CPE: A Calculus for Proving Equivalence of Expressions in a
Non-Strict Functional Language®

Manfred Schmidt-Schauf}
Fachbereich Informatik
Johann Wolfgang Goethe-Universitat
Postfach 11 19 32
D-60054 Frankfurt
Germany
E-mail: schauss@informatik.uni-frankfurt.de

May 14, 1996

Abstract

We propose a tableau-based calculus CPE for proving behavioural equivalence of
expressions in a non-strict higher-order functional language. We consider two expressions
as equivalent, if plugged into any program context, the following two situations do not
occur: 1) The two contexts reduce to different constants ii) one context reduces to a
constant while the other has no weak head normal form. This definition is co-inductive,
however, it our behavioural equivalence is different from the equivalences, which consider
expression as equivalent, if the contexts are tested for having a weak head normal form
or not.

The main interest is in comparing functions that operate on infinite lists, streams or
other infinite data structures. The calculus is also able to prove extensional equivalence
of functions in some cases. It includes also a non-trivial non-termination analysis.

The calculus is designed such that it can easily be automated. Comparing it with the
take-lemma of Bird and Wadler, it can prove stronger equivalences.

The calculus can be used for verification, program construction, in particular for
proving that program transformations in a compiler for a non-strict functional language
are correct without any preconditions such as termination conditions.

1 Introduction

We are interested in behavioural equality of expressions in a non-strict, higher-order and lazily
evaluated functional language. We test expressions d by checking the reduction behaviour
of C'[d] where C[.] is a program context. We consider two expressions d and e equal, if they
cannot be distinguished using the following criterion: if there is no program context C' such

*internal report 2/96, Fachbereich Informatik, Johann Wolfgang Goethe-Universitat Frankfurt

that C[d] and CTe] reduce to different constant constructors, or one of them is undefined,
while the other reduces to a constant constructor. We call this equality w-equality (=,).

For example, we consider A . 1. and L as equivalent, since these functions cannot be distin-
guished using our criterion.

Our w-equality is different from the equality as defined in [Mor68] or [Abr90], since they con-
sider these two functions as different, as their criterion is the distinction between termination
and non-termination. But if two expressions are equivalent in their sense, then they are also
w-equal (see Theorem 7). w-equality is also different from the co-inductively defined equal-
ity of expressions ([Gor94]). However, our equivalence relation and some of its properties
can be obtained citing [How89] after translating our language into a lambda-calculus with
constructors.

Since we show that w-equality is the largest relation that satisfies substitutivity and that keeps
different constant distinct and does not identify constant with L, we have a an analogue to
the full abstraction theorem. That the relations based on the A-calculus are different from
w-equality is a hint that the a translation into the lambda-calculus where constructors and
destructors are simply translated into lambda-expressions instead of special constant does
not reflect the inherent properties of equivalence of functional languages with algebraic data

types.

Proving equivalence of programs in a functional language for input like the set of finite normal
forms is usually done by induction ([BMS8S8]). This method breaks down in a non-strict
semantics, i.e, if expressions may be partially undefined, or if equality of stream-processing
programs is to be proved, since an infinite list or an infinite stream has no normal form.
There are some known methods for proving equivalence of programs where also infinite lists
or other infinite data objects are taken into account. For example the type-based method
in [Wad89]. The take-lemma ([BWS88]) is a proof method designed for streams modelled
by infinite lists. Another, more general method to define equivalent behaviour is based on
co-induction (see [MT91, Pit94], for a tutorial see ([Gor94]).

In this paper, we develop a simple and automatable proof method for showing the behavioural
equivalence of functions as defined in this paper. This may be a helpful tool for verification,
program construction and verifying the correctness of program transformationsin a compiler.
The calculus CPE is intended for a typed functional programming language, but we design it
for a combinator language with algebraic data types. This is no restriction on the expressive-
ness. Instead of using type information for variables, we shall use set-expressions to restrict
the range of quantifications. We treat typing by considering non-well-typed expressions as

undefined (L1).

The general equivalence problem is not recursively enumerable, hence it is acceptable that
the calculus does not prove all equivalences, but nevertheless it covers a lot of cases of
practical interest. It is more general than the take-Lemma of Bird and Wadler since we have
implicit and explicit non-termination checks. CPE is able to prove an example that is used
to demonstrate the power of the methods from co-inductive equality ([Gor94]).

An advantage of our method compared to other ones is that it can easily be mechanised
and that it works for all algebraic types, not only for infinite lists. A further distinguishing
feature is that it includes an explicit and implicit non-termination check that is able to detect
expressions without weak head normal form. It furthermore is able to check equivalence even
in the presence of functional objects in the outcome of a program, since the calculus is able
to prove extensional equivalence of functions. It can also be used to compute strictness
information for a function f by plugging in an Bot as argument and checking with the
calculus, whether the resulting term is equal to Bot.

In a larger example, we will demonstrate that the calculus is able to prove that
filter p (map f xs) is w-equal to map f (filter (po f) as) for all list-expressions including in-
finite lists. This example is taken from ([Gor94]) and is used there to demonstrate that there
are simple examples of stream-processing functions that cannot be proved equivalent by the
Take-Lemma, since the Take-Lemma method lacks a method to detect the L=_1-situation.

A simple example (see Example 9) that can only be proved if the calculus CPE is extended
by some inductive prover using size-arguments is that length | =, length (reverse) for the
standard functions length and reverse on lists. For infinite lists or partially undefined lists,
the calculus is able to handle this example (see Example 9). For finite lists or other finite
data structures, the method can be improved by extended it by a special treatment of nodes
(see section 6 on extensions), or by calling an automated induction prover

2 The Language

We define A, a simple functional core language with algebraic data types. It resembles closely
the language used in [PJL91] and [SSPS95]. We will use a version of the language with min-
imal syntax. Nevertheless, the language is sufficiently expressive to transform functional
programs into A using standard methods, like lambda-lifting ([PJ87]).

Algebraic data types consist a finite number of corresponding data constructors together with
their arities. Different algebraic data types have disjoint sets of data constructors. Usually,
there is also a type constructor and the data constructors have a user-defined type. In this
paper, we do not make use of an explicit type system, hence we omit a description.

The following constants are in A:
i) For every algebraic data type A there are finitely many constructor constants

cony i,...,Cony ,,;, where every constructor comes with an arity. The number of con-
structors of the algebraic type A is denoted by con#(A).

ii) For every algebraic type A one case constant casey of arity con#(A) + 1. The first
argument is the expression to be cased. The other arguments are functions taking my
arguments for 1 < k < n, where my, is the arity of the k" constructor of A.

iii) User-defined supercombinators

iv) The constant Bot standing for a semantically undefined expression.

An example of an algebraic data type is Bool with the constants true, false, and case-
constant if. Another example is List with the constants Nil, binary cons, also denoted by
an infix binary “”, and case-constant lcase, which requires three arguments: the list expres-
sion, the expression for the Nil-case and a function taking the head and tail as arguments

in the non-Nil-case.

A-expressions are built in the standard way, i.e., expressions may be variables x, constants
c, and applications (d e). The set of free variables in an expression ¢ is denoted as Var(t).
We assume that application is left associating, i.e., e; ez es is equivalent to ((e; ez) e3).
An expression without variables is called a ground expression. Sometimes expressions that
contain free variables are also called abstract expressions.

Recursion is possible via defined supercombinators. An expression e with n free variables
x1,...,%T, may be defined as a supercombinator: sc z; ... x, = e, where sc is treated as a
constant. We will assume that Bot is a non-terminating supercombinator.

As notational convention DI[t] will denote an expression which has at some position the single
subexpression ¢t. D[.] is called a (linear) term-context. We will also use term-contexts with
more than one argument. Term-contexts with n arguments can be viewed as supercombina-
tors defined with n arguments, where in the body of the definition, every argument variable
appears exactly once.

A program consists of a set of definitions of algebraic data types and of definitions of super-
combinators. It may also contain some annotations that a supercombinator is strict in some
of its arguments (see next subsection 2.1).

Note that the syntax permits expressions that are non-well-typed in the usual sense.

2.1 Operational Semantics

A ground expression is in weak head normal form (WHNF), if it is of the form:

e cey ... e, where c is a constructor, and the arity of ¢ is > n. This form is also
called constructor weak head normal form (CWHNF). If n = arity(c), then we have a
saturated CWHNF (SCWHNEF).

e fe ...e, where £ is a supercombinator or a case constant that requires more than
n arguments.

The operational semantics for ground expressions is defined through é—reductions, with re-
spect to a program P, i.e., a fixed set of algebraic data types and supercombinator definitions.

o If sc #; ... x, = e is a supercombinator definition, then sc t; ... t, —3
€[$1/t1,...,$n/tn]-

If the supercombinator sc is defined to be strict in its j?* argument, then t; should be

in WHNF.

e Lor case constants we have: casey (con; ty...4y) €1...€, =5 (€ t1...1y), if nis the
number of data constructors for A, and the constructor con; is a constructor belonging
to A, and the constructor con; has arity m.

e There are some reduction rules for the special supercombinator Bot, which are intended
to inherit the undefinedness and to capture dynamic typing errors:

— An expression of the form (casey4 t) reduces to Bot, if either ¢ is equal to Bot, or
t is in WHNF, but not in CWHNF, or it is in CWHNF, ie., t = con t1...t,),
but con is not a constructor for A, or the arity of con is not equal to m.

— (con ty...t,) reduces to Bot, if m is strictly greater than the arity of con.

(Bot t) reduces to Bot

Bot reduces to Bot.

A ground expression ¢ is in normal form (NF for short) if ¢ cannot be reduced.

A redex is a position in an expression where a reduction can be performed. A necessary redex
is defined as follows.

e If the root is a redex in t, then it is a necessary redex in t.

If ¢ is a necessary redex in d, then ¢ is also a necessary redex in (d e).

If t is of the form (casey €g €1 ... €,) and ¢ is not in WHNF, then every necessary
redex of eg is also a necessary redex of ¢.

If t is of the form (sc t;...t,), and sc is (defined to be) strict in the j'* argument,
then a necessary redex of ¢; is also a necessary redex of ¢.

A necessary reduction is one which reduces a necessary redex. A normal order reduction is a
reduction sequence that performs only necessary reductions.

The operational semantics has the usual properties: It is Church-Rosser (confluent), and
whenever an expression ¢t can be reduced to a WHNF ¢, there is a normal order reduction
from ¢ to some t” that is in WHNF, and can be reduced to t'.

It is possible to write functions in A that behave the same as arithmetic functions. Hence we
can and do assume that natural numbers and arithmetic functions are available.

3 Equivalence of Expressions

In this section, we give rigorous definitions of the basic notion of w-equality, based upon a
given program P.

Definition 1. Let d and e be two ground A-expressions. Then

o d =g e for all expressions d and e.
e Let k> 0. Then d = e, iff one of the following conditions hold:

— d and e have no WHNF
— d and e have a CWHNEF (con dy...d,,) and (con e...€,), respectively, and
d; =p_1 e foralli=1,...,m.

— d or e have a WHNF, but neither d nor e has an SCWHNF, and for all ground
expressions a: (d a) =1 (e a) .

We say two expressions d and e are w-equal (d =, e), iff d = e for all k£ > 0.

We write #j or #,, respectively, if the corresponding relation = or =, does not hold.

Note that this equality identifies all terms without WHNEF.

This equality does not distinguish the function f with definition f 2 = f z from Bot. If these
are applied to some arguments, then they both yield non-termination, and hence they are
w-equal. In the notation of the A-calculus, this means that A z. L and L are not distinguished.

The definition permits that an expression in CWHNFEF is w-equal to one in WHNF, but not in
CWHNEF, but does not permit w-equality of an SCWHNF and another expression in WHNEF.

FEzxample 1. Consider the supercombinator f with f @ = f. Then from the definition of
w-equality we can infer that the two expressions Bot and f are w-equal. If we use a type
system, then we would get a type error for f, since the equation o« — = 3 has no solution
in the sets of types. (For a description of types, see for example [BW88].)

Lemma2. Let a and b be ground expressions such that a = b, and let d be another ground
expression.

Then (a d) = (b d)

Proof. If both @ and b have no WHNF, then this is obvious. Otherwise, assume that neither
a nor b have an SCWHNEF. Then we can use definition 1 to show the relation. If both have
an SCWHNF, then addition of an argument yields Bot for both expressions.

As a preparation for the proof of substitutivity of =, we borrow a lemma from [SSPS95].
For every term ¢ in A with a WHNF, let nr#(¢) be the minimal number of reductions from
t to its WHNF using only necessary reduction steps (see also [SSPS95]).

Lemma3. Lett be a ground A-expression with @ WHNF and let t be reducible to s in one
step. Then we have

i) nr#(t) > nr#t(s)
ii) If the reduction was a necessary one, then nr#(t) > nr#(s)

iii) If t' is a necessary redex in t, and t' is different from t, then nr#(t') > nr#(t)

For a proof of this lemma see ([SSPS95]).

The defined notion of w-equality is a sensible one, i.e., it is an equivalence relation and
substitutivity holds:

Theorem 4. The relation = and =, have the following properties

i) We have = O =p11
ii) All =y are equivalence relations. Thus =, is an equivalence relation

iii) We have substitutivity: Let d and e be ground expressions. Then d =, e implies that

for all term contexts C[.] we have C[d] =, C|e]

Proof. We prove only substitutivity: Suppose this is false, then there is an n-ary term context
C[.], some expressions d; and ¢;,¢ = 1,...,n, and a number &k such that d; = e; for all ¢,

and Cdy,...,d,) #r Cler, ..., €n].
We select a counterexample, such that k£ is minimal.

We have k£ > 0. We can assume that C[dy,...,d,] has a WHNF, since it is not possible
by assumption that both Cley,...,e,] and C[dy,...,d,] do not have a WHNF. We select a
counterexample with smallest number nr#(C[dy,...,d,]).

We can assume that the body of the supercombinator that represents C[.] contains only the
argument variables as symbols.

If Cldy,...,d,] is not in WHNF, then consider some necessary redex.

If this redex rg is not the whole term Cldy, ..., d,], then this redex is not within some d;,
since then we can construct a smaller counterexample by simply reducing d;. The interesting
case is that the redex ry can be viewed as constructed by some term context with arguments
among the d;, and we can identify a corresponding subexpression r. in Cley,...,e,]. Lemma
3 shows that nr#t(ry) is strictly smaller than that nr#(Cldy, ..., d,]), hence we derive that
re =) Tq. We can construct a new term context €’ instead of ' that has a new hole
at the redex ry. Using the induction assumption and reducing once rg, we get a smaller
counterexample.

Hence Cldy,...,d,] is a (necessary) redex.

There is some j, such that d; is the head of a necessary redex. Without loss of gener-
ality, we assume that j = 1. By definition and assumption, we have C[dy, eq, ..., €,] =k
Cley, €2, ...,€e,]. Hence by transitivity of =j, we can choose as new counterexample the

expressions C'[dy, dsy,...,d,] and C[dy, e, ..., ¢€,]. Thus we can assume that d; and e; are
identical expressions. If there are some strictness restrictions that arguments of dy must
be in WHNF, then we can argue as above that there are corresponding subexpressions in
Cldy,...,d,] and C[dy,ey...,e,]. These form a smaller counterexample, since the corre-
sponding subexpression in C[dy,...,d,] must be in WHNF, since the expression itself is a
redex. Now the reduction is a supercombinator application without strictness restrictions,
and the same reduction can be performed in both expressions. We perform one reduction
step, and get a new context and a smaller counterexample.

Now we have the case that C[dy,...,d,] is in WHNF.

Without loss of generality we can assume that d; is the head of the expression. We can

use transitivity of =, and generate (as above) a new counterexample, Cld;,ds...,d,] and
C[dh €2y 00y €n].

If Cdy,...,d,] is in CWHNF, then we have also that C[dy,es...,€,] is in CWHNF, and
there are corresponding arguments in C[dy,...,d,] and C[dy, e, ..., €,] that form a smaller

counterexample for k — 1.

If Cldy,...,d,] is in WHNF, but not in CWHNF, then neither C[dy,...,d,] nor
Cldy, ez, ..., e,] are in SCWHNF and we have the application case. There is some a, such
that (Cldy,...,d,] a) #r—1 (C[dy, €z, ...,€,] a). Thus we can construct a new term context
for smaller k, and thus get a contradiction to minimality of k.

The cases are exhausted, and we have reached the final contradiction.
Analysing the proof, we have also shown that the following holds:

Lemma5. For every n-ary term context C[.], and expressions d;, e;,i = 1,...,n, and every
number k, we have that d; =, e; for all ¢ implies (Cley, ..., e,]) =k (Cldy, ..., d,]).

Now we can prove a characterisation of w-equality. Let s and ¢ be expressions. We say that
s and t can be distinguished by contexts, s #.., t, iff there is some context C/[.], such that
one of the following holds:

C[s] reduces to 1, whereas C[t] reduces to 0.
C[s] reduces to 1, whereas C[t] is undefined.

C[s] is undefined, whereas Ct] reduces to 1.
Theorem 6. Let s and t be two ground expressions. Then s =, t iff not s #eopn t

Proof. 1If s =, t, then Theorem 4 shows that s and ¢ cannot be distinguished by contexts.

For the other direction assume that there are s and ¢, such that not s #.., t, but s #,, ¢
holds. Then there is some counterexample with minimal k, such that not s #., t, and
S 7ék t.

We can assume that one of s or ¢ has a WHNF. If neither s nor ¢t has a SCWHNF, then
we can find some ground expression z, such that (s z) #,_; (¢). Since these expressions
also satisfy (s @) #eon (t @), we have a smaller counterexample. Hence one of s or ¢ has a

SCWHNEF.

If both s and ¢t have an SCWHNF ¢ sy...s, and ¢ s1...s,, respectively, then there is
some index j, such that s; #;_y t;. It is obvious, that the constructor and the number
of arguments must be identical. Using a context of the form caser s..., such that the
corresponding function in the case-expression projects the j** component, we see that also
(sj @) #con (t;), hence we would have a smaller counterexample.

Without loss of generality, the last case is that s has a SCWHNF, whereas ¢t has no SCWHNEF.
But then we can construct a context that exhibits a different behaviour: We construct a case-
expression, where s is cased, but the function corresponding to the constructor yields a 1.
Then our operational semantics shows that application of this expression to ¢ yields Bot.

We consider the relation of w-equality to the observational equality of ([Mor68], [Abr90]).
Let =, be the equality that is defined as follows: s and t are equal w.r.t. =, if for all

contexts C[.], C[s] has a WHNF iff C[¢] has a WHNF.
Theorem 7. Let s and t be ground expressions. Then s =4, t implies that s =, t.

Proof. Assume the theorem is false. Then there are two expressions s and ¢, such that for all
contexts C[.], we have that C[s] has a WHNF iff C'[t] has a WHNF, but there is some context
D, such that the condition on distinguishing expressions for =, does not hold. The only
possibility is that D[s] reduces to 1, whereas D[t] reduces to 0. However, it is no problem
to construct a context using a case that terminates for 0, but does not terminate for the 1.
This is a contradiction.

Now we have also an analogue to the “full abstraction theorem” in [Abr90]

Corollary 8. Let ~ be the largest binary relation on ground expressions, such that sub-
stitutivity holds, i.e., for all program contexts C[.] and all expressions d,e, d ~ e implies
C[d] ~ C[e]. Furthermore, 1 ~ 0 and 1 ~ Bot is false. Then ~ = =,

Proof. Let d ~ e. Then substitutivity shows that d #.., e, holds, too. But then we have
d =, e by Theorem 6.

The results of [How89] cannot be directly applied, since a WHNF may start with a supercom-
binator, and this form is not compatible with the results in [How89], since it is not possible

to extract the arguments. If we translate our language into the lambda-calculus with con-
structors, and define a different notion of canonical, then the observational equivalence in
[How89] appears to be the same as w-equality.

For the calculus CPE we need a definition for comparing w-equal expressions with respect
to their length of normal-order reductions to WHNEF. In order to have substitutivity, the
comparison has to be done arbitrarily deep.

Definition 9. Let s and ¢ be ground expressions, such that s =, t. Then

® s >, tif either s and ¢ have no WHNF, or s and ¢ have a WHNF and nr#(s) >
nr#(t).

® 5>, tif one of the following holds

— s and ¢ have no WHNF

— 5§ >,,0 t and both s and ¢ have a CWHNEF con s;...s,, and con ¢ ...1,, respec-
tively, and s; >, 1 t; forall e =1,...,n.
— 5 >,,0 tand both s and t have a WHNF, but no SCWHNF, and (s z) >, x—1 (¢ z)

for all ground expressions z.

o 5>, ,tiff s>, tforall k> 0.

In a later section, we will give a non-trivial sufficient criterion for two terms being in this
relation using a variant of the tableau calculus.

Lemma10. The definition above defines a sensible ordering:

o The relation >, ., is transitive.

o Furthermore, for every program context C[.], we have that s >, t implies C[s] >,

CI1]

Proof. 1t is easy to prove transitivity, hence we omit the proof. We prove the second claim.

Assume, the second claim is false. Then the following holds. There are some d; and ¢;, and
some k, such that d; >,, » €; for all ¢, but not C[dy,...,d,] >nr 5 Cleq, ..., €3]

Theorem 4 shows that w-equality holds. Definition 9 shows that both Cldy,...,d,] and
Cley, ..., e,] have a WHNF. We select k as small as possible, as second and third component
of a measure we select nr#(Cl[dy, ..., d,] and then nr#(Cley,...,e,] minimal.

We can proceed in almost the same way as in the proof of Theorem 4 to reach a contradiction.

10

4 Set Descriptions

The calculus needs a description method for sets of expressions that restricts the possible
instantiations of variables. We separate the complications that stem only from the set de-
scription method from the calculus part and thus give some abstract properties that a set
description methods should have.

Examples for set descriptions are types, where for example list(«) denotes the set of all
list-expressions. Another example for a set description method are the evaluation contexts
in [SSS96], which can represent the set of all expressions without WHNF, the set of all lists,
and also the set of all finite lists.

Abstract set descriptions are assumed to be unary predicates. The following properties should

hold.

e For a set description S and a term s, If S(s) holds and s =, ¢, then S(¢) holds, too.

e There are the predicates Bot and Top with the meaning that for some expression s,
Bot(s) is true, iff s has no WHNF, and that Top(s) is always true.

Ezxample 2. Some interesting set descriptions are those, which describe certain kinds of lists.
For example, the set of all lists, finite lists, or infinite lists, respectively, can be recursively
described as follows

lists = Bot + Nil 4 Top : lists.
finlists = Nil + Top : lists.
n flists = Bot + Top : lists.

The mechanism of set descriptions shall also be used for abstract expressions. In general, the
variables in the abstract expressions have to be restricted in some way. This will be done by
set-environments which are written in the form {S(z1),...,Sx(z,)}.

Definition 11. We define substitutions and instances.

A raw substitution o is a mapping from variables to A-expressions. This mapping will
also be applied to abstract A-expressions by o ¢ = cif ¢ is a constant, and o (f a) =

(@(f) (o(a)))

o A ground substitution o is a mapping from variables to ground A-expressions.

A ground instance of a A-expression e is a ground A-expression that is derived by
applying a ground substitution to the expression.

e Given a set-environment U, a substitution ¢ is said to be compatible with U (U-
compatible), iff for all variables z, if S(z) is in U, then we have S(o(z)).

11

e A U-compatible ground instance of some A-expression e is a ground term o(e), where
o is a U-compatible substitution.

Now we can define the semantics of an abstract expression s given a set-environment U/. This
is defined as the set yy7(s) = {o(s) | o is a U-compatible ground substitution.}

We apply the set-description S also to abstract expressions ¢ given a set-description U. We
say S(t) holds w.r.t U, if for all U-compatible ground instances ¢’ of ¢, we have S(t').

A substitution ¢ that instantiates abstract A-terms for variables is said to be U-compatible
for a given set-environment U, if for all variables 2: S(z) in U implies that S(o(z)) holds
w.r.t. U.

We also require an algorithm for computing a term covering on the set descriptions: tcov(5)
should return a set of expressions R (the covering), and a set-environment U for the new
variables contained in the expressions in R. The expressions in R may be Bot, or expressions
of the form (c zy...2,), where ¢ is a constructor and the variables are new ones. The

following condition should hold for tcov(S) = (R, U) :

{t|t is ground and S(t)} =, U,epyu(r).

The set-environment Bot has as term covering only the constant Bot. We also assume that
whenever a variable is constrained by Bot, this variable can be replaced by Bot. The set-
environment Top has a term covering consisting of Bot, and of all possible terms of the
form (con x;...z,), where con is a constructor of arity n, and the new variables have a
set-environment Top.

5 Equality Tableaux

In this section we will define the deduction calculus, which we will call CPE (calculus for
program equivalence).

In general we are not interested in comparing non well-typed expressions. A type systems
ala Milner/Mycroft for functional languages could be used as a safe method to recognise
well-typed expressions and functions.

Definition 12. An EQ-tableau is a pair (T,U) of a tree T" and a set-environment U. The
nodes of the tree are marked with pairs (s,t) where s and t are A-expressions. The pairs are
denoted as s = t.

Furthermore, the edges are either unmarked or marked with “R” (for necessary reduction
of the right hand expression) or “L” (for necessary reduction of the left hand expression) or
“C” (for constructor reduction) or “F” (function equality test). Leaves may have a second
label “loop” or “bot=bot”.

12

Let s and t be abstract expressions. An equation s =t at some node in an EQ-tableau holds
(w.r.t. w-equality), iff for all U-compatible ground substitutions o: o(s) =, o(t) holds.

An EQ-tableau is sound iff for every (inner) non-leaf node N: If all the equations at the sons
hold, then the equation at the node N holds.

An EQ-tableau is complete iff for every (inner) non-leaf node N and all U-compatible ground
substitutions: If o(s) =, o(t) for the equation at the father node, then there is some son
with equation s’ =, ¢/, and a U-compatible substitution ¢, such that o(z) = o¢’(2) for all
variables z € Var(s,t), and o'(s') =, o'(t').

Definition 13. If in an EQ-tableau all leaves are either marked with an equation of syntac-
tically equal expressions or have a label “loop” or “bot=Dbot”, then it is called closed.

Now we present the rules of the non-deterministic calculus CPE that is intended to construct
closed EQ-tableaux using rules which transforms EQ-tableaux into new ones. A new EQ-
tableau will always originate from an old one by extending a path with new leaves, and
perhaps the set-environment may be extended. Note that we do never extend leaves that
are marked with “loop” or “bot=bot”. An expansion rule is called sound (complete), if it
transforms sound (complete) EQ-tableaux into sound (complete) ones. In the following we
will present the expansion rules for the EQ-tableaux.

The important property is soundness, since this allows us to conclude that a closed tableau
is a description of a proof of w-equality of the root equation. Completeness of a tableau can
be used, if we want to derive that the root equation is not w-equal.

5.1 Reduction Rules

The common way of extending an EQ-tableau is to perform a reduction step on a leaf and
to add the result as a direct son. This enables us to reduce expressions with the same
d—reduction as in the ground case. The general situation for the reductions is that there is
some leaf and in one of the terms there is some redex that will be reduced. The EQ-tableau
is then extended with a new leaf marked by an equation, where the redex is replaced by its
reduct. The new edge is marked with “R” or “L”, if the redex is a necessary one in the right
or left expression of the equation, respectively.

Lemma14. The expansion rule in this section is sound.

Proof. This holds, since w-equality is defined based on the reductions using the operational
semantics and the supercombinator definitions.

5.2 Casing a Free Variable

Suppose we have a leaf marked with C[(cases)], where 2 is a variable, and S(z) occurs in
U. Let (R,Us) = tcov(S) be the term covering of S.

13

Then a new EQ-tableau is constructed by extending the EQ-tableau at this path with a leaf
for every term r in R. The sons are constructed by replacing & by r. The new set-environment
Us is added to the global set-environment.

The edges will not be marked.
Lemma15. The expansion rule in this subsection is sound and complete.

Proof. Soundness: Assume that the equations at the sons hold, then we have to show that
the equation at the father node also holds. Let s = ¢ be the equation at the father node,
let ¢ be a U-compatible ground substitution. Consider the instantiation o(z) for z. Let
tcov(S) = (R, U;) be the term covering, and let U' = U U U, and there is some r € R, such
that there is an extension o’ of o, such that ¢’ and o differ only in the (new) variables of
r, o' is u'-compatible, and o(z) =, o’(r). There is some son with equation s’ = ¢, where s’
and ¢’ are constructed by replacing z by r. We have o(s) =, ¢/(s') and o(t) =, ¢'(t'). Since
the equation at the son holds, the equation at the father node holds, too. This can be done
for all U-compatible substitutions o, hence the equation at the father holds.

Completeness: Assume the equation s =t at the father node holds. Let ¢ be a U-compatible
ground substitution, such that o(s) =, o(t). Then using the properties of a term covering,
we can find some r, and an extension ¢’ of o, such that o(z) =, o’(r). The equation at the
corresponding son then holds under o’.

5.3 Adding Arguments

If there is an equation d = e, and for d and e we have that they are either in
WHNF, but not SCWHNEF, or equal to Bot. Then add a new leaf marked by
(d z) = (e z) and add Top(z) to U, where z is a new variable. The edge has to
be marked with “F”.

Adding arguments is sound and complete, which follows from the definition of w-equality.

5.4 Approximations

Let t be a subexpression of some term of the equation in some leaf node. Then
the new leaf of the EQ-tableau can be derived from the old leaf as follows: Let z
be a new variable. Replace all subexpressions in the pair which are syntactically
equal to ¢t by x. If we can compute some set description 9, such that S(¢) holds,
then we add S(z) to U.

The edge will not be marked.

The soundness of approximation is obvious, since all instances of the old leaf are instances
of the new leaf. However, completeness may be lost.

14

The computation of S(¢) is not made explicit in this paper. It has to be done in the description
of the module that handles the set descriptions.

5.5 Constructor Decomposition

If there is a leaf marked by con dy...d, = con ¢;...¢,, then add n leaves marked by the
equations d; = e;. The edges will be marked with “C”.

It is obvious by the definition of w-equality, that this rule is sound and complete.

5.6 Function Decomposition

If there is a leaf marked by f dy...d, = f e1...e,, where f is some expression, then add n
leaves marked by the equations d; = e;. The edge is not marked.

This rule is sound, but in general not complete.

5.7 Expression replacement

If there is a leaf marked by d = e, where d can be written as C'[d'], and there is an expression
d", such that d' =, d”, and for all U-compatible substitutions o, we have o(d’) >, o(d").

Then a new leal can be added, where d’ in d is replaced by d”

This rule is sound and complete. The extra condition on the length of a normal order
reduction is not effective, but we will show in section 5.13 how this property can be established
using a variant of the CPE-calculus.

5.8 Loop-detection

There is a rule called loop-detection for discovering loops in the evaluation.

Suppose we have a leaf that is marked with t; = 9, such that ¢; or ¢y is not
in WHNF. If there is some ancestor node marked with e; = e, such that there
is some U-compatible abstract substitution o and o(e; = e3) is syntactically

equal to t; = t9, and on the path from that node to the leaf one of the following
possibilities holds:

e There is an edge that is marked with “L” and an edge marked with “R”.
e There is some edge marked with “C”.

e There is some edge marked “F”.

15

Furthermore, if a function decomposition is on the path, then there must also be
an edge marked “F” or “C” on the path.

Then the leaf will be marked “loop”.

We will call the upper node for a leaf the corresponding looping node.

5.9 Bot Detection

The rule in this subsection is intended to detect situations of the form 1=1.

Suppose we have a node N, such that for all descendant leaves the following holds.
For every leaf (marked with ¢, = t¢3), there is a (“looping”) node marked with
€1 = e that is on the path from N to that leaf and the following holds:

The expressions t; and ¢ are not in WHNF. Furthermore there are necessary
redexes r; in t; for i = 1,2, such that there is some U-compatible abstract substi-
tution o and o(e;) = r; for i = 1,2. Furthermore the following holds:

i) On the path from the looping node to the leaf there is an edge that is marked
with “L”, or rq is a proper subterm of £, or ¢y is equal to Bot.

ii) On the path from the looping node to the leaf there is an edge that is marked
with “R”, or rg is a proper subterm of {5, or {5 is equal to Bot.

The only permitted expansion rule on this path are reduction, casing free vari-

ables, expression replacement and approximation.

If this holds for all the leaves below N, then all leaves below N will be marked
“bot=bot”.

5.10 Failure Rules

There are situations, where the EQ-calculus is unable to prove equivalence by further ex-
panding the tableau:

e There is a leaf with equation d = e and d and e are in CWHNVF, and the constructors
are different, or the number of arguments are different.

e There is a leaf with equation d = Bot or Bot = d and d is in CWHNF.

e There is a leaf with an equation where one term is in SCWHNLF and the other one is

in WHNF.

16

5.11 Soundness of CPE

In this section we prove the soundness of the calculus, i.e., we prove that if an EQ-tableau is
closed, then the two terms at the root are w-equal. In the following the notation py, and pr
is used for the left and right term in an equation p.

Lemma16. Let p be an inner node in an EQ-tableau. Assume, that the equations at the
sons hold w.r.t. =.

If the sons are constructed using constructor decomposition or adding arquments, then the
equation at the father holds w.r.t. =piq. Otherwise, the equation at the father holds w.r.t.
:k.

Proof. In the case of constructor decomposition this follows from the definition of =;. In
the case of adding arguments, the preconditions of this rule guarantee that the definition of
w-equality can be applied. In the other cases, the claim follows by refining the soundness
proofs for the rules. In the case of function decomposition, we have to apply Lemma 5.

Theorem 17. Let p be the equation pr, = pr in A, and let U be a set-environment for the
variables in p. Let there be a closed EQ)-tableau with the equation p at the root.

Then the equation pr, =, pr ts valid w.r.t U.

Proof. Assume that the theorem is false. Then the equation at the root does not hold, i.e.,
there is a U-compatible ground substitution 7, such that 7(pr) #. 7(pr). We choose a
node with the smallest possible k, such that the equation at this node does not hold w.r.t.
=k. Lemma 16 shows that for every non-leaf node, there is some son with an equation that
is also #; for some instance. Hence there is some leaf in the tree, such that the equation
at this leaf does not hold w.r.t. =;. Since the tableau is closed, this leaf must be marked
“loop” or “bot=bot”.

First we treat the case that the label is “loop”.

Let ¢ be the equation at this leaf and let & be a U-compatible ground substitution, such that
o(qr) #k o(qr)-

We can select o, such that one of the instances o(gr) or o(gr) has a WHNF. We make a
further minimisation among the witnessing leaves such that as second and third component
of the lexicographical ordering, we minimise the number of necessary reductions to a WHNF
of the left term and then of the right term. If one of the terms has no WHNF, then we
assume the component is co. As fourth component we take a leaf with minimal distance of
its looping node from the root.

Since the chosen leaf has a label “loop”, o(q1,) = o(qr) is also a concretisation of the equation
in the looping node N of this leaf. There is a path starting with NV, such that the equations at
every node on this path do not hold w.r.t. =. Since the proof requires that the minimality

17

is preserved, we must have a closer look at the different rules that may be applied along the
path. There cannot be any C-edges or F-edges on this path, since otherwise we could find
a node (and hence also a leaf) with a concretisation that is not equal w.r.t. =;_1, which is
a contradiction to minimality of k. Approximation and casing free variables do not change
the instances, and also uniquely determine the next node on the path. Since a function
decomposition on a looping path enforces that there is also a “C” or an “F”-edge, a function
decomposition does not appear on the path.

This path leads to a further leaf N, marked with the pair r that has instances that are not
=k-equal. If the leaf N, has as label “bot=Dbot”, then we can use the arguments for this case
(see below).

If the leaf N, has as label “loop”, then we have to check the length of normal order reductions
of concretisations. All the now possible expansion rules do not increase the number of normal
order reductions, but may decrease them. For the rule “replacement of expressions, this is
shown in Lemma 10. Since an L-edge or an R-edge corresponds to a strict decrease of one
of the normal order reduction lengths, there are either no R-edges or no L-edges on the path
from N to N,, since otherwise we have a smaller witness w.r.t. the length of normal order
reductions. By definition of looping node, the new leaf N, must thus have a looping node
that is above the node N. But then we have a contradiction to the minimality of the fourth
component of our measure.

Now we treat the case that the label at a minimal leaf is “bot=bot”.

We use the same notation as in the other case. The assumption that the theorem is false
implies that we can find a U-compatible instance of the equation at the leaf, such that the
equation does not hold, and hence one expression has a WHNF. Then we minimise the
number of necessary reductions to a WHNEF of the left term and then of the right term by
selecting among all such leaves. If one of the terms has no WHNF, then we assume the
component is co. Now the pair of necessary redexes at the leaf is a concretisation of the
equation at the looping node. The preconditions for applying the Bot-detection rule enforce
that there a path leading from the looping node to a further leaf also labelled “bot=bot”.
Lemma 3 shows that the minimality assumption cannot hold. The only possibility is that
both terms are semantically L, which is the intended contradiction.

5.12 Strategies and Heuristics

Since the calculus CPE is non-deterministic, in general there are many different possibilities
to continue the construction of the tableau. We will give some hints on a strategy and some
heuristics that have a good chance to result in a closed tableau.

e In the rule “reducing an expression”, it is sensible to reduce the expression only, if it
is not in WHNF. Furthermore, it is preferable to reduce only necessary redexes. There
may be a choice whether the left or right term is to be reduced first. It is not clear
which one should be reduced faster. The examples show that a fair strategy gives good

18

results.

e Casing a free variable is in general ony sensible, if the case expression becomes a
necessary redex after the instantiation.

e Approximation for a term ¢ should be applied only in the case that a necessary redex is
of the form : casey t e...€,. In general this rule is applied in connection with casing
free variables.

e constructor decomposition should be done immediately.

e function decomposition should be done with care, since it has a high potential of being
imcomplete.

e The detection rules should be applied as early as possible, though there may be a run
time penalty.

e Expression replacement requires some external control.

The failure rules may also be used to show that the expressions at the root are not w-equal,
which is only the case, if all rule applications in the tableau are complete, and all leaves are
failure leaves.

5.13 A calculus for >, ,

It is obvious that if an expression s can be reduced to ¢, then s >, t, and we can apply
expression replacement.

A method to prove s >, , t is to construct a closed CPE-tableau for the two equation s =¢
and to analyse the tableau. For this we have to make some restrictions on the construction
of the tableau. There should be no function decomposition. Furthermore, on the right hand
side, there should be only necessary reductions and no expression replacements.

In the tableau we have to identify special nodes, called M-nodes. These are defined as: i)
the root, ii) nodes where left and right term are in WHNF', iii) nodes where a constructor
decomposition has been applied, and iv) EQ-leaves that are not labelled Bot = Bot. For the
paths we assume that for “loop”-leaves, the path is continued at the looping node. A path
is called cyclic, iff there is no M-node between the “loop”-leaf and its looping node.

The following paths should obey the restriction that the number of “L”-marks on edges is
not less the number of “R”-edges:

e All non-cyclic paths from an M-node to all the descendent M-nodes.

e For a cyclic path, the part between the leaf and the looping node.

We give a proof of correctness of this method:

19

Proposition 18. Let s and t be two expressions and let U be a set environment, such that
there is a closed EQ)-tableau, and the conditions above hold.

Then for all U-compatible instances s’ and t' of s and t, respectively, the relation s’ >, , t/

holds.

Proof. Assume that the proposition is false. Then there is a counterexample with root s = ¢,
and U-compatible instances s’ and t’ of s and ¢, respectively. We select the counterexample,
such that s =, t, but not s’ >,, ; t’. The instances s’ and ¢’ have a WHNF', since otherwise
they are in the relation >,, . . As second and third components we select nr#(s’) and then
nr#(t’) as minimal. Now consider a path from the root, such that there is a corresponding
path for the instances s’ and t’. If the path in the EQ-tableau reaches a WHNF for the
right and left hand side or an EQ-leaf, then the conditions above show that a smaller coun-
terexample w.r.t. the lengths of reductions can be constructed. The path cannot reach a
“bot=Dbot”-leaf, since the instances have a WHNF. A cyclic path is not possible, since then
we can find a smaller counterexample.

There are no other cases, hence the proposition is proved.

FErample 3. We give a non-trivial example for two expressions that are in the >, ,-relation.
We use the following definitions:

append xs ys = lcase xs ys (consappend ys)
consappend ys z zs = z : (append zs ys)
We show that append xs ys >, xs, if it is known that zs is an infinite list.

We build a closed tableau for the equation append xs ys = xs where the set environment
consists of in flist(zs).

append s ys = s
lcase xs ys (consappend ys) = s
— rs = Bot
Bot = Bot
—as=z:zs, inflist(zs)
consappend ys z zs = z:zs
z : (append zs ys) = z:zs

—one leafis z = 2
append zs ys = zs

This closed tableau satisfies the conditions and thus shows that append xs ys can be replaced
by xs in any CPE-tableau, if zs is an infinite list.

5.14 Examples

We demonstrate the effect of the calculus CPE on small examples.

20

Erample 4. Assume we have the function f defined as f x y = = : y. Then we can easily
construct a tableau that proves that f and : are equal: We start with f = :. Then we add an
argument getting f @ = (« :) and as set-environment Top(z). The next stepis f 2 y = (2 : y)
with set-environment {Top(z), Top(y)}. One reduction step gives z : y = (z : y), which is an
equation of syntactically equal terms.

FEzxample 5. Terms of a different type can be equivalent: Assume we have the functions f, g
defined as f @ = f (f) and ¢ © = ¢g z. The initial equation f z = g 2 gives a new leaf
f(f) =g a. Approximating (f x) by y gives f y = g z, which in turn again gives a further
leaf f (f y) = ¢ . Since we have L-edges and R-edges, we can close the tableau.

FEzxample 6. We show that two differently defined fixpoint combinators Y and F are w-equal.
Let the definitions be:

Y f=fY)
D fa=f(z 2)
Ff=mHD)

We start the tableau with YV = F.

Y = F
Y f = Ff

Y f = (D NHWD)
fY f) = D NHDYS))
Y f) = (D NHWD)

The last equation has an identical ancestor, and there are L.- and R-edges on the path. The
global environment is U = {Top(f)}, which has no influence. Thus this tableau shows that
Y and F are w-equal. It is noteworthy that D cannot be typed in the Milner/Mycroft type
system. As a generalisation, it is obvious that all fixpoint combinators are w-equal.

FEzxample 7. This example should demonstrate that the use of set environments is necessary
for the correctness of the calculus. Let ID be the combinator defined by ID z = z. If we
consider the initial equation ID xs = lcase xs Nil (:), then a naive version of CPE might
conclude as follows:

21

ID zs = lcase zs Nil (:)
xs = lcase zs Nil (:)
There are three cases.

i)

Bot = lcase Bot Nil (:)
Bot = Bot

i)
Nil = lcase Nil Nil (:)
Nil = Nil

iif)
Y ys = lcase y:ys Nil (:)
y:rys = ()yys
y:ys = y:ys

This would prove that ID zs is w-equal to lcase xs Nil (:), which is not true, since ID
accepts also other arguments than lists. The calculus CPE prevents this error by requiring
for example a set environment {lists(xs)}, which would make the tableau above correct. The
interpretation is then that for all the correct instances of zs, i.e., for all lists, the equation

holds.

FEzxample 8. We give an example demonstrating the power of the calculus CPE. The compu-
tation does not show the labels at the edges. Since almost all reduction steps are at necessary
positions, every reduction will mark the edges with label “L” or “R”. In several cases, we
make more than one reduction in one step. We do not show the set-environment for [or for
y. It is possible to use Top for [and y, since the covering expressions that lead to a non-
well-typed term behave equivalent for the right and left expression, and the 1-case subsumes
these non-well-typed cases.

We show that filter p (map f l) is w-equal to map f (filter (po f) l). Using the
Milner /Mycroft-type system, the type of both expressions as functions of three arguments
p, f,lis (o« = Bool) — (f — a) — [] = [a].

Let the function definitions be:

filter p as = lcase as Nil (fil2 p)

fil2paas=if (pa) (a : filter pas) (filter p as)
(fogle=F(g2)

map f as = lcase as Nil (map2 f)

map2 fbbs=(fb) : (map f bs)

For simplicity we assume that map is defined to be strict in its second argument. It is no
problem to construct a tableau also for the map-function without defining the strictness, as
can be seen by replacing the right hand side map in the tableau by lcase...

Now we develop the closed tableau.

22

filter p (map f 1)
filter p (1case [Nil (map2 f))
lcase (lcase [Nil (map2 f))

Nil (fil2 p)

— Casing the free variable [.

map f (filter (p Of) l)
map f (lcase I Nil (fil2 (p o f)))

1) [= Bot
lcase (lcase Bot...) ... = map f Bot
Bot = Bot

2) [= Nil
lcase (lcase Nil Nil ...)Nil... = map f Nil
Nil = Nil

3)l=a:as
lcase (lcase (@ :as) Nil
(map2 f)) Wil (fil2 p)
lcase (map2 f a as) Nil (fil2 p)

ilter p (map f as))
(filter p (map f as))

map f (lcase (a:as) Nil
fil2 (p o f)))

map f (if (p(f @)
(a : (filter (p o f) as))
(Filter (p o f) as)

— Approximation y = p(f a)
ify(fa): (filter p(map f as))
(filter p (map f as))

map [(ify (a : (filter (po [f) as))
(filter (p o f) as))

Casing y:

1.1 y = Bot
Bot = map f Bot
Bot = Bot

1.2 y =true

(f a) = (filter p (map [as))
(f a) = (filter p (map [as))
— constructor decomposition

(filter p (map f as))
closed with [= as

map f (a: (filter (p o f) as))
(f a): (map | (filter (p o f) as))

map f (filter (p o f) as)

1.3 y = false

(filter p (map f as))
— closed with [= as

map f (filter (p o f) as)

23

FEzxample 9. We show how the example mentioned in the introduction can be reduced to an
induction proof. Assume the following definitions for length, rev, and append:

length xs = lcase xs 0 conslength
conslength y ys = 1+ (length ys)

rev s = lcase xs nil consrev

consrev y ys = append (rev ys) (y : Nil)
append xs ys = lcase xs ys (consappend ys)
consappend ys z zs = z : (append zs ys)

We will start with the initial equation (length (rev xs)) = (length xs), where the set envi-
ronment is U = {lists(zs)}. Let us distinguish the two cases that s is a finite or an infinite
list (see Example 2). Thus we can split the task into two different cases U = { finlists(ys)}
and U = {inflists(ys)}.

The case of a finite lists can be handed over to a module that is able to perform usual
induction ([BMS88, Wal94]).

Some experimentation with CPE shows that it seems to be impossible to prove the claim
for finite lists using the built-in closure criteria. Hence for finite lists or other finite data
structure, there are simple equations that can only be proved with an extension of CPE,
where for parts of the tableau, other size measures are permitted, for example the length of
the list (see also next section 6.)

Let us consider the case of infinite lists, where U = {in flists(xs)}.
(length (rev xs)) = (length zs)

Computing the covering yields that there are the two cases s = Bot and zs = y : ys.
The first case can easily be treated. The second yields the following equations, where ys is
constrained to be an infinite list.

(length (rev (y:ys))) = (length (y :ys))

(length (append (rev ys)(y : Nil))) = 1+ (length ys)

It is easy to see that after two reduction steps, (rev ys) becomes a necessary redex. The
same holds for the expression (length ys) on the right hand side, hence we can apply the
Bot-detection rule, and get a “bot=bot”-leaf.

In summary we get a closed tableau, hence the equation holds.

6 Extensions of CPE

There are different extensions of the calculus CPE, which improve the strength of the calculus.
We exhibit two extensions by induction and an improvement of case analysis, but do not give
a formal treatment.

24

6.1 Induction using a size measure

Example 9 shows that there are simple inmduction proofs that cannot be constructed by
CPE. The following extension permits to add such size-based induction proofs.

The idea is to mark certain nodes as inductive nodes. The subtableau rooted at this node
requires a different treatment than the rest of the tableau. A requirement is that the set
environment yields a measure for some free variables in the inductive node. For example
finlists(xs) implies that zs can be measured by the length of the list. This measure may
be also be more complicated and may also be defined on more than one free variable. In
order to apply the measure, the edges that are constructed for “Casing free variables” must
remember the replacement for the free variable.

All expansion rules are permitted below the inductive node. There is a new expansion rule,
where subexpressions are replaced using the induction hypothesis, which is the equation at
the inductive node used as pattern. This “Application of induction hypothesis” is allowed, if
some node in the inductive tableau contains somewhere a subexpression that is an instance of
the right or left hand side of the induction hypothesis, and furthermore the instance is smaller
than the expression at the inductive node w.r.t. the chosen ordering. The subexpression can
then be replaced by the corresponding instance of the other side. Formally, this is like term
rewriting.

For the closure rules there are now some restrictions:

The “bot=bot”-rule can only be applied, if there is no application of the induction hypothesis

between the leaves and the looping node. The reason is that applying the induction hypothesis
may conflict with the number of reductions.

The “loop”-rule requires that in case that the induction hypothesis is applied on the path
between the leaf and the looping node, the conditions on “C” and “F”-labels holds.

Now let us try again the length(rev zs)-example:

Fzample 10. Assume that zs is finite, i.e. U = { finlists(xs)}, and that the inductive node
is length(rev xs) = length xs. Then there are two cases: zs = Nil and zs = y : ys with
finlists(ys). The first case reduces to equal expressions. We develop the path for the second
case:

(length (rev (y:ys))) = (length (y :ys))

(length (append (rev ys)(y : Nil))) = 1+ (length ys)
It is not hard to show using CPE and an extra tableau, that for arbitrary lists as and bs, we
have length(append as bs) =,, length(as) + length(bs).

We can continue the tableau:

(length (rev ys) 4 length(y : Nil))) = 1+ (length ys)
Using induction:
length ys + 1 = 1+ (length ys)

25

The two cases are: ys = Nil and ys = z : zs. We consider the second one:

length (z : zs) + 1 = 1+ (length (z : zs))
(14 length (zs)) 4+ 1 = 1+ (14 length (zs))
1+ (length (zs) + 1) = 1+ (14 length (zs))
(length (zs) + 1) = (1+length (zs))

6.2 Improvement of case analysis

The “Approximation” rule in connection with “Casing free variables” rule has sometimes the
disadvantage, that on the same path two contradictory cases were selected, but CPE has
no possibility to detect this and may fail at this path. If this could be detected, then CPE
would have a better chance to close tableaux. The underlying idea of this improvement is
to remember the expression and the chosen value for this expression, such that in case we
have to make a case analysis for the same expression on the same path, we could use the
information.

We demonstrate the usefulness of the ideas by giving an example for a proof that the merge
of two finite sorted lists of integers is again sorted.

Fzample 11. We choose Haskell-like syntax [HPWT92] for the example.

sorted [| =
sorted [y] = True
sorted (y: (z:)) = (y < z) && sorted(z : zs)

merge [| ys =

merge xs [| = xs
merge (z : xs) (y :ys) = 1f(x < y) (v : (merge s (y : ys))) (y : (merge (
zs) ys))

We assume that the calculus has some knowledge about integers and the <-relation.

The tableau for proving that the merge of two finite sorted lists of integers is again sorted
starts with sorted xs && sorted ys = sorted(merge xs ys). It is interesting to note that the
claim is false for infinite lists. Consider s = [3,...] and ys = [2,1,..], which yields Bot on
the left hand side and False on the right hand side.

We assume the appropriate set environment that ensures that s and ys are finite lists of
integers.

26

sorted xs && sorted ys
1) zs = Nil
sorted Nil && sorted ys
sorted ys
2) xs = x : ass
sorted (z : xss) && sorted ys
2.1) ys = Nil
sorted (z : xss) && True
Can be closed after some steps.
2.2) ys =y : yss
sorted (z : xss) && sorted (y : yss)
2.2.1) (¢ <y) = True
sorted (z : xss) && sorted (y : yss)
2.2.1.1) zss = Nil
sorted (y : yss)

Using the assumption 2.2.1):
sorted (y : yss)

2.2.1.2) xss = x3 : x5Ss
sorted (x : o : xsss) &&
sorted (y : yss)

2.2.1.2.1) (z2 < y) = True

sorted (x : xy: asss) &&
sorted (y : yss)

After some steps, looping back to 2.2.1)

2.2.1.2.2) (z2 < y) = False
sorted (x : o : xsss) &&
sorted (y : yss)

sorted(merge zs ys)

sorted(merge Nil ys)
sorted ys

sorted(merge (z : xss) ys)

sorted(z : xss)

sorted(merge (z : xss) (y: yss))
sorted(z : (merge xss (y : yss)))

sorted(z : (y : yss))

sorted(y : yss)

sorted(z : (merge (x5 : xsss)
(y: ys9)))

sorted(x : x2 : (merge xsss

(y 2 yss)))

sorted(z : y : (merge

(22 : xsss) yss))

It is possible to deduce (z < x3) = True, hence we have a loop.

2.2.2) (z < y) =False
sorted (z : xss) && sorted (y : yss)

sorted(y : (merge (x : xss) yss))

Using an analogous scheme as for the case 2.2.1), we can close the tableau.

7 Conclusion

We have described an automatable calculus CPE that is able to prove behavioural (co-
inductive) equality of functions in a non-strict functional language. This shows that reason-
ing about program transformations and equality of functions processing infinite objects like

27

streams can be implemented, such that the tools can be used either by compilers to improve
efficiency and/or safety, or by a programmer to get some feed back on the properties of the
written functions.

The calculus can be used also for strictness analysis by abstract reduction. To show that
a function f is strict, we simply start with f Bot = Bot. This method can be seen as an
extension of the calculus described in [SSPS95], where we use free variables instead of Top
constants in the case of more than one argument.

We plan to implement the calculus in the near future. The implementation of a strictness
analyser described in [SSPS95] and the manually computed examples given in this paper
show that an implementation shall be able to prove non-trivial examples.

References

[Abr90] S. Abramsky. The lazy lambda calculus. In D. Turner, editor, Research Topics
in Functional Programming, pages 65—-116. Addison-Wesley, 1990.

[BMSS] R.S. Boyer and J.S. Moore. A computational logic handbook. Academic Press,
London, 1988.

[BWRS] Richard Bird and Philip Wadler. Introduction to Functional Programming.
Prentice-Hall International, London, 1988.

[Gor94] Andrew D. Gordon. A tutorial on co-induction and functional programming. In
Functional Programming, Glasgow 1994, Workshops in Computing, pages 78-95.
Springer, 1994.

[How89] D. Howe. Equality in lazy computation systems. In 4th IEEE Symp. on Logic in
Computer Science, pages 198-203, 1989.

[HPW™*92] Paul Hudak [ed.], Simon L. Peyton Jones [ed.], Philip Wadler [ed.], Brian Boutel,
Jon Fairbairn, Joseph Fasel, Maria M. Guzman, Kevin Hammond, John Hughes,
Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Will Partain, and John Peter-
son. Report on the programming language Haskell. A non-strict purely functional
language. version 1.2, 1992.

[Mor68] J.H. Morris. Lambda-Calculus Models of Programming Languages. PhD thesis,
MIT, 1968.

[MT91] R. Milner and M. Tofte. Co-induction in relational semantics. J. Th. Computer
Science, 87:209-220, 1991.

[Pit94] A.M. Pitts. A co-induction principle for recursively defined domains. J. Th.
Computer Science, 124:195-219, 1994.

28

[PJST]

[PJLI1]

[SSPS95]

[SSS96]

[Wad89]

[Wal94]

Simon L. Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice-Hall International, London, 1987.

Simon L. Peyton Jones and David R. Lester. Implementing Functional Languages:
a Tutorial. Prentice-Hall International, London, 1991.

M. Schmidt-Schauf}, S.E. Panitz, and M. Schiitz. Strictness analysis by abstract
reduction using a tableau calculus. In Alan Mycroft, editor, Static Analysis
Symposium 95, number 983 in Lecture Notes in Computer Science, pages 348—
365. Springer, 1995.

M. Schiitz and M. Schmidt-Schaufl. Constructing evaluation contexts. Technical
Report 1/1996, Fachbereich Informatik, Universitat Frankfurt, 1996.

P. Wadler. Theorems for free! In MacQueen, editor, Fourth International Confer-
ence on Functional Programming Languages and Computer Architecture, pages
347-359. Addison-Wesley, 1989.

Ch. Walther. Mathematical induction. In D.M. Gabbay, C.J. Hogger, and J.A.
Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming, volume 2, pages 127-228. Oxford university press, 1994.

29

