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Abstract

Tumor progression largely depends on the presence of alternatively polarized (M2) tumor-

associated macrophages (TAMs), whereas the classical M1-polarized macrophages can

promote anti-tumorigenic immune responses. Thus, selective inhibition of M2-TAMs is a

desirable anti-cancer approach in highly resistant tumor entities such as hepatocellular car-

cinoma (HCC) or breast cancer. We here examined whether a peptide that selectively binds

to and is internalized by in vitro-differentiated murine M2 macrophages as compared to M1

macrophages, termed M2pep, could be used to selectively target TAMs in HCC and breast

carcinoma. We confirmed selectivity of M2pep for in vitro M2 polarized macrophages. Upon

incubation of suspended mixed 4T1 tumor cells with M2pep, high amounts of the TAMs

were found to be associated with M2pep, whereas in mixed tumor cell suspensions from

two HCC mouse models, M2pep showed only low-degree binding to TAMs. M2pep also

showed low-degree targeting of liver macrophages. This indicates that the TAMs in different

tumor entities show different targeting of M2pep and that M2pep is a very promising

approach to develop selective M2-TAM-targeting in tumor entities containing M2-TAMs with

significant amounts of the so far elusive M2pep receptor(s).

Introduction

Mortality of patients with carcinomas such as breast carcinoma or hepatocellular carcinoma

(HCC) is strongly determined by the aggressiveness of the tumor, which is, among others,

determined by the tumor stromal compartment, containing i. e. fibroblasts, endothelial cells

and infiltrating immune cells. In particular, tumor-associated macrophages (TAMs) are recog-

nized to play a critical role in the regulation of the inflammatory microenvironment during

carcinogenesis. The majority of TAMs resembles M2 or alternatively polarized macrophages

that promote tumor progression by secreting pro-angiogenic and growth factors and by sup-

pressing the adaptive immunity [1–3]. M2 macrophages are involved in tissue repair, mainly

by providing growth factors [3]. In contrast, M1-polarized macrophages are pro-inflammatory
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and mediate anti-tumor responses. TAMs originate from circulating blood monocytes, which

migrate towards the tumor environment and differentiate into M1 and M2 macrophages

depending on the growth factors and chemokines [2]. The levels of M2-, but not M1-TAMs as

well as of systemic CD163, which is shed from activated M2 macrophages, are indicators of

unfavorable prognosis in cancer patients [4–8].

Due to their immunosuppressive and pro-tumorigenic properties, inhibition of TAMs is an

anti-tumor strategy that is currently intensively explored. Non-selective depletion of macro-

phages e. g. by zoledronic acid in combination with sorafenib or inhibition of macrophage

recruitment into HCCs inhibits HCC progression [9,10]. However, due to the important role

of macrophages in normal physiology and pathophysiology, selective modulation of TAMs is

desirable.

Different strategies have been used to eliminate TAMs or to repolarize them to the M1 state

[11–15]. Nevertheless selective targeting of TAMs is a challenging task. Recently, a peptide has

been identified, termed M2pep, which selectively binds to and internalizes into M2 as com-

pared to M1 polarized mouse macrophages or other leukocytes [16]. Intravenously injected

M2pep selectively targets TAMs in mice with CD26 colon carcinoma and 4T1 breast carci-

noma xenografts [16,17], indicating that this approach is promising to enable selective target-

ing of M2-polarized TAMs once the receptor and its human homolog have been identified.

Here, we examined if M2pep specifically targets TAMs in mixed tumor cells from murine

HCC and in breast carcinoma. We found that M2pep targets TAMs from the breast cancer

mouse model with high potency. In two HCC mouse models M2pep also bound to the TAMs,

but with much lower efficacy. Thus, M2pep is an important tool to develop selective TAM-tar-

geting in tumor entities containing high amounts of M2pep binding sites.

Materials and methods

Peptide synthesis

M2pep and scM2pep were synthesized as previously described [16]. Both peptides were syn-

thesized with a Lys3Gly3Ser linker and a C-terminal biotin tag and were purchased from Gen-

Script USA Inc. The purity was more than 98%.

Macrophage preparation and activation

Bone marrow-derived macrophages were obtained from male and female C57BL/6 wildtype

mice (5–7 months old), which were received from the animal facility of the University Hospital

Frankfurt. The mice were euthanized and both legs together with the hip were extracted. Tib-

ias, femurs and the hip were individually flushed with sterile PBS, the cell suspension was col-

lected, centrifuged and the pellet resuspended in ACK buffer (Lonza) to remove erythrocytes.

The obtained white pellet was resuspended in DMEM containing 20 ng/ml macrophage col-

ony-stimulating factor (M-CSF) (Biotrend) and 4×106 cells per well were seeded on a 6 well

plate. After 7 days of differentiation macrophages were activated overnight in DMEM contain-

ing 25 ng/ml interferon-γ (IFN-γ) (PeProtech) and 100 ng/ml lipopolysaccharide (LPS) (Enzo

Life Science) for M1 cells; and 25 ng/ml interleukin-4 (PeProTech) for M2 cells. DMEM was

supplemented with 10% fetal calf serum (Sigma-Aldrich) and 1% penicillin/streptomycin

(Sigma-Aldrich).

Immunofluorescence staining

5×105 bone marrow-derived macrophages were cultivated on 8-well tissue culture chambers (Sar-

stedt). After 7 days of differentiation and overnight activation, the M1 and M2 macrophages were
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incubated with 200 μM M2pep or scM2pep for 30 min at 37˚C. The peptides were labeled to

Streptavidin-PE-CF594 (BD Horizon). In order to achieve higher signal intensity, we used

200 μM M2pep in the immunofluorescence experiments, which did not alter the ability of M2pep

to discriminate between M1 and M2 macrophages. The immunostaining was done as previously

described [18]. Anti-mouse F4/80 (1:50; eBioscience) and Phalloidin-Alexa 488 (Invitrogen) were

used as primary antibodies. The secondary antibody for F4/80 was Alexa-Flour 633 (Invitrogen).

Nuclei were stained with Hoechst 33342 (Sigma-Aldrich). All coverslips were mounted on slides

with Permount toluene solution (Fisher Chemicals) and imaged using an Olympus Fluoview

FV1000 confocal microscope.

Gene expression analysis

For analyzing the expression of the M2 specific gene of arginase 1 (Arg1) and the M1 specific

gene of the inducible nitric oxide synthase (iNOS), RNA of activated macrophages was

extracted with the miRNeasy Mini Kit (Qiagen). Thereafter, the RNA was reverse transcribed

using the cDNA synthesis kit for RT-qPCR (Thermo Scientific). Real-time PCR was done in

duplicates using the QuantiTect SYBR Green PCR Kit (Qiagen). The PCR was carried out on a

StepOnePlus instrument (Applied Biosystems) and the data was analyzed with the StepOne

Software version 2.0. For the quantification of the Arg1 and iNOS expression levels the Tata-

box binding protein (Tbp) was used as a house-keeping gene. The following primer sequences

were used: mouse Arg1 -_forward 5‘-GTGAAGAACCCACGGTCTGT-3‘; reverse—5‘-CTGG
TTGTCAGGGGAGTGTT-3‘; mouse iNOS -_forward 5‘-TGCATGGACCAGTATAAGGCAAG-
3‘; reverse 5‘-CTCCTGCCCACTGAGTTCGTC-3‘; mouse Tbp -_forward 5‘-CTGACCACT
GCACCGTTGCCA-3‘; reverse 5‘-GACTGCAGCAAATCGCTTGGGA-3‘.

Binding of M2pep to isolated macrophages

First, the peptides M2pep and scM2pep were labeled with Streptavidin-Alexa 633. In parallel,

the activated macrophages were harvested by Accutase (Sigma-Aldrich) treatment. Afterwards,

both M1 and M2 macrophages were incubated with 20 μM of labeled peptide for 30 min at

4˚C. Prior to flow cytometry analysis, the cells were stained with anti-mouse CD206-FITC

(Biolegend) and anti-mouse CD86-PE (BD Bioscience) to determine the activation status of

the macrophages (CD206 for M2 and CD86 for M1). Cells were analyzed on a BD LSR For-

tessa (BD).

Housing and animal care

All animal experiments were approved by the local animal care committee of the Regierung-

spräsidium Darmstadt and were in agreement with the German legal requirements (approval

number FK/1062).

All animals used in the following procedures were housed in a clean, pathogen-free room

in the animal facility of the University Hospital Frankfurt. All mice had free access to sterile

food and water. The drinking water of the transforming growth factor-α (TGFα)/c-myc ani-

mals contained ZnCl2 in order to induce the hepatocarcinogenesis. In addition, all mice were

allowed to acclimate for one week prior to beginning experiments.

For the injection of the tumor cells in the transplanted tumor models, the mice were anes-

thetized with isoflurane. For magnetic resonance imaging the mice were anesthetized by intra-

peritoneal injection of ketamine (70 mg/kg) and xylazine (12 mg/kg). For final experiments,

the mice were anesthetized by intraperitoneal injection of ketamine (180 mg/kg) and xylazine

(12 mg/kg). Thereafter, the anesthetized mice were killed by perfusion of the animals with

HBSS, followed by the preparation of the cell suspensions from livers and tumors. For the
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preparation of the bone marrow-derived macrophages, the mice were euthanized by cervical

dislocation.

Generation of transplanted tumor models

HepG2 cells [19] and 4T1 cells were obtained from ATCC and were grown in DMEM supple-

mented with 10% fetal calf serum and 1% penicillin/streptomycin.

For generating HepG2 xenografted nude mice, 5×106 cells were resuspended in 100 μl PBS

and were injected subcutaneously into the flanks of 5 weeks old femal NMRI Foxn1 nude mice

(Harlan Laboratories B.V.). The mice were observed twice per week. Once the tumors were

visible by eye, the body weight of the animals were monitored and the tumor size was mea-

sured using calipers. Three to four weeks later, when the tumors reached a diameter of approx-

imately 1 cm, the mice were sacrificed, the tumors excised and used immediately for the

generation of single cell suspensions for following ex vivo experiments.

For generating 4T1 xenografts 8 weeks old female Balb/c mice (Harlan Laboratories B.V.)

were used. 2.5×105 cells in a volume of 10 μl of PBS were injected into the fat pad no. 4. For the

injection, the fur was carefully incised and lifted to the site. Afterwards the fur was closed with

clips. The mice were observed daily and body weight and tumor size were monitored. When

the tumors reached a diameter of 0.75 cm, which normaly occured 6–7 days after the inocula-

tion, the mice were sacrificed; the tumors were excised and used immediately for the genera-

tion of single cell suspensions for following ex vivo experiments.

During the experimental procedures no animal died ahead of schedule and no animal

reached the target end points of a tumor diameter of>1.5 cm for HepG2 and >1 cm for 4T1

tumors, or a body weight loss of>20%. Furthermore, no adverse outcomes occurred such as

blistering or ulceration of the tumors.

Generation of TGFα/c-myc bi-transgenic mice with HCC

Male TGFα/c-myc bi-transgenic mice were generated by crossing homozygous metallothio-

nein/TGFα and albumin/c-myc single transgenic mice in CD13B6CBA background [20–22].

Hepatocarcinogenesis was induced by ZnCl2 via the drinking water 4 weeks after birth. The

animals were inspected once per week. Approximately 20–24 weeks after induction, HCCs

were detected by contrast-enhanced magnetic resonance imaging as described recently

[22,23]. Mice with visualized HCCs of a diameter of 0.5 to 0.8 cm were sacrificed, the tumors

excised and used immediately for the generation of single cell suspensions.

Due to the monitoring of the endogenously formed HCCs by magnetc resonance imaging,

HCCs were detected in the animals before they reached a diameter of>0.5 cm. All animals

showed a normal fitness and activity, combined with no detectable weight loss. The tumor size

was determined with the program Centricity RIS 4.1i Plus (General Electric Company, Frank-

furt am Main, Germany) by measuring the length and the width of the detected tumors.

Ex vivo binding study in suspended cells

For the ex vivo binding studies liver and tumor single cell suspensions were prepared simulta-

neously from the same animal. The tumor-bearing mice were perfused with collagenase via

the vena cava as described previsously [24]. After removing the perfused liver from the abdom-

inal cavity, it was placed in a petri dish on ice and opened with forceps. Liver cells were resus-

pended in DMEM. After two rounds of centrifugation (5 min at 50 × g and 4˚C) and an

additional centrifugation of supernatant for 7 min at 650 × g and 4˚C the non-parenchymal

liver suspension was obtained. In the TGFα/c-myc mice with HCC, HCCs remained undisso-

ciated after liver perfusion.

Selective targeting of TAMs
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The undissociated HCCs from the TGFα/c-myc mice or the transplanted tumors were

removed and used for the production of the tumor cell suspensions by the mouse tumor disso-

ciation kit (Miltenyi Biotec). A total of 106 cells of each suspension were incubated with 20 μM

M2pep or scM2pep, earlier labeled to Streptavidin-Alexa 633, for 30 min at 4˚C. For macro-

phage identification, to prevent unspecific antibody binding the cells were first treated with

anti-mouse IgG (Jackson Immuno) and further stained with anti-mouse CD45-VioBlue (Mil-

tenyi), anti-mouse Ly-6G-APC-Cy7 (Biolegend), anti-mouse F4/80-PE-Cy7 (Biolegend) and

anti-mouse/human CD11b-eFlour 605 (Biolegend). Flow cytometry analysis was done on a

BD LSR Fortessa (BD).

Statistical analysis

Comparisons of the in vitro binding studies were performed with Wilcoxon-matched pair test.

For ex vivo studies the Students t-test was used. In both cases P<0.05 was considered signifi-

cant. Data were analyzed using the BiAS software for Windows (version 9.11, Epsilon-Verlag).

Results

M2pep selectively binds to and is internalized by in vitro differentiated

murine M2 macrophages

As there was no independent validation of the finding that M2pep selectively binds to and internal-

izes into M2 macrophages, we polarized mouse bone marrow-derived macrophages with IFN-γ
and LPS to M1 and with interleukin-4 to M2 macrophages. Immunophenotyping of the cells and

fluorescence-activated cell sorting (FACS) analyses (CD206+ for M2 and CD86+ for M1) as well

as analyses of the expression of arginase 1 (M2 marker) and iNOS (M1 marker) confirmed that

these treatments led to the production of M1 and M2 macrophages, respectively (S1 Fig). Incuba-

tion of the cells with fluorescently labeled M2pep or a scrambled control peptide (scM2pep) and

analysis of peptide binding to the cells by FACS analysis revealed much higher amounts of M2pep

recognition by both M1 and M2 macrophages (Fig 1A). Approximately two-fold higher amounts

of M2pep were associated with M2 macrophages as compared to M1 macrophages (Fig 1A). Imag-

ing of the fluorescence of the peptide in the cells by confocal laser scanning microscopy shows that

Fig 1. Specific binding of M2pep to and internalization into in vitro differentiated M2 macrophages. (A) M1 and M2 macrophages were incubated with M2pep or

scM2pep (20 μM) for 30 min and analyzed by flow cytometry. (M2pep: n = 6; scM2pep: n = 4). (B) Representative immunofluorescence images of M1 and M2

macrophages incubated with 200 μM M2pep for 30 min (blue–Hoechst 33342; red–M2pep; green–phalloidin; white–F4/80; Scale 10 μm). The percentage of M2pep

positive macrophages was quantified by counting the PE-CF594 positive cells in the M1 or M2 macrophage population (M1/M2 n = 10). Values are means ± SEM;
�P<0.05. Statistical analysis was performed with the Wilcoxon-matched pair test.

https://doi.org/10.1371/journal.pone.0193015.g001
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M2pep is also selectively internalized by M2 macrophages (Fig 1B), confirming that M2pep shows

selective binding to and internalization into murine M2 macrophages.

M2pep selectively targets TAMs in mixed HCC cell suspensions from

TGFα/c-myc mice and HepG2 tumor xenografts

To investigate if M2pep shows selectivity for TAMs in HCC, we used resected HCCs formed

endogenously in TGFα/c-myc transgenic mice as well as HepG2 xenografts excised from nude

mice [21–23]. The resected tumors were dissociated and the suspended cells were incubated

with fluorescently labeled M2pep for 30 min on ice. Thereafter, the amounts of fluorescence

associated with TAMs were determined by FACS analysis (Fig 2A). Furthermore, the activa-

tion status of the macrophages within the cell suspension was verified by their expression of

CD206 and CD86 (Fig 2B). As illustrated in Fig 3A and 3B, higher amounts of M2pep were

found to be associated with M2-TAMs as compared to the M1-TAMs from HCC, although the

selectivity of M2pep to associate with M2-TAMs as compared to M1-TAMs was modest, con-

sidering that TAMs in the HCC contained a higher portion of M2 macrophages as compared

to M1 macrophages (S2 Fig). When the incubation was carried out with scM2pep instead of

M2pep, only minimal amounts of the peptide were found to be associated with TAMs in both

tumor models (Fig 3C and 3D).

M2pep targets liver macrophages

It is currently unclear whether M2pep also targets the resident macrophages in the liver (Kupf-

fer cells), which show both M1 and M2 polarization [25]. Therefore, we investigated the associ-

ation of M2pep with suspended non-parenchymal liver cells obtained from TGFα/c-myc mice

as well as from HepG2 nude mice. As illustrated in Fig 4, M2pep showed considerable associa-

tion with liver macrophages. When the incubation was carried out with scM2pep, much lower

amounts of M2pep were associated with macrophages as compared to M2pep, indicating a

specific binding of M2pep to liver macrophages.

M2pep strongly targets TAMs in 4T1 tumors

After we found modest binding of M2pep to the TAMs in HCC, we compared the ability of

M2pep to target TAMs in HCCs with that in orthotopic 4T1 breast carcinoma tumors. To this

end, mouse livers and tumors from the same animal were dissociated in parallel and the mixed

tumor cells as well as the non-parenchymal liver cells were incubated with fluorescent M2pep.

The amount of TAM-associated fluorescence was related to the amount of M2pep-labeled

liver macrophages from the same animal. The latter served for internal normalization. Never-

theless, it should be noted that the numbers of labeled cells in the suspended non-parenchymal

liver cells and tumor cells cannot be compared directly due to the differences in the prepara-

tion. As illustrated in Fig 5, in comparison to the M2pep labeling in the non-parenchymal liver

cells, the labeling of TAMs by M2pep in the mixed 4T1 breast tumor cells by far exceeded that

observed in the two HCC mouse models, even when taking in consideration the slightly higher

amount of TAMs compared to liver macrophages in the 4T1 mouse model (S3 Fig), Thus, the

ability of M2pep to specifically associate with TAMs in the suspended 4T1 tumor cells was

much higher than that observed in the dissociated HCC cells.

Discussion

Non-selective killing of macrophages has been shown to inhibit the progression of a number

of tumor entities, including breast, colon, lung, ovarian and brain tumors [26], but this may
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have many undesired side-effects [3,27]. Moreover, as M1-TAMs are anti-tumorigenic, selec-

tive killing of M2-TAMs with preservation of the anti-tumorigenic M1-TAM function is likely

to exert an additional anti-tumorigenic effect [27]. The present study indicates that M2pep is

likely to enable the development of highly selective M2-TAM-targeting in tumor entities con-

taining M2-TAMs with significant amounts of M2pep receptor(s).

After confirming that M2pep binds to and internalizes into M2 activated macrophages

[16], we found that M2pep specifically and potently targeted TAMs in mixed tumor cells from

dissociated 4T1 breast carcinomas as well as from two HCC mouse models, when compared to

the ability of a scrambled peptide. The targeting efficacy of M2pep was much higher in the sus-

pended breast cancer cells as compared to the suspended HCC cells. This suggests that the abil-

ity of M2pep to target TAMs varies strongly between different tumor entities and that M2pep

might be more suitable to target TAMs in breast carcinoma as compared to HCC.

Fig 2. Gating strategy used in the FACS analyses to determine binding of M2pep to TAMs/liver macrophages in tumor and non-

parenchymal liver cell suspensions. (A) Representative flow cytometry gating scheme. Liver macrophages or TAMs within extracted cell

suspensions were identified by staining of CD45, F4/80 and CD11b. Discrimination between M1 and M2 marcophages was performed by

their expression of CD206 and CD86, respectively. The Alexa 633 fluorescence intensity (AF633) was analyzed for all macrophages and for

M1 an M2 macrophages in particular. Non-parenchymal liver cell as well as tumor cell suspensions were treated with 20 μM M2pep or

scM2pep for 30 min on ice, followed by analysis for the Alexa 633 fluorescence intensity. (B) Representative histograms of the activation

status of liver macrophages or TAMs within extracted cell suspensions. Shown are the flow cytometry results of the tumor cell suspension of

the TGFα/c-myc mouse model.

https://doi.org/10.1371/journal.pone.0193015.g002
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As M2pep shows selectivity for M2 macrophages and is internalized into the cells, it could

be harnessed to specifically import pro-apoptotic peptides into the TAMs. Indeed, a fusion

protein of M2pep with pro-apoptotic KLA sequences has been reported to kill TAMs in CD26

mouse colon carcinomas upon its intravenous injection [16]. However, we did not detect sig-

nificant amounts of fluorescence in 4T1 tumors or HCCs upon injection of fluorescently

labeled M2pep (0.6 μmol/kg of M2pep/kg) into mice with 4T1 tumors or HCC. As we could

not inject higher doses of the peptide for technical reasons and M2pep has been reported to

have a Kd of 100 μM to bind to M2 macrophages [16], it is possible that this failure was due to

a too low concentration of M2pep in the blood in our in vivo experiments. The relatively low

Fig 3. M2pep binding to TAMs in HCC cell suspensions. Tumor cell suspensions were treated with 20 μM M2pep or scM2pep for 30 min

on ice, followed by analysis for the Alexa 633 fluorescence intensity. (A) and (B) Comparison of the median Alexa 633 fluorescence intensity

of M2pep in M2 and M1 macrophages in tumor cell suspensions from (A) TGFα/c-myc mice (n = 4) and (B) HepG2 Xenograft nude mice

(n = 5). (C) and (D) Comparison of the median Alexa 633 fluorescence intensity between tumor cell suspensions of (C) TGFα/c-myc mice

(n = 4) and (D) HepG2 Xenograft nude mice (n = 5) treated with M2pep or scM2pep. Values are means ± SEM; �P<0.05. Statistical analysis

was performed with Students t-test; n. s., not significant.

https://doi.org/10.1371/journal.pone.0193015.g003
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in vivo stability of M2pep [17] might be another reason for the failure to monitor M2pep in

mice in our in vivo experiments.

Different from the study of Cieslewicz et al. [16], we observed specific binding of M2pep

to Kupffer cells in the liver. Kupffer cells have a crucial role in both the pathogenesis and the

resolution of various liver diseases and inflammatory states [28]. However, our data showing

much higher M2pep binding to TAMs in suspended 4T1 tumor cells as compared to the liver

suggest that it might be possible to largely avoid targeting of Kupffer cells, when the tumors

contain TAMs with high amounts of M2pep binding receptors. This may help to avoid unde-

sired targeting of the Kupffer cells, e. g. under conditions requiring resolving inflammation

and regeneration in the liver. This might be an advantage in comparison to CSF-1R-directed

approaches, which also target the liver macrophages [15]. On the other hand our data indicate

that M2pep cannot be universally used to deplete M2-polarized TAMs in different tumor enti-

ties, as in our hands M2pep targeted TAMs and also showed considerable targeting of Kupffer

cells in HCC.

Macrophages show considerable plasticity and thus differences with respect to their gene

expression profiling, depending on their environment [2]. A likely explanation for the differ-

ent targeting of M2 populations by M2pep is that they differ with respect to their M2pep recep-

tor expression levels and that the different microenvironments in the liver and in different

tumor entities account for the different M2pep receptor expression and, thus, binding and

internalization.

The receptor for M2pep has not yet been identified. Its identification is likely to allow tar-

geting of M2-TAMs by other approaches and strongly facilitate the further development of

this promising approach of M2-TAM targeting. Moreover, this should lead to the identifica-

tion of the human homolog of the M2pep receptor.

In summary, we found that a peptide that selectively targets M2-polarized murine macro-

phages shows significant differences in targeting TAMs in different tumor entities and it could

be an important tool to develop selective TAM-targeting in tumor entities containing high

Fig 4. M2pep binding to macrophages in non-parenchymal liver cell suspensions. Suspended non-parenchymal

liver cells obtained from (A) TGFα/c-myc mice (n = 4) and (B) HepG2 Xenograft nude mice (n = 5) were treated with

20 μM of Alexa 633-labeled M2pep or scM2pep for 30 min on ice. For the identification of the macrophages the cells

were stained and analyzed by FACS analysis as described in Fig 2. Values are means ± SEM; �P<0.05. Statistical

analysis was performed using Students t-test.

https://doi.org/10.1371/journal.pone.0193015.g004
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amounts of M2pep binding sites. M2pep may therefore enable novel strategies to inhibit

tumor progression and therapeutic resistance.

Supporting information

S1 Fig. Verification of macrophage activation. (A) Isolated murine bone-marrow macro-

phages were stimulated to turn into M1 or M2 macrophages overnight. The isolated RNA was

then analyzed for the expression of iNOS or Arg1 by real-time PCR. Values are means ± SEM

(M1: n = 6; M2: n = 7). (B) The activation status of isolated macrophages was quantified by

Fig 5. M2pep shows highly selective binding to TAMs in the dissociated 4T1 tumors that strongly exceeded that in the two dissociated

HCCs. (A) Non-parenchymal liver cell and tumor cell suspensions of 4T1-bearing Balb/c mice were treated with 20 μM M2pep for 30 min on

ice. Peptide binding was quantified based on the Alexa 633 fluorescence intensity by flow cytometry as described in Fig 2 (n = 3). (B) and (C)

Non-parenchymal liver and tumor cells were prepared simultaneously from HCC-bearing (B) TGFα/c-myc mice (n = 4) or (C) HepG2

Xenograft nude mice (n = 5). The suspended cells were incubated with 20 μM M2pep for 30 min on ice. Subsequently, the cell suspensions

were analyzed for association with M2pep by flow cytometry as described in Fig 2. Values are means ± SEM; �P<0.05. Statistical analysis was

performed with Students t-test; n. s., not significant.

https://doi.org/10.1371/journal.pone.0193015.g005
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measuring the fluorescence intensity of CD206-FITC and CD86-PE by flow cytometry. Dot

plots are representative of three replicates. �P<0.05; ���P<0.001. Statistical analysis was per-

formed using the Students t-test.

(TIF)

S2 Fig. Characterization of macrophage polarization of the TAMs. Cell suspensions of

tumors and livers from TGFα/c-myc mice (n = 4) (A) and HepG2 xenografted nude mice

(n = 5) (B) were stained with CD45, F4/80 and CD11b, CD206 and CD86, followed by analyses

by flow cytometry. Values are means ± SEM.

(TIF)

S3 Fig. Characterization of macrophage populations. (A) Cell suspensions of tumors and

livers from TGFα/c-myc mice (n = 4), (B) HepG2 xenografted nude mice (n = 5) and (C) 4T1

tumor-bearing mice (n = 3) were stained with CD45, F4/80 and CD11b to identify liver macro-

phages or TAMs and analyzed by flow cytometry. Values are means ± SEM.

(TIF)
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Investigation: Bianca Kakoschky, Thomas Pleli, Christian Schmithals, Thomas J. Vogl, Horst-

Werner Korf, Andreas Weigert, Albrecht Piiper.

Methodology: Bianca Kakoschky, Thomas Pleli, Thomas J. Vogl, Horst-Werner Korf, Andreas

Weigert.

Supervision: Stefan Zeuzem, Bernhard Brüne, Andreas Weigert, Albrecht Piiper.
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