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Abstract

This paper describes context analysis� an extension to strictness anal�

ysis for lazy functional languages� In particular it extends Wadler�s four

point domain and permits in�nitely many abstract values� A calculus is

presented based on abstract reduction which given the abstract values for

the result automatically �nds the abstract values for the arguments�

The results of the analysis are useful for veri�cation purposes and can

also be used in compilers which require strictness information�

� Introduction

Optimization is a very important stage in any compiler and� due to the high
degree of abstraction� particularly in compilers for lazy functional languages like
Haskell� Clean� etc� The optimizations need to be based on static analysis of
the program at hand� One such analysis is strictness analysis which tries to
�nd the arguments in a function application that are sure to be evaluated when
evaluating the application� A generalization of strictness analysis is context
analysis which tries to �nd the degree of evaluation that is required of the
argument given a degree of evaluation required of the application�
While there has been some research on the exploitation of strictness informa�
tion for optimization e� g� �PJS��� HB��� PJL��� PJP	 research on context
information and its use e� g� �LB�
� FB��� Sew��� Far��	 has not received much
attention�
Many approaches to strictness analysis de�ne a �nite set of abstract values for
any particular type beforehand for use in the analysis� e� g� Wadler�s ��point
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domain �Bur��� Wad
�	� Often the motivating claim is that the amount of
evaluation an expression can experience depends on its type� For the approach
presented in this paper there is an in�nity of possible evaluation contexts� It
comes as no surprise that from our point of view the amount of evaluation
which an expression may experience is determined by the functions present in
the program that consume arguments of the expressions type�
For veri�cation purposes our calculus will answer questions such as �For which
arguments will an application of a function yield a value of a speci�ed de�ned�
ness���
Another di�erence to other work on context analysis is that our approach is
constructive� i�e� it constructs abstract values for which certain relations hold�
As an example consider an application of sum� Typically� context analysis would
give the result true when presented with the question whether sum applied to
an in�nite list argument had no WHNF� In contrast� our approach will result in
a representation of all the arguments for which sum has no WHNF� Clearly� the
latter is much better suited to veri�cation than the former� Another advantage
of abstract reduction over abstract interpretation can be seen when analyzing a
higher order function f � If in the reduction there is no redex where f applied to
variables for the higher order arguments appears� but instead all higher order
arguments have either a supercombinator or a constructor as WHNF then our
calculus is able to handle the analysis� Many approaches to strictness analysis
using abstract interpretation are only able to handle this kind of analysis if they
are able to analyze higher order functions� In this respect these analyses work
similar to strict evaluation and compute all of the information about a function
f before analyzing a function g which uses the information� Abstract reduction
works similar to lazy evaluation and does not compute information� which is
not explicitly requested or needed to obtain the requested information�
To use the results of our calculus for optimization the compiler could allow
the user to specify optimization heuristics� i�e� evaluation transformers �FB���
Bur��	� or tell the compiler how to use an optimized data representation as in
�Hal��	�
In the terminology of �CC��	 our approach would be called abstract interpreta�
tion� yet subsequent work by �Myc
�� BHA
�� Bur
�� Bur��	 and others used
the term abstract interpretation almost exclusively for abstract interpretation
abstracting the denotational semantics� Therefore we use the term abstract
reduction as coined by N�ocker �N�oc��� N�oc��� vEGHN��	 for abstract inter�
pretation abstracting the operational semantics to distinguish it from abstract
interpretation abstracting the denotational semantics�
According to the four dimensions for qualifying strictness analysis in �DW��	 the
approach is �rst order �but see section ��� non��at� high �delity and backwards�
The high��delity combined with the constructiveness of our approach lead to
joint evaluation contexts for all arguments of a function�
The context inclusions we use bear a strong resemblance to set constraints
�Aik��� HJ��	� The most important di�erence is the semantics used� Solutions
of set constraints are sets of ground terms whereas the concretization of a context
can be de�ned as a least �xed point of an appropriate function using ground
expressions over �c� i�e� programs with their input� It follows that the context
inf � hBot� Top� inf i represents let c � ��c in c but the same expression
interpreted as a set constraint does not�
Our calculus has been implemented and the implementation has been run on
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inputs including all the examples in this paper�
To give an intuitive notion of the working of our calculus we will provide some
simple examples�
For the purpose of the following motivating examples it will su�ce to know
that caseA evaluates to WHNF and decomposes its �rst argument and applies
to the components of this WHNF the appropriate function� Intuitively� the
nodes consist of constraints and substitutions where the substitutions record
the structure of variables assumed for a particular path�

Example �� As an example consider
append xs ys � caseList xs ys �appendcons ys�
appendcons ys z zs � z � �append zs ys�
length xs � caseList xs � lengthcons

lengthcons z zs � � �length zs
Assume no analysis has taken place� so the only relevant context is Bot�
The analysis of

� � Bot� xs �� ��

length xs � Bot

caseList xs � lengthcons � Bot

lengthcons z zs � Bot� xs �� z � zs

��length zs � Bot� xs �� z � zs

� � Bot length zs � Bot� xs �� z � zs

xs � Bot

caseList bot � lengthcons � Bot� xs � Bot

no�

no� loop� Top� zs where zs � Inf

� Top�Inf

yields Inf � hBot� Top� Infi� Inf is an arbitrary name given to the representa�
tion of the solution� Intuitively� this means� evaluate the argument to WHNF� if
it has a ��� as the top level constructor disregard the head and evaluate the tail
in the same context as the original argument� Refer to section � for a treatment
of contexts� Subsequently we use the abstract value Inf just as Bot is used�

length xs � Inf

caseList xs � lengthcons � Inf

caseList xs � lengthcons � Bot caseList xs � lengthcons � Top� Inf

�see above� no�
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Thus the result for length xs � Inf is precisely the same as for length xs �
Bot� A compiler which has access to type information for the function being
analyzed could have skipped the analysis of length xs � Inf� Analogously� we
obtain Botel � hBot� Top� xs where xs � Botel� Bot�Topi from the analysis
of sum xs � Bot� This result is added to C�
We proceed to the analysis of append�

append xs ys � Bot

caseList xs ys �appendcons ys� � Bot

xs � Bot appendcons ys z zs � Bot� xs �� z � zsys � Bot� xs �� ��

no�

append xs ys � Inf

caseList xs ys �appendcons ys� � Inf

caseList xs ys �appendcons ys� � Bot

caseList xs ys �appendcons ys� � Top� Inf

xs � Botys � Bot� xs �� ��

ys � Top�Inf� xs �� ��

appendcons ys z zs � Top�Inf� xs �� z � zs

z � �append zs ys� � Top�Inf� xs �� z � zs

append zs ys � Inf� xs �� z � zs

loop� �Top� zs � ys� where �zs � ys� � App�Inf

The result is

App�Inf � h�Bot� Top�� ���� Bot�� ���� Top�Inf��
�Top� zs� ys� where �zs � ys� � App�Infi

� h�Bot� Top�� ���� Inf�� �Top� zs � ys� where �zs � ys� � App�Infi

For append xs ys � Botel we obtain�

App�Botel � h�Bot� Top�� �Bot� Top� Top�� ���� Bot�� ���� Bot�Top��
���� Top� Botel�� �Top� zs � ys� where �zs � ys� � App�Boteli

� h�Bot� Top�� �Bot� Top� Top�� ���� Botel��
�Top� zs� ys� where �zs � ys� � App�Boteli

These results describe sets of terms in the language analysed� Intuitively� in the
results above we have values constructed as the union of pairs of values� The
pairs denote a notion of joint membership� i�e� ���� Bot� can be read as the pair
of values where the �rst component can be represented by �� and the second
by Bot�
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The report is structured as follows� section � de�nes �c a simple functional
core language without any syntactic sugar to which a lazy functional language
with a more comfortable syntax can easily be translated� We de�ne reduction
in �c thereby giving it an operational semantics� Furthermore� we describe how
to represent algebraic types in �c� In section � we de�ne contexts� a notion
fundamental to this work� Intuitively� a context represents a set of concrete
values� We derive important properties of contexts including the decidability
of the question whether a context represents the empty set� Section ��� de�nes
tableaux and rules with which we can determine for which arguments a given
application is represented in a given context� Section 
 addresses results and
limitations of our calculus� Section � points out the di�erences between contexts
and evaluators and section 
�� remarks on how to use the results of the analysis
for termination analysis� Section � closes this report with a conclusion and an
outlook to future extensions of this work�

� Preliminaries

Vector notation� �x� is used for a �nite sequence� x�� � � � � xn� where the indices
are obvious from the context� The notation of rules is in Gentzen�style� above
the line appears the label of the leaf and below the line appear the labels of the
leaves to be added separated by �j��

� The Language

We de�ne �c� a simple functional core language� which we shall use as a target
language for our analysis� It closely resembles the language used in �PJL��	
and is also the target language for the strictness analysis based on abstract
reduction �Sch��	� It has no local de�nitions and case expressions must mention
an alternative for every constructor in the program�

��� Types

The type system of �c consists of a set of �possibly user de�ned� type constructor
names� each corresponding to a set of �data� constructors of �xed arity� For
every type constructor name or type for short� A� there is a constant caseA�
The constructors of type A will be written cA�i� � � i � jAj� In the proofs we
will assume that expressions are well�typed w�r�t� WT ���� a de�nition of well�
typedness meeting a particular set of conditions� Such de�nitions will be called
admissible� a notion to be de�ned in de�nition �� We will provide reductions
in the operational semantics of �c that enable a dynamic type check consistent
with WT ����

��� Expressions and Supercombinator De�nitions

The following constants are in �c�

� Finitely many constructors cA��� � � � � cA�cA � where cA is the number of all
constructors of type A� jAj� each taking arity�cA�i� arguments�
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� a case constant caseA� which takes jAj�� arguments� The �rst argument
is the expression to be cased� The other arguments of caseA are functions
taking arity�cA�i� arguments for � � i � jAj�

� supercombinators that may be de�ned in a recursive way �see below��
There is at least the special supercombinator bot�

An expression in �c can be a constant c� a variable x� or an application �s t��
Application associates to the left� i�e� e� e� e� is equivalent to �e� e�� e�� We
de�ne variables that occur in some expression as usual� The set of free variables
occurring in an expression s is denoted by FV�s�� We assume FV to be de�ned
for other kinds of syntactic objects also� A ground expression in �c is one
without free variables�
A program consists of a set of supercombinator de�nitions of the form

sc x� � � � xn �� e

where e is an expression that may contain the variables x�� � � � � xn� but no other
variables�
A supercombinator bot �� bot is de�ned in any program�
As a notational convention C�t	 will denote an expression which has at some
position the subexpression t� i�e� C��	 denotes an expression context with a hole�

��� Operational Semantics

The operational semantics consists of ��reductions�

sc t� � � � tn �� e�t��x�� � � � � tn�xn	

if sc x� � � � xn �� e is a supercombinator de�nition� For the caseA�constant
there is a ��rule of the following form�

caseA �c t� � � � tm� e� � � � en �� �ej t� � � � tm�

if c is a constructor of type A and m � arity�c��
An expression is in weak head normal form �WHNF�� if it is in one of the
following forms�

� c e� � � � en� where c is a constructor of arity n

� c e� � � � en� where c is a supercombinator name� a constructor or the caseA
constant and n is less than the arity of c�

To di�erentiate we will call the �rst kind SCWHNF and the second function

WHNF�
The relation

�
�� denotes the transitive closure of �� � We say that t has a

WHNF if t
�
�� t� and t� is in WHNF�

Lemma�� The reduction relation �� is con�uent on ground expressions�

Every term in �c has a normal�order reduction which either terminates with a
WHNF or does not terminate�






De�nition � Admissible� A predicate WT ���� for well�typed terms� is admis�
sible if it meets the following conditions�

� WT �e� implies WT �e�� if e�� e
�

� WT �caseA �cA� t� � � � tn� � � � � is false if n � arity�cA�� or A �� A�

� WT �caseA t � � � � is false if t is a function WHNF

� WT �c t� � � � tn� is false if n � arity�c�

� WT �e� implies WT �e�� for every subexpression e� of e

� WT �e� implies that an expression e� exists with WT �e�� and WT �e e�� if
e has a function WHNF�

A term t for whichWT �t� holds for an admissibleWT is dynamically well�typed�

For ground expressions t we can de�ne redexes as subexpressions where a re�
duction rule can be applied� The normal order redex can be found by shifting
an evaluation label� E � into an expression� Initially the label is at the root�

C��caseA e t� � � � tm�E 	 � C��caseA eE t� � � � tm�	
if the caseA�expression is not a redex

C�cE 	 � C�c	
C��s t�E 	 � C��sE t�	 if �s t� is not a redex�

If in some ground expression t there is a �nal subexpression s with the label E

then s is the normal order redex� An expression has no subexpression labeled
E i� it is in WHNF�
In the case where t may have variables� the situation is slightly di�erent� We
call expressions of the form �caseA x t� � � � tjAj� where x is a variable a potential

redex� The normal order potential redex can be found by shifting an evaluation
label� E � into an expression� almost as above� Again� the label is at the root
initially�

C��caseA e t� � � � tm�E 	 � C��caseA eE t� � � � tm�	 if the caseA�expression
is neither a redex nor a potential redex

C�cE 	 � C�c	
C��s t�E 	 � C��sE t�	 if �s t� is not a redex�

Now the label E may be at a subexpression that is the normal order redex� at
a normal order potential redex� or it may be at a variable�

� Contexts

Contexts are a �nite representation of some possibly in�nite sets of expressions�
They are used to stand for the values that are expected of a function application
and are able to represent values that have no normal form as well as values that
have no normal form� but can be approximated by an in�nite sequence of normal
forms having an increasing number of constructors�
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De�nition �� Syntactically� context terms can be formed as follows�

� the constants Bot and Fun

� a context name

� a constructor expression c C� � � � Cn for every constructor c of arity n in
�c� where the Ci are context terms

� a where�expression S where T � N where S is a context term allowed
to contain free variables� called context variables� T is a context pattern

allowed to contain variables� constructors and bot and in which every
variable occurs only once� FV�S� � FV�T �� and N is a context name

� a union expression hC�� � � � � Cni for context terms C�� � � � � Cn

� an intersection expression C� 	 � � � 	 Cn for context terms C�� � � � � Cn

A ground context term is one that does not contain context names� A context

de�nition has the form A � C where A is a context name and C is a context
term� Each context name must appear exactly once in a left hand side of a
de�nition� Substitutions applied to context terms substitute ground context
terms for context variables�
Usually we assume that there is a �xed set of global context de�nitions and
denote this set by C�

Note that the 	s in the de�nition above are syntactic symbols only� Intersection
and union are assumed to be associative� commutative and idempotent opera�
tions� i�e� we regard t� 	 t� 	 t�� t� 	 �t� 	 t��� t� 	 t� 	 t� 	 t� and the like as
syntactically equivalent �the same holds for unions��
We call the language of context terms �Cc � Contrary to some other work on
strictness analysis �N�oc��� Bur��	� our contexts are able to represent sets without

�
Next we de�ne the depth of context terms�

De�nition ��

depth�A� � �� if A is a context name� Bot or Fun
depth�c C� � � � Cn� � � �max idepth�Ci�
depth�hC�� � � � � Cni� � � �max idepth�Ci�
depth�C� 	 � � � 	 Cn� � � �max idepth�Ci�

A context represents a set of expressions from �c� it abstracts expressions from
�c�

Example �� We will give examples�

Bot represents the set of terms without WHNF

Top represents the set of all terms

Fun represents the set of terms with function WHNF

Inf � hBot� Top�Infi represents the set of terms approximated by �nite lists
whose tail has no WHNF






Fin � hNil� Top�Fini represents the set of all �nite lists

The following de�nition prepares the de�nition of concretization� The primitive
terms represented by a context have a particularly simple structure� they are
terms without a WHNF� with a function WHNF or built from a constructor
with arguments of the same simple structure�

De�nition � Primitive terms represented� The set of primitive terms rep�
resented by the context term M � �pr

c �M� is the smallest set de�ned by�

�pr
c �C� �

�
i�m

�pr�m
c�i �C�

�pr�m
c�n �Bot� � ftjt has no WHNFg

�pr�m
c�n �Fun� � ftjt has a function WHNFg

�pr�m
c�n �hC�� � � � � Cmi� �

�
i

�pr�m
c�n �Ci�

�pr�m
c�n �C� 	 � � � 	 Cm� �

�
i

�pr�m
c�n �Ci�

�pr �m
c�n �S where T � N� �

�
���pr�m

c�n��
��T ���pr�m

c�n��
�N�

�pr�m
c�n����S�� n � �

�pr�m
c�n �N� �

�
�pr �m��
c�n �C�� if �N � C� � C�m � �

�� if �N � C� � C�m � �

�pr �m
c�n �c C� � � � Cr� � fc t� � � � trjti � �pr�m

c�n �Ci�g

De�nition � less de�ned� For s� t � �c we de�ne s to be less de�ned than
t� s �c t� i� in all contexts C��	 if C�s	 has SCWHNF c s� � � � sn then C�t	 has
SCWHNF c t� � � � tn�

De�nition � strict least upper bound� Using the known notion of least up�
per bound�

F
� w�r�t� �c we de�ne a stricter notion�

Fs
� s is the strict least upper

bound of a chain s� �c s� �c � � � � s �
Fs
i si i� s �

F
i si and if for any context

C��	� C�s	 has a SCWHNF c t� � � � tn then so does C�si	 for at least one si�

Evidently� a strict least upper bound need not exist�
Obviously� all terms are monotonous wrt� �c� Furthermore� all terms g are con�
tinuous wrt�

Fs
� i�e� a� �c a� �c � � � � a �

Fs
i ai implies

Fs
i g ai � g �

Fs
i ai� �

g a which is not hard to prove�

De�nition 	 Concretization� The concretization of a context term is the set
of well�typed terms which are strict least upper bounds of chains of primitive
terms represented by the context term�

��C� � ftjt �
Fs
i si� s� �c s� � � � � si � �pr

c �C�� t is well�typedg

For the loop detection rules �a and �b of the calculus we will need to decide for
a context term D if ��Bot� � ��D�� written Bot � D� These context terms will
be restricted in the sense that they do not contain where�expressions� neither
directly nor by reference to other context de�nitions�
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De�nition 
� We de�ne

Bot � Bot � True
Bot � Fun � False
Bot � cA � � � � False
Bot � hC�� � � � � Cni � True� if Bot � Ci for some i
Bot � C� 	 � � � 	 Cn � True� if Bot � Ci for all i
Bot � N � Bot � C if �N � C� � C

The above de�nition of Bot � D is easily seen to be decidable� since there are
only �nitely many context de�nitions in C� An algorithm could keep track of
the ones already used and abandon paths in which a context name is used more
than once�
One of the loop detection rules ��c� uses the notion of Bot�closedness� It is
de�ned as follows�

De�nition ��� Let D be a context term not using where�expressions� neither
directly nor via context de�nitions� D is Bot�closed i� C�t	 � �pr

c �D� implies
that for all t� � ��Bot� � C�t�	 � �pr

c �D��

It is not obvious that this property is decidable� The proof of decidability will
be the subject of future work�

� The Calculus

��� Tableaux

Given a supercombinator f and an abstract value A we want to infer an abstract
value C such that for elements e in the concretization of C the application �f e�
is in the concretization of A� We permit additional constraints on the variables
appearing as arguments in the application� These constraints are of the form
x � A� where x is a variable and A is a context� It is no restriction to assume
that variables without such an additional constraint are constrained by Top�
A substitution � is a mapping � � �c � �c that respects the structure of ex�
pressions� It is usually represented as a set of variable�expression pairs� denoted
as fxi �� ti� � � � g� The application of a substitution � to an expression t is
written ��t�� the composition of two substitutions �� � is written � 
 � such that
� 
 ��t� � ����t���

De�nition �� Tableau� A tableau T is a �nite tree whose nodes are labeled
with expressions of the form�

rs� �

where rs is a �possibly empty� set of constraints and � is an idempotent sub�
stitution where the substituted expressions are constructed from variables� con�
structors� and bot� A constraint is of the form

s � A� with s � �c� A � �Cc

The set of constraints in a label is also written s � A�R� if we want to speak
about a particular constraint� s � A� and possibly others� R� We assume that
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for every constraint s � A� in a label s � A�R� �� we have ��s� � s� We will
refer to rs as the set of constraints� If the free variables of two constraints
form disjoint sets� the constraints are said to be independent� The elements
of the set of constraints where s is a variable form the context constraint for

variables� Within a constraint r we call the left�hand side variables the variables
constrained by r� The root of a tableau is labeled with a set of constraints t � A
and the identity substitution� In general the label of the root is one non�trivial
constraint with a well�typed left�hand side and a context term not using where�
expressions� neither directly nor via context de�nitions� together with a CCV�
We have to compute instances for the set of initial variables FV�t�� Hence a
�xed order of these initial variables is assumed and the tuple of these variables
is denoted WT � or simply W if no confusion arises�
Leaves may have an additional label no� or loop� followed by a where�expression�

De�nition ��� A ground substitution 	 is a solution for �rs � �� where rs �
fs� � C�� � � � � sn � Cng i� for all i we have 	�si� � ��Ci� and for all variables
xj occurring in rswe have 	�xj� � 	���xj ��� The set of solutions for rs� � is
written U�rs� ���
A leaf labeled no� has no solution�
The size of a solution is the sum of the sizes of the terms it substitutes for the
variables xi�

Let R�S be constraints� Then we say R implies S� i� for all ground substitutions
	� if 	 is a solution of R� then 	 is also a solution of S� U�R� fg� � U�S� fg��
A tableau is a representation of the information it contains suitable for applica�
tion of the rules we give in the subsequent sections� The �nal result� however�
is better represented as a context� such that it can easily be used in constraints�

De�nition ��� A tableau is closed if each leaf

� is labeled no� or

� is labeled loop� together with a where�expression and a CCV or

� has a label in which all the constraints are CCVs� We also call such a leaf
solved�

In order to obtain a context de�nition from a closed tableau we proceed as
follows� Since the tableau represents a joint evaluation context for the free
variables of the root� we give the context a unique name� In the right hand
side of the context de�nition we collect the information from the leaves not
labeled no� in a union� This is straightforward for variables appearing either in
a substitution or in a CCV� If a variable appears in both� we use the intersection
of the value substituted for it and the constraint from the CCV�

De�nition ��� A tableau is sound i� for all interior nodes N with children
N�� � � � � Nm�

U�Ni� � U�N�

De�nition ��� A tableau is complete i� for all interior nodes N with children
N�� � � � � Nm�

U�N� �
m�
i��

U�Ni�
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��� Rules

To develop a calculus which computes closed tableaux by stepwise derivation
of new sound tableaux with the same root node from a sound tableau� we
describe the expansion rules for tableaux in the following subsections� Expansion
rules may only extend a path in the original tableau by attaching a new leaf�
An expansion rule is called sound if it transforms sound tableaux into sound
tableaux and complete if it transforms complete tableaux into complete tableaux�
The left�hand sides are from �c� The rules that correspond to reduction rules
on �c are assumed to obey normal order� We use the term�context notation
C��	 for �c�terms�
The rules assume the calculus is started with a tableau consisting of a root node
only labeled with a single constraint that has a well�typed left hand side� Some of
the rules given below are not obviously decidable� e�g� the rule for equivalent con�
texts on page �� uses equivalence� We will not address these decidability issues
in this report� but assume e�ective and sound �perhaps incomplete� algorithms
to compute certain relationships on contexts� e�g� ��C� � �� ��C� 	 ��D� � �
etc� These issues will be dealt with in a separate work�

Rules for Bot

bot � Bot� R� �

R� �

A leaf labeled bot � A�R� � receives the additional label no� if
Bot � A is false�

Unions

A context that is a union can be decomposed�

s � hC�� � � � � Cmi� R� �

s � C�� R� �j � � � js � Cm� R� �

Intersections

We can use intersections to replace multiple constraints on the same expression�

t � C� t � D�R� �

t � C 	D�R

Also� an intersection can be split into multiple constraints�

t � C 	D�R

t � C� t � D�R� �

Since the second intersection rule reverses the e�ect of the �rst an implemen�
tation of the calculus will have to use appropriate heuristics not to get into an
in�nite loop�

��



� and caseA�rules

The simplest extension of tableaux is by reduction on a leaf� The term side in
a constraint is a �c expression� We can use ��reduction as de�ned for �c�

t � a�R� �

t� � a�R� �
� if t� t� is a normal order reduction�

Type Error

A leaf for which WT ��� does not hold is labeled with the additional label no��

Constructors

c t� � � � tn � c C� � � � Cn� R� �

t� � C�� � � � � tn � Cn� R� �

The following rule identi�es leaves in the tableau which cannot represent any
solutions�

A leaf labeled c s� � � � sm � A�R� �� where A	c Top � � � Top is incon�
sistent will receive the additional label no��

Case

We give the rule for a caseA�expression that is a potential redex�

To extend a tableau with a leaf L labeled

D�caseA x e� � � � ejAj	 � a�R� �

a leaf for each of the labels

fx �� botg�D�caseA bot e� � � � ejAj	 � a�R�� x � Bot� ��

��D�caseA x e� � � � en	 � a�R�� 
� 
 ��

���

jAj�D�caseA x e� � � � en	 � a�R�� 
jAj 
 �

can be attached to d where 
i � fx �� �cA�i xi�� � � � xi�ki �g and the
xi�j are new variables�

Subsequently� these labels will be ��reduced according to paragraph
����

It is not necessary to attach a label for the case that the �rst argument of the
caseA may have a function as its WHNF since then the caseA would not be
well�typed�
For a caseA�expression that is not a potential redex� we can apply the following
rule�

To extend a tableau with a leaf L labeled

D�caseA t e� � � � ejAj	 � a�R� �

��



a leaf for each of the labels

D�caseA bot e� � � � ejAj	 � a� t � Bot� R� ��
D�caseA �cA�� x��� � � � x��k�� e� � � � en	 � a� t � c� Top � � � Top� R� ��

���
D�caseA �cA�jAj xjAj�� � � � xjAj�kjAj

� e� � � � en	 � a� t � cA�jAj Top � � �Top� R� �

can be attached to d in which the xi�j are new variables� ki �
arity�cA�i��

Rules for equivalent contexts

The following rule summarizes all semantically correct transformations on the
contexts in a tableau� for example shifting the union to the top� or expanding a
context name using the global de�nition�

s � C�R� �

s � C �� R� �
if ��C� � ��C ��

Rules for independent constraints

If a constraint is independent of the other constraints in a leaf its solution may
be computed independently�

Let t � A� rs � � be the label at a leaf where t � A is independent
from the constraints in rs � Furthermore� assume we have a solution
S � T where S is the name and T the context term for the solution
for the tableau with root t � A and that T �� hi� Then we can add
a leaf labeled rs � �x�� � � � � xn� � S� � where �x�� � � � � xn� are the free
variables in t� If T � hi we can add to the leaf the label no��

Rules for loop�detection

The rules for detecting loops make the calculus a powerful tool� For loop de�
tection we de�ne size on expressions that are constructed from variables� con�
structors and bot as follows�

size�bot� � �

size�c t� � � � tn� � � �
X
i

size�ti�

size�x� � �� if x is a variable

The size of a substitution is the sum of the sizes of the substituted terms�
In the following rules let B��	 and C��	 be n�ary and r�ary term contexts� respec�
tively�
Let B�x�� � � � � xn	 � E� S� � be the label at the root� C�x�� � � � � xr	 � D�S� �
be a label above the �rst branch and let the leaf be labeled C�t��� � � � � t

�
r	 �

D� � � � � C�tm� � � � � � t
m
r 	 � D�R� �� Let R and S be CCVs�

We consider four di�erent rules for detecting loops�

�� loop�size

Assume the following conditions are satis�ed�
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� The constraint R implies the constraints fxi �� tji j i � �� � � � � rg�S�
for all j�

� the expressions tji consist only of variables� constructors and bot�

� for all j�
P

i size��xi� �
P

i size�t
j
i �

� For all j and every variable y � FV�tj�� � � � � t
j
r�� the number of occur�

rences in �x�� � � � � �xr is not less than the number of occurrences in
tj�� � � � � t

j
r�

� C�ti�� � � � � t
i
r	 � D and C�tj�� � � � � t

j
r	 � D are independent if i �� j�

Then we can add a leaf labeled loop� together with the where�expression
��x�� � � � � �xr � Top� � � � � Top� �z �

n�r

� where ��t��� � � � � t
m
� �� � � � � �t�r� � � � � t

m
r �� �

�N� � � � � N�� �z �
m

where tji � yji for new variables yji � r � � � i � n� N is the

name of the context de�nition for the solution at the root and R as the
CCV�

�� loop�decomp

Assume that for all i� j �xi � tji and that R implies the constraint ��S��
Then there are three cases�

�a� If Bot � D and there is no decomposition of a constructor on top
level� but at least one abstract reduction on the path from the root
to the leaf� Then we can remove the constraints C�t��� � � � � t

�
r	 �

D� � � � � C�tm� � � � � � t
m
r 	 � D from the leaf and keep only R� ��

�b� If Bot �� D and there is no decomposition of a constructor on top
level� but at least one abstract reduction on the path from the root
to the leaf� Then then we can add the label no� to the leaf�

�c� If the context D is Bot�closed and if there is a constructor decompo�
sition on the path from the root to the leaf� then we can remove the
constraints C�t��� � � � � t

�
r	 � D� � � � � C�tm� � � � � � t

m
r 	 � D and keep only

R� ��

Example �� The condition that the context is Bot�closed is necessary in rule �c�
Consider rep � � Fin� The rules show that if we do not require the context to
be Bot�closed in rule �c� then the tableau can be closed� and would represent a
solution to rep � � Fin� However� such a solution can not exist�

� Results and Limitations

We implemented our calculus as a prototype to get an idea of its applicability
in practice� The timings we did are more than encouraging� On an HP ������
analyzing applications of append and zip in the contexts Inf� Bot� and Botelem

and concat in the context Bot takes less than ��� seconds� The implementation
was compiled using hbc �������� without optimization� We refrain from testing
the prototype on functions using arithmetic and numbers because on the one
hand we did not implement any primitive functions or data types on the other
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hand simulating the behavior of the operations and comparisons on integers
using Peano numbers gives analysis results that are very hard to grasp�
An input on which our calculus fails to produce the desired result at �rst is
reverse xs � Bot where reverse is de�ned as follows�

reverse xs � caseList xs �� revcons

revcons z zs � append �reverse zs� �z�

In the tableau for the above input the redex reverse xs will repeatedly ap�
pear� but each time one level deeper inside the nested context introduced by
reduction of the append� Thus the loop�detection rules above cannot be ap�
plied� If we use the rule for independent contexts on the other hand and use
App�Bot � h�Bot� Top�� ���� Bot�i� the result computed for xs �� ys � Bot� we
get the following tableau�

reverse xs � Bot

case xs �� revcons � Bot

xs � Bot �� � Bot� � � �

revcons y ys � Bot� xs �� y � ys

�reverse zs� ���z� � Bot

�reverse zs� �z�� � App�Bot

�reverse zs � �z�� � h�Bot� Top�� ���� Bot�i

�reverse zs � �z�� � ���� Bot�

�reverse zs � �z�� � �Bot� Top�

reverse zs � Bot� �z� � Top

reverse zs � Bot

loop� Top� zs where zs � Rev�Bot

no�

no�

Let a data�type for binary trees be given that stores the data as the �rst argu�
ment of ��ary branch nodes constructed by Br and has nullary leaves to termi�
nate paths constructed by Leaf� The function flatten maps such trees to the
list of the inorder collected data they contain� It can be de�ned in several ways�
Below� we will �rst present a de�nition for which our calculus fails� followed by
a de�nition for which it succeeds and computes the desired result�

flatten ts � caseTree ts �� flatc

flatc x t� t� � caseTree t� �x � �flatten t��� �flatc� x t��
flatc� x t� y t

�
� t

�
� � flatten �Br y t�� �Br x t�� t���

�




In the following tableau we have dropped the index of the caseA�constants only
to make the tableaux �t on the page�

flatten ts � Bot

case ts �� flatc � Bot

case bot �� flatc � Bot� ts � Bot

ts � Bot case Leaf �� flatc � Bot� ts �� Leaf

�� � Bot� � � �

flatc x t� t� � Bot� ts �� Br x t� t�

case t� �x � �flatten t��� �flatc� x t�� � Bot� � � �

case bot �x � �flatten t���

�flatc� x t�� � Bot� t� � Bot� � � �

x � �flatten t�� � Bot� t� �� Leaf� � � �

flatc� x t� y t
�
� t

�
� � Bot� � � �

flatten �Br y t���Br x t�� t��� � Bot� � � �

no�

no�

t� � Bot� � � �

None of our loop detection rules can be applied� for loop�size the condition
size��xi� � size�ti� is violated and for loop�decomp �xi � ti is violated�
On the other hand� if flatten is de�ned di�erently then it can be analysed�

flatten ts � caseTree ts �� flatc

flatc x t� t� � �flatten t�� �� ��x� �� �flatten t���

The analysis of flatten xs � Bot then yields the following tableau and yields
a result which we name FL�
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flatten ts � Bot

case ts �� flatc � Bot

case bot �� flatc � Bot� ts � Bot

ts � Bot case Leaf �� flatc � Bot� ts �� Leaf

�� � Bot� � � �

flatc x t� t� � Bot� ts �� Br x t� t�

�flatten t�� �� ��x� �� �flatten t��� � Bot� � � �

case �flatten t�� ��x� �� �flatten t��� �appc ��x� �� �flatten t���� � Bot

flatten t� � Bot� � � �

loop� Br Top t� Top where t� � FL

case bot ��x� �� �flatten t���

�appc ��x� �� �flatten t���� � Bot� flatten t� � Bot� � � �

�x� �� �flatten t��� � Bot� � � �

flatten t� � ���appc ��x� �� �flatten t��� z zs � Bot

flatten t� � Top� Top�

no�

no� no�

The two labels no� that are attached with dashed lines will be produced inde�
pendently of the choice of the constraint to apply rules to in the nodes above
them� The result of this analysis is FL � hBot� BR Top t� Top where t� �
FL� The calculus is able to analyse both flatten ts � �� and
flatten ts � Top�Top� The results are FL�NIL � Leaf and FL�CONS �
hBr Top FL�CONS Top� Br Top FL�NIL Topi respectively�
As another example consider a predicate treep on trees which maps to True

the trees containing at least one Leaf True� In this example trees store data in
the leaves�

treep ts � caseTree ts id branchp

branchp t� t� � treep t� �� treep t�
a �� b � caseBool a b True

Now the calculus can be used to obtain a representation of all the trees which
treep maps to True�
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treep ts � True

case ts id branchp � True

case bot id branchp � True� ts �� bot case �Leaf l� id branchp � True� ts �� Leaf l

case �Branch t� t�� id branchp � True� ts �� Branch t� t�

bot � True� � � �
no�

branchp t� t� � True� � � �

treep t� �� treep t� � True� � � �

case �treep t�� �treep t�� True � True� � � �

id l � True� � � �

l � True� � � �

case True �treep t��

True � True� treep t� � True� � � �

treep t� � True� � � �
loop�

case False �treep t�� True � True� treep t� � False� � � �

treep t� � False� treep t� � True� � � �

case bot �treep t��

True � True� treep t� � Bot� � � �

bot � True� treep t� � Bot� � � �
no�

This analysis can be completed using the result of another analysis treep ts �
False�
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treep ts � False

case ts id branchp � False

case bot id branchp � False� ts �� bot case �Leaf l� id branchp � False� ts �� Leaf l

case �Branch t� t�� id branchp � False� ts �� Branch t� t�

bot � False� � � �
no�

branchp t� t� � False� � � �

treep t� �� treep t� � False� � � �

case �treep t�� �treep t�� True � False� � � �

id l � False� � � �

l � False� � � �

case True �treep t��

True � False� treep t� � True� � � �

True � False� � � �
no�

case False �treep t�� True � False� treep t� � False� � � �

treep t� � False� treep t� � False� � � �

case bot �treep t��

True � False� treep t� � Bot� � � �

bot � False� treep t� � Bot� � � �
no�

The results are TR�F � hLeaf False� Br TR�F TR�Fi and TR�T �
hLeaf True� Br TR�F TR�Ti�
For concat de�ned in the following way the analysis fails�

concat � foldr ���� ��
foldr f n xs � case xs n �foldrcons f n�
foldrcons f n y ys � f y �foldr f n ys�
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concat xs � Inf

concat xs � hBot� Top� Infi

foldr ���� �� xs � hBot� Top� Infi

foldr ���� �� xs � Bot

� � �
foldr ���� �� xs � Top�Inf

case xs �� �foldrcons ���� ��� � Top�Inf

bot � Top�Inf

bot � Top�Inf �� � Top�Inf

foldrcons ���� �� y ys � Top�Inf

y �� �foldr ���� �� ys� � Top�Inf

case y �foldr ���� �� ys� �appcons �foldr ���� �� ys�� � Top�Inf

foldr ���� �� ys � Top�Inf

no�

no�no�

� � �

At the leaf labeled foldr ���� �� ys � Top� Inf we cannot apply a loop detec�
tion rule� although there is a node in the tableau labeled exactly like the leaf�
One possibility here is to not apply the union deconstruction rule as long as other
rules may be applied� While this has an advantage in the case above� it could
have a disadvantage in other cases� This issue is currently being investigated�

� Contexts and Evaluators

Burn �Bur��	 de�nes evaluation transformers to be mappings from the evaluator
for an application to the evaluator for its arguments where the evaluators are
reduction strategies� The intuitive view is that every unary supercombinator
S can be an evaluator� where the demand is that S x should be evaluated to
WHNF� Relating this to contexts� this means that the tableau starting with
S x � Bot may compute a solution� which is a description of expressions that�
instantiated for x� do not result in a WHNF� if S is applied to them� We
have that application of S to expressions in the context yields Bot� whereas
application of S to expressions not in the context yields a WHNF� This follows
from our result above�
This representation of evaluators is also able to express head�strictness� a prop�
erty that not all approaches to strictness and context analysis are able to express
�BHA
�� Bur
�� HW
�	�
The context head de�ned as fhead � hBot� Bot� Topig represents the head strict
evaluator�
Paterson �Pat�
	 uses the notion of latent demand to stand for contexts in which
an evaluation to WHNF is not necessary� but if such an evaluation will become
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necessary then it is known that an even stronger demand on the application
is given� In our framework this can be modeled by contexts in which there
is no Bot on the top�level� e�g� h � Bot� Top stands for a context in which
evaluation of the �rst list element is required as soon as it is known that the
expression evaluates to a WHNF having � as its top most constructor� Latent
and immediate demand can freely be mixed as in g � hBot� Top� �Bot� Top�i�

Example �� Examples of contexts representing evaluators�

� Bot represents the evaluators that attempt to reduce the term to WHNF�

� Top represents the evaluators that do not attempt to evaluate the term
at all�

� Inf de�ned as fInf � hBot� cons Top Infig represents the evaluators that
attempt to iteratively reduce the spine of the list�expression to WHNF�

It is not hard to see that such contexts corresponding to evaluators must be Bot�
closed� Interestingly� not all Bot�closed contexts are evaluators� for example the
context Listpar de�ned as Listpar � hBot� Bot� Boti� The problem is that
the context Listpar corresponds to a parallel evaluation of head and tail of a
list and there is no sequentialisation of this evaluation that results in the context
Listpar�
This shows that the analysis method is also able to work for parallel evaluation
if the rules are adapted�

� Applications

��� Termination Analysis

If we are interested in a description of instances for x for which the applica�
tion �S x� terminates if we assume lazy evaluation to WHNF� then we can
use the following approach� Compute a closed tableau with root �S x� �
nonBot� where we de�ne nonBot � hFun� c� Top � � � Top� � � � � cn Top � � �Topi
which represents all expressions having a WHNF and a context nonBotelem �
hc� nonBotelem � � � nonBotelem� � � � � cn nonBotelem � � � nonBotelemi which rep�
resents all expressions having a normal form� As another example consider
append xs ys � nonBotelem for which we obtain the solution �xs � ys� �
h���� nonBotelem�� �nonBotelem� xs� ys�i

��� n�Packs

The motivation for n�packs is that often evaluation of lists �or other structured
data� could advantageously be performed for more than one element at a time�
While this is obvious for spine�strict functions� it is equally true for many others�
The n�pack approach �KPSSS	 extends lists �and possibly other structured data�
types in the future� with an additional constructor that stores n elements per
node� A source�to�source transformation using partial evaluation then tries to
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propagate the use of this new constructor in the program� It is this transfor�
mation that can bene�t from the results of context analysis to introduce the
new constructor in cases where partial evaluation alone would not have been
su�cient to do so� As an example consider C�e� � case e� � � � 	� For n�packing
to proceed the � needs to be moved to the alternatives of the case� Can this
be achieved without changing the semantics of the program� It can be done
provided that if e� has no WHNF C�e� �case e� � � � 	 does not have a WHNF
either�
Thus context analysis could be used to determine contexts for the variables
in e� such that e� � Bot followed by an analysis �strictness or context� of
C�e� � case e� � � � 	 with the additional constraints on the variables from the
�rst analysis�

� Conclusion and Future Work

In this paper we have presented a calculus for context analysis� We have shown
that in contrast to other methods for context analysis our method tries to con�
struct a representation of all values for which an application yields a particular
value� It is this feature that makes the calculus valuable for veri�cation in
addition to being valuable for context and termination analysis�
Future work will extend the calculus to handle higher order functions� The
rule loop�size above could be applied if its conditions are met for a de�nition
of size satisfying size�e� � � for all e and size�c t� � � � tn� � n� �

P
nisize�ti��

Measures of this kind can be computed automatically using ordering tableaux
�Pan�
	� As an extension our calculus could be made to use such a suitable size
function computed for the terms between which there is a potential loop�
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