
Termination Proofs for a Lazy Functional

Language by Abstract Reduction

�draft�

Sven Eric Panitz

Fachbereich Informatik

Johann Wolfgang Goethe�Universit�at

Postfach �� �� ��

D�����	 Frankfurt

Germany

e�mail
 panitz�informatik�uni�frankfurt�de

June �
 ����



Contents

� Introduction �

� Termination Tableaux �

��� The Language of Discourse � � � � � � � � � � � � � � � � � � � � � � �

����� The Type System � � � � � � � � � � � � � � � � � � � � � � � �

����� Expressions and Super�combinator De�nitions � � � � � � � �

����� Semantics � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Abstract Expressions � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Termination Tableaux � � � � � � � � � � � � � � � � � � � � � � � � �

����� Expansion�rules � � � � � � � � � � � � � � � � � � � � � � � � 	

��rules � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

Abstract ��rules � � � � � � � � � � � � � � � � � � � � � � � � 	

Context Skipping and T�Introduction � � � � � � � � � � � ��

����� Closing a Tableau � � � � � � � � � � � � � � � � � � � � � � � ��

Simple recursive paths � � � � � � � � � � � � � � � � � � � � ��

Orderings � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

Overlapping recursive paths � � � � � � � � � � � � � � � � � �


����� Strategies and further enhancements � � � � � � � � � � � � ��

Approximated context�skipping � � � � � � � � � � � � � � � �


��� Termination for �� In�nite Arguments and Lazy�Termination � � �	

����� Forms for Arguments � � � � � � � � � � � � � � � � � � � � � ��

����� Forms for the Result � � � � � � � � � � � � � � � � � � � � � ��

����� Lazy�Termination � � � � � � � � � � � � � � � � � � � � � � � ��

��� Basic Values � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�



��� Functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Functions of basic types � � � � � � � � � � � � � � � � � � � �


����� Functions of algebraic arguments and basic results � � � � � �	

����� Functions of algebraic results � � � � � � � � � � � � � � � � ��

� Ordering Tableaux ��

��� Linear Orderings � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Ordering Tableaux � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Normalizing ordering propositions � � � � � � � � � � � � � � ��

����� ��rules � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Deletion and Addition � � � � � � � � � � � � � � � � � � � � ��

����� Splitting � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Tautology nodes � � � � � � � � � � � � � � � � � � � � � � � ��

����� Approximation � � � � � � � � � � � � � � � � � � � � � � � � �


����
 Induction Step � � � � � � � � � � � � � � � � � � � � � � � � �


����
 Partial Correctness � � � � � � � � � � � � � � � � � � � � � � �


����	 Strategies � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ Functions � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ Total Correctness � � � � � � � � � � � � � � � � � � � � � � � ��

��� Ordering and Termination Tableaux � � � � � � � � � � � � � � � � � ��

����� Ordering propositions for use in termination proofs � � � � ��

����� Termination proofs with ordering tableaux � � � � � � � � � ��

����� Ordering tableaux and ordering tableaux � � � � � � � � � � ��

� Conclusion ��

A Example Proofs ��

A�� First Order Functions � � � � � � � � � � � � � � � � � � � � � � � � � ��

A�� Higher Order Functions � � � � � � � � � � � � � � � � � � � � � � � � ��

A�� In�nite Lists � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�



Abstract

I will get Peter Quince to write a
ballad of this dream� it shall be
called Bottom�s Dream� because
it hath no bottom�

A Midsummer Nights Dream

Automatic termination proofs of functional programming languages are an often
challenged problem�

Most work in this area is done on strict languages� Orderings for arguments
of recursive calls are generated� In lazily evaluated languages arguments for
functions are not necessarily evaluated to a normal�form� It is not a trivial task
to de�ne orderings on expressions that are not in normal�form or that do not
even have a normal�form�

We propose a method based on an abstract reduction process that reduces up to
the point when su�cient ordering relations can be found� The proposed method
is able to �nd termination proofs for lazily evaluated programs that involve non�
terminating subexpressions�

Analysis is performed on a higher�order polymorphic typed language and termi�
nation of higher�order functions can be proved� too�

The calculus can be used to derive information on a wide range on di�erent
notions of termination�



Chapter �

Introduction

Since the early days of computer science the termination behavior of programs
has been of keen interest in research� Termination and dually non�termination as
well are elementary features of a computer program� Every programmer designs
programs in a way that they will produce a result in �nite time� Therefore�
termination of the main procedure is of ultimate importance� On the other hand
in non�strict languages where a function application does not necessarily demand
the evaluation of its arguments� information on non�termination can be of interest
for optimizing program transformations which are performed by a compiler� Such
non�termination information of the form� a function does not terminate if it
is applied to a non�terminating argument is called strictness information� This
paper treats automatic termination proofs for a non strict functional language� i�e�
a programming language� where there may be non�terminating subexpressions�

To analyze the termination behavior of a program it is necessary to give a proof for
all possible values as program arguments and variables� or� to get more detailed
information� for a subclass of all possible input values� A good means for such an
analysis is by way of abstract interpretation� A set of values becomes represented
by some abstract value� The initial formal framework for abstract interpretation
is presented in �CC

�� Abstract interpretation is extensively used in strictness
analysis �Myc
�� BHA
�� Bur

��

To analyze the termination behavior of a program it is furthermore necessary to
detect potential loops in the program execution� Such potential loops are to be
found as recursive calls in a functional language or as repeatedly running through
the same sequence of commands in an imperative language� A good means for
detecting such potential loops is to make a symbolic execution of a program on
the abstracted values� This method of abstract reduction has been applied in
strictness analysis �N�oc	�� SSPS	��� An early example for executing programs
on abstract values is presented in �Bur
���

Finally� to prove termination of programs� one has to show that all potential loops

�



are harmless� i�e� they will only be executed �nitely many times in a concrete
program execution� The usual means for this test is to �nd some Noetherian
orderings on the argument and variable values� It has to be shown that when
a previous state is reached again� then the values of arguments and variables
will have decreased in some Noetherian ordering� Such orderings for termination
proofs have extensively been studied in the area of term rewriting systems� see
e�g� �Der

��

Automatic termination provers for functional languages often stay in the tradi�
tion of term rewriting and try to generate su�cient ordering relations �Wal	��
Gie	�a� Gie	�b�� Such methods can only give termination proofs for applications
to arguments that have a �nite normal�form� i�e� they fail comppletely to show
whether a function can terminate for unde�ned or in�nite arguments� They are
furthermore limited to �rst�order languages and generally cannot handle mutual
recursion�

This paper is structured as follows� In section ��� the language we want to
analyze is de�ned� In section ��� abstract values are introduced� In section ���
abstract reduction steps are de�ned in terms of deduction rules on termination
tableaux and are proved to be sound� Section ��� treats application of non�
terminating arguments for a lazily evaluated language� In section ��� a second
calculus is presented� which enables us to prove ordering propositions on the result
of recursive functions such that termination proofs for functions which have calls
to other functions in their recursive call can be made� A collection of example
proofs is to be found in the appendix�

�



Chapter �

Termination Tableaux

��� The Language of Discourse

We de�ne �c� a simple polymorphic typed higher order functional core language�
It resembles closely the language used in �PJL	�� with the exception that no local
function de�nitions can be made and case alternatives have to be complete� This
does not restrict the method we present� because every functional language can
be translated into �c by lambda�lifting it�

����� The Type System

The type system for �c consists of the basic type Num� function types and a
�nite number of algebraic types� Algebraic types are the sum of �nitely many
type products� So there is a �nite number of constructor constants for each
algebraic type� These are numbered�

Types may be polymorphic� Algebraic types may be recursive� Examples of
recursive algebraic types will be �List �� and Tree�

����� Expressions and Super�combinator De�nitions

�c�expressions are build in the standard way� For every type � there is a set V �

of variables x� � y� � � � �� Furthermore there are typed constants c� � Expressions
are build by the following rules�

x� � � c� � � e � �� � � � �� �n � �� ei � �i
�e e� � � � en� � �

where e � � denotes expression e to be of type �� Furthermore types
may be specialized� i�e� e � � can be specialized to e � ���� where �
substitutes type variables with types�

�



Functions are de�ned through super�combinator de�nitions� Let e � � be
a �c�expression that contains no other variables than v��� � � � � � v�nn � Then
sc v� � � � vn � e is a super�combinator de�nition� sc is considered as constant of
�c of type� �� � � � �� �n � � � The type of a super�combinator can be derived
in some type inference algorithm� we assume that of Milner �Mil

��

The following constants are in �c�

� Numerical constants �

� Built�in functions like ���� �� ����

� For every algebraic type A � Ap���� � � � � �m� there exist �nitely many con�
structor constants con�

A� � � � � con
ni
A � such that the constructor conj

A has a
type of the form �j� � � � � �jk � A� jk � ��

� For every algebraic type name there is one case constant caseA which takes
n � � arguments� where n is the number of constructor constants for A�
The �rst argument is the expression to be cased� The other arguments of
caseA are functions taking mk arguments for � � k � n� where mk is the
arity of the kth constructor of A�

� super�combinators that may be de�ned in a recursive way�

An example of an algebraic type is Bool� Its constructor constants are true and
false� if is the case constant of Bool� From now on Bool will not be treated
separately but together with the other algebraic types�

Examples of recursive algebraic data types used in this paper will be�

� �List �� for the usual polymorphic lists with the two constructors Nil�List ��

and Cons���List ����List �� and

� Tree for unlabeled binary trees with the constructor constants TnilTree
and TconsTree�Tree�Tree�

In most cases type subscripts of variables and constants will be dropped�
Functions can be applied curried� i�e� not saturated with enough arguments�
As notational convention C�t� will denote an expression which has at some posi�
tion the subexpression t�

����� Semantics

The operational semantics consists of the usual ��reductions� The operational
semantics is lazy� i�e� the topmost�leftmost redex is reduced�

�



��rules for built�in primitive functions are the usual ones� For every case constant
of an algebraic type there is a ��rule of the following form�

caseAi
�conj t� � � � tm� e� � � � en �� �ej t� � � � tm�

Super�combinators simply rewrite with their de�nition� i�e�
�sc e� � � � en� � e�x� �� e�� � � � xn �� en�� for a super�combinator de�nition
�sc e� � � � en� � e�

An expression that cannot be reduced any further is in normal�form�

��� Abstract Expressions

Now we will de�ne ��
c � the language of abstract expressions� ��

c is the same as
�c� except that it includes a set of special variables T � fTx� �Tx� � � � �g� The
variables Tx are called abstract variables� The abstract variables have the most
general type consisting of a type variable� ��

c is then typed in the same type
system as �c�

Abstract variables can be substituted by expressions� which are in normal�form�
We de�ne the notion of a substitution�

De�nition �� A substitution � � V � �c is a mapping from a set V of variables
to �c such that Dom��� � fx � Vj��x� 	� xg is �nite�

Therefore� we can represent a substitution � in the following way�

��t� � t�v� �� ��v��� � � � � vn �� ��vn��� where Dom��� � fv�� � � � � vng�

A substitution � can be lifted in the natural way to a mapping from ��
c to �c by

��e� e�� � ���e�� ��e����

A concretisation of t � ��
c is a substitution

� � T � feje � �c and e has a normal�formg� such that � is type consistent�
i�e� every abstract variable is substituted with an expression of the type this
abstract variable has been derived for the abstract expression� This means that
��t� � �c�

��
c �expressions represent sets of �c�expressions� To make things easier we will

also call the result of an application of a concretisation to an abstract expression
a concretisation�

Note that a concretisation is always well�typed� but there may be di�erently
typed concretisations for a t � ��

c �

Finally there is a special sort of abstract expressions we would like to distinguish
syntactically�

�



De�nition �� An abstract expression e � ��
c is in abstract normal�form� if it

only consists of constructors and abstract variables�

Note that the de�nition of abstract normal�forms di�ers from the de�nition of
normal�form for concrete �c�expressions� The notion of abstract normal�form is
not de�ned as abstract expressions which cannot be reduced any further� This
makes a signi�cant di�erence for abstract expressions of function�type� A function
that solely consists of a constructor� i�e� a constructor that is not applied to
further expressions is in abstract normal�form� whereas an abstract expression
which solely consists of a supercombinator is not in abstract normal�form�

��� Termination Tableaux

In this section we will de�ne an abstract reduction calculus in terms of termination
tableaux� Termination tableaux are de�ned as a deduction calculus which follows
the ideas of tableaux calculus for predicate logics �Smu
��� Tableau�like methods
have also been used in the context of program veri�cation �Bac
��� We will de�ne
termination tableaux dually to the strictness tableaux presented in �SSPS	���

In order to prove termination we have to de�ne the notion of termination for
�c�expressions� In a pure functional language there can be di�erent notions of
termination� e�g� an expression can be de�ned as terminating� if�

� applicative�order of reduction produces a normal�form

� or normal�order of reduction produces a head normal�form�

In fact� our basic notion of termination will be the existence of a normal�form�

De�nition �� A �c�expression nf�terminates� if it can be reduced to a normal�
form�

A ��
c �expression e nf�terminates� if all concretisations of e nf�terminate�

A super�combinator sc of arity n nf�terminates� if �sc Tx� � � �Txn� � �c nf�
terminates�

Note that this notion of nf�termination is a bit overloaded� A super�combinator
name is a �c�expression� which cannot be reduced any further� and therefore
this expression is nf�terminating� but throughout this paper nf�termination for
an expression of a function�type means� nf�termination of its application to nf�
terminating arguments� Now it becomes clear why we did not use the alterna�
tive de�nition for the notion of abstract normal�form� we can guarantee that

�



every concretisation of an abstract normal�form of function�type will be a nf�
terminating function in the sense we use this term from now on�

It is our aim to prove nf�termination of a certain super�combinator sc� Therefore�
we will usually analyze the abstract expression �scTx� � � �Txn� for nf�termination�
Unlike known methods for termination proofs on strict languages we do not prove
that any reduction sequence will yield a normal�form� but that there exists a
reduction sequence resulting in a normal�form�

We did not provide a special abstract value which represents all non�terminating
expressions� Thze reason for this is that we can just de�ne a supercombinator
which we will use as an representative for non�terminating expressions�

bot � bot

Note that just like T bot has the most general type of a type variable�

We can now introduce a syntactical ordering relation on ��
c � This relation will

allow us to draw conclusion about nf�termination of certain abstract expressions�

De�nition �� We de�ne the relation � on ��
c �

� Tx � e� for all e � ��
c

� e � e for all e � ��
c

� e �bot for all e � ��
c

� �f e� � � � en� � �f e�� � � � e
�
n�� i� ei � e�i for � � i � n

Lemma�� If e � e� then
e� nf�terminates � e nf�terminates

Proof� We will prove the contraposition�
e does not nf�terminate � e� does not nf�terminate�

We will use structural induction for the proof�
First we consider the base cases�

� Tx � e� e is nf�terminating�

� e � e�� e� nf�terminates i� e nf�terminates�

� e� �bot� e is not nf�terminating�






Now we treat the recursive case�

e � �f e� � � � en� � �f e�� � � � e
�
n� � e�

and ei � e�i for all i�

We assume that the lemma has already been proved for smaller terms than e� i�e�
is true for all ei� There are � cases�

� f is a constructor�
If e is not nf�terminating� then there exists an i with ei is not nf�terminating�
By the induction hypothesis we can conclude that e�i and therefore e� is not
nf�terminating�

� f is a supercombinator�
If e is not nf�terminating� then there is a concretisation � of e which is
not nf�terminating� i�e� ��e� is not nf�terminating� � can be extended to
a concretisation �� of e�� Evaluation of ��e� in normal�order will have to
evaluate a redex which does not have a head normal�form� Evaluation of
���e�� in normal�order will have to evaluate the same redex� Therefore ���e��
is not nf�terminating which means that e� is not nf�terminating�

With the notion of nf�termination we can de�ne termination tableaux�

De�nition �� A tableau is a �nite tree whose nodes are marked with ��
c expres�

sions�

A tableau is sound if for every node n marked with e we have�
Let n�� � � � � nk be the direct sons of n and ni be marked with ei then�
if for all � � i � n ei nf�terminates then e nf�terminates�

Now we develop a calculus which derives new sound tableaux with the same root
node from a sound tableau� The new tableaux will always originate from an old
one by extending a path with new leaves�

Termination proofs with tableaux will be made in the following way� A tableaux
with one single node� which represents the termination assumption� will be ex�
panded by adding new leaves with expansion rules� A closing rule will check� if
a thus generated tableau can be closed by an ordering relation on terms�

The mark on the root of a closed tableau is sure to terminate for all its concreti�
sations�






����� Expansion�rules

��rules

The most simple form of extending a tableau is to perform a concrete reduction
step on a leaf� An abstract expression is almost a concrete expression� This
enables us to reduce at positions where there is no variable Tx involved with the
same ��reduction as in the concrete case� Performing reduction on leaves will
create new sound tableaux� We de�ne the �rst deduction rule for termination
tableaux�

Suppose we have in a given tableau a leaf marked with C�c� e� � � � en��
A ��reduction on this tableau is performed by extending this tableau
with the new leaf C�e��� if there is a ��rule� c� e� � � � en �� e

� for c� �

We have to show that ��reductions on tableaux preserve soundness� Let e be
the old leaf and e� the new leaf which is the direct son of e and was introduced
by a ��reduction� Every concretisation of e can be reduced by a concrete ��
reduction with an concretisation of e�� This means that if all concretisations of
e� nf�terminate then all concretisations of e will nf�terminate�

In formal notation� e� e� implies ��e�� ��e�� for all concretisations ��

Let us consider the following super�combinator de�nitions and a very simple
tableau�

bot � bot

k x y � x T
�

�k T� bot�

By lemma � the tableau above proves that the super�combinator k nf�terminates�

Note that if we extend a tableau with the rule above� then every concretisation
of the parent rule can be reduced to a concretisation of the new leaf in one step�

Abstract ��rules

If we have an application of a built�in constant to an abstract variable then we can
perform an abstract reduction step� There are two di�erent abstract reduction
steps� reduction of built�in arithmetic functions to abstract variables and a case

on an abstract variable�

	



Arithmetic functions If an arithmetic function is applied to an abstract vari�
able a new abstract variable is the result�

� T
a
T

b �� T
c� � T

a
c�� T

c� � c T
a �� T

c�

for � � f���� ���� �������g

where Tc is a new abstract variable in the tableau and c is some
constructor�

It can be seen that no termination can be shown for functions that depend in
their termination behavior on basic values� To overcome this de�ciency one has
to simulate basic values and primitive functions by an algebraic type� So some
sort of Peano�arithmetic is needed which is de�ned with the constructor Null

and Succ� If this is done� analyzing functions on basic types will not cause any
special problem�

The only thing that has to be kept in mind is that these functions are hyper�
strict� The algebraic type for Num would be able to describe in�nite numbers�
Multiplication of an in�nite number with Null then would terminate with Null�
whereas in the strict function it would not terminate� Therefore� ��rules for an al�
gebraic Num have to be applied in applicative order of reduction in a termination
tableau in order to get sound results�

The reader will have noticed that ��� has been left out above� The reason for that
is that division by zero is unde�ned� i�e� it is an non�terminating expression��
Therefore� �� e Tc� is irreducible� whereas �� Ta c��� T

c for c 	� ��

We do not allow to draw any conclusion from abstract variables via built�in
functions� e�g� a reduction of the form �Ta � Ta��� True is not allowed�

Note again that every concretisation of the parent node can be reduced to a
concretisation of the new leaf�

Decomposition Now we introduce a deduction rule for branching a tableau�
This will be necessary when a case expression is applied to an abstract variable�
For such an application we know that each instance of the abstract expression will
reduce to one of the alternatives of the expression� We de�ne the decomposition
rule for termination tableaux�

Suppose we have in a given tableau a leaf marked with
t � C��case� T

c e� � � � en���
where the algebraic type � has the set of constructors
fcon�� � � � � � con�mg of types� ��i � � � �� �ki � �� � � i � m�

� Non�termination is the only way to express unde�ned values in our language�

��



A decomposition of this leaf is performed by extending it with the m
new leaves C�ti�� � � i � m such that ti � �ei T

ci� � � �Tcik ��

T
cij are new abstract variables in the tableau�

The new edges get marked with the substitutions which produced the
new leaf� i�e� Tc � �con�i T

ci� � � �Tcik ��

Although the rule of decomposition looks a bit complex not very much happens
here� All that is done is to introduce for a variables Tc new subexpressions that
involve further such variables� This is done in order to enable ��reduction for
the case constant� The substitutions on the edges notify which alternative of
the case had been applied� On a path in a tableau there may be several such
substitutions ��� � � � � �n� To get the right form of the start node of this path� we
have to compose all these substitutions to �n 
 � � � 
 ���

The soundness of the decomposition is quite obvious� as well as in the expan�
sion rules before every concretisation of the parent node can be reduced to a
concretisation of one of the new leaves�

Note that in this rule we need type information in order to perform reduction
in a tableau� It has to be speci�ed of what type the constant case is and how
many constructors there are for this algebraic type� This will be the only point
where the tableau calculus needs type information� Fortunately this is very basic
information�

Note that there remain irreducible abstract expressions� applications of the form
�Tc e�� We will postpone the treatment of such applications to a later section�

Context Skipping and T�Introduction

Now we provide two rules that might require information from other tableaux
or prior knowledge of certain expressions� The �rst enables us to drop parts of
which we know that they cannot cause any non�termination� Such parts can be
of two kinds� a top�level constructor constant or a top�level super�combinator
application of a super�combinator that is known to be nf�terminating� Thus� we
de�ne two sub�rules for context skipping�

Suppose we have in a given tableau a leaf marked with �c�i e� � � � en��
Then a new tableau may be deduced by extending at this leaf with
the n new leaves e�� � � � � en�

Suppose we have in a given tableau a leaf marked with �sc e� � � � en�
where sc is a super�combinator that is known to be nf�terminating �
Then a new tableau may be deduced by extending at this leaf with
the n new leaves e�� � � � � en�

��



For every node which has been expanded with one of the rules of context skipping
we can say� all concretisations of this node can be transformed to concretisations
of one of its new leaves by skipping the context of this concretisation�

The second rule we provide in this section allows us to substitute every abstract
term� that has only nf�terminating concretisations� with a new variable T�

Suppose we have in a given tableau a leaf marked with C�e� and e is
nf�terminating� Then this path may be extended with the new leaf�
C�Tc�� where c is a new label in this path�

Every concretisation of the parent node can be reduced by �nitely many reduction
steps to a concretisation of the leaf node introduced by T�introduction�

This rule subsumes in a way abstract reduction on arithmetic expressions� An
expression�� Ta Tb� can be reduced or approximated with a new abstract vari�
able Tc�

The rules in this subsection preserve soundness�

����� Closing a Tableau

Now it needs to be de�ned under which circumstances a given tableau can be
closed� because it constitutes a termination proof� There are two di�erent kinds
of leaf nodes� which are important for closing a tableau�

� leaf nodes which are in abstract normal�form

� and leaf nodes which have an ancestor node� such that all concretisations
of the leaf node are concretisations of the ancestor node�

Leaf nodes which are in abstract normal�form have only nf�terminating concreti�
sations and give directly nf�termination� The rule of T�introduction allows to
approximate such nodes with an abstract variable�

For leaf nodes with an ancestor we have to �nd a Noetherian ordering on the
arguments to show that the reduction process on the path did some minimization�

Simple recursive paths

Let us de�ne how such recursive nodes look like�

De�nition 	� A leaf node e� � C�e�� � � � � en�� �n 	 �� in a tableau is called a
recursive node� if all ei are abstract normal�forms and there is an ancestor node
e � C�Tx� � � � � �Txn �� such that there is a substitution � with ��e� � e��

�e� e�� is called a recursive pair and � the corresponding substitution�

��



We de�ne the class of tableaux which are candidates for a termination proof�

De�nition 
� A tableaux where every leaf is either in abstract normal�form or
a recursive node� is called preclosed�

Recursive pairs have the desired property�

Lemma�� Let �e� e�� be a recursive pair� Then every concretisation ��e�� of e�

is a concretisation of e

Proof� There exists a substitution � with ��e� � e�� Thus ��e�� � ����e���
�� � � 
 � is a concretisation map� if � is consistent with the type system� It
remains to show that � is type�consistent� Assume this to be false� this means
that e� is not a well�typed abstract expression and therefore does not have any
concretisation� which makes the lemma trivially true�

With the remarks made for every expansion rule we can state a little proposition�

Lemma��� Let T be a preclosed tableau� Then every concretisation of a node

in T is a normal�form or can be transformed by a transformation corresponding

to an expansion�rule to a concretisation of at least one further node in T �

Proof� If the concretisation in question is not a concretisation of a leaf node� then
this is true by the remarks about each expansion rule� i�e� a concrete reduction or
a context�skipping on a concrete expression can be performed to get the concreti�
sation of a successor node� If it is a concretisation of a leaf node� then this leaf
node is either in abstract normal�form and the concretisation is in normal�form�
or the node is a recursive node and therefore by lemma 	 the concretisation is
also a concretisation of a none�leaf node�

This lemma can be extended a bit by transitivity� This means that every con�
cretisation of a node in such a tableau leaves at least one trace in the tableau
which may end in a normal�form or go on in�nitely� Thus we can follow any non�
terminating �normal�order� reduction of a root note concretisation in the �nite
preclosed tableau� We will call such a sequences of concretisations which follow
the edges in a tableau a trace�

De�nition ��� A trace of a path in a tableau is a sequence of �c�expressions
which correspond via concretisations one�to�one to the nodes in the path and
the �c�expressions in the sequence can be obtained by the transformations on
concrete expressions corresponding to expansion rules as shown in lemma ���

��



Orderings

We have reached the point� where we want to show that the loops we found are
harmless� i�e� will not be executed in�nitely often� A recursive pair induces a
constraint on an ordering relation for the arguments� A Noetherian ordering has
to be found which decreases the arguments of the recursive calls� What we need is
an ordering on �c�expressions� This ordering can then be lifted to ��

c �expressions
and to tuples of ��

c �expressions�

De�nition ��� Let � be a re�exive partial ordering relation on �c�expressions�

� for two concretisations ��� �� with DOM���� � DOM���� we de�ne�
�� � �� i� ���T

x� � ���T
x�� for all Tx�

� for �e�� � � � � en�� �e
�
�� � � � � e

�
n� � �c � � � � � �c we can de�ne orderings

�e�� � � � � en� �tup �e��� � � � � e
�
n� such that 	tup is Noetherian whenever 	

is Noetherian� A simple such ordering of tuples is�
�e�� � � � � en� �tup �e��� � � � � e

�
n� i� for all � � i � n� ei � e�i�

� for a partial ordering � we have in the usual way� e� � e� i�� e� � e� and
e� � e�� e� 	 e� i�� e� � e� and not e� � e��

Let us make a few remarks�

By this de�nition a tuple�ordering can theoretically be completely independent
from the ordering on �c� Throughout this paper we will only use tuple�orderings
which are de�ned by� �e�� � � � � en� �tup �e��� � � � � e

�
n� i� for some � � i � n�

ei � e�i�

We completely neglected types in the de�nition of orderings� And in fact� due to
polymorphic types� it can be useful to compare two expressions of di�erent types�
Consider e�g� the algebraic data�types of lists which have elements of alternating
types� In Haskell�syntax we can de�ne such a data type as�

data AList a b

� Nil

�Cons a �AList b a�

In order to prove the termination of some sort of length�function� on alternating
lists it might be necessary to compare two di�erent instances with each other�
say a list of type �AList Int Bool� with a list of type �AList Bool Int��

But both concretisations are of a type instance of the upper node in the recursive
path�

� Such a simple length�function cannot be typed with the Milner type system�

��



We now specify what an ordering has to ful�ll in order to serve for a termination
proof�

De�nition ��� For a recursive pair �e� e�� with the corresponding substitution
� � �Tx� �� t�� � � � �T

xn �� tn� its ordering constraint is de�ned as�
���Tx��� � � � � ��Txn�� 	tup �t�� � � � � tn��

where � is the composition of all substitutions on the path from e to e��

The constraint is to be read as�
there exists partial ordering on �c and a tuple ordering such that for all concreti�
sations ��
�� 
 ��Tx��� � � � � � 
 ��Txn�� 	tup ���t��� � � � � ��tn���

Note that through the de�nition of recursive pairs the ti above are in abstract
normal�form�

What we are looking for is an ordering on �c�expressions� such that there is a
tuple�ordering for the arguments of recursive pairs which is a Noetherian ordering�
This ordering then induces a ordering on concretisations of recursive pairs� This
means that the path between a recursive pair minimizes an expression� Here we
can plug�in modules which try to �nd one of the numerous di�erent orderings
for termination proofs proposed in the literature� e�g� polynomial orderings as
proposed in �Ste	�� Lan
	�� one of the orderings presented in �Der

� or some sort
of generalized orderings based on multi�sets as presented in �Mar

�� A simple
ordering which in many cases is su�cient enough is the ordering which is based
on the number of constructors the normal�form of an expression has�

Lemma��� Let �e� e�� be a recursive pair such that its ordering constraint can

be ful�lled� Then for every concretisation k � ��e� which has a direct trace to

a concretisation k� � ��e�� the tuple of substituted expressions in the context

decreases�

Proof� The composition � of the substitutions on the path assures that every
concretisation k � ��e� with a direct trace to e� is a concretisation of ��e�� i�e�
there is a concretisation �� with� k � �� 
 ��e�� Because k

� is derived as a direct
trace of the recursive path from k � �� 
 ��e� we have� �� � ��� We have found
a concretisation to which we can apply the conditions of the ful�lled ordering
constraint�

This lemma gives rise to a further de�nition of orderings�

De�nition ��� Let e � C�Tx�� � � � �Txn� be an abstract expression� �� and ��
concretisations of e� 	 an ordering on �c and 	tup a tuple�ordering based on 	�

Then ���e� 	e ���e� is de�ned as�
����T

x��� � � � � ���T
x��� 	tup ����T

x��� � � � � ���T
x���

��



case Ta Tb �foldrcons f Tb�

T
b

foldr f Ta� Tb

foldr f Ta Tb

foldrcons f Tb Ta� Ta�

T
a � Nil T

a � Cons Ta� Ta�

f Ta� �foldr f Ta� Tb�

T
a�

Figure ���� A closed tableau for foldr�
Recursive pairs are marked with an arc�
The function argument f is supposed to be nf�terminating�

Closing a tableau will now be the task of �nding orderings such that every leaf
node is either an abstract normal�form or a recursive node� which has an ordering
constraint� that can be ful�lled by some ordering�

Before we consider when the closing of a preclosed tableau is sound� we will give
an example�

Example �� We want to analyze the function foldr from the Haskell prelude�
foldr f xs n � case xs n �foldrcons f n�

foldrcons f n x xs � f x �foldr f xs n�

We can deduce the tableau in �gure ����

The tableau is preclosed� There are three leaf nodes� Two of them are in ab�
stract normal�form� The third is a recursive node with the ordering constraint�
�cons Ta� Ta�� 	 �Ta��� A simple ordering on �c which ful�lls this constraint is
the textual size of an expression� Note that we only have to consider the second
argument of foldr and therefore� do not need any tuple�ordering�

For the case that there are no two recursive pairs with paths that have a node in
common� soundness of the closing condition for tableaux is quite obvious�

Theorem��� Let T be a preclosed tableau derived with the rules above� such that

there are no two recursive pairs with paths that have a node in common�

If for every recursive path the ordering constraint can be ful�lled by a Noetherian

ordering then all concretisations of the root are nf�terminating�

Proof� Assume by contradiction that there is a concretisation of the root which is
not nf�terminating� By contraposition of the soundness for the expansion rules�
there is a leaf node with a non�nf�terminating concretisation� This leaf has to be
a recursive node�

��



a� Choose such a recursive pair �e� e�� such that the distance between root and
e� is maximal�

b� Choose a concretisation k � ��e�� such that the concretisation of the tuple
of abstract variables is minimal in the ordering which was used to close this
path� i�e� minimal in 	e��

k is by lemma 	 also a concretisation of e� There is by lemma �� a trace of this
concretisation k to a leaf node� This has to be another leaf node than e� because
k was a minimal concretisation of e� and the path to e� by lemma �� minimizes
concretisations� Otherwise we would contradict the fact that k is minimal�
The new leaf is part of an recursive pair� but due to the maximal length between
the root and e the upper node of the new recursive pair is above e� This contra�
dicts our assumption that there are no two recursive paths which have any nodes
in common�

Note that there could possibly be two di�erent recursive paths to the same leaf
node� In this case it su�ces to consider only one of them� The obvious choice is
the nearest one�

In this theorem it is not necessary that the same ordering on �c and the same
tuple ordering is used to ful�ll the ordering constraints of di�erent recursive
pairs� The recursive pairs are independent from each other� Especially the tuple
orderings used may discard certain tuple elements� i�e� we do not care for the
orderings of these elements�

Example �� Theorem �� enables us to prove termination of a function which en�
tails two di�erent minimization processes� Consider e�g� the following function�

shiftremove t� t� � case t� �case t� Tnil shiftremove��

�shiftremove� t��

shiftremove� t� t� � shiftremove Tnil t�

shiftremove� t� t� t�

� shiftremove t� �TCons �TCons �TCons t� t�� �TCons t� t���

�TCons �TCons t� t�� �TCons t� t����

shiftremove deconstructs the tree in its �rst argument and lets the second ar�
gument grow and then deconstructs its second argument�

A sound tableau for this function is given in �gure ���� It can be closed by
theorem �� independently at the two recursive leaves by two simple orderings�
At both recursive paths we can use the ordering on �c which orders trees by the
number of constructors their normal�forms have�

At the left recursive node the tuple to minimize has just one element� The
simple tuple�ordering which demands that this element decreases will do� At the
right recursive node this is a tuple ordering which just considers the size of the
�rst argument� Note that on the left branch there has been the recursive node

�




Tnil
T
b � TCons Tb� Tb�

�TCons �TCons �TCons Ta� Ta� ��TCons Ta� Ta� ��

case Tb� Tnil shiftremove�

shiftremove Ta�

shiftremove� Tb Ta� Ta�

�TCons �TCons Ta� Ta� ��TCons Tb Tb���

shiftremove� Tb� Tb�

T
a � TCons Ta� Ta�

case Ta �case Tb Tnil shiftremove���shiftremove� Tb�

shiftremove Ta Tb

case Tb Tnil shiftremove�

shiftremove Tnil Tb�

Figure ���� A closed tableau for shiftremove

�shiftremove TNil Tb�� before� but this was not independent from the recursive
node on the right hand side� To close the tableau at that stage requires a more
complex ordering� which cannot be generated by the polynom�orderings used in
�Gie	�b��

Overlapping recursive paths

Finally we have to deal with the situation when a tableau can only be closed� if
we have recursive pairs with overlapping paths�

The problems in such situations are that the overlapping recursive pairs have dif�
ferent upper nodes� i�e� they may have a di�erent context� Then we cannot apply
the same orderings for these two recursive nodes� �The orderings are dependent
on the context of a recursive node��

Consider the following counterexample where a preclosed tableau with overlap�
ping paths� does not give a termination proof�

Example �� We de�ne a super�combinator which has two binary trees and one
boolean value as arguments�

foo t� t� b

� case t� TNil �foo� t� b�

foo� t� b t�� t��

� case t� Nil �foo� t�� t�� b�

foo� t�� t�� b t�� t��

� if b �foo t�� �TCons �TCons t�� t��� t��� False�

�foo �TCons �TCons t�� t��� t��� t�� True�

�




�
�������

�
�

��

�����

XXXXXXXXXXXXXX

��

�

TNil

T
a � TCons Ta� Ta�

TNil

foo Ta� �TCons �TCons Tb� Tb� � Ta� � False

foo� Ta� Ta� Tc Tb� Tb�

foo� Tb Tc Ta� Ta�

T
b � TCons Tb� Tb�

foo �TCons �TCons Ta� Ta� � Tb� � Tb� True

foo Ta Tb Tc

Figure ���� A preclosed tableau for foo�

foo is not nf�terminating� There is the following looping reduction�
foo �TCons �TCons TNil TNil��TCons TNil TNil��

�TCons TNil TNil� True

� foo� �TCons TNil TNil��TCons TNil TNil� True TNil TNil

� foo �TCons TNil TNil�

�TCons �TCons TNil TNil��TCons TNil TNil�� False

� foo� TNil TNil False �TCons TNil TNil��TCons TNil TNil�

� foo �TCons �TCons TNil TNil��TCons TNil TNil��

�TCons TNil TNil� True

We can derive the preclosed tableau in �gure� ����

There are two recursive paths�
�Foo Ta Tb Tc� foo Ta� �TCons �TCons Tb� Tb�� Ta�� False� and
�Foo Ta Tb Tc� foo �TCons �TCons Ta� Ta�� Tb�� Tb� True�
For both of these recursive paths the ordering constraint can be ful�lled� But
it is not allowed to conclude that foo is nf�terminating� because the two paths
interfere with each other�s orderings�

The obvious solution to this problem is to demand that for such overlapping
recursive paths the same orderings are being applied� This can only be stated� if
the overlapping paths have the same context in the start node� because otherwise
they have di�erent tuples of di�erent context to order and it is not clear what a
combined ordering looks like�

Lemma�	� Let T be a preclosed tableau derived with the rules above� such that

overlapping recursive paths have the same start node�

If for every recursive path the ordering constraint can be ful�lled with some

Noetherian ordering such that for overlapping recursive paths the same order�

ings are used� then all concretisations of the root are nf�terminating�

�	



e � C�Ta� � � � � �Tan �

d � C��Tb� � � � � �Tbm �

d� � C��eb� � � � � � ebm � e� � C�ea� � � � � � ean �

Figure ���� A schematic tableau with two overlapping recursive paths

Proof� The situation has not changed very much from the one in theorem ��� We
can proceed in the same way as in the proof of theorem �� up to a�� In b� we do
not have to consider only one recursive pair� but all recursive pairs which have
the same upper node as the pair �e� e�� chosen in a�� i�e� there are recursive pairs
�e� e���� � � � � �e� e

�
n�� In b� we now can choose the smallest concretisation of all e�i�

because these concretisations depend on the same context� Then proceed in the
same way as in the proof of theorem ���

It remains to deal with overlapping recursive paths which do not have the same
start node�

We can try to �atten a preclosed tableau with overlapping recursive paths to
a preclosed tableau which does not have overlapping recursive paths� What we
may have is a situation as described in �gure ����

Here we have two di�erent recursive pairs� �e� e�� and �d� d�� with di�erent contexts
C and C �� We cannot simply de�ne a global ordering which ful�lls both ordering
constraints of these recursive pairs� because our orderings depend on the context
�the tuple of substituted terms in the context�� But what we can try to do is�
expanding the tableau in such a way that we get two recursive paths with the
same start node and the same context� as is shown in �gure ����

In this way we can try extend every tableau which has overlapping recursive pairs
to a tableau where all overlapping recursive pairs have the same context�

Unfortunately this is not always possible�

Example �� As a counterexample consider the following function in Haskell syn�
tax�

��



e� � C�ea� � � � � � ean �

e � C�Ta� � � � � �Tan �

d � C��Tb� � � � � �Tbm �

d� � C��eb� � � � � � ebm �

d�� � C��e�

b�
� � � � � e�

bm
�

Figure ���� Extending tableaux of the form in �gure ����

data Z � N � S� Z � S� Z

f N � N

f �S� x� � g x

f �S� x� � f x

g N � N

g �S� x� � g x

g �S� x� � f x

In �c this looks like�

f x � case x N g f

g x � case x N f g

As can be seen f and g have almost identical de�nitions� Now let us build a
termination tableau for one of these functions� We can get the tableau in �gure
����

In which way ever we further expand this tableau there is no chance to get a
tableau which does not have overlapping recursive pairs� Nevertheless f is of
course nf�terminating�

In the rest of this section we will see� under which circumstances a preclosed
tableau with overlapping recursive paths gives a termination proof� First we
need some condition on the orderings on �c�

��



N f Ta�

g Ta��

Ta �S� Ta�

case Ta N g f

Ta �S� Ta�

Ta� �S� Ta��

f Ta

g Ta�

f Ta��

case Ta� N f g

Ta� �S� Ta��N

Figure ���� A preclosed tableau for f� Overlapping paths cannot be eliminated
by further expansion�

De�nition �
� A partial ordering � on �c is called constructor monotonic� i�
e� � e�� � � � en � e�n implies �c e� � � � en� � �c e�� � � � e

�
n� for all well�typed expres�

sions�

We can now show that edges in a tableau preserve an ordering relation from
successor to predecessor node�

Lemma��� Let �e� e�� be an edge which does not represent a T�introduction� Let

� be constructor monotonic on �c and n� � n� for all n�� n� of a built in basic

type�

Let �e
�

� �e
�� � ke

�

� and �e
�

� �e
�� � ke

�

� be concretisations such that �e
�

� � �e
�

� � Let

�e
�

� �T
x� and �e

�

� �T
x� be of the same type for all variables Tx�

Then for all concretisations �e��e� � ke� such that �ke�� k
e�

� � is a trace of �e� e��
there exists a concretisation �e��e� � ke� such that �ke�� k

e�

� � is a trace of �e� e�� and�
�e� � �e��

Picture ��
 gives an illustration of this lemma�

Proof� We have to show that the proposition is true for all sorts of edges in a
tableau� We will construct a �e� for the di�erent kinds of edges�

� concrete ��reductions� e and e� have the same set of abstract variables
�otherwise we have the case of a non�branching abstract reduction�� �e

�

� �
�e� and �e

�

� � �e��

� abstract ��reductions�

��



e ��

�e
�

� �e�� � ke
�

�e� �e
�

� �e�� � ke
�

�

�e��e� � ke��e��e� � ke�

�e
�

� � �e
�

�

�e� � �e�

Figure ��
� An illustration of lemma �	


 built�in functions� The abstract variables Tx occuring in e and not
occuring in e� can only be substituted by expressions of a built�in type
�because it appears as argument of a built in function�� �ei �T

y� �
�e

�

i �T
y� for y 	� x and i � f�� �g and �e��T

x� � �e��T
x��


 non�branching� fTxjTx appears in e�g � fTxjTx appears in eg�
Just choose

�e��T
x� �

�
�e��T

x�� for Tx not occuring in e�
�e

�

� �T
x�� else

As will be seen it is essential for this construction of �e� that �e
�

� �T
x�

and �e
�

� �T
x� are of the same type for all abstract variables Tx�


 branching� Apart from the aspects which are the same as in the non�
branching case� there is a abstract variable Tx in e such that the edge
is marked with� Tx � �c Tx� � � �Txn��
Therefore� �ei �T

x� � �c �e
�

i �T
x�� � � � �e

�

i �T
xn���

With �e
�

� �T
y� � �e

�

� �T
y� for all Tx and constructor monotonicity of ��

�e��T
x� � �e��T

x��

� context skipping� This case is basically the same case as abstract re�
duction in the non�branching case� Just extend �e

�

� for the new abstract
variables with �e

�

� in order to get �e�� Essential for this is again� that �
e�

� �x�
and �e

�

� �x� are of the same type�

The restrictions to lemma �	 are necessary�

� Lemma �	 is not true for T�introductions� Consider the following coun�
terexample�

f x � case x �Cons � Nil� Nil

Now we approximate �f Ta � e with Tb � e� and consider the concretisa�
tions� �e

�

� �T
b� � Nil and �e

�

� �T
b� � �Cons � Nil�� � orders lists by their

size� �e��T
a� � Nil� There is no �e

�

� as stated in lemma �	�

��



� For the same reason lemma �	 is not true if we apply some arbitrary ordering
on built�in types� Consider a node� �� Ta �� and its abstract reduct� Tb�
�e

�

� �T
b� � � and �e

�

� �T
b� � �� In the ordering on integers with � 
 � 
 ��

�e��T
a� � � and �e��T

a� � �� Here we have �e��T
a� 	 �e

�

� �T
b�

� Lemma �	 is not true for concretisations of di�erent types� Consider�
�k Ta �� � �head Ta���� and its reduct Ta�

�e
�

� �T
a� � �Cons True Nil��

�e
�

� �T
a� � �Cons � Nil� � �e��T

a��
The ordering � is on the length of lists� There is no �e� with the de�
sired property� Actually there is no trace of the edge e�e� that ends in
�Cons True Nil�� In such situations we can restrict �e

�

� in such a way that
there exists a trace of e�e� ending in �e

�

� �

Let us see how lemma �	 can be used as a basis for proving the correctness
of closing tableaux with overlapping paths� We consider a tableau with two
overlapping recursive paths as seen in �gure ���� There are two recursive pairs
�e� e�� and �d� d���

Let us assume that there is one Noetherian ordering relation 	 which ful�lls
the ordering constraints of both recursive paths� Assume 	 to be constructor
monotonic� We also demand 	 to be total on expressions of equal types in �c�
Furthermore we must restrict ourselves with the tuple�orderings used�� We will
only allow tuple�orderings with the following property�
�e�� � � � � en� � �e��� � � � � e

�
n� i� ei � e�i for i � � � � � n�

By lemma �� we can conclude that every direct trace of a recursive path minimizes
the concretisations of e �or d� in a certain ordering 	e �or 	d�� But there are
possible traces which start at e �or d� and end at e� �or d�� which do not follow
directly the recursive path� Basically there are two schemes for such non�direct
traces�

a� e�d�d��e�

b� d�e�� e�d�d�

We will treat both cases in the following�

a� Let us consider a trace of scheme a�� We want to show that every trace of
e�d�d��e� with an arbitrary number of traces of d�d� inside the concretisation
gets still minimized in 	e� We have to consider a trace of e�d

�
� d��e��

l�k�k��l� with �l�e� � l� �k�d� � k� �k��d�� � k�� �l��e
�� � l��

� There are two tuple�orderings involved� One for the context of e and one for d�

��



where e� d� d�� e� are the identi�ers used in �gure ����

We want to show that� l 	e l�� With lemma �	 we can built from k�

backwards a trace l���k� of the path e�d� This is so to speak a shortcut for
l�k

�
� k�� There is a substitution �l�� with �l���e� � l���

Lemma �� assures that k 	d k� with the assumptions about the tuple�
orderings this means �k 	 �k�� So we can conclude with lemma �	� �l 	
�l��� With the assumptions about the tuple�orderings this means l 	e l���
Together with l�� �e l

� �by lemma ��� because this is a direct trace of e�e���
we get the desired property l 	e l

��

b� Let us consider a trace of scheme b�� We want to show that every trace of
d�e��e�d the concretisation gets minimized in 	d�

We have to consider a trace of d�e�e��d�
k�l�l�k� with �l�e� � l� �k�d� � k� �k��d� � k��

We want to show� k �d k
�� Let us assume that not k �d k

�� We assumed 

to be total� so that this means� k 
d k

�� Now we can apply lemma �	 again�
This time to construct a concretisation l� of e backwards from k� Applying
lemma �	 in the same way as in a� gives� l� 
e l which contradicts l� 	e l
which is assured by lemma �� �remember that there is a direct trace from
l� to l���

We have tried to construct a proof for the closing of tableaux with overlapping
paths above� Unfortunately we had to make quite a lot of assumptions on the
orderings and on the recursive paths� We will summarize them now�

Theorem��� The root of preclosed tableau with overlapping recursive paths is nf�

terminating� if there is a Noetherian ordering on �c which closes every recursive

path such that the following conditions are ful�lled�

� the ordering 
 on �c has to be total for expressions of same type

� for all expressions e�� e� of basic value it holds e� � e� in the used ordering

on �c

� 
 has to be constructor monotonic

� for the used tuple ordering it must hold�

�e�� � � � � en� � �e��� � � � � e
�
n� i� ei � e�i for i � � � � � n�

� a trace of a recursive path must not change the type of the concretisation

� no T�approximations are allowed on recursive pairs

��



Most of these properties are unproblematic� Only the restriction on recursive
paths to be type preserving �for all concretisations� is rather problematic� Nev�
ertheless in example � we have seen an example were all these requirements are
met�

����� Strategies and further enhancements

Our calculus works so far quite �ne� as long as there is only one recursive function
involved in the termination behavior we want to prove� If there are more than
one recursive function in our program� such that these functions are dependent
on each other� we have two possibilities in handling these situations�

� Make a dependency analysis �rst� start analyzing the functions which are
lower in the dependency�hierarchy and use these results for the rule of
context�skipping when analyzing functions higher up in the dependency
analysis� This strategy cannot be applied for mutual recursive functions as
we have seen in example ��

� Start analyzing some arbitrary function and proof all recursive reduction
processes to be terminating in one tableau� This will usually lead to a
tableau with overlapping recursive paths and other di�culties� Neverthe�
less� it can be more accurate� because one of the recursive functions involved
may not be terminating for all possible inputs but just the inputs it is called
for by another function� The degree of termination for one function which
is needed to prove termination of another function may not be known be�
forehand�

We will see in an example how devastating it can be to choose the wrong strategy
in certain cases� This subsection will conclude with a new rule for expanding a
tableau which becomes necessary when recursive calls do not appear on the root
of an expression�

Example 	� Consider the following function� which is almost the well�known
quicksort function with the di�erence that it does not sort anything� but blows
up the input�list�

nosort xs � case xs Nil nosort�

nosort� x xs � append �nosort xs� �Cons x �nosort xs��

append xs ys � case xs ys �append� ys�

append� ys x xs � Cons x �append xs ys�

��



nosort Txs

Nil

Txs �Cons Tx� Txs�

nosort� Tx� Txs�

nosort Txs�

Tx� nosort Txs�

case Txs Nil nosort�

Cons Tx� �nosort Txs� �

append �nosort Txs� � �Cons Tx� �nosort Txs��

Figure ��
� A closed tableau for nosort� Nf�termination of append has been
used�

�
�
�

case �append �nosort �Cons Tx� � � � � � � �

��
��

��
��

��
T
T
T
T
T

case �nosort Txs� � �append� �nosort Txs� ��

�append� �nosort �Cons Tx� Txs� ���

append �nosort Txs� � �Cons Tx� �nosort Txs� �

nosort Txs�

case �case Txs� Nil nosort���nosort Txs� � �Cons Tx� �nosort Txs� �

case �nosort� Tx� Txs� � �nosort �Cons Tx� Txs� ��

Figure ��	� Parts of the tableau for nosort� where nf�termination of append is
not used�

A dependency analysis will show that append depends in no way on nosort�
So we can start by building a tableau for �append Txs Tys�� This tableau is
easy to close� Then we can try to close a tableau for �nosort Txs�� where we
use nf�termination of append for a context�skipping� Such a tableau is given in
�gure ��
� As can be seen this is a easy to �nd proof� Now let us see what
would have happened if we did not make the dependency analysis and started
with the termination analysis of nosort� We then could not branch with the rule
of context�skipping at the append�node but had to proceed with ��reductions�
We ended up in creating an in�nite tableau of �gure ��	� being forced to evaluate
recursive calls to nosort again and again�

�




The reason that we could not close the tableau in �gure ��	 is that the recursive
call of the function nosort does not appear on top�level in a leaf� Therefore� we
have to reduce applications of nosort again and again in the tableau� without
being able to perform path�analysis� We can try to overcome this de�ciency
introducing a new rule�

Approximated context�skipping

The problem that occured in example � was that the recursive call of a function
appeared inside of a case construct� What we would have liked is to separate the
proof for termination of the expression to be cased and the case�expression� We
introduce a further expansion rule� the rule of approximated context skipping�

Suppose we have in a given tableau a leaf marked with t � C�e��

An approximating context�skipping of this leaf is performed by ex�
tending it with the � new leaves�

� C�Tc�� with Tc a new abstract variable

� e

Correctness of this rule is pretty obvious� We approximate an subexpression with
a new abstract variable� We may do this as long as we can assure that the approx�
imated expression is nf�terminating� The proof for the nf�terminating expression
is not made in a separate tableau but in the same tableau by means of the second
new leaf� This rule is of course only sensible� when the new leaf e will become
a recursive node� such that we can close the tableau at this leaf� Therefore� we
have to reconsider the correctness of path analysis again� Fortunately the proof
for correctness of path�analysis in the non�branching case is not e�ected by this
new rule� In the case of overlapping path� we have the same problems with the
approximation�edge in lemma �	 as before�

Let us now reconsider example �� We will again assume that no analysis of append
has been done before� Now we will use the new rule introduced above to generate
a preclosed tableau� The tableau is given in �gure �����

We get several recursive nodes� The ones on the left all refer to the root node
and can be closed using the simple ordering on the length of lists� The recursive
node on the right is the recursive node which proves termination of append� The
paths are overlapping and there is an approximation�edge on a recursive path�
Therefore we cannot apply lemma �	�

�




nosort Txs�

nosort Txs�

append �nosort Txs� � �Cons Tx� �nosort Txs� ��

nosort Txs�

Cons Tx� �nosort Txs� �

�
�
�

append� �Cons Tx� �nosort Txs� ��

append Tcs� �Cons Tx� �nosort Txs� ��

nosort Txs�

approximate

with Tc

append� �Cons Tx� �nosort Txs� �� Tc� Tcs�

append� �Cons Tx� �nosort Txs� �� Tc� Tcs�

Cons Tx� �nosort Txs� �

append� �Cons Tx� �nosort Txs� ��

case Tc �Cons Tx� �nosort Txs� ��

case �nosort Txs� � �Cons Tx� �nosort Txs� ��

T
c�

T
x�

T
x�

Figure ����� Expanding the tableau for nosort using approximated context�
skipping

��� Termination for �� In�nite Arguments and

Lazy�Termination

We already provided an example� where we applied a function to an argument
without normal form� This was in the example of the k combinator� We can
cultivate this a bit more� In a lazy language the question of termination is more
than just a question of whether a function yields a normal�form if applied to
normal�forms� i�e� it is nf�terminating� It can be of the form� does the function
yield at least a head normal�form �or some other form� if it is applied to arguments
in some certain form� So we might be interested in the form the function shall
deliver and in the form the arguments are required to have� This corresponds to
the so called context information in strictness analysis�

�	



����� Forms for Arguments

As we have seen� we do not need special abstract values that represent certain
forms for the argument� but can do with a worst representative of this form�
So a representative for expressions which lack a head normal�form is the super�
combinator bot de�ned by bot � bot�

If we want to know whether a function f also terminates for an argument that
does not have any normal�form� we try to close the tableau with �f bot� at the
root�

In the same way we can �nd representatives for certain forms of lists as they are
proposed in �Wad

�� The best de�ned list are those having a ��nite� normal�form�
These are represented by the abstract variable Ta�

Further abstract values that can be de�ned are�
inflist x � Cons x �inflist x� inftoplist � inflist T

b

infbotlist � inflist bot botelem � map resultbot T
a

conshnf � Cons bot bot hnf � if T conshnf Nil

map f xs � case xs Nil �consmap f� consmap f x xs � Cons �f x� �map f xs�

resultbot x � bot

To get more subtle information of the termination behavior of a list function� a
closed tableau with an application of f to one of the abstract expressions above
has to be derived�

Note that we use free variables on the right hand side of a function de�nition�
We have to assure that we will not use this abstract variables in any other part
of the analysis�

Let us prove that the recursive function length terminates for all �nite lists� The
function length is de�ned by�

length xs � case xs � conslength

conslength x xs � � � �length xs�

We can deduce the tableau given in �gure �����

The tableau can be closed by using again the simple ordering on the size of
normal�forms which ful�lls the condition� �Cons Ta� Ta��	Ta� � The astute
reader will have noticed that in this example we do not get an ordering constraint
on the arguments of a super�combinator but the context around this argument is
a complex expression�

����� Forms for the Result

Up to now we were only interested whether a functions yielded a result that was
a normal�form of a non functional type� But we can get more with termination
tableaux� All what we need are dummy evaluator functions� which do nothing

��



	

case �consmap resultbot Ta� Ta� � 	 conslength

case �map resultbot Ta� � 	 conslength

case �Cons �resultbot Ta� � �map resultbot Ta� �� 	 conslength

conslength �resultbot Ta� � �map resultbot Ta� �


 � �length �map resultbot Ta� ��

length �map resultbot Ta� �

case Nil 	 conslength

T
a � Nil

T
a � �Cons Ta� Ta� �

�

case �case Ta Nil �consmap resultbot�� 	 conslength

case �map resultbot Ta� 	 conslength

length botelem

Figure ����� A tableau for length applied to lists containing unde�ned elements�

evalhnf �map resultbot infbotlist�

True

case �map resultbot infbotlist� True True

case �case infbotlist Nil �consmap resultbot�� True True

case �case �in�ist bot� Nil �consmap resultbot�� True True

case �case �Cons bot �in�ist bot�� Nil �consmap resultbot�� True True

case �consmap resultbot bot �in�ist bot�� True True

case �Cons �resultbot bot� �map resultbot �in�ist bot��� True True

Figure ����� A closed tableau for evalhnf �map resultbot infbotlist�

more than to evaluate their argument to a certain form and then result with True

if the argument has this form� e�g� we can de�ne the following evaluators for lists�

evalhnf xs � case xs True consevalhnf

consevalhnf x xs � True

evalfinitespine xs � case xs True consevalfspine

consevalfspine x xs � evalfinitespine xs

An example of how such termination information can be proved by termination
tableaux is the tableau in �gure ����� It proves that map terminates with a
head normal�form whenever it is applied to an in�nite list that entails unde�ned
elements�

����� Lazy�Termination

Up to now we always have proved that some abstract expression is nf�terminating
or is at least in some subexpressions nf�terminating� But there is a certain class
of expression which are not nf�terminating and will not run into an in�nite loop�
i�e� which will not have any parts that will semantically be �� A simple ex�
ample of such an expression is a list which is potentially in�nite� but where the

��



spine can always be reduced to a head�normal form� We have introduced an
abstract expression representing such lists with inftoplist� inftoplist is not
nf�terminating� but can be evaluated to a list of a arbitrary length� A speculative
compiler might try to reduce such a list as inftoplist up to its nth element� It
would not risk to run into an in�nite loop� It seems to be quite counterintuitive
to reduce a proof of a potentially in�nite data�object to a proof of nf�termination�
but this can be achieved�

First of all let us de�ne the notion of lazy�termination�

De�nition ��� An expression is �fully� lazy�terminating if it can be reduced to
a form �c e� � � � en� and ei is lazy�terminating� i � �� � � � � n�

Note� that a data�object which is nf�terminating is also lazy�terminating�

We can re�ne the notion of lazy�termination by restricting it for certain arguments
of constructors in a recursive algebraic type� e�g� for lists we could de�ne the
notion of lazy�spine�termination by�

De�nition ��� An expression of list�type is lazy�spine�terminating if

� it can be reduced to Nil or

� to �Cons e es� and es is lazy�spine�terminating�

As can be seen the de�nition of re�ned lazy�termination notions are type depen�
dent�

What we need are evaluators which correspond to the de�nition of lazy�
termination� A evaluator� which forces the reduction of an potentially in�nite
structure will not do� Such an evaluator is a dual one to the de�nition of lazy�
termination� e�g��
lst xs � case xs True lst�

lst� x xs � lst xs

Our calculus is not able to prove lazy�spine�termination with this evaluator� be�
cause lst infbotlist does not have a normal�form and we can only prove nf�
termination�

We are looking for an evaluator which if applied to a potentially in�nite list is
nf�terminating� Therefore� we de�ne an evaluator with two arguments� a ��nite�
number and a list� If we can proof that the spine of the list can be evaluated
to the length of an arbitrary number� then we know that there is no position in
the list that has no head normal�form� We can de�ne such an evaluator in the
following way� First of all we need an algebraic data type which denotes natural
numbers� We de�ne this data type in Haskell syntax� data N � Z � S N

��



lt�spine T infbotlist

lt�spine� T bot infbotlist

case infbotlist True �lt�spine� T�

case T True �lt�spine� infbotlist�

True

T� S T�

lt�spine� infbotlist T�

lt�spine T� infbotlist

Figure ����� A proof of lazy�spine�termination of infbotlist

The evaluator for lazy�spine�terminating lists can now be de�ned as�
lt�spine n ls � case ls True �lt�spine� n�

lt�spine� n l ls � case n True �lt�spine� ls�

lt�spine� ls n � lt�spine n ls

Now it is quite easy to prove lazy�spine�termination of infbotlist� A proof is
given in �gure �����

We have introduced the notion of re�ned lazy�termination by way of an example�
We can give a general way how to de�ne an arbitrary notion of lazy�termination
for some arbitrary algebraic type� The de�nition of such a notion also induces
the de�nition of an evaluator� such that we can use the tableau�calculus of nf�
termination for lazy�termination proofs� Unfortunately we will get some slight
problems with polymorphic types and therefore restrict ourselves to monomorphic
types �rst�

De�nition ��� Let an instance of an algebraic type be given� �A �� � � � �k�� such
that �A �� � � � �k� consists of the constructors c�� � � � � cn of types�
��i � � � � �mi

� �A �� � � � �k�
A lazy�termination de�nition for �A �� � � � �k� is of the form�

LT �e��
e� �c� e�� � � � em�� then fltj�ej�jfor some j � f��� � � � � m�gg

���
e� �cn e�� � � � em�� then fltj�ej� for some j � f�n� � � � � mngg

where ltj�ej� shall denote that expression ej is required to be lazy�terminating of
kind ltj�

Note� that this makes also the notion of head normal�form to a special form of

��



lazy�termination� The set of further lazy�termination conditions in the then�part
is simply to be left empty�

We give the evaluator which goes along with a de�nition of lazy�termination
and enables us to prove a certain notion of lazy�termination with the calculus of
nf�termination�

De�nition ��� Let for a monomorphic algebraic type �A �� � � � �k� a lazy�
termination de�nition LT given as in de�nition ��� An evaluator for such a
de�nition is the function lt de�ned by�

lt x � lt� T x

lt� n x � case n True �lt�� x�

lt�� x n � case c altfunctions

where
altfunctions are functions of the form�
lti n x�i� � �xmi

� and �ltj�ej� for some j � f�i� � � � � mig	

and is the usual logical conjunction function over all list elements� The list
comprehension represents the set of further lazy�termination conditions in the
corresponding de�nition of the constructor arguments�

The evaluator can now be used to prove lazy�termination within the calculus of
nf�termination�

Eventually� let us consider lazy�termination of polymorphical typed algebraic
expressions� There are abstract expressions� which can have concretisations of
di�erent type� e�g� inftoplist has concretisations of type �List �� for all types
�� We cannot write an evaluator which forces the reduction of expressions of all
possible types� Fortunately� the only way to introduce polymorphism in expres�
sions of an abstract type is by way of an abstract variable T �parts of functional
type left aside�� For these polymorphical typed parts we can therefore show nf�
termination� which our calculus can do without an evaluator function� So we can
de�ne an evaluator for �full� lazy�termination of lists by�

lt�list n ls � case ls True �lt�list� n�

lt�list� n l ls � case n True �lt�list� l ls�

lt�list� l ls n � Pair l �lt�list n ls�

Note that we have to pack the result of forcing evaluation of the spine with the
head element into a pair� This avoids type problems� A proof for lazy�termination
of inftoplist is given in �gure �����

Note that this evaluator is not able to prove lazy�termination of all kinds of
lazy�terminating lists� Consider in�nite lists with in�nite list elements� For such
abstract expressions another evaluator has to be given� It can be seen how the
type of an abstract expression determines the evaluator it needs for proving lazy�
termination�

��



lt�list T inftoplist

lt�list� T Ta inftoplist

case inftoplist True �lt�list� T�

case T True �lt�list� Ta inftoplist�

T� S T�

True
lt�list� Ta inftoplist T�

Pair Ta �lt�list T� inftoplist�

T
a lt�list T� inftoplist

Figure ����� A proof of full lazy�termination of inftoplist

��� Basic Values

Up to this point we neglected basic values completely in our considerations� We
could not extract any termination information for functions which rely in their
termination behavior on basic values� The only presented solution had been to
code basic values into an algebraic type� But there are situation where termina�
tion can be seen quite easily to depend on basic types�

Example 
� Consider the following function due to John Hughes�
h x y � if �x �� �� �h y �y
��� y

h is nf�termination� We cannot prove this with tableau� because the resulting
branch of the case gives us some information on the input values� which we
neglected�

If we have a case expression which performs a case on an abstract expression
where every abstract variable can only be substituted by an expressions of basic
type� �and otherwise we do not get a valid concretisation�� then the resulting
branching will give us at least some information on the abstract variables� Let
us try to create a closed tableau for the function h in example �� This will not
lead us very far with our calculus� As soon as we perform abstract reductions on
the expressions �Ta �� �� and �Tb 
 �� we will get the same node as the root
node �modulo renaming of abstract variables� and will not gain any information�
A better thing to do is� not to perform abstract reduction on these expressions�
but to leave them untouched and to keep track in the branching of the case of
the value these expressions are assumed to have� We can label the edge of a
branching with the condition of the branching� This information can later be
used to exclude some branches� A tableau which proves termination of h is given
in �gure �����

��



�
�
�
��
HHHH

�
�
�
��
HHHH

if �Ta �� �� �h Tb �Tb	��� Tb

�h Tb �Tb	���

not �Ta �� ��

if �Tb �� �� �h �Tb	�� ��Tb	��	��� �Tb	��

Td

Tb

Tb	�

not �Tb �� ��

�h �Tb	�� ��Tb	��	���

if ��Tb	�� �� �� �h ��Tb	��	�� ���Tb	��	��	��� ��Tb	��	��

��Tb	��	��

Tc

�Tb �� ��

�Ta �� ��

h Ta Tb

Figure ����� A tableau which respects conditionals on basic values�

So what is needed is a deductive component which is able to reason on the built�in
functions on basic types� We assume a rather simple deductive component which
is limited to conditional expressions which can be represented �at� i�e� which do
not involve recursive functions� Such a deductive component could be modeled
by a term�rewriting system�

An even simpler approach with only some limited e�ect� is to include a special
rule for the built�in function ��� Whenever we have a leaf marked with�

C�case �T��e� e� e��

we can extend the tableau with the two new leaves�

� C�e���T �� e�

� C�e��

��	 Functions

Up to now we did not provide any means to represent functions by an abstract
value� This was basically for simplicity reasons� There will no case be performed
on abstract values representing functions� This means that we cannot deconstruct
an abstract value for a function into its subparts� the way we have done with

��



abstract values for algebraic types� This means that an abstract value for a
function cannot be used for proving termination� because our termination proofs
depend on a Noetherian ordering of the arguments in recursive calls� We cannot
prove such orderings for functions� Nevertheless� abstract values for functions
can enhance our calculus a bit and� in fact� we already gave an example of an
abstract function� When proving termination of foldr we simply assumed some
property on the function argument and used this for extending the tableau� And
this is in fact what we will do with functions� We simply have to generalize the
notion of a concretisation�

A concretisation of t � ��
c is a substitution

� � T � feje � �c and e is nf�terminatingg� such that ��t� � �c�

There is a small pitfall in this de�nition� The notion of nf�termination is over�
loaded for functions with two meanings� it can mean that the function expression
has a normal�form and it can mean that the function expression when applied
to expressions in normal�form will yield a normal�form again� It is of course the
latter meaning we will use for abstract variables of function type� The property
of a function expression to have a normal�form is a rather useless one�

Now we have automaticallythree new or at least generalized ways to extend a
tableau�

� T�application�
If there is a leaf node C��Ta Tb�� in a given tableau� then append the new
leaf C�Tc� to this leaf�

� context�skipping�
If there is a leaf node �Ta e� � � � en�� then append the n new leaves e�� � � � � en�

� T�approximation�
If there is a function expression in a leaf� which is known to be nf�
terminating� then it may be approximated with a new abstract variable�

Abstract variables for functions have a further consequence for our calculus� They
can even be used when closing a recursive path� This is already covered by the
extension rules�

Example �� Consider the following function which applies di�erent functions to
the elements of the list argument�

addnumber f ls � case ls Nil �addnumber� �plus� f��

addnumber� f l ls � Cons �f l� �addnumber f ls�

plus� f x � �f x� � �

First of all we can easily prove that plus� is nf�terminating� i�e� �plus� Ta� yields
a nf�terminating function or in other words �plus� Ta Tb� is nf�terminating� Now
we can derive the tableau for �addnumber Ta Tb� which is given in �gure �����

�




addnumber Ta Tb

Nil

Td

Tb ��Cons Tb� Tb��

addnumber �plus� Ta� Tb� Tb�

Cons �Tc Tb�� �addnumber Tc Tb� �

addnumber� Tc Tb� Tb�

�Tc Tb� � addnumber Tc Tb�

Figure ����� A proof for nf�termination of addnumber

The ordering constraint for the recursive path is�
�Ta� �Cons Tb� Tb��� 	 �Tc�Tb���

This constraint can be ful�lled by the ordering on pairs which only depends on
the length of the list in the second pair component�

We provided some means to represent certain functions by an abstract variable�
namely nf�terminating functions� It arises the question whether this enables us to
de�ne any class of functions with a certain termination behavior by some abstract
function� We will investigate this question stepwise on the type of functions�

����� Functions of basic types

Let us start with the simplest function type we can think of� i�e� functions of
type Num�Num� There are three di�erent termination behaviors such functions
may have�

� They may constantly yield a normal�form�

� They may constantly yield expressions which do not have a normal�form�

� They may be nf�terminating�

�




The combinatorial fourth possible function type are functions which yield a
normal�form i� the argument does not have a normal�form� This type of functions
is impossible� Otherwise this would contradict proposition ��

We can easily provide representatives for the three types of function on
Num�Num� i� n� x � T ii� n� x � bot iii� n� � T

����� Functions of algebraic arguments and basic results

Now let us complicate things a bit� We will now consider functions of types
�A �� � � � �n�� Num� As a representative for such functions we investigate func�
tions of type �List �� � Num� There are in�nite many di�erent types of ter�
mination behaviors that can be de�ned for such functions� e�g� functions which
yield a normal�form i� the nth element of the argument list has a normal�form�

All of these termination behaviors are of the form� the function yields a normal�
form i� the argument can be evaluated to a certain degree� In section ����� we
have developed evaluator functions which force the evaluation of their argument
to a certain degree� Basically these evaluator functions can be used to de�ne
abstract functions on algebraic types� We only have to ensure that the evaluator
function will not restrict our types too much� This can be done by resulting in
some T whenever the evaluation was successful �in contrast to the boolean results
we gave in section �������

Now we can de�ne the following abstract functions for lists�

� l� xs � T

� l� xs � bot

� l� � case xs T const
const x xs � T

� l� xs �case xs T l�cons
l�cons x xs � l� xs

� l
 xs � T��length xs�

� l� xs � T xs

The abstract function l
 is in a way interesting� In its de�nition it can only
represent functions of type �List �� � Num� But as a matter of fact we can
use it as an representative of all functions of type �List �� � �� too� This is
because l
 can only yield an abstract normal form as result if a redex �T�e�
becomes evaluated� This will result in a abstract variable T which is of any type
�� The only problem can occur� when context skipping is applied to this redex�
But fortunately� context skipping can only be applied to top�level expressions� So
that we do not care about the type of this redex after a context skipping� Actually
the �T�� was not necessary� because we provided the rule of T�approximation
�
If in the expression �T�e� e is evaluated to some normal�form� say the number
�� then this can be approximated by some variable T� The result is the same as
performing the abstract ��rule� �T�e��T��

� And in fact this is the �rst time we make use of this rule

�	



�lt�list Tn �map �l� T
m��in�ist inftoplist���

case �case �in�ist inftoplist� Nil �mapcons l� T
m�� Tb �lt�list Tn�

�lt�list Tn� �map �l� T
m��in�ist inftoplist���

case �case �Cons inftoplist �in�ist inftoplist�� Nil �mapcons l� T
m�� Tb �lt�list Tn�

case �mapcons l� T
m inftoplist �in�ist inftoplist�� Tb �lt�list Tn�

case �Cons �l� T
m inftoplist� �map �l� T

m��in�ist inftoplist��� Tb �lt�list Tn�

lt�list� Tn �l� T
m inftoplist� �map �l� T

m��in�ist inftoplist��

T
n �S Tn�

lt�list� �l� T
m inftoplist� �map �l� T

m��in�ist inftoplist�� Tn�
True

l� T
m inftoplist

Figure ���
� A proof for nf�termination involving abstract functions

In the same way we can adopt the evaluator functions for lazy�termination as
an abstract function� So we can e�g� de�ne the abstract function �l� T� in the
following way�

� l� n xs � case xs T �l�	 n�
l�	 n x xs � case n T �l�
 x xs�
l�
 x xs n � Pair x �l� n xs�

l� represents all functions� which will yield a normal�form i� their argument is
lazy�terminating in its spine and every list element of the argument has a normal�
form� l� can also be used to represent functions which do not yield a tuple as
result� Simply T�approximate the pair�

Example �� Let us prove some example with the abstract functions we have in�
troduced� We want to prove that

�lt�list Tn �map �l� T
m��in�ist inftoplist���

is nf�terminating�

This means that� if we take a lazy�spine�terminating list of lazy�spine�terminating
lists� which have nf�terminating elements and apply a function which transforms
such lists into normal�forms to all these elements� then we will get a spine lazy�
terminating list with nf�terminating elements�

A prove is given in �gure ���
� At the leaf �l� T
m inftoplist� we can append

basically the same tableau as the one in �gure �����

����� Functions of algebraic results

If we want to specify abstract functions which yield some algebraic type as result
this is comparatively easy� In section ����� we have already seen that we can
provide abstract values for any type of lists which can be evaluated to some

��



degree� In order to de�ne abstract functions we simply can use these abstract
values� An easy example is the following function which yields a lazy�terminating
list� if its argument has a head normal�form�

headtolazy xs � case xs inftoplist headtolazy�

headtolazy� x xs � inftoplist

Combining the results of the last two subsections we can specify �almost� any
abstract function�

��



Chapter �

Ordering Tableaux

��� Linear Orderings

In this section we will de�ne the class of Noetherian orderings on �c�expressions
which can be used as a basis for termination proofs� Such orderings on �c are
de�ned through a partial function � which maps �c�expressions to IN �

De�nition ��� A partial function � � �c � IN can be recursively de�ned by as
follows�

� ��e� � nc� � nc���e�� � � � �� ncm��em�� m
c
i � IN

if e has the head normal�form �c e� � � � em� and c is a constructor of arity
greater or equal m�

� ��e� � nf� � nf���e�� � � � �� nfm��em�� ni � IN
if e has the head normal�form �f e� � � � em� and f is a supercombinator of
arity greater m�

We will call � a termination function and demand that for every constructor
there are de�ning equalities of � � This includes all cases of partial applications of
constructors� If the calculation of ��e� does not terminate� then ��e� is unde�ned�
As a further restriction we will only allow such functions � that ��e� 	 �� if ��e�
is de�ned�
The multiplication is to be understood as bottom�avoiding� i�e� ���ei� � � even
if ��ei� is unde�ned�

There are several reasons for ��e� being unde�ned�

� e does not have a head normal�form�

��



� e is a potentially in�nite object �i�e� it does not have a normal�form��

� e has a head normal�form� but no rule has been speci�ed for its supercom�
binator in the de�nition of � �

Note that the two clauses in the de�nition of termination functions can be sub�
sumed in one clause� We distinguished between expressions of function type and
expressions of non�functional type for reasons of clarity only�

��� Ordering Tableaux

In this section we will de�ne an abstract reduction calculus in terms of ordering
tableaux� Ordering tableaux are de�ned similarly to termination tableaux and
operate on the same source language�

A tableau is a �nite tree whose nodes are marked with ordering propositions on
abstract expressions�

First we de�ne what an ordering proposition looks like�

De�nition ��� A ordering proposition is an expression that can be generated by
the following grammar�

S ��� LR � LR
LR ��� �IN� fE�� � � � � Eng��
E ��� �IN�L��

where L may be any ��
c �expression�

De�nition �	� An ordering proposition�

�nl�� f�n
l
�� e

l
�� � � � �n

l
n� e

l
n�g� � �nr�� f�n

r
�� e

r
�� � � � �n

r
m� e

r
m�g�

is valid for a termination function � i��

nl� �
nX
i��

nli����e
l
i�� � nr� �

nX
i��

nri ����e
r
i ��

for all concretisations �� such that both sides of the inequality are de�ned�

In this de�nition we restrict ourselves only to some sort of partial correctness� If
the function � is unde�ned for parts of the ordering proposition� then this propo�
sition is considered to be valid� That means that we may prove some statements
of the form� if the expression �loop x� terminates� then ��x� 	 ��loop x�� For a
proof of total correctness we then would have to prove that �loop x� terminates�

��



Our calculus will basically only prove partial correctness of ordering proposi�
tions� but can be extended to prove total correctness and then will be capable to
subsume termination tableaux completely�

For the case that we want to prove total correctness of ordering propositions we
will have to use another notion of validity�

De�nition �
� An ordering proposition is totally valid i� it is valid and both
sides of the inequality are de�ned for all concretisations�

The notion of validity of ordering proposition gives us a semantics for nodes in
a tableau� For this semantics we can specify what it means for a tableau to be
sound�

De�nition ��� An ordering tableau is sound if for all nodes n we have� Let n be
marked with lr� If n has the direct sons n�� � � � � nk such that ni is marked with
lri then�
if for all � � i � k � lri is valid then lr is valid�

Now we develop a calculus which derives new sound tableaux with the same root
node from a sound tableau� The new tableau will always originate from an old
one by extending a path with new leaves�

We will de�ne deduction rules for ordering tableaux and prove their soundness�

����� Normalizing ordering propositions

The �rst thing will be to �nd a uniform representation for ordering propositions�
We de�ne a normal�form for ordering propositions�

De�nition ��� An ordering proposition

�nl�� f�n
l
�� e

l
��� � � � � �n

l
n� e

l
n�g� � �nr�� f�n

r
�� e

r
��� � � � � �n

r
m� e

r
m�g�

is in normal�form i�

� there is no ekj which is in head normal�form� such that � can be applied
directly to ekj �

� there are no two di�erent expressions ekj � e
l
l in abstract normal�form such

that they are syntactically equal�

� nl� � � or nr� � ��

��



It is easy to calculate a normal�form of an ordering proposition�

i� calculate recursively all tuples of the form �n� c e� � � � em�� Replace them
with� �n � n�� e��� � � � � �n � nm� em� and increase nk� by �n � n�� �k � l if
�n� c e� � � � em� was on the left� k � r otherwise��
where ��c e� � � � em� is de�ned as n� �

Pm
i�� ni��ei�

ii� delete all tuples ��� e�

iii� cancel out nl� or nr�� i�e� if n
l
� 	 nr� then replace nl� by nl� � nr� and nr� by �

or the other way round�

iv� for all abstract normal�forms e unite all pairs �n� e� to one pair by canceling
out in the same way as in iii��

Note that after step i� there are only abstract variables left as expressions in
abstract normal�form�

Lemma��� The procedure above preserves total validity of ordering propositions�

Proof� We only cancel out natural numbers or abstract normal�forms� Abstract
normal�forms always are de�ned under � � Thus� an ordering proposition is totally
valid i� its normal�form is totally valid�

If we allow to cancel out arbitrary expressions� i�e� expressions not in ab�
stract normal�form there may be ordering propositions which have a totally valid
normal�form but are not totally valid themselves�

Next we specify expansion rules� which allow to extend paths of an ordering
tableau�

����� ��rules

We can adopt the same rules we applied to termination tableau� i�e� we can
reduce any redex at a leaf and we can branch� if there is a case on an abstract
variable� After having performed a reduction� we will calculate the normal�form
of the resulting new leaf node�

The next rules are very general approximations� These rules make the calculus
to a very high degree non�deterministic� Strategies when to apply these rules are
given later on�

��



����� Deletion and Addition

There are several approximations that can be made on an ordering proposition�

� Delete left�


 replace nl� with nl�
�
� where � � nl�

�
� nl��


 replace any nli with nli
�
� where � 
 nli

�
� nli�


 delete any pair �nli� e
l
i� where e

l
i is in abstract normal�form�

� Add right�


 replace nr� with nr�
�� where nr� � nr�

��


 replace any nri with nlr
�
� where nri � nri

��


 add any pair �nri � e
r
i � where e

r
i is in abstract normal�form�

� Delete T�


 if there is a pair �n�T� on one side of the proposition� then delete this
pair and increase n� on this side by n�

These approximations are sound in the way that�
if the approximated node is totally valid then the original node is totally valid�

����� Splitting

Suppose in a given tableau there is a leaf marked with�

�nl�� f�n
l
�� e

l
��� � � � � �n

l
n� e

l
n�g� � �nr�� f�n

r
�� e

r
��� � � � � �n

r
m� e

r
m�g�

Then the tableau may be expanded at this leaf by appending k new
leaves

�nli� � f�n
li
� � e

li
� � � � � �n

li
n� e

li
n�g� � �nri� � f�n

ri
� � e

ri
� � � � � �n

ri
m� e

ri
m�g�

i � �� � � � � k� i��

�
Pk

i�� n
li
j � nlj� for all j � �� � � � � n and

�
Pk

i�� n
ri
j � nrj � for all j � �� � � � � m

����� Tautology nodes

There are nodes which are trivially valid� With the approximations introduced
before we can identify tautology nodes with the node marked with�
��� fg� � ��� fg��

��



����� Approximation

We have already seen some approximation rules� which were more or less of
syntactical nature and can be integrated in a fully automatic prover� In this
subsection we will introduce a highly non�deterministic approximation rule which
is therefor only suitable for an interactive mode of the calculus�
A leaf l � r can be approximated with�

� l � r�� i� r� � r is valid�

� l� � r� i� l � l� is valid�

An example where this rule will help to �nd a termination proof is given in the
appendix�

����	 Induction Step

We arrived at the rule where a close examination of a path allows to make an in�
duction step� Such an induction step marks a leaf which constitutes a hypotheses
which has been on the path from the root to this leaf before�

De�nition ��� A leaf node e� � C�e�� � � � � en� in a tableau is called a recursive
node� if there is an ancestor node e � C�Tx�� � � � �Txn�� such that there is a
substitution � with ��e� � e��

�e� e�� is called a recursive pair� � the corresponding substitution and the path
from e to e� the recursive path�

Note that the context C��� describes the frame of some ordering proposition rather
than only an abstract expression� We allow that the ordering of set�elements may
be changed�

We de�ne the class of tableaux which are candidates for an ordering proof�

De�nition ��� A tableau where every leaf is either a tautology node or a recur�
sive node� is called preclosed�

����
 Partial Correctness

This section is devoted to the partial correctness of preclosed tableaux� Basically
we want to show that the root of a preclosed tableau is valid� This means that
every concretisation for which the ordering proposition is de�ned� makes the
proposition true� In order to prove partial correctness we need some measure

�




on concretisations of ordering propositions� This measure will be based on the
progress we have made in a proof� Therefore we will �rstly de�ne edges which
constitute a progress in the proof of an ordering proposition�

De�nition ��� Edges in a tableau which produce an expression in head normal�
form �n� �c e� � � � en�� such that there is a de�ning rule for the termination function
� in the case ��c e� � � � en� are called progress edges�

The process of normalizing will calculate a bit of � for progress edges� How much
of the expressions have to be still evaluated in order to evaluate � will be the main
measure in the proof of the theorem for partial correctness� The proof is similar
to the one of the main theorem in �SS	��� which is a proof on partial correctness
only� too�

Theorem��� The root of a preclosed tableau where every recursive path encloses

a progress edge is valid�

Proof� We can broaden our notion of concretisations for this theorem� We will
use the notion of liberal instances� A liberal instance of an abstract expression
�and also of an ordering proposition� is a substitution � which maps abstract
variables to arbitrary expressions such that� ��e� � �c�

The di�erence between concretisations and liberal instances is that abstract vari�
ables are no longer restricted to represent expressions which have a normal�form�

For the proof of the theorem� let us assume it is false� There is a concretisation
of the root for which the ordering proposition is de�ned and false� Then there
are recursive nodes which have concretisations for which the ordering proposition
is de�ned and false� This means there are liberal instances of these recursive
nodes� which make the ordering proposition false� For every liberal instance of
an ordering proposition� for which the proposition is de�ned� the number of head
normal�forms on top�level which have to be calculated in order to calculate � is
�nite �otherwise there was some essential part in the ordering proposition where
� was unde�ned�� Now choose a liberal instance of one of the recursive nodes
such that�

� the ordering proposition of the recursive node is de�ned for this liberal
instance�

� the ordering proposition is false�

� the number of top�level head normal�forms which have to be produced to
calculate the ordering proposition is minimal�

�




� and as a second minimization criterion the upper node of the recursive pair
has a minimal distance to the root node�

For a recursive pair �e� e�� every liberal instance of e� is also a liberal instance of
e� The liberal instance of e we have thus obtained can now be transformed along
the tableau from the node e down so that we get another liberal instance of a
recursive node� for which the ordering proposition of the node is false� This new
liberal instance of a recursive node will have less or equal the number of top�level
head normal�forms which have to be produced than the liberal instance which
was originally chosen� This number must not have decreased� otherwise this
contradicted our choice of the liberal instance to be minimal in this respect� So
this number has to have stayed constant� This means that we did not transform
our original liberal instance along a complete recursive path� or otherwise along
the progress node the number would have decreased� This means that the upper
node of the new recursive node is closer to the root than the one of the originally
chosen liberal instance� This contradicts our second minimization criterion� The
assumption was false and the theorem is true�

We have not been very rigorous with the description of transforming a liberal
instance along a tableau� There is a small pitfall in this process� The liberal
instance may be unde�ned at some parts� where the tableau requires it to be
de�ned �because a case is evaluated at this position�� If this is a position which
is necessary for evaluating the ordering proposition then this cannot be the case�
because we have chosen liberal instances for which the ordering proposition is
de�ned� If this is some other redex� then the tableau reduces a redex which is not
really needed for the calculation of the ordering proposition� We can replace this
unde�ned subexpression in our liberal instance which has no head normal�form�
by some arbitrary expression� which does have a head normal�form� This will not
e�ect the number of still to be calculated head normal�forms which are required
to calculate the ordering proposition�

The proof is even a bit more general and we can extend the theorem from con�
cretisations of the root to liberal instances of the root�

Corollary ��� Every liberal instance of the root in a preclosed tableau where

every recursive path encloses a progress edge is valid�

Example 
� We are by now able to prove the ordering proposition which is needed
to close the termination tableau of quicksort� We have to show that �less x xs�
is smaller than �Cons x xs� �and the equivalent proposition for greater�� We
choose as termination function the function which maps lists to their length�

��Nil� � �
��Cons x xs� � � � ���x� � ���xs�

�	



Txs� �Cons Tx� Txs�

Txs� �Nil

��� f���Txs��g� � ��� f���less Tx� Txs� �g�

��� f���Txs��g� � ��� f��� less Tx� Txs��g�

��� f���Txs��g� � ��� f���case Txs� Nil �less� Tx���g�

��� fg� � ��� fg�

��� f���Txs��g� � ��� f���less� Tx� Tx� Txs� �g�

��� f���Txs� �g� � ��� f���less Tx� Txs��g�

��� f���Txs��g� � ��� f���case �Tx� �Tx�� �Cons Tx� �less Tx� Txs� ���less Tx� Txs� ��g�

��� f���Txs��g� � ��� f���less Tx� Txs� �g�

Figure ���� A tableau proving an ordering relation for less

��Cons x � � � � ���x�
��Cons� � �

We can derive the simple preclosed tableau in �gure ���� On the two recursive
paths there are progress nodes� Therefore� the original ordering proposition is
valid� If we want to prove this proposition to be totally valid then we have to show
nf�termination of �less x xs�� which in fact can be easily done by termination
tableau�

����� Strategies

As can be seen the approximation rules are only performed� if one of the resulting
new leaves is a recursive node or a tautology node� Therefore an implementation
will combine the path analyzing for the induction with the approximations in one
procedure� i�e� there will be a test� whether a approximation can be performed
such that one of the resulting nodes is a recursive node�

������ Functions

We introduced termination functions � which may be de�ned for expressions of
function type and are able to prove ordering propositions on functions� It is
hard to think of an example� where this can be of any help in the context of
termination tableau� Let us try to construct such an example� A recursive pair
is required� such that an argument of function type appears somewhere in the
corresponding tuples of the recursive pair� The only means to express a function

��



f Txs

f �g Txs��

Nil

f� Tx� Txs�

Figure ���� A termination tableau for f�

is a partially applied supercombinator� So we have to prove somehow that a not
saturated function expression is smaller under some termination function than an
abstract variable� This abstract variable will represent functions� i�e� it cannot
be deconstructed by a case expressions� This makes it impossible to �nd a useful
ordering proposition depending on functions in termination tableau�

We can only think of the following rather obscure example where we abandon
well�typedness of �c�

Example ��� We de�ne two supercombinators� They cannot be typed�

f x � case x Nil f�

f� x xs � f �g x�

g x y � g x y

Now we try to built a termination tableau for f� The resulting tableau is given
in �gure ����

The following termination function can close the recursive path in the termination
tableau for f�

��Nil� � �
��Cons x xs� � � � ���x� � ���xs�
��Cons x � � � � ���x�
��Cons� � �
��g xs� � � � ��xs�

The proof of the required ordering proposition which is required for closing the
tableau for f is easy to show to be valid�

������ Total Correctness

Partial correctness gives only conditional proofs� It proves an ordering proposition
to be true for concretisations for which the proposition is de�ned� To show

��



total correctness we have to prove that an ordering proposition is de�ned for
all of its concretisations� A simple way to assure this is to prove that every
abstract expression occuring in this proposition is nf�terminating� This means
that for a termination proof of a function f we might have to prove some ordering
proposition about another function g� which includes proving termination of g
which requires again some ordering proposition etc�

Proving nf�termination of all abstract expressions occuring in an ordering propo�
sition is a bit too strict for proving total validity� A termination function � can
be de�ned for expressions which are not nf�terminating�

We can simply adapt the path analysis for termination tableau to ordering
tableau�

De�nition �	� A leaf node e� � C�e�� � � � � en� in an ordering tableau is called a
t�recursive node� if all ei are abstract normal�forms and there is an ancestor node
e � C�Tx� � � � � �Txn �� such that there is a substitution � with ��e� � e��

�e� e�� is called a t�recursive pair and � the corresponding substitution�

The di�erence to recursive nodes in ordering tableaux is that the corresponding
substitution may only substitute abstract variables with abstract normal�forms
as it had been the case in termination tableau� This ensures that every concreti�
sation of a t�recursive node is a concretisation of the upper node in the t�recursive
pair� So we can apply lemma 	 again� Now we can close an ordering tableau if
we �nd an ordering which ensures that concretisations of t�recursive paths get
decreased��

��� Ordering and Termination Tableaux

����� Ordering propositions for use in termination proofs

Now let us return to the point where we wanted to use ordering propositions in
the �rst place� Assume that in a termination tableau there is a path from a node

e � C�Ta� � � �Tan �

to a node
e� � C�e� � � � en�

where the ei are not necessarily in abstract normal�form�

� This means also that we get the same problems with overlapping paths as we had in termi�
nation tableau�

��



This means in the �rst place that we cannot assure that every concretisation of
e� is a concretisation of e� i�e� lemma 	 does not hold anymore� Thus we have to
ensure that every concretisation of e� is also a concretisation of e� A simple way
to ensure this is to prove nf�termination of all ei�

The next thing to do is to test whether for some �xed Noetherian ordering the
path from e to e� decreases a concretisation of e� As long as the ordering is based
on a linear termination function � we can try to prove the necessary ordering
propositions with ordering tableaux�

����� Termination proofs with ordering tableaux

The astute reader will have noticed that ordering tableaux can subsume termi�
nation tableau� if we use them for proving total correctness� A proof for total
correctness includes a termination proof of some sort� If we want to prove that an
abstract expression e is nf�terminating then we can try to prove total correctness
of the following ordering proposition�

��� f��� e�g� � ��� f��� e�g�

Note that this is not a tautology node because the sets on both sides are not
empty�

We have to specify the ordering the termination function � for which we want
to close this ordering tableaux� It is our aim to evaluate every part of the con�
cretisations of e� Therefor we have to ensure that � evaluates every part of the
expression it is applied to� This means that � has to be of the form�

��c e� � � � en� � � �
nX
i��

� � ��ei�

for every constructor c or partial application of a supercombinator�

As can be seen � is a form of evaluator function like the ones in section ���� So
we can say that proving termination with ordering tableaux uses a termination
function which resembles a compiled evaluator function�

����� Ordering tableaux and ordering tableaux

If we use ordering tableaux to prove nf�termination as proposed in the last sub�
section or try to prove total correctness of some ordering proposition then we
night need information about an ordering relation in order to close the tableau
at a recursive but not t�recursive leaf� In such a situation we will need ordering
tableaux to close an ordering tableau�

��



Chapter �

Conclusion

We have proposed a calculus which performs termination proofs for a lazily eval�
uated functional programming language� The calculus is based on abstract re�
duction and formulated in terms of termination tableaux� Termination tableaux
generate constraints for an ordering� In order to complete a proof� it can be
tested whether some �xed ordering ful�lls these constraints or a calculus which
generates such orderings can be plugged in�

The presented method is able to handle higher order and polymorphic functions
and to give detailed information for the termination behavior of applications to
arguments which do not have a normal form�

The method proves termination of recursive functions that have calls to another
recursive function g in their recursive calls by proving an ordering proposition
about the function in the recursive call� Such proofs can be made by ordering�
tableaux� which can also handle higher order and polymorphic functions�

An experimental implementation of the calculus exists which besides other non�
trivial examples is able to derive all closed termination tableaux given in this
paper� We hope to extend this implementation to a stable and powerful veri�ca�
tion tool in the near future�

I would like to thank Marko Sch�utz for lending me his ear whenever I needed
some feedback� Hubert Kick for his work on the implementation and Manfred
Schmidt�Schau for his helpful comments on several draft versions�

��



Appendix A

Example Proofs

A�� First Order Functions

First we will see how our calculus compares to a termination calculus solely
created for �rst order strict languages� In the following we will give proofs for
the examples given in �Wal	���

All examples will depend on lists� We will for a �xed termination function
throughout this section� which ignores lists elements and orders lists simply by
their length�

��Nil� � �
��Cons x xs� � � � ���x� � ���xs�
��Cons x � � � � ���x�
��Cons� � �

Example ��� We start with one of the examples where the calculus of Walther fails
to show termination� The bad news is� our calculus fails to fully automatically
prove termination in this example� too� but as good news� we can slightly direct
our tableaux with the correct approximation such that they are capable to show
termination� The function which we want to analyze is shuffle with the following
de�nition�

shuffle xs � case xs Nil shuffle�

shuffle� x xs � Cons x �shuffle �reverse xs��

reverse xs � case xs Nil reverse�

reverse� x xs � append �reverse xs� �Cons x Nil�

Nf�termination of append and reverse is easy to show� The construction of a
termination tableau for shuffle gives the preclosed tableau of �gure A���

��



Nil
�
��S

SS
shu�e �reverse Txs��

shu�e Txs

Txs�Cons Tx� Txs�

Figure A��� A termination tableau for shuffle�

��
f��
Txs� �g����
f��
reverse Txs��g�

��
fg����
f��
reverse Nil�g�

Txs��Cons Tx� Txs�

��
fg����
fg�

approximate

��
f��
Txs� �g����
f��
reverse Txs��g�

��
f��
Txs� �g����
f��
append �reverse Txs�� �Cons Tx� Nil��g�

Figure A��� An ordering tableau for reverse�

In order to close the tableau� we have to show for some termination function �
that

��Cons Tx� Txs�� 	 ��reverse Txs��

We can try to built the corresponding ordering tableau as seen in �gure A���
Without any approximation we could not have closed the tableau� An in�nite
sequence of reduction of the function reverse would have occured� Rather than
reducing in�nitely we stopped after the �rst reduction of reverse and approxi�
mated the right hand side of the ordering proposition� The approximation applied
here is proved to be sound by another ordering tableau which can be seen in �g�
ure A��� This example shows that it can be a good heuristics avoiding reducing
a recursive function several times on one path�

Now let us consider the sorting algorithms given in �Wal	���

Example ��� The �rst sorting algorithm is a form of bubble�sort�

bubblesort xs � case xs Nil bubblesort�

bubblesort� x xs � Cons �last �bubble �Cons x xs���

�bubblesort �but�last �bubble �Cons x xs����

bubble xs � case xs Nil bubble�

��



��
f��
Cons Tx� �reverse Txs���g����
f��
append �reverse Txs� �Cons Tx� Nil��g�

��
f��
Tbsg����
f��
append Tbs �Cons Tx� Nil��g�

��
fg����
fg�

��
f��
Tbs�g����
f��
append Tbs� �Cons Tx� Nil��g�

Tbs�Cons Tb� Tbs�

Figure A��� An ordering tableau which proves the approximation of the ordering
tableau for reverse to be correct�

bubble Txs

Txs �Cons Tx� Txs�
Nil

case Txs� �Cons Tx� Nil��bubble� Tx��

�Cons Tx� Nil� Txs� �Cons Tx� Txs�

bubble� Tx� Tx� Txs�

bubble �Cons Tx� Txs��bubble �Cons Tx� Txs��

Figure A��� A termination tableau for bubble�

bubble� x xs � case xs �Cons x Nil� �bubble� x�

bubble� x� x� xs � case x�
�x� �Cons x� �bubble �Cons x� xs���

�Cons x� �bubble �Cons x� xs���

but�last xs � case xs Nil but�last�

but�last� x xs � case xs Nil �but�last� x�

but�last� x� x� xs � Cons x� �but�last �Cons x� xs��

The function last of the Haskell standard prelude is easy to show to be nf�
terminating�

We start with showing nf�termination of bubble� An abbreviated tableau can be
found in �gure A���

Now we can try to build a termination tableau for bubbblesort� The tableau is
given in �gure A��� In order to close this tableau� we need to prove an ordering
proposition involving the functions but�last and bubble� The ordering tableau
for this proposition is given in �gure A��� As can be seen� this example runs

�




Txs �Cons Tx� Txs�
Nil

Cons Tx� Txs�

bubblesort Txs

last �bubble �Cons Tx� Txs�� bubblesort �but�last �bubble �Cons Tx� Txs� ���

Figure A��� A termination tableau for bubblesort�

trough the calculus smoothly but requires quite a lot of reductions�

Example ��� The second sorting algorithm presented in �Wal	�� selects the min�
imum from a list and appends this to the front of the resulting list�

selsort xs � case xs Nil selsort�

selsort � x xs � case �x���minimum �Cons x xs���

�Cons x �selsort xs��

�selsort �remove �minimum �Cons x xs�� x xs��

remove xs n m � case xs Nil �remove� n m�

remove� n m x xs � case �n��x� �Cons m xs�

�Cons x �remove n m xs��

The standard prelude function minimum is nf�terminating for non�empty lists�
Implicitly we have shown this when we proved nf�termination of fold� minimum
is de�ned through fold�functions on lists�

For the function remove nf�termination can be shown by a simple termination
tableau� The reader can try this for himself� It remains to show nf�termination
of selsort� First we expand the termination tableau of �gure A�
� In order to
close this tableau a simple ordering proposition has to be proved� This is done
by the ordering tableau of �gure A�
�

Example ��� The third sorting algorithm we investigate is minsort� Here the
smallest element of the list is deleted�

minsort xs � case xs Nil minsort�

minsort� x xs � Cons �minimum �Cons x xs��

�minsort �deletemin �Cons x xs���

�




��
f��
Txs�g����
f��
case �case Txs� �Cons Tx� Nil� �bubble� Tx��� Nil but�last��g�

� � �

��
f��
Txs�g����
f��
but�last �bubble �Cons Tx� Txs���g�

� � �

��
f��
but�last �Cons Tx� Nil��g�

��
f��
but�last� Tx� Tx� �bubble �Cons Tx� Txs����g�

��
f��
Txs�g��

��
f��
butlast� Tx� �bubble �Cons Tx� Txs����g�

��
f��
but�last �Cons Tx� �bubble �Cons Tx� Txs�����g�

��
f��
case �bubble �Cons Tx� Txs��� Nil �but�last� Tx���g�

��
f��
butlast� Tx� �bubble �Cons Tx� Txs����g�

��
f��
case �Cons Tx� �bubble �Cons Tx� Txs� ��� Nil butlast��g�

Txs��Cons Tx� Txs�

Txs��Cons Tx� Txs�

��
f��
Txs�g��

��
f��
Txs�g����
fg�

��
f��
case �Cons Tx� �bubble �Cons Tx� Txs���� Nil �but�last� Tx���g�

��
f��
case �case Txs� �Cons Tx� Nil��bubble� Tx��� Nil �but�last� Tx���g�

��
f��
Txs�g����
f��
but�last� Tx� Nil�g�

��
fg����
fg�

��
f��
Txs�g��

��
f��
Txs�g��

��
f��
Txs�g��

��
f��
Txs�g��

��
f��
Txs�g��

��
f��
Txs�g����
f��
Nil�g�

��
fg����
fg�

��
f��
Txs�g��

��
f��
Txs�g��

Figure A��� An ordering tableau for the ordering proposition necessary for closing
the termination tableau of bubblesort�

deletemin xs � case xs Nil deletemin�

deletemin� x xs � case xs Nil �deletemin� x�

deletemin� x� x� xs

� case �x�
�x�� �Cons x� �deletemin �Cons x� xs���

�Cons x� �deletemin �Cons x� xs���

The termination tableaux for deletemin and minsort are pretty easy to expand�
The only problematic case is the ordering proposition which has to be proved in
order to close the tableau for minsort� The corresponding ordering tableau can

�	



Txs �Cons Tx� Txs�
Nil

selsort Txs

Cons �minimum �Cons Tx� Txs���

Cons Tx� �selsort Txs��

Tx�

selsort Txs� Tc

�selsort �remove Tc Tx� Txs���

�selsort �remove �minimum �Cons Tx� Txs��� Tx� Txs���

Figure A�
� A termination tableau for selsort�

��
fg����
fg� Txs��Cons Tx� Txs�

��
f��
Txs� �g����
f��
remove Tc Tx� Txs��g�

��
f��
Txs� �g����
f��
remove Tc Tx� Txs��g�

��
fg����
fg�

Figure A�
� An ordering tableau involving remove�

be seen in �gure A�	�

Example �	� The next sorting algorithmwe consider is the well�known quicksort

function which is a typical divide�and�conquer algorithm�

quicksort xs � case xs Nil quicksort�

quicksort� x xs � append �quicksort �smaller x xs��

��
fg����
fg�

��
f��
Txs� �g����
f��
deletemin �Cons Tx� Txs���g�

Txs��Cons Tx� Txs�

��
f��
Txs� �g����
f��
deletemin �Cons Tx� Txs���g�

��
f��
Txs� �g����
f��
deletemin �Cons Tx� Txs���g�

Figure A�	� An ordering tableau involving deletemin�

��



��
fg����
fg�

��
f��
Txs� �g����
f��
smaller Tx� Txs��g�

Txs��Cons Tx� Txs�

��
f��
Txs� �g����
f��
smaller Tx� Txs��g�

��
f��
Txs� �g����
f��
smaller Tx� Txs��g�

Figure A���� An ordering tableau involving smaller�

�Cons x �larger x xs��

smaller x xs � case x Nil �smaller� x�

smaller� n x xs � case �n
x� �smaller n xs�

�Cons x �smaller n xs��

larger x xs � case x Nil �larger� x�

larger� n x xs � case �n�x� �larger n xs�

�Cons x �larger n xs��

The functions smaller� larger and the standard prelude function append are
easily shown to be nf�terminating� The expansion of a termination tableau for
quicksort will then lead pretty soon to two analogous ordering propositions�
One of them concerning smaller the other concerning larger� We give the
ordering tableau for smaller in �gure A����

Example �
� The last sorting algorithm we want to investigate is a merging func�
tion� The list is distributed into two sublists and these are merged to an ordered
list again�

mergesort xs � case xs Nil mergesort�

mergesort� x xs � case xs �Cons x Nil� �mergesort� x�

mergesort� x� x� xs

� merge �mergesort �distributeodd �Cons x� �Cons x� xs���

�mergesort �distributeeven �Cons x� �Cons x� xs���

distributeodd xs � case xs Nil distributeodd�

distributeodd� x xs � case xs �Cons x Nil� �distributeodd� x�

distributeodd� x� x� xs � Cons x� �distributeodd xs�

distributeeven xs � case xs Nil distributeeven�

��



��
f��
Txs� �g����
f��
distributeeven �Cons Tx� �Cons Tx� Txs����g�

��
f��
Txs� �g����
f��
distributeeven� Tx� Tx� Txs��g�

��
fg����
fg�

��
f��
Txs� �g����
f��
distributeeven Txs��g�

Txs��Cons Tx� Txs�

��
f��
Txs� �g����
f��
distributeeven� Tx� Txs��g�

��
fg����
fg� Txs��Cons Tx� Txs�

��
f��
Txs� �g����
f��
distributeeven� Tx� Tx� Txs��g�

��
f��
Txs� �g����
f��
distributeeven� Tx� Tx� Txs��g�

Figure A���� An ordering tableau involving distributeeven�

distributeeven� x xs � case xs Nil �distributeeven� x�

distributeeven� x� x� xs � Cons x� �distributeeven xs�

merge xs ys � case xs ys �merge� ys�

merge� ys x xs � case ys �Cons x xs� �merge� x xs�

merge� x xs y ys � case �x
y� �Cons x �merge xs �Cons y ys���

�Cons y �merge �Cons x xs� ys��

The functions merge� distributeodd and distributeeven as well run smoothly
through the termination calculus� Nf�termination is easily shown for them� In or�
der to close the termination tableau for mergesort we again have to prove two or�
dering propositions� one for distributeodd and one for distributeeven� These
ordering propositions are quite similar� The ordering tableau for distributeeven
is given in �gure A����

A�� Higher Order Functions

We will give termination proofs for higher�order combinator parsers as they are
presented e�g� in �Wad
�� FL
	�� This example is a typical program using the
higher order feature� We will assume that there is a basic type token with an
equality function��

The �rst parser function we need� is a function which checks if the token list
starts with a certain token� The next two functions do not involve any recursion
and so they trivially terminate� Simple closed tableaux can be derived for them�

� These tokens could be of a type Char which we did not introduce in our language�

��



lit x ys � case ys Nil �lit� x�

lit� x y ys � case �x �� y� �Cons ys Nil� Nil

Now we have the basic functions that enable us to �nd tokens in a token list� We
provide two combinator functions which can combine two parsers� The �rst one
is the alternative combinator� alt p q x � append �p x� �q x�

This function does not cause any problem� append can be proved nf�terminating�
If p and q are nf�terminating functions then alt will be nf�terminating�

We have shown that any alt�combination of parsers constructed with lit

is nf�terminating� That means that the following parser which parses any
alphanumeric�symbol is nf�terminating�

alphnum � alt �lit 	a	��alt �lit 	b	��alt �lit 	c	�




�alt �lit 	Y	��lit 	Z	��


�

The second function we need to de�ne a parser is the sequential combinator�
seq p q xs

� case �p xs� Nil �seq� q�

seq� q x xs

� append �q x� �seq� q xs�

seq� q xs � case xs Nil �seq� q�

We can �rst analyze seq under the assumption that its arguments of functional
type are nf�terminating functions� This gives rise to the tableau in �gure A����

We have proved seq to be nf�terminating� In a parser for a recursively de�ned
language this will not be su�cient enough� One of the arguments for the function
seq may be a recursive call to the parser which is constructed by the call of seq�
In such a situation we cannot assume the arguments of seq to be nf�terminating�
Actually there is a quite well�known class of seq�combinations which are known
to be looping� parsers for a grammar with left�recursion� That parsers for a
left�recursive grammar are looping can automatically be proved by the strictness
analyzer presented in �SSPS	�� Sch	���

A simple parser which uses seq recursively is the parser for identi�ers�
ident � alt �seq alphnum ident� alphnum

For parsers de�ned in such a way we have to make a separate termination proof�
The termination tableau for ident turns out to be very large� We are only

able to print out parts of it in �gure A���� The reason for this is that we have
to check out every possible outcome of alphnum to see if it decreases the list for
the recursive call of ident� Fortunately� as large as the tableau might appear�
it can nevertheless be closed even without applying any dirty tricks� Note that
we did not even have to prove an ordering proposition for the proof� Un�
fortunately there are nf�terminating parsers which can be constructed with our
parser�combinators presented so far� where our calculus fails to prove termina�

��



Nil

Nil

Tbs �Nil

Tq Tb�

Tbs � �Cons Tb� Tbs� �

Tbs� �Nil

Tbs� � �Cons Tb� Tbs� �

case �Tp Ta� Nil �seq� Tq�

case Tbs Nil �seq� Tq�

seq� Tq Tb� Tbs�

append �Tq Tb� � �seq� Tq Tbs� �

seq� Tq Tbs�

case Tbs� Nil �seq� Tq�

seq� Tq Tb� Tbs�

append �Tq Tb� � �seq� Tq Tbs� �

seq� Tq Tbs�T

T

Tq Tb�

Figure A���� A closed tableau for �seq p q Ta�

tion� Such parser are recursive sequences of a parser with itself� An example
is�

identtree � alt ident

�seq �lit ����

�seq identtree

�seq �lit ����

�seq identtree �lit ��������

The problem of such examples is that they basically entail a sequence of the form
p � seq p p�� The sequence operator seq demands a sequential evaluation� so
basically we have above� to apply the parser p� parse the input string with the
parser p and apply the parser p to the result of this parse� This means in a
certain way� to evaluate an application p xs� we have to evaluate the expres�
sion p �head �p xs��� To close a termination tableau for p would need some
knowledge about the result of p itself� This is currently beyond the scope of our
method�

� p is of course looping� The non�looping variants of such examples have the same problems�

��



�alt �seq alphnum ident� alphnum� Txs

ident Txs

append ��seq alphnum ident� Txs� �alphnum T
xs�

�seq alphnum ident� Txs
alphnum T

xs

case �alphnum T
xs� Nil �seq� ident�

case ��alt �lit �b���alt �lit �c����� � ��� �Cons Tx� Txs� ��� Nil �seq� ident�

case ��alt �lit �a���alt �lit �b����� � ��� Txs� Nil �seq� ident�

case �append �lit �a� Txs��alt �lit �b���alt �lit �c����� � ��� Txs�� Nil �seq� ident�

T

case �case �lit �a� Txs��alt �lit �b���alt �lit �c����� � ��� Txs�
�append� �alt �lit �b���alt �lit �c����� � ��� Txs�� Nil �seq� ident�

�
�
�

case ��alt �lit �b���alt �lit �c����� � ��� Nil� Nil �seq� ident�

seq� ident Txs� ��alt �lit �b���alt �lit �c����� � ��� �Cons Tx� Txs� ��

ident Txs�

seq� ident ��alt �lit �b���alt �lit �c����� � ��� �Cons Tx� Txs� ���
�
�

case �lit �Z� �Cons Tx� Txs� �� Nil �seq� ident�

Nil seq� ident Txs� Nil

ident Txs� seq� ident Nil

Nil

�
�
�

T
xs � �Cons Tx� Txs� �

�
�
�

Figure A���� Parts of a closed tableau for ident�

A�� In�nite Lists

We will give a proof that a program which produces an in�nite number of primes
will lazy�terminating in its spine� The program which produces the primes will
be a bit unusual� We cannot use the usual sieve of Eratosteles program� because
this uses the function �lter� which cannot guarantee that applied to an in�nite
list it will produce a head normal�form� Note that� if we could have proved the
usual sieve program could be shown to be lazy�terminating in its spine� then we
would have proved that there are in�nitely many prime numbers� This is a bit
to much expected from a fully automatic termination prover�

Instead of the usual sieve program we give a program which assures that if there
are only �nitely many prime numbers the resulting list will produce an in�nite
list of prime numbers by repeating some of them in�nitely�

So here is the �rst part of our prime number program�

primes � map select �zip prim �fromstep � ���

��



map f xs � case xs Nil �map� f�

map� f x xs � Cons �f x� �mapf xs�

zip xs ys � case xs Nil �zip� ys�

zip� ys x xs � case ys Nil �zip� x xs�

zip� x xs y ys � Cons �Pair x y� �zip xs ys�

repeat x � Cons x �repeat x�

fromstep x s � Cons x �fromstep �x
s� s�

prim � map select �zip �repeat primlists� �fromstep ��� �����

The second part� where we will see the de�nition of select and primlists will
be given further down� We will not need them for the �rst part of our proof�

Let us prove that primes is lazy�terminating in its spine� We need an evaluator
twhich forces the evaluation of a list to an arbitrary but �xed length�

lt�spine n xs � case xs True �lt�spine� n�

lt�spine� n x xs � case n True �lt�spine� x xs�

lt�spine� x xs n � lt�spine n xs

We need to prove that lt�spine Tn primes is nf�terminating� We give the main
path of the corresponding termination tableau�

lt�spine primes Tn

�case primes True �lt�spine� Tn�

� C��map select �zip prim �fromstep Ta� Ta����
� C��case �zip prim �fromstep Ta� Ta��� Nil �map� select��
� C��zip prim �fromstep Ta� Ta���
� C��case prim Nil �zip� �fromstep Ta� Ta����
� C��map select �zip �repeat primlists� �fromstep Ta��� Ta������
� C��case �zip �repeat primlists� �fromstep Ta��� Ta�����

Nil �map� select��
� C
��zip �repeat primlists� �fromstep Ta��� Ta������
� C
�case �repeat primlists� Nil �zip� �fromstep Ta��� Ta������
� C���repeat primlists��
� C��Cons primlists �repeat primlists��
� C
�zip� �fromstep Ta��� Ta���� primlists �repeat primlists��
� C
�Cons �Pair primlists Ta����

�zip �repeat primlists� �fromstep Ta��� Ta������
� C��map� select �Pair primlists Ta����

��



�zip �repeat primlists� �fromstep Ta��� Ta������
� C��Cons �select �Pair primlists Ta�����

�map select �zip �repeat primlists� �fromstep Ta��� Ta�������
� C��zip� �fomstep Ta� Ta���select �Pair primlists Ta�����

�map select �zip �repeat primlists��fromstep Ta��� Ta������
� C��case �fomstep Ta� Ta�� Nil�

�zip� �select �Pair primlists Ta�����

�map select �zip �repeat primlists��fromstep Ta��� Ta�������
� C��zip� �select �Pair primlists Ta�����

�map select �zip �repeat primlists� �fromstep Ta��� Ta������

Ta� �fromstepTa� Ta���
� C��map� select �Pair �select �Pair primlists Ta����� Ta� �

�zip �map select �zip �repeat primlists�

�fromstep Ta��� Ta�������fromstepTa� Ta����
�lt�spine� Tn

�select �Pair �select �Pair primlists Ta����� Ta���

�map select �zip �map select �zip �repeat primlists�

�fromstep Ta��� Ta�������fromstep Ta� Ta�����

�lt�spine Tn��map select �zip �map select �zip �repeat primlists�

�fromstep Ta��� Ta�������fromstep Ta� Ta�����

� C���map select �zip �map select �zip �repeat primlists�

�fromstep Ta��� Ta�������fromstep Ta� Ta������
� C��case �zip �map select �zip �repeat primlists�

�fromstep Ta��� Ta�������fromstep Ta� Ta�����

Nil �zip� select��
� C��zip �map select �zip �repeat primlists�

�fromstep Ta��� Ta�������fromstep Ta� Ta�����
� C��case �map select �zip �repeat primlists�

�fromstep Ta��� Ta������ Nil �zip� �fromstep Ta� Ta���
� C��map select �zip �repeat primlists�

�fromstep Ta��� Ta������
� C��case �zip �repeat primlists�

�fromstep Ta��� Ta����� Nil �map� select��
� C
�case �repeat primlists� Nil �zip� �fromstep Ta��� Ta������

The last expression in this reduction sequence has been on the path before �mod�
ulo a substitution of abstract variables�� We can close the path here� because the
Peano�number Tn has decreased by one�

If we want to prove fully lazy�evaluation of primes we also need to show that all
lists elements of primes are nf�terminating�� This means for our example above�
that we have to show nf�termination of�

� Actually we only have to show them to be lazy�terminating which is the same as nf�
termination for basic values

�




select �Pair �select �Pair primlists Ta����� Ta��

It is now time to reveal the rest of our prime�number program�

primelists � map primelimit �fromstep � ��

primelimit limit

� map hd �iterat �pseudosieve limit� �fromstep � ���

iterat f x � map �power f x� �fromstep � ��

power f x n � case n x �power� f x�

power f x n � f �power f x n�

pseudosieve limit xs � case xs bot �pseudosieve� limit�

pseudosieve� limit p xs

� append �filter �modtest p� �take limit xs�� �repeat ��

modtest p x � ��mod x p��� ��

hd xs � case xs � hd�

hd� x xs � x

select pl � case pl select�

select� ls n � case n �hd ls� �select� ls�

select� ls n � case ls bot �select� n�

select� n l ls � select� ls n

Unfortunately a tableau for the remaining proof is far to large to be displayed in
any form on paper�

�




Bibliography

�Bac
�� Roland C� Backhouse� Program Construction and Veri�cation�
Prentice�Hall� Englewood Cli�s�N� J�� �	
��

�BHA
�� G� L� Burn� C� L� Hankin� and S� Abramsky� The theory for strictness
analysis for higher order functions� In H� Ganzinger and N� D� Jones�
editors� Programs as Data Structures� number ��
 in Lecture Notes in
Computer Science� pages ������ Springer� �	
��

�Bur
�� R� M� Burstall� Program proving as hand simulation with a little induc�
tion� In Information Processing� IFIP� pages ��
����� North�Holland
Publishing Company� �	
��

�Bur

� Geo�rey Burn� Evaluation transformers � a model for the parallel eval�
uation of functional languages �extended abstract�� In Gilles Kahn� ed�
itor� Functional Programming Languages and Computer Architecture�
number �
� in Lecture Notes in Computer Science� pages �����
��
Springer� �	

�

�CC

� Patrick Cousot and Radhia Cousot� Abstract interpretation� A uni�
�ed lattice model for static analysis of programs by construction or
approximation of �xpoints� In Conference Record of the Fourth ACM

Symposium on Principles of Programming Languages� pages ��������
ACM Press� �	

�

�Der

� N� Dershowitz� Termination of rewriting� Journal of Symbolic Compu�

tation� ������	����� �	

�

�FL
	� R� Frost and J� Launchbury� Constructing natural language interpreters
in a lazy functional languages� The Computer Journal� ��������
�����
�	
	�

�Gie	�a� J�urgen Giesl� Automatisierung von Terminierungsbeweisen f�ur rekursiv

de�nierte Algorithmen� PhD thesis� Technische Hochschule Darmstadt�
�		�� in German�

�	



�Gie	�b� J�urgen Giesl� Termination analysis for functional programs using
term orderings� In Alan Mycroft� editor� Static Analysis Symposium

�
	� number 	
� in Lecture Notes in Computer Science� pages !!�!!
Springer� �		��

�Lan
	� D� S� Lankford� On proving term�rewriting systems are noetherian�
Technical Report MTP��� Mathematics Department� Louisiana Tech�
nical University� �	
	�

�Mar

� Ursula Martin� Extension funczions for multiset orderings� Information

Processing Letters� ����
���
�� �	

�

�Mil

� Robin Milner� A theory of type polymorphism in programming� J�

Comp� Sys� Sci� �
���
��
�� �	

�

�Myc
�� Alan Mycroft� The theory and practice of transforming call�by�need
into call�by�value� In �th International Symposium on Programming�
number 
� in Lecture Notes in Computer Science� pages ��	��
��
Springer� �	
��

�N�oc	�� Eric N�ocker� Strictness analysis using abstract reduction� In Functional

Programming Languages and Computer Architecture� pages ��������
ACM Press� �		��

�PJL	�� Simon L� Peyton Jones and David R� Lester� Implementing Functional

Languages� a Tutorial� Prentice�Hall International� London� �		��

�Sch	�� Marko Sch�utz� The G��machine� E�cient strictness analysis in
Haskell� Technical Report ��	�� Johann Wolfgang Goethe�Universit�at�
Fachbereich Informatik� January �		��

�Smu
�� Raymond M� Smullyan� First�Order Logic� Springer� �	
��

�SS	�� Schmidt�Schau � A calculus for proving equivalence of programs in a
non�strict functional language� obtainable by request from the author
at schauss"informatik�uni�frankfurt�de� �		��

�SSPS	�� M� Schmidt�Schau � S�E� Panitz� and M� Sch�utz� Strictness analysis
by abstract reduction using a tableau calculus� In Alan Mycroft� ed�
itor� Static Analysis Symposium �
	� number 	
� in Lecture Notes in
Computer Science� pages ��
����� Springer� �		��

�Ste	�� Joachim Steinbach� Termination proofs of rewriting systems � heuris�
tics for generating polynominal orderings� Technical Report SEKI�
Report SR�	����� Universit�at Kaiserslautern� �		��


�



�Wad
�� Phil Wadler� How to replace failure by a list of successes� In Functional

Programming Languages and Computer Architecture� number ��� in
Lecture Notes in Computer Science� pages ������
� Springer� �	
��

�Wad

� Phil Wadler� Strictness analysis on non��at domains �by abstract inter�
pretation over �nite domains�� In Samson Abramsky and Chris Hankin�
editors� Abstract Interpretation of Declerative Languages� chapter ���
Ellis Horwood Limited� Chichester� �	

�

�Wal	�� Christoph Walther� On proving the termination of algorithms by ma�
chine� Arti�cial Intelligence� 
��������
� �		��


�


