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Abstract

Embedding spanning structures into the random graph G(n, p) is a well-studied problem in random
graph theory, but when one turns to the random r-uniform hypergraphH(r)(n, p) much less is known.
In this thesis we will examine this topic from different perspectives, providing insights into various
aspects of the theory of random graphs. Our results cover the determination of existence thresholds
in two models, as well as an algorithmic approach. For the embeddings, we work with random and
pseudorandom structures.

Together with Person [93, 94] we first notice that a general result of Riordan [97] can be adapted
from random graphs to hypergraphs and provide sufficient conditions for whenH(r)(n, p) contains a
given spanning structure asymptotically almost surely. As applications, we discuss several spanning
structures such as cubes, lattices, spheres, and Hamilton cycles in hypergraphs.

Moreover, we study universality, i.e. when does an r-uniform hypergraph contain every hypergraph
on n vertices with maximum vertex degree bounded by ∆? ForH(r)(n, p), it is shown with Person [94]
that this holds for p = ω(lnn/n)1/∆ asymptotically almost surely by combining approaches taken by
Dellamonica, Kohayakawa, Rödl, and Ruciński [41], of Ferber, Nenadov, and Peter [56], and of Kim
and Lee [73].

Any hypergraph that is universal for the family of bounded degree r-uniform hypergraphs has to
contain Ω(nr−r/∆) edges. With Hetterich and Person [64] we exploit constructions of Alon and Ca-
palbo [11, 12] to obtain universal r-uniform hypergraphs with the optimal number of edgesO(nr−r/∆)

when r is even, r | ∆, or ∆ = 2. Furthermore, we generalise the result of Alon and Asodi [8] about
optimal universal graphs for the family of graphs with at most m edges and no isolated vertices to
hypergraphs.

In an r-uniform hypergraph on n vertices a tight Hamilton cycle consists of n edges such that there
exists a cyclic ordering of the vertices where the edges correspond to consecutive segments of r ver-
tices. In collaboration with Allen, Koch, and Person [6] we provide a first deterministic polynomial
time algorithm, which finds asymptotically almost surely tight Hamilton cycles in random r-uniform
hypergraphs with edge probability at least C log3 n/n. This result partially answers a question of
Nenadov and Škorić [92] and of Dudek and Frieze [44] who proved that tight Hamilton cycles exist
already for p = ω(1/n) for r = 3 and p ≥ (e + o(1))/n for r ≥ 4 using a second moment argu-
ment. Moreover our algorithm is superior to previous results of Allen, Böttcher, Kohayakawa, and
Person [4] and Nenadov and Škorić [92].

Lastly, we study the model of randomly perturbed dense graphs introduced by Bohman, Frieze and
Martin [24], that is, the union of any n-vertex graph Gα with minimum degree at least αn and G(n, p).
For any fixed α > 0, and p = ω(n−2/(∆+1)), we show with Böttcher, Montgomery, and Person [32, 31]
that Gα ∪ G(n, p) almost surely contains any single spanning graph with maximum degree ∆, where
∆ ≥ 5. As in previous results concerning this model, the bound used for p is lower by a log-term
in comparison to the conjectured threshold for the general appearance of such subgraphs in G(n, p)

alone. The new techniques we introduce also give simpler proofs of related results in the literature
on trees [82] and factors [19].

i





Zusammenfassung

Das Finden von aufspannenden Strukturen im zufälligen Graphen G(n, p) is ein viel studiertes Pro-
blem in der Theorie der zufälligen Graphen, aber sobald man sich dem zufälligen r-uniformen Hy-
pergraphen H(r)(n, p) zuwendet ist noch deutlich weniger bekannt. In dieser Arbeit beschäftigen
wir uns mit diesem Thema aus verschiedenen Blickwinkeln und geben dabei einen Einblick in viele
Aspekte des Studiums von zufälligen Graphen. Zu unseren Ergebnissen gehören sowohl die Bestim-
mung von Schwellenwerten in verschiedenen Modellen als auch ein algorithmischer Zugang. Für die
Einbettungen arbeiten wir mit zufälligen und pseudozufälligen Strukturen.

Zusammen mit Person [93, 94] stellen wir zuerst fest, dass sich ein allgemeines Ergebnis von Rior-
dan [97] von zufälligen Graphen auf Hypergraphen verallgemeinern lässt, und zeigen eine hinrei-
chende Bedingung dafür, dass H(r)(n, p) eine gegebene aufspannende Struktur asymptotisch fast si-
cher enthält. Als Anwendung diskutieren wir verschiedene Strukturen, wie Würfel, Gitter und Ha-
miltonkreise in Hypergraphen.

Desweiteren studieren wir Universalität, also die Frage, wann ein r-uniformer Hypergraph alle
Hypergraphen auf n Knoten mit maximalem Knotengrad höchstens ∆ enthält. Für H(r)(n, p) zeigen
wir mit Person [94], dass dies für p = ω(lnn/n)1/∆ asymptotisch fast sicher stimmt, indem wir Ideen
von Dellamonica, Kohayakawa, Rödl and Ruciński [41], von Ferber, Nenadov and Peter [56] und von
Kim und Lee [73] kombinieren.

Jeder Hypergraph, der universal für die Familie der gradbeschränkten Hypergraphen ist, muss
mindestens Ω(nr−r/∆) Kanten besitzen. Mit Hetterich und Person [64] nutzen wir Konstruktionen
von Alon und Capalbo [11, 12] aus, um daraus universale r-uniforme Hypergraphen mit optimaler
Kantenanzahl O(nr−r/∆) zu konstruieren, falls r gerade ist, r | ∆ oder ∆ = 2. Darüberhinaus verall-
gemeinern wir ein Resultat von Alon und Asodi [8] über optimale universale Graphen für die Familie
der Graphen mit m Kanten und ohne isolierte Knoten auf Hypergraphen.

In einem r-uniformen Hypergraphen auf n Knoten besteht ein enger Hamiltonkreis aus n Kanten,
so dass es eine zyklsiche Anordnung der Knoten gibt, in der die Kanten zu aufeinanderfolgenden
Segmenten gehören. In Kollaboration mit Allen, Koch und Person [6] finden wir einen ersten de-
terministischen Polynomialzeitalgorithmus, der asymptotisch fast sicher einen engen Hamiltonkreis
in H(r)(n, p) findet für p ≥ C log3 n/n. Damit beantworten wir teilweise eine Frage von Nenadov
und Škorić [92] und von Dudek und Frieze [44], die zeigten, dass enge Hamiltonkreise bereits für
p ≥ (e + o(1))/n exisiteren für r ≥ 4 (p = ω(1/n) für r = 3), indem sie die Methode des zwei-
ten Moments anwendeten. Desweiteren verbessern wir zuvorige Algorithmen von Allen, Böttcher,
Kohayakawa und Person [4] und Nenadov und Škorić [92].

Zuletzt widmen wir uns dem Modell der zufällig manipulierten dichten Graphen, dass von Boh-
man, Frieze und Martin [24] eingeführt wurde. In diesem Modeel betrachten wir die Vereinigung
von einem Graphen Gα auf n Knoten mit Minimalgrad αn und G(n, p). Für ein fixiertes α > 0,
und p = ω(n−2/(∆+1)) zeigen wir mit Böttcher, Montgomery und Person [32, 31], dass Gα ∪ G(n, p)

asymptotisch fast sicher einen beliebigen aufspannenden Graphen auf n Knoten mit Maximalgrad ∆
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ernhält, falls ∆ ≥ 5. Ebenso wie in vorherigen Ergebnissen in diesem Modell ist die Schranke an p

um einen log-Faktor kleiner als der vermutete Schwellenwert für das Auftreten dieser Strukturen in
G(n, p) alleine. Unsere neue Methode ergibt auch einfachere Beweise für einige verwandte Probleme
über Bäume [82] und Faktoren [19].
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Chapter 1

Introduction

In the last 60 years, the area of discrete mathematics grew enormously in importance, not least be-
cause of the development of computers. In particular, graph theory did benefit significantly from this
development since networks were used as models in all natural sciences. Moreover, it was simulta-
neously discovered that randomness is a powerful tool for many applications in discrete structures,
including randomised algorithms and the probabilistic method.

The theory of random graphs is a fascinating field inside of discrete mathematics, which lies at
the intersection of probability theory, graph theory, and combinatorics. Besides these intersections,
there are numerous connections to other areas, for example, theoretical computer science, information
theory, and statistical physics, which are mutually beneficial for either side. A major motivation for
understanding the fundamental nature of random objects was to conceive the behaviour of typical
instances in real-world applications. However, it was later on discovered that random instances are
usually much harder and generate tough benchmarks for algorithms.

In the next section we give a short history of the evolution of random graph theory. Afterwards in
Section 1.2 there will be a brief summary of the results of this thesis without precise statements. We
then conclude the introduction with preliminary remarks and notation.

1.1 Random graphs

The first appearance of a random graph is often devoted to a 1947 paper of Erdős [51], where the
bounds on diagonal Ramsey numbers are improved by showing the existence of a certain Ramsey
graph1. The binomial random graph model G(n, p), which is a probability space on all graphs on
n vertices, where edges are drawn uniformly and independent with probability p, was first intro-
duced by Gilbert [62], who studied connectedness in this model. However, this graph model is often
attributed to Erdős and Rényi [48], who in fact started working on the same problem in the hypergeo-
metric model G(n,M)2, which is choosing a graph uniformly at random from all graphs on n vertices
and M edges. In the following years Erdős and Rényi [49, 50] set the groundwork for the emerging
field of random graphs. One of their main interests3 was the emergence of the giant component as p
passes 1/n.

Besides more profound work on this phase transition, some of the major achievements in the theory
of random graphs are the transference of results from extremal combinatorics [18, 35, 101, 102] , the

1This can also be seen as one of the first conscious applications of the probabilistic method [15] which utilises the simple obser-
vation, that if an event has non-zero probability, then there exists an instance where this event occurs.

2There is a close relation between the two models and in many regards they are equivalent, cf. Łuczak [86]. For convenience,
we will mostly work in G(n, p).

3We will discuss some of their other results in Section 2.1.

1



1.2 Summary of results

advances on the KŁR Conjecture4 in random graphs [37], the solution of Ramsey-type questions [98],
the analysis of the chromatic number5 in the dense [27] and sparse [1] regime, and the embedding of
general factors [67], which we will discuss later.

Apart from this, there has been a lot of development leading to many other great results and thus
it is impossible to give an exhaustive survey. In particular, we would like to emphasise three mono-
graphs on random graphs [30, 60, 65], each roughly 15 years apart, which reflect the evolution of the
field. Besides G(n, p) and G(n,M) there are several other random graph models, e.g. random regular
graphs, intersection graphs, and preferential attachment models with a power law degree distribu-
tion, which are motivated by observations from real-world networks. It might be due to its simplicity,
that G(n, p) is the most studied model of these and still there are many interesting problems and phe-
nomena which are not well understood.

Typical questions in G(n, p) deal with the investigation of graph parameters and the structure of
the graph. For example, there is a lot of research on the size and structure of the largest connected
component, the size of the largest independent set, the chromatic number, and the embedding of
various substructures. The spanning version of the latter is the central topic of this thesis. To be
a little more precise, we are interested in finding the smallest p such that we can embed6 a specific
graph on n vertices into G(n, p). Embedding spanning subgraphs is well studied for various kinds of
graphs such as perfect matchings, Hamilton cycles, trees, factors, and to some extent general bounded
degree graphs. Nonetheless, many questions remain open despite years of extensive research.

In the case of hypergraphs even less is known and it is natural to study the corresponding problems
for random hypergraphs. The random r-uniform hypergraph H(r)(n, p) is the model, where on n

vertices any r-set is an edge with probability p independent of all the others. For r = 2 this reduces
to G(n, p).

1.2 Summary of results

In this thesis, we examine spanning structures in random graphs from different perspectives. We
obtain a pure existence statement, embed many structures simultaneously, investigate an algorithmic
approach, and analyse the combination of random with deterministic properties. This versatility en-
ables us to shed light on various aspects and properties of random graph theory. We now give a brief
summary of the results, without precise statements. For a more detailed exposition and discussion,
we refer to Chapter 2. Here we follow the chronological order of submission, whereas in the rest of
the thesis the results are sorted by topic.

First, we prove a general result for the embedding of (spanning) hypergraphs into H(r)(n, p) (The-
orem 2.5), which is a generalisation of a theorem by Riordan [97] from the graph case. The proof
uses detailed second moment calculations and we present several applications giving asymptotically
optimal results for some classes of hypergraphs, such as cubes, lattices, spheres, and Hamilton cycles.
This result was obtained together with Person [94] and the proof is given in Chapter 3.

In the same paper together with Person [94] we also studied universality for bounded degree

4This conjecture by Kohayakawa, Łuczak and Rödl [74] roughly says that almost all graphs satisfy a sparse counting lemma.
5The typical chromatic number of G(n, p) is the last remaining open question from the early paper by Erdős and Rényi [48].
6By embedding we mean an injective map between the vertex sets, which respects the edges of the graph we are embedding.
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1. Introduction

graphs in H(r)(n, p). A graph is universal for a family of graphs if it contains every graph from
the family as a subgraph. This is a much stronger statement than just containing one graph from the
family and most results cannot be easily extended. We obtain Theorem 2.9, which generalises a result
of Dellamonica, Kohayakawa, Rödl, and Rucinski [41] on universality in G(n, p) to hypergraphs. For
the proof given in Chapter 6 we employ ideas of Ferber, Nenadov, and Peter [56] and of Kim and
Lee [73] to find a deterministic, pseudorandom structure in H(r)(n, p), which enables us to embed
any bounded degree graph.

Even further, starting in this paper with Person [94] and afterwards continued with Hetterich and
Person [64], we work on the existence and explicit construction of universal hypergraphs. By ex-
ploiting constructions of Alon and Capalbo [9, 10] we manage to obtain universal hypergraphs for a
wide range of parameters, which are even sparser than the random hypergraphs mentioned before.
Further, we generalise a result of Alon and Asodi [8] about optimal universal graphs for the family of
graphs with at most m edges and no isolated vertices to hypergraphs. See Chapter 7 for the proofs of
these results.

We also obtain an algorithmic result together with Allen, Koch, and Person [6]. Many of the results
for finding subgraphs do not yield any meaningful algorithms and are purely existence statements.
Improving on previous results by Allen, Böttcher, Kohayakawa, and Person [4] and Nenadov and
S̆korić [92] we present a first deterministic polynomial time algorithm for finding tight Hamilton
cycles in H(r)(n, p) with probability a small polylog-factor away from the optimal bound. The proof
of this result (Theorem 2.6) uses the so-called absorber technique and is given in Chapter 4.

The last result is in a slightly different model of randomly perturbed graphs introduced by Bohman,
Frieze, and Martin [24], where we take a graph Gα of minimum degree αn and then add G(n, p)

on top of it. This combines the elements of random and extremal graph theory and opens many
possibilities. Typically in this model one can save some log-terms compared to the probability in
G(n, p) purely, as already shown for Hamilton cycles in the above mentioned paper. Together with
Böttcher, Montgomery, and Person [32] we prove the corresponding analog for the family of bounded
degree graphs, Theorem 2.7. Our method, which uses ideas from Ferber, Luh, and Nguyen [54], also
reproves results on bounded degree trees by Krivelevich, Kwan, and Sudakov [82] and factors by
Balogh, Treglown, and Wagner [19]. We discuss these implications together with the proof of our
result in Chapter 5.

1.3 Preliminaries and notation

This section gives a short outline of the structure of the remainder of the thesis as well as an introduc-
tion to the notation and syntax used therein. In Chapter 2 we introduce the main concepts, explain
related work, and then present, discuss, and analyse our results in detail. Afterwards, in Chapters 3–
7 we give the proofs of our theorems. Concluding remarks and a brief discussion of open problems
complete the thesis in Chapter 8.

We want to remark at this point that this thesis is a cumulation of the results from four different
papers [4, 32, 64, 94], each with a different set of coauthors. The extension of Riordan’s theorem
from [94] also appeared previously as an extended abstract [93], the main result from [32] appeared
in [31], and the result from [6] in [5]. In all four papers, the author of this thesis contributed signifi-
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1.3 Preliminaries and notation

cantly to all stages, beginning from the research conducted, until the preparation of the final paper.
Large parts of this thesis will be verbatim copies from the papers, in particular Chapter 3 from [94],
Chapter 4 from [4], Chapter 5 from [32], Chapter 6 from [94] and Chapter 7 from [64] with a short
paragraph from [94]. Moreover, the following notation, the abstract, German summary, some para-
graphs explaining the respective results in Chapter 2 and short parts of the Conclusion in Chapter 8
are close adaptations from the corresponding parts in [4, 32, 64, 94]. All these results do not appear in
any other thesis.

To state the results in detail, avoid too much repetition, and have a point of reference for the reader
we now collect the basic notation. We mostly follow the standard notation from [30, 60, 65] and thus
the reader who is familiar with the basics can skip the rest of this section. We state the definitions
for hypergraphs and remark that with r = 2 this gives the corresponding definitions for graphs,
in which case we usually omit the superscript. An r-uniform hypergraph H is a tuple (V,E), where
V (H) := V is its vertex set and E(H) := E ⊆

(
V
r

)
is the set of edges in H . We write v(H) for |V (H)|

and e(H) for |E(H)|. By K(r)
n we denote the complete r-uniform hypergraph

(
[n],

(
n
r

))
on the vertex set

[n] := {1, 2, . . . , n}. The random r-uniform hypergraph H(r)(n, p) is the probability space of all labelled
r-uniform hypergraphs on the vertex set [n], where each edge e ∈

(
[n]
r

)
is chosen independently of all

the other edges with probability p.

We say that a graph H contains a graph G as a subgraph if there exists a map φ from V (G) to V (H)

such that edges are preserved, i.e. for all e ∈ E(G) we have that φ(e) ∈ E(H). If G is a subgraph of H
we writeG ⊆ H . The subgraph induced by a subset of the verticesW ⊆ V inH is denoted byH[W ] :=(
W,E(H) ∩

(
W
r

))
and we defineH−W = H[V \W ]. We denote by degH(f) := |{e : f ⊆ e}| the degree

of a set of vertices f of size 1 ≤ |f | ≤ r−1 in H , i.e. the number of edges f is contained in. Given a set
W ⊆ V , we write degH(f,W ) for the degree intoW , that is, we count only edges e satisfying e\f ⊂W .
Further, ∆`(H) is defined to be the maximum `-degree in H , i.e. ∆`(H) := max {degH(f) : f ∈

(
V
`

)
}.

We usually omit the subscript if ` = 1. With d(H) := e(H)
v(H) and d1(H) := e(H)

v(H)−1 we define the
density m(H) := max {d(H ′) : H ′ ⊆ H} and the one-density m1(H) := max {d1(H ′) : H ′ ⊆ H}. The
shadow graph H ′ is obtained from H by replacing every edge e ∈ E(H) by all possible

(
r
2

)
subsets of

cardinality two (ignoring multiple edges).

An alternating sequence of vertices and edges v1, e1, v2, e2, . . . , vt, et, vt+1 is called a path7 of length
t from v1 to vt+1 if vi, vi+1 ∈ ei for all i ∈ [t]. If there is a path from u to v, then we say that u and v are
connected. This defines an equivalence relation on V . We say that a hypergraph H is connected if there
is a path between any two vertices of H . A component in an r-uniform hypergraph is a maximally
connected subgraph. The distance between two vertices u and v in H is the minimal length over all
paths from u to v, and if they are in different components then we set it to infinity.

The neighbourhood NH(v) of a vertex v is the set of vertices which are contained in an edge together
with v

NH(v) := {w ∈ V \ {v} : ∃ e ∈ E s.t. {w, v} ⊆ e}.

For a subset of the verticesW ⊆ V , the neighbourhood inH isNH(W ) =
⋃
w∈W NH(w)\W . If there is

7In our definition of a path, we do not mind repetitions of vertices and edges. Usually, this is referred to as a walk rather than
a path.
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1. Introduction

no risk of confusion, we sometimes omit the graph in the subscript. The set W is called t-independent
in a hypergraph H , if the distance between v ∈ W and w ∈ W in H is at least t+ 1. A 1-independent
set is independent in the usual sense.

Let f and g be real valued functions, where we usually omit the dependencies on variables. We
write g = O(f)8 if g is not growing much faster than f , i.e. there exist C > 0 and n0 > 0 such that
for all n > n0 we have |f(n)| ≤ C · |g(n)|. If f = O(g), then vice versa g is not decreasing much
faster than f and thus we can also write g = Ω(f), and if both statements hold g = Θ(f). We usually
make no effort in optimising the constant C hidden in this notation. Sometimes we include other
constants as a subscript to point out that C depends on them. By ω(f) we denote any function g

that is growing faster than f , i.e. g(n)/f(n) → ∞ as n → ∞, and similarly o(g) denotes any function
f such that g = ω(f). For brevity we will often use ω(1) instead of saying that there exists a large
enough constant C, even though this is is general.

With lnn we denote the natural logarithm, bute we usually use log n if the base does not matter.
With a polylog-factor or polylog nwe refer to any polynomial in log n. To simplify readability, we will
omit in the calculations floor and ceiling signs whenever they are not crucial for the arguments.

8Formally it should be g ∈ O(f) but it is common pratice to abuse the notation in this way.
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Chapter 2

Results, discussion and outline

This is the main chapter of this thesis as all our results are motivated and explained. We will also
give brief sketches of the proofs and include a short discussion on the methods and techniques that
are involved, but the rigorous proofs will be found in later chapters of the thesis. In order to embed
the theorems into a wider context, we will introduce some established concepts and well-known
results which will eventually lead to our main results. We will guide the reader from single spanning
structures, via algorithmic results for Hamilton cycles and the randomly perturbed graphs model,
to universality. The last part of this chapter is used to introduce standard tools that we will make
extensive use of in the remainder of the thesis.

2.1 Thresholds

A graph property F is a set of graphs. This set could for example consist of all graphs with a specific
subgraph, special structure, fixed chromatic number or any other graph parameter. Consider, for
example, the graph property FHAM of having a Hamilton cycle as a subgraph, then a graph H is in
FHAM if there exists a cyclic ordering of the vertices ofH such that neighbouring vertices are adjacent.
It is a classical result of Dirac [42] that every graph on n vertices with minimum degree at least n/2
satisfies this property and thus is Hamiltonian. This result is sharp in the sense that there are graphs
with minimum degree slightly below n/2 that do not contain a Hamilton cycle and thus minimum
degree n/2 is a distinguished point.

In random graph theory one of the most natural objectives is to study similar graph properties in
G(n, p) as previously in deterministic graphs. For example we can ask when does G(n, p) contain a
Hamilton cycle. More precisely, we can ask for which values of p does P[G(n, p) ∈ F ] tend to 1 as
n tends to infinity for some property F . If this is true, then we say that G(n, p) has the property F
asymptotically almost surely (a.a.s.).

Containing a subgraph is a monotone property, which means that adding edges cannot destroy
the property and thus with larger p the probability that G(n, p) has this property increases. With
this observation in mind it makes sense to ask for a value p̂ below which G(n, p) does not have the
property a.a.s. but above it has. It turns out that often there is a very abrupt change in behaviour and
thus we say that p̂ : N→ [0, 1] is a threshold function for a graph property F if

P
[
G(n, p) ∈ F

]→ 0 if p = o(p̂)

→ 1 if p = ω(p̂).

Sometimes this kind of threshold is referred to as coarse, where for a sharp threshold we require for
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2.2 Single spanning structures

any ε > 0 that p ≤ (1− ε)p̂ and p ≥ (1 + ε)p̂ already are sufficient for the convergence. For a criterion
and discussion of which thresholds are sharp see Friedgut [57, 58]. We will mostly focus on coarse
thresholds and thus for simplicity refer to them as thresholds. In the random r-uniform hypergraph
H(r)(n, p) thresholds are defined analogously.

It was shown by Bollobás and Thomason [29] that all nontrivial monotone properties admit a
threshold function. As mentioned before containing a subgraph is a monotone property and thus
it makes sense to study the thresholds of these properties. There are many other interesting graph
properties admitting a threshold behaviour, but we do not go into details here. Note that a function p̂
satisfying P[G(n, p̂) ∈ F ] = 1/2 always is a threshold if F is a nontrivial monotone property.

As a first example for a subgraph, we consider a fixed small graph G. It is necessary that the
expected number of copies of any subgraph G′ of G in G(n, p), which is roughly nv(G′)pe(G

′), does not
tend to zero9. From this we easily obtain with the density m(G) = max

{
e(G′)
v(G′) : G′ ⊆ G

}
that p has

to be at least n−1/m(G). In their early, seminal work in 1960 Erdős and Rényi [49] proved that this in
fact gives the threshold if G is balanced, which means that F itself is not sparser than any subgraph,
i.e. m(G) = e(G)

v(G) . This was much later extended by Bollobás [25] to all graphs G and also extends to
hypergraphs.

2.2 Single spanning structures

Advancing to spanning subgraphs, a first example is the perfect matching, which is the disjoint union
of n/2 edges (n even). The expected number of perfect matchings in G(n, p) is larger than 1 already
shortly after p passing 1/n, but a.a.s. G(n, p) still contains many isolated vertices at this range of p.
Thus, there have to be some events, which are not to rare, containing many perfect matchings, and
therefore push up the expected number, even though most graphs do not contain a single perfect
matching. The threshold was determined in another paper by Erdős and Rényi [50]10 at log n/n. This
function is also a threshold for the property of the minimum degree being larger than a given constant
and in particular for minimum degree 1, which is necessary for a perfect matching. Łuczak and
Ruciński [87] proved that in the graph process, where we start with an empty graph and add edges
uniformly at random, at the precise moment where the graph has minimum degree 1 it already has a
perfect matching a.a.s. Also note that for the connectivity property, which basically is the containment
of any spanning tree and was the first property studied in G(n, p) by Gilbert [62], the same is true and
log n/n is a threshold [49]10.

Now recall the exampleFHAM , where we needed minimum degree at least n/2 to guarantee Hamil-
tonicity in any graph. In the random setting we definitely require connectivity and minimum degree
2, which both hold in G(n, p) a.a.s. for p = ω(log n/n). Pósa [96] and Korŝunov [78] independently
showed that we do not need much more and Hamiltonicity also has the threshold log n/n. This
corresponds to an expected number of ω(n log n) edges11. Note that, again the expected number of
Hamilton cycles in G(n, p) already gets large after 1/n. Their result was improved by Komlós and
Szemerédi [77]10 who showed that the Hamiltonicity threshold really coincides with the threshold for
9It follows from Markov’s inequality that the probability that the number of copies of G′ is at least one tends to zero. This is

called a first moment argument and we similarly obtain lower bounds for other graphs as well.
10In fact they proved that this property has a sharp threshold at lnn/n and even more precise results are known.
11Equivalently one can derive that G(n,M) is Hamiltonian if M � n logn.
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2. Results, discussion and outline

minimum degree 2, which lead to more precise results. Even further Bollobás [26] demonstrated that
this is even true for the hitting times of these two properties in the associated graph process. Further-
more, we want to remark that the results presented so far, only guarantee existence and do not give
us any meaningful algorithm for finding the structures. We will get back to this issue, in particular
addressing Hamilton cycles, in Section 2.3.

As discussed, among the first spanning structures considered in graphs were perfect matchings
and Hamilton cycles. More recently, the thresholds for the appearance of (bounded degree) spanning
trees [14, 63, 66, 69, 80] were studied as well. The current best-known bound due to Montgomery [90,
91] is p ≥ ∆ log5 n/n, where a lower bound is again given by log n/n.

Riordan [97] gave a general result for embedding any graph using second moment arguments,
which is non-constructive. To state it precisely, consider the following density-parameter12 γ(H) :=

max{e(H ′)/(v(H ′)− 2)) : H ′ ⊆ H and v(H ′) ≥ 3}, which will be responsible for the upper bound on
the threshold.

Theorem 2.1 (Riordan [97]13). Let H be a graph on n vertices with ∆ = ∆(H). If H has a vertex of degree
at least 2 and the following condition is satisfied

npγ(H)∆−4 →∞,

then a.a.s. the random graph G(n, p) contains a copy of H .

The motivation for this result was to determine the threshold functions for the appearance of cubes
and lattices. Even though the general statement was known for a while, only in recent years its full
potential and applicability has been realised.

A generalisation of cycles is finding the k-th power of a Hamilton cycle in G(n, p), where k ≥ 2.
In general, the k-th power of a graph G is the graph obtained from G by connecting all vertices at
distance at most k. While Theorem 2.1 already shows that the threshold for k ≥ 3 is given by n−1/k

(as observed in [84]), the threshold for k = 2 is still open, where the best known upper bound is a
polylog-factor away [92] from the conjecture n−1/2.

Apart from cycles and trees another interesting class of graphs are factors, as a natural generalisa-
tion of matchings. The G-factor on n vertices for a fixed graph G consists of n/v(G) vertex-disjoint
copies of G (assuming that v(G) | n). Finding thresholds for spanning factors of graphs and hyper-
graphs was an open problem for a long time (cf. intermediate results for the triangle factor [72, 79])
until a breakthrough was achieved by Johansson, Kahn, and Vu [67]. With d1(G) := e(G)/(v(G)− 1)

we state their result for future reference.

Theorem 2.2 (Johansson, Kahn, and Vu [67]). Let G be a strictly balanced graph, i.e. d1(G) > d1(G′) for
all G′ ⊆ G. Then the threshold for the appearance of a G-factor in G(n, p) is n−1/d1(G) log1/e(G) n.

12Note that this is different from the two-density m2(H), where the quotient of e(H′)− 1 and v(H′)− 2 is maximised over all
H′ ⊆ H .

13In [97] there are some additional technical conditions imposed onH , which are in fact not needed. We refer to the discussion
after Theorem 2.5, which generalises this result to hypergraphs. Note that Riordan already mentions that these assumptions
are probably not crucial.
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2.2 Single spanning structures

In particular, this implies that the threshold for a K∆+1-factor is given by

p∆ :=
(
n−1 ln1/∆ n

) 2
∆+1

.

For not strictly balanced graphs G, they show that the threshold is at most O(n−1/m1(G)+o(1)), which
is optimal up to the o(1)-term. Gerke and McDowell [61] removed the o(1)-term whenG is non-vertex
balanced, i.e., there exists a vertex in G which is not contained in a subgraph G′ of 1-density m1(G).
Furthermore, Theorem 2.2 also holds for hypergraphs and this resolved the question on the threshold
for perfect matchings in hypergraphs, which was a long standing open problem.14

The Kahn-Kalai Conjecture

Besides many others, these results support a general conjecture of Kahn and Kalai [68] on the appear-
ance of a given structure. It states that the threshold p̂ is always within a factor of O(log n) from pE ,
the so-called expectation threshold, which is the smallest pE such that the expected number of copies of
any subgraph G′ of G in G(n, pE) is at least 1. In the results discussed above we observe two types
of behaviour that are responsible for the threshold of the appearance of bounded degree spanning
structures (cf. [68] for more details).

For the example of matchings, Hamilton cycles andG-Factors, where we need some extra log-terms
to overcome a local obstruction, which in the first two cases is the minimum degree and in the latter
is that every vertex has to lie in a copy of G. In all similar cases there is some local reason for pE not
being enough and then it is plausible that also a hitting time result might be true. This says that the
structure appears at the precise moment when the last local obstructions disappeared. In the case of
G-factors we are thus waiting until the very last vertex lies in a copy of G.

On the other hand there are structures, where pE also is a threshold for the containment property
and we do not need extra log-terms. This usually is justified by the absence of a local obstruction.
Examples are higher powers of Hamilton cycles and other applications of Riordan’s results. This is
also highly correlated with the applicability of the second moment method15, which fails for Hamilton
cycles, but is sufficient to determine the thresholds for higher powers and to prove Theorem 2.1. We
will come across this phenomenon in more examples and also in hypergraphs.

If we only require an almost spanning embedding, which is for any ε > 0 an embedding of e.g. a
matching, cycle or almost G-factor on at least (1 − ε)n vertices, then we usually do not need the log-
terms and pE is enough. The probability pE is large enough to ensure that only a small fraction of
the vertices has the obstruction. Usually, these embeddings are easier, even without the log-terms.
For matchings it is almost trivial, for Hamilton cycles [83] it can be shown using Depth-first search,
it was shown for trees by Alon, Krivelevich, and Sudakov [14] and is an easy application of Janson’s
inequality (Theorem 2.18) for factors (Theorem 2.19).

14It was called Shamir’s problem and first explicitly stated in [39].
15In the second moment method we use the variance of a random variable to bound the probability that it deviates much from

its expectation. A standard example is Chebyshev’s inequality and from this thesis the proof of Theorem 2.5, Theorems 2.16,
and 2.18 and Lemma 2.17.
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2. Results, discussion and outline

General bounded degree graphs16

Turning to a much more general class of graphs, let F(n,∆) be the family of graphs on n vertices with
maximum degree at most ∆. Alon and Füredi [13] studied the question of when the random graph
G(n, p) contains a given graph from F(n,∆), proving the bound p ≥ C(log n/n)1/∆ for some absolute
constant C > 0. This is far from optimal and mainly relies on the fact that at this probability any
set of ∆ vertices is expected to lie in roughly p∆n = Ω(log n) edges (a.a.s. by Chernoff’s inequality,
Theorem 2.16). The proof in [13] uses a greedy strategy together with a matching argument to finish
the embedding and is constructive.

Since the clique-factor is widely believed to be the hardest graph in F(n,∆) to embed and has
threshold p∆ = (n−1 ln 1/∆n)2/(∆+1), it is natural to state the following, well-known, conjecture.

Conjecture 2.3. Let ∆ > 0, F ∈ F(n,∆) and p = ω(p∆). Then a.a.s. G(n, p) contains a copy of F .

For ∆ = 2, this conjecture was recently solved by Ferber, Kronenberg, and Luh [53], who in fact
showed a stronger universality statement, which we will discuss later in Section 2.5. For larger ∆,
Theorem 2.1 implies a probability within a factor of nΘ(1/∆2) from p∆. The currently best result in
this direction is the following almost spanning version by Ferber, Luh, and Nguyen [54]. Note, that
most of the previously mentioned results are pure existence statements and do not help very much in
finding a copy.

Theorem 2.4 (Ferber, Luh, and Nguyen [54]). Let ε > 0 and ∆ ≥ 5. Then, for every F ∈ F((1− ε)n,∆)

and p = ω(p∆), a.a.s. G(n, p) contains a copy of F .

In [54] the authors split the graph F into a sparse part F ′ with γ(F ′) < (∆ + 1)/2 and many small
graphs with higher density. The sparse part is embedded with Riordan’s result [97] (Theorem 2.1) and
for the dense spots their approach is based on ideas from Conlon, Ferber, Nenadov, and Škorić [36]
who proved a stronger universality statement for the almost spanning case while using the edge
probability p = ω(n−1/(∆−1) log5 n). Therefore, Theorem 2.4 for ∆ = 3 was already known (up to
some log-terms), whereas the case for ∆ = 4 remains open.

In the almost spanning case again the log-term in p∆ is expected to be redundant [54], but this
remains unproven. In Section 2.4 we will discuss our result showing that the log-term in p∆ is re-
dundant, even in the spanning case, if we add G(n, p) to a deterministic graph with linear minimum
degree.

Single spanning structures in hypergraphs17

When one turns to hypergraphs, apart from perfect matchings, general factors [67], and Hamilton cy-
cles (which we will discuss in details later) not very much was known. Together with Person [94] we
extended the result of Riordan [97] to the setting of r-uniform hypergraphs. Let eH(v) = max{e(F ) :

F ⊆ H, v(F ) = v} and observe that the following is an extension of the previous definition of the
density introduced by Riordan

γ(H) := max
r+1≤v≤n

{
eH(v)

v − 2

}
.

16Some parts of this section closely follow [32].
17Some parts of this section are close adaptations from [94].
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2.2 Single spanning structures

Theorem 2.5. Let r ≥ 2 be an integer and H be an r-uniform hypergraph on n vertices with ∆ = ∆(H). If
H has a vertex of degree at least 2 and the following condition is satisfied

npγ(H)∆−4 →∞, (2.1)

then a.a.s. the random r-uniform hypergraphH(r)(n, p) contains a copy of H .

We remark, that for r = 2 this is Theorem 2.1, the result by Riordan [97, Theorem 2.1], except that
some technical conditions are omitted. By examining carefully the proof in [97], one can verify that
there too these technical conditions are not in fact needed. Instead, it is sufficient to only assume (2.1)
and that ∆(H) ≥ 2. In fact, the proof for hypergraphs will follow along the lines of Riordan’s original
argument, but requires adaptations at various places. We provide the details of the proof in Chapter 3
and in Section 3.5 we discuss its applications to some particular spanning structures such as Hamilton
cycles, hypercubes, lattices, spheres, and powers of Hamilton cycles in hypergraphs.

The only other spanning structures that were studied more recently in hypergraphs are Hamilton
cycles. There are various notions of Hamilton cycles in hypergraphs: weak Hamilton cycles, Berge
Hamilton cycles, `-offset Hamilton cycles (for 1 ≤ ` ≤ r/2), and `-overlapping Hamilton cycles (for
1 ≤ ` ≤ r − 1). The most attention was attracted by `-overlapping Hamilton cycles, where one seeks to
cyclically order the vertex set such that edges are consecutive segments and neighbouring edges inter-
sect in ` vertices. We say that a hypergraph is `-Hamiltonian if it contains an `-overlapping Hamilton
cycle. An `-overlapping Hamilton cycle requires that r− ` divides n and thus a `-overlapping Hamil-
ton cycle has n/(r − `) edges. It is customary to refer to an `-overlapping cycle as a tight cycle for
` = r − 1 and a loose cycle for ` = 1.

The study of Hamilton cycles in random hypergraphs was initiated by Frieze [59] who determined
the threshold for the appearance of loose 3-uniform Hamilton cycles to be log n/n2 (when 4|n). Dudek
and Frieze [43] extended the result to higher uniformities with threshold log n/nr−1 (when 2(r−1)|n).
The divisibility requirement was improved to the optimal one ((r − 1)|n) by Dudek, Frieze, Loh, and
Speiss [45], see also Ferber [52]. Loose Hamilton cycles closely resemble the properties of Hamilton
cycles from the graph case, in the sense that the expectation threshold is not enough and we need
some extra log-factor to avoid isolated vertices. The hitting time results are still open.

Subsequently, Dudek and Frieze [44] determined thresholds for general `-overlapping Hamilton
cycles purely relying on the second moment method. Generally ω(n`−r) is the threshold for an `-
overlapping Hamilton cycle for ` ≥ 2, but for most values more precise results are known (cf. the
table at the end of [44]). Note that Theorem 2.5 gives back these results for ` ≥ 2 in a slightly weaker
form (cf. Corollary 3.8). In particular, in [44] they proved for r ≥ 4 that e/n is the sharp threshold
function for containment of a tight cycle. An easy first moment calculation shows that if p ≤ (1−ε)e/n
then a.a.s.H(r)(n, p) does not contain a tight Hamilton cycle. A general result of Friedgut [57] readily
shows that the threshold for the appearance of an `-overlapping cycle inH(r)(n, p) is sharp. We want
to remark, that all these results were nonconstructive, relying either on Theorem 2.2 by Johansson,
Kahn, and Vu [67] or the second moment method.

The case of weak Hamilton cycles (any two consecutive vertices lie in a hyperedge) was studied
by Poole in [95], `-offset Hamilton cycles (neighbouring edges intersect in ` and r − ` vertices alter-
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2. Results, discussion and outline

natingly) by Dudek and Helenius [47]18, and Berge Hamilton cycles (any two consecutive vertices lie
in some chosen hyperedge and no hyperedge is chosen twice) by Clemens, Ehrenmüller, and Person
in [34], the latter one being algorithmic.

2.3 Algorithms for Hamilton cycles19

We will now take a step back and discuss algorithmic questions, especially for the Hamilton Cycle
Problem. Proving the existence of a Hamilton cycle, does not necessary help very much in finding
one. The general problem of deciding whether any given graph contains a Hamilton cycle, is one of
the 21 classical NP-complete problems due to Karp [70]. The best currently known algorithm is due
to Björklund [22]: a Monte-Carlo algorithm with worst case running time O∗(1.657n)20, without false
positives and false negatives occurring only with exponentially small probability. But what about
typical instances? In other words, when the input is a random graph sampled from some specific
distribution, e.g. G(n, p). Is there an algorithm which finds a Hamilton cycle in polynomial time with
small error probabilities?

The previously mentioned results for the appearance of Hamilton Cycles [26, 77, 78, 96] do not
allow one to actually find any Hamilton cycle in polynomial time. The first polynomial time ran-
domised algorithms for finding Hamilton cycles in G(n, p) are due to Angluin and Valiant [16] and
Shamir [103]. Subsequently, Bollobás, Fenner, and Frieze [28] developed a deterministic algorithm,
whose success probability (for input sampled from G(n, p)) matches the probability of G(n, p) being
Hamiltonian in the limit as n→∞. Thus, the problem is quite well understood in the graph case.

But what about hypergraphs? At the end of [44], Dudek and Frieze posed the question of find-
ing algorithmically various `-overlapping Hamilton cycles in H(r)(n, p) at the respective thresholds.
Together with Allen, Koch, and Person [6] we study tight Hamilton cycles and provide a first deter-
ministic polynomial time algorithm, which works for p only slightly above the threshold.

Theorem 2.6. For each integer r ≥ 3 there exists C > 0 and a deterministic polynomial time algorithm with
runtime O(nr) which for any p ≥ Cn−1 log3 n a.a.s. finds a tight Hamilton cycle in the random r-uniform
hypergraphH(r)(n, p).

The probability is only a polylog-factor away from the best known bounds, which are p ≥ (e +

o(1))/n for r ≥ 4 and p = ω(1/n) for r = 3. Prior to our work there were two algorithms known that
dealt with finding tight cycles. The first algorithmic proof was given by Allen, Böttcher, Kohayakawa,
and Person [4], who presented a randomised polynomial time algorithm which could find tight cycles
a.a.s. at the edge probability p ≥ n−1+ε for any fixed ε ∈ (0, 1/6r) and running time n20/ε2 . The second
result is a randomised quasipolynomial time algorithm of Nenadov and Škorić [92], which works for
p ≥ Cn−1 log8 n.

Our result builds on the adaptation of the absorbing technique of Rödl, Ruciński and Szemerédi [100]
to sparse random (hyper-)graphs. This technique was actually used earlier by Krivelevich in [79] in
the context of random graphs. However, the first results that provided essentially optimal thresholds

18They obtain a sharp threshold and observe that the coarse threshold follows already from our Theorem 2.5.
19Large parts of this section are an almost verbatim copy from [6].
20Writing O∗ means we ignore polylogarithmic factors.
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(for other problems) are proved in [4] mentioned above in the context of random hypergraphs and
independently by Kühn and Osthus in [84], who studied the threshold for the appearance of pow-
ers of Hamilton cycles in random graphs. The probability of p ≥ C(log n)3n−1 results in the use of
so-called reservoir structures of polylogarithmic size, as first used by Montgomery to find spanning
trees in random graphs [91], and later in [92]. Our improvements result in the combination of the two
algorithmic approaches [4, 92] and in the analysis of a simpler algorithm that we provide.

The general idea for the algorithm is as follows. In a hypergraph H = (V,E) our algorithm finds a
long tight path with the property that from some Reservoir set R ⊆ V of polylogarithmic size every
subset R′ ⊆ R can be absorbed into the path. This path is then extended until it covers V \ R and
possibly some vertices of R. Using the leftover vertices of R we can close the path to a cycle and then
absorb the remaining vertices fromR′ fromR into the cycle, because of the property described above.

We give the details of the algorithm in Chapter 4. There we first provide an informal overview of
our algorithm and then two key lemmas and the proof of Theorem 2.6 which rests on these lemmas.
In the subsequent sections we prove these main lemmas: the Connecting Lemma and the Reservoir
Lemma.

2.4 Randomly perturbed graphs21

We now leave the algorithmic perspective and change the setup. In most of the examples discussed so
far the appearance of spanning structures in random graphs are influenced by local properties such
as the minimum degree required. On the other hand, in extremal graph theory minimum degree
conditions are studied that force given spanning structures in any deterministic graph. Typically, as
in Dirac’s Theorem, the required minimum degree is rather large for trivial reasons such as connect-
edness.

Randomly peturbed graphs combine both of these worlds. The randomly perturbed graphs we con-
sider are obtained as the union of a deterministic graph satisfying a certain minimum degree con-
dition, and a random graph. The question then is how small one can choose the minimum degree
of the deterministic graph and the edge probability of the random graph while still compelling the
given spanning subgraph. It turns out that, typically, both quantities can be chosen smaller than in
the corresponding pure setting, because the minimum degree condition of the deterministic graph
helps to guarantee stronger local properties, while the random graph warrants stronger connected-
ness properties.

The following model of randomly perturbed graphs was first suggested by Bohman, Frieze and
Martin [24]. For α ∈ (0, 1) and an integer n, we first let Gα be any n-vertex graph with minimum
degree at least αn. We then reveal more edges among the vertices of this graph independently at
random with probability p. The resulting graph Gα ∪ G(n, p) is a randomly perturbed graph and we
shall be interested in its properties. In particular, research has focused on comparing thresholds in
Gα ∪G(n, p) to thresholds in G(n, p).

Again, we concentrate on spanning subgraphs. Note that the existence of such subgraphs in Gα ∪
G(n, p) is a monotone property (in G(n, p)), and thus has a threshold. For α ∈ (0, 1/2), Bohman,
Frieze, and Martin [24] showed that, if p = ω(1/n), then, for any Gα, there is a Hamilton cycle in

21This section is a close adaption of the introduction from [32].
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Gα ∪G(n, p) a.a.s. They also proved that this is optimal: for p = o(1/n) there are graphs Gα such that
Gα ∪ G(n, p) is not Hamiltonian a.a.s. Comparing this threshold to the threshold for Hamiltonicity
in G(n, p) we note an extra factor of log n in the latter. This log n term is necessary to guarantee
minimum degree at least 2 in G(n, p) – otherwise clearly no Hamilton cycle exists. But in the model
Gα ∪G(n, p) already Gα gives this minimum degree. The result also shows that for smaller α, a large
linear number of random edges can compensate for the loss in minimum degree.

Krivelevich, Kwan, and Sudakov [82] studied the corresponding problem for the containment of
spanning bounded degree trees inGα∪G(n, p). For p = ω(1/n) it is already possible to find any almost
spanning bounded degree tree in G(n, p) [14]. The addition of Gα then ensures there are no isolated
vertices, and Krivelevich, Kwan, and Sudakov [82] showed that this indeed allows every vertex to be
incorporated into the embedding. They thus proved that for α > 0 and p = ω(1/n) every spanning
bounded degree tree is contained in Gα ∪G(n, p) (cf. Theorem 5.7).

Quite recently Balogh, Treglown, and Wagner [19] managed to show that also for factors pE is
enough. To be precise they showed that the threshold for any G-factor in G(n, p) ∪ Gα is n−1/m1(G)

(cf. Theorem 5.8). For strictly balanced G this saves the extra log-factors, but for non-vertex balanced
G there is no benefit fromGα. For the proof they use Szemerédi’s Regularity lemma [105] and a result
of Komlós [75], which gives optimal bounds on α such that any Gα contains an almost spanning
factor. The addition of random edges allows them to make the result of Komlós spanning with a
much smaller minimum degree.

Apart from this example the general strategy for embedding spanning graphs into Gα ∪ G(n, p)

is to first find an almost spanning embedding in G(n, p) and then, in a second step, complete the
embedding using Gα and more random edges from G(n, p). For this it is very convenient to split the
random graph into several independent rounds.

Other monotone properties considered in this model include containing a fixed sized clique, having
small diameter, k-connectivity [23], and non-2-colorability [104]. With Böttcher, Montgomery, and
Person [32], we analyse the model Gα ∪G(n, p) with respect to the containment of spanning bounded
degree graphs and obtain the following result.

Theorem 2.7. Let α > 0 be a constant, ∆ ≥ 5 an integer, and Gα a graph on n vertices with minimum degree
at least αn. Then, for every F ∈ F(n,∆) and p = ω

(
n−2/(∆+1)

)
, a.a.s. Gα ∪ G(n, p) contains a copy of F .

Observe that the bound on p is best possible. Indeed, in the case where F is a K∆+1-factor on n

vertices andGα = Kαn,(1−α)n, we need to find an almost spanningK∆+1-factor of size (1−α(∆+1))n

in G(n, p). Finally, note that the edge probability p∆ used in Theorem 2.7 is lower by a log-term in
comparison to the anticipated threshold for the graph F to appear in G(n, p) (see Conjecture 2.3).

We provide a new method, which combines the edges of Gα with those of G(n, p) to obtain a span-
ning embedding. Our proof also uses the approach by Ferber, Luh, and Nguyen [54] explained above
to decompose the graph and find an embedding of almost the whole graph by only using edges of
G(n, p). The crucial observation is, that this embedding maps uniformly at random onto the vertex
set Gα, since G(n, p) is purely random. This enables us to find for every remaining vertex v a large
so-called reservoir set of vertices B(v) which can replace v without harming the current embedding.
For the rest we again follow a similar embedding approach as before using Janson’s inequality (The-
orem 2.18) and a theorem of Aharoni and Haxell (Lemma 2.20), where we now want to embed into
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2.5 Universality

the sets B(v). Owing to the large choice of vertices in all B(v) and some extra edges taken from Gα,
we manage to finish the embedding at the given probability. The details of the proof are given in
Chapter 5.

The methods we introduce, in particular our novel techniques for creating a reservoir set, give rise
to simpler proofs for the results on spanning trees [82] and factors [19]. We give the short proofs, after
the proof of Theorem 2.7 in Chapter 5. A very intriguing question is if the behaviour we observed in
this model in comparison to G(n, p) is always true. That is, can we always save the extra log terms
when the threshold differs from the expectation threshold?

The model can be easily generalised to r-uniform hypergraphs, where we have to decide which
kind of minimum degree condition we want to require fromGα. Krivelevich, Kwan, and Sudakov [81]
also considered matchings and loose cycles in hypergraphs. Their generalised minimum degree con-
dition inGα is that all (r−1)-sets are contained in at least αn edges. Here, revealing additional random
edges with probability ω(n−r+1) is sufficient to almost surely create both matchings and loose cycles
in Gα ∪ G(n, p). Note that, comparing this to the threshold for matchings and loose cycles in random
hypergraphs (which are both log n/nr−1 [43, 59, 67]), we again have a difference of log n.

We remark that there is a lot of research on the corresponding Dirac-type questions for perfect
matchings and `-overlapping cycles in hypergraphs with different minimum degree conditions. For
example for loose Hamilton cycles minimum vertex degree n

2(k+1) + o(n) is sufficient as shown by
Keevash, Kühn, Mycroft, and Osthus [71]. For further details we refer to the survey article by Rödl
and Ruciński [99].

Interestingly McDowell and Mycroft [89] managed to show that for `-overlapping cycles (` ≥ 2) it is
possible to save a polynomial factor nε in comparison to the threshold inH(r)(n, p) under the assump-
tion of high ` and r − ` degree in Gα. This result was extended by Bedenknecht, Han, Kohayakawa,
and Mota [20] to powers of tight Hamilton cycles, where they required even higher minimum degree
conditions. This gives rise to the questions whether this is also possible in the graph case and if there
is some structure where we can save more than some log-factors. We will discuss this in more details
in the concluding remarks in Chapter 8.

2.5 Universality22

So far all mentioned results deal with the containment of one structure. What happens if we want
to find more graphs simultaneously? For a family of graphs F , we call a graph F-universal if it
contains all F ∈ F as a subgraph. Note that most of the general results mentioned above do not
imply the analogous universality statement, because there are too many graphs and we can not apply
a union bound. We are mainly interested in bounds on the threshold for universality for the family of
bounded degree graphs and hypergraphs in G(n, p) andH(r)(n, p) respectively.

Universality in random graphs

Universality properties were first studied by Alon, Capalbo, Kohayakawa, Rödl, Ruciński, and Sze-
merédi [11]. They showed that for any ε > 0 there exists a C, such that for p ≥ C(log n/n)1/∆ the

22Large parts of the first two subsections are taken verbatim from [94] and the last two from [64].
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2. Results, discussion and outline

G(n, p) is F((1− ε)n,∆)-universal a.a.s. that is, it contains with high probability any graph with de-
gree bounded by ∆ on (1 − ε)n vertices as a subgraph. Then, Dellamonica, Kohayakawa, Rödl, and
Ruciński [40] showed that for ∆ ≥ 2 the random graph G(n, p) is F(n,∆)-universal a.a.s. provided
that p ≥ C

(
log2 n/n

)1/(2∆)
, where C > 0 is some absolute constant. The same authors subsequently

improved in [41] the bound on p toC (log n/n)
1/∆ for theF(n,∆)-universality of G(n, p) for any given

∆ ≥ 3. Later, Kim and Lee [73] dealt with the missing case ∆ = 2. As mentioned before at this prob-
ability every set of ∆ vertices has many common neighbours, which is very helpful for embedding
bounded degree graphs. Thus it forms a natural barrier for the methods used up to this point.

Bringing the density of a graph into the statement, Ferber, Nenadov, and Peter [56] showed that
for universality of all graphs with maximum degree ∆ and maximum density m the probability
p = ω(∆12n−1/(4m) log3 n) suffices. By embedding some cycles separately and using the previous
result, Conlon, Ferber, Nenadov, and S̆korić [36] were able to show, that for p = ω(n−1/(∆−1) log5 n)

the random graph G(n, p) isF((1−ε)n,∆)-universal. Moeover, Ferber and Nenadov [55] proved very
recently that G(n, p) is F(n,∆)-universal provided that p ≥ C(n−1 log3 n)1/(∆−1/2) using an embed-
ding technique by Conlon and Nenadov [38] together with the ideas from [36] and absorbers.

The lower bound again comes from the K∆+1-factor and thus Conjecture 2.3 can be generalised in
the following way.

Conjecture 2.8. Let ∆ > 0 and p = ω(p∆). Then a.a.s. G(n, p) is F(n,∆)-universal.

For ∆ = 2 this conjecture was solved in [53] by Ferber, Kronenberg, and Luh. For ∆ = 3 the
almost spanning version from [36] is optimal up to the log-terms. For larger ∆ the gap between p∆

and the currently best known bound (n−1 log3 n)1/(∆−1/2) obtained by Ferber and Nenadov [55] is
polynomial in n. Again in the almost spanning version of Conjecture 2.8 the log-terms should be
redundant.

For the embedding of a family of graphs the core of the approach [11, 36, 41, 53, 56, 73] is to find
a deterministic structure with nice expansion properties. These pseudo-random structures appear
in random graphs and admit an embedding without any further randomness, because they behave
in a random-like way. As for single spanning structures it proved to be helpful to remove specific
structures from the graphs which are embedded in the end. For instance to complete the embedding
in [36], they used Janson’s inequality [65] to find previously removed cycles and a matching trick [2]
to allocate them correctly.

Universality in random hypergraphs

As for single spanning structures in the hypergraph case, much less is known. For a family F of
r-uniform hypergraphs we say that an r-uniform hypergraph H is F-universal if every hypergraph
F ∈ F occurs as a copy in H . Let F (r)(n,∆) denote the family of all r-uniform hypergraphs F of
maximum vertex degree at most ∆ on n vertices.

Together with Person, we were able to generalise the result of Dellamonica, Kohayakawa, Rödl, and
Ruciński [41] to hypergraphs. We prove universality ofH(r)(n, p) for the family F (r)(n,∆), where we
show that a natural bound on p ≥ C(log n/n)1/∆ suffices.

Theorem 2.9. For every r ≥ 2 and any integer ∆ ≥ 1, there exists a constant C > 0, such that for p ≥
C(log n/n)1/∆ the random r-uniform hypergraphH(r)(n, p) is F (r)(n,∆)-universal a.a.s.
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2.5 Universality

In the proof of Theorem 2.9 (see Chapter 6) we employ the strategy of Dellamonica, Kohayakawa,
Rödl, and Ruciński [41], but a shortcut will be obtained by using similar notions of good properties
that were used by Kim and Lee [73] and by Ferber, Nenadov, and Peter [56].

The bound on p = Ω
(
(log n/n)1/∆

)
in Theorem 2.9 is presumably not optimal and similar improve-

ments as in [36, 55] would be interesting. As for the lower bound, if
(
t−1
r−1

)
≤ ∆, the K(r)

t -factor is a
member of F (r)(n,∆). Since by the hypergraph version of Theorem 2.2 the threshold probability for
the appearance of such factor is Θ

(
(log n)1/(tr)n−(t−1)/(tr)

)
and in view of n−(t−1)/(tr) < n−1/(t−1

r−1),

the best lower bound (if ∆ =
(
t−1
r−1

)
) we are aware of is p = Ω

(
(log n)1/(tr)n−(t−1)/(tr)

)
.

Explicit constructions of universal graphs

A closely related natural problem in the non-random setting is the existence and explicit construction
of graphs that are universal for some family of graphs. For an excellent survey on this problem see
Alon [7] and the references therein. The first nearly optimal universal graphs for F(n,∆) with O(n)

vertices and O(n2−2/∆ log1+8/∆ n) edges for ∆ ≥ 3 were given by Alon, Capalbo, Kohayakawa, Rödl,
Ruciński, and Szemerédi [12]. It was also noted by the same authors in [11] with simple calculations
that any such universal graph has to contain Ω(n2−2/∆) edges. As mentioned in [9] the square of a
Hamilton cycle is F(n, 2)-universal and thus 2n edges are enough in this case. In two subsequent
papers, Alon and Capalbo [9, 10] further pursued this line of research and improved upon the result
of [12] obtainingF(n,∆)-universal graphs with the optimal number of edges and onlyO(n)23 vertices
and also providing F(n,∆)-universal graphs on n vertices with almost optimal number of edges.

Theorem 2.10 (Alon and Capalbo [9, 10]). For any ∆ ≥ 2 there exist explicitly constructible F(n,∆)-
universal graphs on O(n) vertices with O(n2−2/∆) edges and on n vertices with O(n2−2/∆ log4/∆ n) edges.

Started together with Person [94] and then further developed with Hetterich and Person [64] we
worked on extending these constructions to hypergraphs. It follows from the asymptotic number of
∆-regular r-graphs on n vertices (see e.g. [46]) that any F (r)(n,∆)-universal hypergraph must pos-
sess Ω(nr−r/∆)24 edges. In [94] we derive explicit constructions of F (r)(n,∆)-universal hypergraphs
on O(n) vertices with O(nr−2/∆) edges and on n vertices with O(nr−2/∆ log4/∆ n) edges from The-
orem 2.10. Furthermore, we obtain the existence of even sparser universal hypergraphs from the
results on universality of random graphs [36, 41]. For example, it is shown that there exist F (r)(n,∆)-
universal hypergraphs with n vertices and Θ

(
nr−

r
2∆ (log n)

r
2∆

)
edges, which shows that the best

known lower and upper bounds are at most the multiplicative factor n
r

2∆ · polylog n apart.
Subsequently, with Hetterich and Person in [64], we worked on further improving this approach.

We proved the following statements that allow us to construct r-uniform universal hypergraphs from
universal hypergraphs of smaller uniformity. We use universal graphs from Theorem 2.10 with care-
fully chosen parameters to provide the best known F (r)(n,∆)-universal hypergraphs.

Theorem 2.11. Let r, r′ ≥ 2 and ∆ ≥ 2 be integers. If r′ | r and H ′ is an F (r′)(n,∆)-universal hypergraph,
then there exists an F (r)(n,∆)-universal hypergraph H on the same vertex set as H ′ and e(H) ≤ e(H ′)r/r′ .
23In all cases O(n) vertices can be reduced to (1 + ε)n vertices for any ε > 0 by using a concentrator as done in [12]. We give

details at the end of Section 7.2.
24We give the short calculations at the beginning of Chapter 6.
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2. Results, discussion and outline

This implies that, whenever r′ | r and almost optimalF (r′)(n,∆)-universal hypergraphs are known
as is, for example, the case when r is even due to Theorem 2.10, this leads to constructions of almost
optimal F (r)(n,∆)-universal hypergraphs.

Corollary 2.12. Let r, r′ ≥ 2 and ∆ ≥ 2 be integers. If r′ | r and there exists an F (r′)(n,∆)-universal hyper-
graphH ′ withO(nr

′−r′/∆) edges, then there exists an F (r)(n,∆)-universal hypergraph on the same vertex set
V (H ′) with O(nr−r/∆) edges. In particular, if r is even then there exist explicitly constructible F (r)(n,∆)-
universal hypergraphs on O(n) vertices with O(nr−r/∆) edges and on n vertices with O(nr−r/∆ log2r/∆(n))

edges.

In the case of odd r we cannot apply Theorem 2.11 and we prove the following.

Theorem 2.13. Let r ≥ 3 and ∆ ≥ 2 be integers. Then with ∆′ = d(r + 1)∆/re there exist explic-
itly constructible F (r)(n,∆)-universal hypergraphs on O(n) vertices with O(nr−(r+1)/∆′) edges and on n

vertices with O(nr−(r+1)/∆′ log2(r+1)/∆′(n)) edges. In particular, if r | ∆ this leads to almost optimal
O(nr−r/∆polylog(n)) edges.

By estimating ∆′ we see that in any case the lower and upper bounds on the edge densities of
optimal universal hypergraphs differ by at most a factor of nr/∆

2

. By generalising their construction
and a graph decomposition result of Alon and Capalbo [9, Lemma 3.3] (cf. Lemmas 7.3, 7.5, and 7.7)
we obtain yet another case when constructed universal hypergraphs match the lower bound.

Theorem 2.14. Let r be an integer. Then there exists an explicitly constructible F (r)(n, 2)-universal hyper-
graph on O(n) vertices and O(nr/2) edges.

Thus, for the cases where 2 | r, r | ∆, or ∆ = 2 we present constructions of universal hypergraphs,
that are as optimal as the best-known constructions in the graph case. There are several open cases,
with the smallest ones being r = 3 and ∆ = 4 or 5.

The proofs of these results will be given in Chapter 7. In the first section we introduce a very useful
concept of hitting graphs, which we use in Section 7.2 to prove Theorem 2.11, Corollary 2.12, and The-
orem 2.13 and in Section 7.3 along with a graph decomposition result from [9] to prove Theorem 2.14.

E (r)(m)-universal hypergraphs

Another family of graphs that received attention is the family E(r)(m) of r-graphs with at most
m edges and without isolated vertices. Babai, Chung, Erdős, Graham, and Spencer [17] proved
that any E(2)(m)-universal graph must contain Ω(m2/ log2m) edges and there exists a graph on
O(m2 log logm/ logm) edges. Alon and Asodi [8] closed this gap by proving the existence of an
E(2)(m)-universal graph with O(m2/ log2m) edges.

We briefly study E(r)(m)-universal hypergraphs. It can be shown for fixed r ≥ 3 that any E(r)(m)-
universal hypergraph must contain at least Ω(mr/ logrm) edges. This can be seen by a simple count-
ing argument as in [17] or by counting (r logm)-regular r-graphs on m/ logm vertices as was done
in the graph case in [8]. We prove that the optimal existence result of Alon and Asodi gives rise to
optimal E(r)(m)-universal hypergraphs.

Theorem 2.15. There exist E(r)(m)-universal hypergraphs with O(mr/ logrm) edges.

In Section 7.4 we discuss E(r)(m)-universal hypergraphs and prove Theorem 2.15.
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2.6 Tools

2.6 Tools

In this section we briefly collect some of the tools mentioned earlier, which we need for the proofs.
This is mostly intended for referencing and thus we advice the reader to consult this only when nec-
essary. We will make use of the following version of Chernoff’s inequality, see e.g. [65, Theorem 2.8].

Theorem 2.16 (Chernoff’s inequality). Let X be the sum of independent binomial random variables, then
for any γ ∈ (0, 1)

P
[
|X − E[X]| ≤ γ E[X]

]
≤ 2 exp

(
−γ

2E[X]

3

)
.

Furthermore, we use the following submartingale-type inequality to deal with a sum of Bernoulli
random variables which are not independent. A proof can be found in [3, Lemma 2.2].

Lemma 2.17 (Sequential dependence lemma). Let Ω be a finite probability space, and let F0, . . . ,Fm be
partitions of Ω, with Fi−1 refined by Fi for each i ∈ [m]. For each i ∈ [m], let Yi be a Bernoulli random
variable on Ω which is constant on each part of Fi. Let δ be a real number, γ ∈ (0, 1), and X = Y1 + · · ·+ Ym.
If E[Yi|Fi−1] ≥ δ holds for all i ∈ [m], then

P
[
X ≤ (1− γ)δm

]
≤ exp

(
−γ2δm

3

)
.

For embedding small graphs, Janson’s inequality proved to be a very useful tool. The following
variant is adapted from [15, Chapter 8] and [65, Theorem 2.18].

Theorem 2.18 (Janson’s inequality). Let p ∈ (0, 1) and consider a family {Hi}i∈I of subgraphs of the
complete r-uniform hypergraph on the vertex set [n] = {1, . . . , n}. For each i ∈ I, let Xi denote the indicator
random variable for the event that Hi ⊆ H(r)(n, p) and, write Hi ∼ Hj for each ordered pair (i, j) ∈ I × I
with i 6= j if E(Hi) ∩ E(Hj) 6= ∅. Then, for X =

∑
i∈I Xi, E[X] =

∑
i∈I p

e(Hi),

δ =
∑

Hi∼Hj

E
[
XiXj

]
=

∑
Hi∼Hj

pe(Hi)+e(Hj)−e(Hi∩Hj)

we have

P
[
X = 0

]
≤ exp

(
− E[X]2

E[X] + δ

)
.

As explained earlier, finding almost spanning embeddings is much easier. In Section 2.5 we will
use the following theorem that guarantees an almost spanning factor.

Theorem 2.19. For every r-uniform hypergraph G and every ε > 0 there is a C > 0 such that with p ≥
Cn−1/m1(G), the random hypergraphH(r)(n, p) contains a.a.s. an almostG-factor on at least (1−ε)n vertices.

This is a generalisation from [65, Theorem 4.9] to hypergraphs. For completeness and to give a
demonstration of an easy application of Theorem 2.18, we give the short proof here.
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2. Results, discussion and outline

Proof. Let V0 be a set of at least εn vertices and t = v(G). We label the vertices of G with v1, . . . , vt and
split V0 into t sets V1, . . . , Vt of equal size. Let {Hi}i∈I be the set of copies of G with vi ∈ Vi and X be
the number of these copies appearing inH(r)(n, p). Then

µ := E[X] =
(εn
t

)t
pe(G) ≥

(εn
t

)t
Cn−e(G)/m1(G) ≥

(ε
t

)t
Cn.

On the other hand we have that

δ =
∑

Hi∼Hj

pe(Hi)+e(Hj)−e(Hi∩Hj) =
∑
J⊂G

∑
Hi∩Hj∼=J

p2e(G)−e(J)

≤
∑
J⊂G

∑
Hi∩Hj∼=J

p2e(G)−m1(G)·(v(J)−1)

≤
t−1∑
j=r

(
t

j

)(εn
t

)2t−j
p2e(G)−m1(G)·(j−1)

= µ2
t−1∑
j=r

(
t

j

)(εn
t

)−j
p−m1(G)·(j−1)

≤ µ2
t−1∑
j=r

(
t

j

)(εn
t

)−j 1

C
nj−1 ≤ µ2

(
t2

ε

)t
1

Cn
,

where we used that e(J) ≤ m1(G)(v(J)− 1) for all J ⊆ G. Using Theorem 2.18 we then get

P
[
X = 0

]
≤ exp

(
− µ2

8(µ+ δ)

)
≤ e−n

for large enough C.
Now assume that the statement of the theorem is false. Then there would be a set V0 inside of
H(r)(n, p) of size at least εn which does not contain a copy of G. There are at most 2n choices for V0

and thus a union bound reveals that this happens with probability at most 2n · e−n = o(1).

A classical theorem of Hall gives an easy criterion for matchings in bipartite graphs. A bipartite
graph G = (A ∪ B,E), which satisfies the condition that |N(S)| ≥ |S| for all S ⊆ A, contains a
matching saturating all of A. This criterion is very useful in many aspects. We will use the following
generalisation to hypergraphs by Aharoni and Haxell [2] in an auxiliary graph to finish our embed-
ding in Chapter 5. This Hall-type theorem for hypergraphs was first applied in this regard in [36].

Theorem 2.20 (Aharoni and Haxell [2]). Let {L1, . . . , Lt} be a family of s-uniform hypergraphs on the same
vertex set. If, for every I ⊆ [t], the hypergraph

⋃
i∈I Li contains a matching of size greater than s(|I| − 1),

then there exists a function g : [t]→
⋃t
i=1E(Li) such that g(i) ∈ E(Li) and g(i) ∩ g(j) = ∅ for i 6= j.

Apart from the tools collected here, which we will use repeatedly, there will be more in the next
chapters, tailored to fit the respective proofs.
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Chapter 3

Riordan’s theorem for hypergraphs

In this chapter we give the proof25 obtained together with Person [94] for Theorem 2.5. We start
with an outline of the proof, repeat some arguments that extend verbatim from Riordan [97] and
then give the detailed second moment calculation for hypergraphs. In the last section we give some
applications of this theorem as mentioned in the introduction. Besides Hamilton cycles and powers
thereof, we give two general corollaries and extend the results of Riordan [97] on cubes and lattices
to hypergraphs.

3.1 Proof outline

The overall proof strategy of Theorem 2.5 is the same as Riordan’s in [97], which is an elegant second
moment argument. In fact, a large part of the proof proceeds along the same lines and we are thus
going to use the same notation, in particular providing the references at several places to [97] for
comparison. With the exception of the first steps which we summarise in Lemma 3.2, since these can
be performed verbatim for hypergraphs as well, we will give full details so that the reader will be
able to follow the argument without looking up in [97]. We try to be brief anyway.

The actual proof deals instead ofH(r)(n, p) with the related modelH(r)(n, p
(
n
r

)
), which is the prob-

ability space of all labelled r-uniform hypergraphs with the vertex set [n] and exactly p
(
n
r

)
edges with

a uniform measure. Thus, for r = 2 this is the standard model G(n,M). As we are dealing with mono-
tone properties, a corresponding statement in the model H(r)(n, p) can be obtained by conditioning
on the number of edges inH(r)(n, p). We omit the standard argument and refer to Łuczak [86].

One considers the random variable X which counts copies of H in H(r)(n, p
(
n
r

)
) and analyses the

quantity f := E[X2]/E[X]2. It is enough to show that f = 1 + o(1), since then one infers by Cheby-
shev’s inequality:

P[X = 0] ≤ P[|X − EX| ≥ EX] ≤ Var(X)

E[X]2
= f − 1 = o(1). (3.1)

All this is, of course, reminiscent of the second moment argument of Erdős and Rényi [49] for the
appearance of H when H is small. However, the details of estimating f and thus the variance of X
are more involved as H can now occupy the whole vertex set of the random hypergraph.

Before we get to the actual proof, let us briefly state the steps that are geared towards the estimation
of f as done in [97], since this is the path we are going to pursue as well. At this point we aim to only
give a flavour of this technical proof and thus postpone the definitions of SH , S′H , T ′H , T ′′H , and of
good hypergraphs to a later point:
25The proof given in this chapter is a close adaption of [94].
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3.2 Technical estimates and first steps

1. pondering f , Lemma 3.2 gives us that f ≤ (1 + o(1))e−
1−p
p α2(nr)SH , where SH is a sum that

depends on all subhypergraphs of H , which will be introduced below;

2. then it is shown that SH ≤ (1+o(1))e
1−p
p α2(nr)S′H , where S′H runs only over certain good subhy-

pergraphs of H – this step requires most adaptation and we provide full details in Lemma 3.3
below;

3. one can further simplify S′H and bound it above by another quantity T ′H – this is done in
Lemma 3.4;

4. in the penultimate step, cf. equation (3.9), T ′H is bounded by eT
′′
H , where T ′′H is the sum over all

good connected hypergraphs;

5. finally, using Lemma 3.5, it is shown that T ′′H = o(1) and combining the estimates, the desired
bound on f follows:

f≤
(
1 + o(1)

)
e−

1−p
p α2(nr)SH≤

(
1 + o(1)

)
e−

1−p
p α2(nr)e

1−p
p α2(nr)S′H≤(

1 + o(1)
)
T ′H≤

(
1 + o(1)

)
eT
′′
H≤
(
1 + o(1)

)
eo(1) = 1 + o(1).

The somewhat mysterious appearance of the factor e−
1−p
p α2(nr) in the first step and the appearance of

e
1−p
p α2(nr) in the second step have good reasons that will be explained right before the corresponding

lemmas, Lemma 3.2 and Lemma 3.3 respectively. For more intuition, we refer to the concluding
remarks of [97]. After all, in many applications, the term 1−p

p α2
(
n
r

)
is o(1) and, thus, the exponential

term is not seen at all.

3.2 Technical estimates and first steps

Let us first collect some useful estimates that involve α and p for future reference.

Lemma 3.1. Suppose that H has a vertex of degree at least 2 and condition (2.1) holds. Then, we have

n
3−2r

2 p−1∆4r−6 → 0, ∆ = o(n1/4),

α3

(
n

r

)
p−2 → 0, αp−1∆ = o(n−1/2),

α = o(p), p

(
n

r

)
→∞,

p−1∆2n2−r = o(n1/2) and p−1α2

(
n

r

)
= o(n1/2).

Proof. Since H contains a vertex of degree 2 we have γ(H) ≥ 2
2r−3 . With p ≤ 1, it follows from (2.1)

that ∆ = o(n1/4), and rearranging yields with γ(H) ≥ 2
2r−3 that n

3−2r
2 p−1∆4r−6 → 0.

Now we notice immediately that p = ω
(

(∆4/n)
2r−3

2

)
. Since α

(
n
r

)
≤ ∆n/r it follows α ≤ ∆

(
n−1
r−1

)−1
.

The combination of the two estimates yields α3
(
n
r

)
p−2 → 0.

From α3
(
n
r

)
p−2 → 0 and α

(
n
r

)
≥ 2 we immediately get α = o(p), and from n

3−2r
2 p−1∆4r−6 → 0 we

obtain p
(
n
r

)
→∞.
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3. Riordan’s theorem for hypergraphs

To obtain the remaining estimates, we combine the lower bound on p = ω
(

(∆4/n)
2r−3

2

)
with

α ≤ ∆
(
n−1
r−1

)−1
, thus obtaining αp−1∆ ≤ p−1∆2

(
n−1
r−1

)−1
= o(n−1/2) and p−1α2

(
n
r

)
= o(n1/2).

The first steps towards the proof of Theorem 2.5 aim at estimating f , which was defined as f :=

E[X2]/E[X]2, where X is the random variable that counts the number of copies of H inH(r)(n, p
(
n
r

)
).

This is done by writing X as the sum
∑
iXHi , where each XHi is the indicator random variable for

a copy Hi of H in K(r)
n , and then rewriting E[X2]/E[X]2 (in a non-obvious way) as a weighted sum

over all possible subhypergraphs F of H involving XF (H) and XF (K
(r)
n ), which are the number of

subhypergraphs of H (resp. of K(r)
n ) that are isomorphic to F . The subhypergraphs F of H should be

thought of as contained in the intersection of two copies of H .

The following lemma summarises the desired first estimate on f . The appearance of the factor
e−

1−p
p α2(nr) is due to working in the model H(r)(n, p

(
n
r

)
) where the appearance of some edges in

H(r)(n, p
(
n
r

)
) makes others slightly less likely to be chosen.

Lemma 3.2. Suppose that α = o(p), p
(
n
r

)
→ ∞ and that α3

(
n
r

)
p−2 → 0 (as n tends to infinity) hold. Then

with c = 1−p
p−2α we get

f ≤
(
1 + o(1)

)
e−

1−p
p α2(nr)

∑
F⊆H

ce(F ) XF (H)

XF (K
(r)
n )

. (3.2)

Proof. This lemma has exactly the same proof as in [97]. In fact, the desired inequality (3.2) follows
from [97, Inequality (4.2)] immediately because all statements and lemmas up to this point only in-
volve manipulations with binomial coefficients, which do not take into account the uniformity of a
graph. More precisely, the inequality (3.2) follows by repeating verbatim the same steps from [97, Sec-
tion 3] to [97, Inequality (4.2) in Section 4], where the only difference is that the condition α

(
n
r

)
→ ∞

in [97, Lemma 4.1] is not needed26.

3.3 Generalisation to hypergraphs

Notice that every component in an r-uniform hypergraph has either one vertex (isolated vertex) or at
least r vertices. We define the function r(F ) := n − k1(F ) − (r − 1)kr(F ) where n is the number of
vertices in F , k1(F ) is the number of isolated vertices in F and kr(F ) is the number of components
in F , which are not isolated vertices. We have αp−1∆ = o(n−1/2) (which follows from Lemma 3.1)
which allows us to estimate(

1− p
p− 2α

)e(F )

= (p−1 − 1)e(F )

(
p

p− 2α

)e(F )

≤ (p−1 − 1)e(F )(1 + n−
1
2 )r(F ),

where we also used log
(

p
p−2α

)
≤ 3α

p and e(F ) ≤ ∆r(F ). By substituting the above estimate in (3.2)
we can upper bound f via Lemma 3.2 as follows:

f ≤
(
1 + o(1)

)
e−

1−p
p α2(nr)SH ,

26In fact it is only used to show α = o(p) which follows from Lemma 3.1 anyway.
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3.3 Generalisation to hypergraphs

where, as in [97], we set

SH =
∑
F⊆H

(
p−1 − 1

)e(F )(
1 + n−

1
2

)r(F ) XF (H)

XF (K
(r)
n )

. (3.3)

Next, instead of going over all F in the sum above, we consider only those F whose components
do not consist of an isolated edge. More precisely, we say that a hypergraph F is good if none of
the components of F consists of a single (isolated) edge. In the following lemma below we seek to
estimate the sum SH from (3.3) by the following sum:

S′H =
∑′

F⊆H

(
p−1 − 1

)e(F )
2r(F ) XF (H)

XF (K
(r)
n )

, (3.4)

where
∑′ is the sum over good hypergraphs F ⊆ H .

Lemma 3.3 below has the same conclusion as [97, Lemma 4.3]. In the case of r-uniform hypergraphs
(r ≥ 3) one needs to be more careful and the estimates are somewhat different from those in [97].
Therefore we provide its full proof. As for intuition, so recall that the hypergraphs F in the sum SH

(defined in (3.3)) correspond to the possible intersections of two copies of H . Thus, two typical copies
of H in K(r)

n are expected to intersect in α2
(
n
r

)
edges which is, by Lemma 3.1, o(n1/2), moreover such

edges are likely to be disjoint and their contribution to the sum will be shown to be roughly e
1−p
p α2(nr).

Lemma 3.3. If H is any r-uniform hypergraph with maximum degree ∆ ≥ 2 and condition (2.1) holds, then

SH ≤
(
1 + o(1)

)
e

1−p
p α2(nr)S′H .

Proof. Let F be some good hypergraph from the sum
∑′ in S′H . Thus, F is an r-uniform hypergraph

with v isolated vertices and no isolated edges. We define S′[F ] to be the contribution to S′H that comes
from the isomorphism class of this good hypergraph F ⊆ H , i.e. S′[F ] = (p−1 − 1)e(F )2r(F ) XF (H)2

XF (K
(r)
n )

.
We write Ft for a hypergraph obtained from (a good) F with v isolated vertices by adding t ≤ v/r

isolated edges to it. We define S[F ] be the contribution to SH of all subhypergraphs of H that are iso-
morphic to Fi for some i, where 0 ≤ i ≤ v/r. Thus, S[F ] =

∑v/r
i=0(p−1− 1)e(Fi)(1 +n−

1
2 )r(Fi)

XFi (H)2

XFi (K
(r)
n )

.

Every hypergraph from the sum in SH can be reduced to a good F by deleting all isolated edges.
Therefore, we have S′H =

∑
S′[F ] and SH =

∑
S[F ], where the sums are over all isomorphism

classes of good subhypergraphs F of H . To prove the lemma it is sufficient to bound S[F ]/S′[F ] for
every good F ⊆ H by (1 + o(1))e

1−p
p α2(nr). Then, summing over all isomorphism classes of good

subhypergraphs, we obtain: SH ≤ (1 + o(1))e
1−p
p α2(nr)S′H , as desired.

Let F ⊆ H be a good hypergraph with v isolated vertices, then

XFt(K
(r)
n ) = XF (K(r)

n ) · 1

t!

(
v

r

)(
v − r
r

)
· . . . ·

(
v − rt+ r

r

)
and

XFt(H) ≤ XF (H) · 1

t!
eH(v)eH(v − r) · . . . · eH(v − rt+ r).
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3. Riordan’s theorem for hypergraphs

Setting βw = eH(w)2/
(
w
r

)
we obtain

XFt(H)2

XFt(K
(r)
n )
≤ XF (H)2

XF (K
(r)
n )

βvβv−r . . . βv−rt+r
t!

.

Since e(Ft) = e(F ) + t and r(Ft) = r(F ) + t we have

S[F ]

S′[F ]
=

∑v/r
i=0

(
p−1 − 1

)e(Fi)(
1 + n−

1
2

)r(Fi) XFi (H)2

XFi (K
(r)
n )(

p−1 − 1
)e(F )

2r(F ) XF (H)2

XF (K
(r)
n )

≤ 2−r(F )(1 + n−
1
2 )r(F )

v/r∑
t=0

(
p−1 − 1

)t(
1 + n−

1
2

)t βvβv−r . . . βv−rt+r
t!

. (3.5)

Next we take a closer look at the βw terms. Since ∆(H) ≤ ∆ we can bound eH(w) ≤ w∆/r and
βw ≤

(
w∆
r

)2 (w
r

)−1 ≤ ∆2rr−2

wr−2 . Therefore we estimate the product of all βw as follows

t−1∏
i=0

βv−ir ≤
(
∆2rr−2

)t(t−1∏
i=0

(v − ir)

)−(r−2)

≤ ∆2t

(
(bv/rc − t)!
bv/rc!

)r−2

.

By applying induction one can show that (s−t)!
s! ≤

(
e
s

)t for all 0 ≤ t ≤ s and thus we obtain

t−1∏
i=0

βv−ir ≤
(
er−2∆2

bv/rcr−2

)t
.

Thus, we further upper bound S[F ]/S′[F ], using (3.5), by

S[F ]

S′[F ]
≤ 2−r(F )

(
1 + n−

1
2

)r(F )
v/r∑
t=0

(
p−1 − 1

)t(
1 + n−

1
2

)t( er−2∆2

bv/rcr−2

)t
1

t!
. (3.6)

From Lemma 3.1 it follows that p−1∆2n2−r = o(
√
n) and therefore

p−1∆2v2−r = o((n/v)r−2
√
n) (3.7)

and in the following we will distinguish four cases.

Suppose 0 ≤ v ≤ n/(100r lnn). Then we use (3.7) to upper bound each term in the sum from (3.6)
by n(r−1)t ≤ nv ≤ exp(n/(100r)). On the other hand we have r(F ) ≥ n−v

r > n/(2r). It follows that
2−r(F ) dominates each of the at most n/r terms in the sum and the factor (1 + n−

1
2 )r(F ) as well. This

gives us S[F ]/S′[F ] = o(1). If v = 0 then we trivially have S[F ]/S′[F ] = o(1) as well.

Next we assume that n/(100r lnn) < v ≤ n− (lnn)r−2
√
n. We can interpret the sum in (3.6) as the

first v/r + 1 terms in the expansion of exp
(

(p−1 − 1)(1 + n−1/2) er−2∆2

bv/rcr−2

)
, which leads to

S[F ]

S′[F ]
≤ 2−r(F )

(
1 + n−

1
2

)r(F )
exp

(
2p−1 er−2∆2

bv/rcr−2

)
. (3.8)
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Again we have r(F ) ≥ n−v
r ≥ (lnn)r−2√n

r , whereas exp
(

2p−1 er−2∆2

bv/rcr−2

)
= exp

(
o((lnn)r−2

√
n)
)

by (3.7). Thus, we have S[F ]/S′[F ] = o(1).
Assume now that n − (lnn)r−2

√
n < v ≤ n −

√
n. Similarly as in the previous case one gets

r(F ) ≥
√
n/r and exp

(
2p−1 er−2∆2

bv/rcr−2

)
= exp (o(

√
n)). Again one gets S[F ]/S′[F ] = o(1) as before.

Finally, let v > n −
√
n and we are going to use the inequality (3.5) to estimate S[F ]/S′[F ]. We

bound βw with e(H)2
(
w
r

)−1
= α2

(
n
r

)2(w
r

)−1 which is α2
(
n
r

)
(1 +O(n−1/2)) for w ≥ n− (r+ 1)

√
n. This

gives us

√
n∑

t=0

(
p−1 − 1

)t(
1 + n−

1
2

)t(α2
(
n
r

)(
1 +O(n−1/2)

))t
t!

≤ exp

(
1− p
p

α2

(
n

r

)(
1 +O(n−1/2)

))
.

By Lemma 3.1 we have 1−p
p α2

(
n
r

)
n−1/2 = o(1). Thus,

exp

(
1− p
p

α2

(
n

r

)(
1 +O(n−1/2)

))
≤
(
1 + o(1)

)
exp

(
1− p
p

α2

(
n

r

))
.

As for t >
√
n, we estimate the rest by (3.6) and using (3.7) it follows:

v/r∑
t=
√
n

(
p−1 − 1

)t(
1 + n−

1
2

)t( er−2∆2

bv/rcr−2

)t
1

t!
≤

v/r∑
t=
√
n

o(1)t = o(1).

Combining together we obtain: S[F ]
S′[F ] ≤ (1 + o(1))eα

2(nr)
1−p
p + o(1) = (1 + o(1))eα

2(nr)
1−p
p .

Thus, in the first three cases we get S[F ] = o(S′[F ]) and the fourth case implies S[F ] ≤ (1 +

o(1))eα
2(nr)

1−p
p S′[F ]. Therefore, for every good F , we get in any of the four possible cases that

S[F ] ≤
(
1 + o(1)

)
eα

2(nr)
1−p
p S′[F ].

Building the sums over all isomorphism classes of good subhypergraphs F of H we obtain SH ≤
(1 + o(1))e

1−p
p α2(nr)S′H which completes the proof.

So far we have f ≤ (1+o(1))e−
1−p
p α2(nr)SH and SH ≤ (1+o(1))e

1−p
p α2(nr)S′H , thus f ≤ (1+o(1))S′H .

As a next step we give an upper bound on XF (H)/XF (K
(r)
n ).

Lemma 3.4. Let H be any r-uniform hypergraph with maximum degree ∆ and F ⊆ H , then

XF (H)

XF (K
(r)
n )
≤
(
e(r − 1)!∆

)r(F )
er(F )+(r−2)kr(F )

nr(F )+(r−2)kr(F )

Proof. The proof is a straightforward adaptation of [97, Lemma 4.4]. For the sake of completeness, we
provide full details. Let YF (H) be the number of labelled copies of F in H .

As every unlabeled copy of F corresponds to |aut(F )| labelled copies, where |aut(F )| is the number
of automorphisms of F , one verifies that YF (H)/YF (K

(r)
n ) = XF (H)/XF (K

(r)
n ) holds.

Since YF (K
(r)
n ) = n!, one needs to estimate YF (H). We will embed first exactly one vertex from

each of the kr(F ) nontrivial components. This can be done in (n)kr(F ) ways. Next, we can em-
bed (r − 1) vertices of each component by embedding one particular edge. This can be done in at
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3. Riordan’s theorem for hypergraphs

most ∆(r − 1)! ways into H . This gives at most (∆(r − 1)!)
kr(F ) possibilities in total. Finally, all

the remaining r(F ) − kr(F ) vertices from the nontrivial components can be embedded in at most
((r − 1)∆)r(F )−kr(F ) ways. The isolated vertices can be embedded in at most k1(F )! ways. We esti-
mate YF (H) ≤ (n)kr(F ) (∆(r − 1)!)

kr(F )
((r − 1)∆)r(F )−kr(F )k1(F )!. We obtain (using (n)m ≥ (n/e)m

for all 0 ≤ m ≤ n, kr(F ) ≤ n/r):

YF (H)

YF (K
(r)
n )
≤

(n)kr(F )

(
∆(r − 1)!

)kr(F )(
(r − 1)∆

)r(F )−kr(F )
k1(F )!

n!
≤

(
(r − 1)!∆

)r(F )

(n− kr(F ))n−kr(F )−k1(F )
≤

(
(r − 1)!∆

)r(F )

((n− kr(F ))/e)n−kr(F )−k1(F )
≤

(
(r − 1)!∆

)r(F )

((1− 1/r)n/e)n−kr(F )−k1(F )
,

and we further estimate this last term from above, using r(F ) ≥ kr(F ) and r(F ) + (r − 2)kr(F ) =

n− kr(F )− k1(F ), as follows:

≤
(
(r − 1)!∆

)r(F )
(r/(r − 1))(r−1)r(F )er(F )+(r−2)kr(F )

nr(F )+(r−2)kr(F )
≤
(
e(r − 1)!∆

)r(F )
er(F )+(r−2)kr(F )

nr(F )+(r−2)kr(F )
.

The lemma above bounds S′H as follows:

S′H ≤
∑′

F⊆H

(p−1 − 1)e(F )

(
2e(r − 1)!∆

)r(F )
er(F )+(r−2)kr(F )

nr(F )+(r−2)kr(F )
=: T ′H .

Proceeding exactly as in [97], we introduce the following function ψ:

ψ(F ) := (p−1 − 1)e(F )

(
2e(r − 1)!∆

)r(F )
er(F )+(r−2)kr(F )

nr(F )+(r−2)kr(F )

This function is multiplicative, i.e. ψ(F1 ∪ F2) = ψ(F1)ψ(F2) for any two hypergraphs F1 and F2,
where vertices from V (F1) ∩ V (F2) are isolated both in F1 and F2 (in other words: F1 and F2 are
vertex-disjoint where we don’t take into account isolated vertices). Since every good hypergraph is a
union of such disjoint connected good hypergraphs this yields

T ′H =
∑′

F⊆H

ψ(F ) ≤ 1 +

∞∑
t=1

1

t!

∑′′

F⊆H

ψ(F )

t

, (3.9)

where
∑′′ is the sum over connected good hypergraphs F . We set T ′′H =

∑′′
F⊆H ψ(F ), thus the above

shows T ′H ≤ eT
′′
H . Lastly, we prove the following estimate on T ′′H .

Lemma 3.5. For every r-uniform hypergraph H on [n] we have

T ′′H ≤ ne2r
n∑

s=r+1

(
12r!2∆2

n

)s−1

p−eH(s), (3.10)

where ∆ is the maximum degree of H .
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3.4 Finishing the argument

Proof. The proof is similar to that of Lemma 4.5 from [97]. One rewrites T ′′H by going over all good
connected hypergraphs F on s vertices (then r(F ) = s − (r − 1) and kr(F ) = 1) and upper bounds
the sum as follows:

T ′′H ≤
n∑

s=r+1

(
2e(r − 1)!∆

)s−r+1
es−1

ns−1

∑
V

eH(s)∑
m=0

(
eH(s)

m

)
(p−1 − 1)m

≤ er−2
n∑

s=r+1

(8r!∆)
s−r+1

ns−1

∑
V

p−eH(s),

where the second sum is over all s-element sets V such that H[V ] is connected.
We consider the shadow graph H ′ of H . Now every V ⊆ [n] as above also induces a subgraph in

H ′ which is connected and therefore contains a spanning tree. We can estimate the number of such V
by estimating the number of labelled trees in H ′ on s vertices and then unlabelling these.

Given a labelled treeG on s vertices, there are at most n(∆(r−1)!)(∆(r−1))s−r ways of mapping it
into H ′: n accounts for the first vertex of G, then (in H) we can choose next (r − 1) vertices at once in
∆(r− 1)! ways, and finally every remaining vertex in at most ∆(r− 1) ways since ∆(H ′) ≤ ∆(r− 1).
We get at most n(∆(r−1)!)(∆(r−1))s−r mappings ofG intoH ′. Since there are, by Cayley’s formula,
ss−2 labelled trees on s vertices, there will be at most n(∆(r − 1)!)(∆(r − 1))s−rss−2 labellings of
s-element sets V such that H[V ] is connected. Unlabelling every s-set V gives us at most

n
(
∆(r − 1)!

)(
∆(r − 1)

)s−r
ss−2/s! ≤ n

(
∆(r − 1)!

)s−r+1
es

sets V . This implies T ′′H ≤ ne2r
∑n
s=r+1

(
12r!2∆2

n

)s−1

p−eH(s).

3.4 Finishing the argument

Now we are in a position to finish the argument. We further estimate T ′′H using (3.10) as follows:

T ′′H ≤ ne2r
n∑

s=r+1

(
12r!2∆2

n

)s−1

p−eH(s) ≤ 12e2rr!2
n∑

s=r+1

(
12r!2∆4p−eH(s)/(s−2)n−1

)s−2

.

Therefore we get T ′′H ≤ 12e2rr!2
∑n
s=r+1

(
12r!2∆4p−γ(H)n−1

)s−2
, which by condition (2.1) tends to

zero as n goes to infinity. Thus, T ′′H = o(1), and with T ′H ≤ eT
′′
H and f ≤ (1 + o(1))S′H ≤ T ′H we

obtain f ≤ 1 + o(1) and then by Chebyshev’s inequality (3.1) the statement of Theorem 2.5 follows
forH(r)(n, p

(
n
r

)
).

3.5 Applications

First we obtain the following two corollaries.

Corollary 3.6. Let r, ∆ ≥ 2 be integers and H is an r-uniform hypergraph with n vertices, ∆(H) ≤ ∆,
e(H) > n/r and γ(H) = e(H)/(n− 2). Then for p = ω

(
n−1/γ(H)

)
the random graphH(r)(n, p) contains a

copy of H a.a.s., while for every ε > 0 we have for p ≤ (1− ε)(e/n)1/γ that P[H ⊆ H(r)(n, p)]→ 0.
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3. Riordan’s theorem for hypergraphs

Proof. Since ∆ is fixed and γ(H) ≤ (1 + o(1))∆, condition (2.1) is satisfied. Moreover, e(H) > n/r

implies ∆(H) ≥ 2. Theorem 2.5 yields the first part of the claim.
Let X be the number of copies of H inH(r)(n, p) and we estimate its expectation E[X] as follows:

E[X] ≤ n! pe(H) ≤ 3
√
n(1− ε)e(H)(n/e)2 = o(1).

Now Markov’s inequality P[X ≥ 1] ≤ E[X] yields the second part of the corollary.

We call a hypergraph H d-regular if every vertex of H has degree d.

Corollary 3.7. Let r ≥ 2 be an integer and H be an ∆-regular r-uniform hypergraph, where ∆ = o(n1/4)

but ∆ = ω(log1−1/r n). Then for every ε > 0 we have that H(r)(n, p) contains a.a.s. H if p = (1 + ε)n−r/∆.
Furthermore P[H ⊆ H(r)(n, p)]→ 0 for p ≤ n−r/∆, i.e. p = n−r/∆ is a sharp threshold for the appearance of
copies of H inH(r)(n, p).

Proof. Let X count the copies of H inH(r)(n, p) and for p ≤ n−r/∆ we have

P[X ≥ 1] ≤ E[X] ≤ n!n−re(H)/∆ = n!n−n = o(1).

Next we bound γ(H) as follows: ∆/r ≤ γ(H) ≤ ∆
r

(∆1/(r−1)+1)
(∆1/(r−1)−1)

. This is obtained from the estimate
eH(v) ≤ min{∆v/r,

(
v
r

)
} by considering two cases whether v ≤ ∆1/(r−1) +1 or not. Let ε ∈ (0, 1), then

n
(

(1 + ε)n−r/∆
)γ(H)

∆−4 ≥
(

(1 + ε)n1/γ(H)−r/∆∆−4r(1+o(1))/∆
)γ(H)

≥(
(1 + ε)n−2r/(∆1+1/(r−1))

(
1 + o(1)

))γ(H)

→∞,

holds and therefore Theorem 2.5 is applicable and the statement follows.

Thus, Theorem 2.5 (Corollaries 3.6 and 3.7) states that under some technical conditions the thresh-
old for the appearance of the spanning structure comes from the expectation threshold pE . In the
following we derive asymptotically optimal thresholds for the appearance of various spanning struc-
tures inH(r)(n, p) which are consequences of the Corollaries 3.6 and 3.7.

Hamilton Cycles

The following is a slightly weaker version of Dudek and Frieze [44]. Recall that an r-uniform hyper-
graph is `-Hamiltonian if it contains n/(r− `) edges which form consecutive segments of some cyclic
ordering of all vertices and two consecutive edges overlap in ` vertices.

Corollary 3.8. For all integers r > ` ≥ 2, (r − `)|n and p = ω(n`−r) the random hypergraph H(r)(n, p) is
`-Hamiltonian a.a.s.

Proof. Denote by C
(r,`)
n an `-overlapping Hamilton cycle on n vertices. It is not difficult to see that

γ(C
(r,`)
n ) = n

(r−`)(n−2) . Indeed, let V ⊆ [n] be a set of size v < n. Then C(r,`)
n [V ] is a union of vertex-

disjoint `-overlapping paths, where an `-overlapping path of length s consists of s(r − `) + ` ordered
vertices and edges are consecutive segments intersecting in ` vertices. This gives e(C(r,`)

n [V ]) ≤ (v −
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`)/(r − `) and from v−`
(r−`)(v−2) ≤

n
(r−`)(n−2) we get that the optimal value for γ(C

(r,`)
n ) is obtained by

the whole cycle, i.e. γ(C
(r,`)
n ) = n

(r−`)(n−2) .

Since e(C(r,`)
n ) > n/r, ∆(C

(r,`)
n ) = d r

r−`e and n2(r−`)/n → 1, Corollary 3.6 implies the statement.

Cube-hypergraphs

The r-uniform d-dimensional cube-hypergraph Q(r)(d) was studied in [33] and its vertex set is V :=

[r]d and its hyperedges are r-sets of the vertex set V that all differ in one coordinate. Thus, Q(r)(d) has
rd vertices, drd−1 edges and is d-regular. In the case r = 2 this is the usual definition of the (graph)
hypercube. The following corollary is a direct consequence of Corollary 3.7.

Corollary 3.9. For all integers r ≥ 2, ε > 0 and p = r−r + ε it holds P[Q(r)(d) ⊆ H(r)(rd, p)] tends to 1 as
d tends to infinity. On the other hand, P[Q(r)(d) ⊆ H(r)(rd, r−r)]→ 0 as d→∞.

We remark that, in the case r = 2, Riordan [97] proved even better dependence of ε on d, and similar
dependence can be shown for r > 2.

Lattices

Another example considered in [97] was the graph of the lattice Lk, whose vertex set is [k]2 and
two vertices are adjacent if their Euclidean distance is one. There it is shown that p = n−1/2 is
asymptotically the threshold. One can view Lk as the cubes Q(2)(2) (these are cycles C4) glued along
the edges.

We define the `-overlapping hyperlattice L(r)(`, k) as the r-uniform hypergraph on the vertex
set [(k − 2)(r − `) + r]2 and the hyperedges being either of the form {(x, i), . . . , (x, i + r − 1)} or
{(j, y), . . . , (j + r − 1, y)}, where x, y ∈ [(k − 2)(r − `) + r] and i, j ≡ 1 mod (r − `). This hypergraph
thus arises if we glue together (k − 1)2 copies of Q(r)(2) that overlap on ` hyperedges accordingly.
Thus, L(2)(1, k) is just the usual graph lattice Lk.

Corollary 3.10. Let r ≥ 2 and k be an integer. For p = ω
(
n−1/2

)
(where n = (k − 2 + r)2) the random

r-uniform hypergraphH(r)(n, p) contains a copy of L(r)(r − 1, k) a.a.s. Moreover, for p = n−1/2, P[L(r)(r −
1, k) ⊆ H(r)(n, p)]→ 0 as k (and thus n) tends to infinity.

Proof. Observe thatL := L(r)(r−1, k) has (k−2+r)2 vertices (which can be associated with [k−2+r]2)
and 2(k − 1)(k − 2 + r) edges.

We aim to show that eL(v) ≤ 2(v − r) for all v ≥ r + 1. We argue similarly as in [97]. Observe
that eL(v) ≤ 2 for v = r + 1. Let now L′ be an arbitrary subhypergraph of L on v + 1 ≤ (k − 2 + r)2

vertices such that e(L′) = eL(v + 1). It is easy to see that there is a vertex of degree 2 in L′ (take (i, j)

such that (i+ 1, j), (i, j + 1) 6∈ V (L′)). It follows that then eL(v + 1) ≤ eL(v) + 2 for v > r + 1 giving
eL(v) ≤ 2(v − r) for all v ≥ r + 1.

It follows that γ := γ(L) ≤ 2 and applying Theorem 2.5 with npγ = ω(1) yields the first part.
Markov’s inequality yields the second part.
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Spheres

Let r ≥ 3 and let G be a connected planar graph on n vertices with a drawing all of whose faces are
cycles of length r. We define a sphere Srn as an r-uniform hypergraph all of whose edges correspond
to the faces of that particular drawing (note that a sphere is not unique) and the vertex set being V (G).
Since every edge of G lies in 2 faces and there are r edges in every face, we obtain 2e(G) = rf(G),
where f(G) is the number of faces of G. We thus get from Euler’s formula for planar graphs the
condition 2v(Srn)− 4 = (r − 2)e(Srn).

Corollary 3.11. Let r ≥ 3 and S be some sphere Srn with ∆ = ∆(Srn). Then for p = ω
(
∆2r−4n−(r−2)/2

)
the

random r-uniform hypergraphH(r)(n, p) contains a copy of Srn a.a.s.

Proof. Let G be a planar graph, out of which the sphere Srn arose. Let V ⊆ V (Srn) and v = |V |.
We can assume that G′ := G[V ] is connected27. Therefore, we get from Euler’s formula: f(G′) =

2 + e(G′) − v. On the other hand, by counting edge-face incidences we get: rf(G′) ≤ 2e(G′) and
we obtain: (r − 2)f(G′) ≤ 2v − 4, which yields an upper bound eSrn(v) ≤ 2v−4

r−2 . It follows that
γ(Srn) ≤ 2/(r−2) holds and this upper bound is attained by the sphere Srn itself. Thus, we immediately
get γ(Srn) = 2/(r − 2). Since (2.1) holds, the statement follows now directly from Theorem 2.5.

Powers of tight Hamilton cycles

Consider a tight Hamilton cycleC(r,r−1)
n with n vertices which are ordered cyclically. Given an integer

k, we define the k-th power C(r)
n (k) of C(r,r−1)

n to consist of all r-tuples e such that the maximum
distance in this cyclic ordering between any two vertices in e is at most r + k − 2. Recall that in the
graph case, the threshold for the appearance of C(2)

n (k) is known to be n−1/k for k ≥ 3 [84]. If we
count the edges of C(r)

n (k) by their leftmost vertex we get e(C(r)
n (k)) = n

(
r+k−2
r−1

)
for n ≥ r + 2k − 2.

Corollary 3.12. Let r ≥ 3 and k ≥ 2 be integers. Suppose that p = ω(n−1/(r+i−2
r−1 )), then the random

hypergraphH(r)(n, p) contains a.a.s. a copy of C(r)
n (k). This threshold is asymptotically optimal.

Proof. One can argue similarly to Proposition 8.2 in [84] to show γ(C
(r)
n (k)) ≤

(
r+k−2
r−1

)
+ Or,k(1/n).

The statement follows from Theorem 2.5. We omit the details.

27Since we can add each time one edge to connect two components and this doesn’t create any further cycles.
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Chapter 4

Finding tight Hamilton cycles in random
hypergraphs

In this chapter we prove28 Theorem 2.6, which resulted from collaboration with Allen, Koch, and
Person [6]. We first give a short overview of the algorithm, then in Section 4.2 we prove the theorem,
where the proofs of the Connecting and Reservoir Lemma are given in Section 4.3 and 4.4 respectively.

4.1 An informal algorithm overview

We briefly give some additional notation. An s-tuple (u1, . . . , us) of vertices is an ordered set of distinct
vertices. We often denote tuples by bold symbols, and occasionally also omit the brackets and write
u = u1, . . . , us. Additionally, we may also use a tuple as a set and write for example, if S is a set,
S ∪ u := S ∪ {ui : i ∈ [s]}. The reverse of the s-tuple u is the s-tuple←−u := (us, . . . , u1).

In an r-uniform hypergraph G the tuple P = (u1, . . . , u`) forms a tight path if the set {ui+1, . . . , ui+r}
is an edge for every 0 ≤ i ≤ `−r. For any s ∈ [`] we say that P starts with the s-tuple (u1, . . . , us) =: v

and ends with the s-tuple (u`−(s−1), . . . , u`) =: w. We also call v the start s-tuple of P , w the end s-
tuple of P , and P a v − w path. The interior of P is formed by all its vertices but its start and end
(r − 1)-tuples. Note that the interior of P is not empty if and only if ` > 2(r − 1).

Overview of the algorithm

We start with the given sample of the random hypergraph H(r)(n, p) and we will reveal the edges
as we proceed. First, using the Reservoir Lemma (Lemma 4.1 below), we construct a tight path Pres

which covers a small but bounded away from zero fraction of [n], which has the reservoir property,
namely that there is a set R ⊂ V (Pres) of size 2Cp−1 log n ≤ 2n/ log2 n such that for any R′ ⊂ R, there
is a tight path covering exactly the vertices V (Pres) \R′ whose ends are the same as those of Pres, and
this tight path can be found given Pres and R′ in time polynomial in n a.a.s.

We now greedily extend Pres, choosing new vertices when possible and otherwise vertices in R.
We claim that a.a.s. this strategy produces a structure Palmost which is almost a tight path extending
Pres and covering [n]. The reason it is only almost a tight path is that some vertices in R may be used
twice. We denote the set of vertices used twice by R′1. But we will succeed in covering [n] with high
probability. Recall that, due to the reservoir property, we can dispense with the vertices from R′1 in
the part Pres of the almost tight Hamilton path Palmost.

28The proof presented in this chapter is a close adaption from [6].
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Finally, we apply the Connecting Lemma (Lemma 4.2 below) to find a tight path in R \ R′1 joining
the ends of Palmost, and using the reservoir property this gives the desired tight Hamilton cycle.

This approach is similar to that in [4]. The main difference is the way we prove the Reservoir
Lemma (Lemma 4.1). In both [4] and this paper, we first construct many small, identical, vertex-
disjoint reservoir structures 29. A reservoir structure contains a spanning tight path, and a second tight
path with the same ends which omits one reservoir vertex. We then use Lemma 4.2 to join the ends of
all these reservoir structures together into the desired Pres. In [4], reservoir structures are of constant
size (depending on the ε) and they are found by using brute-force search. This is slow and is also the
cause of the algorithm in [4] being randomised: there it is necessary to simulate exposure in rounds
of the random hypergraph since the brute-force search reveals all edges. In this paper, by contrast,
we construct reservoir structures by a local search procedure which is both much faster and reveals
much less of the random hypergraph.

We will perform all the constructions in this paper by using local search procedures. At each step,
we reveal all the edges ofH(r)(n, p) which include a specified (r − 1)-set, the search base. The number
of such edges will always be in expectation of the order of pn, so that by Chernoff’s inequality and
the union bound, with high probability at every step in the algorithm the number of revealed edges
is close to the expected number. Of course, what we may not do is attempt to reveal a given edge
twice: therefore, we keep track of an exposure hypergraph E , which is the (r − 1)-uniform hypergraph
consisting of all the (r − 1)-sets which have been used as search bases up to a given time in the
algorithm. We will show that E remains quite sparse, which means that at each step we have almost
as much freedom as at the start when no edges are exposed.

For concreteness, we use a doubly linked list of vertices as the data structure representing a tight
(almost-) path. However, this choice of data structure is not critical to the proof and we will not
further comment on it. The reader can easily verify that the various operations we describe can be
implemented in the claimed time using this data structure.

4.2 Two key lemmas and the main proof

Two Key Lemmas

Recall the definition of the reservoir path Pres. It is an r-uniform hypergraph with a special subset
R ( V (Pres) and some start and end (r − 1)-tuples v and w respectively, such that:

(1) Pres contains a tight path with the vertex set V (Pres) and the end tuples v and w, and

(2) for any R′ ⊆ R, Pres contains a tight path with the vertex set V (Pres) \ R′ and the end tuples v

and w.

We first give the lemma which constructs Pres. In addition to with high probability returning Pres,
we also need to describe the likely resulting exposure hypergraph.

Lemma 4.1 (Reservoir Lemma). For each r ≥ 3 and p ∈ (0, 1] there exists C > 0 and a deterministic
O(nr)-time algorithm whose input is an n-vertex r-uniform hypergraph G and whose output is either Fail or

29in some part of the literature, mostly in the dense case, this structure is called an absorber.
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4. Finding tight Hamilton cycles in random hypergraphs

a reservoir path Pres with ends u and v and an (r − 1)-uniform exposure hypergraph E on vertex set V (G)

with the following properties.

(i) All vertices of Pres and edges of E are contained in a set S of size at most n4 .

(ii) The reservoir R ⊂ V (Pres) has size 2Cp−1 log n.

(iii) There are no edges of E contained in R ∪ u ∪ v.

(iv) All r-sets in V (G) which have been exposed contain at least one edge of E .

When G is drawn from the distribution H(r)(n, p) and p ≥ Cn−1 log3 n, the algorithm returns Fail with
probability at most n−2.

Furthermore, we need a lemma which allows us to connect two given tuples with a not too long
path. This lemma is the engine behind the proof and behind the Reservoir Lemma.

Lemma 4.2 (Connecting Lemma). For each r ≥ 3 there exist c, C > 0 and a deterministic O(nr−1)-time
algorithm whose input is an n-vertex r-uniform hypergraph G, a pair of distinct (r − 1)-tuples u and v, a set
S ⊂ V (G) and an (r − 1)-uniform exposure hypergraph E on the same vertex set V (G). The output of the
algorithm is either Fail or a tight path of length o(log n)30 in G whose ends are u and v and whose interior
vertices are in S, and an exposure hypergraph E ′ ⊃ E . We have that all the edges E(E ′) \ E(E) are contained
in S ∪ u ∪ v.

Suppose that G is drawn from the distribution H(r)(n, p) with p ≥ C(log n)3/n, that E does not contain
any edges intersecting both S and u ∪ v. If furthermore |S| = Cp−1 log n and |e(E [S])| ≤ c|S|r−1 then
e(E ′) ≤ e(E) +O(|S|r−2) and the algorithm returns Fail with probability at most n−5.

Overview continued: more details

We now describe the algorithm claimed by Theorem 2.6, which we state in a high-level overview as
Algorithm 1 and explain somewhat informally some of the arguments.

Algorithm 1: Find a tight Hamilton cycle inH(r)(n, p)

1 use subroutine from Lemma 4.1 to either construct Pres (with ends u, v and exposure
hypergraph E on S) or halt with failure;
L := V (G) \ S;
U := S \ V (Pres);

2 extend Pres greedily from v to cover all vertices of U and using up to n/2 vertices of L,
otherwise halt with failure;

3 extend Pres further greedily to Palmost by covering all vertices of L and using up to |R|/2
vertices of R, otherwise halt with failure;

4 use subroutine of Lemma 4.2 to connect the ends of Palmost using the unused at least |R|/2
vertices of R, otherwise halt with failure;

30We will make this more precise later. For now the reader can replace this by at most Cn/ log logn.
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4.2 Two key lemmas and the main proof

Step 1. Given G drawn from the distribution H(r)(n, p), we begin by applying Lemma 4.1 to a.a.s.
find a reservoir path Pres with ends u and v contained in a set S of size n

4 . Let L = V (G) \ S, and
U = S \V (Pres). Recall that by Lemma 4.1 (i) and (iii), all edges of E are contained in S; and R∪u∪v
contains no edges of E . By (iv) all exposed r-sets contain an edge of E ; by choosing a little carefully
where to expose edges (see Step 2 below), we will not need to worry about what exactly the edges of
E are beyond the above information.

Step 2. We extend Pres := P0 greedily, one vertex at a time, from its end u = u0, to cover all of U .
At each step i, we simply expose the edges of G which contain the end ui−1 of Pi−1 and whose other
vertex is not in V (Pi−1), choose one of these edges e and add the vertex from e \ ui−1 to Pi−1 to form
Pi. The rule we use for choosing e is the following: if i is congruent to 1 or 2 modulo 3, we choose e
such that e \ ui−1 is in L, and if i is congruent to 0 modulo 3 we choose e such that e \ ui−1 is in U if
it is possible; if not we choose e such that xi := e \ ui−1 is in L. The point of this rule is that at each
step we want to choose an edge which contains at least two vertices of L, because no such r-set can
contain an edge of E since all the edges of E are contained in S (Property (i)). We will see that while
U \ V (Pi−1) is large, we always succeed in choosing a vertex in U when i is congruent to 0 modulo 3.
When it becomes small, we do not, but a.a.s. we succeed often enough to cover all of U while using
not more than 5n

8 vertices of L.

Step 3. Next, we continue the greedy extension, this time choosing a vertex in L when possible and
in R when not, until we cover all of L. It follows from the first two steps and Properties (i) and (iii)
that no edge of E is in L ∪ R. Thus, at each step we choose from newly exposed edges and again we
a.a.s. succeed in covering L using only a few vertices ofR. Let the final almost-path (which uses some
vertices R′1 ⊆ R twice) be Palmost, and R1 the subset of R consisting of vertices we did not use in the
greedy extension, i.e. R1 = R \R′1.

Step 4. At last, Palmost covers V (G) = L∪U∪V (Pres). Its ends, together with the vertices ofR1, satisfy
the conditions of Lemma 4.2, which we apply to a.a.s. complete Palmost to an almost-tight cycle H ′ in
which some vertices of R1 are used twice. The reservoir property of R now gives a tight Hamilton
cycle H .

Runtime. Our applications of Lemmas 4.1 and 4.2 take time polynomial in n by the statements of
those lemmas; the greedy extension procedure is trivially possible in O(n2) time31. Finally the con-
struction of Pres allows us to obtain H from H ′ in time O(n2): we scan through Pres, for each vertex r
of R we scan the remainder of H ′ to see if it appears a second time, and if so locally reorder V (Pres)

to remove r from Pres.

To prove Theorem 2.6, what remains is to justify our claims that various procedures above a.a.s.
succeed.

31Since at each extension step we just need to look at the neighbourhood of an (r − 1)-tuple, and there are O(n) steps.
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4. Finding tight Hamilton cycles in random hypergraphs

Setup for the proof of Theorem 2.6

We choose C ≥ max{CL4.1
, CL4.2

, 108} large enough for Lemmas 4.1 and 4.2. For this proof we do
not need to know the value of c required for Lemma 4.2. We suppose that n is large enough to make
log log n larger than any constant appearing in the following proof. We will use Chernoff’s inequality,
Theorem 2.16, at various occasions.

Constructing Pres

LetG be drawn from the distributionH(r)(n, p). Lemma 4.1 states that with probability at least 1−n−2,
a reservoir path Pres inG is found in polynomial time. From this point on, at each step except the final
connection, when we expose edges at an (r − 1)-set x, that (r − 1)-set will be included in the path we
construct. Hence in future steps we will not examine edges containing x. Thus while we should keep
updating E , in fact we will never need to know which edges are added after generating Pres.

Extending Pres to cover all of U

We next aim to prove that with high probability the greedy extension of Pres to cover U succeeds,
with at least n/8 vertices of L remaining uncovered at the end. Recall that we chose |S| = n

4 and
thus |L| = 3n

4 . We choose the next vertex from L when i is congruent to 1 or 2 modulo 3 or when we
fail to extend into U . At each step i where at least n/8 vertices of L are uncovered, we expose all the
r-sets in V (G) which contain the end ui−1 of Pi−1 and a vertex of L. The greedy algorithm can only
fail to complete step i if none of these r-sets turn out to be edges, which happens with probability at
most (1 − p)n/8 ≤ exp

(
− pn

8

)
< n−4 (since the edges of the random hypergraph are independent).

Taking the union bound, the greedy algorithm to cover U fails before covering 5
8n vertices of L with

probability at most n−3.

Similarly, for any i such that
∣∣U \ V (Pi−1)

∣∣ ≥ Cp−1 log n, if i is divisible by 3 the probability that no
edge containing ui−1 and a vertex of U \ V (Pi−1) is in G is at most exp

(
− C log n

)
< n−4. It follows

that with probability at most n−3 the greedy algorithm chooses a vertex of L when i is divisible by 3

and U \ V (Pi−1) has size at least Cp−1 log n. Let t1 be the first time in the greedy extension procedure
when U \ V (Pt1) has size less than Cp−1 log n.

It remains to show that while the last Cp−1 log n vertices of U are covered, at most n/8 vertices of
L are used. We split these last Cp−1 log n vertices into the last 1

2p
−1 vertices and the rest. When x

vertices of U remain uncovered with x ≥ 1
2p
−1, then the probability of choosing a vertex of U for the

vertex xi extending Pi−1 (when i is divisible by 3) is at least 1−(1−p)x ≥ 1
3 . By Chernoff’s inequality,

the probability that at time t2 := t1 + 6Cp−1 log n there are more than 1
2p
−1 vertices of U remaining

uncovered is at most exp
(
− 1

6Cp
−1 log n

)
≤ n−3. Next, we show that we cover all but at most log n

vertices of U in not too much more time.

To see this, consider the following event. For 1 ≤ j ≤ 7n/8 and log n ≤ x ≤ 1
2p
−1, let A(x, j) be the

event that we have
∣∣U \ V (Pj)

∣∣ = x and
∣∣U \ V (Pj−3000p−1)

∣∣ ≤ 2x. We claim that the probability for
any of these events to hold is at most n−3. Indeed, if for some given x and j the event A(x, j) occurs,
then at each of the at least 500p−1 values of i with j− 3000p−1 ≤ i ≤ j, an edge containing ui−1 and a
vertex of U appears with probability at least 1− (1− p)x ≥ px/2 (since x ≤ 1

2p
−1). Thus for A(x, j) to
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4.2 Two key lemmas and the main proof

hold, it is necessary that a sum of at least 500p−1 Bernoulli random variables, each with probability at
least px/2, is at most x. Chernoff’s inequality states that this probability is at most exp

(
− 250x

12

)
≤ n−5,

and taking the union bound over all A(x, j) the claim follows. Taking in particular x = 2−kn/ log n

for k ≥ 1 such that 2−kn log n ≥ log n (so k ≤ log n) we see that with probability at least 1 − n−3, at
time t3 := t2 + 3000p−1 log n there are at most log n vertices of U remaining uncovered.

While at least one vertex of U remains uncovered, the probability that when i is divisible by three
we choose a vertex of U is at least p. Applying Chernoff’s inequality, the probability that at time
t4 := t3 + 300p−1 log n we still have not covered all of U is at most exp(− 100 logn

12 ) ≤ n−3. Putting
all this together, the probability that V (Pt4) does not cover U is at most 4n−3. Since t1 ≤ 3|U |, since
|U | ≤ |S| ≤ n/4, and since t4 − t1 ≤ n/16, we conclude that with probability at least 1 − 4n−3 the
greedy extension procedure indeed covers U with at least n/8 vertices of L left uncovered. Let t5 be
the first time at which Pt5 covers U .

Extending Pres further to Palmost by covering all of L

We now repeat a similar procedure to use up all of L \ V (Pt5) while not using too many vertices in
R. Since no edges of E are contained in R ∪ L, at each time t, all the r-sets containing the end ut−1 of
Pt−1 and a vertex of L∪R \V (Pt−1) are unrevealed. In particular, provided that at each step we have∣∣R \ V (Pt−1)

∣∣ ≥ 1
2 |R|, by Chernoff’s inequality with probability at least 1 − n−4 at least one edge of

G is found consisting of ut−1 and a vertex of R \ V (Pt−1). Taking the union bound, the probability of
the extension procedure failing when

∣∣R \ V (Pt−1)
∣∣ ≥ 1

2 |R| is at most n−3.

As long as
∣∣L \ V (Pt−1)

∣∣ ≥ C
100p

−1 log n, we have by Chernoff’s inequality with probability at most
exp

(
− C

300 log n
)
≤ n−4 that there is no edge of G containing ut−1 and a vertex of L \ V (Pt−1); in

particular with probability at least 1 − n−3 the greedy extension covers all but at most C
100p

−1 log n

vertices of L before using any vertex of R. Let t6 be the time at which all but at most C
100p

−1 log n

vertices of L are covered. Again, we now consider the time taken to cover all but 1
2p
−1 vertices of

L. At each time the probability of being able to choose a vertex of L to extend our path with is at
least 1

3 , so that with probability at least 1 − n3 we cover all but at most 1
2p
−1 vertices of L by time

t7 ≤ t6 + C
25p
−1 log n. In particular we use at most C

25p
−1 log n vertices of R in this time.

By the same analysis as before, the total time taken to go from covering all but at most 1
2p
−1 vertices

of L to covering all but at most log n vertices of L and then all vertices of L is with probability at least
1 − 2n−3 not more than 3000p−1 log n + 300p−1 log n. Putting this together, provided all these good
events hold we succeed in covering all of L having used at most

C
25p
−1 log n+ 3300p−1 log n < Cp−1 log n = 1

2 |R|

vertices of R.

In sum, with probability at least 1−n−2− 8n−3, the algorithm succeeds in generating Palmost, with
the property that the set R′ ⊂ R of vertices not used in the greedy extension has size at least 1

2 |R|.
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4. Finding tight Hamilton cycles in random hypergraphs

Connecting the end tuples of Palmost and getting the tight Hamilton cycle

Applying Lemma 4.2 to connect the end tuples of Palmost in a subset of R′ of size Cp−1 log n (which is
possible since R′ together with the ends of Palmost contains no edges of E and since |R′| ≥ n/ log2 n),
with probability at least 1− n−4 we find the desired almost-tight cycle H ′, which gives us determin-
istically the desired tight Hamilton cycle H . Thus as desired the probability that our algorithm fails
to find a tight Hamilton cycle is at most n−1.

4.3 Proof of the Connecting Lemma

In this section we prove Lemma 4.2 and a very similar lemma (Lemma 4.5) dealing with spike-paths
which we will require for Lemma 4.1. A spike-path is similar to a tight path but after (r− 1)-steps the
direction of the last (r − 1)-tuple is inverted.

Preliminaries

Definition 4.3 (Spike path). In an r-uniform hypergraph, a spike path of length t consists of a sequence of t
pairwise disjoint (r − 1)-tuples a1, . . . ,at, where ai = (ai,1, . . . , ai,r−1) for all i, with the property, that the
edges {ai,r−j , . . . , ai,1, ai+1,1, . . . , ai+1,j} are present for all i = 1, . . . , t− 1 and j = 1, . . . , r− 1. We call ai
the i-th spike.

This is the same as taking t tight paths of length 2(r − 1), where the end (r − 1)-tuples of path i

are xi and yi, and identifying←−xi with yi+1 for all i = 1, . . . , t − 1. The proofs of Lemmas 4.2 and the
spike-path version Lemma 4.5 are essentially identical, so we give the details of the former and then
explain how to modify it to obtain the latter.

For an (r − 1)-tuple u and an integer i we define a fan Fi(u) in an r-uniform hypergraphH as a set
{P1, . . . , Ps} of tight paths inH, of length i or i+ 1, starting in u. For any set or tuple a, let {Pj}j∈I be
the subcollection of tight paths from Fi(u) in which a appears as a consecutive interval (in arbitrary
order). The leaves or ends of Fi(u) are the ending (r− 1)-tuples of alle the paths P1, . . . , Ps. We denote
by mult(a) the number of different paths we see in {Pj}j∈I after truncating behind a.

Idea and further notation

The basic idea is that, starting with the u and v and the empty fans F0(u) and F0(v), we want to fan
out. That is, for each path in Fi(u) we will find a large collection of ways to extend by one vertex and
all the resulting paths form Fi+1(u). We do this until we have fans Ft(u) and Ft(v) with

Q := p−(r−1)/2 log n

leaves each. This happens roughly when we have

t := 2 ·
⌈

log(Q)

log(log n)

⌉
≤ (r − 1) ·

⌈
log(p−1)

log(log n)

⌉
+ 2 = o(log n).
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4.3 Proof of the Connecting Lemma

A complication is that in this process we have to avoid the edges of E when expanding the fans. In
order to make the modifications for the promised spike-path variation easy (cf. Lemma 4.5 below), we
will do something a little more complicated. We split into expansion and continuation phases, each
of length r − 1. The first phase is an expansion phase, so when forming F1(u), . . . , Fr−1(u) we find
many ways to extend each path by one vertex and put all of them into the next fan. The second phase
is a continuation phase, so when forming Fr(u), . . . , F2r−2(u) we choose only one way to extend each
path. As soon as we have a collection of paths with the desired Q leaves, we cease expanding (even if
we are still in an expansion phase) and simply continue each path such that each has the same length.
We construct fans from v similarly, and we continue construction up to Ft(v).

In the final step we find r − 1 further edges connecting two of the leaves, giving us a tight path
connecting u to v. Again there is a complication here: some pairs of leaves (w,x) may be blocked by
edges of E , meaning that inside some r consecutive vertices of the concatenation w←−x there is an edge
of E . If a pair of leaves is blocked, then trying to reveal (r− 1) edges connecting the pair would mean
revealing an edge of the random hypergraph twice (and if a pair is not blocked then doing so does not
reveal any edge twice). We need to take this into account in our analysis, and we need to construct
Ft(v) carefully to avoid creating dangerous leaves for which a large fraction of the pairs is blocked.

To make this precise, we use the following algorithm.

Algorithm 2: Find a connecting path from u to v

split S into equal parts S1, . . . , S4(r−1), S
′
1, . . . , S

′
4(r−1);

Ft(u) := BuildFan(u, S1, . . . , S4(r−1), ∅);
set D :=

{
x ∈ Sr−1 : (w,x) is blocked for at least ξ′Q leaves w of Ft(u)

}
;

Ft(v) := BuildFan(v, S′1, . . . , S
′
4(r−1), D);

find r − 1 edges connecting a leaf of Ft(u) to the reverse of one of Ft(v);
return tight path P connecting u to v ;

The subroutine BuildFan takes as input a starting tuple, the sets in which to build a fan, and a
danger hypergraph D which is important for the construction of the second fan: it is an (r− 1)-uniform
hypergraph which records the tuples in S′1, . . . , S′4(r−1) which we cannot easily connect to the leaves
of Ft(u). The algorithm ensures that no leaf of a fan will be a dangerous tuple. Though we only
need this for the leaves of the final fan, it is convenient to maintain this property throughout. For
convenience, we write Si for the set Simod 4(r−1) ∈ {S1, . . . , S4(r−1)} with S0 = S4(r−1); the point of
these sets is that we choose the ith vertex of each path in Si, which is helpful in the analysis. Finally,
we need to ensure that we always choose good vertices which allow us to continue our construction
and prove various probabilistic statements. To that end, we define a vertex b to be good with respect to
an exposure hypergraph E , a set F of paths with distinct ends, a danger hypergraph D and a (r − 1)-
tuple a if none of the following statements hold for any (possibly empty) tuple c whose vertices are
contained in those of a (not necessarily in the same order).

(i) b appears somewhere on the unique path P (a) ending in a,

(ii) |c| ≤ r − 2 and degE({c, b}, S) > ξr−|c|−1|S|r−|c|−2,

(iii) mult({c, b}) > ξr−|c|−1Q · |S|−|c|−1 · log|c|+1 n, and
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4. Finding tight Hamilton cycles in random hypergraphs

(iv) |c| ≤ r − 2 and degD({c, b}, S) > (ξ′|S|)r−|c|−2.

Normally E , F and D will be clear from the context and we will simply say good for a. We are finally
ready to give the BuildFan subroutine.

Algorithm 3: BuildFan(s, T1, . . . , T4(r−1), D)

F0 :=
{
s
}

;
foreach i = 1, . . . , t do

if i mod 2(r − 1) ∈ {1, . . . , r − 1} then
phase = expand;

else
phase = continue;

end
NumPaths := |Fi−1|;
Fi := Fi−1;
foreach P ∈ Fi−1 do

5 let the (r − 1)-tuple a be the end of P ;
reveal the edges of G containing a and add a to E ;

6 let T ⊆ Ti be the set of vertices b which are good for a and {a, b} is an edge;
if phase = expand then

Add := min
(

log n,Q+ 1−NumPaths
)
;

choose Add vertices b1, . . . , bAdd ∈ T ;
Fi := Fi ∪ {(P, b1), . . . , (P, bAdd)} \ {P};
NumPaths := NumPaths + Add− 1;

else
choose a vertex b ∈ T ;
Fi := Fi ∪ {(P, b)} \ {P};

end
end

end
return Ft ;

Setup

We set

ξ′ = 1
100r , ξ = (ξ′)r/(2r220r) , δ = 8rξ + ξ′ , C = 108r and c = 10−rξr . (4.1)

The proof amounts to showing two things. First, BuildFan is likely to succeed—that is, that it does
not fail for lack of good vertices before returning a fan, that the returned fan does have size Q, and
that it does not add too many tuples to E . Second, the required extra r−1 edges which should connect
the fans can be found.

Creating the fans

We begin by showing that, whether we choose s = u, Ti = Si and D = ∅ or we choose s = v, Ti = S′i
and D as given in Algorithm 2, the subroutine BuildFan(s, T1, . . . , T4(r−1), D) is likely to succeed,
using the following claim.
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4.3 Proof of the Connecting Lemma

We define Li to be the leaves of Fi.

Claim 4.4. If step i was successful, then step i + 1 is successful with probability at least 1 − n−3r and the
following holds throughout step i+ 1 for each a ∈ Li+1 and each non-empty c whose vertices are chosen from
a, not necessarily in the same order.

P1 Each path in Fi extends to at least one path in Fi+1; if 2(r−1)` < i ≤ 2(r−1)`+r−1 and |Fi+1| < Q

then each path in Fi extends to at least log n paths in Fi+1. In both cases, all leaves are not in E .

P2 e(E [S]) ≤ c|S|r−1 + 20rQ.

P3 If |c| < r − 1 we have degE(c, S) ≤ ξr−|c||S|r−1−|c| + 1.

P4 We have mult(c) ≤ ξr−|c|Q · |S|−|c| · log|c| n+ 1.

P5 If 1 ≤ |c| ≤ r − 2 we have degD(c, S) ≤ (ξ′|S|)r−|c|−1.

Proof of Claim 4.4. Observe that F0 trivially satisfies the conditions of Claim 4.4, modulo Chernoff’s
inequality for P1. Suppose that for some 0 ≤ i < t, at each step 0 ≤ j ≤ i of Algorithm 3 the conditions
of Claim 4.4 are satisfied. In particular, by P4, the ends of the paths Fi are distinct as for |c| = r − 1

we have mult(c) < 2, and by P1 we have |Fi| ≥ min
(

logi/2 n,Q
)
.

To begin with, we show that E cannot have to many edges. At each step j with 1 ≤ j ≤ i, we
add |Fj−1| edges to E , so that we want to upper bound

∑t
j=1 |Fj−1|. Definitely Ft has size at most Q

and Fj−4(r−1) always has size less than half of Fj , so that this sum is dominated by 4r
∑`
i=1 2i where

` = log2Q. We conclude that
∑t
j=1 |Fj−1| ≤ 8rQ. Since we create two fans, in total we obtain the

claimed bound P2.

We now show that, for each choice of P ∈ Fi with end a, the total number of vertices in Ti+1 which
are not good for a is at most δ|S|. This will allow us to prove P1. First, since P has at most t vertices,
at most t vertices are excluded by (i).

For each c of size at most r − 2 with vertices chosen from a, there are at most 2rξ|S| vertices
fulfilling (ii). To see this for |c| = 0, observe that otherwise we have e(E [S]) > 2ξr|S|r−1 > 2c|S|r−1,
contradicting P2 as Q ≤ 1

C |S|
r−1. Assume that it fails for some non-empty c. Then there are more

than 2rξ|S| vertices x ∈ Ti+1 with

degE({c, x}, S) > ξr−|c|−1|S|r−|c|−2

which implies that

degE(c, S) > 2ξr−|c||S|r−|c|−1

in contradiction to P3.
Furthermore there are at most 2rξ|S| vertices b fulfilling (iii) for each c. Again for |c| = 0 it is

enough to note that there are at most Q paths in total and thus there are at most

Q

ξr−1Q · |S|−1 · log n
≤ ξ|S|
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4. Finding tight Hamilton cycles in random hypergraphs

vertices b with mult(b) > ξr−1Q · |S|−1 · log n. Now suppose c is not empty. Every path in Fi+1

whose end contains {c, b} was constructed by the expansion of some path in Fi whose end contains
c. Note that every path expands at most by a factor of log n and by P3 there are at most ξr−|c|Q ·
|S|−|c| log|c| n + 1 paths in Fi whose end contains c. If this bound is less than two, then there are at
most log n vertices b with mult({c, b}) ≥ 1. Otherwise there are at most

2ξr−|c|Q · |S|−|c| log|c|+1 n

ξr−|c|−1Q · |S|−|c|−1 log|c|+1 n
= 2ξ|S|

vertices x ∈ Si with mult({c, b}) > ξr−|c|−1Q · |S|−|c|−1 · log|c|+1 n.

Finally, we want to show that for each c there are at most ξ′|S| vertices b in Ti which satisfy (iv).
This is trivial for D = ∅, so we may assume that D is as given in Algorithm 2.

First suppose |c| = 0. If a vertex b satisfies (iv), then it is in (ξ′|S|)r−2 edges of D, so if there are
ξ′|S| such vertices then there are at least (ξ′|S|)r−1 edges in D using vertices of Ti (note that edges of
D only intersect Ti in one vertex). In other words, the number of blocked pairs (a,b) with a ∈ Ft(u)

and b ∈ Sr−1 is at least

(ξ′|S|)r−1 · ξ′Q ≥ 2r · 22rξ|S|(r−1) ·Q

using our choice of parameters (4.1). We conclude that there is a leaf a of Ft(u) that is in at least
2r · 22rξ|S|r−1 blocked pairs with tuples b ∈ Sr−1. Fix this leaf. Now P3 holds for a, and we will
show that this gives a contradiction. Consider the following property of tuples b. For any sets A and
B with vertices in a and b respectively, if |A|+|B| = r−1 thenA∪B is not in E , while if |A|+|B| < r−1

then we have degE(A ∪ B,S) ≤ 2ξr−|A|−|B||S|r−1−|A|−|B|. Trivially if b has the property, then (a,b)

is not blocked. If b does not have the property, then let Bb be a set of minimal size witnessing the
property’s failure. Since A 6∈ E by P1, and by P3, we do not have |Bb| = 0.

We now count the ways to create b which does not have the property. For this we choose vertices
b1, . . . , br−1 one at a time until we create a witness B 6= ∅ that b cannot have the property. When
we come to choose bj , we have at most |S| ways to choose it without creating a witness. If we are to
choose bj which witnesses the property’s failure, then there are sets A and B′ contained respectively
in a and {b1, . . . , bj−1} such that (A,B′ ∪ {bj}) fails the property. There are at most 22r choices for A
and B′. Since (A,B′) does not witness the property failing, by definition for each choice of A and B′

there are at most ξ|S| choices of bj . Summing up, there are at most r · 22rξ|S|r−1 tuples b which do
not have the property. As all blocked pairs use a tuple from this set, this is the desired contradiction.

Now suppose c is a tuple for which there are at least ξ′|S| vertices b satisfying (iv). In other words,
there are more than ξ′|S| vertices b ∈ Ti+1 with degD({c, b}, S) > (ξ′|S|)r−|c|−2, which implies that

degD(c, S) > (ξ′|S|)r−|c|−1

in contradiction to P5.

Putting all this together we conclude that there are at most δ|S| vertices b such that c exists satisfying
any one of the conditions (i)–(iv), as desired.

Now let a be a leaf of Fi. We now reveal all r-sets containing a which were not revealed before and
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4.3 Proof of the Connecting Lemma

which use a vertex x of Ti+1 which is good for a. Let X be the number of edges {a, x} which appear.
Then the expected value of X is at least p(1 − δ)|Ti+1| ≥ C

20r log n. Applying the Chernoff bound,
Theorem 2.16, we get that X < C

40r log n with probability at most 2 exp(−C log n/(240r)) ≤ n−4r. Let
us suppose that X ≥ log n. Then Algorithm 3 does not fail to create the required number of paths
from a. Taking a union bound over the at most |S|r−1t such events, we obtain the stated success
probability of Claim 4.4.

It remains to prove that P3, P4 and P5 also hold in Fi+1(u). But this is immediate since we avoided
choosing vertices which could cause their failure.

Taking a union bound over the 2t steps, we conclude that with probability at most n−2r there is a
failure to construct either of the desired fans Ft(u) and Ft(v).

Connecting the fans

By construction, as set up in line 6 of Algorithm 3, all leaves of Ft(v) are not edges of D and thus not
dangerous. Let L be the leaves from Ft(u) and L′ the leaves from Ft(v) reversed. We now want to
reveal more edges to connect a leaf from L with one from L′.

For a ∈ L and b ∈ L′ let P be the tight path with r − 1 edges on the vertices (a,b). There are
|L′| · (1− ξ′)|L| = (1− ξ′)Q2 many such paths P , which are not blocked, because b is not dangerous.
Let P be the set of all these paths which are not blocked.

Let IP be the indicator random variable for the event that the path P appears, which occurs with
probability pr−1. Further letX be the random variable counting the number of paths which we obtain
and note X =

∑
P∈P IP . With Janson’s inequality, Theorem 2.18, we want to bound the probability

that X = 0. First, let us estimate the expected value of X . By the observation from above, we have
E[X] = |P|pr−1 ≥ (1− ξ′)(cC)r−1 logr−1 n ≥ log n.

Now consider two distinct paths P = (a,b) and P ′ = (a′,b′), which share at least one edge. It
follows from property P4 of Claim 4.4 and the quantities Q and |S|, that two paths are identical if
they share at least r/2 vertices in their end tuple. Since either the start or end r/2-tuple of one of the
(r − 1)-tuples from P has to agree with P ′, we can assume without loss of generality that a = a′.
Furthermore, we can assume that for some 1 ≤ j < r/2, b and b′ agree on the first j entries, but not
in the (j + 1)-st. They can not share another r/2 or more entries as this would imply b = b′. Thus
P and P ′ share precisely an interval of length r − 1 + j and thus j edges. With this we can bound
E[IP IP ′ ] ≤ p2r−2−j .

Let NP,j be the number of paths P ′ such that P and P ′ share precisely j edges. The above shows
that for fixed P = (a,b), NP,j is at most the number of choices of leaves b′ ∈ L′ such that b and b′

only differ in the ending (r − 1 − j)-tuple, plus the number of choices of leaves a′ ∈ L such that a
and a′ only differ in the start (r − 1− j)-tuple. It follows from property P4 of Claim 4.4, that the start
j-tuple of b′ and the end j-tuple of a′ are the ends of at most ξr−jQ · |S|−j logj n+ 1 many paths. This
implies that NP,j ≤ Q · |S|−j logj n, because j < r/2.

We can now obtain for P, P ′ ∈ P

δ =
∑
P∼P ′

E[IP IP ′ ] =
∑
P∈P

∑
1≤j<r/2

( ∑
|P ′∩P |=j

E[IP IP ′ ]
)
.
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With the above we get

δ ≤
∑
P∈P

∑
1≤j<r/2

NP,j · p2r−2−j

≤ |P|2p2r−2
∑

1≤j<r/2

|P|−1 ·Q · |S|−j logj n · p−j

≤ E[X]2 · 2Q−1
∑

1≤j<r/2

3C−j ≤ E[X]2C−1 log−1 n,

where we used that |S| ≥ Cp−1 log n and Q ≥ log n. Hence, Theorem 2.18 implies that P[X = 0] ≤
exp(−E[X]2/(E[X] + δ)) ≤ exp(−C6 log n). Thus we find some connection with probability at least
1− n−2r.

But we do not want to reveal all the O(Q2) edges for all paths from P , since this would add way
to many edges to the exposure hypergraph E . The above argument proves that it is very likely that
the desired connecting path exists and we will argue how to find such a path in an economic way. We
find it by the following procedure. First, we reveal all the edges at each leaf in L and L′. This entails
adding 2Q edges to E and if r = 3 then we are already done and we have added 2Q ≤ |S| edges to E .

For r ≥ 4 we then construct from each leaf of L all possible tight paths in S with b(r − 2)/2c
edges and similarly from each leaf of L′ all tight paths of length b(r−3)/2c. We do this by the obvious
breadth-first search procedure, revealing at each step all edges at the end of each currently constructed
path with less than b(r−2)/2c (or b(r−3)/2c respectively) edges which have not so far been revealed
and adding each end to E . Trivially, if the desired path exists, then two of these constructed paths will
link up, so that this procedure succeeds in finding a connecting path with probability 1− n−2r.

The expected number of edges in S containing any given (r − 1)-set in S is p(|S| − r + 1), which
is between C

2 log n and C log n. Thus by Chernoff’s inequality and the union bound, with probability
at least 1 − n−3r no such (r − 1)-set is in more than 2C log n edges contained in S. It follows that the
number of edges we add to E in this procedure is with probability at least 1− n−3r not more than

2Q

b(r−2)/2c∑
i=0

(2C log n)i ≤ 2p−(r−1)/2 log n · r(2C log n)(r−2)/2

= O
(
p−(r−2) logr−2 n

)
= O(|S|r−2) ,

for r ≥ 4. Putting this together with property P2 of Claim 4.4 we see that the final exposure graph E ′

has at most O(|S|r−2) edges more than E , as desired.

Probability and runtime

Altogether we have that our algorithm for the Connecting Lemma fails with probability at most
n−2r + n−2r + n−3r ≤ n−5.

We now estimate the running time of our algorithm. In total we added O(|S|r−2) many (r − 1)-
tuples to E . For every (r − 1)-tuple exposed, we have to go through at most n vertices until we find
all new edges. This gives at most O(nr−1) steps. We can easily keep track of the bounds for Claim 4.4
and update them after each event. Since there is nothing else to take care of, we have a total number
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of at most O(nr−1) steps.

Spike path version

The statement of the lemma is almost the same as for the tight path version, Lemma 4.2.

Lemma 4.5 (Spike path Lemma). For each r ≥ 3 there exist c, C > 0 and a deterministic O(nr−1)-time
algorithm whose input is an n-vertex r-uniform hypergraph G, a pair of distinct (r − 1)-tuples u and v, a set
S ⊂ V (G) and a (r− 1)-uniform exposure hypergraph E on the same vertex set. The output of the algorithm is
either Fail or a spike path of even length o(log n) in G whose ends are u and v and whose interior vertices are
in S, and an exposure hypergraph E ′ ⊃ E . We have e(E ′) ≤ e(E) +O(|S|r−2) and all the edges E(E ′) \E(E)

are contained in S ∪ u ∪ v.

Suppose that G is drawn from the distribution H(r)(n, p) with p ≥ C(log n)3/n, that E does not contain
any edges intersecting both S and u ∪ v. If furthermore we have |S| = Cp−1 log n and |e(E [S])| ≤ c|S|r−1

then the algorithm returns Fail with probability at most n−5.

Sketch proof. We modify the proof of Lemma 4.2 in the following simple ways. First, we will maintain
fans of spike paths rather than tight paths, and we change Algorithm 3 line 5 so that the tuple a to be
extended is the (unique) one whose extension continues to give us a spike path. Note that whenever
we have a spike path ending in a and we extend the spike path by adding one vertex b then the end
of the new spike path is an (r − 1)-set whose vertices are contained in (a, b) (though in general not
the last r − 1 vertices nor in the same order). This is all we need to make our analysis of the fan
construction work; it is not necessary to change anything in this part of the proof or the constants.
Second, when we come to connect fans, we let L be the reverses of the end tuples of Ft(u) and L′ be
the end tuples of Ft(v), and (again) look for a tight path connecting a tuple in L to one in L′. This has
no effect on the proof that a connecting path from some member of L to some member of L′ exists,
and the result is the desired spike path. The resulting spike path is of even length as both fans have
the same size.

4.4 Proof of the Reservoir Lemma

Idea

The reservoir path Pres will consist of absorbing structures (each carrying one vertex from R). More
precisely, these absorbing structures can be seen as small reservoir path with reservoir of cardinality
1. Each of these small absorbers consists of a cyclic spike path plus the reservoir vertex, where pairs
of spikes are additionally connected with tight paths (cf. Figure 4.1).

First choose the reservoir set R and disjoint sets U1, U2 and U3. For every vertex in R we will reveal
the necessary path segment in U1. From the endpoints of these path we fan out and also close the
backbone structure of the reservoir inside U2. Finally, we use U3 and Lemma 4.2 to get the missing
connections in the reservoir structures and connect all structures to one path Pres. In each step the
relevant edges of the exposure graph E are solely coming from the same step.
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Proof

We arbitrarily fix the reservoir set R of size 2Cp−1 log n and disjoint sets U1, U2 and U3 of the same
size such that S = R ∪ U1 ∪ U2 ∪ U3 is of size n

4 . First we want to build the absorbing structures for
every a ∈ R, which have size roughly t2 = o(log2 n). There is a sketch of this structure for some a ∈ R
in Figure 4.1.

a
ua

va
P1 P2 Pt−1 Pt. . .

x1 x2 x3 . . . xt−1 xt

ytyt−1. . .y3y2y1

Figure 4.1: Illustration of the absorber for one vertex a ∈ R and r = 5 with the path, which contains
the vertex a.

So we fix a ∈ R. We want to construct the following tight path on 2r − 1 vertices containing
a in the middle. The end tuples are x1 = (x1, . . . , xr−1) and ua = (u1, . . . , ur−1) and together
with a we require that all the edges {xr−j , . . . , x1, a, u1, . . . , uj−1} are present for j = 1, . . . , r. We
build this path by first choosing x1, . . . , xr−2 arbitrarily from U1. Then we expose all edges con-
taining {x1, . . . , xr−2, a} to get xr−1. We continue by exposing all edges containing the (r − 1) set
{xr−j−1, . . . , x1, a, u1, . . . , uj−1} to get uj for j = 1, . . . , r − 1. The probability that in any of these
cases we fail to find a new vertex inside a subset of U1 of size at least |U1|/2 is at most n−5 by Cher-
noff’s inequality. A union bound over all r edges and over all a ∈ R reveals that with probability at
most n−3 we fail to construct the small starting graph for any a.

Recall that when adding edges, we always expose all edges containing one (r − 1)-tuple and then
add this to E . All exposed (r − 1)-tuples from this step are contained in U1 ∪ R and none of them
contains more than one vertex from R. Furthermore we did at most O(|R| · |U1|) = O(n2) many steps
so far.

Now we want to build the absorbing structure for a. We partition each of U2 and U3 into parts of
size Cp−1 log n (plus perhaps a smaller left-over set). We apply Lemma 4.5 to the (r − 1)-tuples ←−x1

and←−ua and connect them with a spike path of even length 2t+ 2 in some part of U2, with t = o(log n).
At each step we use a part of U2 in which we have so far built the least spike paths for the application
of Lemma 4.5, which is necessary to control the edges of E within this set. We use U2 as both tuples
are contained in U1 and thus we have no problem with edges from E intersecting both U2 and the
end tuples. Let the spikes after x1 and ua be called x2, . . . ,xt and y1, . . . ,yt respectively. The last
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4.4 Proof of the Reservoir Lemma

remaining spike opposite of ua we call va. We apply Lemma 4.2 to find paths Pi connecting the
tuples xi and yi for i = 1, . . . , t in a part of U3. Again, we choose a part of U3 which was used for
building the least connecting paths so far. We use parts of U3 for these connections because all the
spikes are contained in U1 ∪ U2 and thus there are no edges of E intersecting U3 and the spikes. This
finishes the absorbing structure for a. It has end-tuples ua and va.

To finish Pres we enumerate the vertices in R increasingly a1, . . . , a|R|. Then we use Lemma 4.2
repeatedly, again at each step using a part of U3 which has been used least often previously, to connect
the tuples vai to uai+1 for i = 1, . . . , |R| − 1 with tight paths. Thus, we have obtained the path Pres

with end tuples u = ua1 and v = va|R| .

The absorbing works in the following way for the structure of a single vertex a ∈ R. It relies on
the fact, that the paths Pi can be traversed in both directions and that we can walk from any spike
to its neighbouring spikes using a tight path. The path which uses a (Figure 4.1) starts with ua, goes
through a to x1 and then uses the path P1 to y1. From there it goes via a tight path to y2 and uses
P2 to go back to x2. Going from xi via path Pi to yi and back from yi+1 through Pi+1 to xi+1 for
i = 2, . . . , t − 1 the path ends up in va and uses all vertices. To avoid a (Figure 4.2) the path starting
in ua goes immediately to y1, then uses the path P1 to go to x1. Alternating as above and traversing
all the paths Pi in opposite direction we again end up in va and used all vertices but a.

a
ua

va
P1 P2 Pt−1 Pt. . .

x1 x2 x3 . . . xt−1 xt

ytyt−1. . .y3y2y1

Figure 4.2: Illustration of the absorber for one vertex a ∈ R and r = 5 with the path, which does not
contain the vertex a.

For the proof of the lemma, it remains to check that we obtain the right probability and we are
indeed able to apply Lemma 4.2 and 4.5 as we described. It is immediate from the construction, that
no edges of E are contained in R ∪ u ∪ v.

In total we are performing |R| many connections with spike-paths and |R| · t + |R| − 1 many
connections with tight-paths. Thus altogether we have o

(
p−1log2 n

)
executions of Lemma 4.2 and

Lemma 4.5. In each application we add O
(
Cp−1 log n

)r−2 edges to E in some part of U2 or U3. Since
each part initially contains no edges of E , provided a given part has been used at most p−1 times the
total number of edges of E in it is o

(
Cp−1 log n

)r−1, and therefore we can apply Lemma 4.2 or 4.5
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4. Finding tight Hamilton cycles in random hypergraphs

at least one more time with that part. Since |U2| and |U3| are of size linear in n, they each contain
Ω
(
pn/ log n

)
parts. Thus, we can perform in total Ω(n/ log n) = Ω

(
p−1 log2 n) applications of either

Lemma 4.2 or Lemma 4.5 before all parts have been used p−1 times and thus might acquire too many
edges of E . Since we do not need to perform that many applications, we conclude that the conditions
of each of Lemma 4.2 and Lemma 4.5 are met each time we apply them.

Since the connecting lemma fails with probability at most n−5 the construction of this absorber fails
with probability at most n−3. In every connection there are at mostO(nr−1) steps performed and thus
we need o(nr−1p−1 log2 n) = O(nr) many steps for the construction of the absorber.
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Chapter 5

Randomly perturbed graphs

Now we come to the paper with Böttcher, Montgomery, and Person [32] and the proof32 of Theo-
rem 2.7. We first give a brief outline of the steps and explain a decomposition result from Ferber, Luh,
and Nguyen [54], which we will use. Then the proof of Theorem 2.7 is presented in Section 5.2, with
the proofs of some auxiliary lemmas postponed to Section 5.3.

5.1 Overview of the proof

Step 1. We first obtain an almost spanning embedding of all but εn vertices of F , using only the edges
of the random graph G(n, p). For this we adapt the strategy of Ferber, Luh, and Nguyen [54] to
decompose F , and embed it using the theorem of Riordan [97] (Theorem 2.1) together with Janson’s
inequality (Theorem 2.18). A major difference to previous methods is that we do not choose which
large subgraph of F to embed, only seeking to embed some almost spanning subgraph of F which
covers the sparser parts of F .

Step 2. A key part in the remainder of our proof is obtaining a reservoir set. This will enable us to
complete the partial embedding to an embedding of all of F . The idea behind such a reservoir set
is as follows. The reservoir set will contain vertices already covered in the partial embedding of F
obtained in the first step. The properties of the reservoir allow us to reuse some of these vertices for
embedding new F -vertices later in the proof, and swap the image of F -vertices already embedded
there to some other vertex in Gα ∪G(n, p) that was not used in the embedding so far. For these swaps
we crucially use the deterministic graph Gα, and that in the first step we did not use Gα but only
G(n, p).

Reservoir structures of similar nature were used for embedding tight Hamilton cycles in random
hypergraphs in [4], cycle-powers in random graphs in [84], bounded degree trees in random graph
in [90]. However, we use the interplay of the random and deterministic graphs in a new way to create
our reservoir structure.

Step 3. Using additional edges of Gα and G(n, p), we then complete the embedding of F , utilising the
reservoir. The approach for this completion again uses ideas from [54], relying on Janson’s inequality
and the Hall-type matching argument for hypergraphs by Aharoni and Haxell [2] (Theorem 2.20).
The use of edges from Gα in this step is crucial in gaining the log-term in comparison to p∆.

32The proof given here is similar the on in [32].
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5.2 The embedding

Decomposition of bounded degree graphs

As outlined above we will adapt much of the embedding strategy of Ferber, Luh, and Nguyen [54].
We therefore briefly sketch their approach here, while mentioning the tools we need. In [54], each
graph F ∈ F(n,∆) is decomposed into a sparse part and many dense spots. For this recall that
γ(H) := max{e(H ′)/(v(H ′) − 2)) : H ′ ⊆ H and v(H ′) ≥ 3}, and call a graph G dense if γ(H) > ∆+1

2

and sparse otherwise.
Say that two graphs S, S′ ⊆ F are isomorphic in F , if there exist labellings V (S) = {v1, . . . , vs} and

V (S′) = {v′1, . . . , v′s}, such that vj 7→ v′j is an isomorphism between S and S′ and, for each 1 ≤ j ≤ r,
|NF (vj) \ V (S)| = |NF (v′j) \ V (S′)|.

Definition 5.1 (ε-good decomposition). Let ε > 0, F ∈ F(n,∆) and let S1, . . . ,Sk be families of induced
subgraphs of F . For F ′ = F − (

⋃
h

⋃
S∈Sh V (S)) we say that (F ′,S1, . . . ,Sk) is an ε-good decomposition

if the following hold.

P1 F ′ is sparse, that is, γ(F ′) ≤ ∆+1
2 .

P2 Each S ∈
⋃
h Sh is minimally dense, that is, γ(S) > ∆+1

2 and S′ is sparse for all S′ ⊆ S with 3 ≤
v(S′) < v(S).

P3 For each 1 ≤ h ≤ k, all the graphs in Sh are isomorphic in F .

P4 Every Sh contains graphs on at most εn vertices, that is |
⋃
S∈Sh V (S)| ≤ εn.

P5 All the graphs in
⋃
i Si are vertex disjoint and, for each 1 ≤ h ≤ k and S, S′ ∈ Sh with S 6= S′, there

are no edges between S and S′ in F , and S and S′ share no neighbours in F .

We call the graphs in S1, . . . ,Sk the dense spots of the decomposition.

An ε-good decomposition can easily be found using a greedy algorithm. The following lemma is
proved in [54].

Lemma 5.2 (Lemma 2.2 in [54]). For each ε > 0 and ∆ > 0, there exists some k0 such that, for each
F ∈ F(n,∆), there is some k ≤ k0 and an ε-good decomposition (F ′,S1, . . . ,Sk) of F .

The sparse part F ′ can be embedded using Theorem 2.1, the result of Riordan [97]. The embedding
of F ′ is then extended in [54] step by step to include the graphs in Sh, for 1 ≤ h ≤ k. This can be done
using Janson’s inequality (Theorem 2.18) and a hypergraph analog of Hall’s theorem due to Aharoni
and Haxell [2] (Theorem 2.20). These are the tools used to prove Theorem 2.4. To construct our
reservoir structure in the second step of our proof, we will also need the concentration inequalities
Theorem 2.16 and 2.17.

5.2 The embedding

Let α > 0 and ∆ ≥ 5, and take ε = ( α
4∆ )2∆. Let k0 be large enough for the result of Lemma 5.2 to

hold with ε and ∆. Let F ∈ F(n,∆), and, for some k ≤ k0, using the property from Lemma 5.2, let
(F ′,S1, . . . ,Sk) be an ε-good decomposition of F . For each 1 ≤ h ≤ k, let sh be the size of the graphs
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5. Randomly perturbed graphs

in Sh (possible by P3), and, picking some representative S ∈ Sh, note that, by P2 and as ∆(S) ≤ ∆,
we have

(∆ + 1)(sh − 2) < 2e(S) ≤ ∆sh,

so that sh < 2∆ + 2. Thus, we may consider α, ∆, ε, k ≤ k0, and the maximum size of each dense spot
(2∆ + 1) to be constant, while n tends to infinity.

We will expose the graph G(n, p) in a total of 2k + 1 rounds, revealing Gh = G(n, q) for 0 ≤ h ≤ k

and G′h = G(n, q) for 1 ≤ h ≤ k, where (1 − q)2k+1 = 1 − p and thus q = Θ(p). Every edge is
thus present with probability p in (∪hGh) ∪ (∪hG′h). We use G0, . . . , Gk to embed most of F while
embedding all of F ′, and then use G′1, . . . , G′k to finish the embedding. We let

G :=
⋃
h

Gh .

Embedding most of the graph

Our goal here is to embed all but at most εn vertices of the graph F while ensuring we embed all the
vertices in F ′. Since, by P1, γ(F ′) ≤ ∆+1

2 , and thus q = ω(n
− 1
γ(F ′) ), by Theorem 2.1, we can almost

surely embed F ′ into G0. Let f0 : V (F ′)→ V (G0) be such an embedding and let F ′0 = F ′.

For 1 ≤ h ≤ k, we want to (almost surely) use edges from Gh to extend the embedding fh−1 to
cover all but at most εn

s2hk
graphs from Sh. We then let fh be the extended embedding and let F ′h be the

subgraph of F embedded by fh. We use the following lemma, which allows us to extend the current
embedding to one more dense spot S ∈ Sh, even if we restrict its image to small but linearly sized
set U , using only random edges of Gh. This lemma is proved along with the other lemmas from this
section in Section 5.3.

Lemma 5.3. For each 1 ≤ h ≤ k, the following holds a.a.s. for any S ⊆ Sh and U ⊆ V (Gα) with |S| ≥ εn
s2hk

and |U | ≥ εn
shk

. There is some S ∈ S and a copy S′ of S in Gh[U ] with an embedding π : V (S)→ V (S′) such
that, for each v ∈ V (S),

fh−1(NF (v) ∩ V (F ′h−1)) ⊆ NGh(π(v)). (5.1)

So, we start with f0 and F ′0. For each 1 ≤ h ≤ k, we construct fh and F ′h, as follows. The property
in Lemma 5.3 almost surely holds for h. We extend the embedding fh−1 to fh using edges from Gh to
cover as many of the graphs in Sh as possible (with any edges to F ′h−1 correctly embedded), and call
the resulting graph F ′h. By Lemma 5.3 this leaves at most εn

s2hk
graphs in Sh unembedded. Indeed, if

there is a set S of at least εn
s2hk

unembedded graphs in Sh, then, let U = V (Gα) \ V (F ′h) and note that
|U | ≥ sh · |S| ≥ εn

shk
. There then exists some S ∈ S and a copy S′ of S in Gh[U ] with isomorphism

π : V (S)→ V (S′) such that (5.1) holds for each v ∈ V (S). As, by P5, no two subgraphs in Sh have an
edge between them, π can be used to embed S and extend the embedding fh, a contradiction.

From this we (almost surely) obtain the embedding fk of a subgraph of F , covering F ′ and all but
at most εn

s2hk
graphs from each Sh, 1 ≤ h ≤ k, into G =

⋃
hGh.
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5.2 The embedding

Independence of fk and Gα

Until now, we have only used random edges for our embedding, and, therefore, we can consider this
embedding to be independent of the edges of Gα, which we make precise as follows. Let F be the set
of possible induced subgraphs of F which cover F ′ and, for each 1 ≤ h ≤ k, all but at most εn

s2hk
of the

graphs from Sh. Let r be the number of graph isomorphism classes in F , and let F ∗1 , . . . , F ∗r ∈ F be
representatives of each class. In Section 5.2 we proved that P[∃i with some copy of F ∗i in G] = 1−o(1).

For each 1 ≤ i ≤ r, let Ei be the event that there is a copy of F ∗i in G, but no copy of F ∗j for any
j < i. For each 1 ≤ i ≤ r, let F̂i be a random copy of F ∗i in G with vertex set in V (Gα). Then, we have,

P
[
∃ an F -copy in Gα ∪G ∪

(⋃
h

G′h

)
|Ei
]
≥ P

[
∃ an F -copy in Gα ∪ F̂i ∪

(⋃
h

G′h

)]
,

since G is independent of Gα ∪ (
⋃
hG
′
h) and on the left hand side, by conditioning on Ei, G contains

some copy of F ∗i . The second part of the definition of Ei is to ensure that
∑r
i=1 P[Ei] equals the

probability that there exists and i with some copy of F ∗i in G. We will show in Section ??, for each
1 ≤ i ≤ r, that

P
[
∃ an F -copy in Gα ∪ F̂i ∪

(⋃
h

G′h

)]
= 1− o(1) . (5.2)

It follows that,

P
[
∃ an F -copy in Gα ∪G ∪

(⋃
h

G′h

)]
≥

r∑
i=1

P
[
∃ an F -copy in Gα ∪G ∪

(⋃
h

G′h

)
|Ei
]
· P[Ei]

≥
r∑
i=1

P
[
∃ an F -copy in Gα ∪ F̂i ∪

(⋃
h

G′h

)]
· P[Ei] = (1− o(1)) ·

r∑
i=1

P[Ei]

= (1− o(1)) · P
[
∃i with some copy of F ∗i in G

]
= 1− o(1).

Hence, it remains to show (5.2). Before we can turn to this, we first need to prepare our reservoir
structure.

Preparing the reservoir

Let us fix an arbitrary F ∗ ∈ F and let F̂ be a random copy of F ∗ in G with vertices in V (Gα). Let
g0 be the embedding of F ∗ to F̂ . For each 1 ≤ h ≤ k, let S ′h ⊆ Sh be those dense parts not in F ∗, so
that |S ′h| ≤ εn

s2hk
. We have, for each 1 ≤ h ≤ k, that the graphs in S ′h are isomorphic in F , minimally

dense, disjoint, neither have edges between them nor share any neighbours. Furthermore, the sets in
{V (F ∗)} ∪ {V (S) : S ∈ S ′h, 1 ≤ h ≤ k} form a partition of V (F ). Note that |V (F ) \ V (F ∗)| ≤ εn.

Let V0 ⊆ V (F ∗) be a maximal independent set in F ∗ of vertices with no neighbours in V (F )\V (F ∗)

in F . Note that |V0| ≥ (|F ∗| −∆|V (F ) \ V (F ∗)|)/(∆ + 1) ≥ n/2∆ and let W0 := g0(V0) ⊆ V (F̂ ). For
each vertex v ∈ V (Gα), let B(v) ⊆W0 be the set of vertices w ∈W0 such that every neighbour of w in
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5. Randomly perturbed graphs

F̂ is also a neighbour of v in Gα. That is,

B(v) = {w ∈W0 : NF̂ (w) ⊂ NGα(v)}. (5.3)

We shall later, in the proof of Lemma 5.4, show that each B(v) is a random set, which entails that
it has properties convenient for our embedding strategy. Crucially, by the definition ofB(v) we can
switch any vertex from B(v) in F̂ with v and still get a copy of F ∗. Hence, these sets form our reservoir
structure. Furthermore, the sets B(v) all lie in W0, a large independent set in F̂ , hence their preim-
ages need no further neighbours added to extend the embedding g0 to F . Therefore, we can switch
different vertices in this manner without creating conflicts. The following lemma states that almost
surely u has linearly many Gα-neighbours in B(v) for each u, v ∈ V (Gα). This, in particular, implies
that almost surely for each v ∈ V (Gα) the set B(v) is linear in size.

Lemma 5.4. A.a.s., for each u, v ∈ V (Gα) we have |NGα(u) ∩B(v)| ≥ 4εn.

Again, we defer the proof of Lemma 5.4 to Section 5.3. We note that it is not difficult, but constitutes
a crucial new idea of our proof. It relies on the fact that the sets B(v) are random sets.

Let us now briefly indicate how we will use the reservoir structure in the next subsection to finish
the embedding. Essentially, we pair each vertex w ∈ V (F ) \ V (F ∗) with a different vertex, vw say,
in V (Gα) \ V (F̂ ). Then, we ‘embed’ each w ∈ V (F ) \ V (F ∗) to some vertex zw ∈ B(vw), where it is
important here thatB(vw) has linear size. The only problem is that zw already has a vertex embedded
to it, but by switching zw out of F̂ and replacing it with vw, we can shift part of the original copy of F ∗

to fix this. If we ensure that the vertices zw with w ∈ V (F ) \ V (F ∗) are distinct then these switchings
can be carried out simultaneously, completing the embedding.

Finishing the embedding

We want to show that P[∃ a copy of F in Gα ∪ F̂ ∪ (
⋃
hG
′
h)] = 1 − o(1), which is precisely (5.2) and

completes the proof of Theorem 2.7. We will follow the approach of Ferber, Luh, and Nguyen [54] and
use our reservoir structure as outlined above. Roughly speaking, in comparison to [54], the minimum
degree condition into the sets B(v) guaranteed by Lemma 5.4 gives us one edge between F̂ and each
dense spot for free, allowing the use of a lower edge probability in our result.

So, let F0 = F ∗ and recall that we have an embedding g0 : F0 → Gα ∪G. Now, for each 0 ≤ h ≤ k

let Fh = F [V (F ∗) ∪ (
⋃
h′≤h

⋃
S∈Sh′

V (S))]. Noting that |V (Gα) \ V (F̂ )| = |
⋃
h

⋃
S∈S′h

V (S)|, label the
vertices in V (Gα) \ V (F̂ ) as {vS,i : 1 ≤ h ≤ k, S ∈ S ′h, 1 ≤ i ≤ sh}.

Starting with g0, for each 1 ≤ h ≤ k in turn, we will (almost surely) find a function

gh : V (Fh)→ V (F̂ ) ∪ {vS,i : 1 ≤ h′ ≤ h, S ∈ Sh′ , 1 ≤ i ≤ sh}

such that

Q1 gh is an embedding of Fh into Gα ∪G ∪ (
⋃
h′≤hG

′
h′), and

Q2 for each vertex v of Fh−1, except for at most εhnk vertices in V0, we have gh(v) = gh−1(v).
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5.2 The embedding

Note that g0 satisfies these properties, and that, once we a.a.s. find gk, we will have an embedding of
F = Fk into Gα ∪G ∪ (

⋃
hG
′
h), as required.

Suppose then that 1 ≤ h ≤ k and we have already found the function gh−1. Then we define the set
Wh−1 = {g0(v) : gh−1(v) = g0(v), v ∈ V0}, that is, the vertices of F̂ in W0 that have not been switched.
Note that |W0 \Wh−1| ≤ ε(h−1)n

k by Q2. For each S ∈ S ′h, label V (S) = {zS,1, . . . , zS,sh}, and let LS
be the sh-uniform auxiliary hypergraph with vertex set Wh−1, where e is an edge of LS if, for some
labelling e = {wS,1, . . . , wS,sh}, the map zS,i 7→ wS,i is an embedding of S into Gα ∪ G′h, where, for
each 1 ≤ i ≤ sh,

wS,i ∈ B(vS,i) and gh−1(NFh(zS,i) ∩ V (Fh−1)) ⊆ NGα∪G′h(wS,i). (5.4)

Each hyperedge e = {wS,1, . . . , wS,sh} of LS then corresponds to a possible extension of gh−1 to cover
S ∈ S ′h, subject to the switching of the vertices vS,i and wS,i, for 1 ≤ i ≤ sh.

We wish to show that there a.a.s. exists a function π : S ′h 7→
⋃
S∈S′h

E(LS) such that π(S) ∈ E(LS)

for each S ∈ S ′h, and the edges in π(S ′h) are pairwise vertex disjoint. This is possible, as shown below,
using Theorem 2.20 and the following lemma.

Lemma 5.5. For each 1 ≤ h ≤ k, 1 ≤ r ≤ |S ′h|, S ⊆ S ′h and U ⊆ Wh−1, with |S| = r and |U | ≤ s2
hr,

the following holds with probability at least 1 − exp(−ω(r ln(nr ))). There exists some S ∈ S and an edge
e ∈ E(LS) with V (e) ⊆Wh−1 \ U .

The property in Lemma 5.5 then holds for each 1 ≤ h ≤ k, 1 ≤ r ≤ |S ′h|, S ⊆ S ′h and U ⊆ Wh−1,
with |S| = r and |U | ≤ s2

hr with probability at least

1− k · n ·
|S′h|∑
r=1

(
n

r

)
·
(
n

s2
hr

)
· exp

(
− ω

(
r ln(nr )

))
= 1− o(1).

To apply Theorem 2.20, we need to show that, for every S ⊆ S ′h, the hypergraph
⋃
S∈S LS contains

a matching with size greater than sh(|S| − 1). Let S ⊆ S ′h and r = |S|, and let U be the vertex set
of a maximal matching in

⋃
S∈S LS . This means that there is no graph S ∈ S and edge e ∈ E(LS)

with V (e) ⊆Wh−1 \U . Thus, by the property from Lemma 5.5, we have |U | ≥ s2
h|S|, so that

⋃
S∈S LS

contains a matching with size at least sh|S|. Therefore, we can apply Theorem 2.20, and conclude that
a function π as described above exists.

For each S ∈ S ′h, label π(S) = {wS,i : 1 ≤ i ≤ sh} so that zS,i 7→ wS,i is an embedding of S into
Gα ∪G′h and (5.4) holds. For each S ∈ S, switch the vertices in {vS,i : 1 ≤ i ≤ sh} with those in π(S)

in Fh−1 and use π to embed S. That is, define gh : V (Fh) → V (F̂ ) ∪ {vS,i : 1 ≤ h′ ≤ h, S ∈ S ′h′ , 1 ≤
i ≤ sh′} by, for each v ∈ V (Fh), letting

gh(v) =


wS,i if v = zS,i for some S ∈ S ′h, 1 ≤ i ≤ sh
vS,i if gh−1(v) = wS,i for some S ∈ S ′h, 1 ≤ i ≤ sh
gh−1(v) otherwise.

Note that gh agrees with gh−1 throughout V (F0), except for the at most εnk vertices in {v : gh−1(v) =

wS,i, S ∈ S ′h, 1 ≤ i ≤ sh}, and therefore Q2 holds for gh.
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We claim that gh is an embedding of Fh into Gα ∪G ∪ (
⋃
h′≤hG

′
h′), so that also Q1 holds. Let

Z0 := {v : v = zS,i or gh−1(v) = wS,i for some S ∈ S ′h, 1 ≤ i ≤ sh}.

Note that gh agrees with gh−1 outside of Z0, so that gh (appropriately restricted) is an embedding
of Fh − Z0. By the definition of Z0 and P5, the only edges in Fh[Z0] are those within each S ∈ S ′h.
For each S ∈ S ′h we have that zS,i 7→ wS,i is an embedding of S into Gα ∪ G′h. It follows that gh
(appropriately restricted) is an embedding of Fh[Z0]. It remains only to check that the edges between
Z0 and V (Fh) \ Z0 are appropriately embedded by gh. That is, we wish to show for each v ∈ Z0 that

gh(NFh(v) \ Z0) ⊂ NGα∪G∪(
⋃
h′≤hG

′
h′ )

(gh(v)).

We consider two cases. Firstly, for each v = zS,i with S ∈ Sh and 1 ≤ i ≤ sh the vertex v has no
neighbours in V0, and hence

gh(NFh(v) \Z0) = gh(NFh(zS,i) \Z0)
Q2
= gh−1(NFh(zS,i) \Z0)

(5.4)

⊆ NGα∪G′h(wS,i) = NGα∪G′h(gh(v)) .

Secondly, for each v ∈ Z0 with gh−1(v) = wS,i for some S ∈ S ′h and 1 ≤ i ≤ sh, we have gh(v) = wS,i.
Moreover, by the choice of V0 we have NFh(v) ⊂ V (F0). By Q2 it follows that

gh(NFh(v) \ Z0) = g0(NFh(v)) = NF̂ (wS,i) ⊂ NGα(vS,i) = NGα(g(v)),

where we have used the definition of B(v) in (5.3) and that wS,i ∈ B(vS,i) by (5.4).

Thus, we can a.a.s. extend the embedding g0 to an embedding gk of F in Gα ∪ G ∪ (
⋃
hG
′
h), com-

pleting the proof of the theorem.

5.3 Proofs of the lemmas

In this section, we give the proofs of the lemmas from Section 5.2. We prove Lemma 5.3 (and later
Lemma 5.5) with Janson’s inequality, using similar calculations to Ferber, Luh, and Nguyen [54].

Proof of Lemma 5.3

Fixing h, note that there are certainly at most 2n · 2n choices for S and U . Therefore, it is sufficient to
prove, for fixed S ⊆ Sh and U ⊆ V (Gα) \ fh−1(V (F ′h−1)) with |S| ≥ εn

s2hk
and |U | ≥ εn

shk
, the property

in the lemma holds with probability 1− e−ω(n).

Let s = sh. Pick some S0 ∈ S, so that, by P3, each graph in S is isomorphic to S0, and label
V (S0) = {v1, . . . , vs}. LetH be the set of copies of S0 in the complete graph with vertex set in U . Note
that |U | = Ω(n) and |H| = Ω(ns).

For each S ∈ S and H ∈ H, label V (S) = {zS,1, . . . , zS,s} and V (H) = {vH,1, . . . , vH,s} so that
vi 7→ zS,i and vi 7→ vH,i are embeddings of S0. We now distinguish two cases: Case I where there is
some edge between S0 and F ′h−1 in F ′h and Case II where there is no such edge.

Let us assume first that we are in Case I. For each S ∈ S , let WS = fh−1(
⋃
v∈V (S)NF ′h−1

(v)) be the
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images of the already embedded neighbours of vertices in S. Note that these sets WS are non-empty
by the definition of Case I and by P5 disjoint. For each H ∈ H and S ∈ S, let H ⊕WS be the graph
with vertex set V (H) ∪WS containing exactly those edges that we would need in order to extend the
partial embedding we have so far to S embedded into H . That is, H ⊕WS has edge set

E(H) ∪ {vH,iv : 1 ≤ i ≤ s, v ∈ fh−1(NF ′h−1
(zS,i))}.

For each S ∈ S, H ∈ H and J ⊆ H , let J ⊕WS = (H ⊕WS)[V (J) ∪WS ]. Let H+ = {H ⊕WS : H ∈
H, S ∈ S}, and note that if any graph fromH+ appears in Gh then we can indeed extend our current
embedding to one more dense spot in S, and hence are done.

Let J = {H ∩H ′ : H,H ′ ∈ H, e(H ∩H ′) > 0} and J ′ = {H ∩H ′ : H,H ′ ∈ H, H 6= H ′} \ ∅. We will
show that P[∃H ∈ H+ with H ⊆ Gh] = 1− exp(−ω(n)) follows from Theorem 2.18 and the following
claim, which we then prove.

Claim 5.6.

(i) For each J ∈ J , 2e(J) < (∆ + 1)(|J | − 1).

(ii) For each H ∈ H and S ∈ S, 2e(H ⊕WS) ≤ (∆ + 1)s.

(iii) For each S ∈ S and J ∈ J ′, 2e(J ⊕WS) < (∆ + 1)|J |.

Indeed, using (ii) of Claim 5.6, and that q = ω(n−
2

∆+1 ), let

µ :=
∑
S∈S

∑
H∈H

qe(H⊕WS) = Ω(ns+1q(∆+1)s/2) = ω(n).

Note that, by P3 and (ii) of Claim 5.6, each graph in H+ has the same number of edges, say m ≤
(∆ + 1)s/2. Let

δ :=
∑

S,S′∈S

∑
H,H′∈H

H⊕WS∼H′⊕WS′

qe(H⊕WS)+e(H′⊕WS′ )−e((H⊕WS)∩(H′⊕WS′ ))

= q2m
∑

S,S′∈S

∑
H,H′∈H

H⊕WS∼H′⊕WS′

q−e((H⊕WS)∩(H′⊕WS′ ))

≤ q2m
∑
J∈J

∑
S,S′∈S
S 6=S′

∑
H,H′∈H
H∩H′=J

q−e(J) + q2m
∑
J∈J ′

∑
S∈S

∑
H,H′∈H
H∩H′=J

q−e(J⊕WS)

≤ q2m
∑
J∈J
|S|2n2s−2|J|q−e(J) + q2m

∑
J∈J ′

∑
S∈S

n2s−2|J|q−e(J⊕WS).

(5.5)

Then, using (i) and (iii) of Claim 5.6, and as µ = Ω(ns+1qm), we have

δ

µ2
= O

( ∑
J∈J
|S|2n−2|J|−2q−e(J) +

∑
J∈J ′

∑
S∈S

n−2|J|−2q−e(J⊕WS)
)

= O
( ∑
J∈J

n−2|J|q−(∆+1)(|J|−1)/2 +
∑
J∈J ′

|S| · n−2|J|−2q−(∆+1)|J|/2
)
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5. Randomly perturbed graphs

= o
( ∑
J∈J

n−2|J|n|J|−1 +
∑
J∈J ′

n−2|J|−1n|J|
)

= o(n−1).

Therefore, as µ = ω(n) and δ
µ2 = o(n−1), by Theorem 2.18, the probability that there is no graph in

H+ in Gh is at most exp(− µ2

4(µ+δ) ) = exp(−ω(n)), as required. For Case I, it is left then only to prove
Claim 5.6.

Proof of Claim 5.6. For (i) let H,H ′ ∈ H be such that H ∩H ′ = J . If J 6= H , and |J | ≥ 3, then, by P2,
we have 2e(J) ≤ (∆ + 1)(|J | − 2) < (∆ + 1)(|J | − 1), as required. If |J | = 2, then (∆ + 1)(|J | − 1) =

∆ + 1 > 2 ≥ e(J).
Suppose then that J = H , so |J | = s. If s ≤ ∆, then 2e(J) ≤ s(s−1) < (s+1)(s−1) ≤ (∆+1)(s−1),

and if s > ∆ + 1, then 2e(J) ≤ s∆ < s∆ + s−∆ + 1 = (∆ + 1)(s− 1), as required. If s = ∆ + 1, note
that, as there is some edge between S0 and Fh−1 in Fh, we have that S0, and hence J = H , is not a
clique with ∆ + 1 vertices. Thus, 2e(J) < s(s− 1) = (∆ + 1)(s− 1).

For (ii) suppose s ≥ ∆ + 1. As H is dense we have 2e(H) > (∆ + 1)(s− 2), and thus

2e(H ⊕ S) ≤ 2∆s− 2e(H) < 2∆s− (∆ + 1)(s− 2) = (∆ + 1)s+ 2(∆ + 1− s) ≤ (∆ + 1)s,

as required.
So suppose that s ≤ ∆. If 4 ≤ s ≤ ∆− 1, then, as 2e(H) > (∆ + 1)(s− 2), we must have

s(s− 1) > (∆ + 1)(s− 2) ≥ (s+ 2)(s− 2) = s(s− 1) + s− 4 ≥ s(s− 1),

a contradiction. If s = 3, then 2e(H) > ∆ + 1 contradicts ∆ ≥ 5.
Finally, if s = ∆, then H must be the clique on ∆ vertices because 2e(H) > (∆ + 1)(∆ − 2) =

∆(∆− 1)− 2. Therefore,

2e(H ⊕ S) ≤ 2∆2 − 2e(H) = ∆(∆ + 1) = (∆ + 1)s.

For (iii) let H,H ′ ∈ H be such that H ∩ H ′ = J and H 6= H ′, which exist by the definition of J ′.
Observe that |J | < s. Let I = H −V (J), and let e(I, J) be the number of edges between I and J in H .
Then,

2e(J ⊕WS) ≤ 2(∆|J | − e(J)− e(J, I)) = 2(∆|J | − e(H) + e(I))

= (∆ + 1)|J |+ (∆− 1)|J | − 2e(H) + 2e(I).

Thus, to prove the claim it is sufficient to show that (∆− 1)|J | < 2e(H)− 2e(I).
As H is dense, we have 2e(H) > (∆ + 1)(|J |+ |I| − 2). If |I| ≥ 3, then, from P2, we have 2e(H) >

(∆ + 1)|J | + 2e(I). If |I| = 2, then 2e(H) > (∆ + 1)|J | ≥ (∆ − 1)|J | + 2e(I). Finally, if |I| = 1 then
e(I) = 0 and, since by (ii), |J | = s− 1 ≥ ∆− 1 and ∆ ≥ 3, we have 2e(H) > (∆− 1)|J |+ 2e(I).

So in each case, 2e(H)− 2e(I) > (∆− 1)|J | as required.

It remains to consider Case II. In this case the graphs in Sh have no edges to Fh−1. Therefore, it is
sufficient for some graph in H to exist. Let m be the size of each (isomorphic) graph in H, and note
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that 2m ≤ min{s∆, s(s− 1)} ≤ (s− 1)(∆ + 1). Thus, we may take

µ :=
∑
H∈H

qm = Ω(nsqm) = Ω(nsq(s−1)(∆+1)/2) = ω(n).

Let J = {H ∩H ′ : H,H ′ ∈ H, e(H ∩H ′) > 0, H 6= H ′} and note that, if J ∈ J and |J | ≥ 3, then
2e(J) ≤ (∆ + 1)(|J | − 2) by P2. Let

δ :=
∑

H,H′∈H
H∼H′,H 6=H′

qe(H)+e(H′)−e(H∩H′) = q2m
∑
J∈J

∑
H,H′∈H
H∩H′=J

q−e(J) ≤ q2m
∑
J∈J

n2s−2|J|q−e(J)

≤ q2m−1n2s−2 + q2m
∑

J∈J :|J|≥3

n2s−2|J|q−(∆+1)(|J|−2)/2.

Then, as µ = Ω(nsqm), we have

δ

µ2
= O

(
q−1n−2 +

∑
J∈J :|J|≥3

n−2|J|q−(∆+1)(|J|−2)/2
)

= o
(
n−1 +

∑
J∈J :|J|≥3

n−|J|−2
)

= o(n−1).

Therefore, as µ = ω(n), and δ
µ2 = o(n−1), by Lemma 2.18, the probability that there is no graph in H

in Gh is at most exp(− µ2

2(µ+δ) ) = exp(−ω(n)), as required.

Proof of Lemma 5.4

The proof of this lemma is based on the fact that the sets B(v) are random sets. The reason for this is
that F̂ is a random copy of F ∗ in G and that G is itself a random graph.

Recall that we have F ∗ ⊂ F , and a copy F̂ of F ∗ chosen randomly in G. Since G is the union of
random graphs it follows that V (F̂ ) ⊆ V (Gα) is chosen uniformly at random in V (Gα), which will
be crucial in the following. Recall also that we call the resulting embedding g0 : F ∗ → F̂ . Further,
recall that we have an independent set V0 ⊆ V (F ∗) with |V0| ≥ n

2∆ , and W0 = g0(V0). Again, W0 is a
uniformly random set of size |V0| in V (Gα).

Now, greedily pick a set V1 ⊆ V0 of at least n
4∆3 vertices in V0 which pairwise have no common

neighbours in F̂ , and let W1 = g0(V1). Fix u, v ∈ V (Gα). For each w ∈ W1, let Zw be the set
of neighbours of w in F̂ , and note that |Zw| ≤ ∆ and that the sets Zw ∪ {w} are all disjoint. For
each w ∈ W1, let Iw be the indicator variable for the event w ∈ NGα(u) and Zw ⊆ NGα(v). Since
B(v) = {w ∈W0 : NF̂ (w) ⊂ NGα(v)} by (5.3), it follows that

|NGα(u) ∩B(v)| ≥
∑
w∈W1

Iw. (5.6)

Let r = αn
4∆3 ≤ |W1| and pick distinct vertices w1, . . . , wr in W1. Consider revealing F̂ by, first

revealing the vertices in {w1}∪Zw1
, then revealing the vertices in {w2}∪Zw2

, and so on, until {wr}∪
Zwr , before finally revealing the rest of the vertices in F̂ . Note that, for each 1 ≤ i ≤ r, when the
location of the vertices in {wi} ∪ Zwi is revealed there will be at least αn/2 vertices both in NGα(v)

andNGα(u) which are not occupied by a vertex in {wj}∪Zwj with j < i. Therefore, for each 1 ≤ i ≤ r,
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5. Randomly perturbed graphs

ifm = |Zwi | and Fi is a random variable recording the location of the vertices in {wj}∪Zwj with j < i,
then

E[Iwi |Fi] ≥
αn/2 ·

(
αn/2−1

m

)
(m+ 1)n

(
n
m

) ≥ (α4 )m+1

(m+ 1)2
≥ α∆+1

4∆+1(∆ + 1)2
=: δ. (5.7)

Therefore, by Lemma 2.17 and (5.6), with probability 1− exp(−Ω(δr)) = 1− o(n−2) we have

|NGα(u) ∩B(v)| ≥ δr/2 ≥ α∆+2n

4∆+2(∆ + 1)5
≥ 4
( α

4∆

)2∆

n = 4εn.

Therefore, with probability 1− o(1), |NGα(u) ∩B(v)| ≥ 4εn for each u, v ∈ V (Gα).

Proof of Lemma 5.5

Again, we use Janson’s inequality and similar calculations to Ferber, Luh and Nguyen [54].
Recall that Wh−1 = {g0(v) : gh−1(v) = g0(v), v ∈ V0} is the set of vertices of F̂ in W0 that have not

been switched. Let 1 ≤ h ≤ k, 1 ≤ r ≤ |S ′h| ≤ εn/s2
hk, S ⊆ S ′h and U ⊆ Wh−1 with |S| = r and

|U | ≤ s2
hr. Note that, as |U | ≤ s2

hr ≤ εn, we have |U ∪ (W0 \Wh−1)| ≤ 2εn. Therefore, by the property
from Lemma 5.4, for each u, v ∈ V (Gα), we have

|NGα(u,B(v)) ∩ (Wh−1 \ U)| ≥ 2εn, (5.8)

and, in particular, |B(v) ∩ (Wh−1 \ U)| ≥ 2εn.
Let s = sh. Pick S0 ∈ S , so that, by P3, each graph in S is isomorphic to S0. As in the proof of

Lemma 5.3, we will consider two cases: Case I where there is some edge between S0 and Fh−1 in Fh,
and Case II where there is no such edge.

Suppose first we are in Case I. Label V (S0) = {v1, . . . , vs} so that v1 has a neighbour in Fh−1. Recall
that for S ∈ S we labelled V (S) = {zS,1, . . . , zS,sh}. Without loss of generality, we can assume for
each S ∈ S that vi 7→ zS,i is an isomorphism from S0 into S. Let H be the set of copies of S0 in the
complete graph with vertex set Wh−1 \ U . For each H ∈ H, label V (H) = {vH,1, . . . , vH,s} so that
vi 7→ vH,i is an isomorphism of S0 to H .

For each S ∈ S, pick the image wS of an already embedded neighbour of the vertex zS,1 corre-
sponding to v1, that is, pick wS ∈ gh−1(NFh(zS,1)). For each S ∈ S, let

HS = {H ∈ H : vH,1 ∈ NGα(wS) and vH,i ∈ B(vS,i) for each 1 ≤ i ≤ h}.

These are precisely those copies of S0 where the vertex previously embedded to vH,i can be replaced
by vS,i for 1 ≤ i ≤ h and the edge from vH,1 to wS is already present in Gα. For each S ∈ S, note
that, from (5.8), we have |HS | = Ω(ns). For each S ∈ S, let WS = gh−1(

⋃
v∈V (S)NFh(v)) be the set of

images of already embedded neighbours of vertices in S.
For each H ∈ HS and S ∈ S, let H ⊕WS be the graph with vertex set V (H) ∪WS and edge set

E(H) ∪ ({vH,iv : 1 ≤ i ≤ s, v ∈ gh−1(NFh(wS,i))} \ {vH,1wS}).

These are exactly the edges we need in order to extend our embedding of F ′h−1 to contain S embedded
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into H . For each S ∈ S, H ∈ H and J ⊆ H , let J ⊕WS = (H ⊕WS)[V (J)∪WS ]. LetH+ = {H ⊕WS :

S ∈ S, H ∈ HS}, and note that if any graph fromH+ appears in G′h then we are done.

Let J = {H ∩H ′ : H,H ′ ∈ H, e(H ∩H ′) > 0} and J ′ = {H ∩H ′ : H,H ′ ∈ H, H 6= H ′} \ ∅. Note
that (i) and (iii) of Claim 5.6 hold here as well. For each H ∈ H and S ∈ S, E(H ⊕WS) does not
include vH,1wS , and, therefore, in place of (ii), the following holds.

(ii’) For each S ∈ S and H ∈ HS , 2e(H ⊕WS) ≤ (∆ + 1)s− 2.

Note that, by P3, each graph inH+ has the same number of edges, m say. Note that, as the property
we are looking for is monotone, we may assume that q−1/2 = ω(lnn). Using (ii’) from above, let

µ :=
∑
S∈S

∑
H∈HS

qm = Ω(rnsqm) = Ω(rnsq(∆+1)s/2−1) = Ω(rq−1) = ω(r lnn).

We remark, that this is the only place where we use that the edge vH,1wS is not included in H ⊕WS ,
since it is already present in Gα.

Defining δ as follows, and using similar deductions to those used to reach (5.5), we have

δ :=
∑

S,S′∈S

∑
H∈HS ,H′∈HS′
H⊕WS∼H′⊕WS′

qe(H⊕WS)+e(H′⊕WS′ )−e((H⊕WS)∩(H′⊕WS′ ))

≤ q2mr2
∑
J∈J

n2s−2|J|q−e(J) + q2m
∑
J∈J ′

∑
S∈S

n2s−2|J|q−e(J⊕WS).

Then, using (i) and (iii) of Claim 5.6, and that µ = Ω(rnsqm), we have

δ

µ2
= O

( ∑
J∈J

n−2|J|q−e(J) + r−2
∑
J∈J ′

∑
S∈S

n−2|J|q−e(J⊕WS)
)

= O
( ∑
J∈J

n−2|J|q−((∆+1)(|J|−1)−1)/2 + r−2
∑
J∈J ′

∑
S∈S

n−2|J|q−((∆+1)|J|−1)/2
)

= o
(
q1/2

∑
J∈J

n−2|J|n|J|−1 + q1/2r−2
∑
J∈J ′

∑
S∈S

n−2|J|n|J|
)

= o(q1/2n−1 + q1/2r−1) = o(r−1 ln−1 n).

Therefore, as µ = ω(r lnn), and δ
µ2 = o(r−1 ln−1 n), by Lemma 2.18, the probability that there is no

graph in H+ in Gh is at most exp(− µ2

2(µ+δ) ) = exp(−ω(r lnn)), completing the proof of Lemma 5.5 in
Case I.

Let us assume now we are in Case II, with no edges between S0 and Fh−1 in Fh. Label V (S0) =

{v1, . . . , vs}. LetH be the set of copies of S0 in the complete graph with vertex set Wh−1 \U . For each
H ∈ H, label V (H) = {vH,1, . . . , vH,s} so that vi 7→ vH,i is an embedding of S0. Let

H′ = {H ∈ H : ∃S ∈ S such that vH,i ∈ B(vS,i) for each 1 ≤ i ≤ h}.

Note that if we have some graph fromH′ in G′h, then we are done. From (5.8), we have |H′| = Ω(ns),
so, with very similar calculations to Case II in the proof of Lemma 5.3, we have that the probability
that there exists no graph fromH′ in G′h is at most exp(−ω(n)) ≤ exp(−ω(r ln(n/r)), as required.
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5.4 Proofs for trees and factors

Theorem 2.7 can be shown to extend to ∆ ≤ 3 using basically the same approach as presented here.
The definition of the dense spots, however, has to be slightly adapted to each case. For ∆ = 4, there
is one problematic dense spot, a triangle attached to the rest of the graph with two pendant edges at
each vertex, which prevents our methods extending to this case. A similar gap exists for extensions
of Theorem 2.4.

With simple modifications, our methods are applicable more generally to the determination of
appearance thresholds for spanning structures in the randomly perturbed graph model. This allows
us to give simpler, non-regularity, proofs of results already found in the literature. In particular, we
can reprove the recent results concerning bounded degree spanning trees and factors. We will show
how our methods imply these results in the following. As the calculations and arguments are very
similar to our proof, we shall be brief.

Spanning trees

Theorem 5.7 (Krivelevich, Kwan and Sudakov [82]). For any α,∆ > 0, if p = ω(1/n) and T is an
n-vertex tree with maximum degree at most ∆, then Gα ∪ G(n, p) contains a copy of T a.a.s.

Applying our new approach to the randomly perturbed graph model, we can give a proof of this
result, as follows.

Proof. Fixing α > 0 and ∆ > 0, let ε = ε(α,∆) be a small constant. Let p = ω(n−1) and let T be
a tree with n vertices and maximum degree at most ∆. Clearly T contains some subtree T ′ with
d(1 − ε)ne vertices. By the work of Alon, Krivelevich and Sudakov[14], we know that G(n, p) almost
surely contains a copy S′ of T ′. As before, we observe that this copy is independent of Gα and placed
uniformly at random on top of it. Using the same methods as we used for Lemma 5.4, we obtain that,
a.a.s. each uncovered vertex v in Gα can be switched for a set B(v) of vertices in the copy of T ′ so that
each vertex in Gα has at least (∆ + 1)εn neighbours in Gα in B(v).

We then greedily extend the copy of T ′ to a copy of T using the following deterministic strategy.
Picking an uncovered vertex v, let Bv be obtained from B(v) by removing those vertices which have
been switched in S′ or whose neighbours in S′ have been switched and note that we removed less
than (∆ + 1)εn vertices. Picking a vertex u in T which needs to be embedded as a leaf of the partial
embedding, we use that its already embedded parent has at least one neighbour w in Bv . We switch v
with w and, by embedding u onto w, gain an extended partial embedding of T . When complete, this
gives the required copy of T .

Factors

Recall that by Theorem 2.2 n−1/d1(G) log1/e(G) n gives the threshold for factors of strictly balanced
graphs G. Gerke and McDowell [61], on the other hand, showed that for vertex balanced graphs G,
this threshold is n−1/m1(G). The result for general factors in the model Gα ∪ G(n, p) is the following.

Theorem 5.8 (Balogh, Treglown and Wagner [19]). For every G, if p = ω(n−1/m1(G)), then Gα ∪ G(n, p)

contains a G-factor a.a.s.
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Our methods give a simpler, non-regularity, proof of this result, as follows.

Proof. Fixing G, let t = v(G), ε = ε(α, t) > 0 be small and p = ω(n−1/m1(G)). It follows from Theo-
rem 2.19 that G(n, p) a.a.s. contains an almost G-factor covering at least (1 − εt)n vertices, which we
call F ∗. As before, we observe that this copy is independent of Gα and placed uniformly at random
on top of it. Using the very same methods we used for Lemma 5.4, we get that, a.a.s. each uncovered
vertex v in V (Gα) can be switched for one of at least 3εt3n vertices in different copies ofG in F ∗ to get
the same number of disjoint copies of G in Gα ∪ G(n, p). We call this set of switchable vertices B(v).

We can then iteratively extend our embedding as follows. We pick t uncovered vertices v1, . . . , vt in
V (Gα) and pick disjoint sets Bi ⊂ B(vi) with |Bi| ≥ εn so that the vertices in Bi are switchable with
vi, the vertices in

⋃
iBi appear in different copies of G, and these copies of G have had no vertices

switched with them. This is possible as there are at most εn copies of G added, which together
switched at most εtn vertices and thus blocking at most εt2n vertices. Furthermore, the previously
chosen Bi can block at most another εt2n many vertices and since at most t vertices appear in the
same copy of G this leaves us with εt2n switchable vertices.

It easily follows from the proof of Theorem 2.19 that, for any t disjoint vertex subsets with at least
εn vertices in each subset, with probability at least 1 − n−2 there is a copy of G in G(n, p) with one
vertex in each subset. Therefore G(n, p) contains a copy of G with one vertex in each set Bi and thus
we can use this copy, along with switchings, to increase the number of disjoint copies of G. As there
are at most εn steps until completion, this process finds a G-factor in Gα ∪ G(n, p) a.a.s.
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Chapter 6

Universality in random hypergraphs

Next, we present the proof33 of Theorem 2.9 onF (r)(n,∆)-universality inH(r)(n, p) obtained together
with Person [94]. After the proof outline and some more definitions we state two lemmas which read-
ily imply the theorem. The first lemma guarantees pseudorandom properties in H(r)(n, p), whereas
the second shows that these are sufficient for embedding any graph from F (r)(n,∆). Afterwards, we
prove both lemmas.

6.1 Proof outline

Our proof follows a similar strategy as the one of Dellamonica, Kohayakawa, Rödl, and Ruciński [41]
for universality of random graphs which we combine with the approach of Kim and Lee [73] and of
Ferber, Nenadov and Peter [56].

We will embed any bounded degree hypergraph F ∈ F (r)(n,∆) into the random hypergraph H =

H(r) (n, p) with p = C(log n/n)1/∆ by verifying certain deterministic pseudorandom properties. More
precisely, we introduce the notion of an (n, r, p, t, ε,∆)-good hypergraphH (see Definition 6.2 below),
and prove that the random hypergraph H(r) (n, p) is (n, r, p, t, ε,∆)-good a.a.s. This reduces our task
to find an embedding of any F ∈ F (r)(n,∆) into such an (n, r, p, t, ε,∆)-good hypergraph H .

Roughly speaking, such good hypergraph H admits a partition of its vertices into sets V0, V1,
. . . , Vt, so that certain extension properties hold. Next we partition most of the vertices of F into
3-independent sets X1,. . . , Xt plus an additional set X0 = NF (Xt) (recall, that a set is 3-independent
if any two of its vertices are at distance at least 4). These 3-independent setsX1,. . . ,Xt are constructed
by colouring greedily the third power of the shadow graph of F . The set Xt has the property that
the (r − 1)-uniform link hypergraph of every x ∈ Xt in F looks the same together with possibly
some further edges of F contained inNF (x). Thus, we think of F [X0] as a collection of vertex-disjoint
copies of isomorphic pairs (E1, E2), which we call profiles, of the edge set E1 of some r-uniform hy-
pergraph and of the edge set E2 of some (r − 1)-uniform hypergraph (isomorphic to every link of
x ∈ Xt). One of the properties of H asserts then that F [X0] can be embedded into H[V0], no matter
which F ∈ F (r)(n,∆) we consider. Then we extend, using other properties of an (n, r, p, t, ε,∆)-good
hypergraph H , our embedding in t rounds to the whole V (F ) by embedding in the i-th round the
vertices from Xi into V0 ∪ V1 . . . ∪ Vi. For this we will verify Hall’s condition for the existence of a
matching in an appropriately defined bipartite graph that allows us to carry on with our embedding.
The role of the sets Vi is technical – it allows us to verify Hall’s condition for small subsets, which we
cannot simply do in V0.

33The proof in this chapter is a close adaption of [94].
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6.2 Auxiliary results and definitions

Let H = (V,E) be an r-uniform hypergraph. The link of v in H is a subset of
(
V
r−1

)
consisting of all

(r − 1)-sets of vertices which form an edge together with v

linkH(v) =

{
e′ ∈

(
V

r − 1

)
: e′ ∪ {v} ∈ E

}
.

For a hypergraph H and a vertex v we define its profile PH(v) in H as follows

PH(v) = (NH(v), E(H[NH(v)]), linkH(v))

and say that two profiles PH(v1) and PH(v2) are equivalent (PH(v1) ∼= PH(v2)) if there is an isomor-
phism ϕ that takes H[NH(v1)] to H[NH(v2)] and (NH(v1), linkH(v1)) to (NH(v2), linkH(v2)). We call
NH(v) the vertices of the profile.

Let P (r)(∆) be the set of all possible profiles (Z,E1, E2) that we encounter for F ∈ ∪n∈NF (r)(n,∆)

(up to equivalence). Then, for any |Z| ≤ (r−1)∆, (Z,E1) is an r-uniform hypergraph with maximum
degree ∆−1 and (Z,E2) is an (r−1)-uniform hypergraph with at most ∆ edges and without isolated
vertices. It is not difficult to bound |P (r)(∆)| by a function exponential in some polynomial in ∆, say,
by A∆2 log ∆ for some absolute constant A = A(r) > 1. But since ∆ is fixed, all we will care about is
that |P (r)(∆)| is a constant that depends on r and ∆ only.

The following lemma prepares any F ∈ F (r)(n,∆) for future embedding intoH(r)(n, p).

Lemma 6.1. Let r ≥ 2 and ∆ ≥ 1 be integers. Then for t = r3∆3, any ε ≤ |P (r)(∆)|−1(t − 1)−1 and any
F ∈ F (r)(n,∆) there exists a partition of V (F ) in X0 ∪ · · · ∪Xt (where some of the Xi might be empty) with
the following conditions:

Q1 |Xt| = εn, X0 = NF (Xt),

Q2 every x ∈ Xt has the same profile PF (x) (up to equivalence), and

Q3 Xi is 3-independent for i = 1, . . . , t.

Proof. Let F ∈ F (r)(n,∆) be given and G be its shadow graph. The third power G3 of G is the graph
which we obtain by connecting any pair of vertices of distance at most 3 by an edge. We estimate the
maximum degree ofG3 as follows: ∆(G3) ≤ (r−1)3∆3. Clearly,G3 is (t−1)-colourable and let Y1,. . . ,
Yt−1 be the colour sets in some colouring of V (G3) such that |Y1| ≤ |Y2| ≤ . . . ≤ |Yt−1|. The sets Yi are
3-independent in F as well because the shadow of a path of length 3 in F contains a path of length 3

in G, which gives an edge in G3 in contradiction to the colouring above.
We can choose a subset Xt ⊆ Yt−1 of size εn ≤ n|P (r)(∆)|−1(t − 1)−1 of vertices with the same

profile in F (up to equivalence). We set X0 := NF (Xt) and define Xi = Yi \X0 for i = 1, . . . , t− 2 and
Xt−1 = Yt−1 \ (X0 ∪Xt). The partition V (F ) = X0 ∪ · · · ∪Xt satisfies the required conditions.

Given a partition of V (F ) from the above lemma, it follows from Q1–Q3 that F [X0] is the disjoint
union of εn copies of the same r-uniform hypergraph isomorphic to F [NF (x)] for all x ∈ Xt. Further-
more, the third condition implies that any edge e ∈ E(H) intersects each Xi in at most one vertex for
i = 1,. . . , t.
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6. Universality in random hypergraphs

Let H = (V,E) be an r-uniform hypergraph. Let L be a family of pairwise disjoint k-subsets of(
V
r−1

)
and we write V (L) for ∪e∈L:L∈Le. For a subset W ⊆ V \ V (L) we define the auxiliary bipartite

graph B(H,L,W ) with the vertex classes L and W , where L ∈ L and w ∈ W form an edge if and
only if L ⊆ linkH(w). Roughly speaking, for every unembedded x ∈ V (F ) the set L = Lx ∈ L will
consist of the images of the already fully embedded (r − 1)-sets from the linkF (x) and the following
definition which resembles the one of good graphs from [56, 73] provides essential properties that
will assist us while embedding F intoH(r)(n, p).

Definition 6.2. We say that an r-uniform hypergraph H is (n, r, p, t, ε,∆)-good if there exists a partition
V (H) = V0 ∪ V1 ∪ · · · ∪ Vt, where |Vi| = εn/(10t) for i = 1, . . . , t, and |V0| = (1− ε/10)n that satisfies the
following conditions:

P1 For any profile (Z,E1, E2) ∈ P (r)(∆) there exists a family F of εn vertex-disjoint copies of the profile
(Z,E1, E2) with vertices in V0 and edges E1 present in H . This family induces a family F2 of pairwise
disjoint copies of E2 in

(
V0

r−1

)
. Furthermore, for any W ⊆ V (H) \ V (F2) with |W | ≤ (p/2)−∆/2

|NB(H,F2,W )(W )| ≥ (p/2)∆|W |εn/4

holds.

P2 Let 1 ≤ k ≤ ∆ and L be any collection of disjoint k-subsets of
(
V (H)
r−1

)
. If |L| ≤ (p/2)−k/2, then for any

i = 1, . . . , t with V (L) ∩ Vi = ∅ we have

|NB(H,L,Vi)(L)| ≥ (p/2)k|L| |Vi|/4.

P3 Let 1 ≤ k ≤ ∆ and L be any collection of disjoint k-subsets of
(
V (H)
r−1

)
. If |L| ≥ C ′(p/2)−k log n, then

for any W ⊆ V (H) \ V (L) with |W | ≥ C ′(p/2)−k log n the graph B(H,L,W ) has at least one edge,
where C ′ = k(r − 1) + 2.

6.3 Two lemmas

The proof of Theorem 2.9 follows immediately from the two lemmas we state below, Lemma 6.3
and Lemma 6.4. These lemmas establish the connection between H(r)(n, p), good hypergraphs and
F (r)(n,∆)-universality.

Lemma 6.3. For integers r ≥ 2, ∆ ≥ 1, t ≥ 1 and ε ≤ 1/(r∆), there exists a C > 0 such that for
p ≥ C (log n/n)

1/∆ the random hypergraphH(r)(n, p) is (n, r, p, t, ε,∆)-good a.a.s.

Lemma 6.4. For integers r ≥ 2, ∆ ≥ 1 and ε ≤ |P (r)(∆)|−1r−3∆−3, there exists a C > 0 such that for
p ≥ C (log n/n)

1/∆, every
(
n, r, p, r3∆3, ε,∆

)
-good hypergraph is F (r)(n,∆)-universal.

Thus, it remains to prove both lemmas.
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6.4 Proofs of auxiliary lemmas

Proof of Lemma 6.3

Let r, ∆, t and ε ≤ 1/(r∆) be given, furthermore we assume that p ≥ C (log n/n)
1/∆, where C is a

sufficiently large constant that depends only on ε, r, ∆ and t. We will not specify C explicitly but it
will be clear from the context how it should be chosen.

We expose H(r)(n, p) in two rounds and write H(r)(n, p) = H(r)(n, p1) ∪ H(r)(n, p2), where p1 =

p2 ≥ p/2 such that (1− p) = (1− p1)(1− p2). In the first round we will find the families F and in the
second round we show that P1–P3 of Definition 6.2 all hold with probability at least 1 − o(1). In the
beginning we arbitrarily partition V into V0∪V1∪· · ·∪Vt such that |V0| = n−εn/10 and Vi = εn/(10t)

for i = 1, . . . , t.

1st round.. For a given profile (Z,E1, E2) ∈ P (r)(∆) we have that the maximum degree ofG = (Z,E1)

is at most ∆− 1. We estimate m1(G) ≤ maxs≥r
(∆−1)s
r(s−1) ≤ ∆− 1. Theorem 2.19 implies that there exist

εn vertex-disjoint copies of G inH(r)(n, p1) all of whose vertices are contained inside V0 a.a.s. Indeed,
we apply Theorem 2.19 to H(r)(|V0|, p) where |V0| ≥ (1 − ε/10)n > (r − 1)∆εn + εn/10. We denote
this family by F(Z,E1).

Since there are constantly many (at most |P (r)(∆)|) r-uniform hypergraphs G on at most (r − 1)∆

vertices with maximum degree ∆ − 1, we will find simultaneously εn vertex-disjoint copies of any
such G a.a.s. within V0. Therefore, with a given profile (Z,E1, E2) ∈ P (r)(∆), we associate a family F
of εn vertex-disjoint copies (Y,E′, E′′) with (Y,E′) ∈ F(Z,E1) and such that (Y,E′, E′′) ∼= (Z,E1, E2).
This gives us a family F2 of copies of E′′ for this kind of profile, thus showing the first part of P1 from
Definition 6.2.

2nd round.. From now on we work inH = H(r)(n, p2). Fix some profile (Z,E1, E2) ∈ P (r)(∆) and the
corresponding family F found in the first round. The family F induces a family F2 of disjoint copies
of E2 in

(
V0

r−1

)
. Let W be a subset of V (H) \ V (F2) with |W | ≤ (p/2)−∆/2. For every L ∈ F2 let XL

be the random variable with XL = 1 if and only if L ⊆ linkH(w) for some w ∈ W . This gives us
|NB(H,F2,W )(W )| =

∑
L∈F2

XL. The XL are independent and since P[xL ∈ E(B(H,F2,W ))] ≥ p∆
2 ≥

(p/2)∆, we compute using |W | ≤ (p/2)−∆/2

P[XL = 0] ≤ (1− (p/2)∆)|W | ≤ 1− |W |(p/2)∆ + |W |2(p/2)2∆ ≤ 1− |W |(p/2)∆/2.

From this we obtain

E

[∑
L∈F2

XL

]
≥ (p/2)∆|W ||F2|/2

|F2|=εn
≥ ε(C/2)∆|W |(log n)/2

and using Chernoff’s inequality, Theorem 2.16, with γ = 1/2 we get

P

[∑
L∈F2

XL < (p/2)∆|W | |F2|/4

]
≤ exp(−ε(C/2)∆|W |(log n)/16) = n−ε(C/2)∆|W |/16. (6.1)
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6. Universality in random hypergraphs

Since there are at most ns choices for a set W of size s we can bound, for C large enough, the proba-
bility that there is a set W violating P1 for F2 by o(1).

The number of different profiles in P (r)(∆) depends only on ∆ and thus also the number of families
F2. Thus taking the union bound over the probability that there is a set W violating our condition for
some family F2 is still o(1). This verifies P1 of Definition 6.2.

To verify P2 and P3, we use the edges of H(r)(n, p2). Let k ∈ [∆], L be a collection of disjoint k-
subsets of

(
V
r−1

)
with |L| ≤ (p/2)−k/2 and i ∈ [t] such that V (L) ∩ Vi = ∅. For v ∈ Vi, let Xv be the

random variable with Xv = 1 if and only if L ⊆ linkH(v) for some L ∈ L. Thus |NB(H,L,Vi))(L)| =∑
v∈Vi Xv . As above we obtain

P[Xv = 0] ≤
(
1− (p/2)k

)|L| ≤ 1− |L|(p/2)k + |L|2(p/2)2k ≤ 1− |L|(p/2)k/2.

We have

E

[∑
v∈Vi

Xv

]
≥ (p/2)k|L||Vi|/2

|Vi|= εn
10t

≥ ε(C/2)k|L|(log n)/(20t)

and from Chernoff’s inequality, Theorem 2.16, with γ = 1/2 we get

P

[∑
v∈Vi

Xv ≤ (p/2)k|L||Vi|/4

]
≤ exp(−(p/2)k|L||Vi|/16) ≤ n−ε(C/2)k|L|/(160t).

There are less than n(r−1)k|L| possibilities to choose L. Therefore, for C large enough, the probability
that there exists k ∈ [∆] and sets L and Vi that violate P2 is o(1).

Finally, we verify that P3 holds a.a.s. in H. For this we set ` = C ′(p/2)−k log n and let k ∈ [∆]. It
suffices to consider only sets L and W ⊆ V \ V (L) each of size `. For two such sets L and W the
probability that an edge in B(H,L,W ) is present equals pk2 ≥ (p/2)k and therefore the probability
that there are no edges is at most (1− (p/2)k)`

2 ≤ exp(−`2(p/2)k).
There are less than n(r−1)k` choices for L and less than n` choices for W . Thus, we can bound the

probability that there are sets L and W of size ` violating P3 by

exp
((

(r − 1)k`+ `
)

lnn− `2(p/2)k
)

= exp
((

(r − 1)k + 1− C ′
)
` lnn

)
= o(1).

Proof of Lemma 6.4

Let r, ∆, ε ≤ |P (r)(∆)|−1r−3∆−3 be given and letC6.3 be a constant as asserted by Lemma 6.3 on input
r, ∆, t := r3∆3 and ε. Furthermore, we assume that p ≥ C (log n/n)

1/∆, where C is a sufficiently large
constant that depends only on ε, r, ∆ and C6.3. We will not specify C explicitly but it will be clear
from the context how it should be chosen.

Let H be an (n, r, p, t, ε,∆)-good hypergraph and fix the partition V0 ∪ V1 ∪ · · · ∪ Vt of V (G) as
specified by Definition 6.2. Fix any F ∈ F (r)(n,∆) and apply Lemma 6.1 with r, ∆, t = r3∆3 and ε to
obtain a partition of V (F ) in X0 ∪ · · · ∪Xt with Q1–Q3 from Lemma 6.1.
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An embedding of F into G is an injective map φ : V (F ) → V (H), where edges are mapped onto
edges. We start with constructing an embedding φ0 that maps X0 into V0 ⊂ V (H). From Q2,
we know that every x ∈ Xt has the same profile in F . Therefore, let (Z,E1, E2) be the profile of
any x ∈ Xt. By P1, there is a family F of copies of (Z,E1, E2) with vertices in V0. Furthermore,
F [X0] is the disjoint union of εn copies of (Z,E1) which holds because of the 3-independence of Xt

(refprop:indep of Lemma 6.1). Therefore, we can construct φ0 by mapping bijectively every copy
(NF (x), F [NF (x)], linkF (x)) to one member (Y,E′, E′′) of F . This is for sure a valid embedding of
F [X0] into H .

Now we construct φi from φi−1 for i = 1, . . . , t by embedding Xi such that φi
(
F [∪ij=0Xj ]

)
⊆ H .

The available vertices for this step are V ∗i = (V0∪· · ·∪Vi)\ Im(φi−1). For x ∈ Xi we collect the images
of the already fully embedded (r − 1)-sets from the linkF (x) in

L(x) :=

{
φi−1(e) : e ∈ linkF (x) ∩

(⋃i−1
j=0Xj

r − 1

)}
.

Since Xi is 3-independent we have L(x1)∩L(x2) = ∅ for x1, x2 ∈ Xi and we set Li = {L(x) : x ∈ Xi}
which is a collection of vertex-disjoint sets in

(
V (H)
r−1

)
. A possible image for x ∈ Xi is any v ∈ V ∗i , for

which L(x) ⊆ linkH(v). It remains to find an Li-matching in Bi = B(H,Li, V ∗i ) since then we set
φi(x) := v for every edge vL(x) in this matching and, since any edge e ∈ E(F ) intersects Xi in at
most one vertex, we obtain φi

(
F [∪ij=0Xj ]

)
⊆ H .

To guarantee an Li-matching in Bi we will verify Hall’s condition. Let U ⊆ Li and one needs to
show that |NBi(U)| ≥ |U | holds. We assume ∅ 6∈ U , because otherwise NBi(U) = V ∗i and |V ∗i | ≥ |Li|.

First, we verify Hall’s condition for all sets U with |U | ≤ |V ∗i | − εn/10. Notice that there exists a
k ∈ [∆] and a subset U ′ ⊆ U of size at least |U |/∆ and |L| = k for every L ∈ U ′. If |U ′| ≤ (p/2)−k/2,
then by P2 we have for C large enough

|NBi(U)| ≥ |NBi(U ′)| ≥ (p/2)k|U ′||Vi|/4 ≥ ε(C/2)k|U |(log n)/(40t∆) ≥ |U |.

If (p/2)−k/2 < |U ′| < C ′(p/2)−k log n, then we take any subset U ′′ ⊆ U ′ of size (p/2)−k/2 and use
again P2 and |U ′′| ≥ 2|U |/(C ′∆ log n) to obtain for C large enough

|NBi(U)| ≥ |NBi(U ′′)| ≥ (p/2)k|U ′′||Vi|/4 ≥ ε(C/2)k|U |/(20C ′t∆) ≥ |U |.

If |U ′| > C ′(p/2)−k log n, then |U | > C ′(p/2)−k log n and there are no edges between U and V ∗i \
NBi(U) in Bi. Therefore, P3 yields for C large enough

|V ∗i \NBi(U)| < C ′(p/2)−k log n ≤ C ′(C/2)−k(n/ log n)k/∆ log n ≤ εn/10,

and thus |NBi(U ′)| > |V ∗i | − εn/10 which verifies Hall’s condition in Bi for |U | ≤ |V ∗i | − εn.

For i = 1, . . . , t− 1 it follows from |
⋃t
i=1 Vi| = εn/10 and |Xt| = εn, that

|V ∗i | − |Xi| ≥ (n− | Imφi−1| − εn/10)− (n− | Imφi−1| − εn) ≥ 9/10εn

and therefore |Li| = |Xi| ≤ |V ∗i | − εn/10.
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6. Universality in random hypergraphs

Therefore, we find Li-matchings in Bi for i ∈ [t− 1] one after each other extending at each step our
embedding.

In the last step, we have |V ∗t | = |Xt| = εn and, by the partitioning of V (F ) with X0 = NF (Xt) we
have Lt = F2, where F2 is the family guaranteed by P1. Since we already saw that |NBt(U)| ≥ |U |
for all U ⊆ Lt with |U | ≤ |Lt| − εn/10 in Bt = B(H,Lt, V ∗t ), it suffices to verify |NBt(W )| ≥ |W | for
all W ⊆ V ∗t with |W | ≤ εn/10. If |W | > (p/2)−∆/2 then we take an arbitrary subset W ′ ⊆ W of size
exactly (p/2)−∆/2 and otherwise we set W ′ := W . By P1, we have

|NBt(W ′)| ≥ (p/2)∆|W ′|εn/4,

which is at least εn/8 > εn/10 ≥ |W | if W ′ ( W and is at least ε(C/2)∆(log n)|W ′|/4 > |W | if
W = W ′. Therefore, NBt(U) ≥ |U | for all |U | ≥ |Lt| − εn/10 as well and there exists a (perfect)
Lt-matching in Bt that allows us to finish embedding F into H .

In the proofs of Lemmas 6.3 and 6.4 (and thus of Theorem 2.9) we only considered the case of con-
stant ∆. Similarly to the arguments in [56] this also works in the range where ∆ is some function
of n but then the C in the bound on the probability is no longer a constant and rather growing ex-
ponentially with ∆. Furthermore, the proof yields a randomised polynomial time algorithm that on
input H(r)(n, p) embeds a.a.s. any given F ∈ F (r)(n,∆) into H(r)(n, p). All steps of the proof can be
performed in polynomial time and the only place where we need to use additional random bits is to
splitH(r)(n, p) intoH(r)(n, p1) ∪H(r)(n, p2) and this can be done similarly as was done in [4].
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Chapter 7

Constructions of universal hypergraphs

In this last chapter we finally give the proofs34 of Theorem 2.11, 2.13 and 2.14 aquired with Hetterich
and Person [64]. The third theorem is the hardest of these three and we need to prove a new decom-
position result for hypergraphs with maximum degree 2 (cf. Lemma 7.5 and 7.7). For all proofs we
need the concept of hitting graphs first introduced in [94], which we will refine in the next section
following [64]. But before we come to that let us briefly justify our lower bound on the number of
edges in an F (r)(n,∆)-universal hypergraph as shown in [94]35.

As claimed above we first observe that any F (r)(n,∆)-universal r-uniform hypergraph must pos-
sess Ω(nr−r/∆) edges. Indeed, it follows e.g. from a result of Dudek, Frieze, Ruciński, and Šileikis [46]
that for any ∆ ≥ 1 and r ≥ 3 the number of labelled r-uniform ∆-regular hypergraphs on n ver-
tices (whenever r|n∆) is Θ

(
(∆n)!

(∆n/r)!(r!)∆n/r(∆!)n

)
. Thus, the number of non-isomorphic r-uniform

∆-regular hypergraphs on n vertices is Ω
(

(∆n)!
(∆n/r)!(r!)∆n/r(∆!)nn!

)
and a similar bound holds for the

cardinality of F (r)(n,∆). On the other hand an r-uniform hypergraph with m edges contains exactly(
m

n∆/r

)
hypergraphs with n∆/r edges. Thus, it holds

(
m

n∆/r

)
= Ω

(
(∆n)!

(∆n/r)!(r!)∆n/r(∆!)nn!

)
and solving

for m yields m = Ω
(
nr−r/∆

)
.

The random hypergraphH(r)(n, p) with p = C(log n/n)1/∆ isF (r)(n,∆)-universal (by Theorem 2.9)
and has Θ(nr−1/∆(log n)1/∆) edges and thus the exponent in the density ofH(r)(n, p) is off by roughly
a factor of r from the lower bound Ω

(
n−r/∆

)
on the density for any F (r)(n,∆)-universal hypergraph.

In the following we show how one can construct sparser F (r)(n,∆)-universal r-uniform hypergraphs
out of the universal graphs from [9, 10].

7.1 Hitting graphs

Here we define a concept of hitting graphs first introduced in [94]. This will allow us later to obtain
r-uniform universal hypergraphs out of universal hypergraphs of smaller uniformity.

Let r ≥ 3 and 2 ≤ s < r be integers. Given two s-uniform hypergraphs G and F and an r-graph
H on the same vertex set as G, we say that G hits H on F if for all edges f ∈ E(H) there is a copy
of F in G induced on f , i.e. in G[f ]. A family of s-uniform hypergraphs G hits a family of r-uniform
hypergraphs F on F if for every H ∈ F there is a G ∈ G such that G hits H on F .

This concept allows us to reduce the uniformity from r to s keeping at the same time much of
the information about H . This motivates a definition that allows us to recover all the edges of the
hypergraph H which is being hit by G on F . For given s-uniform hypergraphs G and F letH(F,r)(G)

34The proofs that we give in this chapter are a close adaption of [64].
35The second and third paragraph are almost verbatim copies from [94].
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7.2 Proofs for general ∆

be the r-graph on the vertex set V (G) whose edges f ∈
(
V (G)
r

)
are such that a copy of F is contained

in G[f ]. Then G hits H on F if and only if H ⊆ H(F,r)(G).
The following lemma establishes the connection between hitting hypergraphs and H(F,r)(G). It is

an extension of Lemma 5.2 from [94]. For completeness, we include its easy proof.

Lemma 7.1. Let r > s ≥ 2, ∆ ≥ 1 be integers and F be an s-graph on at most r vertices. Further, let
F be a family of r-uniform hypergraphs and G a family of s-uniform hypergraphs hitting F on F . If G′ is a
G-universal s-graph, thenH(F,r)(G

′) is F-universal.

Proof. Let H ∈ F be an r-graph together with the s-graph G ∈ G that hits H on F . Since G′ is
G-universal, there exists an embedding ϕ : V (G)→ V (G′) of G into G′.

It is now easy to see that ϕ is an embedding of H into HF,r(G′), and thus, HF,r(G′) is F-universal.
This can be seen as follows. For any edge f ∈ E(H) there is a copy of F in G[f ]. Since ϕ is an
embedding of G into G′, there is a copy of F in G′[ϕ(f)]. By the definition of HF,r(G′), ϕ(f) is a
hyperedge inHF,r(G′). Thus, ϕ is an embedding of H intoHF,r(G′).

The lemma above suggests a way of obtaining r-uniform universal hypergraphs out of hypergraphs
of smaller uniformity. This will be exploited for particular choices of F in the following sections.

7.2 Proofs for general ∆

In this section we provide proofs of Theorem 2.11, Corollary 2.12 and Theorem 2.13, which are valid
for all ∆ ≥ 2.

Proof of Theorem 2.11

Let r > r′ ≥ 2 and ∆ ≥ 1 be integers such that r′ | r. We take F to be the r′-uniform perfect matching
on r vertices (and thus with r/r′ edges). LetH ∈ F (r)(n,∆). Since every vertex lies in at most ∆ edges
there is an r′-graph H ′ ∈ F (r′)(n,∆) hitting H on F . Such an H ′ can be obtained from H by replacing
every edge f of H with an arbitrary perfect r′-uniform matching on f . Therefore, F (r′)(n,∆) hits
F (r)(n,∆) on F .

Now if G′ is F (r′)(n,∆)-universal then, by Lemma 7.1, H(F,r)(G
′) is F (r)(n,∆)-universal. More-

over, since any collection of r/r′ independent edges from G′ forms an r-edge in H(F,r)(G
′), we have

e(H(F,r)(G
′)) ≤ e(G)r/r

′
.

Proof of Corollary 2.12

If r′ | r and there exists an F (r′)(n,∆)-universal hypergraph H ′ with O(nr
′−r′/∆) edges, then we

immediately obtain an F (r)(n,∆)-universal hypergraph with the vertex set V (H ′) and with

O
(

(nr
′−r′/∆)r/r

′
)

= O(nr−r/∆)

edges.
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7. Constructions of universal hypergraphs

By Theorem 2.10 there exist optimal explicitly constructible F(n,∆)-universal graphs on O(n) ver-
tices with O(n2−2/∆) edges. This yields for even r an explicitly constructible optimal F (r)(n,∆)-
universal hypergraph with O(nr−r/∆) edges. A similar argument applies also for the case of ex-
plicitly constructible F(n,∆)-universal graphs on n vertices with O(n2−2/∆ log4/∆ n) edges, giving
F (r)(n,∆)-universal hypergraphs on n vertices with O(nr−r/∆ log2r/∆(n)) edges.

We remark, that obtaining F (r′)(n,∆)-universal hypergraphs on O(n) vertices with O(nr
′−r′/∆)

edges for r′ being prime would provide then the conjectured optimal upper bound O(nr−r/∆) for all
r and ∆.

Proof of Theorem 2.13

In the case when r is odd, our hitting r′-uniform hypergraphs will be simply graphs, i.e. r′ = 2.
Moreover, the graph F can no longer be perfect matching, and thus we take F as the disjoint union
of a matching on r − 3 vertices and a path P3 of length 2, i.e. a path with 2 edges. We remark, that
the cases when F = K2 (a single edge) and F = Kr were considered in [94]. We use the following
lemma which asserts that one can find a family of graphs with not too large maximum degree which
hits F (r)(n,∆) on F .

Lemma 7.2. Let r ≥ 3 be odd and ∆ ≥ 1 be integers. Let F be the disjoint union of a matching on r − 3

vertices and a path P3. Then F(n, d(r + 1)∆/re) hits F (r)(n,∆) on F .

Proof. Let H ∈ F (r)(n,∆). One defines an auxiliary bipartite incidence graph B as follows. The first
class V1 consists of d∆/re copies of V (H) and the second class V2 is equal to E(H), while an edge of
B corresponds to a pair (v, f), where v is some copy of a vertex from V (H) and f ∈ E(H) is such that
v ∈ f . The vertices in V1 have degree at most ∆ and every hyperedge is connected to all d∆/re copies
of its r vertices, i.e. the vertices from V2 have degree rd∆/re ≥ ∆. By Hall’s condition, there is then a
matching M covering V2 and thus of size e(H).

We build the hitting graph H ′ on the vertex set V (H) by replacing edges f ∈ E(H) through copies
of F as follows. For every edge f in E(H) we use the edge (v, f) of the matching M and place a copy
of F on f such that the vertex v is the degree 2 vertex of the path P3 from F while the other vertices
are placed on f \ {v} arbitrary. We see that each placed copy of F that contains v contributes 1 (in
case (v, f) 6∈ M ) or 2 (in case (v, f) ∈ M ) to degH′(v). Since there are d∆/re copies of every vertex v
and every vertex v lies in at most ∆ edges of H , the maximum degree in H ′ is at most ∆ +

⌈
∆
r

⌉
and

therefore ∆(H ′) ≤ d(r + 1)∆/re. This implies H ′ ∈ F(n, d(r + 1)∆/re).

For any F(n, d(r + 1)∆/re)-universal graph G we use Lemma 7.1 to get an F (r)(n,∆)-universal
hypergraph H = H(F,r)(G) on the same number of vertices with at most 2|E(G)|(r−1)/2∆(G) edges,
where the bound comes from first choosing a matching on r − 1 vertices and then one of the two
possible endpoints enlarging one edge to a P3. The maximum degree of universal graphs G in the
constructions of Alon and Capalbo from Theorem 2.10 is O(|E(G)|/|V (G)|), and thus we obtain The-
orem 2.13 with F(n, d(r+ 1)∆/re)-universal graph G on O(n) vertices with O(n2−2/d(r+1)∆/re) edges
since

O
(

(n2−2/d(r+1)∆/re)(r−1)/2 · n1−2/d(r+1)∆/re
)

= O
(
nr−(r+1)/d(r+1)∆/re

)
.
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7.3 Proof for ∆ = 2

A similar calculation yields F (r)(n,∆)-universal hypergraphs on n vertices with

O(nr−(r+1)/d(r+1)∆/re log2(r+1)/d(r+1)∆/re n)

edges, which we obtain from F(n, d(r + 1)∆/re)-universal graphs G on n vertices with

O(n2−2/d(r+1)∆/re log4/d(r+1)∆/re n)

edges.

In contrary to the F chosen as a matching plus P3 we could work with any forest F . To find hitting
graphs of small maximum degree we can use similar matching techniques and counting arguments,
but in general it is not clear how low we can get. For example, if F is the path Pr on r vertices one can
show that F(n, d2(r− 1)∆/re) hits F (r)(n,∆) on F . This leads to an F (r)(n,∆)-universal hypergraph
on O(n) vertices with O(nr−2(r−1)/d2(r−1)∆/re) edges. It depends on the values of r and ∆, which
bound is better, but one does not get anything significantly better than O

(
nr−(r+1)/d(r+1)∆/re) edges

and therefore we do not further pursue this here.

Reducing the number of vertices

Note that it is possible to reduce the number of vertices from O(n) to (1 + ε)n in Theorems 2.10, 2.13,
and 2.14 and in Corollary 2.12, for any fixed ε > 0, by using a concentrator as was done in [12].
Consider the F (r)(n,∆)-universal hypergraph H on O(n) vertices and with m edges. A concentrator
is a bipartite graph C on the vertex sets V (H) and Q, where |Q| = (1 + ε)n such that for every
S ⊆ V (H) with |S| ≤ n we have |N(S)| ≥ |S| and every vertex from V (H) has Oε(1) neighbours in
C. We define a new hypergraph H ′ on Q by taking all sets f ′ ∈

(
Q
r

)
as edges for which there exists a

perfect matching in C from an edge f ∈ E(H) to f ′. Since every vertex from V (H) has Oε(1) degree
in C, the hypergraph H ′ has Oε(m) edges. It is also not difficult to see that H ′ is F (r)(n,∆)-universal.
Indeed, let F ∈ F (r)(n,∆) and let ϕ : V (F ) → V (H) be its embedding into H . By the property
of the concentrator C, there is a matching of ϕ(V (F )) in C which we can describe by an injection
ψ : ϕ(V (F ))→ V (H ′). But now, by construction of H ′, ψ ◦ ϕ is an embedding of F into H ′.

7.3 Proof for ∆ = 2

At this point in all cases where r is not even and r does not divide ∆ we do not have construc-
tions of F (r)(n,∆)-universal hypergraphs that match the lower bound Ω(nr−r/∆) on the number
of edges. In this section we will deal with the smallest open case ∆ = 2 by constructing optimal
F (r)(n, 2)-universal hypergraphs on O(n) vertices with O(nr/2) edges. So, for example, if r = 3 then
Theorem 2.13 yields F (3)(n, 2)-universal hypergraphs on O(n) vertices with O(n3−4/d8/3e) = O(n5/3)

edges, while the lower bound is Ω(n3/2).
We will first deal with the case r = 3 and ∆ = 2 and then reduce the case of general r and ∆ = 2 to

this one. Let us say a few words how an improvement from O(n5/3) to O(n3/2) can be accomplished.
We will use the concept of a graph G that hits some hypergraph H on P3 (the path on 3 vertices).
If we would follow the arguments in the previous section, then we see that taking a hypergraph
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7. Constructions of universal hypergraphs

H ∈ F (3)(n, 2) and replacing every hyperedge by P3 we can obtain a hitting graph G of maximum
degree 3 and of average degree 8/3. Thus, if we would like to use Theorem 2.10 we need to consider
F(n, 3)-universal graphs, which results in the loss of some n1/6-factor in the edge density. Instead, we
will seek to decompose the hitting graph G into appropriate subgraphs G1, G2, G3 and G4 such that
every edge of G lies in exactly three of the graphs Gi. A decomposition result of Alon and Capalbo
from [9] will assist us in this. Finally, following closely the arguments again due to Alon and Capalbo
but now from [10] will allow us to construct a universal graph G on O(n) vertices and with maximum
degree O(n1/4) for a carefully chosen family F ′ of graphs allowing a decomposition as above, which
hits F (3)(n, 2) on P3. Lemma 7.1 implies then that HP3,3(G) is F (3)(n, 2)-universal and has O(n3/2)

edges.

A graph decomposition result

The following notation is from [9]. Let G be a graph and S ⊆ V (G) be a subset of its vertices. A graph
G′ which is obtained from G by adding additionally |S| new vertices to G and placing an (arbitrary)
matching between these new vertices and the vertices from S is called an augmentation of G. We call
a graph thin if every of its components is an augmentation of a path or a cycle, or if they contain at
most two vertices of degree 3. We also call any subgraph of a thin graph thin.

The following decomposition theorem may be seen as a generalisation of Petersen’s Theorem to
graphs of odd degree.

Theorem 7.3 (Theorem 3.1 from [9]). Let ∆ be an integer and G a graph with maximum degree ∆. Then
there are ∆ spanning subgraphs G1, . . . , G∆ such that each Gi is thin and every edge of G appears in precisely
two graphs Gi.

Its proof is built on the Gallai-Edmonds decomposition theorem and is implied by the following
lemma.

Lemma 7.4 (Lemma 3.3 from [9]). Let ∆ ≥ 3 be an odd integer and G a ∆-regular graph. Then G contains
a spanning subgraph in which every vertex has degree 2 or 3 and every connected component has at most 2

vertices of degree 3.

We will use the two results above to prove the existence of a hitting graphGwith nice properties so
that we can later take advantage of them when constructing a universal graph for the family of such
nice hitting graphs.

Lemma 7.5. Let H ∈ F (3)(n, 2). Then there exists a graph G that hits H on P3 with the following properties:

(i) there are spanning subgraphs G1, G2, G3 and G4 of G such that every Gi is an augmentation of a thin
graph, and

(ii) every edge lies in exactly three of the Gi.

Proof. LetH ∈ F (3)(n, 2). We assume first thatH is linear, i.e. edges are always intersecting in at most
one vertex. Further, we assume that H is 2-regular36.

36Otherwise we add dummy vertices and edges and obtain a 2-regular hypergraph, and, once the desired graph G is con-
structed, we delete these dummy vertices from G.
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7.3 Proof for ∆ = 2

The rough outline of the proof is to find a graph G that hits H on P3 and such that G contains a
matching M so that G \M is an augmentation of a thin graph and if we contract the matching edges
from M in G we obtain a graph of maximum degree at most 3. Decomposing such contracted graph
via Theorem 7.3 into thin graphsG′1, G′2 andG′3 and then recontracting edges yields the desired family
G1,. . . , G4 (where G4 = G \M ).

Let H∗ be the line graph of H , that is V (H∗) = E(H) and e 6= f ∈ E(H) form an edge ef in H∗ if
e ∩ f 6= ∅. Thus, H∗ is a 3-regular graph on 2n/3 vertices. Lemma 7.4 asserts then the existence of a
matching M∗ in H∗ such that in H∗ \M∗ every component has at most 2 vertices of degree 3 and all
other vertices have degree 2. Such a decomposition implies thus that every component of H∗ \M∗ is
either a cycle, or has exactly two vertices, say a and b, of degree 3, so that either there are 3 internally
vertex-disjoint paths between a and b or there is one path between a and b and, additionally, a and b

lie on vertex-disjoint cycles (which also do not contain inner vertices from the path between a and b).
We assume that a and b are not adjacent, because otherwise we could add the edge ab to M∗, splitting
this component into two cycles.

From the matching M∗ we define a subset D := {v : e ∩ f = {v}where ef ∈ E(M∗)}. Since M∗ is
a matching in the line graph of H it follows that no two vertices from D lie in an edge from H .

We denote by HD the hypergraph which we obtain from H if we delete from the edges of H the
vertices in D but we keep the edges, obtaining thus a hypergraph on the vertex set V (H) \D, whose
edges have cardinality 2 or 3. Thus, if ef is an edge in H∗ and e ∩ f = {v} then the deletion of
v from e and f implies that the edges e \ {v} and f \ {v} are no longer adjacent in the line graph
(HD)∗, which corresponds to the deletion of the edge ef in H∗. This implies that every component
of H∗ \M∗ corresponds to a component of HD, and therefore in every component of HD there are at
most two edges of cardinality 3 and all other edges have cardinality exactly 2. Again, the structure of
every component of HD is thus either a (graph) cycle, or there are exactly two edges, say g and h, of
cardinality 3, with g ∩h = ∅ and there are three vertex-disjoint (graph) paths that connect the vertices
from g ∪ h.

Finally, we come to the definition of the hitting graph G. For every component C of HD, let DC

be the vertices that have been deleted from the hyperedges in H that lie now in HD. Thus, there is a
(natural) map ψC between the edges from C of cardinality 2 and DC : ψC(f) = v if {v} ∪ f ∈ E(H).
Note that this map is not necessarily injective. Since every vertex from D lies in exactly two edges of
H , it will suffice to explain how we replace the 3-uniform edges of HD and the edges of H incident
with D by paths P3. If C is the (graph) cycle, then we replace every edge of the form {v} ∪ f , where
ψC(f) = v, by P3 so that the graph GC obtained contains all the edges from E(C) and is such that
∆(GC) ≤ 3 and the vertices fromDC have degree at most 2 inGC . IfC contains exactly two 3-uniform
edges (say g and h), then it is possible to replace the edges g, h and every edge of the form {v} ∪ f ,
where ψC(f) = v, by P3 such that the graph GC satisfies the following: It contains all 2-uniform
edges of C, is such that ∆(GC) ≤ 3, the vertices from DC have degree at most 2 in GC and GC \DC

is connected and has exactly two vertices of degree 337. The graph G is then the union of all GC and
observe that GC and GC′ intersect in DC ∩DC′ for C 6= C ′ and in particular have no common edges.
Furthermore, every vertex from D has degree 2 in G, since it is an image of ψC precisely twice.

Let M be a matching in G that saturates D. Such a matching exists since D is independent in G (no

37This is easily done by considering the structure of the components C from HD described in the previous paragraph.
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two vertices from D lie in an edge from H), every vertex of D is connected to a vertex of degree 2 in
G \D and deg(G) ≤ 3. By the definition of G above, every component in G \M is an augmentation
of a graph with at most two vertices of degree 3, and thus an augmentation of a thin graph. We set
G4 := G \M . Next, we contract the edges of M in G obtaining the graph G/M . Since M saturates D,
which are vertices of degree 2 in G, it follows that G/M has maximum degree at most 3. Theorem 7.3
yields a decomposition of G/M into thin graphs G′1, G′2, G′3 such that every edge of G/M appears in
precisely two of the graphs. Now we reverse the recontraction procedure. This leads to three graphs
G1, G2 and G3 where every edge of G \M appears in exactly two of the graphs, every edge from
M appears in all three of them, and each of the G1, G2 and G3 is an augmentation of a thin graph.
Together with the graph G4 = G \ M we thus constructed the desired decomposition of a hitting
graph G.

If H is not linear, then things get in some sense even easier, so we shall be brief. We proceed
essentially in the same way. That is, we define the line graph H∗ of H , which is now not necessarily
3-regular, but whose maximum degree is at most 3. Again, Lemma 7.4 asserts then the existence of a
matching M∗ in H∗ such that in H∗ \M∗ every component has at most 2 vertices of degree 3 and all
other vertices have degree at most 2. We then define the set D as before but in the case that the edge
ef ∈M∗ with, say, e = {a, b, c} and f = {b, c, d}we simply replace the edge e by {a, b} and f by {c, d}
without putting anything into D. Once the components of HD are identified and the graphs GC are
defined we add the edge bc (which we call nonlinear) to those graphs GC , which contain either b or c
(or both). Then we choose edges into the matching M as before and add all nonlinear edges such as
bc to M . The rest of the argument remains the same.

Recall that the `-th power of a graph G, denoted by G`, is the graph on V (G), whose vertices at
distance at most ` in G are connected. It is not difficult to see that a thin graph on n vertices can be
embedded into P 4

n , and thus, an augmentation of a thin graph into P 8
n . This motivates the following

general definition.

Definition 7.6 ((k, r, `)-decomposable graphs). Let k, r and ` be integers. A graph G on n vertices is called
(k, r, `)-decomposable if there exist k graphs Gi with the following properties. Every edge of G appears in
exactly r of the Gi and there are maps gi : Gi → [n], which are injective homomorphisms from Gi into P `n.
Then we denote by Fk,r,`(n) the family of (k, r, `)-decomposable graphs on n vertices.

We can restate our Lemma 7.5 in the following slightly weaker form.

Lemma 7.7. The family F4,3,8(n) hits F (3)(n, 2) on a path P3.

This lemma implies that it is the family F4,3,8(n) for which a universal graph is needed. This graph
will be constructed in the section below and briefly explained why a desired embedding works, which
will follow from the results of Alon and Capalbo from [10].

Constructions of universal graphs

First we briefly describe the construction from [10] of F(n, k)-universal graphs on O(n) vertices with
O(n2−2/k) edges. One chooses m = 20n1/k, a fixed d > 720 and a graph R to be a d-regular graph on
m vertices with the absolute value of all but the largest eigenvalues at most λ (such graphs are called
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(n, d, λ)-graphs). One can assume that λ ≤ 2
√
d− 1 (then R is called Ramanujan) and girth(R) ≥

2
3 logm/ log(d − 1). Explicit constructions of such Ramanujan graphs have been found first for d − 1

being a prime congruent to 1 mod 4 in [85, 88]. Finally, the graph Gk,n is defined on the vertex set
V (R)k where two vertices (x1, . . . , xk) and (y1, . . . , yk) are adjacent if and only if there are at least two
indices i such that xi and yi are within distance 4 in R. It is easily seen that such a graph Gk,n has
O(n) vertices, O(n2−2/k) edges and maximum degree O(n1−2/k).

The first step in the proof of F(n, k)-universality of Gk,n is Theorem 7.3 implying that any graph
F with ∆(F ) ≤ k is (k, 2, 4)-decomposable. In what follows we summarise a straightforward gen-
eralisation of the central claim from [10] (which is inequality (3.1) there), from which an existence
of embedding of any graph G ∈ F(n, k) into Gk,n follows. Its proof can be taken almost verbatim
from [10].

Lemma 7.8. Let k ≥ 3, r and ` be natural numbers. For any choice of k permutations gi : [n]→ [n] there are
k homomorphisms fi : [n] → V (R) from the path Pn to the Ramanujan graph R introduced above such that
the map f : [n]→ V (Gk,r,`(n)) defined by f(v) = (f1(g1(v)), . . . , fk(gk(v))) is injective.

More precisely, the fi’s are inductively constructed as non-returning walks preserving the property
that for any i vertices v1, . . . , vi ∈ V (G), i ≤ k, one has

|{v ∈ [n] : f1(g1(v)) = v1, . . . , fi(gi(v)) = vi}| ≤ n(k−i)/k.

For the last step i = k this is equivalent to injectivity.
Finally, we explain, how we obtain Fk,r,`(n)-universal graphs. The choice of the Ramanujan graph

R along with the parameters m and d remains the same. The graph Gk,r,`(n) is defined on the vertex
set V (R)k and two vertices (x1, . . . , xk) and (y1, . . . , yk) are adjacent if and only if there are at least
r indices i such that xi and yi are within distance ` in R. It is then an easy calculation to show that
Gk,r,`(n) hasO(n) vertices, at most n

(
k
r

)
dr`mk−r = O(n2−r/k) edges and maximum degreeO(n1−r/k),

where the constants in the O-notation depend on k, r, ` and d. Lemma 7.8 implies then the following.

Theorem 7.9. Let k ≥ 3, r and ` be natural numbers. The graph Gk,r,`(n) is Fk,r,`(n)-universal.

Proof. LetG be a (k, r, `)-decomposable graph on n vertices together with a decompositionG1, . . . , Gk

and an injective homomorphisms gi : V (Gi) → [n] from Gi into P `n. Lemma 7.8 asserts the existence
of the homomorphisms fi : [n] → V (R) from Pn to R for every i ∈ [k], so that the map f : V (G) →
V (Gk,r,`(n)) given by f(v) = (f1(g1(v)), . . . , fk(gk(v))) is injective.

It is clear that the composition of fi with gi is a homomorphism from Gi to R`. Furthermore, every
edge {u, v} from G lies in r graphs Gi. Thus, there are r indices i such that gi(u) and gi(v) are distinct
and within distance ` in Pn. This implies that fi(gi(u)) and fi(gi(v)) are also distinct and within
distance ` in G. By the definition of Gk,r,`(n) this implies that f(u) and f(v) are adjacent in Gk,r,`(n)

and f is the desired embedding of G into Gk,r,`(n).

From this, Theorem 2.14 follows immediately for r = 3.

Proof of Theorem 2.14, case r = 3. Note, that the graph G4,3,8(n) has m4 = O(n) vertices and O(nm) =

O(n5/4) edges. By Theorem 7.9 G4,3,8(n) is F4,3,8(n)-universal, and since F4,3,8(n) hits F (3)(n, 2) on
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P3, Lemma 7.1 implies that HP3,3(G4,3,8(n)) is F (3)(n, 2)-universal, has O(n) vertices and O(n3/2)

edges. This proves the case r = 3.

We believe that the constructions from [9] can also be adapted to work with (k, r, `)-decomposable
graphs. For the cases discussed here this would lead to universal graphs on n vertices, where the
number of edges is some polylog factor larger.

F (r)(n, 2)-universal hypergraphs of uniformity r ≥ 5

Proof of Theorem 2.14 for odd r ≥ 5. First we define the hypergraph H which will then turn out to be
F (r)(n, 2)-universal. Let t = (r−3)/2. LetG1,. . . ,Gt+1 be vertex-disjoint graphs, whereG1, . . . ,Gt are
copies of C4

n (the fourth power of the cycle Cn) and Gt+1 is a copy of the graph G4,3,8(n), introduced
in the previous section. Furthermore, we add on top of Gt+1 another graph G∗t+1 containing as edges
all pairs of vertices which have a common neighbour in Gt+1. We define H to be the r-graph on the
vertex set ∪̇t+1

i=1V (Gi), and the edges are r-element subsets f such that, with fi := f ∩ V (Gi), we have
|fi| ≤ 3 and each Gi[fi] contains a copy of P|fi|, a path on |fi| vertices (thus, P0 is the empty graph,
P1 = K1 and P2 = K2). Additionally, in the case |ft+1| = 2, we allow ft+1 to be an edge (i.e. P2) in
G∗t+1 instead of Gt+1.

Certainly, H has O(n) vertices. How many edges does the hypergraph H contain? For this we
need to choose paths P`i from every Gi (respectively G∗t+1) such that `i ∈ {0, 1, 2, 3} and

∑t+1
i=1 `i = r.

Because G1, . . . , Gt have maximum degree 8, Gt+1 has maximum degree O(n1/4), and G∗t+1 has max-
imum degree n1/2, we compute the number of edges ofH to be O(nt+1n2/4) = O(nr/2), as desired.

Given a hypergraph H and a subset of vertices X ⊆ V , we denote through H(X) the (not neces-
sarily uniform) hypergraph on the vertex set X , whose edges are restrictions to X , i.e. E(H(Xi)) =

{f ∩Xi : f ∈ E(H)}.
The rest of the proof hinges on the following auxiliary lemma (whose proof can be found below)

and the case r = 3 of Theorem 2.14 shown in the previous section.

Lemma 7.10. Let H ∈ F (r)(n, 2) and t = (r − 3)/2. Then there exists a partition of the vertex set of H into
disjoint subsets X1, . . . , Xt+1, such that H(X1), . . . ,H(Xt+1) have maximum vertex degree 2 and contain
hyperedges of cardinality at most 3. Moreover in H(X1), . . . ,H(Xt) every component contains at most 2

hyperedges of size 3.

Let us see how then H can be embedded into the hypergraph H. Owing to the special structure
of H(X1), . . . ,H(Xt), one can easily find injective maps gi : Xi → V (Gi), such that every hyperedge
f ∈ E(H(Xi)) is such that Gi [gi(f)] contains a path P|f |. This can be seen by replacing f in H(Xi)

through an arbitrary path P|f | obtaining thus the graph G′i on the vertex set Xi. Then, since in ev-
ery component of H(Xi) there are at most two edges of size 3, it is easy to find an injective graph
homomorphism from G′i into Gi.

For H(Xt+1) we can assume first that it is 3-uniform and lies in F (3)(n, 2) by adding some dummy
vertices appropriately (but still using the notation H(Xt+1)). The F4,3,8(n)-universality of Gt+1 =

G4,3,8(n) and the fact that F4,3,8(n) hitsH(Xt+1) on P3 yields an injective map gt+1 : Xt+1 → V (Gt+1)

such that Gt+1 [gt+1(f)] contains P3 for every f ∈ E(H(Xt+1)). Deleting the dummy vertices (but
keeping the edges) we see that gt+1 remains injective and Gt+1 [gt+1(f)] contains P|f | for every f ∈
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E(H(Xt+1)) except possibly for the case, when the center vertex of some P3 was deleted (being a
dummy vertex). But in this case we observe that G∗t+1[gt+1(f)] induces P2 instead, because both
vertices of gt+1(f) were incident to the deleted vertex in Gt+1.

It should be clear that g : V (H) → V (H) with g|Xi = gi, for all i ∈ [t + 1], is injective. It remains
to show that g is a homomorphism into H. Given an edge e of H , by the definition of H(Xi) and
the choices of gi’s, we see that e ∩ Xi ∈ E(H(Xi)) and Gi [gi(e ∩Xi)] contains a path P|e∩Xi| for all
i, except possibly for the case when |gt+1(e ∩Xt+1)| = 2. But in this case one must necessarily have
gt+1(e ∩Xt+1) ∈ E(G∗t+1). These conditions fulfill exactly the requirement for g(e) to be the edge in
H. Thus, g embeds H intoH.

Finally, we provide the proof for the auxiliary lemma above, Lemma 7.10.

Proof of Lemma 7.10. Let H ∈ F (r)(n, 2). Again we assume first that H is linear and 2-regular. We
consider, as in the case r = 3, the line graph H∗, which is r-regular now. Hence Lemma 7.4 yields a
spanning subgraph H∗1 , in which every vertex has degree 2 or 3 and every component has at most 2

vertices of degree 3.
If C is a component of H∗1 , then we define the set VC as all vertices v such that {v} = e∩ f for some

ef ∈ E(C) (recall that H is assumed to be a linear hypergraph). We set X1 = ∪VC where the union
is over all components C of H∗1 and then the set {v : {v} = e ∩ f for some ef ∈ E(C)} is an edge of
H(X1) for every edge f ∈ E(H). Observe, that these edges have cardinality either 2 or 3. Indeed,
a vertex of degree j in some component C is the edge of H that intersects j other edges of H in
different vertices, which give rise to a j-uniform edge in H(X1). By construction, H(X1) is linear and
2-regular. Crucially, the components of H(X1) have simple structure, since these are inherited from
the components C. More precisely, each component of H(X1) has at most two 3-uniform edges and
all other edges have cardinality 2.

We denote by H̃1 = H(V (H) \ X1) the hypergraph obtained from H by deleting from its edges
all vertices from X1 (we call this procedure as reducing uniformity). It should be clear that, in this
way every edge of H can be written uniquely as the union of one edge of H(X1) and the other from
H̃1. Since H(X1) is not necessarily uniform, the hypergraph H̃1 is now a not necessarily uniform
hypergraph as well, but its edges have cardinalities either r − 3 or r − 2.

The next step calls for an inductive procedure with a blemish, that H̃1 is not necessarily uniform.
But this can be remedied by adding dummy vertices and edges to H̃1 and obtaining an (r − 2)-
uniform linear hypergraph still denoted by H̃1 which is 2-regular38. We keep doing this reduc-
tion until we arrive at the hypergraph H̃t where t = (r − 3)/2, thereby generating X2, . . . , Xt and
H̃2(X2) . . . , H̃t−1(Xt). Finally we get Xt+1 := V (H) \ ∪ti=1Xi and a 3-uniform linear hypergraph H̃t

on Xt+1, which is 2-regular.
Before we proceed, let us summarise what we achieved so far. We have found hypergraphs H(X1),

H̃2(X2), . . . , H̃t−1(Xt), so that each of them is linear, 2-regular and its edge uniformities are either 2 or
3 and each of its components has simple structure (recall: each component has at most two 3-uniform
edges and all other edges have cardinality 2). Furthermore H̃t is a 3-uniform linear hypergraph,
which is 2-regular, and the vertex sets X1, . . . , Xt+1 are a partition of V (H).

38Once we are finished with the decomposition, we will reduce the uniformity by deleting these dummy vertices from edges,
but keeping the altered edges.
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We finally obtain the promised family H(X1), . . . ,H(Xt+1). This can be seen as reducing uniformi-
ties of the hypergraphs H(X1), H̃2(X2), . . . , H̃t−1(Xt) and H̃t by deleting dummy edges and dummy
vertices from the edges. In this way it may happen, that the uniformity of some edges of the hyper-
graph family will be reduced to 0 (in which case they disappear from that particular hypergraph),
while some others will be reduced to 1, in which case we get edges of the type {v}, which we will use.

The case when H is not a linear hypergraph can be treated similarly. We slightly extend the defi-
nition of the line graph H∗ such that it contains multiple edges, i.e. for e, f ∈ E(H) there are |e ∩ f |
edges between e and f in H∗ and we label each of them with a distinct vertex from e ∩ f . Then H∗

is again r-regular and we can again apply Lemma 7.4, because the proof from [9] extends verbatim to
multigraphs. In this way we obtain a multigraphH∗1 and for every component C we define the vertex
set VC as follows: for a given edge g ∈ E(C), the set VC contains e∩f where the edge g connects e and
f and it holds |e ∩ f | = 1, and otherwise (i.e. there are parallel edges to g) the vertex set VC contains
precisely the vertex of the label that the edge g carries. The set X1 is then the union of the VC over
all components C from H∗1 . The construction of X2, . . . , Xt is similar to above. The rest of the proof
proceeds along the lines of the linear case and we omit further details.

A general problem

To prove the embedding for other parameters of r and ∆ we would need the analogue of Lemma 7.7,
that is, a solution to the following problem.

Problem 7.11. Let r ≥ 3 and ∆ ≥ 3 be integers. Find ` such that F(r−1)∆,r,`(n) hits F (r)(n,∆) on Pr.

It is immediate that, with k = (r − 1)∆, Theorem 7.9 yields F(r−1)∆,r,`(n)-universal graphs G =

G(r−1)∆,r,` on O(n) vertices with O(n2−r/((r−1)∆)) edges and maximum degree O(n1−r/((r−1)∆)).
From this the solution to Problem 7.11 would yield optimal universal hypergraphs on O(n) vertices
with |V (G)|(|E(G)|/|V (G)|)r−1 = O(nr−r/∆) edges. Clearly, the interesting cases are ∆ ≥ 3, r - ∆

and r odd.
An alternative to our approach is to extend the constructions for universal graphs from [9, 10, 12]

to hypergraphs. To follow a similar embedding scheme one would ask for appropriate decompo-
sition results for hypergraphs. For example, for H ∈ F (3)(n, 2) the task is to find subhypergraphs
H1, . . . ,H4 which are thin and such that every hyperedge appears in exactly three of them.

7.4 Proof for E (r)(m)-universal hypergraphs

Proof of Theorem 2.15. To prove the existence of optimal E(r)(m)-universal hypergraphs we exploit the
proof of Alon and Asodi [8].

Take anyH ∈ E(r)(m) and replace all edges ofH by cliques of size r. This gives a graph with at most(
r
2

)
m edges and thus there exists a graphGwithO(m2/ log2m) edges which is E(

(
r
2

)
m)-universal. We

define the r-graph Kr(G) on the vertex set V (G) with edges being the vertex sets of the copies of Kr

in G. It is straightforward to see that Kr(G) is E(r)(m)-universal and thus it remains to estimate the
number of edges in Kr(G).

The E(m)-universal graphG of Alon and Asodi [8] is defined on the vertex set V = V0∪V1∪· · ·∪Vk
where k = dlog2 log2me, |V0| = 4m/ log2

2m and |Vi| = 4m2i/ log2m for i ∈ [k]. A vertex in V0 is
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7.4 Proof for E(r)(m)-universal hypergraphs

connected to any other vertex and the graph induced on V1 is a clique. For any u ∈ Vi, i ≥ 2, and
v ∈ V1 ∪ V2 ∪ · · · ∪ Vi with u 6= v the edge uv is present independently with probability min

(
1, 83−i).

It is shown in [8] that with probability at least 1/4 the graph G has O(m2/ log2m) edges and is E(m)-
universal. We count the expected number of copies of Kr in G, i.e. E

[
|E(Kr(G))|

]
.

There are several possible types of cliques Kr in G. Indeed, we need to choose r vertices from
V0,. . . ,Vk, and a particular type of a possible r-clique K in G is specified by α, which is the number
of its vertices in V0 and by numbers t1 ≤ . . . ≤ tγ (all from [k]), which specify to which sets Vi the
remaining γ = r− α vertices belong to. There are at most |V0|α

∏γ
j=1 |Vtj | cliques of a particular type,

and each such clique occurs with probability
∏γ
j=1

[
min

(
1, 83−tj

)]j−1. It is clear that there are at most

|V0|r−1|V (G)| ≤ (4m)r−1·(32m)
(log2 m)2(r−1) = o

(
mr

logr2 m

)
cliques Kr in G that intersect V0 in at least r − 1 vertices.

Next we upper bound the expected number of edges in Kr(G) as follows:

E
[
|E(Kr(G))|

]
≤ |V0|r−1|V (G)|+

∑
α+γ=r
γ≥2

∑
1≤t1≤···≤tγ≤k

|V0|α
γ∏
j=1

|Vtj | ·
γ∏
j=1

[
min

(
1, 83−tj

)]j−1

≤ o
(

mr

logr2m

)
+

r∑
γ≥2

(
4m

log2m

)r
1

logr−γ2 m

∑
1≤t1≤···≤tγ≤k

2
∑γ
j=1 tj · 2

∑γ
j=1 min{0,(9−3tj)(j−1)}, (7.1)

and in order to simplify it further we first estimate the inner sum of the second summand by splitting
it according to t1 as follows:∑

1≤t1≤···≤tγ≤k

2
∑γ
j=1 tj · 2

∑γ
j=1 min{0,(9−3tj)(j−1)}

≤
∑
t1≤19

∑
tj≥1

j=2,...,γ

2
∑γ
j=1 tj+

∑γ
j=1 min{0,(9−3tj)(j−1)} +

∑
t1≥20

∑
tj≥t1
j=2,...,γ

2
∑γ
j=1 tj+

∑γ
j=1 min{0,(9−3tj)(j−1)}

≤ 220
∑
tj≥1

j=2,...,γ

2
∑γ
j=2(tj+min{0,(9−3tj)(j−1)}) +

∑
t1≥20

2t1
∑
tj≥t1
j=2,...,γ

2
∑γ
j=2(tj+(9−3tj)(j−1))

≤ 220

∑
t≥1

2t+min{0,(9−3t)}

γ−1

+
∑
t1≥20

2t1

∑
t≥t1

2t+(9−3t)

γ−1

≤ 220

6 +
∑
t≥3

29−2t

γ−1

+
∑
t1≥20

2t1

∑
t≥t1

2−3t/2

γ−1

≤ 220+5γ +
∑
t1≥20

2t1−
3t1(γ−1)

2 +2(γ−1)

≤ 220+5γ + 22(γ−1)
∑
t1≥20

2−t1/2 ≤ 221+5γ ≤ 221+5r.

This allows us to further upper bound (7.1) by

E
[
|E(Kr(G))|

]
≤ r221+5r

(
4m

log2m

)r
.

By Markov’s inequality, the probability that |E(Kr(G))| is at least 5r221+5r
(

4m
log2 m

)r
is at most 1/5.

Thus, taking m̂ =
(
r
2

)
m, there exists an E(m̂)-universal graph with O

(
m̂r

logr2 m̂

)
copies of Kr. This
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7. Constructions of universal hypergraphs

implies that there exists an E(r)(m)-universal hypergraph H with O(mr/ logrm) edges.

It is possible to prove that there exist such hypergraphs H with rm vertices which is optimal.
However, no explicit construction is known.
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Chapter 8

Conclusion and open problems

In this thesis we have seen different perspectives on embedding spanning structures in random
graphs and hypergraphs. We first proved a generalisation of a theorem by Riordan [97], which gives
the right thresholds for several classes of graphs and opens up new possibilities for extending results
to hypergraphs. Then we improved upon the best-known algorithms for finding a tight Hamilton
cycle in H(r)(n, p). Next we obtained the threshold for embedding spanning bounded degree graphs
into randomly perturbed graphs. And finally we worked on universality in random hypergraphs as
well as the construction of optimal universal hypergraphs.

While all these results contribute to our knowledge and bring us a step forward in understanding
random graphs, there are still many open problems and regimes that are not well understood. We
will now discuss some related problems, some of which were mentioned earlier, and suggest ideas
for future work. In the topic of embedding spanning structures, among the central objectives are
Conjecture 2.3, its generalisation Conjecture 2.8, and the Kahn-Kalai Conjecture [68]. Of course, an
ultimate solution of any of these three would be a great achievement, but there are more accessible
problems on the way to these conjectures, which are compelling on their own.

Embeddings into G(n, p)

A very concrete problem towards Conjecture 2.3 is the case ∆ = 4. Even in the almost spanning case,
this is still open. The only obstruction is a triangle with two pending edges on each vertex, which
can not be embedded using Janson’s inequality directly because p9

4n
3 = o(1). For any ∆ it would be

interesting to get rid of the log-term in the almost spanning version. As discussed previously this is
plausible, as for example the almost K∆+1-factor already appears after n−2/(∆+1), cf. Theorem 2.19.
In Chapter 5 we manged to do this, for the case where we have a larger graph and do not care which
small part is left over.

If we want to make Theorem 2.4 spanning, new ideas are required. In fact if there is a linear number
of dense spots from one type, then using the result of Johannson, Kahn, and Vu [67], it is possible to
find an almost spanning embedding for the rest and then use a new round of randomness to apply
Theorem 2.2 and embed the whole graph. If there are no dense spots than it is also easy, but in
between it is much harder. One approach could be to use absorbers, but these would have to be
specifically set up for each dense spot.

Turning to universality questions we have to leave the second moment method behind as used in
Theorem 2.5 and with more detailed analysis for Hamilton cycles [43, 44]. The results by Johannson,
Kahn, and Vu [67] on factors in random graphs were obtained using martingales, which results in a
probability that is also too small for a union bound. Nevertheless as shown in [53] this can still be
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used for universality with some extra caution. The variant of Gerke and McDowell [61] gives some
more flexibility for applying these theorems. A better understanding of these results, might play a
crucial role for developing further techniques.

Advancing to universality, it would be interesting to improve on the almost spanning case. That
would be either getting rid of the log-terms for ∆ = 3 or improving significantly for larger ∆. A more
careful deletion of some structures inside the graph might help to reduce the probability needed. For
spanning universality the case ∆ = 3 is the next to approach. But in contrast to disjoint unions of
cycles in F(n, 2), the graphs in F(n, 3) are expanders and thus much harder to embed into a pseudo-
random environment obtained at this probability. It might be necessary to split F(n, 3) into several
classes depending on their properties and deal with each of them separately in a different way.

Randomly perturbed graphs

Regarding universality it would also be worthwhile to extend our Theorem 2.7 in the model Gα ∪
G(n, p) such that we can embed all graphs from F(n,∆) simultaneously. However, our use of Rior-
dan’s result, which was proved by second moment calculations, and the multi-round exposure make
it unlikely that our techniques can be used to obtain such a result. Even though we believe, that
F(n,∆)-universality holds for p = ω(n−2/(∆+1)), new ideas are needed to show this.

But this model also provides several other interesting questions. The result of Balogh, Treglown,
and Wagner [19] mentioned before shows that there are nontrivial spanning structures for which
starting with Gα confers no benefit. That is, there are structures whose appearance threshold in
G(n, p) is not larger than inGα∪G(n, p). On the other hand, in the hypergraph setting McDowell and
Mycroft [89] showed that the thresholds can differ by some factor nε. The question when (and why)
the thresholds in G(n, p) and Gα ∪ G(n, p) are different and by how much they can differ still merits
more systematic study.

A first question in this direction is whether in the graph case there is some spanning structure
where we can benefit a polynomial nε compared to the threshold in G(n, p). A natural candidate for
this is the square of the Hamilton cycle, because powers of Hamilton cycles resemble this property
in the hypergraph case [89]. As discussed before the threshold for the appearance should be n−1/2,
even though the currenlty best known upper bound is a polylog-factor off. Together with Böttcher,
Montgomery, and Person [32] we are able to extend the result of McDowell and Mycroft [89] to graphs.

Theorem 8.1. For every α > 0 there exists an ε > 0 such that Gα ∪ G(n, n−1/2−ε) a.a.s. contains the square
of a Hamilton cycle.

The proof is again based on our method, but is not included in this thesis. The optimal depen-
dence between α and ε is unclear. There is another result for the square of the Hamilton cycle by
Bennett, Dudek, and Frieze [21], which requires α > 1/2 and p ≥ Cn−2/3 log1/3 n, and thus, a lower
probability but higher minimum degree. At this range Gα already contains many Hamilton cycles
by Dirac’s Theorem. Together with our result, this raises the question if some sort of interpolation
is possible inbetween. Note that it was proved by Komlós, Sárközy, and Szemerédi [76] that Gα on
its own contains the square of a Hamilton cycle, provided that α ≥ 2/3 and v(Gα) is large enough.
Another problem where we feel that the comparison of these thresholds would be interesting is the
d-dimensional cube, which appears in G(n, p) shortly after p = 1/4 [97].
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Hypergraphs

As demonstrated on many examples throughout this thesis, some phenomenons do generalise to hy-
pergraphs in a straight-forward way, whereas others behave differently. It would be very interesting
to know which of the previously discussed improvements from the graph case can be easily extended,
and which require substantial additional work.

The result by Ferber, Luh, and Nguyen [54] (Theorem 2.4) and our result on embedding graphs from
F(n,∆) in Gα ∪ G(n, p) (Theorem 2.5), both use Riordan’s [97] result, which already is generalised to
hypergraphs in Theorem 2.5. Apart from this the decomposition into sparse and dense parts and
the application of Janson’s inequality need to be checked. For the result in Gα ∪ G(n, p) it is unclear
how to extend the switching idea to hypergraphs, which is essential for our approach. Furthermore,
extensions of the almost spanning universality result by Conlon, Ferber, Nenadov, and S̆korić [36],
where the question is what kind of cycle we want to remove, and the spanning universality by Ferber
and Nenadov [55] would be nice.

Algorithmic questions

In this thesis we also provided a deterministic algorithm for finding tight Hamilton cycles inH(r)(n, p)

with runtime O(nr). This gives an affirmative answer to a question of Dudek and Frieze [44] in this
regime, but the question remains open for e/n ≤ p < C(log n)3n−1, where for r = 3 the precise
threshold is not clear. Furthermore there are various other structures, in particular `-overlapping
Hamilton cycles for 1 ≤ ` ≤ r − 2, for which no efficient algorithms are known.

A closely related problem is finding the k-th power of a Hamilton cycle in G(n, p), which is the
shadow graph of a tight k-uniform Hamilton cycle. As discussed the threshold for the appearance is
given by n−1/k for k ≥ 3 [84, 97]. This results is based on the second moment method and thus in-
herently non-constructive. However, the proof by Nenadov and S̆korić [92] gives a quasi-polynomial
time algorithm to find the k-th power for k ≥ 2 a.a.s. provided that p ≥ C(log n)8/kn−1/k. This al-
gorithm is very similar to their algorithm for finding tight Hamilton cycles in H(r)(n, p). The main
difference between the problems is that in the graph case two overlapping Kt’s are not independent
in contrast to two overlapping hyperedges. We think that our ideas are also applicable in this context
and would provide an improved algorithm for finding k-th powers of Hamilton cycles in G(n, p),
though we did not check any details.

Finally, it would be interesting to know the average case complexity of determining whether an
n-vertex r-uniform hypergraph with m edges contains a tight Hamilton cycle. Our results imply
that if m = ω(nr−1 log3 n) then a typical such hypergraph will contain a Hamilton cycle, but the
failure probability of our algorithm is not good enough to show that the average case complexity is
polynomial time. For this one would need a more robust algorithm which can tolerate some errors at
the cost of doing extra computation to determine whether the error causes Hamiltonicity to fail or not.
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and tolerance, 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14
November 2000, Redondo Beach, California, USA, IEEE Computer Society, 2000, 14–21.

[12] , Near-optimum universal graphs for graphs with bounded degrees, Approximation, Random-
ization and Combinatorial Optimization: Algorithms and Techniques, 4th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2001
and 5th International Workshop on Randomization and Approximation Techniques in Com-
puter Science, RANDOM 2001 Berkeley, CA, USA, August 18-20, 2001 , Lecture Notes in Com-
puter Science, vol. 2129, Springer, 2001, 170–180.

[13] N. Alon and Z. Füredi, Spanning subgraphs of random graphs, Graphs and Combinatorics 8 (1992),
no. 1, 91–94.

[14] N. Alon, M. Krivelevich, and B. Sudakov, Embedding nearly-spanning bounded degree trees, Com-
binatorica 27 (2007), no. 6, 629–644.

[15] N. Alon and J. H. Spencer, The probabilistic method, 4th ed., John Wiley & Sons, 2016.

93



Bibliography

[16] D. Angluin and L. G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and matchings,
Journal of Computer and System Sciences 18 (1979), no. 2, 155–193.

[17] L. Babai, F. R. Chung, P. Erdös, R. L. Graham, and J. H. Spencer, On graphs which contain all sparse
graphs, North-Holland Mathematics Studies 60 (1982), 21–26.

[18] J. Balogh, R. Morris, and W. Samotij, Independent sets in hypergraphs, Journal of the American
Mathematical Society 28 (2015), no. 3, 669–709.

[19] J. Balogh, A. Treglown, and A. Z. Wagner, Tilings in randomly perturbed dense graphs,
arXiv:1708.09243 (2017), 18 pages.

[20] W. Bedenknecht, J. Han, Y. Kohayakawa, and G. O. Mota, Powers of tight Hamilton cycles in
random perturbed hypergraphs, in preparation.

[21] P. Bennett, A. Dudek, and A. M. Frieze, Adding random edges to create the square of a Hamilton
cycle, arXiv:1710.02716 (2017), 7 pages.

[22] A. Björklund, Determinant sums for undirected Hamiltonicity, SIAM Journal on Computing 43
(2014), no. 1, 280–299.

[23] T. Bohman, A. M. Frieze, M. Krivelevich, and R. R. Martin, Adding random edges to dense graphs,
Random Structures & Algorithms 24 (2004), no. 2, 105–117.

[24] T. Bohman, A. M. Frieze, and R. R. Martin, How many random edges make a dense graph Hamilto-
nian?, Random Structures & Algorithms 22 (2003), no. 1, 33–42.

[25] B. Bollobás, Threshold functions for small subgraphs, Mathematical Proceedings of the Cambridge
Philosophical Society 90 (1981), no. 2, 197–206.

[26] , The evolution of sparse graphs, Graph theory and combinatorics (Cambridge, 1983), Aca-
demic Press, London, 1984, 35–57.

[27] , The chromatic number of random graphs, Combinatorica 8 (1988), no. 1, 49–55.

[28] B. Bollobás, T. I. Fenner, and A. M. Frieze, An algorithm for finding Hamilton cycles in a random
graph, Proceedings of the 17th Annual ACM Symposium on Theory of Computing, May 6-8,
1985, Providence, Rhode Island, USA , ACM, 1985, 430–439.

[29] B. Bollobás and A. Thomason, Threshold functions, Combinatorica 7 (1987), no. 1, 35–38.

[30] B. Bollobás, Random graphs, 2nd ed., Cambridge Studies in Advanced Mathematics, Cambridge
University Press, 2001.
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Deutsche Zusammenfassung

Das Studium von zufälligen Graphen ist ein faszinierendes Gebiet innerhalb der diskreten Mathema-
tik. Beginnend mit frühen, bahnbrechenden Arbeiten von Erdős und Rényi [48, 49, 50] hat sich dieses
Gebiet in den letzen 60 Jahren sehr stark entwickelt. Einen guten Einblick in diesen Prozess gewähren
die Bücher von Bollobás [30], Janson, Łuczak und Ruciński [65] und Karonski und Frieze [60]. Ty-
pische Fragestellungen in zufälligen Graphen beschäftigen sich mit verschiedenen Graphenparame-
tern (z.B. die chromatische Zahl), der Struktur (z.B. die größte Zusammenhangskomponente) und
dem Finden von bestimmten Teilgraphen (z.B. ein Dreieck). Die aufspannende Version des letzten
Punktes ist das Hauptthema dieser Arbeit.

Aufspannende Strukturen, die intensiv studiert wurden, sind perfekte Matchings, Hamiltonkreise,
Bäume und allgemeine gradbeschränkte Graphen. Trotz Jahren intensiver Forschung bleiben aller-
dings noch immer viele Fragen offen. Erweitert man die Fragestellungen auf Hypergraphen ist noch
weniger bekannt. In dieser Arbeit betrachten wir diese Probleme von verschiedenen Standpunkten
aus. Zunächst bestimmen wir Schranken für den Schwellenwert für die Existenz eines beliebigen Hy-
pergraphen und das Einbetten einer ganzen Familie von Hypergraphen. Desweiteren beschäftigen
wir uns mit einem algorithmischen Zugang und dem Finden von bestimmten Hamiltonkreisen in
Hypergraphen. Zuletzt betrachten wir noch gradbeschränkte Strukturen in einem besonderen Modell
von zufällig manipulierten dichten Graphen. In der nächsten Sektion führen wir kurz die wichtigsten
Begriffe und Notationen ein, um dann im weiteren Verlauf dieser Übersicht die Ergebnisse einzeln
vorzustellen, einzuordnen und deren Beweise zu umreißen.

Schwellenwerte

Das am weitesten verbreite Graphenmodell ist der zufällige binomiale Graph G(n, p), in dem auf n
Knoten jede mögliche Kante unabhängig von allen anderen mit Wahrscheinlichkeit p existiert. Eine
Grapheigenschaft F ist eine Teilmenge von Graphen und wir sagen, dass G(n, p) die Eigenschaft asym-
ptotisch fast sicher (a.f.s.) besitzt, falls P[G(n, p) ∈ F ] gegen 1 konvergiert für n gegen unendlich. Ein
Schwellenwert für eine Eigenschaft F ist nun eine Funktion p : N→ [0, 1] für die gilt

P
[
G(n, p) ∈ F

]→ 0 falls p = o(p̂)

→ 1 falls p = ω(p̂).

Genügt p ≥ (1 + ε)p̂ und p ≤ (1 − ε)p̂ für die Konvergenz so spricht man sogar von einem scharfen
Schwellenwert. Bollobás und Thomason [29] haben gezeigt, dass alle nicht trivialen monotonen Gra-
pheneingenschaften, dass heißt das Hinzufügen von Kanten kann die Eigenschaft nicht zerstören,
eine Schwellenwertfunktion besitzen. Die Jagd nach den Schwellenwerten für monotone Graphe-
neigenschaften ist ein zentrales Thema in der Theorie der zufälligen Graphen. Die Existenz eines
bestimmten Teilgraphen ist eine monotone Eigenschaft und besitzt damit einen Schwellenwert. Für
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zwei Graphen G und H ist G ein Teilgraph von H , falls es eine Funktion φ : V (G) → V (H) gibt, mit
{φ(u), φ(v)} ∈ E(H) für alle {u, v} ∈ E(G).

Erdős und Rényi [50] bestimmten den Schwellenwert für perfekte Matchings auf log n/n. Etwas
später zeigten Pósa [96] und Korŝunov [78] unabhängig voneinander, dass ein Hamiltonkreis den
selben Schwellenwert besitzt. Neben vielen anderen Ergebnissen befürworten diese beiden eine Ver-
mutung von Kahn und Kalai [68]. Diese besagt, dass der Schwellenwert für eine Eigenschaft immer
innerhalb eines Faktors von O(log n) von pE ist, dem sogenannten Erwartungsschwellenwert, bei dem
die erwartete Anzahl von Kopien von jedem TeilgraphenG′ vonG in G(n, p) mindestens 1 ist. Für die
beiden Beispiele, perfekte Matchings und Hamiltonkreise, ist pE in der Nähe von 1/n und der extra
log n-Faktor ist notwendig, da sonst a.f.s. isolierte Knoten in G(n, p) auftreten. Sucht man allerdings
nur nach der fast aufspannenden Variante in G(n, p), also auf (1−ε)n vielen Knoten für ein beliebiges
ε > 0, dann genügt in der Regel pE .

Einzelne aufspannende Strukturen

Neben perfekten Matchings und Hamiltonkreisen wurden gradbeschränkte Bäume intensiver stu-
diert, wobei das momentan beste Resultat von Montgomery [90, 91] eine Wahrscheinlichkeit p ≥
∆ log5 n/n benötig. Ein sehr allgemeines Resultat zum Einbetten von aufspannenden Strukturen wur-
de von Riordan [97] bewiesen, welches mit Hilfe der zweiten Moment Methode insbesondere den
Schwellenwert für Würfel und Gitter bestimmte. Desweiteren wurde in [84] bemerkt, dass daraus
auch der Schwellenwert n−1/k für die k-te Potenz des Hamiltonkreises für k ≥ 3 folgt. Für k = 2

ist die beste obere Schranke einen polylog-Faktor von der unteren Schranke n−1/2 entfernt [92]. Wir
bemerken an dieser Stelle, dass im Gegensatz zu den zuvor erwähnten Schwellenwerten, hier ver-
mutlich keine weiteren log n-Faktoren benötigt werden, was sich mit der Abwesenheit von lokalen
Ursachen erklären lässt. Außerdem lässt sich beobachten das die zweite Moment Methode hier für
k ≥ 3 gut funktioniert, im Gegensatz zu perfekten Matchings und Hamiltonkreisen.

Eine natürliche Verallgemeinerung von Matchings ist der Faktor eines GraphenG, dies sind n/v(G)

knotendisjunkte Kopien von G. Das bestimmen der Schwellenwerte war lange Zeit ein offenes Pro-
blem (vergleiche vorherige Ergebnisse für den Dreiecksfaktor [72, 79]). Die vollständige Lösung ge-
lang Johansson, Kahn und Vu [67]. Sie zeigten insbesondere, dass der Schwellenwert für den K∆+1-
Faktor durch

p∆ :=
(
n−1 log1/∆ n

) 2
∆+1

gegeben ist und somit erneut extra log-Terme benötigt werden um sicherzustellen, dass jeder Knoten
in einer Kopie von K∆+1 liegt.

Von hier aus wenden wir uns einer viel allgemeineren Klasse von Graphen zu, die alle bisher
behandelten umfasst. Wir bezeichnen mit F(n,∆) die Familie der Graphen auf n Knoten mit Ma-
ximalgrad höchstens ∆. Alon und Füredi [13] studierten diese Klasse in G(n, p) und zeigten, dass
p ≥ C(log n/n)1/∆ immer genügt, für eine absolute Konstante C > 0. Bei dieser Wahrscheinlichkeit
hat jede Menge von ∆ Knoten viele gemeinsame Nachbarn und daher ist eine gierige Einbettungsstra-
tegie mit einem Matchingtrick ausreichend. Da der oben beschriebene K∆+1-Faktor in F(n,∆) liegt
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und allgemein als am schwierigsten einzubetten angesehen wird, hat sich die folgende Vermutung
verbreitet.

Vermutung. Sei ∆ > 0, F ∈ F (r)(n,∆) und p = ω(p∆). Dann enthält G(n, p) a.f.s. eine Kopie von F .

Für ∆ = 2 wurde diese Vermutung von Ferber, Kronenberg und Luh [53] bewiesen, die sogar
Universalität zeigten. Für größere ∆ gibt Riordans Ergebnis [97] eine Wahrscheinlichkeit innerhalb
eines Faktors nΘ(1/∆2) von p∆. Für den fast aufspannende Fall gelang es Ferber, Luh und Nguy-
en [54] zu zeigen, dass p∆ genügt falls ∆ ≥ 5, wobei der log n-Term überflüssig sein sollte. Für ihren
Beweis unterteilten sie den Graphen in einen großen dünnen Teil, der mit Hilfe von Riordans Er-
gebnis [97] eingebettet wird, und viele kleine dichte Graphen, die mit Jansons Ungleichung [65] und
einem Hypergraphmatchingergebnis von Aharoni und Haxell [2] nachträglich hinzugefügt werden.
Wir werden uns diesen Beweisansatz in einem späteren Ergebnis zunutze machen.

Einzelne aufspannende Strukturen in Hypergraphen

Wenn wir uns Hypergraphen zuwenden, dann war abgesehen von Faktoren und Hamiltonkreisen
nicht viel bekannt. Der zufällige r-uniform Hypergraph H(r)(n, p) ist die natürlich Erweiterung von
G(n, p), es wird jede r-elemetinge Menge mit Wahrscheinlichkeit p undbhängig von allen anderen als
Kante gewählt. Das Ergebnis von Johansson, Kahn und Vu [67] gilt auch für Hypergraphen und zeigte
unter anderem, dass der Schwellenwert für perfekte Matchings log n/nr−1 ist (zuvor als Shamirs
Problem bekannt).

Zusammen mit Person [94] haben wir das bereits mehrmals erwähnte Ergebnis von Riordan [97]
auf Hyerpragphen verallgemeinert. Mit eH(v) = max{e(F ) : F ⊆ H, v(F ) = v} definieren wir die
folgenden Dichte

γ(H) := max
r+1≤v≤n

{
eH(v)

v − 2

}
.

Theorem. Sei r ≥ 2 eine gazne Zahl und H ein r-uniformer Hypergraph auf n Knoten mit e(H) = α
(
n
r

)
=

α(n)
(
n
r

)
Kanten und ∆ = ∆(H). Sei weiter p : N→ [0, 1). Falls H einen Knoten von Grad 2 hat und

npγ(H)∆−4 →∞

gilt, dann enthältH(r)(n, p) a.f.s. eine Kopie von H .

Für r = 2 ist dies Riordans Ergebnis [97, Theorem 2.1]. Unser Beweis für Hypergraphen folgt in
weiten Teilen dem Vorgehen von Riordan, muss an einigen Stellen allerdings angepasst werden. Aus
dem Theorem lassen sich die Schwellenwerte für einige Hamiltonkreise, Würfel, Gitter und Potenzen
von Hamiltonkreisen in Hypergraphen folgern. Desweiteren bereitet es die Möglichkeit die Ergebnis-
se aus [54] auf Hypergraphen zu erweitern.

Es gibt verschiedene Möglichkeiten Hamiltonkreise auf Hypergraphen zu verallgemeinern. Wir
betrachten hier `-überlappende Hamiltonkreise, dass sind n Knoten in einer zyklischen Anordnung,
wobei die Kanten Segemente von r Knoten sind und benachbarte Kanten sich jeweils in ` Knoten
überlappen. Für ` = 1 oder ` = r − 1 nennen wir dies einen losen bzw. engen Hamiltonkreis. Die
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Schwellenwerte für `-überlappenden Hamiltonkreisen in Hypergraphen wurden hauptsächlich von
Dudek und Frieze [43, 44] studiert. Im Allgemeinen sind diese n`−r für ` ≥ 2 und n1−r log n für
` = 1, aber es sind noch genauere Ergebnisse bekannt, z.B. ist e/n ein scharfer Schwellenwert für
enge Hamiltonkreise, falls r ≥ 4. Für ` ≥ 2 können wir den Schwellenwert auch direkt aus unserem
ersten Theorem folgern.

Algorithmen für Hamiltonkreise

Die meisten der bisher vorgestellen Resultate liefern uns zwar Informationen darüber wann mit ho-
her Wahrscheinlichkeit eine Struktur in einem zufälligen Graphen existiert, geben uns aber keinerlei
Möglichkeit eine solche zu finden. Vor allem die Ergebnisse, die die zweite Moment Methode benut-
zen oder das Resultat von Johannson, Kahn und Vu [67], liefern keine brauchbaren Algorithmen. Wir
sind interessiert an Algorithmen mit einer Laufzeit, die polynomiell in der Anzahl der Knoten n ist.
Im Folgenden diskutieren wir dieses Problem anhand von Hamiltonkreisen.

Zu entscheiden ob ein gegebener Graph einen Hamiltonkreis enthält, ist eins der 21 klassischen
NP -volsständigen Probleme von Karp [70]. Der beste bekannte Algorithmus ist ein Monte-Carlo Al-
gorithmus von Björklund [22] mit Laufzeit O∗(1.657n). Aber wie sieht es mit typischen Instanzen aus,
also zum Beispiel G(n, p)? Wir wissen, dass für p = ω(log n/n) es a.f.s. einen Hamiltonkreis in G(n, p)

gibt, aber können wir diesen dann auch finden?

Die ersten Polynomialzeit-Algorithmen zum Finden von Hamiltonkreisen in G(n, p) von Angluin
und Valiant [16] und Shamir [103] waren randomisiert. Später gelang es Bollobás, Fenner und Frie-
ze [28] einen deterministischen Algorithmus zu entwickeln, dessen Erfolgswahrscheinlichkeit auf
G(n, p) zu der Wahrscheinlichkeit für Hamiltonizität in G(n, p) passt für n gegen unendlich.

Für Hypergraphen haben Dudek und Frieze am Ende von [44] das Problem gestellt die verschiede-
nen Hamiltonkreise inH(r)(n, p) an den Schwellenwerten zu finden. Für enge Hamiltonkreise wurde
ein erster randomisierter Algorithmus von Allen, Böttcher, Kohayakawa und Person [4] beschrieben,
der p ≥ n−1+ε benötigt für ein festes ε ∈ (0, 1/6r) und Laufzeit n20/ε2 besitzt. Daraufhin gelang es
Nenadov und Škorić [92] einen randomisierten quasipolynomiellen Algorithmus zu finden, der mit
p ≥ C(log n)8n−1 auskommt. Zusammen mit Allen, Koch und Person [6] konnten wir dies weiter
verbessern.

Theorem. Für jedes r ≥ 3 existiert ein C > 0 und ein deterministischer Algorithmus mit LaufzeitO(nr), der
für p ≥ C(log n)3n−1 a.f.s. einen engen Hamiltonkreis im zufälligen r-uniformen Hypergraphen H(r)(n, p)

findet.

Unser Ergebnis benutzt eine Variante der Absorbiertechnik von Rödl, Ruciński und Szemerédi [100].
Diese Technik wurde bereits von Krivelevich [79] in zufälligen Graphen angewendet, aber die ersten
nahezu optimalen Ergebnisse damit wurden in [4] und unabhängig davon von Kühn und Osthus [84]
erzielt, welche den Schwellenwert für Potenzen von Hamiltonkreisen in G(n, p) studierten. Bei einer
Wahrscheinlichkeit p ≥ C(log n)3n−1 benötigen wir eine Reservoirstruktur von polylogarithmischer
Größe, wie sie zuvor von Montgomery [91] für das Finden von aufspannenden Bäumen benutzt wur-
de, und später auch in [92].
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Zufällig veränderte dichte Graphen

In einem Hypergraphen H = (V,E) findet unser Algorithmus zuerst einen langen engen Pfad mit
der besonderen Eigenschaft, dass er aus einem Reservoir R ⊆ V von polylogarithmisch vielen Kno-
ten jede beliebige Teilmenge R′ ⊆ R absorbieren kann. Dieser Pfad wird dann zu einem engen Pfad
erweitert, der V \R enthält, wobei am Ende auch einige Knoten ausR verwendet werden dürfen. Mit
Hilfe der restlichen Reservoirknoten kann der Pfad zu einem engen Hamiltonkreis geschlossen wer-
den und die übrig gebliebenen Knoten R′ aus R können durch die oben beschriebene Eigenschaft in
den Pfad absorbiert werden. Dieses Vorgehen wurde auch in ähnlicher Weise in [4, 92] genutzt. Durch
einen simpleren Algorithmus und ein präziseres Vorgehen beim Verbinden von zwei Endpunkten ge-
lingt es uns aber diese Ergebnisse wie beschrieben zu verbessern.

Trotz unser Verbesserung bleibt Platz zu der unteren Schranke von e/n und es ist offen wie weit ein
algorithmischer Beweis gehen kann. Der Algorithmus von Nenadov und Škorić [92] funktioniert auch
bei Potenzen von Hamiltonkreisen im Graphenfall, welche engen Hamiltonkreisen in Hypergraphen
sehr ähnlich sind. Unsere Ideen sollten auch auf diesen Fall erweiterbar sein und bessere Algorithmen
dafür liefern.

Zufällig veränderte dichte Graphen

Wir betrachten nun ein etwas anderes Modell, das von Bohman, Frieze und Martin [24] iniziiert wur-
de. Für α ∈ (0, 1) sei Gα ein beliebiger Graph mit Minimalgrad αn. Nun fügen wir weitere Kanten
zufällig mit Wahrscheinlichkeit p hinzu. Wir studieren also Eigenschaften und insbesondere Schwel-
lenwerte für aufspannende Strukturen in dem Modell Gα ∪ G(n, p).

Für α ∈ (0, 1/2) haben Bohman, Frieze und Martin [24] gezeigt, dass 1/n der Schwellenwert für
einen Hamiltonkreis in Gα ∪ G(n, p) ist. Wir sparen also einen log n-Faktor gegenüber dem Schwel-
lenwert in G(n, p), da wir durch Gα bereits einen hohen Minimalgrad garantiert haben und somit in
diesem Fall pE ausreicht. Für α ≥ 1/2 brauchen wir keine zusätzlichen Kanten, da Gα bereits selber
einen Hamiltonkreis enthält (Diracs Theorem). Ein ähnliches Phänomen, wie im Hamiltonkreisfall,
lässt sich auch bei vielen weiteren aufspannende Strukturen beobachten, bei denen sich der Schwel-
lenwert in G(n, p) und der Erwartungsschwellenwert pE unterscheiden.

Krivelevich, Kwan und Sudakov [82] studierten das Problem für gradbeschränkte Bäume und zeig-
ten, dass 1/n auch hier der Schwellenwert ist. Es ist bekannt, dass 1/n für den fast aufspannenden
Fall genügt [14] und damit wird Gα nur gebraucht, um die Einbettung zu vollenden und insbeson-
dere den nötigen Minimalgrad sicherzustellen. Erst kürzlich gelang es Balogh, Treglown und Wag-
ner [19] für Faktoren zu zeigen, dass die log n-Terme in diesem Modell nicht gebraucht werden und
pE genügt. Für eine bestimmte Klasse von Faktoren zeigten sie damit auch, dass das hinzufügen von
Gα keinen Vorteil gegenüber G(n, p) allein ergibt. Weitere Ergebnisse in diesem Modell beschäftigen
sich mit kleinen Cliquen, dem Durchmesser, k-Zusammenhang [23] und Nicht-2-Färbbarkeit [104].
Unser Resulat mit Böttcher, Montgomery und Person [32] in diesem Modell ist für gradbeschränkte
Graphen.

Theorem. Sei α > 0 eine Konstante, ∆ ≥ 5 eine natürliche Zahl und Gα ein Graph mit Minimalgrad
mindestens αn. Dann gilt für jedes F ∈ F(n,∆) und mit p = ω

(
n−

2
∆+1

)
, dassGα∪G(n, p) a.f.s. eine Kopie

von F enthält.
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Deutsche Zusammenfassung

Unser Beweis nutzt das oben beschriebene Vorgehen von Ferber, Luh und Nguyen [54] zusammen
mit einer neuen Art von Reservoirstruktur. Ohne größere Schwierigkeiten lassen sich daraus auch
die vorheringen Ergebnisse über gradbeschränkte Bäume [82] und Faktoren [19] zurückgewinnen
und somit erhalten wir Beweise dieser Ergebnisse ohne das dort verwendete Regularitätslemma von
Szemerédi [105].

Wie bei den anderen Resultaten finden wir zuerst eine fast aufspannende Einbettung für die wir
nur Kanten von G(n, p) benutzen. Die entscheidende Beobachtung ist, dass diese Einbettung zufällig
und uniform verteilt auf Gα liegt. Dadurch gelingt es uns für jeden der übrigen Knoten v eine große
Menge von Knoten B(v) zu finden, die durch v ersetzt werden könnten, ohne das die Einbettung
verletzt wird. Nun verfolgen wir eine ähnliche Einbettungsstrategie wie vorher, nur das wir jetzt
in die Mengen B(v) einbetten. Aufgrund dieser großen Auswahl an Zielknoten und durch weitere
Kanten von Gα gelingt es uns auch mit dem niedrigeren p die Einbettung zu vervollständigen und
dann die Austauscheigenschaft der Knoten anzuwenden.

Das Modell lässt sich einfach auf r-uniforme Hypergraphen verallgemeinern, es muss aber jeweils
festgelegt werden, welche Gradbedingung an Gα gefordert wird. In einer weiteren Arbeit studierten
Krivelevich, Kwan und Sudakov [82] perfekte Matchings und lose Hamiltonkreise in Hypergraphen
und konnten in beiden Fällen den log n-Faktor gegenüber den vorher besprochenen Schwellenwerten
inH(r)(n, p) einsparen, falls Gα einen minimalen (r − 1)-Grad von mindestens αn hat. Interessanter-
weise gelang es McDowell und Mycroft [89] zu zeigen, dass es für `-überlappende Hamiltonkreise mit
` ≥ 2 möglich ist sogar einen polynomiellen Faktor nε gegenüber dem Schwellenwert in H(r)(n, p)

einzusparen unter der Annahme von hohem ` und r − ` Grad in Gα. Dieses Ergebnis wurde von
Bedenknecht, Han, Kohayakawa und Mota [20] auf Potenzen von engen Hamiltonkreisen erweitert,
wofür sie einen noch höheren Minimalgrad benötigen.

Zusammen mit Böttcher, Montgomery und Person [32] ist es uns gelungen das analoge Ergebnis
für das Quadrat des Hamiltonkreises zu beweisen.

Theorem. Für jedes α > 0 existiert ein ε > 0, so dass Gα ∪ G(n, n−1/2−ε) a.f.s. das Quadrat eines Hamil-
tonkreises enthält.

Der Beweis nutzt die von uns vorgestellte Methode, ist aber nicht in dieser Arbeit enthalten. Es gibt
noch ein weiteres Ergebnis für das Quadrat des Hamiltonkreises von Benett, Dudek und Frieze [21],
welches α > 1/2 und p ≥ Cn−2/3 log1/3 n benötigt und somit bei höherem Minimalgrad eine geringer
Wahrscheinlichkeit vorraussetzt. Zusammen mit unserem Ergebnis stellt sich die spannenden Frage,
ob eine Art Interpolation dazwischen möglich ist. Desweiteren bedarf die Frage, wann und warum
der Schwellenwert in G(n, p) und in Gα ∪ G(n, p) sich wie weit voneinander unterscheiden, einer
tiefgehenderen systematischen Untersuchung.

Universalität

Alles bisher diskutierten Ergebnisse beschäftigen sich mit dem Problem eine einzelne Struktur in ei-
nem zufälligen Graphenmodell zu finden. Aber wie verhält es sich, wenn wir eine ganze Familie von
Graphen gleichzeitig finden möchten? Wir nennen einen Graphen F-universal für eine Familie F ,
falls er jeden Graphen F ∈ F als Teilgraph enthält. Wir sind hauptsächlich interessiert an Schran-
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Universalität

ken für den Schwellenwert für F(n,∆)-Universalität in G(n, p). Die meisten der bisher diskutierten
Ergebnisse lassen sich nicht ohne weiteres auf Universalität verallgemeinern, da die erlangten Wahr-
scheinlichkeiten zu groß für eine Abschätzung gegen die Anzahl der Graphen sind.

Universalität in zufälligen Graphen

Das Studium der Universalität wurde von Alon, Capalbo, Kohayakawa, Rödl, Ruciński und Sze-
merédi [11] begonnen. Nach einigen Zwischenergebnissen zeigten Dellamonica, Kohayakawa, Rödl
und Ruciński [41], dass p ≥ C (log n/n)

1/∆ genügt damit G(n, p) a.f.s.F(n,∆)-universal ist, wobei der
Fall ∆ = 2 von Kim und Lee [73] bewiesen wurde. Wie zuvor besprochen, bildet diese Wahrschein-
lichkeit eine natürliche Grenze für Einbettungsalgorithmen. Es gelang zuerst Conlon, Ferber, Nen-
adov und S̆korić [36] diese zu durchbrechen mit einem fast aufspannenden Ergebnis. Dieses konn-
te kürzlich von Ferber und Nenadov [55] zu einem aufspannende Ergebnis mit Wahrscheinlichkeit

p ≥ (n−1 log3 n)
1

∆−1/2 verbessert werden, wofür sie eine Einbettungstechnik von Conlon und Nena-
dov [38], Ideen von [36] und Absorbierer verwendeten.

Die untere Schranke für den Schwellenwert kommt erneut vom K∆+1-Faktor und daher lässt sich
die erste Vermutung wie folgt verallgemeinern.

Vermutung. Sei ∆ > 0 und p = ω(p∆). Dann ist G(n, p) a.f.s. F(n,∆)-universal.

Für ∆ = 2 wurde diese Vermutung bereits von Ferber, Kronenberg und Luh [53] bewiesen.

Universalität in zufälligen Hypergraphen

Zusammen mit Person haben wir uns diese Fragestellung im Hypergraphenfall angeschaut. Für wel-
che p ist H(r)(n, p) universal für F (r)(n,∆), die Familie der r-uniformen Hypergraphen mit maxi-
malem Knotengrad ∆. Uns gelang es, das Ergebnis von Dellamonica, Kohayakawa, Rödl und Ru-
ciński [41] zu erweitern und zu zeigen, dass wir bis zu der natürlichen Schranke gehen können.

Theorem. Für jedes r ≥ 2 und jede natürliche Zahl ∆ ≥ 1, existiert eine Konstante C > 0, so dass mit
p ≥ C(log n/n)1/∆ der zufällige r-uniforme HypergraphH(r)(n, p) a.f.s. F (r)(n,∆)-universal ist.

Für den Beweis bedienen wir uns der Ansätze aus [41, 56, 73] und führen diesen in zwei Schrit-
ten durch. Zuerst beweisen wir, dass H(r)(n, p) a.f.s. einige gute deterministische, pseudozufällige
Eigenschaften erfüllt. Im zweiten Schritt zeigen wir, dass wir jeden Graphen aus F (r)(n,∆) in einen
Graphen mit solchen Eigenschaften einbetten können. Dieser Umweg über den deterministischen
Teilgraphen erlaubt es uns Universalität zu beweisen und nur im ersten Schritt ist der Zufall invol-
viert.

Wie auch im Graphenfall ist diese Schranke vermutlich nicht optimal und ähnliche Verbesserun-
gen, wie in [36, 55], könnten möglich sein. Die beste untere Schranke für den Schwellenwert kommt
wiederum vom Cliquen-Faktor.

Explizite Kontruktionen von universalen Hypergraphen

Ein eng verwandtes Problem ist die Existenz und die explizite Konstruktion von universalen Hy-
pergraphen. Eine einfache Rechnung zeigt, dass jeder F(n,∆)-universale Hypergraph mindestens
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Ω(n2−2/∆) viele Kanten besitzt. Nach anfänglichen Konstruktionen in der bereits erwähnten Arbeit
von Alon, Capalbo, Kohayakawa, Rödl, Ruciński und Szemerédi [11], verfolgten Alon und Capalbo
weiter diese Schiene der Universalität. Sie konstruierten universale Graphen auf O(n) Knoten mit
O(n2−2/∆) Kanten [10] und weitere auf n Knoten mit O(n2−2/∆ log4/∆ n) Kanten [9]. Dies ist also
nahezu optimal.

Beginnend mit Person [94] und darauffolgend mit Hetterich und Person [64] haben wir uns der
Konstruktionen von F (r)(n,∆)-universalen r-uniformen Hypergraphen zugewand. Mit ähnlichen
Rechnungen wie zuvor erhielten wir eine untere Schranke von Ω(nr−r/∆) Kanten. Indem wir die
Konstruktionen für Graphen von Alon und Capalbo [9, 10] ausnutzten, gelangen uns ebenso optima-
le Ergebnisse in Hyergraphen für viele Kombinationen von r und ∆ zu erhalten.

Theorem. Falls r | ∆ oder 2 | r, dann existieren explizit kontruierbare F (r)(n,∆)-universale Hypergraphen
auf O(n) Knoten mit O(nr−r/∆) Kanten und auf n Knoten mit O(nr−r/∆ log2r/∆ n) Knoten.

Desweiteren existieren explizit kontruierbare F (r)(n, 2)-universale Hypergraphen auf O(n) Knoten mit
O(nr/2) Kanten.

Für alle weiteren Fälle erhalten wir Konstruktionen, die höchstens um einen Faktor nr/∆
2

von der
unteren Schranke abweichen.

Eine einfache Möglichkeit eine Konstruktionen für einen F(n,∆′)-universalen Graphen G auszu-
nutzen, ist daraus einen r-uniformen Hypergraphen H zu definieren, in dem wir jede Clique auf r
Knoten durch eine Hyperkante ersetzen. Wollen wir jetzt einen Graphen F ∈ F (r)(n,∆) in H ein-
betten, dann genügt es jede Kante durch einen Kr zu ersetzten und somit einen Graphen F ′ daraus
zu erhalten. Dieser Graph F ′ liegt in F(n,∆′) für ein geeingetes ∆′ und die Einbettung von F ′ in G
definiert uns auch eine Einbettung von F in H . Somit is H also F (r)(n,∆)-universal.

Eine Verbesserung dieser simplen Grundidee in verschiedene Richtungen ermöglicht uns den ers-
ten Teil des Theorems zu beweisen. Für den zweiten Teil müssen wir allerdings tiefer in die Konstruk-
tionen einsteigen und eine bestimmte Unterteilung für alle F ∈ F (r)(n, 2) erzeugen. In der Tat stehen
uns die optimalen Konstruktionen sogar für alle Parameter zur Verfügung, aber um die Universalität
zu beweisen fehlt uns eine geeignete Unterteilung.

Eine weitere Familie von Hypergraphen ist E(r)(m), alle r-uniformen Hypergraphen mit m Kan-
ten und ohne isolierte Knoten. Ein E(2)(m)-universaler Graph muss Ω(m2/ log2m) Kanten besitzen
und Alon und Asodi [8] zeigten die Existenz von solchen Graphen mit O(m2/ log2m) Kanten. Mit
einer ähnlichen Technik wie zuvor erweitern wir dieses Ergebnis auf Hypergraphen und zeigen die
Existenz von E(r)(m)-universalen Hypergraphen passend zur unteren Schranke von Ω(mr/ logrm).
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