 

benhamiae 

Lecanoromycetes Lasallia pustulata 

Xanthoria parietina 

Cladonia grayi 

 

4.2.3 Repeat annotation 

Libraries of repetitive elements in L. pustulata, L. hispanica, U. muehlenbergii 

and Trebouxia sp. were generated using RepeatModeler and subsequently used 

with Repeatmasker v4.0.5 (Smit, Hubley, and Green 2015) to identify repeats in 
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the respective genomes. We additionally applied the Inverted Repeat Finder 

(IRF) that identifies candidate inverted repeats (IR) through an exact 

matching of reverse-complemented k-mer matches which are clustered by 

positions, subsequently verifying these through a Smith-Waterman alignment 

(Warburton et al. 2004). The IRF was run with default parameters to predict 

inverted repeats in the genomes of the Lecanoromycetes L. pustulata, U. 

muehlenbergii, C. grayi, Usnea florida and X. parietina.  

4.2.4 Functional annotation 

The predicted genes of the mycobionts and Trebouxia sp. were assigned to 

KEGG Orthologs using BlastKOALA v2.1 (Kanehisa, Sato, and Morishima 

2016). Gene Ontology terms (Ashburner, Ball, and Blake 2000) were assigned 

to the predicted protein sequences of all Lecanoromycetes and Trebouxia sp. 

by BLAST2GO v4.1.7 (Götz et al. 2008), following a BLAST against the NCBI-

nr database. Pfam domains were annotated using PfamScan (Finn et al. 2016). 

To compare the functions represented in our fungal gene predictions with 

those of the publicly available Lecanoromycetes Xanthoria parietina, Usnea 

florida and Cladonia grayi, we annotated KO groups, GO terms and Pfam 

domains their gene sets in the same way. 

4.2.5 Investigating annotation and assembly errors 

We searched for orthologs between L. pustulata, U. muehlenbergii, X. parietina, 

C. grayi and U. florida with OMA v1.0.3. Hierarchical Orthologous Groups 

(HOGs) that contained sequences of 4 of the 5 taxa were analyzed in detail. 

All candidates for private gene losses where then searched with a more 

inclusive approach, using HaMStR v13.2.6 (Ebersberger, Strauss, and von 

Haeseler 2009, https://www.sourceforge.net/projects/hamstr). For this, each 

candidate HOG was aligned with mafft v.7.305b (Katoh and Toh 2008) and 

subsequently converted into an HMM with hmmer v.3.1b2 (Eddy 2011). The 

resulting HMMs were then used as core-ortholog sets for HaMStR, which was 
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run using the closest relative for each taxon as the reference species. The 

lengths of the orthologs found by HaMStR were then compared to that of the 

genes already present in the HOGs. HOGs for which no ortholog was 

identified via HaMStR were additionally searched using exonerate (Slater and 

Birney 2005) with the protein2genome model to bypass the gene annotation, 

directly searching in the genomic sequences instead. Each sequence present in 

a given HOG was aligned against all five Lecanoromycetes genomes. For each 

sequence we thus generated three kinds of alignment scores:  

1. The self-alignments, in which the protein sequence was aligned to the 

genome in which the protein-sequence was predicted. 

2. The found-alignments, in which the protein sequence was aligned to a 

genome in which an ortholog to the protein-sequence was found in the 

set of annotated genes. 

3. The missing-alignments, in which the protein sequence was aligned to 

the genome in which no ortholog to the sequence could be found in the 

set of annotated genes. 

We subsequently individually compared the alignment score distribution of 

the missing-alignments to that of the found-alignments for each HOG. A one-

tailed Wilcoxon-Mann-Whitney test was performed to evaluate whether the 

missing-alignment scores were significantly lower than the found-alignment 

scores. For HOGs where we did not observe a significantly lower alignment 

score we additionally evaluated the positions of the missing-alignments using 

bedtools v2.25.0, to see whether those alignments overlap with already 

predicted genes or are in so-far unannotated genomic regions.  

We additionally compared the lengths of the genes that overlapped with the 

exonerate alignments to the sequence lengths of proteins found in the HOGs. 

For L. pustulata, U. florida, C. grayi, and X. parietina we then also searched in 

the assembled transcript data for those HOGs that showed significantly lower 
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missing-alignment scores. This was done using HaMStR in the –est mode and 

the already compiled HMMs.  
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4.3 Results 

4.3.1 Annotating genes 

We predicted genes for L. pustulata using both MAKER2 (Holt and Yandell 

2011) and funannotate (https://github.com/nextgenusfs/funannotate). MAKER2 

predicted 10,420 protein-coding genes with a mean number of 3.26 exons per 

gene, and a mean gene length of 1,688 bp. Funannotate predicted 9,825 coding 

genes with 3.29 exons per gene on average, and a mean gene length 1,594 bp. 

Comparing the positions of the genes predicted by both methods we found 

that MAKER2 predicted 1,604 genes that do not overlap with the predictions 

done by funannotate. Vice versa, we observed that funannotate predicted 839 

genes that showed no overlap with the predictions of MAKER2. We 

subsequently used a read mapping of RNAseq data to evaluate the extent to 

which those genes are covered with transcriptomic data (Figure 4-1).  

 
Figure 4-1: Fraction of the predicted genes length that is covered by RNAseq. Data is split into 
categories: Genes that were predicted by both methods (top), predicted only in the funannotate set 
(middle), and only in the MAKER2 set (bottom). 

For the genes that were predicted by both methods we discovered that the 

majority of these genes are covered by RNAseq data over the full length of the 

predicted transcripts, with only 2.8% of them having no position covered. 
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Similarly, for the genes exclusively predicted by funannotate we observed that 

only 14.1% are having no positions covered by the RNAseq data. On the other 

hand, for the genes predicted exclusively by MAKER2 we found a marked 

increase in genes that have limited RNAseq coverage, with 69.5% of them 

having no position covered by a single RNAseq read.  

To further investigate the genes exclusively predicted by the different 

methods, we used OMA to search for orthologs to these genes in 2 further 

Lecanoromycetes (C. grayi and X. parietina), 3 Dothideomycetes and 3 

Eurotiomycetes each. To minimize the influence of taxon sampling, we 

performed the orthology prediction in three replicates, using non-overlapping 

sets of Dothideomycetes and Eurotiomycetes (c.f. Table 4-1, page 87). 

 
Figure 4-2: Number of exclusively predicted genes for funannotate and MAKER2 that are assigned to 
orthologous groups for the three replicates used for the orthology prediction. 

The majority of genes exclusively predicted by funannotate or MAKER2 could 

not be assigned to any OMA orthologous groups (Figure 4-2). While on 

average 78 (4.9%) of the MAKER2-exclusive genes could be assigned to any 

orthologous group, on average 97 (11.5%) of the funannotate-exclusive genes 

were placed into an orthologous group. 

 

0
500

1000
1500

0
500

1000
1500

0
500

1000
1500

0
500

1000
1500

0
500

1000
1500

0
500

1000
1500

No Yes
In OMA group?

co
un

t



 

 

93 

Additionally, we investigated the size of the orthologous groups into which 

these genes were placed. This revealed that over half of the MAKER2 genes 

were placed into orthologous groups that contain only a single other species 

(Figure 4-3). For the genes only predicted by funannotate this distribution 

markedly shifts towards larger orthologous groups, with over 50% of them 

being in groups that include orthologs in at least 3 additional species and only 

29% of them being placed in OMA groups with a single other species. 

Lastly, we did a preliminary search for in silico gene fusions/fissions with the 

Rosetta Stone method (Marcotte and Marcotte 2002). Using the protein set of C. 

grayi as a reference, we searched for L. pustulata genes in which distinct 

regions can be aligned to different C. grayi proteins without conflicts. Here, 

MAKER2 showed larger numbers of fused genes for L. pustulata, with 218 

predictions having significant evidence for fusions, involving 656 Cladonia 

grayi genes (see Table A-4 on page 192). In contrast, for the funannotate 

predictions we found 136 gene fusion predictions that involve 451 C. grayi 

genes (see Table A-5 on 202). 

 
Figure 4-3: Sizes of the OMA orthologous groups in which the exclusively predicted genes were 
placed. The OMA orthologous groups, containing only a single sequence per species, were calculated 
for three taxon sets with 9 species each.  
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Given that genes predicted by funannotate appear to be of higher quality, as 

they are more likely to be supported by RNA sequencing data and the 

presence of orthologs in other fungi, we applied funannotate to predict genes 

in the unannotated draft genomes of Umbilicaria muehlenbergii (S. Y. Park et al. 

2014) and Lasallia hispanica to facilitate downstream evolutionary analyses. For 

U. muehlenbergii we predicted 8,822 protein-coding genes with an average 

gene length of 1,739 bp and a mean number of 3.23 exons. In L. hispanica we 

predicted 8,488 coding genes (average length 1,602 bp, average number of 

exons 3.17). As there are no algal-specific gene annotation pipelines at this 

time, we predicted genes for the photobiont Trebouxia sp. with MAKER2. This 

yielded 14,134 protein-coding genes, which on average contain 6.8 exons for a 

mean gene length of 3,733 bp. 

4.3.2 Repeat annotation 

We annotated repetitive elements in the genomes of L. pustulata, L. hispanica, 

U. muehlenbergii and Trebouxia sp. with the RepeatModeler/RepeatMasker 

pipeline (Smit, Hubley, and Green 2015). For all four species only less than 

two percent of the genome are identified as simple repeats. Instead, larger 

parts of the genomes are identified as interspersed repeats (see Table 4-2). 

With 32.27% of the genome being classified as interspersed repeats, L. 

hispanica showed the largest proportion of them. In contrast, only 21.39% of 

the L. pustulata genome and 22.70% of the U. muehlenbergii genome were 

classified as interspersed repeats. With respect to the repeat content, the 

genome of the photobiont Trebouxia sp. deviates markedly from the genomes 

of the Lecanoromycetes, with only 4.87% of the genome being identified as 

interspersed repeats. 

4.3.3 Functional annotation 

We proceeded to functionally annotate the genes we predicted in the genomes 

of the mycobionts and the photobiont Trebouxia sp.. For the fungal genomes 
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about 1/3rd of genes were linked to KEGG orthologous groups (see Table 4-2). 

In addition, we observed a substantial overlap among the KO groups present 

in the 5 Lecanoromycetes genomes (see Figure 4-4).  

Table 4-2: Annotation results for the four genomes, including the repeat and functional 
classifications. 

Taxon 
Number of 

Genes 

Genome in 

Interspersed 

Repeats 

Genes with 

GO Term 

assignments 

Genes linked 

to KEGG 

Orthologous 

Groups 

Genes 

with 

Pfam 

domains 

L. pustulata 9,825 21.39% 4,718 3,226 6,241 

L. hispanica 8,488 32.27% 4,096 2,812 5,380 

U. muehlenbergii 8,822 22.70% 4,452 3,118 6,099 

Trebouxia sp. 14,134 4.87% 4,970 3,474 7,067 

 

Using the Gene Ontology (GO) for a further functional classification, we could 

annotate around 50% of the genes predicted in the fungi with at least one GO 

term (see Appendix, Figure A-4, as an example of the GO terms found in L. 

pustulata). Analogous to the KO groups, we observed that nearly all GO terms 

were found in all five lecanoromycete genomes (the overlap in GO terms 

found amongst the lecanoromycete genomes is shown in Appendix, Figure 

A-5). Furthermore, about 2/3rd of the fungal genes could be annotated with 

Pfam domains. In line with the GO terms and the KO assignments, these are 

largely shared between the five Lecanoromycetes (see Appendix, Figure A-6, 

for the overlaps in Pfam annotations between the Lecanoromycetes).  

 



 

 

96 

 
Figure 4-4: The bottom left bars give the total number of distinct KOs assigned to the five genomes 
of the Lecanoromycetes. The top bar charts show the number of KO assignments shared between 
taxa. Black dots denote the inclusion of an organism in the respective intersection. 

For the genome of the green alga Trebouxia sp. 24.6% of the genes were placed 

into KEGG orthologous groups. Furthermore, 35.2% of the genes could be 

assigned to GO terms (see Figure A-7 in the Appendix for a graphical 

representation of the GO terms found in Trebouxia sp.), and 50% contained 

Pfam domains. Given the overall low number of functionally annotated 

genes, we did not compare the KO and GO annotations of Trebouxia sp. with 

further Chlorophyta in detail, but see Appendix Figure A-8 (page 218) for the 

overlap in Pfam annotations between Trebouxia sp. and 5 further Chlorophyta 

that were annotated by Nelson et al. (2017).  

4.3.4 Surveying the effects of assembly and annotation errors 

Having identified repeats as well as genes and additionally having annotated 

the functions of the genes, we performed the typical steps of a genome 

annotation. Missing genes – and functions – thus would be interpreted as 

evolutionary loss events (c.f. 1.2, page 3). However, this would take the 

annotation results of face value, ignoring the influence of genome assembly 

and genome annotations artifacts, which can lead to wrong evolutionary 

inferences (Denton et al. 2014). We thus evaluated the impact of assembly and 

annotation artifacts on downstream analyses by searching for genes that are 
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well conserved in the Lecanoromycetes. The previously analyzed OMA 

orthologous groups (c.f. 4.2.2, page 86) require that all genes in a group are 

orthologous to each other, making it very stringent and leading to a low recall 

(Altenhoff et al. 2016). We thus changed our focus to Hierarchical 

Orthologous Groups (HOGs) as predicted by OMA. HOGs, which can include 

in-paralogs, have been shown to have a good trade-off between recall and 

specificity (Altenhoff et al. 2016). Searching for orthologs between L. pustulata, 

U. muehlenbergii, X. parietina, C. grayi and Usnea florida we found a total of 

9,081 HOGs. Of these, 4,607 HOGs contained sequences of all five taxa. 

Furthermore, we found 1,402 HOGs that contained sequences of 4 of the 5 

taxa. Given our taxon sampling, these genes are present in two clades that 

coalesce in the last common ancestor of the Lecanoromycetes (LCALec) and we 

thus assume that these were already present in the LCALec. Furthermore, 

given their presence in all but one taxon, they are rarely lost. We find 

substantial numbers of genes that appear to be privately lost genes for all five 

taxa, ranging from 193 in U. florida to 371 in X. parietina (Table 4-3).  

Both the quality of gene predictions in individual genomes, as well as the 

stringency of the orthology prediction can influence these numbers. In a first 

survey, we used the in silico gene fusions and fissions between L. pustulata 

and C. grayi that were predicted by the Rosetta Stone method to estimate how 

many genes are being missed based on those. We observed that 15 of the 136 

artificial gene fusions found in L. pustulata involve genes of C. grayi that are 

placed in HOGs where L. pustulata is exclusively missing (see Appendix, 

Table A-5 on page 202). To further estimate the influence of gene fusions as 

well as otherwise missed genes, we performed a two-step, refined search for 

the LCALec genes. In the first step we searched for the absent genes with the 

more inclusive, targeted orthology prediction method HaMStR, which does 

not apply a sequence-length cut off during the orthology search (Ebersberger, 
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Strauss, and von Haeseler 2009). This identified further orthologs for around 

half of the genes that so far were predicted to be privately lost (Table 4-3).  

Table 4-3: Predicted gene losses after searching for orthologs using OMA, HaMStR and exonerate. 

Taxon 
Missing LCALec orthologs 

after OMA search after HaMStR search after exonerate 
search 

L. pustulata 325 142 76 
U. 

muehlenbergii 
228 126 36 

C. grayi 285 157 58 
U. florida 193 90 55 

X. parietina 371 203 159 
 

Analyzing the differences in lengths between the additional genes found by 

HaMStR and the sequences already present in the corresponding HOGs, we 

observed marked length differences for the majority of the genes, regardless 

of the taxon. Figure 4-5 shows that a significant number of the newly found 

orthologs differ by a length larger than the length-cutoff employed by OMA. 

Additionally, we noted that 5 of the orthologs found for L. pustulata match 

gene fusions predicted by the Rosetta Stone method (see Appendix, Table A-5 

on page 202). 

 
Figure 4-5: The relative sequence lengths of the additional orthologs found by HaMStR, compared to 
the mean sequence length of the orthologs already in a given OMA HOG. The horizontal bars give 
the upper and lower bound of the length cut-off filter used in the ortholog identification of OMA. 
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In the second step, we additionally screen the genomes for genes that have 

been overlooked by the gene prediction methods. To this end we focus on the 

genomes themselves rather than on the set of predicted genes. We searched 

for the still privately absent LCALec genes with exonerate; aligning all 

sequences in a given HOG to the genome sequences of all five 

Lecanoromycetes. The protein alignment scores for the genomes in which an 

ortholog was found were then compared to the protein alignment scores for 

the genome in which so far no ortholog was found (see online supplementary 

material at doi:10.5281/zenodo.894741 for the exonerate alignment scores), 

using a one-tailed Wilcoxon-Mann-Whitney test. Significantly worse (p ≤ 0.05) 

alignment scores in the genome in which no ortholog was found were taken 

as further evidence for a true absence of an ortholog. Genes that did not show 

a significantly worse alignment were classified as either a gene missed in the 

gene prediction – if they do not overlap an already annotated gene – or 

otherwise as a potentially missed ortholog. This approach uncovered further 

genes that were initially predicted to be absent in the respective genomes. We 

observed that this approach yielded not only evidence for additional 

orthologs, which were not uncovered so far, but also genes that were not in 

the set of predicted proteins (Table 4-4). After this filtering we notice that only 

between 15% (U. muehlenbergii) and 42% (X. parietina) of the original predicted 

losses could be confirmed. 

Table 4-4: Exonerate evidence for orthologs that were found by neither OMA nor HaMStR. If the 
exonerate evidence overlaps with already annotated genes, this was classified as a potentially missed 
ortholog. If the exonerate evidence hints to a so far unannotated genomic region, it is classified as a 
missed gene annotation. 

Taxon Missed 
Ortholog 

Missed Gene 
Annotation 

L. pustulata 39 27 
U. muehlenbergii 65 25 

U. florida 15 17 
C. grayi 43 59 

X. parietina 28 16 
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Analogous to the additional orthologs found by HaMStR, we compared the 

lengths of the orthologs found by exonerate to the lengths of the sequences in a 

given HOG. We limited this to the not significantly worse exonerate hits that 

span a region in which genes were already predicted. We again note 

substantial length differences, with the sequences found by exonerate on 

average being longer than the sequences found in the HOGs. This especially 

affected the gene predictions of U. muehlenbergii, where all but one additional 

ortholog are longer than the average gene in the corresponding HOG. We 

additionally observed that 9 of the L. pustulata genes found were predicted as 

gene fusions by the Rosetta Stone method (see Appendix, Table A-5 on page 

202). 

 
Figure 4-6: The relative sequence lengths of additional sequences found by exonerate, compared to 
the mean sequence length of the orthologs already in a given OMA HOG. The horizontal bars give 
the upper and lower bound of the length cut-off filter used in the ortholog identification of OMA.  

After estimating the impact of lacking orthology and gene predictions, we 

additionally analyzed the impact of incomplete genome assemblies. By 

searching for orthologs to the so far not identified LCALec genes in the 

assembled transcriptomes of all Lecanoromycetes, except U. muehlenbergii, 

where no transcript data was available, we further reduced the number of the 
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privately lost genes. This yielded a loss of 33 LCALec genes for L. pustulata, 45 

for C. grayi, 52 for U. florida, and 90 for X. parietina.  

4.3.5 Tracing the sources of annotation artifacts 

To gain further insights on why the gene prediction or orthology search 

failed, we manually curated individual examples of genes initially predicted 

to be absent in L. pustulata but subsequently found in our search for the 

privately lost LCALec genes. Genes being missed during the gene annotation, 

despite being in a sequenced and assembled region, is one potential source for 

false-positive gene loss predictions. An illustrative example is shown in 

Figure 4-7. Despite the presence of RNAseq data, funannotate did not predict a 

gene at this position. The exonerate analysis suggests that this happened for 27 

LCALec genes in L. pustulata. 

 

 
Figure 4-7: A 360 bp-long region in which exonerate successfully identified a so far overlooked gene. 
The top track shows the presence of mapped RNAseq data with a read coverage of up to 114x, which 
was used to guide the gene prediction. 

Given the results of the Rosetta Stone method (see 4.3.1 on page 91) and the 

length discrepancies found in the orthologs discovered by HaMStR and 

exonerate, we investigated potential in silico gene fissions/fusions as well. In 
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such cases the gene prediction either falsely joins two neighboring genes or 

cuts a gene into parts. We observe that the former often happened when the 

intergenic space between these genes is small. Figure 4-8 shows an example of 

this, where two genes were fused over the intergenic region despite mapped 

RNAseq reads not supporting this. Here funannotate predicted the two 

terminal exons of the left and right gene to be internal exons of a joint gene.  

 

 
Figure 4-8: A 1,646 bp window in which two genes were fused. The gene prediction track (bottom 
track) shows four exons that are joined into a single gene. The RNAseq coverage (top track), as well 
as the RNAseq mapping shows that there are no read mappings which support joining the two 
central exons into a single gene. Despite this, funannotate predicted a 109 bp long intergenic region 
to be an intron.  

In other cases we found that the coverage for the RNAseq data on first glance 

appeared to support the joining of genes. For example, Figure 4-9 shows a 

case where funannotate predicted a single gene with a long terminal exon. A 

closer look at the RNAseq coverage revealed that the left and right ends of 

this exon differ substantially with respect to the coverage. Furthermore, the 

central region of the exon showed a substantially lower coverage than both 

flanking regions and there is no RNAseq read that bridges this 180 bp long 

low-coverage region, despite an RNAseq read length of 250 bp.  
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Figure 4-9: A 2,465 bp region in which funannotate (bottom track) predicted a single, terminal exon. 
The RNAseq coverage (top track) decreases to 10x in the central region, but does not reach zero. The 
region to the left of this low-coverage area shows a lower mean coverage (63x) than the right flanking 
region (150x). The RNAseq read alignment shows no reads fully span over the 180 bp long, lowly 
covered region. Thus, both the coverage pattern as well as the mapping providing strong evidence 
for an overlapping UTR and thus an artificial gene fusion. 

For L. pustulata, 33 LCALec genes appeared absent after the additional analyses 

using HaMStR, exonerate and additional RNAseq data. As these are 

evolutionary old, the absence of these genes could have considerable 

functional implications. We thus manually curated each of these genes. 

This revealed another source of error, which was not detected by the previous 

methods, impacting a total of 5 LCALec genes. The best example of these is the 

dihydrofolate reductase (DHFR), a gene involved in the basal metabolism of 

nucleotides. As such its absence would imply wide-ranging changes in the 

metabolism of L. pustulata. By searching for the neighboring genes to the 

DHFR in L. hispanica we identified the corresponding genomic region in L. 

pustulata (Figure 4-10). In that genomic region we observed a marked lack of 

read coverage for our Illumina sequencing data, with only individual reads 

mapping to it, while the coverage for the PacBio reads remained high.  
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Figure 4-10: The 5,568 bp window where the DHFR should be located; centered on the position of the 
DHFR. The RNAseq track shows the coverage (top), spliced alignments (red/blue joins) as well as the 
read mapping. For the Illumina read pairs and mate pairs the read coverages as well as the read 
mappings are shown. All Illumina libraries show a lack of coverage for the central region, where the 
DHFR would be located. The PacBio sequences, for which only the read coverage is shown, show no 
decrease in coverage. The funannotate gene predictions show the genes flanking the DHFR to the left 
and right as correctly predicted.  

A genewise (Birney, Clamp, and Durbin 2004) alignment of DHFR sequences 

against this genomic region revealed a high-scoring alignment (230.82 bits) in 

the region, showing four indels. The resulting frame shifts in the DHFR 

coding sequence would render it a pseudogene. However, the alignment of 

the sparsely available Illumina reads indicates that these indels are artifacts 

caused by sequencing errors which are found in around 1/3rd of the PacBio 

reads. Correcting the genomic sequence guided by the Illumina reads showed 

the gene to be intact, with no evidence for a pseudogenization. The region of 

the DHFR exhibited a high G/C content of over 70%, with RepeatMasker 

predicting the region as repetitive. We furthermore observed that the Inverted 

Repeat Finder (Warburton et al. 2004) predicted an inverted repeat (IR) in the 

genomic area surrounding the DHFR gene.  

To assess the extent to which G/C-rich inverted repeats could impact the 

correct identification of genes, we investigated the inverted repeats found in 
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L. pustulata, analyzing their G/C-content and length. We repeated this analysis 

for the other four Lecanoromycetes to compare the IRs found in L. pustulata to 

the other genomes. For L. pustulata we found 1,464 IR, with a median length 

of 819.5 bp. We observed marked differences in the number of IR between the 

Lecanoromycetes, with a lower bound of 670 in X. parietina and an upper 

bound of 29,396 in C. grayi (see Table A-6 on page 207 in the Appendix). 

Furthermore, there was a strong bias in G/C content for the observed IR. 

Cladonia grayi showed the lowest median G/C content, with 11.13%. In 

contrast, the G/C content of the IR found in L. pustulata and U. muehlenbergii 

was bimodally distributed. While we observed peaks at 51% and ~75% G/C 

for L. pustulata, the peak with the highest G/C content for U. muehlenbergii was 

at ~60% (Figure 4-11). Generally, only the genome of L. pustulata showed a 

substantial amount of IR with a G/C content of over 70%. Additionally, we 

observe that 467 IR – with a mean G/C content of 67.8% – overlap regions in 

which the read coverage for the Illumina libraries drops to <10x while the 

PacBio coverage remains uniform, analogous to the case of the DHFR (see 

Appendix, Figure A-10 on page 219, for a length and G/C content distribution 

of these regions). 
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Figure 4-11: G/C content and length of the inverted repeats for the five Lecanoromycetes. The 
marginal plots give the kernel density estimates for each taxon. Vertical lines show the mean G/C 
content for the individual genomes. 
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4.4 Discussion 

The annotation of genomes includes a variety of tasks, from annotating 

repetitive elements (Price, Jones, and Pevzner 2005) and motifs (D’haeseleer 

2006) to the prediction of gene structures (Klasberg, Bitard-Feildel, and Mallet 

2016). It is the latter that often remains a central element in making sense of 

newly sequenced genomes, as it allows a subsequent functional annotation of 

these genes (Finn et al. 2016; Kanehisa, Sato, and Morishima 2016; Ashburner, 

Ball, and Blake 2000). Furthermore, the search for potentially orthologous 

sequences to the newly predicted genes is frequently used to transfer 

functional annotations between those sequences (Conesa et al. 2005; Kanehisa, 

Sato, and Morishima 2016), motivated by the ortholog conjecture (Altenhoff et 

al. 2012; Studer and Robinson-Rechavi 2009).  

4.4.1 Annotating genomes 

As genome organization and gene structures differ between taxa (Yandell and 

Ence 2012), we utilized a number of different methods to annotate the 

hologenome of the lichen Lasallia pustulata. These differences are reflected in 

the repeat content for the genomes.  

4.4.1.1 Annotating repeats 

For the genome of the alga Trebouxia sp. we identified a low interspersed 

repeat content, with less than 5% of the genome being identified as 

interspersed repeats. This is contrasted by the fungal genomes where between 

21.39% in L. pustulata to 32.27% in Lasallia hispanica of the genome were 

classified as interspersed repeats. This lower repeat content for Trebouxia sp. is 

in line with the observation made for the genome of the green alga Chlorella 

variabilis NC64A, where a total of 12% of the genome was found to be 

repetitive, including not only interspersed repeats but also gene duplications 

(Blanc et al. 2010). The surprising variability between the two closely related 
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members of Lasallia might reflect a real growth of repetitive elements in L. 

hispanica, as seen for other fungi (Muszewska et al. 2011), though it might also 

be due to misassemblies in the genome of L. hispanica. Misassemblies 

frequently lead to an artificial repeat expansion that not only fragments the 

overall assembly but also inflates the genome assembly size (Phillippy, 

Schatz, and Pop 2008). The genome of L. hispanica is more fragmented (N50: 

137 Kbp) than the genome of L. pustulata (N50: 1.8 Mbp) and exhibits a larger 

assembly size (L. hispanica: 41 Mbp, L. pustulata: 33 Mbp). Furthermore, the 

observed repeat content for Umbilicaria muehlenbergii reflects that of L. 

pustulata. Thus, misassemblies in L. hispanica are the more likely reason for the 

observed repeat expansion. 

4.4.1.2 Annotating genes 

While the structure of fungal genes is conducive to annotating them (Galagan 

et al. 2005), their dense spacing in the genome leads to short intergene 

regions, which have been shown to make correct predictions challenging. This 

has lead to the development of dedicated methods for the annotation of 

fungal genomes (Testa et al. 2015; Ter-Hovhannisyan et al. 2008). For the 

prediction of genes in the fungal genomes we thus compared the performance 

of MAKER2 (Holt and Yandell 2011), a general purpose genome annotation 

pipeline, with that of funannotate, a pipeline specifically designed for 

annotating fungal genomes. Internally, funannotate utilizes BRAKER1, which 

has been shown to outperform MAKER2 as well as dedicated fungal gene 

predictors in the annotation of Schizosaccharomyces pombe (Hoff et al. 2016). 

While MAKER2 predicted 1,604 genes not found in the annotation of 

funannotate, we observed that the vast majority of these were not supported 

by our existing RNAseq data (Figure 4-1) and furthermore no orthologs could 

be found for them (Figure 4-2). On the other hand, funannotate had a smaller 

number of privately predicted genes, but a larger fraction of those could be 
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supported by RNAseq coverage and additionally be placed into Hierarchical 

Orthologous Groups (HOGs). Furthermore, the preliminary search for gene 

fusions with the Rosetta Stone method (Marcotte and Marcotte 2002) showed 

that the MAKER2 more often joined separate genes than funannotate (see Table 

A-4 on page 192 and Table A-5 on page 202). For this reason we subsequently 

annotated the genes of Lasallia hispanica and Umbilicaria muehlenbergii with the 

funannotate pipeline. Given the lack of dedicated gene prediction pipelines for 

green algae, we annotated the genome of Trebouxia sp. with MAKER2. We 

observed that gene models of Trebouxia sp. on average have twice the size of 

the models for L. pustulata and contain twice the number of exons. These 

differences in gene structure resemble what has been found for the genes of 

fungi and algae (Merchant et al. 2010; Galagan et al. 2005).  

4.4.1.3 Functionally annotating genes 

Our functional annotation recovered Gene Ontology (GO) terms for around 

half of the predicted fungal genes, as well as KEGG orthology (KO) 

assignments to around 1/3rd of them (Table 4-2). The methods for the 

assignment of both, KO and GO identifiers, rely heavily on sequence 

similarity to already annotated sequences (Kanehisa, Sato, and Morishima 

2016; Conesa et al. 2005). A lack of reference sequences thus potentially 

hinders the functional annotation. This is demonstrated by the functional 

annotation of the genes for the green alga Trebouxia sp., for which less 

reference data exists (Bhattacharya et al. 2015). Here, only 24.6% of the 

Trebouxia sp. genes could be assigned to a KO group and only 35.2% could be 

annotated with GO terms. Evidence for the lack of reference data for the 

functional annotation of the fungal genes comes from the orthology 

predictions for the Lecanoromycetes. For the 9,825 predicted L. pustulata 

genes we found that 2,381 do not have orthologs to any other 
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Lecanoromycetes and further 906 genes only have an ortholog in a single 

other lecanoromycete species.  

4.4.2 Gene annotation artifacts and downstream impacts 

Generally, the results of a typical genome and gene annotation (c.f. 4.3.1 on 

page 91 and 4.3.3 on page 94) would be used for comparative genomic studies 

(Sharpton et al. 2009). The absence of genes and their respective function are 

then interpreted as evolutionary losses (c.f. 1.2, page 3). Given that our 

subsequent analyses (c.f. 5.3 on page 125) are focused on loss events, which 

are known to be strongly influenced by annotation artifacts (Dunne and Kelly 

2017), we further estimated the impact of gene annotation and assembly 

artifacts on our downstream analyses. For this reason we searched for 

privately absent orthologs, which are otherwise conserved among the 

Lecanoromycetes. Based on the presence in 4 out of 5 Lecanoromycetes we 

assumed these to have been present in the last common ancestor of the 

Lecanoromycetes (LCALec). The accurate prediction of such loss events is of 

evolutionary interest, as such conserved genes potentially play a key 

biological role for the studied organisms, usually not allowing for a loss (Zhao 

et al. 2015; Ptitsyn and Moroz 2012). At the same time the accurate prediction 

of these loss events is problematic, as the detrimental nature of such losses 

makes them rare events, increasing the likelihood of observing false positives, 

analogous to the high false-positive rates observed when predicting loss-of-

function mutations (MacArthur et al. 2012). This is indeed what we observed 

by using increasingly sensitive methods to search for those “privately lost” 

LCALec genes. Over the five genomes of the Lecanoromycetes we find that in 

total only 15% of the initial predictions could not be rejected as false positives.  

4.4.2.1 Not identified orthologs 

Our search framework allowed us to investigate the reasons for the false 

positive predictions. In total, 80% of gene loss predictions were due to genes 
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that were in the predicted protein sets but not found during the orthology 

prediction (Table 4-3 on page 98 and Table 4-4 on page 99). The use of a more 

sensitive orthology prediction method, HaMStR, could partially ameliorate 

this problem. We found that the orthologs missed by OMA, but detected by 

HaMStR, differ in part substantially in length from the other sequences in the 

orthologous group (Figure 4-5). Therefore, the length cutoff implemented in 

OMA (http://omabrowser.org/standalone/#parameters) prevented the 

addition of these sequences into the orthologous group. In contrast, HaMStR, 

which does not include an explicit length cutoff, accepted these sequences as 

orthologous to the other group members.  

A further investigation of these cases showed that many of these 

discrepancies are a consequence of gene prediction artifacts, which either split 

genes or falsely fuse neighboring genes, with fused genes being the result of 

small intergene spaces (Figure 4-8 on page 102). For some of the fused genes 

we observed apparently consistent RNAseq coverage (Figure 4-9 on page 

103). This is a result of overlapping untranslated regions (UTRs). These are a 

common feature in fungal genomes (Donaldson et al. 2017; Xu et al. 2009) and 

have previously been seen to interfere with gene predictions (Testa et al. 

2015). 

For the missing LCALec genes of U. muehlenbergii in particular we find that 

both HaMStR and exonerate uncover sequences that vary markedly in length 

when compared to the other members of the corresponding orthologous 

group. This is most likely a result of the gene annotation, as no RNAseq data 

for U. muehlenbergii was available and only data from L. pustulata could be 

used. It appears that due to this the reliable identification of gene starts and 

ends was hindered, leading to a large number of in silico gene fusion events. 
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4.4.2.2 Incomplete genomes 

Furthermore, all the genomes we investigated were draft genomes, with an 

unknown fraction of the genome not represented in the draft sequence. 

Approaches to estimate the completeness of draft genomes have been 

developed. These use the number of found core eukaryotic genes (Parra, 

Bradnam, and Korf 2007) or lineage specific universal single copy genes 

(Simão et al. 2015) as a proxy for the draft genome completeness. While these 

methods can give a first insight into the quality of a draft genome, their use is 

problematic when expecting the loss of evolutionary old and well-conserved 

genes as such methods would interpret such losses as evidence of an 

incompletely sequenced genome. Using transcript data we could identify 

false positive loss predictions that were due to the absence of the 

corresponding regions in the different genome assemblies. This underlines 

the usefulness of transcriptome data to identify gene losses (c.f. Guzman and 

Conaco 2016).  

4.4.2.3 Not predicted genes  

We additionally observed that missed gene annotations were another source 

of false LCALec gene loss predictions. Substantial numbers of genes were 

found when bypassing the gene annotations and searching on the genomic 

sequences. Similar incomplete annotations were observed in earlier studies 

(Veeckman, Ruttink, and Vandepoele 2016; Denton et al. 2014). To minimize 

such artifacts, prediction methods that either make more extensive use of 

aligned homologous sequences (van der Burgt et al. 2014; Dunne and Kelly 

2017) or of community curation efforts (E. Lee et al. 2013) have been 

developed. Such methods can also be helpful to find annotations missed due 

to assembly errors, which can prevent the prediction of genes.  
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4.4.2.4 Compositional sequencing biases 

Investigating the LCALec genes predicted to be lost after all of our quality 

checks, we identified an extreme example of such an inaccurately 

reconstructed genomic region. In case of L. pustulata the set of predicted lost 

genes contained the dihydrofolate reductase (DHFR), which is essential for 

purine and thymidylate synthesis (Schnell, Dyson, and Wright 2004). Due to 

its central role in basic cell growth a loss of the DHFR is highly unlikely. 

Doing an extensive search for it, we found the DHFR, which was predicted as 

lost due to a missing annotation. This was, in turn, a result of a pathogenic 

assembly error that introduced insertion/deletions (indels), which led to 

premature stop codons (Figure 4-10). The sequence-content of the DHFR and 

its genomic neighborhood offer an explanation for these errors. The complete 

region consists of over 70% guanines and cytosines. Additionally, the high 

G/C content results in runs of homopolymeric stretches of Gs and Cs, which 

are arranged in a way that they form short inverted repeats. A high G/C 

content as well as homopolymers have been found to lead to increases in 

sequencing errors in both Illumina and PacBio sequencing data (Schirmer et al. 

2016; Ross et al. 2013). Additionally, high-G/C regions lead to PCR-induced 

biases in the library preparation for Illumina sequencing, which results in 

corresponding regions not being sequenced (Benjamini and Speed 2012). 

Inverted repeats in itself have furthermore been shown to lead to an increase 

in Illumina sequencing errors (Nakamura et al. 2011; Allhoff et al. 2013; Star et 

al. 2014). Regions that are not only G/C-rich but also contain inverted repeats, 

which largely made up of homopolymers, correspondingly amplify the 

sequencing problem. It is likely that due to these biases virtually no Illumina 

reads for such regions could be sequenced, making the DHFR appear to be 

absent even in the transcriptome data. Due to this overall lack of Illumina 

data, the short-read based error correction of Pilon (Walker et al. 2014) could 

not identify indels at this position. As such, even the sequencing of genomes 
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to a high depth and using multiple sequencing methods is not always a 

solution to reliably identify the loss of predicted genes.  

The genome of L. pustulata was furthermore the only lecanoromycete genome 

to show a large number of IRs with a G/C content of over 70%, while even its 

close relative U. muehlenbergii only included IRs with a G/C of about 60% (see 

Figure 4-11 on page 106). The used sequencing techniques offer an 

explanation for this. To our knowledge only genome of L. pustulata was 

sequenced using PacBio long reads. The genomes of all other 

Lecanoromycetes were sequenced using only short reads. Due to this it is 

likely that regions that include G/C-rich IRs were not sequenced for these 

genomes and are thus absent from the final assembly. Similar effects of G/C-

rich regions were recently reported for avian genomes, with around 15% of 

the genomes not being contained in the final assembly, largely due to G/C-

biases during the sequencing and assembly (Botero-Castro et al. 2017). 
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4.5 Conclusion 

The annotation of genomes is a central part of every genomic study. It forms 

the basis of comparative evolutionary analyses, such as the investigation of 

individual gene families, reconstructing phylogenies and inferring the 

functional impact of gene gain and losses, relating to changes in habitats and 

lifestyles. We annotated the hologenome of L. pustulata, largely focusing on 

the mycobiont due to the availability of reference data. Despite the 

considerably dense fungal taxon sampling, the in silico annotation of genes 

and their function remains challenging. In particular, the composition of 

genomic sequences can bias the initial sequencing, leading to errors that 

interfere with the prediction of genes. These errors often remain unnoticed, as 

the corresponding regions, like G/C-rich inverted repeats in case of L. 

pustulata, will not be represented in the draft genomes at all. Our in-depth 

comparative analysis of the gene predictions of 5 Lecanoromycetes showed 

that all draft genomes were only incompletely annotated, strongly impacting 

the reliable prediction of gene losses. We thus find that Martin Rees’ idiom – 

“Absence of evidence is not evidence of absence” (Oliver and Billingham 1971) – 

applies to the prediction of gene losses as well, especially when searching for 

unlikely or rare events.  
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5 Evolutionary consequences of lichenization 

5.1 Introduction 

The establishment of symbioses frequently leads to interdependences 

between the involved organisms (F. Martin, Uroz, and Barker 2017). Such 

interdependence leaves footprints in the genomes of the participating 

symbionts, with their genomes being remodeled to adapt to the requirements 

of the symbiosis (A. Moya et al. 2008). Such genomic footprints of symbiosis 

frequently include adaptations of the secretome (F. Martin et al. 2008), 

changes in gene family sizes (Dahan et al. 2015; Duncan et al. 2016; Zuccaro, 

Lahrmann, and Langen 2014), and large-scale reductions in gene set sizes 

(Bennett et al. 2014; Sabree, Degnan, and Moran 2010; Ochman and Moran 

2001).  

5.1.1 Footprints of symbioses in mycorrhizal fungi 

Genomic adaptations to symbiosis have been studied in mycorrhizal fungi. It 

has been shown that they need their secretomes to establish and maintain a 

mutualistic symbiosis with their hosts (Garcia et al. 2015; F. Martin et al. 

2008), using a set of genes that is partially homologous to pathogenic fungi for 

the invasion of the plant partner (Tollot et al. 2009; Heupel et al. 2010). Similar 

to secretome sizes, the evolution of gene families of fungi shows evidence for 

host-specific expansions and contractions of individual families. 

Lifestyle-specific changes in gene family sizes of mycorrhizal fungi have been 

observed, leading to the proposal of a symbiosis-toolkit (Kohler et al. 2015): 

For the genomes of Laccaria bicolor and Rhizophagus irregularis gene families 

which are involved in protein-protein interactions and signal transduction 

have been found to be expanded (Tisserant et al. 2013; F. Martin et al. 2008). 
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Furthermore, both genomes display significant contractions of gene families 

that are associated with the degradation of plant cell walls, which is supposed 

to support their mycorrhizal lifestyle. Despite the absence of genes involved 

in plant cell wall degradation, the genome of L. bicolor encodes enzymes for 

the degradation of other polysaccharides, potentially because of its lifestyle 

that is both saprotroph and mycorrhizal (F. Martin et al. 2008). The obligate 

mycorrhizal fungus R. irregularis, on the other hand, additionally lacks further 

degrading enzymes, secondary metabolic enzymes and secreted invertases as 

well as sucrose transporters. It has been hypothesized that these losses are 

linked to its inability to grow in vitro (Tisserant et al. 2013). Given the 

similarities of lichens to the mycorrhizal symbioses (Ahmadjian and Jacobs 

1981; Ahmadjian 1993; Lücking et al. 2009), it appears likely that similar 

effects should be visible in the genomes of lichen symbionts.  

5.1.2 Prerequisites for identifying genomic footprints of symbiosis 

The comprehensive investigation of the genomic effects of symbiosis relies on 

the availability of well-annotated reference genomes that can be used in 

comparative studies (C. W. Dunn and Munro 2016). A dense taxon sampling 

is needed to allow for a temporal resolution that allows to resolve when genes 

were gained and lost (Martín-Durán et al. 2017; Havird and Miyamoto 2010). 

For lichen symbionts the availability of reference data is heavily skewed, with 

notoriously few algal genomes being sequenced to date (Bhattacharya et al. 

2015). While significantly more fungal genomes have been sequenced 

(Grigoriev et al. 2014), only a small subset of these are involved in lichen 

symbioses (McDonald et al. 2013). As most functional gene annotations are 

inferred in silico through reference data (Kanehisa, Sato, and Morishima 2016; 

Finn et al. 2016; Conesa et al. 2005), the sparse availability of reference data is 
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reflected in the ability to annotate functions to the genes of the green alga 

Trebouxia sp. and the lichenized fungi (see section 4.4.1.3 on page 109).  

The quality of genome reconstructions and their annotations also play a 

crucial role for their use in comparative studies. Incomplete and fragmented 

draft genomes have been shown to lead to misestimated gene family sizes, as 

genes are absent or only present in fragments which are spread across 

scaffolds (Denton et al. 2014). Furthermore, even the genomes of model 

organisms like Saccharomyces cerevisiae have been shown to be incompletely 

annotated (Dunne and Kelly 2017), negatively impacting the evolutionary 

inferences drawn from gene presences & absences. In section 4.4.2 (page 110) 

we have demonstrated that the available draft genomes of the mycobionts 

inside the Lecanoromycetes are affected by such errors, hindering especially 

the analysis of gene losses. 

5.1.3 The state of evolutionary lichen genomics 

The genomic and functional consequences of lichenization are so far poorly 

understood. To our knowledge, there were so far only limited comparative 

studies that tried to analyze the impact that entering lichen symbiosis has on 

the symbionts’ genomes. The genome of mycobiont Endocarpon pusillum of the 

fungal class of Verrucariales was compared to 14 other, non-lichenized fungi 

(Wang et al. 2014). This comparison showed gene family contractions and 

expansions specific to the lineage of E. pusillum, revealing a marked gain of 

signal transduction proteins and nitrogen transporters as well as a substantial 

loss of sugar transporters. As no further mycobionts were included in the 

analysis, it is unclear whether these changes are directly related to the 

establishment of the lichen symbiosis or specific to the genome of E. pusillum. 

The only comparative study of mycobionts focused on the loss of genes of the 

ammonium transporter/ammonia permease (AMTP) gene family (McDonald 
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et al. 2013). Here, it was observed that the 8 studied mycobionts retain 

members of the AMTPs that are lost in most other fungi.  

The situation for the photobionts of lichens is similar. So far, the genomes of 

only a few photobionts have been studied in detail (Martínez-Alberola 2015). 

Furthermore, these studies were focused on the diversity of the photobionts 

that are associated with given mycobionts (P. Moya et al. 2017). Due to this, 

the effects of lichenization on the symbiotic partners’ genomes are poorly 

understood when compared to the effects observed in mycorrhizal fungi.  

To fill this gap, we utilize a comparative genomics framework, investigating 

the genomic consequences of lichenization and potential genomic reasons that 

explain why Lasallia pustulata could so far not be grown in axenic culture. We 

compare the genomes of L. pustulata and four further, culturable 

Lecanoromycetes to representatives of non-lichenized Eurotiomycetes and 

Dothideomycetes. This reveals that the Lecanoromycetes lost their capabilities 

to catabolize polysaccharides early in their evolution. Comparing L. pustulata 

to those Lecanoromycetes that are easily capable of growing in axenic 

cultures, we find no evidence for a strongly elevated rate of loss for otherwise 

well-conserved Lecanoromycetes genes. Similarly, we do not find support for 

a marked loss of functions among the gene family contractions and gene 

losses in L. pustulata. 
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5.2 Methods 

5.2.1 Phylogeny reconstruction 

We calculated a maximum likelihood tree, containing 48 fungi, 11 

microsporidia, 12 algae, 7 other Viridiplantae and 9 further eukaryotes using 

a set of 80 well-conserved proteins that are ubiquitously found in the 

eukaryotes. The sequences were aligned with CLUSTALW v.2.1 (Thompson, 

Gibson, and Higgins 2002) and standard parameters. These alignments were 

concatenated and columns with more than 50% missing data were filtered 

out. The resulting alignment was used as input for RAxML (Stamatakis 2006) 

to infer the maximum likelihood tree, running 100 bootstrap replicates with 

the PROTGAMMAILGF model. Vinh Tran performed all steps of the 

phylogeny reconstruction. 

5.2.2 The secretome of Lecanoromycetes 

We predicted secreted proteins for the protein sets of nine Dothideomycetes, 

nine Eurotiomycetes (see Table 4-1 on page 87 for the taxa), and the 

Lecanoromycetes. We used TargetP v1.1 with standard parameters to predict 

the cellular localization of the individual genes. For those genes that were 

predicted to be secreted and not localized in the mitochondrion, we 

subsequently ran TMHMM v.2 (Emanuelsson et al. 2007) to further exclude 

those genes which were predicted to be transmembrane proteins.  

5.2.3 Gene family expansions & contractions 

We analyzed the gene family size evolution among the same 9 

Eurotiomycetes and 9 Dothideomycetes further including L. pustulata, C. grayi 

and X. parietina. An all-versus-all search was performed on all proteome sets 

with Diamond (Buchfink, Xie, and Huson 2014), and the results subsequently 

clustered by the Markov Clustering implemented in mcl v12-135 (Enright, Van 
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Dongen, and Ouzounis 2002), using an inflation parameter of 1.4. We created 

a time-calibrated tree with BEAST v2.4.2 (Bouckaert et al. 2014), with the 80 

genes that were used for the maximum likelihood tree and the divergence 

estimate for the included Lecanoromycetes (Amo de Paz et al. 2011) as an 

calibration point.  

The calibrated tree and the clustering results were used as input for CAFÉ (Bie 

et al. 2006) to find significant gene family expansions and contractions on the 

branches. The results were analyzed and visualized using ETE 3 (Huerta-

Cepas, Serra, and Bork 2016). For a further analysis of the gene family 

expansions and contractions inside the Lecanoromycetes, we analyzed the 

expansions between Umbilicaria muehlenbergii, Lasallia pustulata, Cladonia grayi, 

Usnea florida, and Xanthoria parietina, using the dothideomycete Zasmidium 

cellare and the eurotiomycete Eurotium rubrum as an outgroup.  

We functionally annotated gene families that showed significant expansions 

or contractions by assigning them to KEGG Orthologous Groups with 

BlastKOALA (Kanehisa, Sato, and Morishima 2016) and to Gene Ontology 

terms with Blast2GO (Conesa et al. 2005). We then tested for overrepresented 

functions amongst the significant gene family expansions and contractions 

using Fisher’s Exact Test. 

5.2.4 Gene gains and losses in the Lecanoromycetes  

We predicted orthologs between Lecanoromycetes, Eurotiomycetes and 

Dothideomycetes with OMA v1.0.3 to investigate lineage specific gains and 

losses of genes. To rule out potential biases due to taxon sampling, we did 

this for three, non-overlapping sets of Eurotiomycetes and Dothideomycetes 

(the groupings are given in Table 4-1 on page 87) and added the five 

Lecanoromycetes U. muehlenbergii, L. pustulata, C. grayi, U. florida, and X. 

parietina to each of those three. The resulting Hierarchical Orthologous 
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Groups (HOGs) describe a hierarchy of orthologous groups in a given 

taxonomic range, based on pairwise orthology relationships. The HOGs were 

used to determine the sets of genes that descended from a common ancestor 

at each internal node in the species tree. These gains were subsequently 

searched for absent taxa, indicating lineage-specific losses of genes. We 

applied Dollo parsimony to minimize the number of individual losses, 

attributing losses only to higher clades if they are observed in all taxa of a 

given subtree. In this way we reconstructed ancestral gene sets for each node 

in the species tree. The scripts to calculate the gains and losses along the tree 

were kindly provided by Bardya Djahanschiri. A Fisher’s Exact Test with 

False-Discovery Rate correction (Benjamini and Hochberg 1995) was 

performed to test for overrepresented functions based on Gene Ontology 

terms in the gains and losses in the last common ancestor of the 

Lecanoromycetes and in Lasallia pustulata.  

5.2.5 Private losses of evolutionary conserved genes in the 

Lecanoromycetes 

We followed the step-wise procedure described in 4.3.4 (see page 96) to yield 

a set of high-confidence candidates for the private loss of genes in the 

genomes of the Lecanoromycetes U. muehlenbergii, L. pustulata, C. grayi, U. 

florida, and X. parietina. We then additionally searched for the genes that were 

predicted to be privately lost in L. pustulata in its sister species, Lasallia 

hispanica. A HaMStR (Ebersberger, Strauss, and von Haeseler 2009) orthology 

prediction was performed with the gene predictions of L. hispanica and the 

Hidden Markov Models generated from the HOGs predicted to be absent in 

L. pustulata. We additionally did an exonerate (Slater and Birney 2005) search 

against the unannotated genome of L. hispanica, using the protein2genome 

model, analogous to the stepwise procedure in 4.2.5 (page 88).  
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To analyze their phyletic distribution, we used HaMStR to search for 

orthologs to the high-confidence gene losses that were private to L. pustulata 

(see Appendix for the list of taxa in which the search was performed, Table 

A-7 on page 208). Vinh Tran kindly provided the pipeline for the orthology 

search across these taxa. The presence and absence of those orthologs across 

these species was subsequently visualized using PhyloProfile 

(https://github.com/trvinh/phyloprofile, commit a21dff5314). 

5.2.6 Searching for horizontally acquired genes 

We performed a taxonomic assignment on the gene predictions for L. 

pustulata to find genes that were potentially a result of a horizontal gene 

transfer (HGT). We performed a DIAMOND (Buchfink, Xie, and Huson 2014) 

search against our custom database (see 2.2.5 on page 21 for the database 

composition). We subsequently used these search results for the taxonomic 

assignment with MEGAN5 (Huson et al. 2011), applying a minimum score of 

50 and no low complexity filter for the taxonomic assignment. We took all 

genes as candidates for HGT that were assigned to nodes in the taxonomy 

tree that are not on the path leading to the Fungi. To rule out assembly and 

assignment artifacts, we took only such HGT candidates into account that 

were flanked by fungal genes on both sides. The identification of these genes 

was done with bedtools v2.17.0 (http://bedtools.readthedocs.io/). The list of 

candidates was then further investigated by screening the results of the 

DIAMOND search. 
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5.3 Results 

5.3.1 Phylogenetic placement of L. pustulata 

We investigated the phylogenetic relationships of the mycobiont and 

photobiont of the lichen Lasallia pustulata by reconstructing a Maximum 

Likelihood tree of 87 species, covering large parts of eukaryotic diversity and 

focusing on the Fungi and Chlorophyta. The tree, based on 80 well-conserved 

proteins that are broadly found in all eukaryotes, was well resolved with most 

nodes having a bootstrap support of 100 (Figure 5-1). The Umbilicariaceae, 

represented by Lasallia pustulata and Umbilicaria muehlenbergii, were placed as 

the sister group to the rest of the Lecanoromycetes. The Lecanoromycetes 

themselves group with the Eurotiomycetes, excluding the earlier branching 

Dothideomycetes. Inside the Chlorophyta we find that Trebouxia sp. is placed 

as a sister taxon to Asterochloris sp., inside a clade of four photobionts (Thüs et 

al. 2011). We noted that the Chlorophyta are only sparsely represented, 

despite using the genomes of all single celled algae that were publically 

available at the time of the analyses. Inside the clade of photobionts, we 

observed a substantial divergence between the different taxa, with Trebouxia 

sp. and its closest relative Asterochloris sp. being separated by a patristic 

distance of 0.7. The Lecanoromycetes on the other hand show markedly 

smaller branch lengths, with even longest branches inside the clade – between 

Cladonia grayi and Xanthoria parietina – having a patristic distance of 0.4. 

Furthermore, the Lecanoromycetes are embedded in a dense sampling of taxa, 

facilitating subsequent comparative analyses with a high resolution. For this 

reason we focused on the evolution of the Lecanoromycetes in general and L. 

pustulata in particular.  
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Figure 5-1: Maximum likelihood tree over 87 species. The Ascomycota (dark red), Fungi (light red) 
and Viridiplantae (blue) are highlighted. The lichen symbiont-containing groups, the Chlorophyta 
and the Lecanoromycetes, are delineated by the vertical bars, as are the closest relatives to the 
Lecanoromycetes, the Dothideomycetes and Eurotiomycetes. Node labels denote percent bootstrap 
support, and only bootstrap values <100 are shown. The eukaryotic symbionts of the lichen L. 
pustulata are highlighted in bold face. The full tree without collapsed taxonomic groups is depicted 
in Figure A-11 on page 220 in the Appendix. 
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5.3.2 The secretome of L. pustulata 

Fungi use an array of secreted proteins to mine their environment for 

resources like carbon, phosphate and nitrogen (Bouws, Wattenberg, and Zorn 

2008) and differences in lifestyles and habitats have been linked to the overall 

number of secreted proteins (Pellegrin et al. 2015). We found 721 secreted 

proteins in the genome of Lasallia pustulata. We subsequently compared the 

secretome size of L. pustulata with that of four other Lecanoromycetes, 9 

Eurotiomycetes and 9 Dothideomycetes. We observed that both L. pustulata 

and U. muehlenbergii have notably smaller secretomes (Figure 5-2B), compared 

to the other Lecanoromycetes, which are more similar to the secretome sizes 

of the largely parasitic Eurotiomycetes (Figure 5-2A). For the other 

Lecanoromycetes we saw secretome sizes that are more comparable to those 

of the mainly saprophytic Dothideomycetes. This divide suggests that 

different habitats may have a stronger influence on secretome sizes of the 

Lecanoromycetes than differences in lifestyle. 
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Figure 5-2: The large-scale gene set evolution amongst the Lecanoromycetes, Eurotiomycetes, and 
Dothideomycetes (A) and focusing on the Lecanoromycetes (B). The pictograms in (A) denote the 
nutritional lifestyles of the individual taxa. The branch lengths were time-calibrated with a 
published divergence estimate for the included Lecanoromycetes (Amo de Paz et al. 2011), the axes 
give the divergence time in million years ago (mya). The secretome sizes are given in black behind 
the taxon names. Gene family expansions (blue) and contractions (yellow) are given on the branches. 

5.3.3 The evolution of gene families in Lasallia pustulata 

We investigated how living in longstanding symbiotic communities can shape 

genomes by analyzing the gene set evolution in the Lecanoromycetes. We did 

this on the level of gene families and individual genes. As a first layer of 

evidence for how lichenization leads to a genomic dependence on the 

symbiotic partners, we inferred expansions and contractions of gene families 

in the individual Lecanoromycetes relative to the closest non-lichenized 
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relatives. A clustering of the gene sets of 21 Eurotiomycetes, 

Dothideomycetes, and Lecanoromycetes with the Markov Clustering 

Algorithm (Enright, Van Dongen, and Ouzounis 2002) revealed 6,054 gene 

families. We then identified significant expansions/contractions of those 

families on individual lineages using CAFÉ (Bie et al. 2006). We observed that 

only a surprisingly small number of gene families have contracted on the 

lineage leading to the Lecanoromycetes, when compared to their sister clade, 

the largely parasitic Eurotiomycetes (Figure 5-2A). Instead those numbers 

resemble the contractions found in the saprophytic Dothideomycetes. This is 

in contrast to the gene family expansions, where Lecanoromycetes show 

numbers similar to those of the Eurotiomycetes and not the Dothideomycetes. 

However, we also found that most contractions and expansions did not 

happen on ancestral branches, but rather towards the terminal branches. For 

the Lecanoromycetes we observed the smallest number of expansions and the 

biggest number of contractions in Lasallia pustulata, when comparing it to 

Cladonia grayi and Xanthoria parietina (Figure 5-2A). We subsequently focused 

on the Lecanoromycetes, extending the taxon selection. This revealed that the 

majority of contractions are not private to L. pustulata, but rather happened on 

the branch leading to the Umbilicariaceae (Figure 5-2B).  

We subsequently investigated whether the contractions and expansions in L. 

pustulata show evidence for significant alternations in the molecular functions 

that result from these changes in the underlying gene set. Using the Gene 

Ontology annotation, we did not find a significant functional enrichment. The 

functional classification of some of the gene families points into an interesting 

direction though. Amongst the significantly contracted gene families in L. 

pustulata we observed a major facilitator superfamily (MFS) transporter of the 

ACS family (KO identifier: K08192). Members of the ACS family of MFS 
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transporters are transmembrane proteins, which facilitate small solute 

transport of amino acids, sugars and further metabolites (Pao, Paulsen, and 

Saier 1998). Additionally the family of putative multidrug resistance ABC 

transporters (KO identifier: K05658), which facilitate the movement of 

xenobiotics (Barabote et al. 2011), was contracted as well. Amongst the 

expansion of gene families in L. pustulata we found the GTPase-activating 

protein family SAC7 (KO-identifier K19845), which was found to be necessary 

for a normal growth at low temperatures in yeast (T. M. Dunn and Shortle 

1990). Furthermore an overexpression of SAC7 can inhibit vegetative growth 

in yeast (A. Schmidt et al. 1997). 

5.3.4 The evolution of Lecanoromycetes gene sets 

To further increase the resolution of our investigation into the genomic 

dependency on symbiotic partners, we analyzed the fate of individual genes 

inside the Lecanoromycetes. Utilizing OMA (Altenhoff et al. 2015), we 

identified 11,789 hierarchical orthologous groups (HOGs) from the gene sets 

of 5 Lecanoromycetes, 3 Dothideomycetes and 3 Eurotiomycetes. We 

subsequently inferred the gain and loss of individual genes along the 

phylogeny from those HOGs, using parsimony. In line with our observation 

for the gene family size evolution, we found that only a comparatively small 

number of genes are gained early in the evolution of the Lecanoromycetes 

(Figure 5-3). Instead, most genes are newly on the terminal branches. This 

effect becomes even more pronounced when taking the estimated ages of the 

splits into account (compare with Figure 5-2). For example, the LCA of L. 

pustulata and U. muehlenbergii acquired only 504 genes in the time between its 

split from the other Lecanoromycetes 250 mya and its subsequent 

diversification 70 mya. On the other hand, the lineage leading to L. pustulata 
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acquired an additional 2,314 genes since its separation from the U. 

muehlenbergii lineage at 70 mya.  

 

 
Figure 5-3: Cladogram for the Lecanoromycetes, Eurotiomycetes and Dothideomycetes included in 
the analysis of the HOGs. Gains (blue) and losses (yellow) for the individual branches were inferred 
from the HOGs using Dollo parsimony. 

The picture is different for the loss of genes. We identified 794 genes that were 

lost after the last common ancestor (LCA) of the Lecanoromycetes split from 

the Eurotiomycetes, but prior to the diversification of the Lecanoromycetes. 

Alternating the taxon sampling, with two different, non-overlapping taxon 

sets for the Eurotiomycetes and Dothideomycetes had no substantial 

influence on the number of predicted gene gains and losses inside the 

Lecanoromycetes (see Appendix, Figure A-12 on page 219 for the results with 

the different taxon sets). 

We subsequently investigated the observed gene sets changes during the 

early stage of lichenization, using GO terms. We first compared the gene 

losses for the LCA of the Lecanoromycetes to its reconstructed ancestral gene 

set. This enrichment analysis yielded 36 GO terms for biological processes 

(see Appendix, Table A-8, page 211), which are significantly overrepresented 

amongst the 794 genes that are lost on the lineage leading to the LCA of the 

Lecanoromycetes. Amongst the functions overrepresented in the lost genes, 

we found broad terms for polysaccharide catabolic processes as well as 
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specific ones for metabolic processes of xylan and other hemicelluloses. 

Furthermore, transmembrane transporters were enriched in the losses. 

Comparing the genes gained in the LCA of the Lecanoromycetes, we did not 

find evidence for a functional enrichment. 

We then focused on the genes acquired and lost in L. pustulata to evaluate 

whether the functional consequences of the genomic remodeling can explain 

its poor culturability. Our enrichment analysis showed no evidence for 

functional enrichments amongst the genes acquired or lost in L. pustulata. 

5.3.5 Loss of evolutionary conserved genes 

We hypothesized that the long-established lichen symbiosis allows the loss of 

otherwise essential genes in individual Lecanoromycetes, potentially 

explaining why L. pustulata could so far not be grown in culture. We thus 

focused our analysis on the well-conserved genes that we traced back to the 

last common ancestor of the Lecanoromycetes (LCALec) and which were 

privately lost in only a single taxon. Our sensitive search for those genes – 

making use of OMA, HaMStR (Ebersberger, Strauss, and von Haeseler 2009), 

exonerate (Slater and Birney 2005), RNAseq data and manual curation 

(described in detail in in 4.3.4 on page 96), yielded 28 LCALec genes that were 

lost in Lasallia pustulata, 45 for Cladonia grayi, 52 for Usnea florida, and 90 for 

Xanthoria parietina. A reliable estimate of lost LCALec genes was not possible 

for Umbilicaria muehlenbergii, due to the absence of RNAseq data, leading to a 

potential underestimation of retained LCALec genes. We subsequently used 

the branching times of the individual taxa, to calculate the rate of gene loss 

amongst the Lecanoromycetes (see Table A-9 on page 212). While L. pustulata 

showed the highest LCALec loss rate, the number of lost genes is small for all 

taxa and more data would be required to decide whether this indicates an 

accelerated loss. 
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We further narrowed down when the genes in L. pustulata have been lost, by 

searching for the absent 28 LCALec genes in its sister species Lasallia hispanica. 

As the genome of L. hispanica was only recently sequenced, and is still in an 

early draft stage that is most likely less complete than the other genomes, it 

was not included from the start. Performing both a HaMStR (Ebersberger, 

Strauss, and von Haeseler 2009) orthology search in the annotated gene set, as 

well as an exonerate (Slater and Birney 2005) search in the unannotated 

genome, we identified orthologs for 4 of the 28 LCALec genes. One of the 

privately lost LCALec genes has GO terms assigned. According to the GO 

terms, this gene is a non-specific serine/threonine protein kinase.  

 

 
Figure 5-4: The phylogenetic profile of the four LCALec genes privately lost in L. pustulata that were 
present in the draft genome of L. hispanica. Taxonomic groups, supertaxons, on the x-axis are sorted 
by increasing taxonomic distance to the Lecanoromycetes. On the y-axis the genes identified to be 
privately lost and their tentative annotation are given. The sizes of the circles give the fraction of the 
taxa in which an ortholog to the respective LCALec gene was found. 

For the three other absent LCALec genes, which are annotated by neither 

KEGG nor GO, we searched for Pfam (Finn et al. 2010) domains to 

approximate their function. Additionally, we determined the presence of 

these four genes across the tree of life and visualized the results in a 

phylogenetic profile (Figure 5-4). This revealed a putative isopenicillin-n-

synthase, which is present in a variety of fungal classes, in addition to a 

putative Methyltransferase that is only sparsely found outside the 
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Lecanoromycetes. Furthermore, we identified a so far uncharacterized gene 

that does not include known domains and was only rarely found outside the 

Lecanoromycetes. A similar picture emerged for the 24 absent LCALec genes 

for which no ortholog in L. hispanica was identified (see Appendix Table A-10 

on page 212 for the full functional annotation of these and Figure A-13 on 

page 222 for their phylogenetic profile). Only two of these could be annotated 

through KEGG; a carbonyl reductase that is found only sparsely in other 

fungal classes but found frequently in more distantly related taxa, as well as 

an ubiquitin-conjugating enzyme that was not found outside the 

Lecanoromycetes. In all, only four of these LCALec genes are frequently 

observed in other taxonomic groups. 

5.3.6 No evidence for horizontal gene transfer in Lasallia pustulata 

We hypothesized that the long-standing symbiosis of L. pustulata might 

provide ideal conditions for a mutual exchange of genetic material between 

the symbionts. We thus searched for evidence of horizontally acquired genes 

of algal or bacterial origin in the fungal genome. We found 10 genes that 

MEGAN (Huson et al. 2011) identified to be of algal origin, in addition to 12 

genes of bacterial origin. Genes of predicted fungal origin flank all of these 

candidate genes. The subsequent manual curation of the 22 candidates 

showed that the taxonomic assignment for each of them was not well 

supported: Comparing the best bit scores of our HGT candidates with the 

vertically inherited ones (see supplementary materials provided with this 

thesis for the DIAMOND results), we found that the candidates have a much 

lower sequence similarity (mean, length-normalized bit score 0.34) than the 

vertically inherited ones (mean, length-normalized bit score 1.04). 

Furthermore, the sequence similarities of the best fungal hits were only barely 

below the inclusion threshold for our candidates. This lack of support 
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suggests that these candidate genes are false taxonomic assignments rather 

than evidence for a horizontal gene transfer. 
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5.4 Discussion 

Adaptive evolution is highly driven by a reshaping of the genetic repertoire 

(Albalat and Cañestro 2016). Rapid changes in gene families sizes (Baroncelli 

et al. 2016; Gan et al. 2016) as well as wide-spread gene losses (Wolf and 

Koonin 2013; Williams and Wernegreen 2015) playing key roles in this 

remodeling. These effects have also been observed during the establishment 

of symbioses (Bennett et al. 2014), leading to an interdependence between the 

involved organisms (F. Martin, Uroz, and Barker 2017). This seems to also be 

the case in lichens. Despite their global success in extreme habitats 

(Ahmadjian 1993; Ilse Kranner et al. 2009), some mycobionts have been found 

to hardly grow solitarily in culture (McDonald, Gaya, and Lutzoni 2013). This 

points to a strong reliance of the mycobionts on their symbiotic partners, to an 

extent that affects solitary survival. Given this, we expected a stronger 

genomic reshaping in the so far uncultured Lasallia pustulata, compared to 

other, culturable Lecanoromycetes and non-lichenized fungi. We thus 

investigated the genomic remodeling in a comparative framework, searching 

for changes in gene family sizes and losses of old, well-conserved genes. 

5.4.1 The genomic footprint of lichenization 

Comparing the evolution of gene families between the Lecanoromycetes, 

Dothideomycetes and Eurotiomycetes we found that different gene families 

show significant expansions or contractions on the different lineages. This 

observation fits that of earlier studies, which have shown that changes in gene 

family sizes are often connected to the adaptation to ecological niches or 

specific hosts (Baroncelli et al. 2016; Gan et al. 2016; Gazis et al. 2016; Morales-

Cruz et al. 2015; Sharpton et al. 2009; P. D. Spanu et al. 2010). However, it 

appears that the nutrient exchange between the Lecanoromycetes and their 
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photobionts did not lead to substantial changes of particular gene families. 

On the level of individual gene losses, as found through the HOGs, we 

observed a reductive genome evolution for the Lecanoromycetes as well as 

the Eurotiomycetes. For both, we observed that their respective last common 

ancestors lose around 10% of the genes that were present in their shared 

ancestor. Genome reductions have been found to happen subsequently to 

fungi becoming biotrophes (P. Spanu 2012; McDowell 2011). As these losses 

are non-overlapping these can be indicative of the different modes of 

biotrophy that the two lineages started adapting to. 

Amongst the Lecanoromycetes we noted the largest number of contracted 

gene families in the ancestor of Umbilicaria muehlenbergii and Lasallia pustulata. 

Furthermore, both species show low numbers of contracted gene families on 

their respective terminal branch. Thus, the number of contracted gene families 

does not explain the poor culturability of L. pustulata, as U. muehlenbergii was 

successfully grown in axenic cultures (S. Y. Park et al. 2014). We observed a 

similar picture, when focusing on the losses of individual genes as predicted 

through the HOGs. We found no signs of an increased gene loss in L. 

pustulata; instead more gene losses were shared between U. muehlenbergii and 

L. pustulata. As such, a widespread loss of genes cannot explain why L. 

pustulata could so far not been grown in axenic culture. 

5.4.2 Loss of evolutionary conserved genes 

Instead of being the outcome of a widespread loss of genes, the poor 

culturability of Lasallia pustulata could be a result of losing central, otherwise 

well-conserved genes. For this reason, we investigated the loss of genes that 

we could trace back to the last common ancestor of the Lecanoromycetes and 

that are conserved in all but one taxon. We found no substantial difference in 

the LCALec loss rate between the Lecanoromycetes. Furthermore, we could 
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only verify the private loss of 4 of such genes in L. pustulata, when comparing 

it to Lasallia hispanica. Thus, the observed loss of conserved genes cannot 

explain L. pustulata’s lack of culturability either. This should be considered a 

conservative estimate for two reasons though. Foremost, the genome of 

Lasallia hispanica was in an early draft stage, with no RNAseq data being 

available. Thus, genes potentially present in L. hispanica might have been 

overlooked. Additionally, incomplete gene annotations for the other four 

Lecanoromycetes might lead us to underestimate the number of exclusively 

lost genes in L. pustulata, as genes will appear to be lost more than one time. 

Nevertheless, the observed low rate of lost LCALec  genes might be due to the 

nature of these old and conserved genes. On the sequence level it has been 

seen that multifunctional and pleiotropic genes, which have effects on 

multiple phenotypic traits, evolve slower due to their effects on multiple 

pathways (Salathe, Ackermann, and Bonhoeffer 2006; He and Zhang 2006; 

Dudley et al. 2005). Similar effects have been observed for genes that are 

highly co-expressed with many interaction partners (Jordan et al. 2004). 

Analogous to these observations, one can hypothesize that such central genes 

cannot even be lost in organisms that appear to be more strongly dependent 

on their symbiont, as the loss would affect a multitude of metabolic pathways, 

including those that the symbionts cannot supplement. 

5.4.3 Functional consequences of genomic remodeling following 

lichenization 

In addition to a decrease of gene content, the reshaping of genomes after the 

establishment of symbioses can also lead to a reduction in the functional 

repertoire, when functionalities shared between symbiotic partners render 

individual genes redundant (Williams and Wernegreen 2015). Such losses in 

functional capacity can occur either spread out over various genetic pathways 



 

 

140 

or be concentrated in a small set of related functionalities (Kohler et al. 2015). 

The analysis of the functional changes in the Lecanoromycetes allows for 

potential insights into the nature of the lichen symbiosis. 

Our analysis of the secretomes of the Lecanoromycetes revealed large 

differences between individual species. The sizes of secretomes in fungi have 

previously been linked to different habitats and lifestyles (Pellegrin et al. 2015; 

Lowe and Howlett 2012). As expected, we observe that the secretomes of the 

rock-dwelling Umbilicaria muehlenbergii and Lasallia pustulata are smaller than 

those of Xanthoria parietina, Cladonia grayi and Usnea florida, all of which prefer 

organic substrates like living or dead trees. In line with this, the draft 

genomes of Caloplaca flavorubescens and Cladonia macilenta, both living on tree 

bark, exhibit even bigger secretome sizes, with 1,800 and 1,300 secreted 

proteins respectively (S. Y. Park, Choi, Kim, Yu, et al. 2013; S. Y. Park, Choi, 

Kim, Jeong, et al. 2013). This indicates that the reduced secretomes of L. 

pustulata and U. muehlenbergii might be an adaptation to their nutrient poor 

substrate, which potentially lacks additional interaction partners. Such 

adaptations have already been described for plant-pathogens and 

mycorrhizal fungi (McCotter, Horianopoulos, and Kronstad 2016). 

Using the HOGs to analyze the genes that were lost in the last common 

ancestor of the Lecanoromycetes, we found evidence for a functional 

enrichment of these losses. Interestingly, we find that genes that have 

functions relating to the general catabolism of polysaccharides, and for xylan 

in particular, are preferentially lost.  This is especially striking, as they are 

otherwise highly abundant in most fungi, including the closest relatives of the 

Lecanoromycetes, the Dothideomycetes and Eurotiomycetes (Berlemont 

2017). The excessive loss of genes involved in the polysaccharide catabolism 

can be related to the adaptation from a saprotrophic lifestyle, which relies 
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heavily on polysaccharide degradation, to the less complex nutrient sources 

presented to the Lecanoromycetes by their photobionts. Similar losses of 

genes involved in the polysaccharide catabolism have earlier been observed 

for the mycorrhizal fungi that also evolved from being saprophytic to 

biotrophic (F. Martin et al. 2008; Kohler et al. 2015). The functional enrichment 

of the gene losses is contrasted by a lack thereof for the genes that were 

gained in the LCA of the Lecanoromycetes. However, instead of real absence 

of enrichment, this is potentially a consequence of the lack of annotations that 

are available for the genes gained in the Lecanoromycetes LCA. As a result of 

the sparsely available reference data, only 91 out of the 408 genes gained 

could be functionally annotated with GO terms. 

We evaluated the functional effects of the genomic remodeling in Lasallia 

pustulata, searching for explanations for its poor culturability and stronger 

dependence on its photobiont. On the level of expanded and contracted gene 

families we did not find evidence for a systematic functional remodeling 

based on the functional annotation with Gene Ontology and KEGG pathways. 

Despite this, we observed that gene families for the major facilitator 

superfamilies (MFS) and ABC transporters are contracted on the lineage of L. 

pustulata, and to a lesser extent in the LCA of the Lecanoromycetes. Both gene 

families have been shown to have a central role in fungi that are plant-

pathogens and furthermore for the efflux of toxic compounds (Coleman and 

Mylonakis 2009). This potentially relates to the move towards a 

commensal/mutualistic lifestyle that happened during the lichenization, 

rendering these functions less important. Analyzing the genes that the HOGs 

predicted to be gained or lost in the lineage of L. pustulata, we did not find a 

functional enrichment.  
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Additionally, the functional characterization of the LCALec genes that were 

lost privately in L. pustulata did not show substantial decreases of the 

functional potential either. Our conservative estimate, including only genes 

absent in L. pustulata that were confirmed to be present in L. hispanica, 

revealed only four LCALec genes to be absent, all of which were poorly 

annotated. The putative isopenicillin-n-synthase, which was found to have 

orthologs across the tree of life, appears to be the most interesting candidate 

on first look. Its function cannot be conclusively annotated though. All 

mononuclear non-heme Fe(II)- and 2-oxoglutarate (2OG)-dependent 

oxygenases share the Pfam domains found in the isopenicillin-n-synthase. 

Furthermore, Fe(II)-2OG-dependent oxygenases have been shown to be 

involved in numerous biological functions, ranging from fatty acid 

metabolism over DNA/RNA repair to biosynthesis of secondary metabolites 

and antibiotics (Martinez and Hausinger 2015). Similarly, serine/threonine 

protein kinases (Dickman and Yarden 1999) as well as methyl transferases 

(Katz, Dlakić, and Clarke 2003) are so numerous, that the identification of the 

corresponding Pfam domains provides only limited insight into the biological 

processes in which they are involved. The lack of a detailed annotation 

analogously hinders a detailed evaluation of the functional consequences of 

the additional 24 lost LCALec genes in L. pustulata that we could not confirm in 

the genome of L. hispanica. Additional reference data will be needed to fully 

evaluate the impact of these gene losses.  

The absence of a marked decrease in functional potential in L. pustulata fits 

recent observations of an endosymbiotic organism that also did not display a 

marked decrease in functional capability (Hehenberger et al. 2016). Further 

support for the absence of decreasing functional capacity comes from the 

large overlap in functional annotations we observed between the 5 
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Lecanoromycetes (see 4.3.3 on page 94, and Figure A-5, Figure A-6 on page 

217), as at least amongst the functionally annotated genes it appears that the 

Lecanoromycetes have a rather consistent and conserved functional capacity.  

5.4.4 No evidence for recent horizontal gene transfer into the 

Lecanoromycetes 

Horizontal gene transfer (HGT) has been described as a source for genomic 

innovations, including HGTs between eukaryotes and bacteria or even 

between two eukaryotes. For fungi, including the Lecanoromycetes, there is 

some evidence that supports evolutionary old HGT events in which genes 

were acquired from prokaryotes (Schmitt and Lumbsch 2009; McDonald et al. 

2013; McDonald, Dietrich, and Lutzoni 2012; Lawrence et al. 2011) or even 

from plants (Richards et al. 2009). Reliably inferring HGT is not simple, with 

the proposed HGT into a tardigrade genome being a prominent example 

(Boothby et al. 2015). A subsequent analysis showed that the initial finding – 

of 17% of all tardigrade genes being acquired through HGT – was a 

methodological artifact (Delmont and Eren 2016; Koutsovoulos et al. 2016). 

Searching for recent horizontal gene transfers from plants or bacteria into the 

genome of Lasallia pustulata, we focused our analysis on HGT events that 

happened after the split of the Lecanoromycetes. Our assignments rely on 

sequence similarities to a database of sequences with known taxonomic 

classification. MEGAN (Huson et al. 2011) then uses all top-ranking hits found 

during that search, if they pass a liberal bit score threshold and have a score 

that is within a given range to the best hit found for a given sequence. The 

closer investigation of the 22 candidates we identified revealed that the 

taxonomic assignment for all of them was spurious. Already minor changes to 

the parameters used for the taxonomic classification in MEGAN lead to the 

weak HGT signal disappear. Based on these findings, we conclude that these 
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assignments are methodological artifacts and that a more parsimonious 

phenomenon of vertical transfer is likely to be correct. 
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5.5 Conclusion 

Searching for the genomic footprint of lichenization we find that the early 

evolution of the Lecanoromycetes reveals a loss of around 10% of the genes 

present in the last common ancestor of the Lecanoromycetes and 

Eurotiomycetes. Both groups exhibit no substantial amount of shared gene 

losses of genes. This hints that both groups adapted in different ways to their 

biotrophic lifestyles. For the Lecanoromycetes we observed that these gene 

losses were functionally enriched, including a marked number of genes 

involved with the degradation of polysaccharides. These losses are most 

likely a consequence of an adaptation to a symbiotic, lichenized lifestyle that 

does not rely on the degradation of plant material as nutrition source. 

Our analogous search for a genomic remodeling in Lasallia pustulata, which 

could explain its poor culturability, did not show a strong signal for losses in 

functional capabilities. Ignoring the draft genome of Lasallia hispanica, we 

found only 28 genes that have been privately lost in L. pustulata, with the 

majority of them being poorly functionally annotated. This is also reflected in 

the large set of genes that were privately gained in L. pustulata and could also 

not be characterized functionally. 
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6 Discussion & Outlook 

Large parts of the fungal diversity are found in lichens, with an estimated 

21% of fungal species living in lichen symbioses (Hawksworth 1988). Their 

global distribution, covering around 6% of the Earth’s surface (Gadd 2010), 

makes them a key part of most terrestrial ecosystems, including habitats that 

are not open to many other macroscopic organisms (Muller 1952; Kidron and 

Temina 2010). The dependence of lichenized fungi on their symbionts varies, 

from facultative to obligate mycobionts (Lewis 1973), which is reflected in 

their varying abilities to grow in axenic cultures (McDonald, Gaya, and 

Lutzoni 2013). Lichens thus make an interesting group to study evolutionary 

adaptations between symbiotic partners (Grube and Spribille 2012). So far, 

most of these studies have focused either on the bacterial microbiome of the 

lichen symbiosis (Grube and Berg 2009; Grube et al. 2015) or on culturable 

mycobionts (Wang et al. 2014; S. Y. Park, Choi, Kim, Jeong, et al. 2013; S. Y. 

Park, Choi, Kim, Yu, et al. 2013). Our goal was to extend the field of genomic 

studies to include lichens that show a potently stronger symbiotic 

dependency by using Lasallia pustulata as a model. Given that it was so far not 

possible to grow the mycobiont L. pustulata in axenic cultures, we suspected 

that the long-standing symbiosis should have left substantial footprints on its 

genome and potentially the lichen hologenome in general. 

6.1 The feasibility of metagenomic hologenome reconstructions 

The genome reconstruction of symbionts that are not culturable has to rely on 

metagenomic data. For this reason we evaluated to what extent it is possible 

to assemble the genomes of eukaryotic lichen symbionts from a simple 

metagenome skimming data set. Using a simulation-based approach we 

evaluated the performance of different assembly strategies and algorithms in 

Chapter 2. We observed that skewed abundances for the organisms – leading 
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to a low coverage for the underrepresented genome (Desai et al. 2013) – 

negatively impact all assemblers. Only two of the tested methods, the 

overlap-based assembler MIRA (Chevreux, Wetter, and Suhai 1999) and the 

multi-k-mer assembler SPAdes (Bankevich et al. 2012), were less affected by 

this. We furthermore found that standard procedures for finding an optimal 

k-mer size (Namiki et al. 2012; Chikhi and Medvedev 2014) are detrimental 

when applied to highly coverage-ratio skewed metagenomic data, as it will 

effectively lead to an exclusion of the lower represented genome from the 

assembly to optimize the overall contiguity. While some assemblers, like 

metaSPAdes (Nurk et al. 2016) and MEGAHIT (D. Li et al. 2015) try to solve the 

parameter choice internally, we find that effective automated ways for finding 

ideal assembly parameters are still lacking (cf. Awad, Irber, and Brown 2017). 

As metagenome assemblies are becoming increasingly important, it will be 

necessary to further analyze how to optimize the assembly parameters in an 

unbiased way.  

Applying these different methods on the real genome skimming data of 

Lasallia pustulata, we observed a pronounced skew towards the fungal 

genome along with a sizeable fraction of the data belonging to the bacterial 

microbiome. Both factors led to genome assemblies that remained more 

fragmented and incomplete than expected given our simulations. We thus 

concluded that a single metagenome skimming experiment is capable of 

recovering substantial amounts of the mycobiont genome and allows for a 

first hologenome characterization, but it is insufficient to facilitate the 

contiguous assembly of the photobiont.  

6.2 Assembling & characterizing the Lasallia pustulata hologenome 

Incomplete and fragmented genomes hinder high-resolution comparative 

phylogenomic analyses. This becomes even more important when the goal is 

to identify changes in the genetic and functional repertoire encoded in the 
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analyzed genomes rather than identifying conservation. Long-read 

sequencing can improve the assembly contiguity (Chakraborty et al. 2016) 

and aids in the reconstruction of complex genomes (Loman, Quick, and 

Simpson 2015; Jain et al. 2017; Frank et al. 2016; Tuskan et al. 2006). For this 

reason, we complemented our short-reads with additional long-read 

sequencing data. This data was then used to assemble and subsequently 

characterize the L. pustulata hologenome as described in Chapter 3.  

We devised a custom-tailored hybrid assembly strategy, combining different 

data sources and assembly methods that were subsequently merged. As 

expected given prior studies on non-metagenomic data (Wences and Schatz 

2015; Chakraborty et al. 2016), this substantially increased the completeness 

and contiguity of the Lasallia pustulata hologenome, including the photobiont 

and bacterial microbiome. Given these results it seems promising to further 

evaluate and benchmark the use of hybrid methods for the assembly of 

complex metagenomes. While there are first tries to further automate hybrid 

assemblies (Ye et al. 2016; Kajitani et al. 2014), these methods are currently 

limited by the impact that different long- and short-read coverages have on 

the resulting assembly quality, making it non-trivial to find the best 

combination of assembler and read-coverages (Chakraborty et al. 2016). In 

addition to these limitations, these methods have so far only been sparsely 

evaluated on metagenomic data (Frank et al. 2016), where differential 

coverages will potentially have an even bigger impact on the assembly 

quality. Further, more systematic, evaluations will be needed to estimate 

whether merging metagenomic hybrid-assemblies can help to overcome the 

limitations we observed for short-read based metagenomic assemblies. 

We found evidence that the hybrid assembly approach does not guarantee 

error-free genome assemblies. We uncovered that the sequence composition 

itself can lead to pathogenic sequencing errors that subsequently interfere 

with the correct prediction of genes. G/C-rich inverted repeats largely 
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prevented the sequencing of these regions with Illumina. Genes located in 

these regions are thus potentially absent from the short-read sequencing data 

itself and consequently lead to an artificially increased prediction of gene 

losses. While our long-read sequencing could overcome such pathogenic 

sequence regions, they are more prone to contain insertion/deletion-

sequencing errors, as short-read based error corrections cannot be performed. 

To our knowledge these effects have being scarcely reported so far (c.f. 

Botero-Castro et al. 2017), thus a more focused study of these effects will be 

necessary to evaluate their impact on genome assembly and evolutionary 

conclusions drawn from them. 

Analyzing the hologenomic composition we observed that L. pustulata 

appears to be supported by a stable bacterial microbiome, which remains 

largely unchanged across sequencing libraries generated from samples 

collected in different locations in Germany and Italy. The L. pustulata 

microbiome is dominated by members of the Acidobacteriaceae, which have 

been found to be highly prevalent in the microbiomes of some other lichens 

(Hodkinson et al. 2012). Acidobacteriaceae survive marked changes in 

hydration (Ward et al. 2009) and can live in oligotrophic conditions (Castro et 

al. 2010) – slowing their metabolic rates when being nutrient-deprived. These 

characteristics make them well adapted for co-habitating with L. pustulata, 

which faces similar conditions as it grows on heavily sun-exposed, vertically 

inclined rocks and cliffs (Hestmark et al. 1997). At this point we cannot 

differentiate on whether the consistent presence of the Acidobacteriaceae 

hints at a functional involvement in the lichen symbiosis or whether their co-

localization is due to a shared habitat preference. Further analyses into the 

localization of the Acidobacteriaceae in the lichen thalli, as well as the 

functional capabilities of the Acidobacteriaceae, are needed to clarify this. Our 

assembly of the bacterial microbiome resulted in two nearly completely 
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reconstructed Acidobacteriaceae genomes. These genomes can offer excellent 

starting points for such further analyses.  

Additionally, we performed an initial investigation into how estimated 

taxonomic abundances in a microbiome can be biased by the strategy used to 

calculate those abundances. We found that contig-based methods tend to 

over- or underestimate taxa, depending on their abundance on the read level. 

It correspondingly appears ideal to perform the taxonomic assignment 

directly on the read level whenever possible. This strategy becomes 

problematic though if either the sequence read lengths are too short or the 

gene density in the sequenced bacteria is too low. Only reads that are 

(partially) encoding a protein can be taxonomically assigned, as the 

taxonomic assignment is routinely performed by searching with the 

translated DNA sequencing reads against a protein database. Given these 

trade-offs, a further, systematic evaluation should be performed to evaluate 

these effects, guiding the choice of how to analyze further microbiomes in an 

unbiased way. 

6.3 Annotating the Lasallia pustulata hologenome 

Subsequent evolutionary analyses into the genomic consequences of 

lichenization and the interactions between the symbiotic partners are heavily 

dependent on complete and accurate genome annotations (Denton et al. 2014). 

We thus not only annotated genes for the individual genomes found in L. 

pustulata, but also extensively evaluated potential annotation errors in 

Chapter 4. We compared the gene prediction fidelity in the mycobiont L. 

pustulata and four additional – already annotated – Lecanoromycetes 

genomes. We used an evolutionarily interesting subset of 1,402 genes that we 

could identify to have been present in the last common ancestor of these 

Lecanoromycetes (LCALec) and that appear missing in only one of the 

genomes. These genes are supposedly central, as they are widely conserved. 
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Thus, losses of them are indicative of an extensive genomic and functional 

remodeling, potentially relating to the lichenization. At the same time they 

are potentially enriched for overlooked genes, as their importance makes 

these losses unlikely (c.f. MacArthur et al. 2012). Our focus on these genes is 

conceptually similar to the gene set completeness approaches employed by 

CEGMA (Parra, Bradnam, and Korf 2007) and BUSCO (Simão et al. 2015). 

Both methods try to estimate the quality of genome assemblies through the 

presence of evolutionary old and well-conserved genes. While CEGMA and 

BUSCO interpret the absence of these genes as signs of an incomplete genome 

assembly – as a loss of these genes is considerably unlikely – we are searching 

for genuine losses among such genes. Our search for those potentially lost 

genes was able to recover around 85% of those LCALec genes initially believed 

to be lost. Artificial gene fusions, non-predicted genes and – to a minor extent 

– non-assembled regions all contributed to these false positive loss 

predictions. These artifacts, found across all 5 genomes, affected the gene 

predictions, even when using a gene predictor dedicated to fungal genomes. 

Thus extensive curation of gene predictions is still key to drawing sound, 

evolutionary conclusions.  

6.4 Finding footprints of lichenization 

We searched for footprints that the lichenization has left on the genomes of 

the individual symbionts. To this end we set out to investigate gains and 

losses of genes and associated functions. The genomes of mycobionts and 

photobionts can be screened for these footprints. Unfortunately, only few and 

furthermore only evolutionary distantly related genomes are available for the 

Chlorophyta. This limits the temporal resolution for evolutionary analyses, as 

a comparative study relies on closely related taxa to pinpoint when events 

happened. It furthermore hinders the functional annotation of the 

chlorophyte genomes as there is only little reference data for the annotation 
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transfer, as demonstrated by the low functional gene annotation rate for 

Trebouxia sp. In contrast, the Lecanoromycetes are embedded in a 

considerably denser taxon sampling including non-lichenized sister clades. 

For this reason we confined our comparative analyses on the mycobionts. We 

investigated the general footprint of lichenization that is shared by the 

Lecanoromycetes. Subsequently we searched for genomic events that could 

explain why L. pustulata – unlike the other studied Lecanoromycetes – could 

so far not been grown in axenic culture. For our comparative analyses we thus 

used a set of Lecanoromycetes and their closest relatives, the Eurotiomycetes 

and Dothideomycetes (Chapter 5). 

We found first evidence for how the establishment of symbioses shaped the 

genomes of the early Lecanoromycetes. After the split from the 

Eurotiomycetes, the LCA of the Lecanoromycetes has lost about 10% of its 

genes, coinciding with the onset of lichenization for this class. Genes involved 

in the polysaccharide degradation were particularly affected by these losses. 

The loss of these genes is probably a consequence of the lichenization, as the 

photobionts provide a set of different sugars to the mycobionts. Similar effects 

were observed for mycorrhizal fungi that do not rely on degrading plant 

material (F. Martin et al. 2008; Kohler et al. 2015). Whether these losses are an 

active adaptation to the symbiosis itself, as hypothesized for the mycorrhizal 

fungi (Tisserant et al. 2013), or the beneficial loss of obsolete genes 

(Koskiniemi et al. 2012; Morris, Lenski, and Zinser 2012) will have to be 

studied further. While the LCA of the Lecanoromycetes also gained around 

400 genes after the lichenization, there is currently no model-lecanoromycete. 

Furthermore, so far there were no molecular biological studies that 

investigated the function of lecanoromycete genes. Thus, we cannot transfer 

functions to lecanoromycete-specific genes. In these instances even the denser 

taxon sampling inside the fungi seems to be insufficient to facilitate high-

resolution functional analyses. More data for mycobionts, photobionts, and 
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their relatives will be needed to enable more comprehensive functional 

insights. Given that L. pustulata could so far not be grown it culture, we 

expected to find signs of a genomic remodeling that affects particular 

pathways or includes the loss of individual, functionally central genes. 

However, our analyses revealed no such remodeling in L. pustulata. Its gene 

family evolution is similar to that of its closest relative, Umbilicaria 

muehlenbergii; and most gene family extractions/expansions indeed happened 

in the last common ancestor of the two species. A similar picture emerged for 

the losses of individual genes, with L. pustulata and U. muehlenbergii sharing a 

sizeable amount of gene losses in their LCA. Furthermore, neither the gene 

family contractions nor the gene losses found in L. pustulata showed any signs 

for a significant decrease in function amongst them. Searching for the private 

loss of LCALec amongst the Lecanoromycetes we find no increased loss of 

well-conserved genes in L. pustulata. Thus, we did not find clear signs that can 

explain the poor culturability of L. pustulata, when compared to the other 

Lecanoromycetes.  

It might be that the relevant genes have been lost more than once, with only L. 

pustulata exhibiting a combination of lost genes that interrupts a given 

function. These genes would be overlooked in our approach as it only allows 

for private gene losses. Furthermore, there is the possibility that genes are still 

present in L. pustulata, but have lost parts of their functions. It has been 

hypothesized that especially multi-functional genes are well conserved over 

long time (He and Zhang 2006; Dudley et al. 2005; Jordan et al. 2004; Salathe, 

Ackermann, and Bonhoeffer 2006). This might explain why we did not 

observe marked losses in L. pustulata, as the LCALec genes might play a role in 

numerous essential pathways. Due to this, the genes of L. pustulata might only 

have lost partial functionality with some interaction partners, instead of being 

outright lost. A gene-wise comparison of annotations like Pfam domains and 

GO terms might help to reveal such functional differentiations between the 
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genes of L. pustulata and their corresponding orthologs in the other 

Lecanoromycetes. 

6.5 Summary 

Lichens are interesting models for comparative genomic and evolutionary 

research: They are evolutionary old symbioses that are frequently found as 

pioneers in new habitats. Lichens furthermore offer a usually well-defined 

symbiotic system – with only few interaction partners – that can be easily 

delineated. Due to this, they can provide insights into how symbiotic 

organisms form a holobiont. However, high-resolution comparative genomic 

studies are required for this. In turn, such studies need to be based on high-

quality genome reconstructions. The completeness of genome reconstructions 

is of even more importance when analyses try to focus on evolutionary 

changes instead of conservation. We see that metagenome skimming alone – 

while allowing for a first hologenome characterization and draft genome 

reconstructions – does not suffice to generate adequate assemblies. The 

additional use of third-generation sequencing methods facilitates a 

hologenome-reconstruction that is substantially improved in completeness 

and contiguity. These genomes then enable a detailed characterization of the 

organisms that are found in lichen symbiosis.  

Our analysis of the genomes of the Lecanoromycetes reveals that comparative 

studies of gene gains and losses are hindered by both the completeness of the 

gene annotations and the functional annotations. Most available draft 

genomes of the Lecanoromycetes are incompletely sequenced and annotated. 

Thus, an additional annotation of so far overlooked genes and the curation of 

existing gene annotations are needed for unbiased analyses. 

So far there is no model organism among the Lecanoromycetes. For this 

reason we depend on a functional annotation transfer from more distantly 

related organisms. We thus have only limited or no information about the 
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function of many genes, particularly for those that are specific to the 

Lecanoromycetes. Despite these limitations, we find that the Lecanoromycetes 

have lost a significant number of genes that are involved in the 

polysaccharide catabolism. In contrast, on the level of genes lost and 

functional capacities encoded in the genome of L. pustulata, we do not find 

changes that would explain its observed poor culturability.  

To fully understand the full range of interactions of lichen symbionts and the 

symbiotic nature of the lichen symbiosis (Ahmadjian 1993; Honegger 1998), 

further analyses will have to rely on comparisons that do not only include the 

genomes of the different mycobionts, but also their photobionts. Such studies 

are currently hindered by sparse availability of sequenced genomes, 

especially of the photobionts (Graham, Wilcox, and Knack 2015; Bhattacharya 

et al. 2015). We are only at the beginning of exploiting lichens as model 

organisms for studying the evolution of symbioses and the formation of 

holobionts. Further metagenomic sequencing of lichen hologenomes will thus 

be central for gaining a deeper understanding of how symbioses can shape 

genomes.  
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A.  Appendix 

Tables 

Table A-1: Eukaryotic species represented in the DIAMOND database we used for our subsequent 
taxonomic assignments with MEGAN. 

Kingdom Phylum Class Species 

- - Bangiophyceae Cyanidioschyzon merolae strain 10D 

- - Glaucocystophyceae Cyanophora paradoxa 

Fungi Ascomycota Arthoniomycetes Arthonia rubrocincta 

Fungi Ascomycaota Dothideomycetes Acidomyces richmondensis 

Fungi Ascomycota Dothideomycetes Alternaria brassicicola 

Fungi Ascomycota Dothideomycetes Aplosporella prunicola CBS 121167 

Fungi Ascomycota Dothideomycetes Aulographum hederae 

Fungi Ascomycota Dothideomycetes Aureobasidium melanogenum CBS 110374 

Fungi Ascomycota Dothideomycetes Aureobasidium namibiae CBS 147.97 

Fungi Ascomycota Dothideomycetes Aureobasidium pullulans EXF-150 

Fungi Ascomycota Dothideomycetes Aureobasidium subglaciale EXF-2481 

Fungi Ascomycota Dothideomycetes Baudoinia panamericana UAMH 10762 

Fungi Ascomycota Dothideomycetes Bipolaris maydis ATCC 48331 

Fungi Ascomycota Dothideomycetes Bipolaris maydis C5 

Fungi Ascomycota Dothideomycetes Bipolaris oryzae ATCC 44560 

Fungi Ascomycota Dothideomycetes Bipolaris sorokiniana ND90Pr 

Fungi Ascomycota Dothideomycetes Bipolaris victoriae FI3 

Fungi Ascomycota Dothideomycetes Bipolaris zeicola 26-R-13 

Fungi Ascomycota Dothideomycetes Botryosphaeria dothidea 

Fungi Ascomycota Dothideomycetes Cenococcum geophilum 1.58 

Fungi Ascomycota Dothideomycetes Cercospora zeae-maydis 

Fungi Ascomycota Dothideomycetes Cucurbitaria berberidis CBS 394.84 

Fungi Ascomycota Dothideomycetes Curvularia lunata m118 

Fungi Ascomycota Dothideomycetes Didymella exigua CBS 183.55 

Fungi Ascomycota Dothideomycetes Dissoconium aciculare 

Fungi Ascomycota Dothideomycetes Dothidotthia symphoricarpi 

Fungi Ascomycota Dothideomycetes Dothistroma septosporum NZE10 

Fungi Ascomycota Dothideomycetes Hysterium pulicare 

Fungi Ascomycota Dothideomycetes Lentithecium fluviatile 

Fungi Ascomycota Dothideomycetes Lepidopterella palustris 



 

 

188 

Fungi Ascomycota Dothideomycetes Leptosphaeria maculans 

Fungi Ascomycota Dothideomycetes Lophiostoma macrostomum 

Fungi Ascomycota Dothideomycetes Macrophomina phaseolina MS6 

Fungi Ascomycota Dothideomycetes Melanomma pulvis-pyrius 

Fungi Ascomycota Dothideomycetes Myriangium duriaei CBS 260.36 

Fungi Ascomycota Dothideomycetes Neofusicoccum parvum UCRNP2 

Fungi Ascomycota Dothideomycetes Parastagonospora nodorum SN15 

Fungi Ascomycota Dothideomycetes Passalora fulva 

Fungi Ascomycota Dothideomycetes Patellaria atrata 

Fungi Ascomycota Dothideomycetes Piedraia hortae 

Fungi Ascomycota Dothideomycetes Pleomassaria siparia 

Fungi Ascomycota Dothideomycetes Polychaeton citri 

Fungi Ascomycota Dothideomycetes Pseudocercospora fijiensis 

Fungi Ascomycota Dothideomycetes Pyrenophora teres f. teres 

Fungi Ascomycota Dothideomycetes Pyrenophora tritici-repentis 

Fungi Ascomycota Dothideomycetes Rhytidhysteron rufulum 

Fungi Ascomycota Dothideomycetes Setosphaeria turcica Et28A 

Fungi Ascomycota Dothideomycetes Sphaerulina musiva SO2202 

Fungi Ascomycota Dothideomycetes Sphaerulina populicola 

Fungi Ascomycota Dothideomycetes Sporormia fimetaria 

Fungi Ascomycota Dothideomycetes Trypethelium eluteriae 

Fungi Ascomycota Dothideomycetes Zasmidium cellare ATCC 36951 

Fungi Ascomycota Dothideomycetes Zopfia rhizophila 

Fungi Ascomycota Dothideomycetes Zymoseptoria tritici 

Fungi Ascomycota Eurotiomycetes Arthroderma otae CBS 113480 

Fungi Ascomycota Eurotiomycetes Aspergillus acidus 

Fungi Ascomycota Eurotiomycetes Aspergillus aculeatus ATCC 16872 

Fungi Ascomycota Eurotiomycetes Aspergillus brasiliensis 

Fungi Ascomycota Eurotiomycetes Aspergillus carbonarius ITEM 5010 

Fungi Ascomycota Eurotiomycetes Aspergillus clavatus NRRL 1 

Fungi Ascomycota Eurotiomycetes Aspergillus fischeri NRRL 181 

Fungi Ascomycota Eurotiomycetes Aspergillus flavus NRRL3357 

Fungi Ascomycota Eurotiomycetes Aspergillus fumigatus var. fumigatus 

Fungi Ascomycota Eurotiomycetes Aspergillus glaucus 

Fungi Ascomycota Eurotiomycetes Aspergillus kawachii 

Fungi Ascomycota Eurotiomycetes Aspergillus nidulans 

Fungi Ascomycota Eurotiomycetes Aspergillus niger ATCC 1015 

Fungi Ascomycota Eurotiomycetes Aspergillus oryzae RIB40 

Fungi Ascomycota Eurotiomycetes Aspergillus ruber 
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Fungi Ascomycota Eurotiomycetes Aspergillus sydowii 

Fungi Ascomycota Eurotiomycetes Aspergillus terreus NIH2624 

Fungi Ascomycota Eurotiomycetes Aspergillus tubingensis 

Fungi Ascomycota Eurotiomycetes Aspergillus versicolor 

Fungi Ascomycota Eurotiomycetes Aspergillus wentii 

Fungi Ascomycota Eurotiomycetes Coccidioides immitis RS 

Fungi Ascomycota Eurotiomycetes Coccidioides posadasii C735 delta SOWgp 

Fungi Ascomycota Eurotiomycetes Endocarpon pallidulum 

Fungi Ascomycota Eurotiomycetes Endocarpon pusillum Z07020 

Fungi Ascomycota Eurotiomycetes Gymnascella aurantiaca 

Fungi Ascomycota Eurotiomycetes Gymnascella citrina 

Fungi Ascomycota Eurotiomycetes Histoplasma capsulatum NAm1 

Fungi Ascomycota Eurotiomycetes Monascus purpureus 

Fungi Ascomycota Eurotiomycetes Paracoccidioides brasiliensis Pb03 

Fungi Ascomycota Eurotiomycetes Penicilliopsis zonata 

Fungi Ascomycota Eurotiomycetes Penicillium bilaiae ATCC 20851 

Fungi Ascomycota Eurotiomycetes Penicillium brevicompactum AgRF18 

Fungi Ascomycota Eurotiomycetes Penicillium canescens ATCC 10419 

Fungi Ascomycota Eurotiomycetes Penicillium digitatum PHI26 

Fungi Ascomycota Eurotiomycetes Penicillium expansum ATCC 24692 

Fungi Ascomycota Eurotiomycetes Penicillium fellutanum ATCC 48694 

Fungi Ascomycota Eurotiomycetes Penicillium glabrum DAOM 239074 

Fungi Ascomycota Eurotiomycetes Penicillium janthinellum ATCC 10455 

Fungi Ascomycota Eurotiomycetes Penicillium lanosocoeruleum ATCC 48919 

Fungi Ascomycota Eurotiomycetes Penicillium oxalicum 114-2 

Fungi Ascomycota Eurotiomycetes Penicillium raistrickii ATCC 10490 

Fungi Ascomycota Eurotiomycetes Penicillium rubens Wisconsin 54-1255 

Fungi Ascomycota Eurotiomycetes Talaromyces aculeatus ATCC 10409 

Fungi Ascomycota Eurotiomycetes Talaromyces marneffei ATCC 18224 

Fungi Ascomycota Eurotiomycetes Talaromyces stipitatus ATCC 10500 

Fungi Ascomycota Eurotiomycetes Thermoascus aurantiacus 

Fungi Ascomycota Eurotiomycetes Trichophyton benhamiae CBS 112371 

Fungi Ascomycota Eurotiomycetes Trichophyton rubrum CBS 118892 

Fungi Ascomycota Eurotiomycetes Trichophyton verrucosum HKI 0517 

Fungi Ascomycota Eurotiomycetes Uncinocarpus reesii 1704 

Fungi Ascomycota Lecanoromycetes Acarospora sp. 

Fungi Ascomycota Lecanoromycetes Cladonia grayi 

Fungi Ascomycota Lecanoromycetes Cladonia macilenta KoLRI003786 

Fungi Ascomycota Lecanoromycetes Cladonia metacorallifera KoLRI002260 
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Fungi Ascomycota Lecanoromycetes Graphis scripta 

Fungi Ascomycota Lecanoromycetes Gyalolechia flavorubescens KoLRI002931 

Fungi Ascomycota Lecanoromycetes Xanthoria parietina 46-1-SA22 

Fungi Ascomycota Leotiomycetes Botrytis cinerea 

Fungi Ascomycota Pezizomycetes Tuber melanosporum 

Fungi Ascomycota Saccharomycetes Candida glabrata CBS 138 

Fungi Ascomycota Saccharomycetes Saccharomyces cerevisiae 

Fungi Ascomycota Schizosaccharomycetes Schizosaccharomyces pombe 

Fungi Ascomycota Sordariomycetes Fusarium oxysporum CL57 

Fungi Ascomycota Sordariomycetes Neurospora crassa 

Fungi Basidiomycota Agaricomycetes Agaricus bisporus var. bisporus H97 

Fungi Basidiomycota Pucciniomycetes Puccinia graminis 

Fungi Basidiomycota Ustilaginomycetes Ustilago maydis 

Fungi Microsporidia - Nosema ceranae 

Fungi Mucoromycota - Rhizopus oryzae 

Metazoa Arthropoda Insecta Drosophila melanogaster 

Metazoa Chordata Actinopteri Danio rerio 

Metazoa Chordata Aves Gallus gallus 

Metazoa Chordata Mammalia Homo sapiens 

Metazoa Chordata Mammalia Mus musculus 

Metazoa Cnidaria Anthozoa Nematostella vectensis 

Metazoa Mollusca Gastropoda Lottia gigantea 

Metazoa Nematoda Chromadorea Caenorhabditis elegans 

Viridiplantae Chlorophyta Chlorophyceae Chlamydomonas reinhardtii CC3269 

Viridiplantae Chlorophyta Chlorophyceae Volvox carteri f. nagariensis 

Viridiplantae Chlorophyta Mamiellophyceae Bathycoccus prasinos RCC1105 

Viridiplantae Chlorophyta Mamiellophyceae Micromonas pusilla 

Viridiplantae Chlorophyta Mamiellophyceae Ostreococcus 'lucimarinus' 

Viridiplantae Chlorophyta Trebouxiophyceae Auxenochlorella protothecoides sp 0710 

Viridiplantae Chlorophyta Trebouxiophyceae Chlorella sp. 

Viridiplantae Chlorophyta Trebouxiophyceae Coccomyxa sp. 

Viridiplantae Streptophyta - Amborella trichopoda 

Viridiplantae Streptophyta - Arabidopsis thaliana 

Viridiplantae Streptophyta - Malus domestica 

Viridiplantae Streptophyta - Medicago truncatula 

Viridiplantae Streptophyta - Populus trichocarpa 

Viridiplantae Streptophyta Bryopsida Physcomitrella patens 

Viridiplantae Streptophyta Liliopsida Oryza sativa 

Viridiplantae Streptophyta Liliopsida Sorghum bicolor 
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Table A-2: Coverage ratios for the eukaryotic nuclear and organellar genomes, as well as for the 5 
largest bacterial scaffolds. All values normalized to the nuclear genome of Trebouxia sp. 

Library pacbio readpairs matepairs pool1 pool3 pool2 pool4 pool5 pool6 average 
Trebouxia nuclear 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 

Trebouxia cp 23.79 8.00 8.68 21.64 14.28 18.83 19.85 16.72 13.63 16.47 
Trebouxia mt 21.32 9.05 4.21 25.63 16.74 21.46 19.16 14.25 17.36 16.48 

Lasallia nuclear 13.82 11.74 16.99 19.66 19.48 16.01 24.11 27.96 29.69 18.72 
Lasallia mt 329.86 229.01 239.63 261.37 195.99 228.06 435.73 379.37 322.75 287.38 
Bacteria 70 0.68 2.22 0.58 0.82 8.37 3.09 4.03 14.74 15.54 4.32 

Bacteria 233 2.01 0.39 0.91 0.89 0.73 0.86 0.75 0.89 1.43 0.93 
Bacteria 16 2.46 0.43 1.00 0.50 0.72 0.56 0.57 0.78 0.68 0.88 

Bacteria 111 0.09 3.55 0.42 1.94 5.12 1.31 2.78 2.06 1.34 2.16 
Bacteria 35 3.53 0.34 1.35 1.46 0.94 1.30 1.11 1.38 2.05 1.43 
Bacteria 81 2.12 0.53 0.82 0.88 0.87 0.92 0.85 0.85 1.78 0.98 

 

Table A-3: Top 20 genera that are found in the nine sequencing libraries. Normalized read counts 
were summed up over all libraries. 

Rank Genus Normalized Count 
1 unclassified Acidobacteriaceae 81168 
2 Granulicella 57066 
3 Terriglobus 25908 
4 Acidobacterium 18842 
5 Singulisphaera 15773 
6 Sphingomonas 15333 
7 Methylobacterium 12918 
8 Chthonomonas 12185 
9 Bradyrhizobium 10250 

10 Burkholderia 9787 
11 Roseomonas 9196 
12 Edaphobacter 7155 
13 Candidatus Solibacter 7131 
14 Acidiphilium 6957 
15 Streptomyces 6473 
16 Belnapia 5671 
17 Granulibacter 5018 
18 Mycobacterium 4612 
19 unclassified Gemmatimonadetes 4451 
20 Fimbriimonas 4058 
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Table A-4: L. pustulata genes predicted by MAKER2, which the Rosetta Stone method identified to 
be a gene fusion. Comparisons for the Rosetta Stone method were made against the genes of 
Cladonia grayi. Each row represents one possible gene fusion that involves two C. grayi genes. L. 
pustulata genes can appear more than once, if the fusion involves more than two C. grayi genes or if 
multiple C. grayi genes would match the same fusion. The start and end positions of the C. grayi 
genes within the fused L. pustulata gene are given. 

Fused gene Fusion partner #1 Start position 
in fused gene 

End position in 
fused gene Fusion partner #2 Start position 

in fused gene 
End position in 

fused gene 
scaffold7-gene-
9.22-mRNA-1 

CLAGR_008330-
RA 

149 311 CLAGR_002929-
RA 

417 518 

scaffold3-gene-
14.114-mRNA-1 

CLAGR_010481-
RA 

28 432 CLAGR_010480-
RA 

434 874 

scaffold5-gene-
15.58-mRNA-1 

CLAGR_001430-
RA 

1 754 CLAGR_001442-
RA 

784 997 

scaffold6-gene-
2.33-mRNA-1 

CLAGR_000328-
RA 

41 124 CLAGR_000327-
RA 

171 293 

scaffold9-gene-
3.93-mRNA-1 

CLAGR_004409-
RA 

103 196 CLAGR_002647-
RA 

238 331 

scaffold9-gene-
3.93-mRNA-1 

CLAGR_004409-
RA 

103 196 CLAGR_004410-
RA 

242 332 

scaffold2-gene-
4.93-mRNA-1 

CLAGR_008510-
RA 

1 391 CLAGR_002656-
RA 

562 786 

scaffold13-gene-
0.73-mRNA-1 

CLAGR_005526-
RA 

1 65 CLAGR_005525-
RA 

101 889 

scaffold12-gene-
5.42-mRNA-1 

CLAGR_003178-
RA 

7 1735 CLAGR_007860-
RA 

2485 2647 

scaffold12-gene-
5.42-mRNA-1 

CLAGR_009968-
RA 

1039 2462 CLAGR_007860-
RA 

2485 2647 

scaffold2-gene-
21.76-mRNA-1 

CLAGR_001206-
RA 

3 143 CLAGR_007281-
RA 

203 352 

scaffold3-gene-
4.74-mRNA-1 

CLAGR_004073-
RA 

9 519 CLAGR_004079-
RA 

539 801 

scaffold3-gene-
4.74-mRNA-1 

CLAGR_004073-
RA 

9 519 CLAGR_008547-
RA 

546 801 

scaffold8-gene-8.3-
mRNA-1 

CLAGR_005513-
RA 

7 389 CLAGR_005514-
RA 

413 701 

scaffold16-gene-
2.63-mRNA-1 

CLAGR_003105-
RA 

33 819 CLAGR_003103-
RA 

901 1136 

scaffold9-gene-
10.88-mRNA-1 

CLAGR_009372-
RA 

1 122 CLAGR_009371-
RA 

180 414 

scaffold11-gene-
6.140-mRNA-1 

CLAGR_001276-
RA 

5 1978 CLAGR_001275-
RA 

2010 2424 

scaffold11-gene-
6.140-mRNA-1 

CLAGR_001275-
RA 

2010 2424 CLAGR_001291-
RA 

2464 3272 

scaffold11-gene-
6.140-mRNA-1 

CLAGR_001276-
RA 

5 1978 CLAGR_001291-
RA 

2464 3272 

scaffold1-gene-
7.64-mRNA-1 

CLAGR_004634-
RA 

10 444 CLAGR_004633-
RA 

837 923 

scaffold1-gene-
21.31-mRNA-1 

CLAGR_007667-
RA 

19 217 CLAGR_007668-
RA 

252 384 

scaffold5-gene-
8.169-mRNA-1 

CLAGR_003606-
RA 

1 269 CLAGR_009144-
RA 

308 411 

scaffold5-gene-
8.17-mRNA-1 

CLAGR_003627-
RA 

152 233 CLAGR_003626-
RA 

336 736 

scaffold5-gene-
8.17-mRNA-1 

CLAGR_003628-
RA 

38 143 CLAGR_003626-
RA 

336 736 

scaffold5-gene-
8.17-mRNA-1 

CLAGR_003628-
RA 

38 143 CLAGR_003627-
RA 

152 233 

scaffold3-gene-
2.31-mRNA-1 

CLAGR_000044-
RB 

594 995 CLAGR_000044-
RA 

1078 1409 

scaffold3-gene-
2.31-mRNA-1 

CLAGR_000226-
RA 

68 593 CLAGR_000044-
RA 

1078 1409 

scaffold3-gene-
2.31-mRNA-1 

CLAGR_010021-
RA 

207 303 CLAGR_000044-
RA 

1078 1409 

scaffold3-gene-
2.31-mRNA-1 

CLAGR_000226-
RA 

68 593 CLAGR_000044-
RB 

594 995 
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scaffold3-gene-
2.31-mRNA-1 

CLAGR_000226-
RA 

68 593 CLAGR_004534-
RA 

1087 1401 

scaffold3-gene-
2.31-mRNA-1 

CLAGR_010021-
RA 

207 303 CLAGR_000044-
RB 

594 995 

scaffold3-gene-
2.31-mRNA-1 

CLAGR_010021-
RA 

207 303 CLAGR_004534-
RA 

1087 1401 

scaffold2-gene-
16.49-mRNA-1 

CLAGR_005101-
RA 

1 306 CLAGR_005096-
RA 

340 662 

scaffold2-gene-
19.33-mRNA-1 

CLAGR_000840-
RA 

16 664 CLAGR_005145-
RA 

1117 1423 

scaffold2-gene-
19.33-mRNA-1 

CLAGR_004536-
RA 

16 1044 CLAGR_005145-
RA 

1117 1423 

scaffold2-gene-
19.33-mRNA-1 

CLAGR_007824-
RA 

1 1040 CLAGR_005145-
RA 

1117 1423 

scaffold2-gene-
19.33-mRNA-1 

CLAGR_010299-
RA 

13 1044 CLAGR_005145-
RA 

1117 1423 

scaffold8-gene-
11.89-mRNA-1 

CLAGR_007693-
RA 

39 143 CLAGR_007719-
RA 

183 413 

scaffold6-gene-
3.105-mRNA-1 

CLAGR_000109-
RA 

3 122 CLAGR_000110-
RA 

168 415 

scaffold16-gene-
0.69-mRNA-1 

CLAGR_000225-
RA 

19 627 CLAGR_004220-
RA 

652 889 

scaffold16-gene-
0.69-mRNA-1 

CLAGR_004218-
RA 

49 348 CLAGR_004220-
RA 

652 889 

scaffold14-gene-
6.12-mRNA-1 

CLAGR_001703-
RA 

14 345 CLAGR_004625-
RA 

643 706 

scaffold14-gene-
6.12-mRNA-1 

CLAGR_003813-
RA 

41 346 CLAGR_004625-
RA 

643 706 

scaffold14-gene-
6.12-mRNA-1 

CLAGR_008733-
RA 

14 344 CLAGR_004625-
RA 

643 706 

scaffold10-gene-
16.114-mRNA-1 

CLAGR_006517-
RA 

1 275 CLAGR_006516-
RA 

951 1365 

scaffold4-gene-
16.80-mRNA-1 

CLAGR_010656-
RA 

5 526 CLAGR_010655-
RA 

566 867 

scaffold4-gene-
13.20-mRNA-1 

CLAGR_000958-
RA 

1 979 CLAGR_000899-
RA 

980 1123 

scaffold4-gene-
13.20-mRNA-1 

CLAGR_000958-
RA 

1 979 CLAGR_000957-
RA 

984 1121 

scaffold4-gene-
13.20-mRNA-1 

CLAGR_000958-
RA 

1 979 CLAGR_000998-
RA 

985 1121 

scaffold18-gene-
0.4-mRNA-1 

CLAGR_005033-
RA 

253 335 CLAGR_005032-
RA 

994 1250 

scaffold18-gene-
0.41-mRNA-1 

CLAGR_006334-
RA 

32 382 CLAGR_006333-
RA 

387 577 

scaffold3-gene-
13.59-mRNA-1 

CLAGR_005946-
RA 

14 434 CLAGR_005945-
RA 

519 590 

scaffold3-gene-
13.63-mRNA-1 

CLAGR_010502-
RA 

162 388 CLAGR_010503-
RA 

431 661 

scaffold5-gene-
0.52-mRNA-1 

CLAGR_001642-
RA 

10 86 CLAGR_004993-
RA 

224 923 

scaffold1-gene-
11.17-mRNA-1 

CLAGR_010285-
RA 

32 299 CLAGR_010975-
RA 

365 590 

scaffold10-gene-
10.11-mRNA-1 

CLAGR_003917-
RA 

11 150 CLAGR_009297-
RA 

212 311 

scaffold10-gene-
10.11-mRNA-1 

CLAGR_011204-
RA 

18 151 CLAGR_009297-
RA 

212 311 

scaffold10-gene-
11.9-mRNA-1 

CLAGR_005271-
RA 

21 407 CLAGR_003198-
RA 

410 1024 

scaffold10-gene-
6.156-mRNA-1 

CLAGR_008422-
RA 

59 268 CLAGR_009701-
RA 

356 409 

scaffold2-gene-
1.23-mRNA-1 

CLAGR_006486-
RA 

5 201 CLAGR_006489-
RA 

202 562 

scaffold1-gene-
26.114-mRNA-1 

CLAGR_006320-
RA 

3 224 CLAGR_009548-
RA 

254 780 

scaffold12-gene-
17.53-mRNA-1 

CLAGR_002271-
RA 

373 778 CLAGR_004362-
RA 

998 1757 

scaffold12-gene-
17.53-mRNA-1 

CLAGR_004807-
RA 

17 308 CLAGR_004362-
RA 

998 1757 

scaffold12-gene- CLAGR_010105- 373 994 CLAGR_004362- 998 1757 
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17.53-mRNA-1 RA RA 

scaffold12-gene-
17.53-mRNA-1 

CLAGR_002271-
RA 

373 778 CLAGR_007633-
RA 

1117 1645 

scaffold12-gene-
17.53-mRNA-1 

CLAGR_004807-
RA 

17 308 CLAGR_007633-
RA 

1117 1645 

scaffold12-gene-
17.53-mRNA-1 

CLAGR_010105-
RA 

373 994 CLAGR_007633-
RA 

1117 1645 

scaffold12-gene-
17.53-mRNA-1 

CLAGR_011250-
RA 

56 1020 CLAGR_007633-
RA 

1117 1645 

scaffold12-gene-
17.53-mRNA-1 

CLAGR_011250-
RA 

56 1020 CLAGR_011257-
RA 

1292 1401 

scaffold3-gene-
1.132-mRNA-1 

CLAGR_008977-
RA 

158 223 CLAGR_008978-
RA 

373 776 

scaffold14-gene-
5.82-mRNA-1 

CLAGR_008982-
RA 

5 357 CLAGR_008139-
RA 

414 663 

scaffold3-gene-
17.72-mRNA-1 

CLAGR_010226-
RA 

1 279 CLAGR_010225-
RA 

315 720 

scaffold6-gene-
15.54-mRNA-1 

CLAGR_003841-
RA 

188 480 CLAGR_003845-
RA 

633 802 

scaffold2-gene-
10.66-mRNA-1 

CLAGR_009178-
RA 

1 1250 CLAGR_009181-
RA 

1443 1559 

scaffold6-gene-
15.30-mRNA-1 

CLAGR_010775-
RA 

9 248 CLAGR_010774-
RA 

267 461 

scaffold17-gene-
4.81-mRNA-1 

CLAGR_003284-
RA 

37 170 CLAGR_003285-
RA 

298 346 

scaffold20-gene-
1.76-mRNA-1 

CLAGR_008154-
RA 

5 148 CLAGR_000883-
RA 

206 1498 

scaffold20-gene-
1.76-mRNA-1 

CLAGR_008154-
RA 

5 148 CLAGR_002878-
RA 

430 1081 

scaffold20-gene-
1.76-mRNA-1 

CLAGR_008154-
RA 

5 148 CLAGR_002705-
RA 

189 987 

scaffold20-gene-
1.76-mRNA-1 

CLAGR_008154-
RA 

5 148 CLAGR_006942-
RA 

195 1252 

scaffold20-gene-
1.76-mRNA-1 

CLAGR_008154-
RA 

5 148 CLAGR_009814-
RA 

206 1355 

scaffold20-gene-
1.76-mRNA-1 

CLAGR_008154-
RA 

5 148 CLAGR_010985-
RA 

823 1158 

scaffold20-gene-
1.89-mRNA-1 

CLAGR_001750-
RA 

7 245 CLAGR_001749-
RA 

282 625 

scaffold2-gene-
12.34-mRNA-1 

CLAGR_007012-
RA 

1 570 CLAGR_007015-
RA 

630 843 

scaffold8-gene-
1.109-mRNA-1 

CLAGR_010668-
RA 

1 461 CLAGR_010670-
RA 

495 537 

scaffold8-gene-
1.109-mRNA-1 

CLAGR_010668-
RA 

1 461 CLAGR_010671-
RA 

542 1138 

scaffold8-gene-
1.109-mRNA-1 

CLAGR_010670-
RA 

495 537 CLAGR_010671-
RA 

542 1138 

scaffold1-gene-
32.129-mRNA-1 

CLAGR_009556-
RA 

103 334 CLAGR_006221-
RA 

361 697 

scaffold3-gene-
19.13-mRNA-1 

CLAGR_011007-
RA 

59 402 CLAGR_004698-
RA 

564 707 

scaffold3-gene-
19.13-mRNA-1 

CLAGR_011007-
RA 

59 402 CLAGR_009527-
RA 

569 714 

scaffold7-gene-
5.68-mRNA-1 

CLAGR_000524-
RA 

60 300 CLAGR_000525-
RA 

479 1938 

scaffold13-gene-
8.60-mRNA-1 

CLAGR_011062-
RA 

1 40 CLAGR_010079-
RA 

225 299 

scaffold4-gene-
11.45-mRNA-1 

CLAGR_000936-
RA 

9 216 CLAGR_004022-
RA 

233 383 

scaffold9-gene-
6.39-mRNA-1 

CLAGR_009858-
RB 

1 75 CLAGR_009858-
RA 

80 308 

scaffold12-gene-
1.56-mRNA-1 

CLAGR_009110-
RA 

1 483 CLAGR_009109-
RA 

556 826 

scaffold17-gene-
3.83-mRNA-1 

CLAGR_005224-
RA 

15 273 CLAGR_005223-
RA 

400 794 

scaffold8-gene-
16.149-mRNA-1 

CLAGR_000768-
RA 

225 319 CLAGR_002995-
RA 

462 719 

scaffold8-gene-
16.149-mRNA-1 

CLAGR_000768-
RA 

225 319 CLAGR_003003-
RA 

508 719 
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scaffold8-gene-
16.149-mRNA-1 

CLAGR_000768-
RA 

225 319 CLAGR_003006-
RA 

588 719 

scaffold1-gene-
27.59-mRNA-1 

CLAGR_006315-
RA 

1 1107 CLAGR_006316-
RA 

1124 1340 

scaffold1-gene-
17.83-mRNA-1 

CLAGR_001612-
RA 

23 68 CLAGR_005759-
RA 

263 437 

scaffold10-gene-
11.69-mRNA-1 

CLAGR_005276-
RA 

10 742 CLAGR_005277-
RA 

872 1594 

scaffold15-gene-
7.115-mRNA-1 

CLAGR_002785-
RA 

74 175 CLAGR_001044-
RB 

176 530 

scaffold15-gene-
7.115-mRNA-1 

CLAGR_002785-
RA 

74 175 CLAGR_002786-
RA 

203 594 

scaffold3-gene-
9.87-mRNA-1 

CLAGR_010952-
RA 

286 460 CLAGR_010951-
RA 

809 904 

scaffold10-gene-
10.100-mRNA-1 

CLAGR_008533-
RA 

1 255 CLAGR_000043-
RA 

324 590 

scaffold10-gene-
10.100-mRNA-1 

CLAGR_008533-
RA 

1 255 CLAGR_005826-
RA 

351 458 

scaffold7-gene-
11.45-mRNA-1 

CLAGR_005781-
RA 

1 166 CLAGR_005780-
RA 

218 381 

scaffold2-gene-
25.51-mRNA-1 

CLAGR_010320-
RA 

50 460 CLAGR_006351-
RA 

474 779 

scaffold7-gene-
3.75-mRNA-1 

CLAGR_001879-
RA 

1 364 CLAGR_001928-
RA 

493 895 

scaffold5-gene-
14.14-mRNA-1 

CLAGR_002298-
RA 

1 389 CLAGR_002299-
RA 

391 1373 

scaffold15-gene-
2.123-mRNA-1 

CLAGR_005645-
RA 

1 93 CLAGR_005644-
RA 

127 281 

scaffold12-gene-
15.30-mRNA-1 

CLAGR_002195-
RA 

14 330 CLAGR_008947-
RA 

387 1056 

scaffold12-gene-
15.30-mRNA-1 

CLAGR_003518-
RA 

156 251 CLAGR_008947-
RA 

387 1056 

scaffold12-gene-
15.30-mRNA-1 

CLAGR_008364-
RA 

17 358 CLAGR_008947-
RA 

387 1056 

scaffold12-gene-
15.30-mRNA-1 

CLAGR_008808-
RA 

15 184 CLAGR_008947-
RA 

387 1056 

scaffold12-gene-
15.30-mRNA-1 

CLAGR_009311-
RA 

9 346 CLAGR_008947-
RA 

387 1056 

scaffold12-gene-
15.30-mRNA-1 

CLAGR_010141-
RA 

27 290 CLAGR_008947-
RA 

387 1056 

scaffold12-gene-
15.30-mRNA-1 

CLAGR_010939-
RA 

9 309 CLAGR_008947-
RA 

387 1056 

scaffold2-gene-
8.100-mRNA-1 

CLAGR_006132-
RA 

38 726 CLAGR_006133-
RA 

828 1141 

scaffold2-gene-
8.100-mRNA-1 

CLAGR_008655-
RA 

45 642 CLAGR_006133-
RA 

828 1141 

scaffold12-gene-
17.4-mRNA-1 

CLAGR_003533-
RA 

1 189 CLAGR_003532-
RA 

278 531 

scaffold1-gene-
32.65-mRNA-1 

CLAGR_009285-
RA 

8 358 CLAGR_010789-
RA 

366 599 

scaffold5-gene-
7.41-mRNA-1 

CLAGR_003678-
RA 

17 74 CLAGR_003677-
RA 

106 828 

scaffold3-gene-
9.82-mRNA-1 

CLAGR_010330-
RA 

283 385 CLAGR_010337-
RA 

620 705 

scaffold3-gene-
9.82-mRNA-1 

CLAGR_010333-
RA 

288 393 CLAGR_010337-
RA 

620 705 

scaffold4-gene-
1.71-mRNA-1 

CLAGR_008001-
RA 

118 491 CLAGR_008004-
RA 

526 690 

scaffold13-gene-
2.7-mRNA-1 

CLAGR_002538-
RA 

532 592 CLAGR_003704-
RA 

664 978 

scaffold13-gene-
2.7-mRNA-1 

CLAGR_003703-
RA 

40 613 CLAGR_003704-
RA 

664 978 

scaffold13-gene-
7.149-mRNA-1 

CLAGR_001522-
RA 

38 348 CLAGR_001521-
RA 

478 1481 

scaffold14-gene-
3.80-mRNA-1 

CLAGR_001794-
RA 

47 111 CLAGR_001793-
RA 

161 486 

scaffold13-gene-
3.3-mRNA-1 

CLAGR_003759-
RA 

32 330 CLAGR_003718-
RA 

370 627 

scaffold20-gene- CLAGR_005620- 3 81 CLAGR_005619- 84 890 
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3.69-mRNA-1 RA RA 

scaffold20-gene-
3.69-mRNA-1 

CLAGR_005620-
RA 

3 81 CLAGR_009692-
RA 

304 552 

scaffold4-gene-
4.13-mRNA-1 

CLAGR_002673-
RA 

665 779 CLAGR_000239-
RA 

800 1099 

scaffold4-gene-
4.13-mRNA-1 

CLAGR_002673-
RA 

665 779 CLAGR_005266-
RA 

825 1077 

scaffold4-gene-
4.13-mRNA-1 

CLAGR_002673-
RA 

665 779 CLAGR_011236-
RA 

860 1087 

scaffold15-gene-
1.67-mRNA-1 

CLAGR_000786-
RA 

377 1151 CLAGR_000787-
RA 

1181 1366 

scaffold15-gene-
1.67-mRNA-1 

CLAGR_003336-
RA 

633 729 CLAGR_000787-
RA 

1181 1366 

scaffold3-gene-
15.18-mRNA-1 

CLAGR_002948-
RA 

1 419 CLAGR_002950-
RA 

633 1019 

scaffold10-gene-
15.34-mRNA-1 

CLAGR_007238-
RA 

58 416 CLAGR_007228-
RA 

481 865 

scaffold4-gene-
1.80-mRNA-1 

CLAGR_008010-
RA 

31 548 CLAGR_008011-
RA 

581 688 

scaffold7-gene-
5.31-mRNA-1 

CLAGR_000568-
RA 

605 722 CLAGR_000567-
RA 

726 1627 

scaffold7-gene-
5.31-mRNA-1 

CLAGR_000569-
RA 

1 498 CLAGR_000567-
RA 

726 1627 

scaffold7-gene-
5.31-mRNA-1 

CLAGR_000569-
RA 

1 498 CLAGR_000568-
RA 

605 722 

scaffold5-gene-
5.104-mRNA-1 

CLAGR_006121-
RA 

48 340 CLAGR_009461-
RA 

357 601 

scaffold5-gene-
5.104-mRNA-1 

CLAGR_007886-
RA 

50 340 CLAGR_009461-
RA 

357 601 

scaffold3-gene-
18.92-mRNA-1 

CLAGR_001969-
RA 

31 302 CLAGR_001968-
RA 

321 513 

scaffold1-gene-
11.23-mRNA-1 

CLAGR_004513-
RA 

101 267 CLAGR_004514-
RA 

288 869 

scaffold1-gene-
11.23-mRNA-1 

CLAGR_007230-
RA 

138 261 CLAGR_004514-
RA 

288 869 

scaffold7-gene-
12.59-mRNA-1 

CLAGR_006772-
RA 

15 238 CLAGR_000377-
RA 

320 548 

scaffold3-gene-
15.42-mRNA-1 

CLAGR_002941-
RA 

47 183 CLAGR_002953-
RA 

226 491 

scaffold9-gene-
10.127-mRNA-1 

CLAGR_000137-
RA 

53 585 CLAGR_000135-
RA 

822 944 

scaffold6-gene-
7.81-mRNA-1 

CLAGR_008621-
RA 

7 503 CLAGR_008622-
RA 

589 2375 

scaffold25-gene-
0.113-mRNA-1 

CLAGR_001502-
RA 

37 452 CLAGR_001503-
RA 

551 765 

scaffold1-gene-
16.91-mRNA-1 

CLAGR_003450-
RA 

1 121 CLAGR_003449-
RA 

316 509 

scaffold16-gene-
6.107-mRNA-1 

CLAGR_007329-
RA 

115 414 CLAGR_007330-
RA 

441 524 

scaffold2-gene-
7.19-mRNA-1 

CLAGR_001897-
RA 

123 283 CLAGR_001896-
RA 

390 575 

scaffold8-gene-
16.136-mRNA-1 

CLAGR_004703-
RA 

41 124 CLAGR_004704-
RA 

184 599 

scaffold2-gene-
24.73-mRNA-1 

CLAGR_009289-
RA 

1 249 CLAGR_009640-
RA 

317 448 

scaffold3-gene-
3.29-mRNA-1 

CLAGR_008614-
RA 

53 91 CLAGR_008613-
RA 

134 256 

scaffold5-gene-
6.64-mRNA-1 

CLAGR_006069-
RA 

5 64 CLAGR_006068-
RA 

73 346 

scaffold4-gene-
8.21-mRNA-1 

CLAGR_006371-
RA 

17 450 CLAGR_006372-
RA 

529 621 

scaffold5-gene-
17.123-mRNA-1 

CLAGR_001587-
RA 

1 83 CLAGR_001586-
RA 

107 828 

scaffold8-gene-
14.22-mRNA-1 

CLAGR_009636-
RA 

33 132 CLAGR_009635-
RA 

173 413 

scaffold8-gene-
14.25-mRNA-1 

CLAGR_004738-
RA 

7 861 CLAGR_004735-
RA 

938 1250 

scaffold8-gene-
14.25-mRNA-1 

CLAGR_005609-
RA 

33 645 CLAGR_004735-
RA 

938 1250 
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scaffold5-gene-
4.71-mRNA-1 

CLAGR_006858-
RA 

1 546 CLAGR_005699-
RA 

632 884 

scaffold2-gene-
11.123-mRNA-1 

CLAGR_006167-
RA 

251 623 CLAGR_006166-
RA 

700 1448 

scaffold1-gene-
6.17-mRNA-1 

CLAGR_004122-
RA 

456 1003 CLAGR_004121-
RA 

1073 1405 

scaffold1-gene-
6.17-mRNA-1 

CLAGR_004123-
RA 

1 429 CLAGR_004121-
RA 

1073 1405 

scaffold1-gene-
6.17-mRNA-1 

CLAGR_004123-
RA 

1 429 CLAGR_004122-
RA 

456 1003 

scaffold2-gene-
26.15-mRNA-1 

CLAGR_000220-
RA 

347 512 CLAGR_004146-
RA 

552 774 

scaffold2-gene-
26.15-mRNA-1 

CLAGR_002185-
RA 

10 528 CLAGR_004146-
RA 

552 774 

scaffold2-gene-
26.15-mRNA-1 

CLAGR_004776-
RA 

3 546 CLAGR_004146-
RA 

552 774 

scaffold1-gene-
25.79-mRNA-1 

CLAGR_010780-
RA 

586 795 CLAGR_006911-
RA 

1752 2274 

scaffold1-gene-
25.79-mRNA-1 

CLAGR_010243-
RA 

50 1024 CLAGR_006911-
RA 

1752 2274 

scaffold14-gene-
7.2-mRNA-1 

CLAGR_001637-
RA 

23 198 CLAGR_001638-
RA 

222 783 

scaffold8-gene-
12.2-mRNA-1 

CLAGR_009997-
RA 

26 873 CLAGR_010012-
RA 

889 1310 

scaffold11-gene-
5.54-mRNA-1 

CLAGR_006244-
RA 

25 61 CLAGR_006245-
RA 

66 524 

scaffold16-gene-
3.70-mRNA-1 

CLAGR_010497-
RA 

1 670 CLAGR_010496-
RA 

1023 1179 

scaffold8-gene-
10.89-mRNA-1 

CLAGR_007895-
RA 

5 60 CLAGR_007250-
RA 

66 403 

scaffold3-gene-
17.13-mRNA-1 

CLAGR_005954-
RA 

1 744 CLAGR_005953-
RA 

822 1743 

scaffold8-gene-
3.13-mRNA-1 

CLAGR_002264-
RA 

7 1709 CLAGR_001747-
RA 

1787 2121 

scaffold10-gene-
5.61-mRNA-1 

CLAGR_002684-
RA 

1 81 CLAGR_002683-
RA 

97 205 

scaffold8-gene-
6.106-mRNA-1 

CLAGR_003237-
RA 

5 172 CLAGR_002845-
RA 

405 614 

scaffold8-gene-
6.106-mRNA-1 

CLAGR_003237-
RA 

5 172 CLAGR_003238-
RA 

200 618 

scaffold8-gene-
6.106-mRNA-1 

CLAGR_003237-
RA 

5 172 CLAGR_009712-
RA 

403 608 

scaffold10-gene-
3.106-mRNA-1 

CLAGR_007807-
RA 

6 260 CLAGR_000337-
RA 

385 613 

scaffold10-gene-
3.106-mRNA-1 

CLAGR_010693-
RA 

18 307 CLAGR_000337-
RA 

385 613 

scaffold10-gene-
3.106-mRNA-1 

CLAGR_007807-
RA 

6 260 CLAGR_004095-
RA 

336 565 

scaffold10-gene-
3.106-mRNA-1 

CLAGR_007807-
RA 

6 260 CLAGR_010574-
RA 

385 562 

scaffold10-gene-
3.106-mRNA-1 

CLAGR_010693-
RA 

18 307 CLAGR_004095-
RA 

336 565 

scaffold10-gene-
3.106-mRNA-1 

CLAGR_010693-
RA 

18 307 CLAGR_010574-
RA 

385 562 

scaffold27-gene-
0.41-mRNA-1 

CLAGR_010999-
RA 

89 174 CLAGR_011000-
RA 

237 326 

scaffold1-gene-
3.129-mRNA-1 

CLAGR_008081-
RA 

1 310 CLAGR_009727-
RA 

360 606 

scaffold8-gene-
1.151-mRNA-1 

CLAGR_003359-
RA 

1 574 CLAGR_003360-
RA 

664 815 

scaffold20-gene-
0.65-mRNA-1 

CLAGR_001825-
RA 

92 346 CLAGR_002317-
RA 

384 610 

scaffold1-gene-
18.88-mRNA-1 

CLAGR_000697-
RA 

79 497 CLAGR_000698-
RA 

545 1104 

scaffold1-gene-
28.146-mRNA-1 

CLAGR_005800-
RA 

18 335 CLAGR_002449-
RA 

337 900 

scaffold17-gene-
1.13-mRNA-1 

CLAGR_001194-
RA 

51 689 CLAGR_005503-
RA 

1289 1434 

scaffold17-gene- CLAGR_001194- 51 689 CLAGR_010900- 752 1002 
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1.13-mRNA-1 RA RA 

scaffold17-gene-
1.13-mRNA-1 

CLAGR_010900-
RA 

752 1002 CLAGR_005503-
RA 

1289 1434 

scaffold19-gene-
3.2-mRNA-1 

CLAGR_006210-
RA 

9 277 CLAGR_006211-
RA 

297 480 

scaffold19-gene-
3.2-mRNA-1 

CLAGR_006210-
RA 

9 277 CLAGR_011195-
RA 

694 828 

scaffold19-gene-
3.2-mRNA-1 

CLAGR_006211-
RA 

297 480 CLAGR_011195-
RA 

694 828 

scaffold4-gene-
3.43-mRNA-1 

CLAGR_010274-
RA 

1 1139 CLAGR_007423-
RA 

1164 1360 

scaffold10-gene-
7.21-mRNA-1 

CLAGR_004944-
RA 

1 508 CLAGR_010529-
RA 

999 1203 

scaffold10-gene-
7.21-mRNA-1 

CLAGR_004944-
RA 

1 508 CLAGR_010530-
RA 

1045 1202 

scaffold25-gene-
0.48-mRNA-1 

CLAGR_000624-
RA 

1 439 CLAGR_009331-
RA 

592 1036 

scaffold25-gene-
0.48-mRNA-1 

CLAGR_009332-
RA 

1 434 CLAGR_009331-
RA 

592 1036 

scaffold3-gene-
16.45-mRNA-1 

CLAGR_010224-
RA 

1 348 CLAGR_002920-
RA 

375 464 

scaffold3-gene-
19.74-mRNA-1 

CLAGR_009023-
RA 

62 302 CLAGR_009022-
RA 

376 520 

scaffold3-gene-
19.75-mRNA-1 

CLAGR_010933-
RA 

1 133 CLAGR_008989-
RA 

196 853 

scaffold14-gene-
2.82-mRNA-1 

CLAGR_001803-
RA 

12 659 CLAGR_001802-
RA 

663 1402 

scaffold10-gene-
16.139-mRNA-1 

CLAGR_000498-
RA 

23 445 CLAGR_000497-
RA 

456 916 

scaffold10-gene-
16.139-mRNA-1 

CLAGR_000498-
RA 

23 445 CLAGR_007161-
RA 

588 740 

scaffold10-gene-
16.139-mRNA-1 

CLAGR_000498-
RA 

23 445 CLAGR_009456-
RA 

820 899 

scaffold10-gene-
16.139-mRNA-1 

CLAGR_000498-
RA 

23 445 CLAGR_009035-
RA 

763 1099 

scaffold10-gene-
16.139-mRNA-1 

CLAGR_000498-
RA 

23 445 CLAGR_011129-
RA 

742 868 

scaffold10-gene-
16.139-mRNA-1 

CLAGR_007161-
RA 

588 740 CLAGR_009035-
RA 

763 1099 

scaffold10-gene-
16.139-mRNA-1 

CLAGR_007161-
RA 

588 740 CLAGR_011129-
RA 

742 868 

scaffold1-gene-
18.125-mRNA-1 

CLAGR_000765-
RA 

1 835 CLAGR_000764-
RA 

868 1188 

scaffold1-gene-
18.66-mRNA-1 

CLAGR_000844-
RA 

1 318 CLAGR_000845-
RA 

363 602 

scaffold5-gene-
12.19-mRNA-1 

CLAGR_002238-
RA 

12 553 CLAGR_002231-
RA 

679 1058 

scaffold14-gene-
5.59-mRNA-1 

CLAGR_008128-
RA 

1 1727 CLAGR_008127-
RA 

1740 2610 

scaffold4-gene-
14.31-mRNA-1 

CLAGR_007978-
RA 

74 777 CLAGR_009783-
RA 

4346 5384 

scaffold1-gene-
11.22-mRNA-1 

CLAGR_001111-
RA 

20 263 CLAGR_004654-
RA 

1048 1200 

scaffold1-gene-
11.22-mRNA-1 

CLAGR_001111-
RA 

20 263 CLAGR_009335-
RA 

298 1422 

scaffold1-gene-
11.22-mRNA-1 

CLAGR_001111-
RA 

20 263 CLAGR_009526-
RA 

330 1583 

scaffold1-gene-
11.22-mRNA-1 

CLAGR_004367-
RA 

7 272 CLAGR_004654-
RA 

1048 1200 

scaffold1-gene-
11.22-mRNA-1 

CLAGR_004367-
RA 

7 272 CLAGR_009335-
RA 

298 1422 

scaffold1-gene-
11.22-mRNA-1 

CLAGR_004367-
RA 

7 272 CLAGR_009526-
RA 

330 1583 

scaffold1-gene-
11.22-mRNA-1 

CLAGR_005383-
RA 

6 907 CLAGR_004654-
RA 

1048 1200 

scaffold1-gene-
11.22-mRNA-1 

CLAGR_009083-
RA 

23 265 CLAGR_009335-
RA 

298 1422 

scaffold1-gene-
11.22-mRNA-1 

CLAGR_009953-
RA 

7 945 CLAGR_004654-
RA 

1048 1200 
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scaffold22-gene-
2.6-mRNA-1 

CLAGR_004254-
RA 

1 89 CLAGR_004255-
RA 

141 348 

scaffold8-gene-
15.71-mRNA-1 

CLAGR_004725-
RA 

1 111 CLAGR_004726-
RA 

132 284 

scaffold2-gene-
25.78-mRNA-1 

CLAGR_009280-
RA 

1 56 CLAGR_009281-
RA 

73 413 

scaffold5-gene-7.8-
mRNA-1 

CLAGR_003656-
RA 

1 127 CLAGR_003655-
RA 

223 744 

scaffold6-gene-
17.69-mRNA-1 

CLAGR_003820-
RA 

23 369 CLAGR_006251-
RA 

408 520 

scaffold15-gene-
3.121-mRNA-1 

CLAGR_005673-
RA 

1 81 CLAGR_004502-
RA 

175 303 

scaffold14-gene-
6.86-mRNA-1 

CLAGR_002374-
RA 

99 351 CLAGR_001196-
RA 

1145 1364 

scaffold14-gene-
6.86-mRNA-1 

CLAGR_003856-
RA 

67 521 CLAGR_001196-
RA 

1145 1364 

scaffold14-gene-
6.86-mRNA-1 

CLAGR_002374-
RA 

99 351 CLAGR_003009-
RA 

394 1505 

scaffold14-gene-
6.86-mRNA-1 

CLAGR_002374-
RA 

99 351 CLAGR_006981-
RA 

960 2268 

scaffold14-gene-
6.86-mRNA-1 

CLAGR_003856-
RA 

67 521 CLAGR_006981-
RA 

960 2268 

scaffold14-gene-
6.86-mRNA-1 

CLAGR_002374-
RA 

99 351 CLAGR_008627-
RA 

354 1248 

scaffold5-gene-6.5-
mRNA-1 

CLAGR_006092-
RA 

2 324 CLAGR_006093-
RA 

357 785 

scaffold1-gene-
31.112-mRNA-1 

CLAGR_006238-
RA 

1 276 CLAGR_006239-
RA 

293 542 

scaffold9-gene-
9.116-mRNA-1 

CLAGR_006794-
RA 

55 125 CLAGR_006793-
RA 

341 545 

scaffold21-gene-
2.35-mRNA-1 

CLAGR_007053-
RA 

12 108 CLAGR_007054-
RA 

117 348 

scaffold3-gene-
9.76-mRNA-1 

CLAGR_009020-
RA 

8 438 CLAGR_002834-
RA 

569 706 

scaffold17-gene-
4.94-mRNA-1 

CLAGR_008061-
RA 

1 115 CLAGR_008060-
RA 

131 662 

scaffold6-gene-
3.122-mRNA-1 

CLAGR_007354-
RA 

24 96 CLAGR_007353-
RA 

111 432 

scaffold12-gene-
15.20-mRNA-1 

CLAGR_008957-
RA 

27 107 CLAGR_008956-
RA 

297 389 

scaffold15-gene-
0.62-mRNA-1 

CLAGR_001732-
RA 

1 48 CLAGR_001731-
RA 

83 733 

scaffold13-gene-
3.34-mRNA-1 

CLAGR_003776-
RA 

265 888 CLAGR_003775-
RA 

1017 1548 

scaffold4-gene-
12.112-mRNA-1 

CLAGR_007936-
RA 

1 2099 CLAGR_002886-
RA 

2133 2694 

scaffold10-gene-
8.71-mRNA-1 

CLAGR_004952-
RA 

10 209 CLAGR_004953-
RA 

266 593 

scaffold16-gene-
3.76-mRNA-1 

CLAGR_006013-
RA 

1 1110 CLAGR_008454-
RA 

1331 1598 

scaffold6-gene-
2.126-mRNA-1 

CLAGR_000315-
RA 

14 835 CLAGR_000207-
RA 

883 1031 

scaffold6-gene-
15.67-mRNA-1 

CLAGR_004281-
RA 

184 455 CLAGR_010986-
RA 

933 1268 

scaffold27-gene-
0.140-mRNA-1 

CLAGR_002823-
RA 

42 100 CLAGR_010152-
RA 

256 437 

scaffold9-gene-
11.49-mRNA-1 

CLAGR_000123-
RA 

1 1823 CLAGR_000124-
RA 

1850 1896 

scaffold14-gene-
5.74-mRNA-1 

CLAGR_005292-
RA 

1 51 CLAGR_005291-
RA 

57 700 

scaffold14-gene-
5.32-mRNA-1 

CLAGR_008144-
RA 

27 307 CLAGR_008145-
RA 

317 1344 

scaffold8-gene-
15.38-mRNA-1 

CLAGR_004742-
RA 

8 407 CLAGR_004739-
RA 

428 997 

scaffold7-gene-
9.32-mRNA-1 

CLAGR_006824-
RA 

1 100 CLAGR_006823-
RA 

109 529 

scaffold3-gene-
4.24-mRNA-1 

CLAGR_001574-
RA 

16 137 CLAGR_004544-
RA 

1551 2619 

scaffold3-gene- CLAGR_004546- 17 109 CLAGR_004544- 1551 2619 
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4.24-mRNA-1 RA RA 

scaffold3-gene-
4.24-mRNA-1 

CLAGR_007687-
RA 

19 441 CLAGR_004544-
RA 

1551 2619 

scaffold3-gene-
4.24-mRNA-1 

CLAGR_001574-
RA 

16 137 CLAGR_007684-
RA 

2348 2617 

scaffold3-gene-
4.24-mRNA-1 

CLAGR_004546-
RA 

17 109 CLAGR_007684-
RA 

2348 2617 

scaffold3-gene-
4.24-mRNA-1 

CLAGR_007685-
RA 

2041 2316 CLAGR_007684-
RA 

2348 2617 

scaffold3-gene-
4.24-mRNA-1 

CLAGR_007687-
RA 

19 441 CLAGR_007684-
RA 

2348 2617 

scaffold3-gene-
4.24-mRNA-1 

CLAGR_007687-
RA 

19 441 CLAGR_007685-
RA 

2041 2316 

scaffold7-gene-9.2-
mRNA-1 

CLAGR_006790-
RA 

33 134 CLAGR_006789-
RA 

139 626 

scaffold1-gene-
27.136-mRNA-1 

CLAGR_002437-
RA 

1 537 CLAGR_002440-
RA 

584 860 

scaffold11-gene-
0.29-mRNA-1 

CLAGR_010874-
RA 

1 151 CLAGR_007071-
RA 

248 695 

scaffold8-gene-
16.126-mRNA-1 

CLAGR_004682-
RA 

13 555 CLAGR_004683-
RA 

590 953 

scaffold28-gene-
0.46-mRNA-1 

CLAGR_005941-
RA 

1 2014 CLAGR_005949-
RA 

2109 2980 

scaffold24-gene-
1.51-mRNA-1 

CLAGR_004588-
RA 

19 458 CLAGR_011136-
RA 

493 725 

scaffold24-gene-
1.23-mRNA-1 

CLAGR_004584-
RA 

9 352 CLAGR_004585-
RA 

449 600 

scaffold8-gene-
9.66-mRNA-1 

CLAGR_006718-
RA 

334 1355 CLAGR_005357-
RA 

1847 2225 

scaffold5-gene-
0.38-mRNA-1 

CLAGR_003104-
RB 

1 124 CLAGR_004311-
RA 

279 438 

scaffold5-gene-
0.38-mRNA-1 

CLAGR_003425-
RA 

1 220 CLAGR_004311-
RA 

279 438 

scaffold5-gene-
0.38-mRNA-1 

CLAGR_005321-
RA 

1 216 CLAGR_004311-
RA 

279 438 

scaffold5-gene-
0.38-mRNA-1 

CLAGR_009475-
RA 

1 240 CLAGR_004311-
RA 

279 438 

scaffold23-gene-
1.62-mRNA-1 

CLAGR_006035-
RA 

1 111 CLAGR_006034-
RA 

114 440 

scaffold1-gene-
20.39-mRNA-1 

CLAGR_003497-
RA 

1 805 CLAGR_003526-
RA 

822 1177 

scaffold8-gene-
11.3-mRNA-1 

CLAGR_001573-
RA 

403 506 CLAGR_001572-
RA 

1976 2464 

scaffold4-gene-9.7-
mRNA-1 

CLAGR_009118-
RA 

71 468 CLAGR_006403-
RA 

552 728 

scaffold1-gene-
14.66-mRNA-1 

CLAGR_000807-
RA 

25 65 CLAGR_000806-
RA 

101 710 

scaffold13-gene-
2.8-mRNA-1 

CLAGR_003692-
RA 

9 263 CLAGR_003693-
RA 

270 500 

scaffold12-gene-
11.47-mRNA-1 

CLAGR_004051-
RA 

2 63 CLAGR_004052-
RA 

106 855 

scaffold9-gene-
0.38-mRNA-1 

CLAGR_010917-
RA 

601 638 CLAGR_010087-
RA 

1261 1325 

scaffold4-gene-
16.69-mRNA-1 

CLAGR_006653-
RA 

1 340 CLAGR_008875-
RA 

405 554 

scaffold9-gene-
11.143-mRNA-1 

CLAGR_000142-
RA 

37 113 CLAGR_000141-
RA 

204 539 

scaffold5-gene-
14.67-mRNA-1 

CLAGR_002383-
RA 

3 274 CLAGR_001407-
RA 

380 587 

scaffold3-gene-
22.223-mRNA-1 

CLAGR_004454-
RA 

41 148 CLAGR_004403-
RA 

322 650 

scaffold3-gene-
22.223-mRNA-1 

CLAGR_009704-
RA 

13 319 CLAGR_004403-
RA 

322 650 

scaffold3-gene-
14.117-mRNA-1 

CLAGR_002952-
RA 

1 122 CLAGR_002951-
RA 

241 562 

scaffold10-gene-
5.129-mRNA-1 

CLAGR_008308-
RA 

1 557 CLAGR_008309-
RA 

649 850 

scaffold19-gene-
0.118-mRNA-1 

CLAGR_001349-
RA 

1 104 CLAGR_001348-
RA 

106 381 
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scaffold19-gene-
0.123-mRNA-1 

CLAGR_002085-
RA 

6 198 CLAGR_001152-
RA 

261 501 

scaffold19-gene-
0.123-mRNA-1 

CLAGR_002085-
RA 

6 198 CLAGR_002086-
RA 

252 621 

scaffold8-gene-
14.3-mRNA-1 

CLAGR_010805-
RA 

1 363 CLAGR_010815-
RA 

413 910 

scaffold1-gene-
18.86-mRNA-1 

CLAGR_000398-
RA 

84 296 CLAGR_010514-
RA 

369 733 

scaffold1-gene-
31.61-mRNA-1 

CLAGR_002734-
RA 

268 456 CLAGR_009288-
RA 

563 796 

scaffold1-gene-
31.61-mRNA-1 

CLAGR_008453-
RA 

61 443 CLAGR_009288-
RA 

563 796 

scaffold6-gene-
0.52-mRNA-1 

CLAGR_000061-
RA 

32 128 CLAGR_000062-
RA 

272 411 

scaffold15-gene-
0.117-mRNA-1 

CLAGR_001678-
RA 

8 1367 CLAGR_001729-
RA 

1369 2000 

scaffold17-gene-
4.118-mRNA-1 

CLAGR_008051-
RA 

1 131 CLAGR_008052-
RA 

517 654 

scaffold4-gene-
8.35-mRNA-1 

CLAGR_006370-
RA 

9 572 CLAGR_006373-
RA 

576 768 

scaffold9-gene-
14.211-mRNA-1 

CLAGR_001382-
RA 

17 333 CLAGR_001383-
RA 

338 864 

scaffold17-gene-
4.151-mRNA-1 

CLAGR_003272-
RA 

1 830 CLAGR_003269-
RA 

880 1351 

scaffold23-gene-
2.166-mRNA-1 

CLAGR_005490-
RA 

4 66 CLAGR_010467-
RA 

124 355 

scaffold1-gene-
3.18-mRNA-1 

CLAGR_008064-
RA 

74 526 CLAGR_008075-
RA 

601 726 

scaffold2-gene-
26.197-mRNA-1 

CLAGR_007536-
RA 

1 313 CLAGR_000249-
RA 

320 563 

scaffold2-gene-
1.49-mRNA-1 

CLAGR_006478-
RA 

4 452 CLAGR_006477-
RA 

473 593 

scaffold2-gene-
1.76-mRNA-1 

CLAGR_006864-
RA 

1 27 CLAGR_006863-
RA 

54 104 

scaffold4-gene-
19.38-mRNA-1 

CLAGR_001494-
RA 

76 202 CLAGR_001493-
RA 

249 410 

scaffold13-gene-
8.75-mRNA-1 

CLAGR_008673-
RA 

1 192 CLAGR_008672-
RA 

285 574 

scaffold4-gene-
9.19-mRNA-1 

CLAGR_007938-
RA 

77 415 CLAGR_000980-
RA 

445 754 

scaffold9-gene-
9.100-mRNA-1 

CLAGR_001822-
RA 

16 528 CLAGR_007873-
RA 

584 878 

scaffold9-gene-
9.100-mRNA-1 

CLAGR_007874-
RA 

1 566 CLAGR_007873-
RA 

584 878 

scaffold9-gene-6.8-
mRNA-2 

CLAGR_006189-
RA 

9 58 CLAGR_005149-
RA 

297 602 
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Table A-5: L. pustulata genes predicted by funannotate, which the Rosetta Stone method identified 
to be a gene fusion. Comparisons for the Rosetta Stone method were made against the genes of 
Cladonia grayi. Each row represents one possible gene fusion that involves two C. grayi genes. L. 
pustulata genes can appear more than once, if the fusion involves more than two C. grayi genes or if 
multiple C. grayi genes match the same fusion. The start and end positions of the C. grayi genes 
within the fused L. pustulata gene are given. C. grayi genes that are part of an LCALec group in which 
L. pustulata is absent are highlighted. C. grayi genes are highlighted in green if the L. pustulata 
ortholog was found via HaMStR and in blue if the L. pustulata ortholog was found by Exonerate. 

Fused gene Fusion partner #1 Start position 
in fused gene 

End position 
in fused gene Fusion partner #2 Start position 

in fused gene 
End position in 

fused gene 

FUN_01172 CLAGR_006478-RA 4 452 CLAGR_006477-RA 473 593 

FUN_09282 CLAGR_006187-RA 272 437 CLAGR_008444-RA 702 750 

FUN_04770 CLAGR_003678-RA 17 74 CLAGR_003677-RA 106 828 

FUN_03670 CLAGR_004917-RA 1 150 CLAGR_005022-RA 226 418 

FUN_05857 CLAGR_000104-RA 4 1448 CLAGR_000325-RA 1454 1618 

FUN_05857 CLAGR_000104-RA 4 1448 CLAGR_000484-RA 1451 1634 

FUN_05857 CLAGR_000104-RA 4 1448 CLAGR_005753-RA 1476 1601 

FUN_06909 CLAGR_000007-RA 90 180 CLAGR_001421-RA 192 563 

FUN_06909 CLAGR_000007-RA 90 180 CLAGR_006427-RA 307 502 

FUN_02492 CLAGR_010226-RA 1 279 CLAGR_010225-RA 315 720 

FUN_09239 CLAGR_001825-RA 92 346 CLAGR_002317-RA 384 610 

FUN_05192 CLAGR_010670-RA 34 74 CLAGR_010671-RA 79 711 

FUN_06709 CLAGR_010917-RA 601 638 CLAGR_010087-RA 1261 1325 

FUN_09697 CLAGR_001502-RA 29 444 CLAGR_001503-RA 543 757 

FUN_05709 CLAGR_000061-RA 32 128 CLAGR_000062-RA 272 411 

FUN_08949 CLAGR_005490-RA 4 66 CLAGR_010467-RA 124 355 

FUN_08024 CLAGR_005283-RA 1 96 CLAGR_005285-RA 120 205 

FUN_00192 CLAGR_004107-RA 464 1966 CLAGR_004098-RA 2018 2692 

FUN_08020 CLAGR_008144-RA 291 571 CLAGR_008145-RA 581 1549 

FUN_02036 CLAGR_008977-RA 158 223 CLAGR_008978-RA 373 776 

FUN_03170 CLAGR_007978-RA 1 1554 CLAGR_009783-RA 5192 6230 

FUN_02406 CLAGR_010481-RA 28 432 CLAGR_010480-RA 434 874 

FUN_00530 CLAGR_003450-RA 1 121 CLAGR_003449-RA 316 509 

FUN_02264 CLAGR_010952-RA 286 460 CLAGR_010951-RA 809 904 

FUN_05480 CLAGR_001573-RA 488 591 CLAGR_001572-RA 2061 2549 

FUN_05480 CLAGR_004546-RA 40 134 CLAGR_001572-RA 2061 2549 

FUN_05480 CLAGR_004546-RA 40 134 CLAGR_001573-RA 488 591 

FUN_05480 CLAGR_004546-RA 40 134 CLAGR_009720-RA 433 2546 

FUN_08153 CLAGR_001732-RA 1 48 CLAGR_001731-RA 83 733 

FUN_06830 CLAGR_009858-RB 1 75 CLAGR_009858-RA 80 308 

FUN_02295 CLAGR_010330-RA 283 385 CLAGR_010337-RA 620 705 
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FUN_02295 CLAGR_010333-RA 288 393 CLAGR_010337-RA 620 705 

FUN_01389 CLAGR_001848-RA 1 260 CLAGR_001849-RA 265 649 

FUN_04797 CLAGR_003628-RA 38 144 CLAGR_003627-RA 152 295 

FUN_07838 CLAGR_001778-RA 17 351 CLAGR_002376-RA 414 932 

FUN_07838 CLAGR_001778-RA 17 351 CLAGR_010946-RA 765 895 

FUN_03283 CLAGR_001494-RA 76 202 CLAGR_001493-RA 249 410 

FUN_05347 CLAGR_003237-RA 5 172 CLAGR_002845-RA 405 614 

FUN_05347 CLAGR_003237-RA 5 172 CLAGR_003238-RA 200 618 

FUN_08074 CLAGR_002271-RA 374 779 CLAGR_001196-RA 1052 1271 

FUN_08074 CLAGR_005383-RA 45 941 CLAGR_001196-RA 1052 1271 

FUN_08074 CLAGR_001196-RA 1052 1271 CLAGR_007633-RA 1325 1846 

FUN_08074 CLAGR_005031-RA 79 1298 CLAGR_007633-RA 1325 1846 

FUN_08074 CLAGR_002271-RA 374 779 CLAGR_007633-RA 1325 1846 

FUN_08074 CLAGR_005383-RA 45 941 CLAGR_007633-RA 1325 1846 

FUN_08074 CLAGR_008627-RA 323 1204 CLAGR_007633-RA 1325 1846 

FUN_01817 CLAGR_001206-RA 3 143 CLAGR_007281-RA 203 352 

FUN_06385 CLAGR_000569-RA 70 567 CLAGR_000568-RA 674 791 

FUN_06385 CLAGR_008728-RA 517 648 CLAGR_000568-RA 674 791 

FUN_07015 CLAGR_000123-RA 1 1823 CLAGR_000124-RA 1850 1896 

FUN_00334 CLAGR_010285-RA 32 299 CLAGR_010975-RA 365 590 

FUN_01718 CLAGR_002570-RA 90 202 CLAGR_001085-RA 243 634 

FUN_01718 CLAGR_002570-RA 90 202 CLAGR_002240-RA 279 762 

FUN_01718 CLAGR_002570-RA 90 202 CLAGR_003013-RA 334 642 

FUN_01718 CLAGR_002570-RA 90 202 CLAGR_003560-RA 353 692 

FUN_01718 CLAGR_002570-RA 90 202 CLAGR_007982-RA 349 527 

FUN_01718 CLAGR_002570-RA 90 202 CLAGR_008410-RA 338 759 

FUN_01718 CLAGR_002570-RA 90 202 CLAGR_009904-RA 332 762 

FUN_08204 CLAGR_000786-RA 1 1136 CLAGR_000787-RA 1166 1351 

FUN_08204 CLAGR_003336-RA 618 714 CLAGR_000787-RA 1166 1351 

FUN_04768 CLAGR_003656-RA 1 127 CLAGR_003655-RA 223 744 

FUN_08804 CLAGR_008061-RA 1 115 CLAGR_008060-RA 131 679 

FUN_08611 CLAGR_007329-RA 62 399 CLAGR_007330-RA 426 486 

FUN_00442 CLAGR_000807-RA 25 65 CLAGR_000806-RA 101 710 

FUN_09180 CLAGR_007053-RA 12 108 CLAGR_007054-RA 117 348 

FUN_06973 CLAGR_009372-RA 1 122 CLAGR_009371-RA 180 414 

FUN_00215 CLAGR_004634-RA 204 638 CLAGR_004633-RA 1031 1117 

FUN_07805 CLAGR_004247-RA 2 34 CLAGR_002744-RA 43 270 

FUN_07805 CLAGR_004247-RA 2 34 CLAGR_004248-RA 36 823 

FUN_02540 CLAGR_001969-RA 31 302 CLAGR_001968-RA 321 460 
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FUN_08893 CLAGR_006035-RA 1 111 CLAGR_006034-RA 114 440 

FUN_05930 CLAGR_008621-RA 1 397 CLAGR_008622-RA 483 2269 

FUN_01665 CLAGR_005123-RA 3 320 CLAGR_005122-RA 437 986 

FUN_07404 CLAGR_002032-RA 108 261 CLAGR_002033-RA 313 440 

FUN_06802 CLAGR_007432-RA 2 131 CLAGR_008268-RA 155 1437 

FUN_01165 CLAGR_006864-RA 1 27 CLAGR_006863-RA 54 104 

FUN_03249 CLAGR_001146-RA 370 537 CLAGR_007866-RA 613 822 

FUN_03249 CLAGR_004015-RA 12 537 CLAGR_007866-RA 613 822 

FUN_09318 CLAGR_005620-RA 1 68 CLAGR_005870-RA 293 707 

FUN_09318 CLAGR_005620-RA 1 68 CLAGR_005619-RA 71 884 

FUN_09318 CLAGR_005620-RA 1 68 CLAGR_007331-RA 372 471 

FUN_09252 CLAGR_008154-RA 5 148 CLAGR_000883-RA 206 1498 

FUN_09252 CLAGR_008154-RA 5 148 CLAGR_002878-RA 430 1081 

FUN_09252 CLAGR_004841-RA 234 987 CLAGR_005266-RA 1032 1280 

FUN_09252 CLAGR_008154-RA 5 148 CLAGR_004841-RA 234 987 

FUN_09252 CLAGR_008154-RA 5 148 CLAGR_002667-RA 965 1528 

FUN_09252 CLAGR_008154-RA 5 148 CLAGR_005266-RA 1032 1280 

FUN_09252 CLAGR_008154-RA 5 148 CLAGR_009814-RA 206 1355 

FUN_09252 CLAGR_008154-RA 5 148 CLAGR_010856-RA 903 1147 

FUN_09252 CLAGR_008154-RA 5 148 CLAGR_010985-RA 823 1158 

FUN_08037 CLAGR_005292-RA 1 51 CLAGR_005291-RA 57 700 

FUN_06956 CLAGR_006794-RA 55 125 CLAGR_006793-RA 341 545 

FUN_06508 CLAGR_005781-RA 1 166 CLAGR_005780-RA 218 381 

FUN_02124 CLAGR_007685-RA 805 1080 CLAGR_007684-RA 1112 1381 

FUN_08560 CLAGR_003157-RA 8 60 CLAGR_003158-RA 181 768 

FUN_06377 CLAGR_000524-RA 60 300 CLAGR_000525-RA 479 1938 

FUN_01689 CLAGR_005044-RA 970 1356 CLAGR_003320-RA 1598 1656 

FUN_01689 CLAGR_005044-RA 970 1356 CLAGR_005004-RA 1561 1668 

FUN_05276 CLAGR_007644-RA 1 351 CLAGR_004897-RA 361 530 

FUN_04306 CLAGR_000054-RA 1 308 CLAGR_007582-RA 439 674 

FUN_02277 CLAGR_009020-RA 8 438 CLAGR_002834-RA 569 706 

FUN_02277 CLAGR_011233-RA 42 380 CLAGR_002834-RA 569 706 

FUN_04496 CLAGR_003533-RA 1 189 CLAGR_003532-RA 278 531 

FUN_02371 CLAGR_010502-RA 217 443 CLAGR_010503-RA 486 716 

FUN_04669 CLAGR_006858-RA 1 546 CLAGR_005699-RA 632 884 

FUN_06840 CLAGR_006189-RA 4 35 CLAGR_005149-RA 254 538 

FUN_06840 CLAGR_006189-RA 4 35 CLAGR_006190-RA 47 277 

FUN_06840 CLAGR_006189-RA 4 35 CLAGR_006720-RA 44 543 

FUN_04579 CLAGR_001642-RA 10 86 CLAGR_004993-RA 224 923 
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FUN_04576 CLAGR_003104-RB 1 124 CLAGR_004311-RA 279 438 

FUN_04576 CLAGR_003425-RA 1 220 CLAGR_004311-RA 279 438 

FUN_04576 CLAGR_005321-RA 1 216 CLAGR_004311-RA 279 438 

FUN_04576 CLAGR_009475-RA 1 240 CLAGR_004311-RA 279 438 

FUN_00256 CLAGR_004552-RA 3 73 CLAGR_004551-RA 122 326 

FUN_00702 CLAGR_007667-RA 19 217 CLAGR_007668-RA 252 384 

FUN_07099 CLAGR_001382-RA 17 345 CLAGR_001383-RA 350 876 

FUN_07650 CLAGR_003772-RA 1 734 CLAGR_007456-RA 769 1014 

FUN_09665 CLAGR_002823-RA 42 100 CLAGR_010152-RA 256 437 

FUN_06183 CLAGR_010775-RA 9 248 CLAGR_010774-RA 267 461 

FUN_09663 CLAGR_010999-RA 36 121 CLAGR_011000-RA 184 273 

FUN_00871 CLAGR_009784-RA 39 1333 CLAGR_006911-RA 1752 2274 

FUN_00871 CLAGR_009784-RA 39 1333 CLAGR_010779-RA 1850 1945 

FUN_00871 CLAGR_009784-RA 39 1333 CLAGR_010242-RA 1685 2587 

FUN_00871 CLAGR_010780-RA 586 795 CLAGR_006911-RA 1752 2274 

FUN_00871 CLAGR_010780-RA 586 795 CLAGR_010779-RA 1850 1945 

FUN_00871 CLAGR_010780-RA 586 795 CLAGR_010242-RA 1685 2587 

FUN_00871 CLAGR_010243-RA 50 1024 CLAGR_006911-RA 1752 2274 

FUN_00871 CLAGR_010243-RA 50 1024 CLAGR_010779-RA 1850 1945 

FUN_00871 CLAGR_010243-RA 50 1024 CLAGR_010242-RA 1685 2587 

FUN_08214 CLAGR_001661-RA 54 458 CLAGR_001662-RA 498 587 

FUN_00583 CLAGR_001612-RA 23 68 CLAGR_005759-RA 263 437 

FUN_08818 CLAGR_008051-RA 1 143 CLAGR_008052-RA 532 669 

FUN_08748 CLAGR_005224-RA 15 273 CLAGR_005223-RA 400 751 

FUN_01875 CLAGR_009289-RA 1 249 CLAGR_009640-RA 317 448 

FUN_06440 CLAGR_006790-RA 33 134 CLAGR_006789-RA 139 507 

FUN_06443 CLAGR_006792-RA 5 398 CLAGR_006795-RA 470 545 

FUN_07506 CLAGR_005526-RA 1 65 CLAGR_005525-RA 101 889 

FUN_06042 CLAGR_003035-RA 12 452 CLAGR_003914-RA 509 629 

FUN_09721 CLAGR_000624-RA 1 439 CLAGR_009331-RA 592 1036 

FUN_09721 CLAGR_009332-RA 1 434 CLAGR_009331-RA 592 1036 

FUN_03230 CLAGR_006653-RA 1 318 CLAGR_006652-RA 396 1193 

FUN_03230 CLAGR_006653-RA 1 318 CLAGR_008875-RA 521 671 

FUN_07182 CLAGR_006244-RA 25 61 CLAGR_006245-RA 66 524 

FUN_05792 CLAGR_000109-RA 3 117 CLAGR_000110-RA 161 408 

FUN_07041 CLAGR_000162-RA 1 56 CLAGR_007333-RA 73 851 

FUN_01426 CLAGR_009169-RA 12 95 CLAGR_009170-RA 138 490 

FUN_04144 CLAGR_003178-RA 7 1735 CLAGR_007860-RA 2485 2647 

FUN_04144 CLAGR_009968-RA 1039 2462 CLAGR_007860-RA 2485 2647 
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FUN_02745 CLAGR_008010-RA 1 510 CLAGR_008011-RA 543 650 

FUN_01437 CLAGR_006180-RA 9 211 CLAGR_006182-RA 291 489 

FUN_03046 CLAGR_000936-RA 9 216 CLAGR_004022-RA 233 383 

FUN_02248 CLAGR_010339-RA 129 272 CLAGR_001960-RA 1039 1435 

FUN_02248 CLAGR_010339-RA 129 272 CLAGR_008758-RA 1085 1445 

FUN_03752 CLAGR_005276-RA 10 742 CLAGR_005277-RA 872 1594 

FUN_02486 CLAGR_005954-RA 44 795 CLAGR_005953-RA 873 1794 

FUN_05417 CLAGR_006718-RA 334 1355 CLAGR_005357-RA 1847 2225 

FUN_02566 CLAGR_010933-RA 1 133 CLAGR_008989-RA 196 853 

FUN_04000 CLAGR_009110-RA 1 483 CLAGR_009109-RA 556 826 

FUN_09476 CLAGR_001950-RA 1 230 CLAGR_000982-RA 707 783 

FUN_08680 CLAGR_009335-RA 734 1880 CLAGR_005503-RA 2006 2155 

FUN_08680 CLAGR_011257-RA 1815 1924 CLAGR_005503-RA 2006 2155 

FUN_07723 CLAGR_008673-RA 1 192 CLAGR_008672-RA 285 574 

FUN_07724 CLAGR_011062-RA 1 40 CLAGR_010079-RA 225 299 

FUN_05735 CLAGR_000328-RA 41 124 CLAGR_000327-RA 171 293 

FUN_02410 CLAGR_002952-RA 1 122 CLAGR_002951-RA 241 562 

FUN_00169 CLAGR_004123-RA 1 441 CLAGR_004122-RA 468 1094 

FUN_06037 CLAGR_010984-RA 769 947 CLAGR_011236-RA 1629 1876 

FUN_09582 CLAGR_004584-RA 9 352 CLAGR_004585-RA 449 600 

FUN_08415 CLAGR_002785-RA 74 175 CLAGR_001044-RB 176 530 

FUN_08415 CLAGR_002785-RA 74 175 CLAGR_002786-RA 203 594 

FUN_08224 CLAGR_005645-RA 1 93 CLAGR_005644-RA 127 281 

FUN_00531 CLAGR_007523-RA 193 413 CLAGR_003448-RA 484 1097 

FUN_06453 CLAGR_006824-RA 1 100 CLAGR_006823-RA 109 529 

FUN_03523 CLAGR_002684-RA 135 247 CLAGR_002683-RA 263 371 

FUN_09358 CLAGR_006334-RA 32 382 CLAGR_006333-RA 387 577 

FUN_01637 CLAGR_005101-RA 1 306 CLAGR_005096-RA 340 662 

FUN_05257 CLAGR_002264-RA 5 1707 CLAGR_001747-RA 1785 2119 

FUN_04736 CLAGR_006069-RA 5 64 CLAGR_006068-RA 73 317 

FUN_00342 CLAGR_001111-RA 20 263 CLAGR_002142-RA 366 1284 

FUN_00342 CLAGR_001111-RA 20 263 CLAGR_004654-RA 1030 1182 

FUN_00342 CLAGR_001111-RA 20 263 CLAGR_009526-RA 325 1565 

FUN_00342 CLAGR_001111-RA 20 263 CLAGR_010900-RA 1234 1512 

FUN_00342 CLAGR_004367-RA 7 272 CLAGR_002142-RA 366 1284 

FUN_00342 CLAGR_004367-RA 7 272 CLAGR_004654-RA 1030 1182 

FUN_00342 CLAGR_004367-RA 7 272 CLAGR_009526-RA 325 1565 

FUN_00342 CLAGR_004367-RA 7 272 CLAGR_010900-RA 1234 1512 

FUN_01456 CLAGR_006167-RA 251 623 CLAGR_006166-RA 700 1448 
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FUN_08990 CLAGR_002085-RA 6 192 CLAGR_002086-RA 246 615 

FUN_01900 CLAGR_009280-RA 1 56 CLAGR_009281-RA 73 413 

FUN_05087 CLAGR_001587-RA 1 74 CLAGR_001586-RA 98 819 

FUN_05675 CLAGR_000768-RA 251 345 CLAGR_002995-RA 488 745 

FUN_05675 CLAGR_000768-RA 251 345 CLAGR_003006-RA 614 745 

FUN_03918 CLAGR_007161-RA 356 508 CLAGR_011129-RA 510 636 

FUN_07800 CLAGR_003500-RA 1 155 CLAGR_003501-RA 303 654 

FUN_07693 CLAGR_001522-RA 38 348 CLAGR_001521-RA 478 1481 

FUN_02106 CLAGR_008614-RA 22 52 CLAGR_008613-RA 63 186 

FUN_03591 CLAGR_008422-RA 59 268 CLAGR_009701-RA 356 409 

FUN_03451 CLAGR_007807-RA 28 274 CLAGR_000337-RA 387 615 

FUN_03451 CLAGR_010693-RA 39 309 CLAGR_000337-RA 387 615 

FUN_03451 CLAGR_007807-RA 28 274 CLAGR_004095-RA 338 567 

FUN_03451 CLAGR_007807-RA 28 274 CLAGR_010574-RA 387 564 

FUN_03451 CLAGR_010693-RA 39 309 CLAGR_004095-RA 338 567 

FUN_03451 CLAGR_010693-RA 39 309 CLAGR_010574-RA 387 564 

FUN_01311 CLAGR_001897-RA 123 283 CLAGR_001896-RA 390 575 

FUN_09083 CLAGR_006210-RA 1 269 CLAGR_006211-RA 289 472 

FUN_09083 CLAGR_006210-RA 1 269 CLAGR_011195-RA 664 798 

FUN_09083 CLAGR_006211-RA 289 472 CLAGR_011195-RA 664 798 

 
Table A-6: The inverted repeats (IR) found in the 5 Lecanoromycetes, along with median length and 
G/C content. 

Taxon 
Number of 

IR 

Median IR 

length 

Median % G/C in 

IR 

Genomewide % 

G/C 

Lasallia pustulata 1,464 819.5 50.54 51.34 

Umbilicaria 

muehlenbergii 
1,992 541 32.25 46.82 

Cladonia grayi 29,396 807 11.13 44.37 

Usnea florida 2643 450 24.70 42.71 

Xanthoria parietina 670 2050.5 40.47 49.73 
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Table A-7: The 101 taxa that were used to find orthologs to the LCALec genes that were privately lost 
in L. pustulata. 

Kingdom Phylum Family Species 

Fungi Ascomycota Argynnaceae Lepidopterella palustris 

Fungi Ascomycota Arthrodermataceae Microsporum canis 

Fungi Ascomycota Arthrodermataceae Nannizzia gypsea CBS 118893 

Fungi Ascomycota Arthrodermataceae Trichophyton equinum 

Fungi Ascomycota Arthrodermataceae Trichophyton verrucosum 

Fungi Ascomycota Aspergillaceae Aspergillus clavatus 

Fungi Ascomycota Aspergillaceae Aspergillus nidulans 

Fungi Ascomycota Aspergillaceae Aspergillus oryzae 

Fungi Ascomycota Aspergillaceae Aspergillus ruber 

Fungi Ascomycota Aspergillaceae Aspergillus terreus 

Fungi Ascomycota Aspergillaceae Penicillium chrysogenum 

Fungi Ascomycota Aulographaceae Aulographum hederae 

Fungi Ascomycota Botryosphaeriaceae Botryosphaeria dothidea 

Fungi Ascomycota Botryosphaeriaceae Macrophomina phaseolina MS6 

Fungi Ascomycota Chaetomiaceae Chaetomium globosum 

Fungi Ascomycota Chaetomiaceae Thielavia terrestris 

Fungi Ascomycota Cladoniaceae Cladonia grayi 

Fungi Ascomycota Debaryomycetaceae Candida albicans 

Fungi Ascomycota Debaryomycetaceae Candida dubliniensis 

Fungi Ascomycota Debaryomycetaceae Debaryomyces hansenii 

Fungi Ascomycota Gloniaceae Cenococcum geophilum 1.58 

Fungi Ascomycota Hypocreaceae Trichoderma atroviride 

Fungi Ascomycota Hypocreaceae Trichoderma reesei 

Fungi Ascomycota Hysteriaceae Hysterium pulicare 

Fungi Ascomycota Hysteriaceae Rhytidhysteron rufulum 

Fungi Ascomycota Mycosphaerellaceae Passalora fulva 

Fungi Ascomycota Mycosphaerellaceae Sphaerulina musiva SO2202 

Fungi Ascomycota Mycosphaerellaceae Sphaerulina populicola 

Fungi Ascomycota Mycosphaerellaceae Zasmidium cellare 

Fungi Ascomycota Mycosphaerellaceae Zymoseptoria tritici 

Fungi Ascomycota Myriangiaceae Myriangium duriaei CBS 260.36 

Fungi Ascomycota Nectriaceae Fusarium graminearum 

Fungi Ascomycota Parmeliaceae Usnea florida 

Fungi Ascomycota Patellariaceae Patellaria atrata 

Fungi Ascomycota Piedraiaceae Piedraia hortae 
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Fungi Ascomycota Plectosphaerellaceae Verticillium dahliae 

Fungi Ascomycota Pleomassariaceae Pleomassaria siparia 

Fungi Ascomycota Pleosporaceae Bipolaris maydis 

Fungi Ascomycota Pleosporaceae Bipolaris maydis ATCC 48331 

Fungi Ascomycota Pleosporaceae Bipolaris sorokiniana ND90Pr 

Fungi Ascomycota Schizosaccharomycetaceae Schizosaccharomyces cryophilus OY26 

Fungi Ascomycota Sordariaceae Neurospora crassa 

Fungi Ascomycota Sordariaceae Neurospora discreta 

Fungi Ascomycota Sporormiaceae Sporormia fimetaria 

Fungi Ascomycota Teloschistaceae Xanthoria parietina 

Fungi Ascomycota Trichocomaceae Thermomyces 

Fungi Ascomycota Trypetheliaceae Trypethelium eluteriae 

Fungi Ascomycota Umbilicariaceae Umbilicaria muehlenbergii 

Fungi Ascomycota Zopfiaceae Zopfia rhizophila 

Fungi Basidiomycota Cryptococcaceae Cryptococcus neoformans var. neoformans 

Fungi Basidiomycota Dacryobolaceae Postia placenta 

Fungi Basidiomycota Psathyrellaceae Coprinopsis cinerea 

Fungi Basidiomycota Schizophyllaceae Schizophyllum commune 

Fungi Basidiomycota Serpulaceae Serpula lacrymans 

Fungi Basidiomycota Tricholomataceae Laccaria bicolor 

Fungi Mucoromycota Phycomycetaceae Phycomyces blakesleeanus 

Metazoa Arthropoda Apidae Apis mellifera 

Metazoa Arthropoda Bombycidae Bombyx mori 

Metazoa Arthropoda Culicidae Aedes aegypti 

Metazoa Arthropoda Culicidae Anopheles gambiae 

Metazoa Arthropoda Drosophilidae Drosophila ananassae 

Metazoa Arthropoda Drosophilidae Drosophila erecta 

Metazoa Arthropoda Drosophilidae Drosophila grimshawi 

Metazoa Arthropoda Drosophilidae Drosophila melanogaster 

Metazoa Arthropoda Drosophilidae Drosophila mojavensis 

Metazoa Arthropoda Drosophilidae Drosophila persimilis 

Metazoa Arthropoda Drosophilidae Drosophila pseudoobscura 

Metazoa Arthropoda Drosophilidae Drosophila sechellia 

Metazoa Arthropoda Drosophilidae Drosophila simulans 

Metazoa Arthropoda Drosophilidae Drosophila virilis 

Metazoa Arthropoda Drosophilidae Drosophila willistoni 

Metazoa Arthropoda Drosophilidae Drosophila yakuba 

Metazoa Chordata Cionidae Ciona intestinalis 

Metazoa Cnidaria Edwardsiidae Nematostella vectensis 
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Ochrophyta Phaeophyceae Ectocarpaceae Ectocarpus siliculosus 

Viridiplantae Chlorophyta Coccomyxaceae Coccomyxa subellipsoidea C-169 

Viridiplantae Chlorophyta Mamiellaceae Micromonas commoda 

Viridiplantae Streptophyta Brassicaceae Brassica rapa 

Viridiplantae Streptophyta Rutaceae Citrus sinensis 

- - - Phytophthora sojae 

- - - Polysphondylium pallidum 

- Apusozoa Apusomonadidae Thecamonas trahens 

- Bacillariophyta Bacillariaceae Fragilariopsis 

- Bacillariophyta Phaeodactylaceae Phaeodactylum tricornutum 

- Bacillariophyta Thalassiosiraceae Thalassiosira pseudonana 

- Ciliophora Parameciidae Paramecium tetraurelia 

- Euglenozoa Trypanosomatidae Leishmania infantum 

- Euglenozoa Trypanosomatidae Leishmania major strain Friedlin 

- Percolozoa Vahlkampfiidae Naegleria gruberi 

Archaea Euryarchaeota Methanocorpusculaceae Methanocorpusculum labreanum Z 

Eubacteria Cyanobacteria Acaryochloridaceae Acaryochloris marina 

Eubacteria Cyanobacteria Acaryochloridaceae Acaryochloris marina MBIC11017 

Eubacteria Cyanobacteria Cyanothecaceae Cyanothece sp. PCC 7425 

Eubacteria Cyanobacteria Nostocaceae Anabaena variabilis ATCC 29413 

Eubacteria Cyanobacteria Prochloraceae Prochlorococcus marinus str. MIT 9303 

Eubacteria Cyanobacteria Prochloraceae Prochlorococcus marinus str. MIT 9313 

Eubacteria Cyanobacteria Rivulariaceae Calothrix sp. PCC 7507 

Eubacteria Cyanobacteria Synechococcaceae Cyanobium gracile PCC 6307 

Eubacteria Cyanobacteria Synechococcaceae Synechococcus sp. JA-2-3B'a(2-13) 

Eubacteria Proteobacteria Cardiobacteriaceae Dichelobacter nodosus VCS1703A 

Eubacteria Proteobacteria Polyangiaceae Sorangium cellulosum So ce56 
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Table A-8: GO-terms that are significantly enriched among genes lost in the last common ancestor of 
the Lecanoromycetes, along with their description and false-discovery rate corrected p-values. 

GO term GO description FDR-corrected p-
value 

GO:0006351 transcription, DNA-templated 0 

GO:0006357 regulation of transcription from RNA polymerase II promoter 0 

GO:0097659 nucleic acid-templated transcription 0 

GO:0032774 RNA biosynthetic process 0 

GO:0019219 regulation of nucleobase-containing compound metabolic 
process 0 

GO:0006355 regulation of transcription, DNA-templated 0 

GO:0051252 regulation of RNA metabolic process 0 

GO:0055085 transmembrane transport 0 

GO:1903506 regulation of nucleic acid-templated transcription 0 

GO:2001141 regulation of RNA biosynthetic process 0 

GO:0055114 oxidation-reduction process 0 

GO:0008150 biological_process 0 

GO:0008152 metabolic process 0 

GO:0010468 regulation of gene expression 0 

GO:2000112 regulation of cellular macromolecule biosynthetic process 0 

GO:0010556 regulation of macromolecule biosynthetic process 0 

GO:0000272 polysaccharide catabolic process 0 

GO:0051171 regulation of nitrogen compound metabolic process 0 

GO:0031326 regulation of cellular biosynthetic process 0 

GO:0009889 regulation of biosynthetic process 0 

GO:0034654 nucleobase-containing compound biosynthetic process 0 

GO:0044710 single-organism metabolic process 0 

GO:0016052 carbohydrate catabolic process 0 

GO:0005975 carbohydrate metabolic process 0 

GO:0005976 polysaccharide metabolic process 0 

GO:0060255 regulation of macromolecule metabolic process 0 

GO:0019438 aromatic compound biosynthetic process 0.002 

GO:0031323 regulation of cellular metabolic process 0.004 

GO:0010410 hemicellulose metabolic process 0.004 

GO:0008643 carbohydrate transport 0.004 

GO:0080090 regulation of primary metabolic process 0.004 

GO:1901362 organic cyclic compound biosynthetic process 0.004 

GO:0019222 regulation of metabolic process 0.004 

GO:0018130 heterocycle biosynthetic process 0.01 

GO:0045491 xylan metabolic process 0.02 

GO:0045493 xylan catabolic process 0.02 
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Table A-9: Rate of LCALec gene loss for the Lecanoromycetes. Given the lack of RNAseq data for U. 
muehlenbergii, no rate could be calculated. 

 
Lasallia 

pustulata 
Cladonia grayi Usnea florida 

Xanthoria 

parietina 

Umbilicaria 

muehlenbergii 

Lost LCALec 

per mya 
0.47 0.30 0.26 0.40 N/A 

 

Table A-10: The putative functional annotation for the 28 private, high-confidence LCALec loss 
candidates for L. pustulata. The four genes in which an ortholog could be identified in L. hispanica 
are highlighted in yellow. All genes found in these LCALec HOGs were assigned to KEGG 
orthologous groups (KO) and annotated with Gene Ontology (GO) terms and Pfam domains. 

HOG KO identifier GO terms Pfam domains 

HOG962 - 

EC:3.2.1.18, hydrolase activity (GO:0016787), 

hydrolase activity, acting on glycosyl bonds 

(GO:0016798), exo-alpha-sialidase activity 

(GO:0004308) 

DUF346 (PF03984.11) 

HOG3669 - 
hydrolase activity (GO:0016787), catalytic activity 

(GO:0003824) 
Abhydrolase_1 (PF00561.18) 

HOG6657 - - - 

HOG2339 - 

oxidation-reduction process (GO:0055114), metabolic 

process (GO:0044710), oxidoreductase activity 

(GO:0016491), regulation of biological process 

(GO:0050789), metal ion binding (GO:0046872) 

2OG-FeII_Oxy (PF03171.18), DIOX_N 

(PF14226.4) 

HOG985 - - Peptidase_S8 (PF00082.20) 

HOG5535 - - HET (PF06985.9) 

HOG6976 - 

zinc ion binding (GO:0008270), EC:1.1.1.1, oxidation-

reduction process (GO:0055114), alcohol dehydrogenase 

(NAD) activity (GO:0004022), oxidoreductase activity 

(GO:0016491) 

ADH_zinc_N (PF00107.24), ADH_N 

(PF08240.10) 

HOG3285 - - CorA (PF01544.16) 

HOG4477 - membrane (GO:0016020) MAPEG (PF01124.16) 

HOG3066 - - - 

HOG826 - - 
Methyltransf_25 (PF13649.4), 

Methyltransf_11 (PF08241.10) 

HOG22 - - Pkinase (PF00069.23) 

HOG5972 - 
nuclease activity (GO:0004518), nucleic acid metabolic 

process (GO:0090304) 
Exo_endo_phos (PF03372.21) 

HOG5783 - - - 

HOG3759 K06688 

nucleus (GO:0005634), cytoplasm (GO:0005737), 

ubiquitin protein ligase activity (GO:0061630), 

regulation of mitotic metaphase/anaphase transition 

(GO:0030071), ubiquitin protein ligase binding 

UQ_con (PF00179.24) 
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(GO:0031625), protein polyubiquitination 

(GO:0000209), anaphase-promoting complex-dependent 

catabolic process (GO:0031145), ATP binding 

(GO:0005524) 

HOG4273 - - Methyltransf_23 (PF13489.4) 

HOG6659 - - - 

HOG1675 - 

metabolic process (GO:0008152), S-

adenosylmethionine-dependent methyltransferase 

activity (GO:0008757), cytoplasm (GO:0005737), 

methylation (GO:0032259), methyltransferase activity 

(GO:0008168), integral component of membrane 

(GO:0016021), membrane (GO:0016020) 

Methyltransf_11 (PF08241.10) 

HOG911 - - - 

HOG1265 - - - 

HOG493 - - - 

HOG2532 - transferase activity (GO:0016740) Fructosamin_kin (PF03881.12) 

HOG1290 - catalytic activity (GO:0003824) 
FAD_binding_4 (PF01565.21), BBE 

(PF08031.10) 

HOG4614 K00079 
oxidoreductase activity (GO:0016491), oxidation-

reduction process (GO:0055114) 
adh_short (PF00106.23) 

HOG3350 - - - 

HOG5287 - 
metabolic process (GO:0008152), catalytic activity 

(GO:0003824), transferase activity (GO:0016740) 

Ketoacyl-synt_C (PF02801.20), KR 

(PF08659.8), PS-DH (PF14765.4), 

KAsynt_C_assoc (PF16197.3), 

Acyl_transf_1 (PF00698.19), 

ADH_zinc_N_2 (PF13602.4), ADH_N 

(PF08240.10), ketoacyl-synt (PF00109.24), 

ADH_zinc_N (PF00107.24) 

HOG588 - 
nucleus (GO:0005634), mitochondrion (GO:0005739), 

intracellular part (GO:0044424), cytosol (GO:0005829) 
- 

HOG4755 - - Ank_2 (PF12796.5) 
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Figures 

 

 
Figure A-1: Positions of the repetitive elements that were predicted in the C. grayi pseudogenome. If 
repeats overlap within the first or last 100bp of the original contig borders they were classified 
accordingly. Otherwise they were classified to be located in the central part of the contigs. 

 

 
Figure A-2: Readcoverages for the MIRA and SPAdes assemblies of the genomes of L. pustulata (A) 
and Trebouxia sp. (B). 

A	

B	
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Figure A-3: NG50 vs NGA50 for the assemblies across all 11 data sets and the six assemblers. 
Misassemblies generated by wrongly joining non-adjacent sections of the reference genome will 
decrease the NGA50 value compared to the NG50 value. Different assemblers are represented by 
color. The size of the points reflects the percentage of the reference genome covered by the assembly. 
The rug plot along the x- and the y-axis identifies the exact values for the individual assemblers. 

 

 
Figure A-4: Treemap of Biological Process Gene Ontology terms annotated in Lasallia pustulata. 
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Figure A-5: Intersections amongst the unique GO terms that were assigned to the five 
Lecanoromycetes species. 

 
Figure A-6: Intersections amongst the unique Pfam domains annotated to the five Lecanoromycetes 
species. 
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Figure A-7: Treemap of the Biological Process Gene Ontology terms assigned to the annotated genes 
of Trebouxia sp. 

 

 
Figure A-8: Intersections among the unique Pfam domains found between Trebouxia sp. and five 
other Chlorophyta. 
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Figure A-9: Insertion/Deletion errors (purple bars) that are consistently observed in mapping of the 
read pairs of both the Illumina read- and mate-pair libraries compared to the assembly. 

 
Figure A-10: Regions in which the Illumina coverage drops below 10x while the PacBio coverage 
remains constant. X-axis shows the percent G/C for the region, the Y-Axis shows the length. The 
color code shows whether the region overlaps a predicted inverted repeat (blue) or not (red). The 
marginal plots show the density of length and G/C for the two categories. 
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Figure A-11: Complete maximum likelihood tree that was used to place the L. pustulata and 
Trebouxia sp.. Node labels give the bootstrap support. Only bootstrap values <100 are shown.  
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Figure A-12: Gene gains and losses as predicted by two further, non-overlapping sets of 
Eurotiomycetes and Dothideomycetes 
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Figure A-13: The phylogenetic profile for the further 24 LCALec genes that are privately lost in L. 
pustulata, but could not be verified by a found ortholog in the draft genome of L. hispanica. 
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INNOVATION, DUBLIN 
2011 - WINNER OF THE PLOS/MENDELEY BINARY BATTLE 
 First place for openSNP, awarded for the best/most 

creative use of the respective APIs (USD 10,000) 
- WINNER OF THE WIKIMEDIA WISSENSWERT CONTEST 

 Granted to openSNP to get underrepresented minorities 
involved in open science and personal genomics (5,000 €) 

 
SELECTED PUBLICATIONS 
2017  - Bosman J, Bruo I, Chapman C, Greshake Tzovaras B, 

Jacobs N, Kramer B, Martone M, Murphy F, O’Donnell 
DP, Bar-Sinai M, Hagstrom S, Utley J, Veksler L. The 
Scholarly Commons – principles and practices to guide 
research communication OSF Preprints, 
doi:10.17605/OSF.IO/6C2XT 
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 - Schell T, Feldmeyer B, Schmidt H, Greshake B, Tills O, 
Truebano M, Rundle SD, Paule J, Ebersberger I, 
Pfenninger M. An annotated draft genome for Radix 
auricularia Genome Biology and Evolution, (9)3, 
doi:10.1093/gbe/evx032  

- Himmelstein, DS, Romero AR, McLaughlin SR, 
Greshake Tzovaras B, Greene CS. Sci-Hub provides access 
to nearly all scholarly literature PeerJ Preprints, 5:e3100v1 
doi:10.7287/peerj.preprints.3100v1 

- Haeusermann T*, Greshake B*, Blasimme A, Irdam D, 
Richards M, Vayena E. Open sharing of genomic data: who 
does it and why? PLOS ONE 12(5): e0177158 
doi:10.1371/journal.pone.0177158 

 - Greshake B. Looking Into Pandora’s Box: The Content Of 
Sci-Hub And Its Usage F1000Research 6:541 doi: 
10.12688/f1000research.11366.1 

2016  - Grimm DB, Roqueiro D, Salome P, Kleeberger S, 
Greshake B, Zhu W, Liu C, Lippert C, Stegle O, 
Schölkopf B, Weigel D, Borgwardt K. easyGWAS: A Cloud- 
Based Platform for Comparing the Results of Genome-Wide 
Association Studies The Plant Cell vol. 29 no. 1 5-19  

- Greshake B. Correlating the Sci-Hub data with World Bank 
Indicators and Identifying Academic Use The Winnower 
4:e146485.57797 (2016). DOI: 10.15200/winn.146485.57797 

- Greshake B, Zehr S, Dal Grande F, Meiser A, Schmitt I, 
Ebersberger I. Potential and pitfalls of eukaryotic metagenome 
skimming: a test case for lichens Molecular Ecology 
Resources (online ahead of print)  

2015  - Vayena E, Brownsword R, Edwards SJ, Greshake B, 
Kahn JP, Ladher N, Montgomery J, O’Connor D, O’Neill 
O, Richards MP, Rid A, Sheehan M, Wicks P, Tasioulas J. 
Research led by participants: a new social contract for a new 
kind of research Journal of Medical Ethics, medethics-2015-
102663  

- Corpas M, Valdivia-Granda W*, Torres N*, Greshake 
B*, Coletta A, Knaus A, Harrison AP, Cariaso M, Moran 
F, Nielsen F, Swan D, Weiss Sols DY, Krawitz P, 
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Schacherer P, Schols P, Yang H, Borry P, Glusman G, 
Robinson PN. Crowdsourced direct-to-consumer genomic 
analysis of a family quartet BMC Genomics 16 (1), 910  

2014  - Greshake B*, Bayer P*, Rausch H, Zimmer F, Reda J. 
openSNP - a crowdsourced web resource for personal genomics, 
PLOS ONE 9 (3), e89204  

2013  - Schmidt PA, Balint M, Greshake B, Bandow C, Römbke 
J, Schmitt I. Illumina metabarcoding of a soil fungal 
community Soil Biology and Biochemistry 65, 128- 132  

The full list can be found at http://orcid.org/0000-0002-9925-9623, * denotes 
shared authorship. 
 
SELECTED TALKS/PANELS 
2017 - SAGE ASSEMBLY 

Seattle, invited closing remarks 
- LGBTSTEMINAR 
Sheffield, invited keynote. 
 

2016 - PERSONALIZED HEALTH IN THE DIGITAL AGE 
Geneva, The Personal Data is Political, invited keynote. 
- BIOINFORMATICS OPEN SOURCE CONFERENCE 
Orlando, Growing and sustaining open source communities, 
invited panel with Abigail Cabunoc Mayes, Jamie 
Whitacre, John Chilton and Natasha Wood 
- SOCIETY FOR MOLECULAR BIOLOGY & EVOLUTION 
Brisbane, The genomic footprint of lichenization: comparative 
genomics of Lecanoromycetes, accepted talk 
 

2015 - LIFT 
Basel, Opening Up a Million Genomes (for Starters), invited 
keynote. 
- INTERNATIONAL CONFERENCE ON GENOMICS 
Shenzhen, Transforming Direct-To-Consumer to Direct-To-
Crowd Genetic Testing, invited talk. 
- CITIZEN SCIENCE 
Zurich, Workshop at the ETH, invited talk. 

 
 


