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Abstract. The extraction of strictness information marks an indispens-
able element of an efficient compilation of lazy functional languages like
Haskell. Based on the method of abstract reduction we have developed
an efficient strictness analyser for a core language of Haskell. It is com-
pletely written in Haskell and compares favourably with known imple-
mentations.

The implementation is based on the G#*-machine, which is an exten-
sion of the G-machine that has been adapted to the needs of abstract
reduction.

1 Introduction

Obtaining a maximum of strictness information is a key requirement for gener-
ating efficient code for lazy functional programming languages. Changing lazy
evaluation (call-by-need) to eager evaluation (call-by-value) for specific functions
has been proven to be necessary for good program performance. This has been
inter alia pointed out as one result of doing work on benchmarking by Hartel
[HFAT94]. Such changes in the order of evaluation may only be made for func-
tions, which have been proven to be strict, in order to preserve lazy semantics.
Strictness information enables a safe change of the reduction ordering, i.e. the
termination behaviour of the program is unaffected.

Examples of how strictness information can be used are described in [HB93,
PJP]. Although a large amount of research to lay theoretical foundations for
strictness analysis, see e.g. [Bur91], has been carried out since the initiating
work by Mycroft [Myc80] only a few results have become known with regard
to practical implementations. Today, most compilers, as e.g. by the Glasgow
team [PJHH™92], employ some very basic strictness analyser. The most efficient



strictness analyser for Haskell [HPW'92] both in terms of efficiency and preci-
sion is claimed to be a recent implementation by Jensen et al [JHR94]. Their
implementation of abstract interpretation using “chaotic” fixpoint iteration is
implemented in C and has not yet been incorporated in any compiler. Another
implementation has been given for Clean [NSvP91, PvE93]. This implementation
is based on abstract reduction [N6c93]. It is also written in C. Unfortunately, it
is hidden in the Clean compiler and, therefore, comparisons to other implemen-
tations are hardly possible.

We have developed an adaptation of abstract reduction to Haskell and have
made an implementation of a strictness analyser for the core language as it is
presented in [PJLI1]. Our implementation is entirely written in Haskell.

It is realised via a newly developed abstract machine, the G#-machine. The
source gets compiled into G#-code. The subsequent interpretation of G#-code
then yields strictness information. This interpretation is done in the same way
as in the G-machine.

Although our implementation is not fine tuned in terms of speed, it turned out
to be very good both in terms of precision and efficency. In a script of almost
290 functions all strictness information was found in a less than 18 seconds on
a SPARCstation 10. A theoretical estimate of the precision and complexity of
abstract reduction would be very difficult. Therefore the tests we present in
section 5 which are typical cases of strictness and context analysis are of great
importance. This is especially true since we can learn the dependence of pre-
cision and complexity on the value for our termination criterion. We are quite
positive that it can be tailored to be incorporated in any Haskell compiler. The
implementation is freely available by anonymous ftp from ftp.uni-frankfurt.de in
the directory /pub/dist/kist/functional/abs-g.

A detailed description can be found in [Sch94, Sch95].

In the next section we shall give a short review of abstract reduction followed by
an overview of our implementation. A further section describes the G#-machine
with its, in contrast to Nocker’s method, non-strict order of reduction. Finally,
some results of the performed tests will be given.

2 Abstract Reduction

As we cannot expect the reader to be familiar with abstract reduction, we shall
give a short review of [N6c93].

In contrast to abstract interpretation, which abstracts the denotational seman-
tics of a functional language, abstract reduction aims at an abstraction of the
operational semantics, i.e., an abstract term is reduced until it hopefully yields
the term “bottom”. As area of investigation, an infinite domain is defined for a
language completely determined by supercombinators and their applications:

Let S be the set of all function symbols including data constructors de-
fined in a program script, then the abstract domain will be the set of di-
rected graphs over the vertex set S# = {f#|f € S}U{L#, T# Union*}



where L# and T# are constants and Union# is of arbitrary arity. An
expression Union” z; ...z, will be written as (z1,...,7,).

Detailed discussion of this domain can be found in [GH93]. Because of the in-
tended meaning of the Union# operator an ordering for this domain can only
be given via a concretisation map -yv. In line with the literature concerning ab-
stract interpretation we define v as a map from abstract values to sets of values
in the standard interpretation. For simplicity no type information is taken into
account:
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where S [exp] denotes the standard interpretation of exp.
As ordering on the abstract domain we take set inclusions on the concretisations:

a1 <q az :=(a1) C y(az)

This ordering provides information up to how specific a value is. The least specific
one is T#, which expresses all concrete values, the most specific one is L#, which
represents just | expressions. Generally, it cannot be decided whether a <, b.
This would mean that e <, L# can be decided for every abstract value e, which
would give a decision precedure for strictness analysis.

An approximation <’ of <, with a <' b = a <, b can be given as follows:

1# <t
t<'T#
t<'t
fa,. ..o, <" fy,...,yn,ifV1<i<n:z; <y
t<"(z1,...,op),if AN <i<n:t <" x;

In order to handle cyclic structures a refinement of this approximation is intro-
duced. The reader is refered to [N6¢93].

Naturally, an equivalence relation holds between abstract values. Some impor-
tant equivalences used to simplify unions are:

(z)y ==
(x1,-..,2n) = (7(x1,...,2,)), for a permutation 7
(Ty21,.. . mp) = (w1,...,op),if (A1 <i<n):x<
C({x1,...,zn)) =(C(x ) ..,C(zy)),for a context C(-)
(1, mp), 2y, )y = (T, Ty 2y, 20)



Such equivalences on unions will allow us to simplify every abstract value to an
equivalent abstract value, which has at most one union construct and to shift
this union operator up to the root of the value. Next, the concept of abstract
reduction is introduced. An abstract value a; reduces to as, if for every expres-
sion, which abstracts a;, a needed concrete reduction can be given, resulting in
an expression that abstracts to as. A reduction is needed, if for all reduction
sequences, which lead to head normal form, this reduction step has to be per-
formed.

For a formal introduction of this notion the reader is referred to the original
work by Nocker [N6¢c93].

The general form of abstract reduction cannot be implemented, because it is not
algorithmically defined. Therefore, algorithmic reduction-steps on abstract val-
ues are defined, which approximate abstract reduction. These are two, namely
abstract rewriting and reduction path analysis with bottom or cycle introduc-
tion.

— Abstract rewriting is just a sort of symbolic computation on abstract values.
An expression (f# a; ...a,) is rewritten according to the rules defined for
the supercombinator f. If more than one alternative of a function matches,
the different results will be collected in a Union# construct. The only ques-
tion that arises is, how to determine which function alternatives match.
Since the language No6cker uses (Clean), includes full pattern-matching, his
matching rules are more complex than ours. In the Core language only sim-
ple patterns of one constructor with pattern variables are used. This makes
the rules for matching much simpler. A decision algorithm for matching of
such simple patterns is given by:

Match? (T#, p) = true

Match#(J_#,p) = false
Match™ (C vy ... vn, C" p1...pm) = false, if C # C'
)
)

Match#(C V... U, C p1...Dm true
Match#((el, onen),p)=31<i<n: Match#(ei,p)

— Reduction path analysis is a kind of loop detection. If in a sequence of
abstract rewritings an expression ezp can be found, of which a generalisation
exp' had been reduced before, we will be able to introduce a reduction cycle.
Reducing exp can be done in the same way as reducing exp’ ad in finitum.
This cycle in the abstract reduction sequence will correspond to an infinite
path in the concrete reduction, if it is needed, i.e., if a concretisation of
exp has to be reduced in the concrete reduction. This will be the case, if
exp is in every alternative of the reduced expression, i.e., if it is in every
component of the resulting union of the case expression. A reduction cycle
of a needed expression yields an infinite reduction in the concrete counterpart
and therefore can be reduced to L#.



As an example for an analysis using abstract reduction, we give the iterative
length function:

length xs n =case xs of
<1> -> n;

<2> y ys -> length ys (n+1);

Strictness of the second argument can be found by the following abstract reduc-
tion:

length T# 1#

— (L% length T# (L#+1))

= length T# (L#+1) (1)
— length T# 1#

- 1%

In [?] we present a reformulation of abstract reduction as a deduction calculus
and prove its soundness.

3 An Overview of the Implementation

The language of discourse is a functional core language, which is assumed to be
A-lifted. We have followed the Core language in its representation from [PJLI1].
The syntax of its abstraction is given in figure 1. The actual implementation can
cope with an enriched syntax which includes strings. This choice was motivated
by having a well documented and broadly spread source and not being bound
by some special syntax of a concrete compiler. The language is parsed using
the parser in [PJL91]. Then it is compiled to abstract G-code, called G#-code.
In this step, in contrast to Nocker’s implementation, primitive values are not
approximated by T#. This will enable us to find strictness of functions like:

st a=1if (1 ==0) 1 a

Because our work is not in the context of a real compiler, but can be used as a
stand-alone system, a dependency analysis became necessary to yield information
on the calling structure of the program. This enables us to analyse functions
which are at the lower end of the calling hierarchy first, and use their strictness
information for generating code for functions which are higher up in the calling
hierarchy. Unfortunately, we found that costs for dependency analysis in most
cases were more expensive than the improvements due to its information so
that we turned it off. Nevertheless, in the context of a compiler, which provides
dependency information further improvements can be made this way.

Strictness analysis for a function f in its ¢th argument is finally performed by
starting the abstract reduction of (£# T# ... T# 1# T# . .. T#) and reducing
until 1# is reduced or some termination criterion has been reached. The result



of the analysis is a table which gives a list for every function where the ith list
element says that the function is known to be strict in the ith argument or that
strictness in this argument is unknown.

Although abstract reduction enables us to find context information, our analyser
in its present state has built-in support for strictness analysis only. As will be
seen in section 4 the context analysis problem is easily reduced to the strictness
analysis problem. Today most compilers do not use context information for code
generation and the question of how to gain efficiency by context information
is at least controversial, see e.g. [FB94]. Nevertheless, we made some tests for
context analysis, see section 5.

For a detailed discussion of the implementational issues and the complete oper-
ational semantics of the G#-machine the reader is referred to [Sch95].

3.1 Open Redexes

Reduction path analysis makes it necessary to recollect the reduction history of
an abstract term ¢,i.e. all the terms and subterms one came across while reducing
to t. Therefore our implementation maintains a list where all terms which can
lead to cycle or bottom introduction are recorded. We can think of these terms
as those for which evaluation has started, but which have not yet been updated
with a term in WHNF. We will call these terms open redexes. The termination
criterion used in our implementation is to limit the number of open redexes.

4 List Domain and Context Information

The method is not restricted to WHNF strictness on L, i.e., more information
for a function f than £ L = | can be generated. On recursive types like lists one
might be interested in more information than the information that a list does
not have a WHNF. So analysis can be made for functions, which have lists as
arguments or lists as results.

4.1 4 Point List Domain

For lists there has been proposed a domain of four points, each representing
a certain degree of where the first bottom of a list expression will be found.
The four point domain on lists is defined as: {1, 00, L€, Te} with the ordering
1 C oo C LeC Te [Wad87]. L represents expressions with no WHNF, oo rep-
resents expressions with no finite list structure, L€ represents expressions with
undefined list elements, and T€ all list expressions.

Fortunately, we are able to express these abstract list values:

topmem = T# (Te)
botmem = <Cons L# topmem, Cons T# botmem>; (L€)
inf = Cons T# inf; (c0)



4.2 Context Information

For a function £ with a list result, we might be interested to know if reducing to
a certain degree, e.g. to the list structure or to normal form, an application of
f to some value, yields bottom. Such information is called context information
[Bur91, Bur87].

We can generate context information with our machine by introducing evalua-
tor functions [Bur91]. The only task of such evaluator functions is to force the
reduction of its argument into a certain form in order to get a result in WHNF.
An example of such an evaluator is®:

e_botmem xs = case xs of
Nil -> Nil;
(Cons y ys) -> k1 (enf ys) y;

kl xs y =case xs of
_ —> case y of
-

The function e_botmem requires the reduction to the complete list structure of
its argument and reduction of every list element to WHNF in order to produce
a WHNF. Such evaluator functions allow us to reduce context analysis to strict-
ness analysis of a certain abstract value.

Now it is possible to generate context information quite easily. We do not have
to adapt the method or to enrich the machine but simply have to analyse certain
functions for WHNF strictness. For example, we can generate context informa-
tion for the standard append function by analysing:

(e_botmem (append botmem topmem) )

If this expression gets abstractly reduced to L#, we know that append requires
the reduction of its first argument to a list of WHNFs in order to produce such
a list as result.

An additional advantage of abstract reduction over abstract interpretation is that
abstract reduction can be used to compute the different context information for
a function seperately. This makes it possible to have the compiler analyse only
those contexts which are needed. Furthermore, as we have seen for the 4-point-
domain, it is straightforward to generate abstract values and evaluator functions
for arbitrary algebraic types. This could even be done by the compiler itself.

5 Results

Several tests were performed on a Sun SPARCstation 10/41 with 64MB of RAM
running Solaris 2.4. The analyser itself was compiled by the Glasgow Haskell

% For reasons of readability we use list constructors Nil and Cons in this example and
not the numbered Core language constructors.



Compiler version 0.24. The Core language files for the tests were obtained by run-
ning the Gofer compiler gofc with a =D option followed by some manual touch-up
to meet our syntax. A first test was analysing a program script (t10.core) en-
tailing Core language versions of parts taken from the analyser itself, namely
from the compiler to G#-code, the lexer and some auxiliary functions plus the
Core language version of the Gofer [Jon94] standard.prelude with exception
of floating point functions. In this test 287 functions with a total of 526 argu-
ments are analysed for their strictness. To our knowledge the analyser found all
strictness information in this script. This was achieved in 18 seconds user time.
This time includes the times for parsing the Core language script which a real
compiler will already have done.

A second test involved a Core language version (nucleic2.core) of the pseu-
doknot benchmark program [HFA194] plus the Core language version of the
standard.prelude. This program constitutes a widely used test for functional
language compiler technology. It is a real world application from molecular bi-
ology which does not depend on laziness for correct behaviour. For this test all
floating point numbers were approximated with T#, as the G#-machine does
not support floating point numbers. In this test 248 functions are analysed with
a total of 493 arguments. To our knowledge here also all strictness information
was found.

For a third test we analysed all of the contexts which can arise in the
standard.prelude with respect to the 4-point-domain except for the zip func-
tions with arity above 2. That is for every list valued argument we test all the
combinations of the values Te€, L€ and oo. If the result is a list as well we
combine these with the evaluators ¢, , £ and £ . Thus for append 27 context
analyses are performed. Here 596 functions are analysed with a total of 767 argu-
ments. 435 functions thereof are constructed to perform context analysis. These
functions will be of the form:

cAppendEInfBotmemTop xs = e_inf (append botmem topmem)

One of the most important optimizations a real compiler might make
for this case is to derive new context information from context in-
formation already obtained. Based on the <,-relation on abstract val-
ues it suffices to abstractly reduce e_inf (append botmem topmem) to L#
to infer that e_inf (append inf topmem), e_inf (append botmem topmem),
e_inf (append botmem inf) as well as e_botmem (append botmem topmem),
e_botmem (append inf topmem), e_botmem (append botmem botmem) and
e_botmem (append botmem inf) will also abstractly reduce to L#. We did not
exclude these analyses from our input file, because with few open redexes al-
lowed e_inf (append inf topmem) will not reduce to L# and thus not allow
the additional information to be derived.

The following plots show the times resp. the strict arguments found depending on
the number of open redexes allowed.* For the t10.core and the nucleic2.core

4 The plots for time include a value for 0 open redexes. In this case the input file is
parsed and compiled to G#-code only, but no analysis is performed.



input files we see that no additional strict arguments are found once 12 or more
open redexes are allowed. From this point on the running time remains constant.
For the context.core input file, on the other hand, we see a continuing increase
of running time as we increase the number of open redexes allowed. This is due
to the fact, that in this analysis looping reductions are encountered which are
not detected by the analyser. A better approximation of the <,-relation might
remedy this situation. Two cases in which looping reductions are not detected
are the context analyses:

e_inf (sums inf) and
e_inf (products inf)

Times for t10.core Strictness for t10.core
20 T T T T T T 320 T T T T T T
18 | IEEEEERRAE 300 F L eeeectrrrre
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4= ] strict 260 - ]
secs 12 |- — iy 240 . -
10 L | Dpositions 220 L i
8 — 200 —
6 — 180 - —
/R T B o L T R
0246 81012141618 2 4 6 81012141618
open redexes open redexes
Times for nucleic2.core Strictness for nucleic2.core
22 TR 300 T T T
20+ .- - 280 .- n
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E i . 240 . -
S€CS ii - . pssfgf(fns 220 - ]
200 -
121 7 180 - :
10 . 160 - —
Y Y A 40 L1111
0246 81012141618 2 46 81012141618
open redexes open redexes
Times for context.core Strictness for context.core
500 T T T T 300 T Tt
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0 510152025303540 5 10152025 303540
open redexes open redexes

Thus for a typical strictness analysis there is no danger in specifying a very
large bound for the number of open redexes: the running time will not increase



past a certain reasonable maximum. For a typical context analysis the running
time is not bounded, but here also it seems that much information can be foun
in a reasonable time.

As an example we include some output lines from the analysis of context.core:

init [strict]
cInitEBotTop [7]
cInitEBotBotmem [7]
cInitEBotInf [7]
cInitEInfTop [7]
cInitEInfBotmem [7]
cInitEInfInf [strict]
cInitEBotmemTop [7]
cInitEBotmemBotmem [7]
cInitEBotmemInf [strict]

6 Conclusion

Our implemetation efficiently approximates abstract reduction with reduction
path analysis. The G#-machine, a new machine model based on the G-machine,
systematically presents the method used. The degree of similarity with the G-
machine which we were able to uphold indicates how obviously the method used
and reduction in functional languages correspond.

Although the implementation favors ease of understanding over efficiency, it
proves that abstract reduction with reduction path analysis is fit for every-day
strictness analysis even when implemented in a functional language and that
it finds strictness information which implementations of other methods do not
find.

It is possible to optimize our implementation in several respects, there are even
parts executed for every G#-machine instruction simulated where optimization
is possible. Cautiously estimating, it should not be very difficult to halve the
running time.
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[¢]

Programs prog — ski;...; skn,m >1

Super- sk — var vary ...var, = expr,n >0
combinators

Expressions eTPT —> eTPT AeTPT

| expr, binop expr,
| let defs in expr

| letrec defs in expr
| case ezpr of alts

| aezpr

aexpr — var
| num
| Pack{num,num}
| (eapr)
| Top
| Bot
| (expri,...,expry)
Definitions defs — defy;...; def,,n >1
def — var = expr

Alternatives alts — alty;...; alt,,m>1
alt = < num > wvary...var, — > erpr,
n>0
Binary binop — arop | relop | boolop
operators arop =+ |- *1|/
relop > < | <= | == | ~= | >=| >
boolop — &| |

Variables var — alpha varch: ... varch,,n >0
Numbers num — digit, ... digit,,n > 1

alpha — an alphabetic character
varch — alpha | digit | -
digit = a numeric character

Fig. 1. Syntax of the abstracted Core language
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