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Abstract� The extraction of strictness information marks an indispens�
able element of an e�cient compilation of lazy functional languages like
Haskell	 Based on the method of abstract reduction we have developed
an e�cient strictness analyser for a core language of Haskell	 It is com�
pletely written in Haskell and compares favourably with known imple�
mentations	
The implementation is based on the G��machine� which is an exten�
sion of the G�machine that has been adapted to the needs of abstract
reduction	

� Introduction

Obtaining a maximum of strictness information is a key requirement for gener�
ating e�cient code for lazy functional programming languages� Changing lazy
evaluation �call�by�need� to eager evaluation �call�by�value� for speci�c functions
has been proven to be necessary for good program performance� This has been
inter alia pointed out as one result of doing work on benchmarking by Hartel
�HFA�	
�� Such changes in the order of evaluation may only be made for func�
tions� which have been proven to be strict� in order to preserve lazy semantics�
Strictness information enables a safe change of the reduction ordering� i�e� the
termination behaviour of the program is una
ected�
Examples of how strictness information can be used are described in �HB	��
PJP�� Although a large amount of research to lay theoretical foundations for
strictness analysis� see e�g� �Bur	��� has been carried out since the initiating
work by Mycroft �Myc��� only a few results have become known with regard
to practical implementations� Today� most compilers� as e�g� by the Glasgow
team �PJHH�	��� employ some very basic strictness analyser� The most e�cient



strictness analyser for Haskell �HPW�	�� both in terms of e�ciency and preci�
sion is claimed to be a recent implementation by Jensen et al �JHR	
�� Their
implementation of abstract interpretation using �chaotic� �xpoint iteration is
implemented in C and has not yet been incorporated in any compiler� Another
implementation has been given for Clean �NSvP	�� PvE	��� This implementation
is based on abstract reduction �N�oc	��� It is also written in C� Unfortunately� it
is hidden in the Clean compiler and� therefore� comparisons to other implemen�
tations are hardly possible�
We have developed an adaptation of abstract reduction to Haskell and have
made an implementation of a strictness analyser for the core language as it is
presented in �PJL	��� Our implementation is entirely written in Haskell�
It is realised via a newly developed abstract machine� the G��machine� The
source gets compiled into G��code� The subsequent interpretation of G��code
then yields strictness information� This interpretation is done in the same way
as in the G�machine�
Although our implementation is not �ne tuned in terms of speed� it turned out
to be very good both in terms of precision and e�cency� In a script of almost
�	� functions all strictness information was found in a less than �� seconds on
a SPARCstation ��� A theoretical estimate of the precision and complexity of
abstract reduction would be very di�cult� Therefore the tests we present in
section � which are typical cases of strictness and context analysis are of great
importance� This is especially true since we can learn the dependence of pre�
cision and complexity on the value for our termination criterion� We are quite
positive that it can be tailored to be incorporated in any Haskell compiler� The
implementation is freely available by anonymous ftp from ftp�uni�frankfurt�de in
the directory �pub�dist�kist�functional�abs�g�
A detailed description can be found in �Sch	
� Sch	���
In the next section we shall give a short review of abstract reduction followed by
an overview of our implementation� A further section describes the G��machine
with its� in contrast to N�ocker�s method� non�strict order of reduction� Finally�
some results of the performed tests will be given�

� Abstract Reduction

As we cannot expect the reader to be familiar with abstract reduction� we shall
give a short review of �N�oc	���
In contrast to abstract interpretation� which abstracts the denotational seman�
tics of a functional language� abstract reduction aims at an abstraction of the
operational semantics� i�e�� an abstract term is reduced until it hopefully yields
the term �bottom�� As area of investigation� an in�nite domain is de�ned for a
language completely determined by supercombinators and their applications�

Let S be the set of all function symbols including data constructors de�
�ned in a program script� then the abstract domain will be the set of di�
rected graphs over the vertex set S� � ff�jf � Sg�f������ Union�g
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where �� and �� are constants and Union� is of arbitrary arity� An
expression Union� x� � � � xn will be written as hx�� � � � � xni�

Detailed discussion of this domain can be found in �GH	��� Because of the in�
tended meaning of the Union� operator an ordering for this domain can only
be given via a concretisation map �� In line with the literature concerning ab�
stract interpretation we de�ne � as a map from abstract values to sets of values
in the standard interpretation� For simplicity no type information is taken into
account�

����� � f�g

����� �
n
x
���x is in the domain of the standard interpretation

o

��hx�� � � � � xni� � ���i�n��xi�

��f� e� � � � en� �
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x
��� x � fS ���f t� � � � tn���jS ��ti�� � t�i� t
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where S ��exp�� denotes the standard interpretation of exp�
As ordering on the abstract domain we take set inclusions on the concretisations�

a� �� a� �� ��a�� � ��a��

This ordering provides information up to how speci�c a value is� The least speci�c
one is ��� which expresses all concrete values� the most speci�c one is ��� which
represents just � expressions� Generally� it cannot be decided whether a �� b�
This would mean that e �� �

� can be decided for every abstract value e� which
would give a decision precedure for strictness analysis�
An approximation �� of �� with a �� b� a �� b can be given as follows�

�� �� t

t �� ��

t �� t

f x�� � � � � xn �
� f y�� � � � � yn� if �� � i � n � xi �

� yi

t �� hx�� � � � � xni� if �� � i � n � t �� xi

In order to handle cyclic structures a re�nement of this approximation is intro�
duced� The reader is refered to �N�oc	���
Naturally� an equivalence relation holds between abstract values� Some impor�
tant equivalences used to simplify unions are�

hxi 	 x

hx�� � � � � xni 	 h��x�� � � � � xn�i� for a permutation �

hx� x�� � � � � xni 	 hx�� � � � � xni� if ��� � i � n� � x �� xi

C�hx�� � � � � xni� 	 hC�x��� � � � � C�xn�i� for a context C�
�

hhx�� � � � � xni� x
�
�� � � � � x

�
m
i 	 hx�� � � � � xn� x

�
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m
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Such equivalences on unions will allow us to simplify every abstract value to an
equivalent abstract value� which has at most one union construct and to shift
this union operator up to the root of the value� Next� the concept of abstract
reduction is introduced� An abstract value a� reduces to a�� if for every expres�
sion� which abstracts a�� a needed concrete reduction can be given� resulting in
an expression that abstracts to a�� A reduction is needed� if for all reduction
sequences� which lead to head normal form� this reduction step has to be per�
formed�
For a formal introduction of this notion the reader is referred to the original
work by N�ocker �N�oc	���
The general form of abstract reduction cannot be implemented� because it is not
algorithmically de�ned� Therefore� algorithmic reduction�steps on abstract val�
ues are de�ned� which approximate abstract reduction� These are two� namely
abstract rewriting and reduction path analysis with bottom or cycle introduc�
tion�

� Abstract rewriting is just a sort of symbolic computation on abstract values�
An expression �f� a� � � � an� is rewritten according to the rules de�ned for
the supercombinator f � If more than one alternative of a function matches�
the di
erent results will be collected in a Union� construct� The only ques�
tion that arises is� how to determine which function alternatives match�
Since the language N�ocker uses �Clean�� includes full pattern�matching� his
matching rules are more complex than ours� In the Core language only sim�
ple patterns of one constructor with pattern variables are used� This makes
the rules for matching much simpler� A decision algorithm for matching of
such simple patterns is given by�

Match����� p� � true

Match����� p� � false

Match��C v� � � � vn� C
� p� � � � pm� � false� if C �� C �

Match��C v� � � � vn� C p� � � � pm� � true

Match��he�� � � � � eni� p� � �� � i � n � Match��ei� p�

� Reduction path analysis is a kind of loop detection� If in a sequence of
abstract rewritings an expression exp can be found� of which a generalisation
exp� had been reduced before� we will be able to introduce a reduction cycle�
Reducing exp can be done in the same way as reducing exp� ad infinitum�
This cycle in the abstract reduction sequence will correspond to an in�nite
path in the concrete reduction� if it is needed� i�e�� if a concretisation of
exp has to be reduced in the concrete reduction� This will be the case� if
exp is in every alternative of the reduced expression� i�e�� if it is in every
component of the resulting union of the case expression� A reduction cycle
of a needed expression yields an in�nite reduction in the concrete counterpart
and therefore can be reduced to ���






As an example for an analysis using abstract reduction� we give the iterative
length function�

length xs n � case xs of

��� �� n�

��� y ys �� length ys �n��	�

Strictness of the second argument can be found by the following abstract reduc�
tion�

length �� ��

� h��� length �� �����	i

	 length �� �����	 ���

� length �� ��

� ��

In ��� we present a reformulation of abstract reduction as a deduction calculus
and prove its soundness�

� An Overview of the Implementation

The language of discourse is a functional core language� which is assumed to be
��lifted� We have followed the Core language in its representation from �PJL	���
The syntax of its abstraction is given in �gure �� The actual implementation can
cope with an enriched syntax which includes strings� This choice was motivated
by having a well documented and broadly spread source and not being bound
by some special syntax of a concrete compiler� The language is parsed using
the parser in �PJL	��� Then it is compiled to abstract G�code� called G��code�
In this step� in contrast to N�ocker�s implementation� primitive values are not
approximated by ��� This will enable us to �nd strictness of functions like�

st a � if �� �� 
	 � a

Because our work is not in the context of a real compiler� but can be used as a
stand�alone system� a dependency analysis became necessary to yield information
on the calling structure of the program� This enables us to analyse functions
which are at the lower end of the calling hierarchy �rst� and use their strictness
information for generating code for functions which are higher up in the calling
hierarchy� Unfortunately� we found that costs for dependency analysis in most
cases were more expensive than the improvements due to its information so
that we turned it o
� Nevertheless� in the context of a compiler� which provides
dependency information further improvements can be made this way�
Strictness analysis for a function f in its ith argument is �nally performed by
starting the abstract reduction of �f� �� � � ��� �� �� � � ���� and reducing
until �� is reduced or some termination criterion has been reached� The result
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of the analysis is a table which gives a list for every function where the ith list
element says that the function is known to be strict in the ith argument or that
strictness in this argument is unknown�
Although abstract reduction enables us to �nd context information� our analyser
in its present state has built�in support for strictness analysis only� As will be
seen in section 
 the context analysis problem is easily reduced to the strictness
analysis problem� Today most compilers do not use context information for code
generation and the question of how to gain e�ciency by context information
is at least controversial� see e�g� �FB	
�� Nevertheless� we made some tests for
context analysis� see section ��
For a detailed discussion of the implementational issues and the complete oper�
ational semantics of the G��machine the reader is referred to �Sch	���

��� Open Redexes

Reduction path analysis makes it necessary to recollect the reduction history of
an abstract term t�i�e� all the terms and subterms one came across while reducing
to t� Therefore our implementation maintains a list where all terms which can
lead to cycle or bottom introduction are recorded� We can think of these terms
as those for which evaluation has started� but which have not yet been updated
with a term in WHNF� We will call these terms open redexes� The termination
criterion used in our implementation is to limit the number of open redexes�

� List Domain and Context Information

The method is not restricted to WHNF strictness on �� i�e�� more information
for a function f than f � � � can be generated� On recursive types like lists one
might be interested in more information than the information that a list does
not have a WHNF� So analysis can be made for functions� which have lists as
arguments or lists as results�

��� � Point List Domain

For lists there has been proposed a domain of four points� each representing
a certain degree of where the �rst bottom of a list expression will be found�
The four point domain on lists is de�ned as� f��
������g with the ordering
� v 
 v ��v �� �Wad���� � represents expressions with no WHNF� 
 rep�
resents expressions with no �nite list structure� �� represents expressions with
unde�ned list elements� and �� all list expressions�
Fortunately� we are able to express these abstract list values�

topmem � �� ����
botmem � �Cons �� topmem� Cons �� botmem�� ����

inf � Cons �� inf� �
�
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��� Context Information

For a function f with a list result� we might be interested to know if reducing to
a certain degree� e�g� to the list structure or to normal form� an application of
f to some value� yields bottom� Such information is called context information
�Bur	�� Bur����
We can generate context information with our machine by introducing evalua�
tor functions �Bur	��� The only task of such evaluator functions is to force the
reduction of its argument into a certain form in order to get a result in WHNF�
An example of such an evaluator is��

e�botmem xs � case xs of

Nil �� Nil�

�Cons y ys	 �� k� �enf ys	 y�

k� xs y � case xs of

� �� case y of

� �� y�

The function e�botmem requires the reduction to the complete list structure of
its argument and reduction of every list element to WHNF in order to produce
a WHNF� Such evaluator functions allow us to reduce context analysis to strict�
ness analysis of a certain abstract value�
Now it is possible to generate context information quite easily� We do not have
to adapt the method or to enrich the machine but simply have to analyse certain
functions for WHNF strictness� For example� we can generate context informa�
tion for the standard append function by analysing�

�e�botmem �append botmem topmem		

If this expression gets abstractly reduced to ��� we know that append requires
the reduction of its �rst argument to a list of WHNFs in order to produce such
a list as result�
An additional advantage of abstract reduction over abstract interpretation is that
abstract reduction can be used to compute the di
erent context information for
a function seperately� This makes it possible to have the compiler analyse only
those contexts which are needed� Furthermore� as we have seen for the 
�point�
domain� it is straightforward to generate abstract values and evaluator functions
for arbitrary algebraic types� This could even be done by the compiler itself�

� Results

Several tests were performed on a Sun SPARCstation ���
� with �
MB of RAM
running Solaris ��
� The analyser itself was compiled by the Glasgow Haskell

� For reasons of readability we use list constructors Nil and Cons in this example and
not the numbered Core language constructors	
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Compiler version ���
� The Core language �les for the tests were obtained by run�
ning the Gofer compiler gofcwith a �D option followed by some manual touch�up
to meet our syntax� A �rst test was analysing a program script �t�

core� en�
tailing Core language versions of parts taken from the analyser itself� namely
from the compiler to G��code� the lexer and some auxiliary functions plus the
Core language version of the Gofer �Jon	
� standard
prelude with exception
of �oating point functions� In this test ��� functions with a total of ��� argu�
ments are analysed for their strictness� To our knowledge the analyser found all
strictness information in this script� This was achieved in �� seconds user time�
This time includes the times for parsing the Core language script which a real
compiler will already have done�
A second test involved a Core language version �nucleic�
core� of the pseu�
doknot benchmark program �HFA�	
� plus the Core language version of the
standard
prelude� This program constitutes a widely used test for functional
language compiler technology� It is a real world application from molecular bi�
ology which does not depend on laziness for correct behaviour� For this test all
�oating point numbers were approximated with ��� as the G��machine does
not support �oating point numbers� In this test �
� functions are analysed with
a total of 
	� arguments� To our knowledge here also all strictness information
was found�
For a third test we analysed all of the contexts which can arise in the
standard
prelude with respect to the 
�point�domain except for the zip func�
tions with arity above �� That is for every list valued argument we test all the
combinations of the values ��� �� and 
� If the result is a list as well we
combine these with the evaluators ��� ��� and ��� Thus for append �� context
analyses are performed� Here �	� functions are analysed with a total of ��� argu�
ments� 
�� functions thereof are constructed to perform context analysis� These
functions will be of the form�

cAppendEInfBotmemTop xs � e�inf �append botmem topmem	

One of the most important optimizations a real compiler might make
for this case is to derive new context information from context in�
formation already obtained� Based on the ���relation on abstract val�
ues it su�ces to abstractly reduce e�inf �append botmem topmem	 to ��

to infer that e�inf �append inf topmem	� e�inf �append botmem topmem	�
e�inf �append botmem inf	 as well as e�botmem �append botmem topmem	�
e�botmem �append inf topmem	� e�botmem �append botmem botmem	 and
e�botmem �append botmem inf	 will also abstractly reduce to ��� We did not
exclude these analyses from our input �le� because with few open redexes al�
lowed e�inf �append inf topmem	 will not reduce to �� and thus not allow
the additional information to be derived�
The following plots show the times resp� the strict arguments found depending on
the number of open redexes allowed�� For the t�

core and the nucleic�
core

� The plots for time include a value for 
 open redexes	 In this case the input �le is
parsed and compiled to G��code only� but no analysis is performed	
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input �les we see that no additional strict arguments are found once �� or more
open redexes are allowed� From this point on the running time remains constant�
For the context
core input �le� on the other hand� we see a continuing increase
of running time as we increase the number of open redexes allowed� This is due
to the fact� that in this analysis looping reductions are encountered which are
not detected by the analyser� A better approximation of the ���relation might
remedy this situation� Two cases in which looping reductions are not detected
are the context analyses�

e�inf �sums inf	 and
e�inf �products inf	
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Thus for a typical strictness analysis there is no danger in specifying a very
large bound for the number of open redexes� the running time will not increase

	



past a certain reasonable maximum� For a typical context analysis the running
time is not bounded� but here also it seems that much information can be foun
in a reasonable time�
As an example we include some output lines from the analysis of context
core�






init �strict�

cInitEBotTop ���

cInitEBotBotmem ���

cInitEBotInf ���

cInitEInfTop ���

cInitEInfBotmem ���

cInitEInfInf �strict�

cInitEBotmemTop ���

cInitEBotmemBotmem ���

cInitEBotmemInf �strict�






� Conclusion

Our implemetation e�ciently approximates abstract reduction with reduction
path analysis� The G��machine� a new machine model based on the G�machine�
systematically presents the method used� The degree of similarity with the G�
machine which we were able to uphold indicates how obviously the method used
and reduction in functional languages correspond�
Although the implementation favors ease of understanding over e�ciency� it
proves that abstract reduction with reduction path analysis is �t for every�day
strictness analysis even when implemented in a functional language and that
it �nds strictness information which implementations of other methods do not
�nd�
It is possible to optimize our implementation in several respects� there are even
parts executed for every G��machine instruction simulated where optimization
is possible� Cautiously estimating� it should not be very di�cult to halve the
running time�
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Programs prog � sk�� � � � � skn� n � �

Super� sk � var var� � � � varn  expr� n � 

combinators

Expressions expr � expr aexpr
j expr� binop expr�
j let defs in expr
j letrec defs in expr
j case expr of alts
j aexpr

aexpr � var
j num
j Packfnum�numg
j � expr �
j Top
j Bot
j hexpr�� � � � � exprni

De�nitions defs � def�� � � � � defn� n � �
def � var  expr

Alternatives alts � alt�� � � � � altn� n � �
alt � � num � var� � � � varn � � expr�

n � 


Binary binop � arop j relop j boolop
operators arop � ! j � j " j �

relop � � j � j   j � j � j �

boolop � #j j
Variables var � alpha varch� � � � varchn� n � 


Numbers num � digit� � � � digitn� n � �
alpha � an alphabetic character
varch � alpha j digit j
digit � a numeric character

Fig� �� Syntax of the abstracted Core language
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