On the Semantics and Interpretation of Rule
Based Programs with Static Global Variables

Manfred Schmidt-Schauf

Fachbereich Informatik
Johann Wolfgang Goethe-Universitat
Postfach 11 19 32
D-60054 Frankfurt
Germany
e-mail:schauss@informatik.uni-frankfurt.de

Abstract. A rule based program is a set of production rules of the
form “when condition then assignment”. We propose to use a restricted
form of rules as a rule-based programming paradigm. We sacrifice the
possibility of explicitely assigning new values to a variable. The gain is
that the final result of running a program is independent from the order
of rule execution and that rule execution can be parallelized without
restrictions. A further gain is that rules are really declarative, and thus
local changes have a more predictable effect than in general rule based
programs.

We propose as a natural semantics a semi-lattice ordered by information
content. Using this semantics we are able to show that rules can be
independently executed, even in parallel in a distributed environment,
if only minor restrictions are satisfied. This semantics also gives clear
hints on the implementation of default rules that use meta-predicates
like unknown? in their precondition.

There are several interesting specialisations. One is that the information
content of a variable may only be “unknown” or “completely known”, i.e.
the truth values of a three-valued logic. Another specialization is interval
arithmetic on numbers. This models the situation where the value of a
variable is known to be within some interval.

Keywords: knowledge representation, semantics, rule-based program, production
rules, expert systems, default rules, parallel execution, three-valued logic

1 Introduction

Production rule based programming has been in use since the early expert sys-
tems ([BFKM85, BS84]) and can be seen as an forerunner of the declarative pro-
gramming style. Nowadays, knowledge based systems are based on an integration
of two or more programming styles, like integration of logic and functional pro-
gramming, which permits to use features of different programming styles, but
may loose the declarativeness of rules. The goal of this paper is to demonstrate
that the production rule style of programming remains useful and powerful, if

the usage of global variables is restricted. Informally, the necessary restriction is
to view global variables as containing knowledge about an entity in the world,
and the program execution generates more knowledge using the available knowl-
edge. This excludes for example the usage of counters or variables that gather
evidence by manipulating a global variable.

Dropping general assignments appears to be rather restrictive, since most
programming techniques used in rule based systems cannot be used, as they
depend on mutable global variables or on the execution order of rules. However,
there are several advantages. The rule-based program is independent of the flow
of control. On one hand this permits local verification of the soundness of rules,
on the other hand the compiler can rearrange the rule execution in order to
improve efficiency or to execute the rules concurrently.

There are two techniques to compute values, one is evaluation of expressions,
like in applicative programming, and the other is to gather information in global
variables by overwriting unknown variables with their value, when this value
becomes known. Hence there is an implicit way of modifying global variables.
A natural generalization is an interval arithmetic. The idea is that a program
computes constraints on the values of global variables. This is a practically useful
extension, since in general the input is not an exact value, for example measured
values are in general exact within some given error range.

A successful instance of the programming paradigm is the system Pro.M.D.
([PT88], [TP90]) that is in everyday use in a clinical laboratory. Pro.M.D. is
a rule based expert system shell that is successfully used with several different
knowledge bases for routine diagnosis and clinical chemistry analyses. It is imple-
mented in Prolog, and compiles rules into Prolog predicates. This paper justifies
and clarifies the programming paradigm that was used in Pro.M.D. Furthermore
a semantically correct usage and interpretation of default rules is developed.

2 Syntax of Mini-RBL

We introduce a small rule-based language Mini-RBL, which can also be seen as
a subset of the Pro.M.D-language. Every program consists of a set of rules of
the form ”IF <cond> THEN <action>".

<cond> = <b-expr>

<b-expr> ::= NOT <b-expr> | <b-expr><b-op> <b-expr>
| F | T | UNKNOWN | <c-expr> | <b-var>
(known? <b-expr>)| (known? <n-expr>)

<b-op> 1= AND | OR | EQUIV | IMPL

<c-expr> = <n-expr><n-cmp><n-expr>

<n-cmp> =:=GT | GE | EQ | LE | LT

<n-expr> ::= <numbers> | <n-expr><n-op><n-expr>
| UNKNOWN | <n-var>

<n-op> u=+4|—|x*|/

<action> 1= <b-var> := <b-expr> | <n-var> := <n-expr>

<b-var> and <n-var> are variable names, and <numbers> are the usual
numbers. For ease of notation, we write “x := t” for rules of the form “IF T
THEN x :=t”.

Syntactically, UNKNOWN is a constant. Its meaning is that the value ex-
ists, but is not known. The values of the Boolean and arithmetic functions for
unknown arguments can be determined in a straightforward way. For Boolean
operators, this gives truth tables using three truth values. The usual behaviour
of arithmetic operators is that they evaluate to UNKNOWN;, if at least one ar-
gument is UNKNOWN (cf. section 6). The syntax implies that there is a finite
set of global variables. Depending on the purpose some of them may be viewed
as input, output or auxiliary.

A rule-based Mini-RBL program is a set of rules that corresponds to the
syntax above. The execution of a rule based program consists of firing rules, if
their condition is true, until rule firing does not modify global variables anymore.
If the condition evaluates to unknown or false, then the rule does not fire. This
execution of Mini-RBL programs is guided by the principle that the execution
sequence of rules should not influence the result. A consequence 1s that explicit
assignment to variables is forbidden. Variables having the value unknown may
be overwritten with a value, an assignment of the same value to a variable is
also permitted. If a variable is already assigned a value (except unknown), and
a further assignment tries to assign a different value, then the program stops
with error “conflicting facts”. This error is seen as a programming error that is
dynamically detected.

3 Semantics of production rules with static global
variables

n order to provide a denotational semantics [Sto81] for production rules with
static global variables (and thus also for Mini-RBL programs), we model the in-
formation content of variables. Therefore, we use an upper, complete semilattice
as a semantic domain. x < y means that y contains more informatin than .

There is some related work in the area of asynchronous and parallel processes
(see [Gla90] and [GK91]), where an environment using the principle of single-
assignment variables is investigated. However, this work does not consider three-
valued logic nor a lattice of information content.

Definition 3.1 An admissable semantic domain D is a partially ordered set,
such that

i.) There is a least element, called unknown in D.
ii.) For a,b e D, if there is some ¢ with a < ¢ and b < ¢, then there is a unique
least element d with a,b < d < c¢. This element is called least upper bound of
a,b (denoted lub(a,b)).
it1.) Purthermore for every increasing chain a1 < ag < ... of elements, there
exists a least upper bound a with a; < a for all 1.

iv.) There are two elements false, true € D, such that false and true are maz-
imal elements, and {# € D|z < false} = {& € D]z < true} = {unknown}.

D can be described as a complete upper semilattice that contains the domain
of a three valued logic (see [Hah93], [Urq86]). Furthermore there is no greatest
element in D. A motivation for the omission of a greatest element is that the
domain of boolean values could only be extended if some algebraic rules are
sacrificed.

The ordering on D" is the product ordering (vy,...,vn) < (wy,...,wy) iff
v; < w; for all i. This product ordering satisfies conditions i)-iii) of Definition
3.1. In order to avoid dealing with partial functions, we extend the domain D"
to be a lattice by a top element T (which could be interpreted as inconsistent
knowledge) that is greater than all other elements. The corresponding set with
the extended ordering is denoted by (D,)T. Elements that are not equal to T
are called proper elements.

Definition 3.2 Let D be an admissable semantic domain. A function ¢ : (D)7
— (Dy)T is monotonic, iff T = T and v < w = v < pw. A function
¢ (Dp)T — (Dy)7 is strongly monotonic, iff it is monotonic and v < v for
allve (D)7,

We do not enforce that functions are continuous in the sense of lattice theory.

Definition 3.3 Let D be an admissable semantic domain. Let @ be a set of
functions ¢ : (D)7 — (D,,) 7. A fair sequence of applications of @ is a sequence
01,92, ... with ¢; € D such that every function in @ occurs infinitely often in
this sequence.

Let & : (D,)T — (Dy)T be a finite set of functions. For wy € (D)7, we
inductively define a set W with wg € W, and if w € W, then ¢(w) € W for all
¢ € . We abbreviate this set as ¢*(wy).

Lemma 3.4 Let D be an admissable semantic domain and let & : (Dn)T —
(Dn)T be a finite set of strongly monotonic functions. Let W := &*(wy) for
some wy € (Dn)T. Consider a chain cg,c1,ca,... with cg = wqo that is derived
with a fair sequence @1, 2, ... of applications of functions ¢; € ©, such that
ci = wici—1 fore=1,2,...

Then the limit of ¢; 1s a least upper bound of W and vice versa.

This limit element is also denoted as lub(P*(wp))

Proof. Note that by the strong monotonicity criterion, (¢;); is an increasing
chain.

1.) First we show that for every element in W there is some greater element ¢;
in the chain. We make induction on the number of applications. Assume that
for some w € W, we have an element ¢; > w. Now consider pw. Since the
chain is fair, there is an index m in the chain (¢;);, such that ¢,11 = e,

and ¢y, > ¢i. This implies ¢,, > w and hence ¢, = pocm—1 > wow. Thus we
have shown that every element in W is dominated by some element of the
chain (¢;);.

2.) The converse is trivial, since every element in ¢; is also in W.

3.) Note that due to the definition of (D,)T, the set W always has an upper
bound. The limit of the chain ¢; is also a least upper bound of W since
¢; € W and (¢;) dominates every element of W. m|

Definition 3.5 We define D-programs on (D)7 .

The operator IFTHEN;(cond,t) for 1 < ¢ < n accepts two functions as
arguments: cond : (Dp)T — {unknown, true, false}, and t : (D,)" — D. For
w=(vi,...,...,05) € (Dp)T, then

lub(w, (vy,...,v;_1,t(w),...,v,)) if cond(w) = true
LPTHEN cond.) = { 11100 (0ot 0 ety 2o

A D-program is a set @ of functions of the form IFTHEN;(cond,t).

a.) A D-program ¢ is admissable, iff all ¢ € & are strongly monotonic.

b.) Let wg be the input to the program and let W = &*wqy. Then there are two
cases
i.) W has only T as upper bound. Then the program is contradictory on wq.
i.) W has a proper upper bound. Then the output of P islub(WV). We denote

this outpul as [[P]] .

c.) An element w € (D,,)T is a fiz-point for the D-program ®, iff for all p € @,
we have p(w) = w.

d.) A D-program @ terminates on the input wo € (D,)T, iff there is some fiz-
point w for @ in the set ®*(wy).

This definition interprets rules as follows. If the condition of the rule is sat-
isfied, then the assignment v := ¢ in the assignment part does not replace the
value of the variable v by the value of ¢, but computes the least upper bound of
the old and new value, i.e., vpey := lub(v414,1). This conforms with the intuition
of information gathering. The interesting point is that on the right hand side,
every rule ¢ locally satisfies the restriction w < ¢(w).

The semantics of a Mini-RBL program is a D-program, where the domain D
is constructed from the domain of a three-valued logic, and the numbers, where
unknown is the smallest element, and numbers cannot be compared. Every rule
is interpreted as a function.

Corollary 3.6 The result of an admissable D-program is independent of the
sequence, in which rules are tried and fired, as long as the sequence ts a fair one.
This holds for the three possible types of behaviour: Termination with success,
termination with failure, and non-termination. In the case of non-termination
the program approximates the result.

Corollary 3.7 An admissable D-program terminates, if every properly increas-
mg chain i D is finite. An admissable rule-based program terminates on input
wy, if every properly increasing chain starting with wq i D" is finite.

Proof. 1f every properly increasing chain in D is finite, then this holds for (D,,)T.
Obviously, if properly increasing chains starting with wq are finite in (D,,) 7, then
every infinite application

Corollary 3.8 The result of an admissable rule-based program is independent
of the sequence, in which rules are tried and fired, as long as the sequence s a
fair one. This holds for the three possible types of behaviour: Termination with
success, termination with failure, and non-termination.

Example 3.9 The following rules are taken from a rule based knowledge base
for the diagnostics of blood coagulation. The result is a certain combination of

symploms.
IF quick < 0.7 THEN quick-patho := true
IF ptt > 40 THEN ptt-patho := true
IF ptt < 40 THEN ptt-normal := true
IF ptt-patho AND tzt-patho AND
tzy-patho AND bzt-patho THEN result-combination-1 := true

Here knowledge ts structured in a decision tree and thus is more of a propo-
sittonal type. The program terminates, since at some point in time, all variables
are computed.

Example 3.10 An example of a non-terminating, but sensible D-program con-
sists of the following two rule to compute the square-root of some number. We
assume that values are numbers that are restricted by intervals. The lub-operation
i the domain 1s the intersection of intervals. The functions that extract the val-
ues of upper and lower bounds of the intervals are permitted only in the expression
on the right hand side of the assignment. We denote the lower and upper bound
of an interval variable by the suffizes low and high. Let v be the input variable
and q be the desired output. The rules of the program are:

- 4= [L U]
— ¢:=[(v = @row?)/ (@row + qhigh) + Gow, 0.5 % (v/qnign + qnign)]

These two unconditional rules form a valid program to approximate the square-
root of the input v. Since these two rules are unconditional, our interpretation
guarantees that the program is admaissable.

4 Concurrent Execution of Rules

The parallel execution model of rules in which we have shared memory and rule
execution can be in principle sequentialized, is already covered by the previous

paragraph. In the following we consider the more general siuation, where we
can model concurrent access in shared memory on the same variable, or with
distributed memory, where the same variable may be in the system more than
once on different processors. If we consider such a situation, 1t may not be
possible to simulate the execution by a sequentialized rule execution. Since we
concentrate on proving correctness of execution, not on efficiency, we will not use
a model, where processors and channels are explicit, but a simplified model that
only makes the different values at different places of the same variable explicit.

The idea of our model is to assume that every processor has its own memory
for all the global variables. Then all operations can be modelled using three kinds
of transformations. The first is that two processors communicate and exchange
part of their knowledge to construct the {ub of their values. The second is that
some processor fires some rule. The third is that some processor starts a new
processor with a copy of its memory.

Definition 4.1 Let D be an admissable domain. The model for the distributed
memory is a multiset M of elements in (D,,)T. The program is represented by a
set @ of strongly monotonic functions on (Dy)T. There are three transformation
rules for processing:

i.) Let by and by be two elements from M. Select some index j and replace by
by lub(ba, (ba,1, ..., b2i-1,b14,02i41,...,b2,)).
ii.) Take some ¢ € ¢, some b € M and replace b by p(b).
ii1.) Select some b€ M and add a copy of b to M.

This produces a sequence of computations, consisting of multisets M;. Such
a sequence is called a parallel execution sequence. For better syntactic manipu-
lations, we could also remember the exact operations that lead from M; to M;yq,
but this is not necessary for our purposes.

From the sequence (M;);, we can define a sequence (¢;); as ¢; = lub(M;).
We call this the compressed sequence corresponding to (M;);.

Definition 4.2 A parallel exzecution sequence (M;); is fair iff for all i, b € M;
and ¢ € O there is some j and some ¢ € M; such that ¢ > p(b).

The fairness condition is rather natural and forces every function ¢ to be
applied as often as required. It prevents, for example, useless computations which
are dominated by copy-operations

Theorem 4.3 Let D be an admissable semantic domain, let @ be a set of
strongly monotonic functions on (Dy)T, let wo be some element from (D,)T
(the input), and let (M;); be a fair parallel execution sequence. Then the corre-
sponding compressed sequence is an ascending chain with the limit lub(P* (wy)).

Proof. Let ¢1,ca,...be the compressed sequence corresponding to M;. Now con-
struct a fair sequential sequence (b;); from M; as follows:

- bl = C1

— If M;y1 is constructed from M; by a lub or copy operation then b; ;1 := b;.
— If M4 is constructed from M; by application of ¢, then b;11 := ©(b;).

The sequence (b;); is fair in the sequential sense, since it is also fair in the
parallel sense. Now we show that the two sequences (¢;) and (b;) have the same
limit.

1.) b; > ¢; for all ¢ By induction on i. We have b; = ¢1, hence the relation
holds. If M;41 is constructed from M; by a lub or copy operation, then
¢i = ¢it1 and b; = b;q1, hence b1 > ;41 . If M;4q is constructed from
M; by an application of a function ¢, then b;11 = ¢(b;) > ¢(¢;) > ¢y,
since ¢ is monotonic. The last inequation holds, since ¢; = lub(M;), and
cip1 = lub(M; \ {d}, p(d)) for some d.

Since every ¢ must occur infinitely often, we can construct a fair sequential
sequence that dominates the parallel sequence of compressed environments.

2.) For every 1 there exists some j such that ¢; > b;:

By the fairness condition, we can construct a sequence (d;); as follows. We
let di = ¢; and d;41 the element that is greater than ¢(d;) for some ¢ € @.
We can choose the same sequence of ¢’s as for the sequence (b;);. Thus we
get d; > b; by induction on ¢, since dy = by and di1 > p(d;) > @(b;) = biy1.
Since d; is contained in some M;,, we also have ¢;, > b;

Now we have shown that a fair parallel sequence has the same limit as a fair
sequential sequence, hence the limit is equal to lub(®*(wy)).

Theorem 4.3 shows that if an admissable rule-based program is concurrently
executed in a distributed environment, then the result is the same as in the
sequential case, if some fairness conditions hold. A termination condition in the
parallel execution case could be to stop, if there is some processor that fulfills
a termination condition similar to the sequential one, i.e., there is no more pro-
gram rule that makes progress in the compressed sequence. This condition is not
effective as a distributed algorithm. The invstigation of pragmatical termination
tests is beyond the scope of this paper. Using stronger conditions, it is possible to
show that the knowledge of the whole distributed computation is also eventually
available on some single processor

5 Monotonic Operators and Truth-Preserving Conditions

In this section we exhibit some general conditions which are sufficient to ensure
the monotonicity of the functions that correspond to rules. The first condition
is that the expression ¢ on the right hand side of an assignment must correspond
to a monotonic function. This excludes, for example, the use of functions like
known? in the assignment part, since known? is not monotonic. A further con-
dition which we must have is that every cond in a rule remains true, after it was
evaluated to true. In the following we investigate these requirements in more
detail.

Definition 5.1 A function ¢ : D" — D is called truth-preserving, iff v < w
and ©(v) = true implies that p(w) = true.

Let < be an extension of the order < on D and D", suchthat e <y = 2 <y
for #,y € D and false < true for the boolean values false and true, such that
= is the smallest such ordering. We will also freely use this notions for tuple-
valued functions, in this case every component must satisfy the truth-preserving
condition.

Using truth-preserving conditions we can give a rather general condition for
a rule to be strongly monotonic:

Theorem 5.2 Let R = “IF cond THEN v; = t7 be a rule. Consider cond
as a function: (D,)T — D, and let the assignment be interpreted as vpew =
lub(vold,t).

If cond 1s truth-preserving and t is monotonic, then R is strongly monotonic
on (Dy)T.

Proof. Let ¢ be a truth-preserving condition and let v < w. Then (cond(v), cond(w))
€ {(unknown, unknown), (unknown, false), (false, false), (unknown,true),
(false, true), (true, true)}. In the first three cases the function ¢ is the iden-
tity. In the last three cases truth-preservation requires that v < lub(w,t(v)) or
lub(v,t(v)) < lub(w,t(w)) . The two equations hold, since v < w and t(v) < t(w).

It is instructive to consider the forbidden cases that (cond(v),cond(w)) is
(true, false) or (true,unknown). In these cases the inequation {ub(v,t(v)) < w
is required, which holds only in the very restricted case that t(v) < w.

Lemma 5.3 — The functions V, A and — are monotonic.
— the functions +,—, %,/ and arithmetic comparisons <, <,=,>,> are mono-
tonic, where division by zero results in a global error, 1.e., T.

Lemma 5.4 The following functions are <-monotonic:

i.) tupling, projection, and composition of <-monotonic functions: D" — D™.
ii.) the known?-function that is false for unknown, otherwise true
iti.) The function proved?, that is true for true, otherwise false.
iv.) The functions V and A.
v.) The function uuf, that is false for true, otherwise unknown.
vi.) In the context of interval arithmetic, the function exact(d,I), that is true if
the interval I is less or equal d.

The following lemma describes some truth-preserving functions that are per-
mitted as conditions in admissable rules.

Lemma 5.5 The following functions ¢ : D™ — {unknown, false irue} are
truth-preserving:

i.) <-monotonic functions.

ii.) Monotonic functions
ii.) The composition Az.f(g(x)) of @ =-monotonic function f: D* — D and a
monotonic function g : D" — DF.

Proof. We prove only the last part, the other ones are trivial. Let f : D¥ — D
be <-monotonic and ¢ : D* — D* be monotonic. Let v < w be elements in D".
Then g(v) < g(w), hence also g(v) = g(w). Since f is also <-monotonic, we have
flg(v)) = f(g(w)), hence the composition is truth-preserving.

The function — is monotonic, but not <-monotonic and not truth-preserving.
The same holds for logical implication. The function known? is not monotonic,
but <-monotonic and truth-preserving. The function A(z).~(known?(z)) is also
not truth-preserving.

Corollary 5.6 The following conditions in Mini-RBL are truth-preserving.

— An arbitrary condition, where only the boolean operators V, A\, - are used

— A condition, which can be seen as the composition of a function that is com-
posed solely of V, A, and known?, and another tuple-valued Boolean function
that is monotonic.

An example for a truth-preserving condition is known?(z) A (known?(y)
V=(z > y)), which is composed as known?(z1)A(known?(x2) Vas) o (2, y, ~(z >
¥)). Tt is not hard to syntactically check these conditions during compilation of
a Mini-RBL program.

Example 5.7 These examples show that composition ts not compatible with
truth-preservation and with <.

— The composition of two truth-preserving functions may be not truth-preserving.
For example, let f be defined such that f(unknown) = false f(false) =
unknown and f(true) = true. Then f is truth-preserving. The composition
known?(f(x)) is not truth-preserving, since known?(f(false)) = false and
known?(f(unknown)) = true.

— the composition of a monotonic with a <-monotonic function may be not
=-monotonic. The standard example is ~(known?(z)).

6 Application to fuzzy values

If we apply the method to numbers which are known to be in some interval, then
the semi-lattice 1s simply the lattice of intervals ordered by the superset order-
ing, and the empty interval is omitted. It is not hard to determine the operation
of functions on intervals given functions on elements, the functions are simply
lifted to sets. This method ensures that functions on intervals are monotonic. If
an interval contains only one element, then the value can be considered unique,
and hence known. For example, this gives the equations true V unknown = true
and [1,2] 4 [4,5] = [5,7]. It is also possible to have a better approximation, if

10

the whole expression is used to compute its value. For example # — x can result
in 0, regardless of the value of . The same holds for « V =z which can always
be replaced by true. This view of the semantics of unknown permits to use all
algebraic laws to evaluate expressions. However, different strength of algebraic
manipulations may result in different outcomes of the same program. For exam-
ple, in the case of interval arithmetic, the distributive law in combination with a
modular definition of * and 4+ may decrease the exactness of approximations. If
a compiler uses such algebraic manipulations or simplifications, then this should
only be done, if a better approximation results.

Such an improvement can also exhibit hidden “conflicting facts” | for example,
let the rules be {4 := 2, A := (B— B)=* A} Without algebraic simplifications,
the Mini-RBL program started with A = B = wunknown terminates with
A = 2,B = unknown. After algebraic simplification, the execution is halted
with “conflicting facts”.

In the interval case an operator corresponding to known? would be Ezact?(e, z),
which is true, if the length of the interval for z is not greater than e. It can be
used in a similar way as the known? -operator. Suppose, we have a function
IL, that computes the length of an interval. This function is not monotonic,
since length[0,3] = 3, length[l,2] = 1, we have [0,3] < [1,2], but not 3 < 1 in
the information ordering <. Thus the functions known? and exact? are truth-
preserving and can be used in conditions, if they are not under a negation. The
function I L, and the extraction of upper and lower boundary of the intervals is
not monotonic and should be illegal in conditions.

7 The Usage of Defaults

If expressions like =(known?(z)) are used to implement defaults, then the order
of rule execution plays a role. For example, consider the two rules

IF NOT(known?(v;)) THEN v; := 1

IF NOT (known?(v;)) THEN v; := 2

If we use them without precaution, then the result may be v; = 1, or v; = 2,
depending on the sequence of execution, and there also is no possibilitiy to detect
this error dynamically, since once one rule has fired, both rules become inappli-
cable. As we have seen in the last paragraph, the construction =(known?(x)) is
not truth-preserving, and thus does not satisfy the conditions of theorem 5.2 .

To remedy this we permit such default-rules; split the program into a “normal
part” and a “default part”. The normal execution of the program consists of
firing the rules in the normal part, and to fire the rules in the default part only
in the case, where the normal part of the program has terminated. One must
ensure, however, that the defaults are not conflicting, since otherwise, one would
reintroduce a dependence of the result on the order of execution. The example
above is such a set of conflicting defaults. A correct interpretation would be to
keep the variable values fixed, collect all results of the default rules, and add
the lub of all the outcomes, with a certain bad chance of getting as answer
“conflicting facts”.

11

Now there are two alternatives, either the program could go again into the
usual cycle of firing normal rules until the program terminates, or the program
stops after firing the default rules. There are some reasons (see below) to prefer
the second one.

Another, more subtle method would be to also permit the application of
default rules if the program status ensures that the default conditions are true,
and cannot be changed to false by other rules. In a practical implementation,
this can be done by stopping the program interpretation, inspecting the current
program status, and then executing all the defaults. In order to have a clean
loop breaking method such that the results do not depend on the time of the
break, it must be ensured that the application of defaults behaves as if the limit
was already reached. This method of using defaults ensures that programs have
a unique result.

If the compiler makes use of algebraic laws to simplify expressions, and the
program uses defaults, then the outcome of the whole program may change, since
for example, the first execution of all non-default rules may produce unknown for
a certain variable, but after algebraic simplification, the value becomes known.
In the first case, a default may be applicable, wheras in the second case the
default rules are no longer applicable. In order to give an example, consider the
following rules:

A = B*C
IF not(known?(A)) THEN A :=1

A cnitical input i1s B = 0, C' = unknown. The usual implementation of * is that
A remains unknown. The program terminates, and then the default is fired and
gives A = 1. If the algebraic law 0% x = 0 1s applied, then A is assigned 0,
and the default rule is not applicable. For sensible programming, this means
that defaults should only be used as a last resort, for example for preparing a
readable form of the output, but not as a normal programming device.

8 Comparison with other Approaches

In this paragraph we want to comment on the possibilities to implement the Mini-
RBL method in other paradigms. The issue is adequacy of such an embedding.

(1) Constraints (cf. [Win92]) can express dependencies between variables and
perform the same computations for a subset of the Mini-RBL programs.
Constraints are not directed, whereas rules are directed in the sense, that
a single rule has a fixed input and as output a new information on the
variable in the assignment. Thus Mini-RBL programs cannot be used in
a backward direction. The advantage of Mini-RBL programs is that also
cyclic dependencies can be encoded and lead to a stable output or to an
approximation of the output, whereas constraint systems require a direct
method for finding the solution, or if constraint propagation is used, some
kind of oscillation may occur, if cyclic dependencies are given.

12

(2) Logic programming . ([CM91],[L1084],[SS86]) In its pure form, the execution
of a logic program amounts to computing new facts, thus approximating the
minimal model in a fixed-point computation. Global variables as in Mini-
RBL can be encoded as predicates and corresponding facts. The manipula-
tion must be done using Assert, Retract (or setval, getval), and a possible
computation of least upper bounds would be a method to modify asserted
facts. This manipulation methods are not a possible in a pure subset of
Prolog, hence it is not clear, how the existence of a minimal model can be
guaranteed.

(3) Functional programming. ((BW88],[Dav92]) Pure functional programming as
a basis for Mini-RBL has several problems. Non-mutable variables are fine,
however, even modifying global variables from unknown to a value 1s not pos-
sible in pure functional languages. If the functional language permits some
non-pure techniques in its I-O-processing (cf. [SA92]), then the emulation be-
comes more adequate. However, the possible cyclicity of variable dependen-
cies in Mini-RBL cannot be directly translated into the functional paradigm,
and must be checked in order to prevent infinite loops. This translation is
studied in detail in [M0093]. The polymorphic type-discipline of functional
programming is easily adaptable to extensions of Mini-RBL, as long as the
information-order is compatible with the type structure.

(4) Rules as implications. If production rules are seen as two-valued logical im-
plications, then the corresponding rule based programs have the properties
of being independent of the sequence of execution. In order to simulate our
programming paradigm using implicational rules, the logic must be at least
a three-valued one. In this case, there must be some non-determinism (see
the examples in Section 7), and the results of this paper are applicable.

9 Conclusion

We have shown that some restrictions on the usage of production systems permits
to have a clean and nice semantics of PSG-programs. The consequences are that
the result of a program is independent of the sequence of the execution of rules.
A further result is that parallelization of rule execution, even in a distributed
environment, leads to the same results as sequential execution.

A clear distinction can be made between legal and illegal usage of several
operators, like the known?, proved?, and exact?- operator. Furthermore, the
usage of not(known?(x)) for defaults can be permitted if the interpretation of
default rules differs from the interpretation of other rules.

Acknowledgements

I would like to thank Bernhard Pohl, Frank Puppe, Sven-Eric Panitz and Marko
Schutz for reading a draft of this paper.

13

References

[BFKM85] L. Brownston, R. Farell, E. Kant, and N. Martin. Programming Ezpert

[BS84]
[BWss]
[CMo1]
[Dav92]

[GK91]

[Gla90]

[H3h3]
[L1o84]

[Mo093]

[PTs8]

[$S86]
[Stos1]
[TP90]
[Urqs6]

[Win92]

Systems in OPS5. Addison-Wesley, Reading, 1985.

B.G. Buchanan and E.H. Shortliffe. The MYCIN experiment of the Stanford
heuristic programming project. Addison-Wesley, Reading, 1984.

Richard Bird and Phil Wadler. Introduction to functional programming.
Prentice Hall, 1988.

W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag,
New York, 1991.

A.J.T. Davie. An introduction to functional programming systems using
Haskell. Cambridge University Press, Cambridge, 1992.

R. Glas and A. Knoche. Semantische Fundierung der asynchron prozedu-
ralen Sprache DONUTS im AEM. Forschungsbericht 1991/3, Technische
Universitat Berlin, Fachbereich Informatik, Germany, 1991. in German.
R. Glas. Ein abstraktes Environment Modell (AEM) zur Beschreibung par-
allelen und asynchronen Verhaltens . Forschungsbericht 1990/3, Technische
Universitat Berlin, Fachbereich Informatik, Germany, 1990. in German.
R. Hahnle. Automated Deduction in Multiple- Valued Logic. Oxford Univer-
sity Press, Oxford, 1993.

JW. Lloyd. Foundations of Logic Programming. Springer-Verlag, New
York, 1984.

Marcus Moos. Ubersetzung von Pro.M.D.-Wissensbasen in funktionale
Sprachen. Master’s thesis, FB Informatik, J.W.Goethe-Universitat Frank-
furt, 1993.

B Pohl and Chr. Trendelenburg. Pro.M.D.- A diagnostic expert system
shell for clinical chemistry test result interpretation. In Meth. Inform. Med.,
volume 27,3, pages 111-117, 1988.

L. Sterling and E. Shapiro. The Art of PROLOG. MIT-Press, Cambridge
Mass., 1986.

J.E. Stoy. Denotational semantics, the Scott-Strachey approach to program-
ming language theory. MIT-Press, Cambridge Ma., 1981.

Chr. Trendelenburg and B. Pohl. Pro.M.D. Medizinische Diagnostik mit
FEzxpertensystemen. Thieme-Verlag, Stuttgart, Germany, 1990. in German.
A. Urquhart. Many-valued logic. In Handbook of philosophical logic, volume
111, pages 71-116, 1986.

P.H. Winston. Artificial Intelligence. Addison-Wesley, Reading, third edi-
tion, 1992.

This article was processed using the LTEX macro package with LLNCS style

14

