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Abstract

The theory of strong interactions – Quantum Chromodynamics (QCD) – is well-

defined mathematically. However, direct applications of this theory to experi-

ment are rather limited due to significant technical obstacles. Even some general

features of QCD remain unclear to date. Hence, phenomenological input is im-

portant and needed for practical applications, e.g. for theoretical analysis of the

heavy-ion collision experiments.

In this thesis the role of hadronic interactions is studied in the hadron res-

onance gas (HRG) model – a popular model for the confined phase of QCD.

The description of hadronic interactions is based on the famous van der Waals

(VDW) equation and its quantum statistical generalization. While this is not

the conventional choice for nuclear/hadronic physics applications, the simplicity

of the VDW approach makes it extremely useful. In particular, this framework

allows to include the two most basic ingredients of hadron-hadron interaction:

the short-range repulsion, modeled by excluded-volume (EV) corrections, and

the intermediate range attraction.

The first part of the thesis considers just the repulsive EV interactions be-

tween hadrons. A hitherto unknown, but surprisingly strong sensitivity of the

long known thermal fits to heavy-ion hadron yield data to the choice of hadron

eigenvolumes is uncovered. It challenges the robustness of the chemical freeze-

out temperature and baryochemical potential determination from the thermal

fits. However, at the same time, the extracted value of the entropy per baryon is

found to be a robust observable which depends weakly on this systematic uncer-

tainty of the HRG model. A Monte Carlo procedure to treat EV interactions in

HRG is also introduced in this thesis. It allows to study simultaneous effects of

EV and of exact charge conservation in HRG for the first time.
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Generalizations of the classical VDW equation are required for its applica-

tions in hadronic physics. The grand canonical ensemble (GCE) formulation of

the classical VDW equation is presented. Remarkably, this important aspect of

the VDW equation was not discovered before. The GCE formulation yields the

analytic structure of the critical fluctuations, both in the vicinity of and far off

the critical point. These critical fluctuations are presently actively being used as

probes for the QCD critical point.

Another extension is the hitherto undiscovered generalization of the VDW

equation to include quantum Bose-Einstein and Fermi-Dirac statistics. It is per-

formed for both single-component and multi-component fluids. The Fermi-Dirac

VDW equation is applied for the first time. It is used to describe nucleons and

basic properties of nuclear matter. The quantum statistical generalization of the

VDW equation developed in this work is quite general, and can be applied for

any fluid. Thus, its applications are not restricted to QCD physics, but may also

find themselves in chemistry and/or industry.

The quantum statistical VDW equation is used to describe baryonic interac-

tions in full HRG. The VDW parameters a and b are fixed to the nuclear ground

state and the predictions of the model are confronted with lattice QCD calcu-

lations. The inclusion of baryonic interactions leads to a qualitatively different

behavior of the fluctuations of conserved charges in the crossover region. In many

cases it resembles the lattice data. These results suggest that hadrons do not melt

quickly with increasing temperature, as one could conclude on the basis of the

common simple ideal HRG model. Calculations at finite chemical potentials show

that the nuclear liquid-gas transition manifests itself by non-trivial fluctuations

of the net baryon number in heavy ion collisions.

In the final part of the thesis the pure glue initial scenario for high-energy

hadron and heavy-ion collisions is explored. This scenario is shown not to spoil

the existing agreement of the hadronic and electromagnetic observables descrip-

tion in Pb+Pb collisions at energies available at the CERN Large Hadron Col-

lider. Hydrodynamic calculations suggest that collisions of small-sized nuclei at

lower collision energies available at the BNL Relativistic Heavy Ion Collider are

promising in the search for the traces of the chemically non-equilibrium gluon-

dominated phase transition.
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Einführung

Die Theorie der starken Wechselwirkung – Quantenchromodynamik (QCD) –

ist mathematisch wohldefiniert. Nichtsdestotrotz, direkte Anwendungen dieser

Theorie auf Experimente sind wegen signifikantem technischen Aufwand bis

heute begrenzt: Selbst die allgemeinsten Eigenschaften der QCD sind bis heute

nicht gänzlich verstanden. Folglich sind für theoretische Beschreibungen von

Schwerionen-Kollisionen auch phänomenologische Zugänge notwendig.

In dieser Arbeit erforschen wir die Rolle hadronischer Wechselwirkungen im

Rahmen des Hadronen-Resonanz-Gas (HRG) Modells, was ein weit verbreitetes

Modell für die Confined Phase der QCD ist. Die Beschreibung der hadronischen

Wechselwirkungen basiert hier auf der bekannten van-der-Waals-Gleichung. Es

handelt sich hierbei nicht um die meist verbreitete Wahl im Bereich der Kern-

und Hadronen-Physik, sie stellt aber einen einfachen und nützlichen Zugang

dar. Insbesondere erlaubt dieser die Einbeziehung der beiden wichtigsten Be-

standteile der Wechselwirkung zwischen Hadronen: kurzreichweitige Abstoßung,

modelliert durch die Eigenvolumen-Korrektur, sowie die Anziehung auf mittleren

Abstandsskalen. In dieser Arbeit wird das seit rund 150 Jahren erfolgreich in der

Chemie genutzte einfache VDW-Gas Modell erstmals weiterentwickelt: in diesem

neuen Formalismus wird die konsistente quantenstatistische Beschreibung in das

VDW Modell eingeführt.
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Eigenvolumen-Wechselwirkung im Hadronen-Resonanz-

Gas

Der konventionelle Zugang über punktuelle Wechselwirkung im Rahmen des Mod-

ells des Hadronen-Resonanz-Gases wurde schon seit längerem verwendet, um

thermodynamische Parameter der erzeugten Materie in Schwerionen-Kollisionen

abzuschätzen. Die umfangreichen experimentellen Daten bzgl. mittlerer

Hadronen-Multiplizitäten verschiedener Experimente wird durch dieses Modell

relativ gut beschrieben. Bei Temperaturen im Bereich von T ∼ 100 − 150 MeV

und verschwindendem chemischen Potential scheinen die Ergebnisse des punk-

tuellen HRG auch viele Observablen der Gittereichrechnungen von QCD zu re-

produzieren. Auf der anderen Seite zeigen schon einfache Abschätzungen, dass

die Hadronen-Dichten beim “chemischen Freeze-Out” einer Schwerionen-Kollision

eher hoch sind, so dass signifikante Abweichungen vom idealen Gas zu erwarten

sind und insbesondere auch kurzreichweitige Abstoßungen betrachtet werden

müssen.

Die kurzreichweitige und abstoßende Wechselwirkung zwischen Hadronen wird

in dieser Arbeit durch Eigenvolumen-Korrekturen modelliert. Diese Erweiterung

des HRG-Modells fand auch vorher schon eingeschränkt Anwendung in der Liter-

atur. Im Rahmen dieser Arbeit findet dagegen eine systematische Untersuchung

von Effekten bedingt durch Eigenvolumen statt, wobei insbesondere auf thermis-

che Fits für Hadronen-Multiplizitäten eingegangen wird.

In Kapitel 22 wird die Formulierung unterschiedlicher HRG-Modelle mit

Eigenvolumen-Korrekturen vorgestellt. Hierbei wird der Einfluss gleichzeitiger

Eigenvolumen-Effekte sowie das exponentielle Hagedorn-Spektrum im Rahmen

von HRG untersucht. Beide Erweiterungen führen bei hinreichend großen Tem-

peraturen zu einer deutlich veränderten HRG-Thermodynamik. Ein Vergleich mit

QCD-Gittereichrechnungen lässt vermuten, dass weder die Parameter des Eigen-

volumens noch das Hagedorn-Massenspektrum eindeutig aus Gitter-Simulationen

extrahiert werden können. Der Anstieg thermodynamischer Funktionen bed-

ingt durch Hagedorn-Zustände kann über die unterdrückte Wechselwirkung der

Eingenvolumen-Effekte kompensiert werden.

Bisher ist über die überraschend starke Abhängigkeit thermischer Fits für
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Hadronen-Multiplizitäten vom Eigenvolumen wenig bekannt und diesem Sachver-

halt widmet sich Kapitel 33. Abhängig vom angewandten Ansatz für das Eigenvol-

umen können aus thermischen Fits sehr unterschiedliche Werte für die chemische

“Freeze-Out”-Temperatur und das baryochemische Potential extrahiert werden.

Folglich stellt dies die Robustheit bzw. Gültigkeit der extrahierten Größ en in

Frage. Gleichzeitig sind die extrahierten Werte für das Verhältnis der Entropie

per Baryon S/A robust bezüglich der vorher beschriebenen systematischen Un-

sicherheit des HRG-Modells und somit unabhängig von exakten Details der Mod-

ellierung des Eigenvolumens.

In Kapitel 44 wird ein Monte-Carlo-Zugang zur Beschreibung von EV-

Wechselwirkungen in einem multi-komponentigen Gas beschrieben. Dieser er-

laubt es zum ersten Mal die gleichzeitige Behandlung von exakter Ladungserhal-

tung und von EV-Wechselwirkungen im Rahmen des HRG-Modells. Auch die

Relevanz dieser Effekte für die Hadronen-Produktion in p + p-Kollisionen wird

diskutiert.

Kritische Schwankungen in der klassischen van-der-Waals-

Gleichung

Die klassische VDW-Gleichung enthält sowohl eine kurzreichweitige abstoßende

sowie eine anziehende Wechselwirkung auf mittleren Abstandsskalen. Es ist dabei

das einfachste Modell, welches einen Phasenübergang erster Ordnung sowie den

kritischen Punkt vorhersagt. Die Anwendung dieser Gleichung für Hadronen-

physik erfordert eine Verallgemeinerung, dabei präsentiert die hier vorliegende

Arbeit eine groß kanonische Formulierung der klassischen VDW-Gleichung. Be-

merkenswert ist, dass dieser einfache Aspekt der VDW-Gleichung vorher noch

nicht publiziert wurde.

Die Formulierung im Rahmen des großkanonischen Ensembles (GCE) eröffnet

die Möglichkeit für neue physikalische Anwendungen wie sie durch Fluktuationen

der Teilchenzahl gegeben sind. Im kanonischen Ensemble, für welches die VDW-

Gleichung anfänglich formuliert wurde, sind solche Fluktuationen per Definition

nicht vorhanden. Im GCE sind Teilchenzahlen nur im Mittel erhalten und zeigen

ein kritisches Verhalten in der Nähe des kritischen Punktes (CP). Dabei wer-



xii

den kritische Fluktuationen als vielversprechende Observablen für den kritischen

Punkt der QCD im Rahmen von Schwerionen-Kollisionen angesehen.

Die großkanonische Formulierung erlaubt es sogar eine analytische Struktur

von kritischen Fluktuationen zu erhalten, was in Kapitel 55 diskutiert wird. Es

werden volumenunabhängige Verhältnisse für die Kumulanten berechnet, dazu

zählen die skalierte Varianz, Skewness und Kurtosis der Teilchenzahl-Fluktuation.

Diese Größen zeigen ausgeprägte Strukturen nahe am kritischen Punkt. Dabei

sind die Ergebnisse für jede klassische VDW-Flüssigkeit universal und sind qual-

itativ konsistent mit numerischen Ergebnissen diverser effektiver Theorien der

QCD, die einen kritischen Punkt enthalten.

Quantenstatistische van-der-Waals-Fluid

In Kapitel 66 wird zuerst die Verallgemeinerung der VDW-Gleichung zur Ein-

beziehung der Quantenstatistik (Bose- und Fermi-Statistik) vorgestellt. Die resul-

tierende VDW-Gleichung erfüllt grundlegende Konsistenz-Anforderungen, dabei

vereinfacht sie sich zur klassischen VDW-Gleichung, wenn die Quanteneffekte

vernachlässigbar sind. Des Weiteren wird die Form einer idealen Quanten-Gas-

Gleichung im nicht-wechselwirkenden Limes angenommen und das dritte Gesetz

der Thermodynamik eingehalten. Unserer Kenntnis nach wurde diese relativ

einfache quantenstatistische Erweiterung der VDW-Gleichung vorher noch nicht

betrachtet.

Im Folgenden wird die Fermi-Dirac-Version der VDW-Gleichung zur Beschrei-

bung von grundlegenden Eigenschaften symmetrischer Kernmaterie angewandt.

Die VDW-Parameter a und b werden durch die Reproduktion des bekannten

Grundzustandes der Kernmaterie festgelegt. Hierbei ergeben sich die Werte

a ∼= 329 MeV fm3 und b ∼= 3.42 fm3. Das resultierende Modell enthält den

Flüssig-Gas-Phasenübergang für Kernmaterie. Folgende kritische Parameter sind

Vorhersagen des Modells: die kritische Temperatur beträgt Tc ∼= 19.7 MeV und

die kritische Dichte nimmt den Wert nc ∼= 0.07 fm−3 ∼= 0.4n0 an, was dem halben

Wert der normalen Kernmaterie entspricht. Diese Werte liegen dabei nahe an ex-

perimentellen Schätzungen. Weitere Verbesserungen der Beschreibung können

durch aufwendigere VDW-ähnliche Modelle erreicht werden. Die Möglichkeit
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dazu wird ebenfalls in der vorliegenden Arbeit präsentiert.

Die quantenstatistische Verallgemeinerung der VDW-Gleichung ist in der vor-

liegenden Arbeit allgemein formuliert, also auf jedes Fluid anwendbar und ist

insbesondere nicht nur auf QCD beschränkt, was ihre Anwendung im Bereich der

Chemie sowie Industrie erlaubt.

Von der Kernmaterie zur QCD-Gittereichrechnung

Innerhalb des entwickelten quantenstatistischen VDW-Formalismus für Spin-1/2

Nukleonen ist es möglich weitere Baryon-Baryon-Wechselwirkungen ins HRG-

Modell aufzunehmen. Diese Studien werden in Kapitel 77 präsentiert. Wir berück-

sichtigen dabei die VDW-Wechselwirkungen für alle Baryon- sowie Anti-Baryon-

Paare. Gleichzeitig werden VDW-Wechselwirkungen zwischen allen anderen

Hadronen-Paaren vernachlässigt. Die VDW-Parameter der Baryon-Baryon-

Wechselwirkung werden für alle Paare als identisch angenommen und durch den

Grundzustand der Kernmaterie (a ' 329 MeV fm3 und b ' 3.42 fm3) fest-

gelegt. Somit beschreibt das VDW-HRG-Modell, im Vergleich zum idealen HRG,

grundlegende Eigenschaften der Kernmaterie.

Die Vorhersagen dieses Modells werden mit QCD-Gittereichrechnungen bei

verschwindendem chemischen Potential verglichen. Die Einbeziehung der VDW-

Wechselwirkungen zwischen Baryonen zerstört nicht die schon vorhandene Übere-

instimmung des idealen HRG-Modells mit Gittereichrechnungen in Bezug auf

Druck und Energiedichten. Es ergibt sich aber eine verbesserte Beschreibung der

Schalgeschwindigkeit. Des Weiteren führt die VDW-Wechselwirkungen zu einem

qualitativ unterschiedlichen Verhalten der Fluktuationen, die sich in veränderten

Kumulanten von Erhaltungsgrößen äußern. Insbesondere sagt das VDW-HRG-

Modell analog zu Gittereichrechnungen den Abfall für das Verhältnis χB4 /χ
B
2

von Suszeptibilitäten bzw. Kumulanten der Netto-Baryonen-Zahl im Crossover-

Bereich voraus.

Diese Ergebnisse weisen daraufhin, dass sich die Hadronen nicht so schnell

mit steigender Temperatur auflösen, wie man es von weitverbreiteten Analysen

anhand des idealen HRG-Modells erwarten würde. Die Berechnungen innerhalb

des VDW-HRG-Modells bei endlichem chemischen Potential deuten an, dass sich



xiv

der nukleare Flüssig-Gas-Phasenübergang bei Schwerionen-Kollisionen in nicht

trivialen Fluktuationen der Netto-Baryonen-Zahl äußert. Das Vorhandensein von

abstoßenden Baryon-Baryon-Wechselwirkungen wird auch durch vorläufige QCD-

Gittereichrechnungen bei imaginärem chemischen Potential bestärkt.

In Kapitel 88 wird die multi-komponentige und quantenstatistische van-der-

Waals-Gleichung eingeführt. Dieses Modell erlaubt es beliebige anziehende

und abstoßende VDW-Parameter für beliebige Paare von Spezien in multi-

komponentigen Systemen festzulegen. Hier wird untersucht welche Effekte von

Flavor-abhängigen baryonischen VDW-Wechselwirkungen im Rahmen des HRG-

Modells auftreten und welchen Einfluss diese auf Observablen der Gittereichthe-

orie haben.

“Pure-Glue” Szenario

Im abschließenden Teil (Kapitel 99) der Thesis wird das reine Glue-

Anfangsszenario in hochenergetischer Hadronphysik bzw. Schwerionen-

Kollisionen untersucht. Dabei wird angenommen, dass eine heiße Gluo-

nenflüssigkeit im Anfangsstadium der Kollision vorliegt, welche keine Quarks

und Anti-Quarks enthält. Gemäß den QCD-Gittereichrechnungen sollte eine

rein gluonische Materie einen Phasenübergang erster Ordnung bei der kritischen

Temperatur von Tc ' 270 MeV aufweisen. In einem realistischeren Szenario

sollte man berücksichtigen, dass Quarks schon kurz vorher und während des

Phasenüberganges erster Ordnung erzeugt werden. Technisch kann dies model-

liert werden, indem eine zeitabhängige effektive Zahl von Quarkfreiheitsgraden

eingeführt wird und solch ein Szenario wird auch in dieser Arbeit angewandt, um

Signaturen eines rein gluonischen Anfangszustandes zu untersuchen.

Die hydrodynamische Simulation dieser Arbeit zeigt, dass etwa 25% der to-

talen finalen Entropie während der hydrodynamischen Expansion des chemischen

Nichtgleichgewichts-Zustandes anfänglicher Gluonen erzeugt wird. Berechnungen

von Photonen- und Dilepton-Spektren zeigen, dass die vorhandene Übereinstim-

mung von Modellen mit experimentellen Daten am LHC im rein gluonischen

Szenario nicht beeinträchtigt wird.

In der Tat wird der Effekt einer anfänglich rein durch Gluonen dominierten
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Dynamik in den meisten Observablen fast vollständig ausgewaschen, bedingt

durch die lange Zeitspanne während der Quark-Produktion. Weitergehende hy-

drodynamische Berechnungen weisen daraufhin, dass Kollisionen kleinerer Kerne

bei niedrigen Kollisionsenergien, die am relativistischen Schwerionen-Collider

von BNL verfügbar sind, vielversprechend auf der Spurensuche eines Gluonen-

dominierten Phasenübergangs sein könnten.
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Chapter 1

Introduction

Relativistic collisions of heavy-ions create excited states of strongly interacting

matter, which follows a complex dynamical evolution process. This field is dedi-

cated to the study of the properties of the quantum chromodynamics (QCD) – the

widely accepted theory of strong interactions, including the equilibrium properties

of the equation of state, as well as the non-equilibrium features which are realized

in the high-energy heavy-ion collision (HIC) experiments (see [11, 22, 33, 44, 55, 66]

for reviews). The QCD is a non-Abelian gauge theory, its underlying symmetry

group is SU(3), with the associated color charge. The fundamental particles are

quarks and gluons. The non-Abelian nature of QCD leads to several peculiar

features, the two most well-known ones are color confinement and asymptotic

freedom.

Color confinement reflects our empirical experience that one never observes any

free quark or free gluon. Instead, these constituents of QCD are always confined

inside of hadrons. Hadrons are color neutral objects, most commonly described

as consisting of three constituent quarks (baryons), or a quark-antiquark pair

(mesons), although a quantum field theoretical treatment predicts that hadrons

contain also an unlimited number of hard and soft gluons and sea quark pairs. The

best example for a hadron are protons, p, and neutrons, n, – the building blocks

of atomic nuclei. Due to color confinement, matter at moderate temperatures

and densities can to a good approximation be effectively described as composed

of p, n and other hadrons.

Asymptotic freedom is a property of QCD which causes the coupling be-
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tween its fundamental constituents to become asymptotically weak at high en-

ergies/small distances [77, 88]. Consequently, at extremely high temperatures and

densities one expects to find a weakly coupled, quasi-free state of quarks and

gluons dubbed quark-gluon plasma (QGP) – this state would correspond to a

system of many interacting quarks and gluons which are no longer confined to

the interior of one hadron.

The first principles theory of QCD is well-defined, but direct applications of

this theory to experiment are quite limited due to significant technical obstacles.

In fact the more general features of QCD remain unclear to date. In particular,

the nature of the transformation of hadrons into quarks and gluons, and also

the inverse process, hadronization of colored objects into hadrons, remains an

open issue. Perturbative techniques, very successful in quantum electrodynam-

ics, break down in QCD at moderate energies due to the dramatic growth of the

coupling strength (the effective coupling constant αs can become αs > 1 instead

of αs � 1 [99, 1010]). Thus, perturbative methods are inapplicable for describing

the hadron-parton transformation. Nowadays, the best established first-principle

tool available is lattice QCD – a direct numerical solution of QCD discretized on

a finite space-time lattice. It allows a good representation of the low-lying hadron

spectrum but for thermal QCD, technical limitations (sign doubling) confine lat-

tice QCD simulations to the µB ∼= 0 (zero net-baryon density) region of the QCD

phase diagram. Improved lattice techniques for hot QCD are rapidly develop-

ing and finite µB results may appear soon. In general, the phase diagram of the

strongly interacting matter is expected to contain a rich structure at finite baryon

density and at moderate temperatures. Sketch of the QCD phase diagram [1111],

containing many possible phases of QCD matter, is depicted in Fig. 1.11.1.

Lattice QCD simulations show that the thermal hadron-parton transition at

zero net-baryon density, µB = 0, is not a first or second order phase transition,

but a smooth crossover – a continuous change of thermodynamic variables over a

sizable temperature region, T ∼ 150− 200 MeV [99]. Presently, these simulations

do not provide an answer about the nature of the hadron-parton transition at

finite µB. It is conjectured that this transition turns first-order somewhere in the

finite net-baryon density region. Significant theoretical and experimental effort to

locate or to disprove the associated critical point of QCD is currently in progress.
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Figure 1.1: Schematic view of the conjectured QCD phase diagram, showing
different possible phases of strongly interacting matter. This is the adapted
version of the figure taken from Ref. [1111].

While lattice field theoretical simulations provide QCD equation of state at

µB = 0 [1212, 1313], they do not give a direct answer as to which are the dominant de-

grees of freedom at a particular temperature and baryochemical potential. Hence

it impossible to fix a sharp deconfinement temperature, TD, above which partons

become dominant degrees of freedom. A phenomenological input is needed. We

study here a popular model for the confined phase of QCD, namely the hadron

resonance gas (HRG) model, an equilibrated system of known hadrons and reso-

nances. The HRG model in its simplest version is a gas of non-interacting hadrons

and resonances. The HRG provides a reasonable description of lattice QCD data

available at temperatures up to 150 MeV. Unlike lattice QCD, the HRG is easily

extended to smaller temperatures and to finite µB. The HRG has been remark-

ably successful to fit data on hadron production in HIC experiments (see, e.g.,

Refs. [1414, 1515, 1616, 1717] for reviews). Deviations from the ideal HRG (and from

other, more sophisticated hadronic models) of lattice data at high temperatures

have been interpreted as signatures of deconfinement.

However, modeling strongly interacting matter with a HRG-type ansatz needs

detailed specifications of the input to be used, e.g. which particles to include,

how to treat finite resonance widths, etc. Particular attention must be paid to
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the poorly constrained phenomenological theory of hadron-hadron interactions.

This thesis aims to study the sensitivity of the HRG model predictions, both for

lattice and HIC observables, with regard to these uncertainties.

Hadronic interactions in thermal and chemical equilibrium in this thesis are

based on the famous van der Waals (VDW) equation. While this is certainly not

the most conventional choice for nuclear/hadronic physics applications, the sim-

plicity of the VDW approach makes it extremely useful. The VDW framework

allows to optionally include the two most basic ingredients of hadron-hadron inter-

action: the short-range repulsion, modeled by excluded-volume (EV) corrections,

and the intermediate range attractions. Thus, the VDW model provides a rea-

sonable description of the nuclear matter region of the QCD phase diagram (see

Fig. 1.11.1). This is in contrast to the standard HRG model, where the nuclear mat-

ter features are missing completely. The VDW model, containing a first-order

phase transition with a critical point (CP), is therefore also a useful tool for the

ongoing search of the CP of QCD with fluctuation measurements: the model

provides simple analytic predictions for the fluctuation patterns typical for a CP.

It is quite remarkable, but it appears that the simple VDW equation was never

properly used in the context of QCD, despite these many evident possibilities.

We will present and discuss in this thesis also several extensions of the classi-

cal VDW model which are performed here for the first time. These include the

grand canonical ensemble formulation of the classical VDW equation, the inclu-

sion of quantum (Bose-Einstein and Fermi-Dirac) statistics in the VDW model,

and thermodynamically consistent relativistic extensions to the multi-component

systems with fluctuating numbers of particles. These are textbook level theory

extensions, which for reasons unknown to us have never been published before,

in spite of the great phenomenological usefulness of the VDW model.

Finally, it should be mentioned that HIC involve highly dynamical com-

plex processes. The statistical description of hadron production with HRG,

using just a few thermodynamic parameters certainly does not give justice

to the enormous complexity of the collision processes. The dynamics of the

HIC are usually described by microscopic hadronic/partonic transport mod-

els [1818, 1919, 2020, 2121, 2222, 2323, 2424], or, especially at higher collision energies, by

relativistic hydrodynamics [2525, 2626, 2727, 2828, 2929]. Despite the success of the hy-
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drodynamic model and of the statistical model at the RHIC and LHC energies,

it is clear that a state even only close to chemical and/or thermal equilibrium is

an extremely simplified scenario for HIC (see [3030] for recent discussion).

The ambiguity in the interpretation of the experimental data leaves plenty

of room for alternative scenarios. One possibility is that early, undersaturated

matter, as created in the early stage of HIC, may, at sufficiently high energies

consist initially purely of gluons [3131, 3232]. This long-standing prediction of the

transport theory [2323, 3333, 3434] is due to large gluon production cross sections and

to non-equlibrium nature of the HIC process. This scenario is explored in some

detail in the present thesis.

Structure of the thesis

The role of the repulsive EV interactions between hadrons in the HRG model is

studied first. In Chapter 22 different EV models of a multi-component hadron gas

are described. The importance of EV interactions is illustrated by their strong

influence on the most basic observables from lattice QCD.

Chapter 33 explores the sensitivity of thermal fits to hadron yields measured in

different heavy-ion collision experiments to the modeling of the EV interactions in

HRG model. Previous studies regarding this systematic uncertainty of the HRG

model were limited to a particular case of constant eigenvolume for all hadron

species. They are extended here to the species dependent eigenvolumes. Conse-

quences of such scenario for the determination of chemical freeze-out parameters

from thermal fits are described in detail.

In Chapter 44 the Monte Carlo approach to treat EV interactions in multi-

component gas of particles is presented. It allows to study finite system size

effects. These effects appear when an eigenvolume of a single particle is not

completely negligible compared to the total system volume, and they cannot be

described with commonly used analytic models since they all assume thermody-

namic limit V → ∞. The Monte Carlo formulation also allows to study for the

first time the simultaneous effects of exact charge conservation and EV interac-

tions in HRG model. Relevance of these effects for description of the hadron

production in p+ p collisions is illustrated.
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Subsequent parts of the work deal with the full VDW equation, with both

attractive and repulsive interactions. The grand canonical ensemble formulation

of the classical VDW equation is presented in Chapter 55. It is then used to

study analytically the structure of the critical fluctuations of particle number

in a system which contains a first-order phase transition with a CP. The VDW

equation is also used to verify the presence of the critical behavior in the so-called

strongly intensive quantities, which are presently being used in heavy-ion collision

experiments as potential probes of the CP of QCD.

Chapter 66 introduces a quantum statistical extension of the VDW theory for

a single-component fluid. This extension allows to include VDW interactions in

the system of fermions or bosons in the phase diagram regions where quantum

statistical effects are non-negligible. The formalism is then used to study proper-

ties of symmetric nuclear matter in the framework of a fermionic VDW equation

for nucleons.

The quantum statistical VDW formalism is then employed to include the es-

sential features of the nuclear matter physics into full HRG in Chapter 77. The

VDW interaction terms are introduced into HRG for all baryon pairs, with VDW

parameters a and b fixed by the fit to the nuclear ground state. The effects of

these interactions on the behavior of second and higher moments of fluctuations

of conserved charges in the so-called crossover region T ∼ 140− 190 MeV at zero

chemical potential are studied in some detail. The model predictions are also

confronted to the lattice QCD data.

Chapter 88 presents the multi-component quantum statistical van der Waals

equation. This model allows to specify arbitrary attractive and repulsive VDW

parameters for any pair of species in the multi-component system. Several appli-

cations of the formalism are illustrated: (i) The asymmetric nuclear matter as a

two-component Fermi-Dirac VDW system of protons and neutrons; (ii) The EV

interactions betweens α particles and nucleons as a mechanism of dissolution of

α clusters in the high-density nuclear matter; (iii) Effects of the flavor-dependent

baryonic VDW interactions in HRG on lattice QCD observables.

Chapter 99 discusses signatures of the pure glue scenario for the high-energy

hadron and heavy-ion collisions. Space-time evolution, entropy production, pho-

ton and dilepton emission and other features of the chemically non-equilibrium



7

QCD matter created in such collisions are described in the framework of ideal

hydrodynamics. Optimal experimental conditions for observing new exotic states

of matter are discussed.

Summary and concluding remarks follow in the final Chapter 1010.
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Chapter 2

Excluded-volume interactions in

hadron resonance gas

2.1 Ideal hadron resonance gas model

Thermodynamic models of description of properties of the strongly interacting

matter are valuable tools in modern high-energy nuclear physics. The conven-

tional ideal (point-particle) HRG model and its modifications have been used

to extract thermodynamic parameters of matter created in heavy-ion collisions.

Rich experimental data on mean hadron multiplicities in various experiments

ranging from low energies at SchwerIonen-Synchrotron (SIS) to highest energy

of the Large Hadron Collider (LHC) [1515, 3535, 3636, 3737, 3838, 3939, 4040] exist and have

been fitted for a long time. At temperatures between T ∼ 100− 150 MeV and at

zero chemical potential, the point-particle HRG also appears to reproduce many

lattice QCD observables [4141, 4242, 4343, 4444].

In the simplest setup, the conjectured hadronic phase is described by a multi-

component, ideal gas of point-like hadrons – the ideal HRG model. In the grand

canonical ensemble (GCE) formulation of the ideal HRG there are no correlations

between different hadronic components. Thus, the pressure is given by

pid
HRG(T, µ) =

∑
i

pid
i (T, µi), (2.1)

where the sum goes over all hadron species included in the model, pid
i (T, µi) is
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the pressure of the ideal Fermi or Bose gas at the corresponding temperature and

chemical potential for species i:

pid
i (T, µi) =

di
6π2

∫ ∞
0

k4dk√
k2 +m2

i

[
exp

(√
k2 +m2

i − µi
T

)
+ ηi

]−1

, (2.2)

where di and mi are, respectively, the spin degeneracy factor and mass of hadron

species i, and where ηi equals +1 for fermions, -1 for bosons, and 0 for Boltzmann

approximation.

Other thermodynamic quantities are also given in form similar to (2.12.1): a sum

over the corresponding ideal gas quantities for all hadron species. The particle

density of hadron species i is nid
i (T, µi), i.e. it is simply given by the ideal gas

relation for species i:

nid
i (T, µi) =

di
2π2

∫ ∞
0

k2dk

[
exp

(√
k2 +m2

i − µi
T

)
+ ηi

]−1

. (2.3)

Only light unflavored and strange hadrons are considered throughout this work

in HRG. Within the GCE formulation, all conserved charges, such as baryonic

number B, electric charge Q, and net strangeness S, are conserved on average.

Therefore, there are three corresponding independent chemical potentials: µB,

µQ, and µS. The chemical potential of the ith hadron species is thus determined

as

µi = Bi µB + Si µS + Qi µQ (2.4)

with Bi = 0, ±1, Si = 0, ±1, ±2, ±3, and Qi = 0, ±1, ±2 being the corre-

sponding conserved charges of ith hadron: baryon number, strangeness, and

electric charge. The notation µ will be used to denote all chemical potentials,

µ ≡ (µB, µS, µQ).

The finite width Γi of resonance i is taken into account by additional integra-

tion of the ideal gas functions over the mass distribution fi(m), i.e.

pid
i (T, µi)⇒

∫
dmfi(m) pid

i (T, µi), (2.5)

nid
i (T, µi)⇒

∫
dmfi(m)nid

i (T, µi), (2.6)
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and so on. For the stable hadrons, fi(m) = δ(m − mi), where δ is the Dirac

delta function. The same is also true for resonances whenever the zero-width

approximation is applied.

The above formulation, a multi-component point-particle gas of all known

hadrons and resonances, is presently the most commonly used realization applied

to the thermal model analysis. In phenomenologically more “realistic” HRG

model realizations one may take into account both the attractive and the repul-

sive interactions between hadrons. It has been argued [4545], that the inclusion

of all known resonances into the model as free non-interacting (point-like) par-

ticles (i.e. into the sum in Eq. (2.12.1)), may allow for an effective modeling of

the attractive interactions between hadrons, including the formation of narrow

resonances and of Hagedorn states. On the other hand, simple estimates show

that hadron densities at the so-called “chemical freeze-out” stage of heavy-ion

collision reactions are rather large. Therefore, we expect significant deviations

from the ideal gas picture. Particularly, the short-range repulsive interactions

need to be considered.

2.2 Excluded-volume models

The repulsive interactions between hadrons can be modeled by the eigenvolume

correction of the van der Waals type, whereby the volume available for hadrons

to be created and move in is reduced by the sum of all their eigenvolumes. Such a

correction was first studied in the hadronic equation of state in Refs. [4646, 4747, 4848,

4949]. A thermodynamically consistent procedure for a single-component gas was

first formulated in Ref. [5050]. Hadrons may also have different eigenvolumes – this

option is considered in the present work. Then, a multi-component eigenvolume

HRG model is necessary.

2.2.1 Single-component van der Waals eigenvolume

model

The simplest eigenvolume model is the classical VDW eigenvolume model. The

excluded volume procedure in the VDW model corresponds to a substitution of
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the system volume V by the available volume Vav, i.e.

V → Vav = V − vN, (2.7)

where v = 4 · (4πr3/3) is the excluded volume parameter with r being the corre-

sponding hard sphere radius of particle i. This result, in particular, the presence

of a factor of 4 in the expression for v, can be rigorously obtained for a low density

gas of particles with hard sphere interaction potential (see, e.g., Ref. [5151]). The

classical VDW equation gives the pressure in the canonical ensemble. Neglecting

the attraction term one has

P (T, V,N) =
T N

V − v N
. (2.8)

In the GCE, the substitution (2.72.7) leads to a transcendental equation for the

pressure [5050]:

p(T, µ) = pid(T, µ− v p), (2.9)

where pid is the ideal gas pressure. The pressure p(T, µ) is obtained by solving the

Eq. (2.92.9) numerically for given T and µ. The particle density n(T, µ) = (∂p/∂µ)T

is

n(T, µ) =
nid(T, µ∗)

1 + v nid(T, µ∗)
, µ∗ = µ− b p(T, µ), (2.10)

where nid is the ideal gas density.

2.2.2 “Diagonal” eigenvolume model

The single-component eigenvolume model of Ref. [5050] was generalized to the

multi-component case in Ref. [5252]. It was assumed that the available volume

of each of the hadron species is the same, and equals to the total volume minus

the sum of the eigenvolumes of all hadrons in the system. Let us assume that

we have f different hadron species. The pressure as function of the temperature
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and of hadron densities has the following form in the Boltzmann approximation:

p(T, n1, . . . , nf ) = T
∑
i

ni
1−

∑
j vjnj

, (2.11)

where the sum goes over all hadrons and resonances included in the model, and

where vi is the eigenvolume parameter of hadron species i. The eigenvolume pa-

rameter vi can be identified with the 2nd virial coefficient of the single-component

gas of hard spheres and is connected to the effective hard-core hadron radius as

vi = 4 · 4πr3
i /3. In the grand canonical ensemble (GCE) one has to solve the

non-linear equation for the pressure, which reads

p(T, µ) =
∑
i

pid
i (T, µ∗i ), (2.12)

where pid
i (T, µ∗i ) is the pressure of the ideal (point-like) gas at the corresponding

temperature and chemical potential, and µ∗i = µi − vi p(T, µ) is the “shifted”

chemical potential due to the eigenvolume interactions. The vi are the eigenvol-

ume parameters of the distinct hadron species i. The number density of these

species can be calculated as

ni(T, µ) =
nid
i (T, µ∗i )

1 +
∑

j vjn
id
j (T, µ∗j)

. (2.13)

The multi-component eigenvolume HRG model given by Eqs. (2.112.11)-(2.132.13)

is the most commonly used EV-parametrization in the thermal model analysis.

Since this model does not consider the important cross-terms in the virial expan-

sion of the multi-component gas of hard spheres (see details below) we will refer

to it in the present work as the “Diagonal” model. Quantum statistical effects

are taken into account in this model if corresponding functions of ideal quantum

gas are used in Eqs. (2.122.12) and (2.132.13). In this case dependence of pressure on

temperature and densities has a more complicated form than given by Eq. (2.112.11).
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2.2.3 “Crossterms” eigenvolume model

The virial expansion of the classical (Boltzmann) multi-component gas of hard

spheres up to 2nd order can consistently be written as [5151]

p(T, n1, . . . , nf ) = T
∑
i

ni + T
∑
ij

bijninj + . . . , (2.14)

where

bij =
2π

3
(ri + rj)

3 (2.15)

are the components of the symmetric matrix of the 2nd virial coefficients.

Comparing Eqs. (2.112.11) and (2.142.14) one can see that the “Diagonal” model is not

consistent with the virial expansion of the multi-component gas of hard spheres up

to 2nd order. It rather corresponds to a different matrix of 2nd virial coefficients,

namely bij = vi. While we do not require hadrons to be non-deformable spherical

objects and expect the “Diagonal” model to capture the essential features of a

system of particles with different sizes, the interpretation of ri as a hard-core

hadron radius can be problematic in such model.

Therefore, we additionally consider the van der Waals-like multi-component

eigenvolume model of Ref. [5353], which is formulated in the grand canonical en-

semble (GCE) assuming Boltzmann statistics, and which is consistent with the

2nd order virial expansion in Eq. (2.142.14). The pressure in this model reads

p(T, n1, . . . , nf ) =
∑
i

pi = T
∑
i

ni

1−
∑

j b̃jinj
, (2.16)

where b̃ij is

b̃ij =
2 bii bij
bii + bjj

(2.17)

while the bij are given by (2.152.15). Here the quantities pi can be regarded as “par-

tial” pressures. This eigenvolume model given by (2.162.16) is initially formulated

in the canonical ensemble. In Ref. [5353] it was transformed to the grand canoni-



2.3 Comparison with lattice QCD 15

cal ensemble. In the GCE formulation one has to solve the following system of

non-linear equations for pi:

pi = pid
i

(
T, µi −

∑
j

b̃ij pj

)
, i = 1, . . . , f, (2.18)

where f is the total number of the hadronic components in the model. Hadronic

densities ni can then be recovered by solving the system of linear equations con-

necting ni and pi:

Tni + pi
∑
j

b̃jinj = pi, i = 1, . . . , f . (2.19)

We refer to this model, as given by Eqs. (2.162.16)-(2.192.19), as the “Crossterms” eigen-

volume model. From technical point of view, the “Crossterms” model is more

difficult to solve than the “Diagonal” model: a set of coupled non-linear equa-

tions (2.182.18) needs to be solved, instead of a single equation (2.122.12) for the total

pressure in the “Diagonal” model. In practice, the solution to (2.182.18) can be ob-

tained by using an appropriate iterative procedure. In the present calculations,

Broyden’s method [5454] is employed to obtain the solution of the “Crossterms”

model, using the corresponding solution of the “Diagonal” model as the initial

guess.

The coefficients b̃ij may also be specified differently from Eq. (2.172.17). This

allows then to model the repulsive interactions between different hadron pairs in

each own specific way. In the specific case of b̃ij ≡ vi the “Crossterms” EV model

reduces to the “Diagonal” EV model.

The eigenvolume models described above are implemented as a C++ pack-

age, which is provisionally named CuteHRG [5555]. All HRG-related calculations

presented in this work are obtained within CuteHRG.

2.3 Comparison with lattice QCD

The role of the excluded-volume effects in a hadron gas can be studied in the

context of the lattice QCD results for the QCD equation of state at zero chem-



16 Chapter 2. Excluded-volume interactions in hadron resonance gas

ical potential. In particular, we consider the lattice QCD data for pressure and

energy density at zero baryonic chemical potential, as obtained by the Wuppertal-

Budapest collaboration for the (2+1)-flavor QCD [1212]. Two rather different

strategies are employed.

In our first analysis [5656], only small temperatures, T < 160 MeV, below the

crossover-type transition, are considered. The hadron list contains all strange

and non-strange hadrons listed in the Particle Data Tables [5757], which have an

established (three or more stars) status there.

Optionally, the hadron list is supplemented by an exponentially increasing

Hagedorn mass spectrum. For this Hagedorn mass spectrum the parameterization

ρ(m) = C θ(m−M0) (m2+M2
0 )−a exp(m/TH) with M0 = 2 GeV, TH = 160 MeV,

m0 = 0.5 GeV, and a = 5/4 is employed. Normalization parameter C can be

fixed by fitting lattice data. For simplicity, in the present analysis it is assumed

that all hadrons, including the Hagedorn states, have identical eigenvolumes,

characterized by a single hard-core radius parameter r. In this particular case,

the “Diagonal” and the “Crossterms” EV models are then identical.

Results of the calculations for the temperature dependence of both the scaled

pressure and energy density, for different values of r, are depicted in Fig. 2.12.1. The

excluded-volume corrections decrease both the pressure and the energy density

while the inclusion of the Hagedorn mass spectrum leads to their enhancement.

If the EV corrections and the Hagedorn mass spectrum are considered simul-

taneously, we find that the lattice data can be well fitted for r . 0.4 fm and

C . 0.2 GeV3/2 with χ2/Ndof . 1 for T < 160 MeV. These results indicate

that neither the EV parameters neither nor the Hagedorn mass spectrum can be

extracted in a definitive way from the lattice data.

It should be noted that here a constant eigenvolume was assumed for all

hadrons. Since the matter is meson-dominated at µ = 0, the obtained restrictions

on the value of r do mainly apply to mesons. It is quite feasible, however, that

the EV interactions are different for mesons and baryons (see, e.g., Ref. [5858] and

also Chapter 77 of the present work).

In the second analysis method, a different strategy is adopted: instead of

considering a limited temperature range, we rather analyze how far the HRG

alone is able to describe the lattice data for pressure and energy density. The
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Figure 2.1: Results of the EV-HRG model calculations for (a) p/T 4 and (b) ε/T 4

in comparison with the lattice QCD data. Solid lines correspond to calculations
with additional Hagedorn spectrum. Dashed lines show calculations only with
PDG input. Different line colors correspond to different values of the hadron
hard-core radius r.

commonly used point-particle HRG can describe these data up to T ∼ 150 −
180 MeV. At high temperatures, the ideal HRG overshoots significantly the lattice

data due to the quickly increasing number of hadronic degrees of freedom. In fact,

it shows signs of the Hagedorn divergence. In the present analysis the HRG, with

the conventional PDG hadron input, and with mass-proportional eigenvolumes

vi = mi/ε0, (2.20)

is used. For this particular calculation the “Diagonal” EV model formulation is

used. For simplicity, the Hagedorn states are omitted.
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Figure 2.2: Results of the “Diagonal” EV-HRG model calculations for p/T 4

and ε/T 4 employing the mass-proportional eigenvolumes in comparison with the
lattice QCD data. The value of ε0 ' 11.4 GeV/fm3 is used in Eq. (2.202.20), which
gives a good agreement with lattice data.

Figure 2.22.2 depicts the temperature dependence of the scaled pressure and

energy density for the point-particle HRG and for the EV-HRG with ε0 =

11.4 GeV/fm3. It is seen that the inclusion of the EV corrections leads to a

significant improvement of the agreement between HRG and the lattice QCD:

the data are described fairly well by the EV-HRG up to T = 250 MeV. This

alternative interpretation is that the lattice results may in fact to a large extent

be represented by hadrons even above T = 150 MeV, which are conventionally

totally attributed to deconfined matter. This ambiguous result shows that the

interpretation of lattice data remains challenging. It should be stressed that the

main purpose of the calculation shown in Fig. 2.22.2 is to illustrate the importance

of the EV effects at higher temperatures/densities, motivating further careful

studies of these effects in the various hadron gas models. The results do by no

means imply that EV parametrization in Fig. 2.22.2 is “the right one”!



Chapter 3

Thermal fits to heavy-ion hadron

yield data

3.1 Hadron yield fitting in HRG

The HRG model has been used to reproduce the hadron yields from heavy-ion

collisions by fitting the experimental data. Such an approach assumes full thermo-

dynamic equilibrium between all stable hadrons and all resonances at a so-called

“chemical freeze-out” moment of all heavy-ion reactions. Contributions from res-

onance decays to yields of different hadrons can naturally be included in this

model. Results presented in this Chapter are based on [5959, 6060, 6161, 6262, 6363].

Commonly, a GCE formulation of the HRG is used for relativistic central

heavy-ion reactions, which is usually justified by the large system size created in

such reactions. Within this formulation, all conserved charges, such as baryonic

number B, electric charge Q, and net strangeness S, are conserved on average.

As mentioned in the previous chapter, the chemical potential of the ith hadron

species is thus determined as µi = BiµB+QiµQ+SiµS. At each fixed temperature

T and baryochemical potential µB, the µQ and µS are determined in a unique way

in order to satisfy two “initial” conditions: the electric-to-baryon charge ratio of

Q/B = 0.4, and the vanishing net strangeness S = 0. If pre-freezeout radiation

is neglected, both of these conditions can be fulfilled for the systems created in

collisions of heavy ions. Otherwise, such a pre-freezeout emission of particles will

lead to additional uncertainty in the determination of µB, µQ, and µS.
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In the simplest setup there are only three fit parameters: the temperature T ,

the baryonic chemical potential µB, and the system volume parameter V . Of

course, realistic modifications such as chemical under- or over-saturation of the

light and/or strange quarks introduce additional parameters (see, e.g., Refs. [1515,

6464]).

As mentioned above, the HRG model provides a rather satisfactory description

of hadron production over a wide range of collision energies [1515, 4040, 6565]. The

moderate number of fit parameters, as well as the simplicity of the model, let

the HRG appear as a very powerful and attractive tool for modeling particle

production in heavy-ion collisions. On the other hand, this simple model suffers

from significant systematic uncertainties it its formulation. In particular, there

is a rather limited knowledge of the properties of heavy hadronic states and their

decay branching ratios. These properties serve as an input into the HRG model,

thus one has to rely on various assumptions. Also, the short-range repulsive

hadronic interactions and its role for the thermal fits is not properly understood.

These interactions are normally modeled via the EV corrections. However, the

EV parameters cannot be constrained sufficiently by the current knowledge of the

hadron-hadron interactions. The role of the EV effects on thermal fits is studied

in detail in this work.

Unless stated otherwise, in all present calculations the HRG includes strange

and non-strange hadrons as listed in the Particle Data Tables [5757], along with

their decay branching ratios. This includes mesons up to f2(2340), (anti)baryons

up to N(2600). Those hadrons with charm and bottom quark content, as well

as light nuclei are not included in the standard setup. The finite width of the

resonances is taken into account by additional integrations over their relativistic

Breit-Wigner shapes in the point-particle gas expressions in the ±2Γi interval

around the pole mass (see [6666, 6767]). Here Γi is the width of the resonance i.

The HRG model fits are done by minimizing the value

χ2

Ndof

=
1

Ndof

N∑
i=1

(
N exp
i − NHRG

i

)2

σ2
i

, (3.1)

where N exp
i and NHRG

i are the experimental and calculated in the HRG hadron



3.2 Chemical freeze-out line in ideal HRG 21

multiplicities, respectively; Ndof is the number of degrees of freedom, that is

the number of the data points minus the number of fitting parameters; and

σ2
i = (σsysti )2 + (σstati )2 is the sum of the squares of the statistical and systematic

experimental errors. The Ni may also represent ratio of two yields in some

cases. The MINUIT2 package [6868] is employed for the minimization procedure in

CuteHRG.

The mean multiplicity 〈Ni〉 of ith particle species is calculated in the HRG

model as a sum of the primordial mean multiplicity 〈Nprim
i 〉 ≡ ni V and resonance

decay contributions as follows

〈Ni〉 = 〈Nprim
i 〉 +

∑
R

〈ni〉R 〈Nprim
R 〉 , (3.2)

where 〈ni〉R is the average number of particles of type i resulting from decay of

resonance R.

It should be stressed that Eq. (3.23.2) is also valid for calculating yields of unstable

particles, such as the φ meson, K∗(892) resonance, or Λ(1520) resonance. This is

important since yields of these unstable particles have been measured, and they

are used in the thermal fits. These decay contributions are properly taken into

account in the CuteHRG package that is used in this work. At the same time,

this not the default behavior of the popular THERMUS package [6767]. Extra care

should be taken to deal with this subtlety properly in THERMUS (see Ref. [5959]

for details).

3.2 Chemical freeze-out line in ideal HRG

The systematics of the chemical freeze-out description in heavy-ion collisions

within the ideal HRG appeared to be well established for several years. Early on,

it was observed empirically that the hadrochemical composition of the system

at chemical freeze-out corresponds in the ideal HRG to an energy per hadron

(including hadron rest masses) being approximately 1 GeV per hadron in the

rest frame of the produced system [3636], independent of the freeze-out T fo-µfo
B

values found in fits. This parametrization leads to a chemical freeze-out curve

in the T -µB plane. The temperature T fo and the baryon chemical potential µfo
B
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Figure 3.1: The values of temperature and baryochemical potential on the T -µB
plane as extracted within ideal HRG by fitting the hadron yields data in central
Au+Au and Pb+Pb at SIS, AGS, SPS, and LHC using the CuteHRG package.
The grey line shows the chemical freeze-out parametrization from Ref. [6969] while
the red line shows the updated parametrization obtained in this work (coincides
with Ref. [5959], see text).

follow a simple analytic dependence as the function of collision energy [6969, 7070].

Some data, in particular the data measured at the SPS, are not well described in

the chemical equilibrium scenario. An improved description has been obtained

by introducing chemical non-equilibrium parameters for strangeness [6565], and,

additionally, for light quarks [1515, 7171]. Notably, the above findings remain valid

also for a particular but widely used choice of an excluded-volume HRG with

constant eigenvolume for all hadrons [6969]. This is so because EV corrections

“cancel out” in all ratios for this special case.

Let us first revisit the analysis of the hadron yield data at SIS, AGS, SPS,

and LHC within the ideal HRG model. This is done for two reasons: First,

this serves as a cross-check for the CuteHRG package, whether it reproduces the

known systematics of chemical freeze-out within ideal HRG. Secondly, the NA49

data analysis for central Pb+Pb collisions was extended [7272, 7373, 7474, 7575, 7676, 7777, 7878]

in comparison to the results used in previous studies [4040, 6565]. Recent GSI data

of the HADES collaboration for Au+Au collisions at Ekin = 1.23A GeV [7979], the

Au+Au data for Ekin = 0.8A, 1.0A GeV, the Au+Au data for Elab = 11.6A GeV
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from BNL Alternating Gradient Synchrotron (AGS) [3838, 8080, 8181, 8282, 8383, 8484], and

data from central Pb+Pb data of the ALICE collaboration at the LHC at
√
s
NN

=

2.76 TeV [8585, 8686, 8787, 8888] are also added to the analysis. The ideal HRG with full

chemical equilibrium does not provide an adequate description of data. Thus,

the parameter γS is also fitted. This subsection summarizes briefly the results

obtained in Ref. [5959]:

The resulting values of the temperature and the baryochemical potential are

shown on the T -µB plane in Fig. 3.13.1. The grey band shows the freeze-out curve

parametrization from the Ref. [6969],

TA+A(µB) = a − bµ2
B − cµ4

B , (3.3)

where a = 0.166 ± 0.002 GeV, b = 0.139 ± 0.016 GeV−1, and c = 0.053 ±
0.021 GeV−3. The fit of the CuteHRG results for central Pb+Pb and Au+Au

collisions (excluding the ALICE point) with the same analytical function (3.33.3)

yields quite different parameters, namely: a = 0.157 GeV, b = 0.087 GeV−1,

and c = 0.092 GeV−3. This updated parametrization is shown by the red line

in Fig. 3.13.1. The main difference to the old parameterization, particularly in the

values of parameters b and c, is primarily caused by the fits to the data at top

two SPS energies, and the absence of the RHIC data. Exclusion of the ALICE

point from the fit makes the µB = 0 temperature value a prediction. Notably,

this value in the updated line is close to the temperature extracted from the LHC

data, both in the present analysis and by other authors [8989, 9090, 9191].

3.3 Excluded-volume effects and thermal fits at

LHC

In this section we study the EV effects on thermal fits by considering at first the

model with the minimum number of fitting parameters: the chemical equilibrium

HRG with “Diagonal” EV corrections. Hadron yields are analyzed at the highest

available collision energy, namely in Pb+Pb collisions at
√
s
NN

= 2.76 TeV in the

ALICE experiment at LHC. Here the asymmetry in the production of particles

and anti-particles is vanishingly small. This implies that, within the HRG sce-
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nario, the (baryo)chemical potential µB is close to zero. Then the hadron yield

ratios are determined in the HRG by a single parameter, the chemical freeze-out

temperature T fo.

3.3.1 Scenarios for eigenvolume interactions

Different hadron-hadron interactions are simulated by employing three different

parametrizations for the hadron EV interactions. The trivial case, namely that

all hadrons have the same constant eigenvolumes, is omitted. In this case EV

corrections cancel out when ratios of yields are fitted, and do not influence T fo [4040,

6969, 9292]

1. Our first case assumes that all mesons are point-like, i.e. vM = 0, and that

all baryons have a fixed, finite EV, vB > 0. Note that in this case mesons

and baryons still “see” each other: the point-like mesons cannot penetrate

into the finite-sized baryons. The effective hard-core radius of baryon here

is rB = 0.3 fm. This choice is motivated by the successful comparison of

this model with lattice QCD data on pressure. As reported in Ref. [9393], the

lattice data are described up to at least T = 190 MeV. Our calculations

suggest that the lattice QCD pressure is described fairly well by this model

even up to T = 250 MeV.

2. The second case employs the Bag-model motivated parametrization [9494]

where the hadrons’ eigenvolumes are proportional to hadrons’ masses, i.e.

vi = mi/ε0. (3.4)

This had been used for heavy Hagedorn resonance thermodynamics [4646,

4949]. The effect on the particle yield ratios was studied in [9595]. The HRG

with eigenvolume corrections as given by (3.43.4) has recently also been used

successfully to model the hadronic part of the crossover QCD equation of

state, which compares favorably to the lattice data [9696, 9797].

3. The third case includes only baryon-baryon and antibaryon-antibaryon EV

interactions and neglects the EV interactions for baryon-antibaryon, meson-

baryon, and meson-meson pairs. In this case the system consists of three
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Table 3.1: The hadron midrapidity yields for 0−5% most central Pb+Pb collisions
measured by the ALICE collaboration and used in the thermal fits in this work.

Particle Measurement (dN/dy) Reference
π+ 733± 54 [8585]
π− 732± 52 [8585]
K+ 109± 9 [8585]
K− 109± 9 [8585]
p 34± 3 [8585]
p̄ 33± 3 [8585]
Λ 26± 3 [8686]

Ξ− 3.57± 0.27 [8787], [9191]
Ξ+ 3.47± 0.26 [8787], [9191]

Ω + Ω̄ 1.26± 0.22 [8787], [9191]
K0
S 110± 10 [8686]
φ 13.8± 0.5± 1.7 [8888]

independent sub-systems: non-interacting mesons, EV baryons, and EV

antibaryons. Hence, meson densities are given by the ideal gas relations.

The densities of (anti)baryons are calculated by solving Eqs. (2.122.12) and

(2.132.13), separately for baryons and for antibaryons. The eigenvolume pa-

rameter value vB of the baryon-baryon interaction is fixed by fitting the

ground state of nuclear matter with the van der Waals equation (see details

in Chapter 77). This gives vB = 3.42 fm3, corresponding to an “effective

hard-core radius” of rB ' 0.6 fm.

3.3.2 Results of the thermal fits

The thermal fits are performed using CuteHRG for the midrapidity yields of

the charged pions, charged kaons, (anti)protons, Ξ−, Ξ+, Ω, Ω̄, Λ, K0
S, and φ,

measured by the ALICE collaboration in the 0-5% most central Pb+Pb collisions

at
√
sNN = 2.76 TeV [8585, 8686, 8787, 8888]. Note that the centrality binning for Ξ and

Ω hyperons is different from the other hadrons. Thus, we take the midrapidity

yields of Ξ and Ω in the 0− 5% centrality class from Ref. [9191], where they were

obtained using the interpolation procedure. The data used in thermal fits is listed

in Table 3.13.1.

Figure 3.23.2 shows the dependence of the χ2/Ndof of the fit on the temperature
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Figure 3.2: The temperature dependence of χ2/Ndof of fit to ALICE data on
hadron yields in 0-5% most central Pb+Pb collisions at 2.76 TeV within the
point-particle HRG model (solid black curve), the two-component eigenvolume
HRG model with point-like mesons and baryons of fixed size (dashed green line),
the bag-like eigenvolume HRG model (dotted blue line), and the model with
only baryon-baryon and antibaryon-antibaryon eigenvolume interactions (orange
dash-dotted line).

for four cases: the hadron resonance gas with point-particle hadrons, i.e. for

vi = 0, and for the three distinct eigenvolume interactions scenarios described

above. At each temperature, the only remaining free parameter, namely the

system volume (radius) per unit slice of rapidity, is fixed to minimize the χ2 at

this temperature.

Different considered cases give drastically different pictures. The point-particle

HRG yields a narrow minimum around T ' 154 MeV with χ2/Ndof ' 30.1/10.

These values are consistent with previous fits to the ALICE hadron yields [8989,

9090]. Finite eigenvolumes, on the other hand, generally increase the freeze-out

temperature and improve the fit quality.

The first eigenvolume case, rM = 0 and rB = 0.3 fm, yields two broad minima

at about 160 MeV and at about 210 MeV in the temperature dependence of the χ2

values (see dashed green line in Fig. 3.23.2). The global minimum is located at T '
163 MeV with χ2/Ndof ' 25.6/10. In general, the fit quality stays comparable to

the point-particle case in the whole T = 155− 210 MeV temperature range. The
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fit result is rather sensitive to the choice of the baryon radius rB. For example,

for rB = 0.35 fm there is a narrower minimum around T ' 173 MeV in the

temperature dependence of the χ2 distribution, while for rB = 0.25 fm there are

two local minima, at T ' 159 MeV and at T ' 234 MeV (not shown here).

The bag model mass-proportional eigenvolumes with rp = 0.5 fm (second EV

case) lead to drastic changes in the χ2 profile: the data are described better

than in the point-particle (rp = 0 fm) case, for a very wide T = 170 − 320

MeV temperature range. The global minimum is located at T = 274 MeV with

χ2/Ndof ' 15.1/10. The 2nd minimum at T ' 270 MeV is definitely prone

to controversy: the corresponding equation of state is plagued by superluminal

speeds of sound at high temperatures, and is characterized by large hadron den-

sities. This implies that the high-temperature part seems to be outside of the

range where van der Waals excluded volume model should be applied. We do

not suggest this as a new, improved, set of chemical freeze-out parameters. Nev-

ertheless, this is a remarkable illustration of the sensitivity of the thermal fits to

the modeling of the EV interactions.

The third case considers only baryon-baryon and antibaryon-antibaryon eigen-

volume interactions. This yields a rather wide minimum around T = 172 MeV

with a minimum value of χ2/Ndof ' 24.4/10. The fit is improved over the point-

particle HRG. The result appears rather similar to the first EV case studied here.

This model is also fully consistent with the lattice QCD pressure up to at least

T = 200 MeV.

3.3.3 Origin of the two minima

The χ2 profiles shown in Fig. 3.23.2 for first two EV cases both feature two distinct

minima. This is in stark contrast to the ideal HRG, where only one local minimum

is observed. Where does the 2nd minimum come from?

Let us consider the temperature dependence of the proton-to-pion ratio: In

the ideal HRG this dependence is strictly monotonic: the p/π ratio increases

with temperature. In the “Diagonal” EV HRG, the particle densities have an

additional Boltzmann factor11 ni ∝ exp(−vi p/T ). If protons and pions have the

1For this qualitative analysis we neglect the role of quantum statistics which does not play
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Figure 3.3: The temperature dependence of the p/π+ ratio in the ideal HRG
(dashed line) and in the first EV case (solid line). The horizontal line with a
band corresponds to the ALICE data.

same eigenvolumes, then this factor cancels out. However, if protons have a

large EV as compared to pions then the protons are suppressed more strongly.

Hence, the proton-to-pion ratio will decrease at high densities, and, thus, the

T -dependence of the p/π ratio will be non-monotonic. The right panel of Fig. 3.33.3

shows this ratio as calculated for the ideal HRG (dashed line), and for the first EV

case (solid line). This numerical calculation also includes the feeddown correction.

The non-monotonic structure of p/π is clearly observed: the ALICE measurement

of the value of the p/π ratio does correspond to two different temperatures,

T1 ' 150 MeV and T2 ' 250 MeV, in clear contrast to the ideal HRG and to the

“all constant” eigenvolume assumption. This kind of non-monotonic dependence

is present also for many other hadronic ratios. It is the basic reason for the

appearance of two minima in the χ2 profiles.

More EV scenarios for thermal fits at LHC were recently considered in Ref. [5858],

mainly regarding different possibilities for meson-meson, meson-baryon, baryon-

baryon, and antibaryon-baryon EV interactions. The emergence of the 2nd mini-

mum was reported and similar conclusions regarding general sensitivity of thermal

fits to the modeling of EV interactions were obtained.

a significant role.
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These results show that thermal fits are very delicate – they are surprisingly

sensitive to the details of the modeling of the eigenvolume interactions. It appears

that chemical freeze-out temperatures can be fitted to LHC heavy-ion data on

hadron yields only with a sizable uncertainty.

3.3.4 Role of light nuclei

The yields of the light nuclei were not considered in all previous fits presented

in this thesis. There are reasons why inclusion of light nuclei into thermal fits is

questionable, in particular related to their small binding energies. Nevertheless,

they are sometimes included into thermal fits [8989], and may help to stabilize them

in some cases. It was checked that the inclusion of light nuclei into fits does not

influence the fits considerably for the mass-proportional EV parameterization.

For another EV scenarios it appears that the fit is extremely sensitive to the

assumptions regarding the eigenvolumes of different nuclei.

To illustrate this let us consider the (anti)deuteron yields in the 0-10% AL-

ICE centrality. The actual data used for fitting thus now includes the hadronic

midrapidity yields of charged pions, charged kaons, and (anti)protons [8585],

(anti)Ξ− and (anti)Ω [8787], (anti)Λ and K0
S [8686, 9898], φ [8888], and, additionally,c

(anti)deuterons [9999].

The addition of light nuclei requires additional assumptions regarding their

eigenvolumes. Two scenarios for deuteron eigenvolume are considered: (1)

deuteron has same eigenvolume as baryons, i.e. rp = rd = 0.3 fm; (2) deuteron

has a twice larger eigenvolume compared to baryons, i.e. vd = 2vp which implies

rd ' 0.38 fm. The results of the calculations of χ2 temperature profile are de-

picted in Fig. 3.43.4. Note that here µB is also fitted at each T and found to be

consistent with zero within fit errors.

If deuterons are assumed to have same eigenvolume as protons then the χ2

profile has a regular structure with a minimum at T ' 161 MeV. Thus, it would

seem that inclusion of deuterons into thermal fit would stabilise them with regards

to the modeling of EV corrections. This conclusion, however, is not supported by

further analysis. Changing deuteron eigenvolume to a physically more motivated

value equal to twice that of proton one gets a very different χ2 profile: a two-
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Figure 3.4: The temperature dependence of χ2/Ndof of fit to ALICE data
on hadron + (anti)deuteron yields in 0-10% most central Pb+Pb collisions
at 2.76 TeV within eigenvolume HRG model with point-like mesons, baryons
with hard-core radius of 0.3 fm. Two different assumptions for an eigenvol-
ume of a deuteron are considered: rd = rp = 0.30 fm (dashed line) and
rd = 21/3 rp ' 0.38 fm (solid line).

minimum structure in a wide 155-210 MeV temperature range, with improved fit

quality at global minimum. This change is attributed to a larger suppression of

(anti)deuteron yield at higher temperatures due to having a larger eigenvolume.

It is quite remarkable that a fit can be so sensitive to the properties of only sin-

gle particle species. Similarly, the inclusion of heavier nuclei (3He and 3
ΛH) does

not help to stabilise the fit, as it requires more assumptions regarding their eigen-

volumes. The thermal fits remain very sensitive to these assumptions (see [6363]

for further details). We therefore conclude that introduction of light nuclei into

thermal fits leads to a further destabilisation of the fit as it requires non-trivial

assumptions regarding their eigenvolumes. Due to this large sensitivity, and to

the generally questionable nature of inclusion of light nuclei into thermal fits, the

yields of light nuclei are not considered further.
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Figure 3.5: The temperature dependence of χ2/Ndof of fits to data of the NA49
and ALICE collaborations on hadron yields in central Pb+Pb and Au+Au colli-
sions within the ideal HRG model (solid black lines), the “Diagonal” eigenvolume
model (thin dotted blue lines), and the “Crossterms” eigenvolume model (thick
dotted blue lines). The mass-proportional eigenvolumes with a hard-core proton
radius of 0.5 fm are used.

3.4 Excluded-volume effects at lower energies

The surprisingly strong sensitivity of thermal fits to LHC data to the details of

the modeling of eigenvolume interactions does of course also influences the HRG

analysis at lower collision energies: Here the different, finite (baryo)chemical

potentials play an important additional role. Hence the hadron yield data

from the NA49 collaboration are analyzed for the most central Pb+Pb colli-

sions at
√
sNN = 6.3, 7.6, 8.8, 12.3, and 17.3 GeV. Both the “Diagonal” and the

“Crossterms” EV models, within the Boltzmann approximation, are employed

here, and the bag-model mass-proportional EV parametrization is considered.

The resulting temperature profiles of the χ2 are shown in Fig. 3.53.5 for rp =

0.5 fm. The results confirm the findings at the LHC energy: the ideal HRG

fits give single narrow minima while the bag model EV fits yield improved χ2

values in very wide high-temperature range, at all considered collision energies.

The appearance of two local minima in χ2(T ) at SPS energies in the EV fits has

the same origin as the one previously elaborated for the LHC energy. Both EV

models considered give the same qualitative picture. However, there are signifi-
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Figure 3.6: The temperature dependence of χ2/Ndof of fits to data of the NA49
Collaboration on hadron yields in central Pb+Pb collisions at

√
s
NN

= 8.8 GeV
within the point-particle HRG model (solid black curve), the “Diagonal” eigenvol-
ume model (thin colored lines), and the “Crossterms” eigenvolume model (thick
colored lines). The mass-proportional eigenvolumes with hard-core proton radius
of 0.4, 0.5, and 0.6 fm are used.

cant quantitative differences, especially at higher temperatures: the “Crossterms”

model yields a considerably better description of the data, however with challeng-

ingly high HRG temperatures (Tfit ∼ 300 MeV). Can this be reconciled in a new

paradigm, namely that there is a large contribution of hadrons in the system,

even at these extreme temperatures? Or do we see pre-freezeout emission of

hadrons from the hot initial phase of the temporal evolution of the early system?

In Fig. 3.63.6 the temperature dependence of the χ2 for three different values of

rp, namely for rp = 0.4, 0.5, 0.6 fm is shown for the SPS data at
√
sNN = 8.8 GeV.

The behavior of the χ2 for different values of rp shown in Fig. 3.63.6 is representative

for all other collision energies considered in the present work. For rp = 0.4 fm

the temperature dependence of χ2 shows two distinct local minima: the first one

is located close to the minimum for point-particle HRG and the second one is

at much higher temperatures and with considerably smaller χ2. This trend is

continued when even lower values of rp are considered. For rp = 0.5 fm and

rp = 0.6 fm a wide (double)minimum structure is observed in the temperature

dependence of χ2 and, at all energies, the fit quality is better in EV models than
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Figure 3.7: (a) Regions in the T -µB plane where the “Crossterms” eigenvolume
HRG model with bag-like constant ε0 fixed to reproduce the hard-core radius of
rp = 0.5 fm yields a better fit to the NA49 data as compared to the point-particle
HRG model. The solid lines show the isentropic curves for the eigenvolume
model, which go through the global χ2 minima. (b) Collision energy dependence
of entropy per baryon at global minima of thermal fits to NA49 data.

in the point-particle case for a very wide high-temperature range.

The EV effects on the fitted values of µB are illustrated by the structure of the

χ2 values in the T -µB plane in Fig. 3.73.7. Only the “Crossterms” model is shown

for clarity. Figure 3.73.7a depicts contours of the regions in the T -µB plane where

the fit quality of NA49 data in the EV model is better than in the ideal HRG. The

locations of the fit minima within ideal HRG are shown by diamonds, consistent

with the systematics established in numerous previous studies. The EV HRG

model fits each yield a whole range of T − µB pairs, each with similarly good fit

quality for all considered cases, at a given bombarding energy and for a given set

of radii. These T -µB pair contours form valleys in the T − µB plane, following

lines of nearly constant entropy per baryon, S/A. The energy dependence of these

S/A values is exhibited in Fig. 3.73.7b. Note that the S/A values, as extracted at

different energies, are robust: S/A is virtually independent of the details of the

EV interactions modeling and also of the specific T − µB values in which the

χ2-values are similar.

The interpretation of the high values of temperature and baryochemical poten-

tial obtained within the EV HRG fits at SPS is prone to controversy, as in the case

of the LHC data fits. These fits do give a significant and systematic improvement

in the reproduction of the data. They are also plagued by the irregular behavior
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of the speed of sound, by a difficulty in reconciliation of lattice QCD results, and

by high values of the packing fraction. Thus, the extracted high values of T and

µB are not interpreted as realistic estimates of chemical equilibrium freeze-out

conditions, but rather as an illustration of the hitherto unexplored sensitivity of

thermal fits to the modeling of EV interactions in the HRG.



Chapter 4

Monte Carlo approach to

excluded-volume interactions

The EV effects were considered only for HRG in the GCE in the previous two

chapters. Conserved charges are conserved only on average in the GCE, but

differ from one microscopic state to another. The exact conservation of the con-

served charges becomes important for smaller systems. Such exact conservation

of charges can be enforced within the canonical ensemble (CE) [100100]. The CE

formulation of the ideal HRG model was successfully used to describe the hadron

production data in small systems, such as (anti)proton-proton and e+e− colli-

sions [101101, 102102, 103103, 104104]. The CE strongly influences the strange [105105, 106106] and

charm [107107] hadron multiplicities as the average total numbers of strange and

charm charges are often not large (of the order of unity or smaller). It should

be also noted that for systems of non-interacting particles the CE effects lead

to noticeable suppression of particle number fluctuations for statistical systems

even in the thermodynamic limit [108108].

To the best of our knowledge, the CE formulation for the excluded-volume

HRG is presently missing. Thus, the influence of EV effects on the thermody-

namic properties within the CE was never explored. In this chapter a Monte

Carlo (MC) procedure is proposed which allows to do exactly that.



36 Chapter 4. Monte Carlo approach to excluded-volume interactions

4.1 GCE partition function of different EV

models

Our consideration will be restricted to the case of classical (Maxwell-Boltzmann)

statistics. It is useful to define the single-particle function:

zi(T ) =
di

2π2

∫ ∞
0

k2dk exp

[
− (k2 +m2

i )
1/2

T

]
, (4.1)

where di and mi are, respectively, the ith particle degeneracy factor and mass,

and where T is the system temperature. In the single-component system the

ideal gas GCE partition function reads (zi ≡ z):

Zid(T, V, µ) =
∞∑
N=0

exp

(
µN

T

)
(z V )N

N !
= exp(eµ/T z V ) , (4.2)

where V is the total volume of the system and µ is the chemical potential.

The number of particles N is fixed in the CE, and has the Poisson distribu-

tion, P (N) = 〈N〉N exp(−〈N〉)/N !, in the GCE with average value 〈N〉 =

exp(µ/T )zV .

van der Waals EV model

In the van der Waals EV model the volume V is substituted by the available

volume Vav = V − vN , where v = 16πr3/3 is the eigenvolume parameter. This

results in the following GCE partition function

ZEV(T, V, µ) =
∞∑
N=0

exp

(
µN

T

)
(V − vN)N

N !
θ(V − vN)zN , (4.3)

where the θ-function ensures that sum of eigenvolumes of the particles does not

exceed the total system volume. In the thermodynamic limit, i.e. when V →∞,

the system pressure and particle number density are calculated according to (2.92.9)

and (2.102.10), respectively.

In the GCE one finds that the particle number, N , fluctuates around its aver-
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age value 〈N〉 = V n. A useful measure of the particle number fluctuations is the

scaled variance ω[N ]. It was calculated analytically in Ref. [109109]:

ω[N ] ≡ 〈N
2〉 − 〈N〉2

〈N〉
= (1 − v n)2 , (4.4)

see also Ref. [110110]. Note that analytical expressions in Eqs. (2.92.9), (2.102.10), and (4.44.4)

are obtained in the thermodynamic limit V →∞. At v = 0 they are reduced to

the ideal gas expressions. In particular, the particle number distribution P(N)

is transformed to the Poisson distribution with ω[N ] = 1.

“Diagonal” EV model

The GCE partition function of the “Diagonal” EV model (Sec. 2.2.22.2.2) has the

following form for f hadron species (i, j = 1, . . . , f):

ZDE(T, V, µ1, . . . , µf ) =

f∏
i=1

∞∑
Ni=0

exp

(
µiNi

T

)
[(V −

∑
j vjNj) zi]

Ni

Ni!

× θ(V −
∑
j=1

vjNj) , (4.5)

where subscript DE will denote this model in this chapter. The analytic expres-

sions for pressure and particle number densities in the thermodynamic limit are

given by Eqs. (2.122.12) and (2.132.13).

“Crossterms” EV model

The GCE partition function of the “Crossterms” EV model (Sec. 2.2.32.2.3) has the

following form

ZCRS(T, V, µ1, . . . , µf ) =

f∏
i=1

∞∑
Ni=0

exp

(
µiNi

T

)
[(V −

∑
j b̃jiNj) zi]

Ni

Ni!

× θ(V −
∑
j=1

b̃jiNj) , (4.6)

where subscript CRS will denote the Crossterms model in this chapter, and where

b̃ij are given by (2.152.15) and (2.172.17).
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The pressure and particle densities in the thermodynamic limit are given by

Eqs. (2.182.18) and (2.192.19), respectively.

4.2 Canonical ensemble

In the CE, the conserved charges are conserved in each microscopic state of the

system. This can be achieved by adding the corresponding delta functions in

the GCE partition function. For the three EV models described in the previous

section one has the following CE partition functions:

ZEV(T, V,N) =
(V − vN)N

N !
zN , (4.7)

ZDE(T, V, {Q}) =
∞∑

N1=0

. . .
∞∑

Nf=0

[
(V −

∑
j vjNj) zi

]Ni
Ni!

× θ(V −
∑
j

vjNj)

q∏
k=1

δ(Qk −
∑
j

Q
(j)
k Nj) , (4.8)

ZCRS(T, V, {Q}) =
∞∑

N1=0

. . .
∞∑

Nf=0

[
(V −

∑
j b̃jiNj) zi

]Ni
Ni!

× θ(V −
∑
j

b̃jiNj)

q∏
k=1

δ(Qk −
∑
j

Q
(j)
k Nj) . (4.9)

In Eqs. (4.84.8) and (4.94.9), {Q} = Q1, . . . , Qq are the set of conserved charges and

Q
(j)
k is the kth charge of the particle species j. For a single-component case one

identifies the single conserved charge Q with the particle number N , i.e. Q ≡ N .

For the ideal gas, i.e. for vi ≡ 0 in (4.84.8) or b̃ij ≡ 0 in (4.94.9), the thermodynamic

properties can be calculated analytically [108108]. To our knowledge, no approach

has been developed to calculate the moments of the multiplicity distribution for

the EV models in the CE formulation of HRG.



4.3 Monte Carlo approach 39

4.3 Monte Carlo approach

4.3.1 Grand canonical ensemble

The GCE partition functions listed in Section 4.14.1 determine the probability dis-

tribution of particle numbers at given values of the thermodynamic parameters

for the corresponding EV models. In the general case, the probability to have a

microstate with number of particles (N1, . . . , Nf ) has the form

P(N1, . . . , Nf ;T, V, {µQ}) ∝ F (N1, . . . , Nf ;T, V, {µQ}) × Θ(N1, . . . , Nf ;V ),

(4.10)

where Θ(N1, . . . , Nf ;V ) ensures that only the microstates where the sum of all

proper particle eigenvolumes does not exceed the total volume of the system are

considered, {µQ} ≡ µ1, . . . , µq corresponds to the independent chemical potentials

which regulate the conserved charges Q1, . . . , Qq in the system. The function

F (N1, . . . , Nf ;T, V, {µQ}) is a smooth function of particle numbers within the

domain of allowed microstates. The chemical potential of ith particle species is

µi =

q∑
k=1

Q
(i)
k µk , (4.11)

where Q
(i)
k is the kth charge of ith particle. In the HRG the number of conserved

charges is normally much smaller than the number of particle species (i.e., q � f).

It is evident that F is defined up to a multiplicative factor which may depend on

thermodynamic variables but is independent of the particle numbers.

Both the F and Θ functions are completely defined for the models listed in

Section 4.14.1:

FEV(N ;T, V, µ) =

[
(V − vN) z eµ/T

]N
N !

, (4.12)

Θ(N ;V ) = θ(V − vN) ; (4.13)
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FDE(N1, . . . , Nf ;T, V, {µQ}) =

f∏
i=1

[
(V −

∑
j vjNj) zi e

µi/T
]Ni

Ni!
, (4.14)

Θ(N1, . . . , Nf ;V ) = θ(V −
∑
j

vjNj) ; (4.15)

FCRS(N1, . . . , Nf ;T, V, {µQ}) =

f∏
i=1

[
(V −

∑
j b̃jiNj) zi e

µi/T
]Ni

Ni!
, (4.16)

Θ(N1, . . . , Nf ;V ) =

f∏
i=1

θ(V −
∑
j

b̃jiNj) . (4.17)

In the ideal gas limit the probability P (4.104.10) is reduced to a product of the

f independent Poisson distributions, i.e. P ∝ Π where

Π({Ni};T, V, {µQ}) =

f∏
i=1

〈Ni〉Ni
Ni!

e−〈Ni〉 . (4.18)

The probability function P (4.104.10) cannot be decomposed into a product of inde-

pendently distributed variables in the presence of finite eigenvolumes in a multi-

component system. Thus, a straightforward sampling of particle numbers looks

problematic. To avoid this problem we rewrite the probability P (4.104.10) in the

following form

P({Ni};T, V, {µQ}) ∝
F ({Ni};T, V, {µQ})
Π({Ni};T, V, {µQ})

× Π({Ni};T, V, {µQ})×Θ({Ni};V ),

(4.19)

where Π({Ni};T, V, {µQ}) is an auxiliary function, taken in the form of Eq. (4.184.18)

with Poisson rate parameters 〈Ni〉 which can, in general, be chosen arbitrarily

and differently for different values of T , V , and {µQ}. The Monte Carlo (MC)

sampling of the particle numbers can be then performed with the help of the

importance sampling technique (see e.g. [111111]). In practical calculations, the

parameters 〈Ni〉 should be chosen in a way so that the auxiliary distribution Π

resembles the true distribution F as closely as possible. This helps to avoid over-

sampling of the “unimportant” low-probability regions and makes the statistical
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convergence faster. In our calculations we will utilize the multi-Poisson distri-

bution in Eq. (4.184.18) with parameters 〈Ni〉 calculated within the corresponding

analytic models defined in Section 4.14.1. Of course, it is also possible to use an

auxiliary distribution which is different from the multi-Poisson distribution in

Eq. (4.184.18).

Denoting the ratio F/Π as weight w, the probability distribution can be written

P ({Ni};T, V, {µQ}) ∝ w({Ni};T, V, {µQ})× Π({Ni};T, V, {µQ})×Θ({Ni};V ).

(4.20)

The MC sampling procedure includes the following steps:

1. Sample the numbers (N1, . . . , Nf ) from the auxiliary multi-Poisson distri-

bution Π (4.184.18).

2. If the indicator function Θ (4.104.10) fails for the sampled numbers, then reject

the event and go back to the first step. If Θ passes, then go to the next

step.

3. Calculate the weight w = F/Π and accept the event with this weight.

Let us have l = 1, . . . ,M samples of particle numbers {Ni}l with weights

wl. The sample mean of any function f(N1, . . . , Nf ) of the particle numbers is

calculated in the following way

〈f(N1, . . . , Nf )〉M =

∑M
l=1wlf({Ni}l)∑M

l=1wl
. (4.21)

It is evident that in the limit of M → ∞ the sample mean will converge to the

GCE expectation value, i.e.

〈f(N1, . . . , Nf )〉M −−−−→
M→∞

〈f(N1, . . . , Nf )〉GCE . (4.22)

The statistical error estimate for 〈f(N1, . . . , Nf )〉M reads

σ2
f =

∑M
l=1w

2
l [fl − 〈f〉M ]2

(
∑M

l=1wl)
2

, (4.23)
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where fl ≡ f({Ni}l).

4.3.2 Monte Carlo method in the canonical ensemble

In the CE, the conserved charges {Q} = Q1, . . . , Qq in the system are fixed to their

exact values in each microscopic state. The exact charge conservation is enforced

by adding the corresponding delta functions into the probability distribution, i.e.

P({Ni};T, V, {Q}) ∝ F ({Ni};T, V, {µQ = 0})×Θ({Ni};V )

×
q∏

k=1

δ(Qk −
∑
j

Q
(j)
k Nj) . (4.24)

Similarly to the GCE, the MC approach within the CE proceeds by introducing

into (4.244.24) the product of auxiliary Poisson distributions, i.e.

P({Ni};T, V ) ∝ w({Ni};T, V, {Q})× Π({Ni};T, V, {Q})

×Θ({Ni};V )×
q∏

k=1

δ(Qk −
∑
j

Q
(j)
k Nj) . (4.25)

The MC sampling in CE includes only one additional step: if the generated con-

figuration does not satisfy the exact charge conservation laws then it is rejected.

Our approach is quite similar to the importance sampling of ideal HRG in mi-

cro canonical ensemble performed previously in Refs. [112112, 113113]. In fact, we use

the multi-step procedure of [113113] for sampling the CE particle yields, which are

subject to the constraint of exact charge conservation. This algorithm gives a sig-

nificant performance boost compared to a straightforward independent sampling

of all particle multiplicities from a multi-Poisson distribution.

4.4 Calculation results

4.4.1 Finite-size effects in the GCE

Let us consider first a single-component gas with EV interactions in the GCE.

When the EV effects are present, the intensive quantities depend explicitly on
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the total system volume. In particular, the particle number density equals to

zero if the system volume V is smaller than the eigenvolume of a single particle.

The finite-size effects cannot be described by the analytic formulas presented in

Section 4.14.1, as they all are derived under the assumption of the thermodynamic

limit. However, these effects can be studied with the help of the MC procedure

described in Section 4.34.3.

A simple example to illustrate the finite-size effect is considered. We assume a

single-component gas of particles with mass of 1 GeV, which is a typical energy

scale for hadronic systems. Vanishing chemical potential, i.e. µ = 0, and a

temperature of T = 150 MeV are taken. In order to mimic a presence of large

number of hadron states in a realistic HRG a rather high degeneracy factor of

g = 150 is employed in calculations. This is important as the magnitude of the

eigenvolume effects scales with the total number of the finite-sized hadrons in the

system.

The system-size dependence of the particle number density, n = 〈N〉/V , is

calculated using the MC method. Additionally, we consider the scaled variance,

ω[N ], of the particle number fluctuations. The Poisson rate parameter 〈N〉 in the

auxiliary distribution Π (4.184.18) is taken to be 〈N〉 = nEV(T, µ = 0; r)V , where

nEV(T, µ = 0; r) is the particle number density in thermodynamic limit (V →∞),

which is calculated analytically from Eqs. (2.92.9) and (2.102.10). The dependence of n

on the total system radius R (defined as V ≡ 4πR3/3) is depicted in Fig. 4.14.1 for

four different values of the hard-core particle radius (r = 0, 0.3 fm, 0.5 fm, and

1 fm). For each pair of R and r values we generate and perform an averaging

over 105 MC events. The calculations show a consistent approach of the particle

density n to its limiting value with increasing of R. The resulting limiting values

at large R in all cases appear to coincide with the corresponding values in the

thermodynamic limit calculated from Eqs. (2.132.13) and (4.44.4). This is an expected

result.

The number of terms in the GCE EV partition function (4.34.3) is finite due to the

presence of the θ-function. Thus, it is also possible to calculate the moments of

the multiplicity distribution analytically, by explicitly summing over all N -states.

More specifically, the GCE EV average of arbitrary function f(N) is calculated
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Figure 4.1: (a) The GCE particle number density n and (b) the scaled variance
ω[N ] as functions on the system radius R for the EV model for particles of mass
m = 1 GeV and degeneracy g = 150 at T = 150 MeV and µ = 0. Dots show the
MC results for four different values of the hard-core radius: r = 0, 0.3 fm, 0.5 fm,
and 1 fm. Dashed horizontal lines show the values of the particle density (a)
and scaled variance (b) calculated in the thermodynamic limit from Eqs. (2.102.10)
and (4.44.4), respectively. Solid lines show the analytic results obtained by a direct
summation of the GCE partition function.

as the following

〈f(N)〉 =

bV/vc∑
N=0

f(N)ZEV(T, V,N)

bV/vc∑
N=0

ZEV(T, V,N)

. (4.26)

Such a calculation was performed in order to cross-check the MC results. The

results of these analytic calculations are shown in Fig. 4.14.1 by solid lines and

they are fully consistent with the MC results. Note that a calculation of a direct

sum over all states in the grand canonical partition function becomes numerically

intractable in the multi-component gas with a large number of components. The

MC procedure, on the other hand, does not suffer from such a complication.

As seen from Fig. 4.14.1a, both analytical and MC calculations show a presence

of a small region where particle number density locally decreases with an increase

of the system volume for r = 1 fm. More pronounced presence of such region(s)

was also verified for larger values of particle radius parameter r. This result

seems counterintuitive. Recall, however, that particle number density is given as
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the ratio n ≡ 〈N〉/V . The number of terms Ntot = bV/vc in Eq. (4.264.26), which

is used to calculate 〈N〉, is finite. The Ntot increases by one once the ratio V/v

reaches the next integer number. However, until that happens, the Ntot value

is fixed and this severely limits the growth of 〈N〉 with V . For this reason, the

ratio n = 〈N〉/V can locally be a decreasing function of V . The same mechanism

is responsible for appearance of non-monotonous regions in the V -dependence of

the scaled variance, seen in Fig. 4.14.1b.

4.4.2 Simultaneous effects of exact charge conservation

and excluded-volume

In order to study the EV effects in the CE we consider a two-component system

of particles and antiparticles. The degeneracy factor of g± = 75, particle mass of

m± = 1 GeV, zero net charge, Q = N+ − N− = 0, and the system temperature

T = 150 MeV are employed. Using the MC method we calculate the system-

size dependence of the (anti)particle number density n± and the scaled variance

ω[N±]. The MC CE and GCE results for four different values of the hard-core

particle radius are shown in Fig. 4.24.2.

The MC results for n± and ω[N±] at r = 0 can be directly compared to the

analytical results for the ideal gas obtained in Ref. [108108]. Our MC calculations

are fully consistent with these analytical results (shown by black solid lines). In

particular, ω[N±] = 1/2 at R→∞.

The analytic results for r > 0, obtained from a direct summation of the par-

tition function, are also shown in Fig. 4.24.2 by colored solid lines. They are fully

consistent with the MC results. The presence of the CE effects due to the exact

charge conservation leads to further suppression of n± at finite R, in addition

to the suppression due to the EV effects. The same is generally true for ω[N±].

There is, however, one important difference. The CE suppression effects for n±

disappear in the thermodynamic limit R → ∞, whereas both the CE and EV

suppressions of ω[N±] survive. Particularly, at R → ∞ the CE values of ω[N±]

shown in Fig. 4.24.2b are smaller at r > 0 than the ideal gas CE value of 1/2. At

R → ∞, the CE values of ω[N±] are also smaller than the corresponding GCE

limiting values at the same r shown in Fig. 4.14.1b.
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Figure 4.2: The MC results for (a) n± and (b) ω[N±] as functions of R. The
MC calculations are performed at m = 1 GeV, g± = 75, T = 150 MeV, and
Q ≡ N+ = N− = 0. Open symbols show the MC results in the GCE and full
symbols in the CE for four different values of hard-core radius: r = 0, 0.3 fm,
0.5 fm, and 1 fm. Solid lines show the analytic results obtained by a direct
summation of the partition function. The lines for r = 0 coincide with values (a)
n± and (b) ω[N±] calculated analytically in Ref. [108108].

It is seen from Fig. 4.24.2a that there is a minimum system volume, below which

the particle number density is strictly zero, similar to the GCE case. However,

this minimum volume is approximately twice larger in the CE as compared to the

GCE. The reason is that no microstate with a single particle is permitted in the

CE since that would violate the exact charge neutrality condition. The presence

of an antiparticle for each particle is required.

4.4.3 Hadron number fluctuations in HRG

The MC formulation of the full HRG model can be used to describe the hadron

yields and their fluctuations in the presence of both the EV interactions and the

exact charge conservation effects.

To illustrate the role of both EV and exact charge conservation effects in HRG

a system with zero conserved charges, B = S = Q = 0, will be considered at first.

It may correspond to hadron states created in pp or e+e− reactions. Three values

of the hadron hard-core radius, r = 0 (ideal HRG), 0.3 fm, and 0.5 fm, same for all

hadron species, are considered within the MC formulation of the multi-component

EV HRG. Note that in the considered case the Diagonal and the Crossterms EV

models are equivalent. In Fig. 4.34.3a the scaled variance ω[N±] of the number
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Figure 4.3: The MC results for ω[N±] (a) and ω[Np] (b) in full HRG at T =
160 MeV as functions of R. Open symbols show the MC results in the GCE
with µB = µQ = µS = 0 while full symbols depict the MC results in the CE for
pp̄-like systems (B = Q = S = 0). Three different values of hard-core radius are
considered: r = 0, 0.3 fm and 0.5 fm.

of all positively or negatively charged hadrons in HRG is shown as a function

of the system radius R. The system temperature is fixed at T = 160 MeV. In

these calculations we additionally take into account contributions to N± from

resonance decays. Thus, the MC procedure contains one additional step at the

end: simulation of the chain of probabilistic decays of all resonances.

From Fig. 4.34.3a one observes that both EV and exact charge conservation effects

suppress the N± fluctuations in the thermodynamical limit R → ∞. For r =

0.5 fm the numerical values of both suppression effects are rather similar. At

small R the fluctuations are additionally sensitive to the finite size effects.

In Fig. 4.34.3b the scaled variance ω[Np] for the fluctuations of the number of

protons is shown as a function of the system radius R. In the considered example,

the EV effects are defined by the total number Nprim
tot of primary hadrons and

resonances. The mean number of protons 〈Np〉 is suppressed significantly by a

presence of the excluded volume vNprim
tot . However, as 〈Np〉 is much smaller than

〈Nprim
tot 〉, the fluctuations of Np have only a minor influence on the event-by-event

values of the total excluded volume. For this reason the Np fluctuations do not

deviate significantly from Poisson distribution due to the EV effects. This is not

the case for the N± fluctuations, as 〈N±〉 is comparable with 〈Nprim
tot 〉. Note that

the CE suppression effects for ω[Np] survive in the thermodynamic limit R→∞,

and they are not sensitive to the value of the hard-core radius r. The main source
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of the CE suppression of ω[Np] is the exact conservation of the net baryon number

B = 0.

The role of EV effects on net proton fluctuations would be more pronounced if

EV interactions were assumed to be present only between baryons. Such a study

will be presented elsewhere.

4.4.4 Fit of hadron yields in p+ p collisions

The CE formulation of HRG can be used to describe the hadron yield data

in collisions of small systems, such as (anti)proton-proton and e+ e− collisions.

Previously, only the non-interacting HRG was used in such studies [101101, 102102, 103103,

104104]. Here we will demonstrate the effect of the finite hadron eigenvolumes on

chemical freeze-out parameters. For this purpose we analyze the hadron yield

data of the NA61/SHINE Collaboration in inelastic proton-proton interactions

at beam laboratory momentum plab = 31, 40, 80, 158 GeV/c [114114, 115115, 116116].

The experimental data contains yields of π−, π+, K−, K+, and p̄. These data

were recently analyzed in Ref. [5959] within the ideal HRG in the CE. It was

found that the data can be reasonably well described with three chemical freeze-

out parameters: temperature T , system radius (volume) R, and the strangeness

undersaturation parameter γS.

To illustrate the effect of finite hadron eigenvolumes on chemical freeze-out

parameters let us consider a simple case when all hadrons have the same hard-

core radius r. Hadron densities become suppressed compared to the ideal gas.

In the GCE, the suppression factor is the same for all hadron species. Thus, the

extracted T and γS do not change. On the other hand, due to the suppression of

the densities the total freeze-out volume will be larger compared to the ideal gas.

It is also likely that eigenvolume corrections will not cancel out exactly within

the CE formulation. Still, one expects the system volume to be affected most

strongly. Thus, we fix T and γS to the values which were previously obtained

within the ideal HRG model and only vary the system radius R. Three values of

the hadron hard-core radius, r = 0, 0.3 fm, and 0.5 fm are considered in the MC

calculations. The presence of the strangeness undersaturation is implemented

by the substitution zi → γ
|si|
S zi in Eqs. (4.144.14) and (4.164.16), where |si| is the sum
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Figure 4.4: The dependence of the χ2 (4.284.28) of the HRG description of proton-
proton hadron yield data of the NA61/SHINE Collaboration at plab = 31, 40, 80,
and 158 GeV/c [114114, 115115, 116116] on the system radius R. The MC formulation of
the eigenvolume HRG in CE is used. All hadrons are assumed to have the same
hard-core radius of r = 0 (black symbols), 0.3 fm (red symbols), and 0.5 fm (blue
symbols). The solid black lines show the results of the analytical calculation of
the χ2 within the ideal HRG. The dashed lines depict the parabolic fits to the
corresponding MC results in the vicinity of the χ2 minimum (see text). The
parameters T and γS are fixed at each collision energy and are taken from the
ideal HRG model fits performed in Ref. [5959].

of strange quarks and antiquarks in hadron species i. Note that direct analytic

calculation of the average hadron yields from the partition function is infeasible

here due to a very large number of components in the full HRG. This is quite

different from simple systems considered before.

The mean multiplicity 〈Ni〉 is calculated as the sum of the primordial mean

multiplicity 〈Nprim
i 〉 and resonance decay contributions as follows

〈Ni〉 = 〈Nprim
i 〉 +

∑
R

〈ni〉R 〈Nprim
R 〉 , (4.27)
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Table 4.1: The values of R and χ2 resulting from the parabolic fit of the Monte
Carlo data in the vicinity of the minimum in the R-dependence of the χ2. The
numbers in brackets correspond to the statistical uncertainty, determined in each
case by the width of the parabola.√

s R (fm) χ2

GeV r = 0 fm r = 0.3 fm r = 0.5 fm r = 0 fm r = 0.3 fm r = 0.5 fm
7.7 1.38(1) 1.55(1) 1.93(1) 4.75(30) 4.27(22) 4.23(36)
8.8 1.80(1) 1.93(1) 2.28(1) 0.88(11) 0.79(14) 1.36(16)
12.3 1.45(1) 1.64(1) 2.05(1) 1.06(12) 1.01(26) 1.00(24)
17.3 1.44(1) 1.65(1) 2.11(1) 0.34(6) 0.41(9) 0.73(15)

which coincides with Eq. (3.23.2) used for analytic calculations in Chapter 33. In

contrast to analytic calculations, however, the 〈Nprim
i 〉 and 〈Nprim

R 〉 are calculated

by averaging over the sufficiently large number of the weighted events in the MC

approach.

The quality of the data description is quantified by the χ2, defined as

χ2 =
∑
i

(〈Ni〉 −N exp
i )2

σexp
i

, (4.28)

where i = π+, π−, K+, K−, p̄, the 〈N exp
i 〉 and σexp

i are, respectively, the cor-

responding experimental yields and uncertainties, and 〈Ni〉 is the total yield of

hadron species i in the HRG model calculated with Eq. (4.274.27).

The MC results for the dependence of the χ2 on the total system radius (vol-

ume) R are presented in Fig. 4.44.4. The results were obtained by generating 105

weighted events for each configuration at each considered value of the system ra-

dius R. First, note that the MC results for ideal HRG (r = 0) are fully consistent

with the corresponding analytic calculations depicted in Fig. 4.44.4 by solid black

lines. The resulting values of the χ2 at the global minimum for ideal HRG case

are close to those found in Ref. [5959]. The MC results for the EV HRG model

with r = 0.3 fm and 0.5 fm are depicted by red and blue symbols, respectively.

The MC results for the R-dependence of the χ2 in the vicinity of the global min-

imum (defined as the region where χ2 < 30) are fitted by a parabolic function.

This allows to estimate the value and position of the minimum. The fit results

are depicted by dashed lines in Fig. 4.44.4.
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The values of the R and χ2 at the minima resulting from the MC analysis for

the three considered cases are listed in Table 4.14.1. It is seen that the minimum

values of χ2 for r = 0.3 and r = 0.5 fm are very similar to the ones at r = 0, i.e.

no significant improvement or worsening of thermal fits is observed. The minima,

however, are located at notably higher values of R compared to the ideal HRG

model. This looks very similar to GCE results where the EV corrections are

canceled out in the ratios of yields. Note, however, that both the temperature

T and the γS parameter were fixed and had the same values at all R. Thus, the

R-dependencies of the χ2 shown in Fig. 4.44.4 should not be mistaken for the χ2

profiles of parameter R, as neither T nor γS were fitted at each distinct value

of R. One should simultaneously fit all three parameters (T , γS, R) in order

to make a stronger conclusion. Evidently, the χ2 profiles may show a wider

minima. One can also try to check the EV models with different eigenvolumes

for different hadron species. These extensions of the MC calculations will be

considered elsewhere.
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Chapter 5

Critical fluctuations in the

classical van der Waals model

Event-by-event fluctuations in high energy nucleus-nucleus collisions are at

present an actively used tool to study strongly interacting matter (see, e.g.

Refs. [117117, 118118, 119119]), especially for the search of the QCD critical point

(CP) [120120, 121121]. In particular, the higher-order (non-Gaussian) fluctuation

measures of conserved charges were suggested to be sensitive tools to investi-

gate the QCD phase structure. Experimentally, the search for the CP is in

progress: higher moments of net-proton and net-charge multiplicity were recently

measured by the STAR collaboration in Au+Au collisions in the energy range
√
s
NN

= 7.7 − 200 GeV [122122, 123123, 124124]. However, neither the existence nor the

location of the QCD CP have been established.

In this chapter, critical fluctuations are studied in the simplest analytical model

which contains a first-order phase transition with a critical point – the van der

Waals equation. It is remarkable that no such study has been reported yet for

this simple model. The content of this chapter follows the results published in

Refs. [125125, 126126].
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5.1 Classical van der Waals equation

The classical van der Waals (VDW) equation of state reads [5151]

p(T, V,N) =
TN

V − bN
− a

(
N

V

)2

, (5.1)

where a > 0 and b > 0 are the VDW parameters which describe, respectively, the

attractive and repulsive interactions between particles. The VDW equation (5.15.1)

was formulated in 1873. van der Waals was awarded the 1910 Nobel Prize in

Physics for this work. The first term in (5.15.1) describes the short-range repulsive

interactions by means of the excluded-volume correction, whereby the system

volume is substituted by the available volume, i.e. V → V − bN . The sec-

ond term describes the attractive interactions in the mean-field approximation,

characterized by the attraction parameter a.

The VDW equation of state predicts a 1st order liquid-gas phase transition and

exhibits a critical point. The thermodynamical quantities at the critical point

are equal to [5151]:

Tc =
8a

27b
, nc =

1

3b
, pc =

a

27b2
. (5.2)

The famous VDW isotherms and the corresponding phase diagram in the dimen-

sionless reduced variables T̃ = T/Tc, ñ = n/nc, and p̃ = p/pc are depicted in

Fig. 5.15.1. To describe the phase coexistence region below the critical temperature

the VDW isotherms should be corrected by the well-known Maxwell construc-

tion of equal areas. These corrected parts of the VDW isotherms are shown in

Fig. 5.15.1a by the solid horizontal lines.

The canonical ensemble (CE) pressure in Eq. (5.15.1) is expressed as a function

of temperature T , volume V , and particle number N . These variables, however,

are not the natural variables for the pressure function, and, thus, Eq. (5.15.1) does

not give the complete thermodynamic description of the system. The thermody-

namical potential in the CE is the Helmholtz potential, dubbed the free energy

F (T, V,N). The function F depends on its natural variables, temperature T ,

volume V , and number of particles N , and allows for a complete thermodynam-
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Figure 5.1: The pressure isotherms (a) and the temperature-density phase dia-
gram (b) for the classical van der Waals equation depicted in the reduced vari-
ables.

ical description of all system properties. The free energy F can be obtained by

solving the following equation(
∂F

∂V

)
T,N

= − p(T, V,N) , (5.3)

which for the classical van der Waals equation (5.15.1) yields (see [125125] for details)

F (T, V,N) = Fid(T, V − bN,N) − a
N2

V
, (5.4)

with Fid(T, V,N) being the free energy of the corresponding ideal Boltzmann gas:

Fid(T, V,N) = − N T

[
1 + ln

d V m2 T K2(m/T )

2π2N

]
, (5.5)

where m is the mass of the particle, d is its degeneracy factor (i.e., the number

of internal states), and K2 is the modified Bessel function of the second kind.

Notably, the free energy (5.55.5) depends on parameters m and d. These param-

eters are absent in the original VDW equation (5.15.1) for the CE pressure. This

illustrates nicely the fact that the CE pressure p(T, V,N) does not contain a com-

plete information about the system, in contrast to the CE free energy F (T, V,N)

which does.
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5.2 Grand canonical ensemble formulation

In this section, the GCE formulation of the classical VDW equation is described.

Surprisingly, the GCE formulation appears to have been missing in the literature

up to now, despite the almost 150 year old history of the VDW model. Does one

really need the GCE formulation of the VDW model? There are at least three

reasons for a positive answer to this question, particularly in regard to nuclear

and hadronic physics applications.

First, the GCE pressure p(T, µ), as expressed in terms of its natural variables

T and µ, gives a complete thermodynamic description of the systems, in contrast

to the classical VDW equation (5.15.1) in the CE. Second, the number of hadrons

of a given type is usually not conserved. For example, the number of pions

cannot be considered as an independent variable and is a function of volume

and temperature. The GCE formulation of the VDW equation is therefore an

important step for inserting the repulsive and attractive VDW interactions into

a fluid, i.e. into the HRG. Third, Eqs. (5.15.1) and (5.35.3) of the CE can not give

answers with respect to the particle number fluctuations. Formally, the number of

particles does not fluctuate in the CE: the total number of particles N0 is constant

in the full volume V0. However, the number of particles N starts to fluctuate if

one considers a sub-system with V < V0. If V � V0, the N -fluctuations follow

the GCE results.

The first step is to calculate the chemical potential

µ =

(
∂F

∂N

)
V,T

= −T ln
(V − bN)φ(T ; d,m)

N
+ b

NT

V − bN
− 2a

N

V
. (5.6)

From Eq. (5.65.6) one then obtains the following expression for the GCE particle

number density n(T, µ):

N

V
≡ n(T, µ) =

nid(T, µ∗)

1 + b nid(T, µ∗)
, µ∗ = µ − b

n T

1− b n
+ 2an , (5.7)

where nid is the density of the ideal Maxwell-Boltzmann gas.

Equation (5.75.7) lies at the heart of the GCE formulation of the VDW equation.

This is a transcendental equation for the particle density n(T, µ), which has to be
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solved numerically for any given temperature T and chemical potential µ. The

solution yields the GCE particle density n(T, µ) of the Maxwell-Boltzmann gas

with VDW interactions.

The GCE pressure is calculated as

p(T, µ) =
T n(T, µ)

1− b n(T, µ)
− a[n(T, µ)]2. (5.8)

The energy density of the VDW gas can be calculated within the GCE from

the pressure function, p(T, µ),

ε(T, µ) = T

(
∂p

∂T

)
T

+ µ

(
∂p

∂µ

)
µ

− p =
εid(T, µ∗)

1 + b nid(T, µ∗)
− a n2

=
[
εid(T ;m) − a n

]
n , (5.9)

where µ∗ is defined in Eq. (5.75.7) and where εid(T ;m) = 3T + m K1(m/T )
K2(m/T )

is the

average energy per particle in the ideal gas. A comparison of the right hand

side of Eq. (5.95.9) with the corresponding ideal gas expression, εid = εid(T ;m)nid,

demonstrates the role of the parameters a and b for the system energy density.

Both parameters a and b also influence the particle number density: a > 0 leads

to an enhancement of the particle number density n and b > 0 leads to its

suppression. The parameter b does not change the average energy per particle,

whereas the mean field term −a n, proportional to the parameter a, is added to

the average energy per particle, which changes it from εid to ε = εid − a n.

5.3 Scaled variance of particle number fluctua-

tions

5.3.1 Pure phases

The variance of the total particle number fluctuations in the GCE can be calcu-

lated as follows:

V ar[N ] ≡ 〈N2〉 − 〈N〉2 = T

(
∂〈N〉
∂µ

)
T,V

= T V

(
∂n

∂µ

)
T

, (5.10)
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Figure 5.2: The scaled variance ω[N ] (5.125.12) calculated from the VDW equation
for the pure phases in the reduced (T/Tc, n/nc) coordinates.

where the symbol 〈...〉 denotes the GCE averaging, and n(T, µ) is the particle

number density in the GCE. The scaled variance of the particle number fluctua-

tions is then given by:

ω[N ] ≡ V ar[N ]

〈N〉
=

T

n

(
∂n

∂µ

)
T

. (5.11)

The quantity
(
∂n
∂µ

)
T

can be obtained by taking the derivative of Eq. (5.75.7)

with respect to µ and then solving the resulting equation for this quantity. The

following simple expression for ω[N ] is obtained

ω[N ] =

[
1

(1− bn)2
− 2an

T

]−1

. (5.12)

Formula (5.125.12) elucidates the different roles of the attractive and the repulsive

interactions for particle number fluctuations: the repulsive interactions lead to

the suppression of fluctuations, the attractive interactions lead to their enhance-

ment, and the non-trivial interplay between these two leads to the divergence of

fluctuations at the critical point.

The scaled variance ω[N ] of the particle number fluctuations in pure phases
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is shown in Fig. 5.25.2 in the reduced (T/Tc, n/nc) coordinates. At any fixed value

of T , the particle number fluctuations (5.125.12) approach those of the ideal gas in

the limit of small densities, i.e. ω[N ] ∼= 1, at n → 0. The fluctuations become

small, ω[N ] � 1, in the opposite limit, at n → 1/b. The scaled variance (5.125.12)

is always positive for all possible values of n and T outside of the mixed phase

region, as it should be. At the critical point (T = Tc, n = nc) the scaled variance

of the particle number fluctuations in GCE diverges.

Relation (5.125.12) is valid for all pure phases. This also includes the so-called

metastable phases of super-heated liquid and super-cooled gas. These states

are depicted by the dash-dotted lines on the VDW isotherms in Fig. 5.15.1a. In

metastable phases the system is assumed to be uniform and, therefore, one can use

Eq. (5.125.12) to calculate particle number fluctuations in these phases. It is seen from

Fig. 5.25.2 that the scaled variance remains finite, and diverges only at the boundary

between the metastable and unstable regions. We recall that at this boundary

∂p/∂n = 0, where p is the CE pressure (5.15.1). One can easily show using Eqs. (5.15.1)

and (5.115.11) that ω[N ] → ∞ when ∂p/∂n = 0. Note that the thermodynamical

relations are not fulfilled in the unstable region where ∂p/∂n < 0. Nonphysical

behavior with ω[N ] < 0 is found in this region.

5.3.2 Mixed phase

Relation (5.125.12) is valid for pure phases, but not for the mixed phase region. In

the mixed phase the volume of the system as a whole is divided into two parts,

one occupied by the gaseous phase and one by the liquid phase. Therefore, in

this case one has to take into account also the corresponding fluctuations in the

volume fractions.

Let us consider a point (n, T ) inside the mixed phase. The volume V is then

divided into the two parts, Vg = ξV occupied by the gaseous phase with particle

number density ng and Vl = (1− ξ)V occupied by the liquid phase with particle

number density nl. The total number of particles N equals to Ng + Nl. The
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average value and scaled variance for the N -distribution are

〈N〉 = 〈Ng〉 + 〈Nl〉 = V [ξng + (1− ξ)nl] , (5.13)

ω[N ] =
〈N2〉 − 〈N〉2

〈N〉

=
〈N2

g 〉 − 〈Ng〉2

〈N〉
+
〈N2

l 〉 − 〈Nl〉2

〈N〉
+ 2

[〈NgNl〉 − 〈Ng〉〈Nl〉]
〈N〉

. (5.14)

In calculating the variations of Ng and Nl distributions inside the the mixed

phase, one should take into account the fluctuations of the corresponding volumes

Vg = ξV and Vl = (1− ξ)V . In fact, these are the fluctuations of the parameter

ξ. In the thermodynamic limit V →∞, one finds:

〈N2
g 〉 − 〈Ng〉2

〈N〉
=
〈Ng〉
〈N〉

ωξ[Ng] +
n2
g

n
V
[
〈ξ2〉 − 〈ξ〉2

]
, (5.15)

〈N2
l 〉 − 〈Nl〉2

〈N〉
=
〈Ng〉
〈N〉

ωξ[Nl] +
n2
l

n
V
[
〈ξ2〉 − 〈ξ〉2

]
, (5.16)

〈NgNl〉 − 〈Ng〉〈Nl〉
〈N〉

= − 2
ngnl
n

V
[
〈ξ2〉 − 〈ξ〉2

]
, (5.17)

where ωξ[Ng] and ωξ[Nl] in Eqs. (5.155.15) and (5.165.16) correspond to the fixed value

of ξ, and can be calculated using Eqs. (5.105.10) and (5.115.11). One finds

ω[N ] =
ξ0ng
n

[
1

(1− bng)2
− 2ang

T

]−1

+
(1− ξ0)nl

n

[
1

(1− bnl)2
− 2anl

T

]−1

+
(ng − nl)2 V

n

[
〈ξ2〉 − 〈ξ〉2

]
, (5.18)

where the equilibrium value 〈ξ〉 ≡ ξ0 is

ξ0 =
nl − n

nl − ng
. (5.19)

To calculate the variance 〈ξ2〉 − 〈ξ〉2 in Eq. (5.185.18) we can return to the CE

formulation. The free energy of the system can be presented as

F (V, T,N ; ξ) = F (ξ V, T,Ng) + F [(1− ξ)V, T,Nl] , (5.20)
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where the surface free energy is neglected in the thermodynamic limit V → ∞.

Note also that in the in the thermodynamic limit the particle number densities

ng and nl in the GCE are identical to their CE values as a consequence of ther-

modynamic equivalence. The probability distribution W (ξ) is proportional to

exp[−F (V, T,N ; ξ)/T ]. The function F is given by Eq. (5.205.20). It can be pre-

sented as a power series expansion over ξ − ξ0 in a vicinity of the equilibrium

value ξ0. This gives the normalized probability distribution (C is a normalization

factor) for ξ in the form

W (ξ) = C exp

[
− 1

2T

(
∂2F

∂ξ2

)
ξ=ξ0

(ξ − ξ0)2

]
≡ C exp

[
− (ξ − ξ0)2

2σ2

]
,

(5.21)

where

σ2 = T

(
∂2F

∂ξ2

)−1

ξ=ξ0

= − T

V 2

[(
∂pg
∂Vg

)
+

(
∂pl
∂Vl

)]−1

=
T

V

[
ngT

ξ0 (1− bng)2
−

2an2
g

ξ0

+
nlT

(1− ξ0)(1− bnl)2
− 2an2

l

1− ξ0

]−1

(5.22)

Using the ξ-distribution (5.215.21) one finds

〈ξ2〉 − 〈ξ〉2 = σ2 (5.23)

and finally,

ω[N ] =
ξ0ng
n

[
1

(1− bng)2
− 2ang

T

]−1

+
(1− ξ0)nl

n

[
1

(1− bnl)2
− 2anl

T

]−1

+
(ng − nl)2

n

[
ng

ξ0(1− bng)2
−

2an2
g

ξ0 T
+

nl
(1− ξ0)(1− bnl)2

− 2an2
l

(1− ξ0)T

]−1

.

(5.24)

The scaled variance ω[N ] of the particle number fluctuations is shown in

Fig. 5.35.3 in all regions of the phase diagram in the reduced (T/Tc, n/nc) coor-

dinates, both inside and outside the mixed phase region. It is interesting to

compare Eq. (5.245.24) for the scaled variance calculated inside the mixed phase
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Figure 5.3: The density plot of the scaled variance ω[N ] of the particle number
fluctuations shown in all regions on the phase diagram, both inside and outside
the mixed phase region.

with Eq. (5.125.12) outside the mixed phase. These two equations do yield the same

result at phase boundaries. At the boundary between the gaseous and mixed

phase (i.e., ξ0 = 1) both the second and third terms in the right hand side

of Eq. (5.245.24) become equal to zero, and the first term in (5.245.24) coincides with

Eq. (5.125.12). Similarly, at the boundary between the liquid and mixed phase (i.e.,

ξ0 = 0) both the first and third terms in the right hand side of Eq. (5.245.24) become

equal to zero, and the second term in (5.245.24) coincides with Eq. (5.125.12). It might

seem from Fig. 5.35.3 that at small temperatures fluctuations have a discontinu-

ity at the boundary between the liquid and mixed phase. This is, however, not

the case: as mentioned above, when approaching the boundary from inside the

mixed phase (ξ0 → 0), the third term in the r.h.s. of Eq. (5.245.24) vanishes, but at

small temperatures it vanishes rapidly and only in the very vicinity of the phase

boundary. As a consequence, this behavior is seen poorly on the scale used in

Fig. 5.35.3.
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5.4 Non-Gaussian fluctuations

The scaled variance ω[N ] is the second-order measure of the particle number

distribution. The ω[N ] characterizes the width of the distribution. The higher-

order non-Gaussian measures, such as the skewness Sσ and the kurtosis κσ2, can

provide deeper information about the underlying particle number distribution.

Recently, such measures for the conserved charges fluctuations have attracted

much attention in the context of the search of the QCD critical point (see, e.g.,

Ref. [127127] and [128128]), and have been performed in various effective QCD mod-

els [129129, 130130, 131131].

The skewness Sσ is defined as

Sσ =
〈(∆N)3〉

σ2
, (5.25)

where (∆N)3 is the third central moment about the mean of the N -distribution.

The skewness is a measure of the degree of asymmetry of the distribution P(N)

around its mean value 〈N〉. Positive skewness indicates a distribution with an

asymmetric tail extending more to the right, i.e., toward N -values with N > 〈N〉.
Negative skewness indicates a distribution with an asymmetric tail extending

more to the left, i.e., toward N -values with N < 〈N〉. If the P(N) distribution

is symmetric around its mean value, i.e., the right and left tails are equal, it has

zero skewness. This is the case for the normal Gaussian distribution, whereas the

Poisson distribution shows a positive value of the skewness, Sσ = 1.

The (excess) kurtosis κσ2 is a measure of the “peakedness” of the probability

distribution P(N),

κσ2 =
〈(∆N)4〉 − 3 〈(∆N)2〉2

σ2
. (5.26)

The kurtosis (5.265.26) measures the degree to which a distribution is more (or less)

peaked than a normal Gaussian distribution. Positive kurtosis indicates a rela-

tively peaked (leptokurtic) distribution. Negative kurtosis indicates a relatively

flat (platykurtic) distribution. The Poisson distribution has a positive value of

the kurtosis, κσ2 = 1.
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The normal Gaussian distribution corresponds to the zero value of both the

skewness (5.255.25) and the (excess) kurtosis (5.265.26). Therefore, (strong) deviations

of Sσ and/or κσ2 from zero are signatures of a (highly) non-Gaussian shape of

the particle number distribution.

The particle number fluctuations in the GCE can be characterized by the

following dimensionless cumulants (susceptibilities),

χn =
∂n(p/T 4)

∂(µ/T )n
, (5.27)

which are directly connected to the moments of the particle number distribution

by

χ1 =
〈N〉
V T 3

, χ2 =
〈(∆N)2〉
V T 3

, χ3 =
〈(∆N)3〉
V T 3

, χ4 =
〈(∆N)4〉 − 3〈(∆N)2〉2

V T 3
.

(5.28)

The skewness (5.255.25) and the kurtosis (5.265.26) are intensive fluctuation measures

which remain finite in the thermodynamic limit V →∞. They can be expressed

in terms of the susceptibilities as

Sσ = χ3/χ2 and κσ2 = χ4/χ2.

The calculation of the skewness in the VDW model yields

Sσ =
χ3

χ2

= ω[N ] +
T

ω[N ]

(
∂ω[N ]

∂µ

)
T

= (ω[N ])2

[
1− 3bn

(1− bn)3

]
. (5.29)

Non-Gaussian fluctuations for the VDW equation of state are considered here

only in pure phases, for simplicity. The skewness Sσ is plotted in Fig. 5.45.4 as a

function of the reduced temperature and density, for both stable and metastable

pure phases. The skewness is positive at n/nc < 1 (the gaseous phase), negative

at n/nc > 1 (the liquid phase), and Sσ = 0 at n = nc, as clearly seen from

Eq. (5.295.29). Above relations are valid both for all temperatures, i.e. both above

(T > Tc) and below (T < Tc) the critical temperature. At vanishing density,

n → 0, the skewness goes to unity, Sσ → 1. This small asymmetry of the

particle number distribution corresponds to the Poisson distribution of the ideal
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Figure 5.4: The skewness Sσ (5.295.29) calculated from the VDW equation for the
pure phases in the reduced (T/Tc, n/nc) coordinates.

Boltzmann gas. On the other hand, the Sσ diverges at the critical point, and its

sign depends on the path of approach to the CP.

The kurtosis κσ2 is:

κσ2 =
χ4

χ2

= (Sσ)2 + T

(
∂[Sσ]

∂µ

)
T

= 3 (Sσ)2 − 2ω[N ]Sσ − 6 (ω[N ])3 b2n2

(1− bn)4
. (5.30)

The kurtosis κσ2 is plotted in Fig. 5.55.5 as a function of the reduced temperature

and density, for both stable and metastable pure phases. The kurtosis is positive

(leptokurtic) at at T < Tc for both n < nc (the gaseous phase) and n > nc

(the liquid phase). The kurtosis attains large negative values (platykurtic) at the

critical density n = nc and temperatures just above the critical, T > Tc. This

indicates that particle number distribution has a rather flat maximum in that

region, much flatter than the corresponding Gaussian peak with the same width.

This region can be identified with the crossover region, where a rather rapid, but

smooth transition between gaseous and liquid phases takes place.

The dependencies of the skewness Sσ and of the kurtosis κσ2 on the reduced

temperature and density are universal for any classical Maxwell-Boltzmann gas
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Figure 5.5: The kurtosis κσ2 (5.305.30) calculated from the VDW equation for the
pure phases in the reduced (T/Tc, n/nc) coordinates.

with VDW interactions. The same is true for the scaled variance ω[N ]. Thus,

these results apply for any system described by the classical VDW equation:

atoms, molecules, etc. However, this universality is lost if quantum statistical

effects are non-negligible, as will be detailed in the next chapter.

5.5 Strongly intensive quantities

The obtained results demonstrate strong increase of the particle number fluctu-

ations in vicinity of the CP. The fluctuations may become also very large for

metastable states, i.e., super-cooled gas and/or super-heated liquid. These fluc-

tuation signals from phase transitions in the nuclear matter can be observed in

the event-by-event analysis of heavy ion collisions. However, in these processes

there is one more source of particle number fluctuations: the event-by-event fluc-

tuations of the system volume. These volume fluctuations are mainly of the geo-

metrical origin, and they cannot be avoided in nucleus-nucleus reactions. Thus,

one may observe large experimental fluctuations even in simplest scenarios, e.g.,

in the ideal gas scenario.

The strongly intensive measures of the fluctuations defined in terms of two
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extensive quantities A and B were suggested in Ref. [132132] to alleviate these prob-

lems. These measures are independent of the system volume and its fluctuations

in GCE statistical systems which do not contain phase transitions. Note, how-

ever, that in systems with the CP (in general, for the 2nd order phase transitions)

the critical behavior does depend on the system volume and shows the charac-

teristic finite-size scaling. This implies that strongly intensive quantities are also

volume-dependent near the CP. Thus, using the strongly intensive measures one

excludes trivial volume fluctuations for normal statistical systems, and a presence

of large fluctuations in terms of these measures can be considered as an indication

of the critical behavior.

The strongly intensive measures are presently being used in the search for

critical behavior of strongly interacting matter in heavy-ion collision experiments

at the CERN Super Proton Synchrotron [121121, 133133, 134134, 135135, 136136]. It is believed

that they exhibit critical behavior and their measurement may provide evidence

of the existence of the QCD CP. At the same time, no model calculation which

would confirm the existence of such critical behavior has been performed to date.

In the present thesis the strongly intensive measures of total energy E and

particle number N fluctuations for the VDW equation of state are considered.

They are defined as

∆[E,N ] = C−1
∆

[
〈N〉ω[E]− 〈E〉ω[N ]

]
, (5.31)

Σ[E,N ] = C−1
Σ

[
〈N〉ω[E] + 〈E〉ω[N ]− 2

(
〈EN〉 − 〈E〉 〈N〉

)]
, (5.32)

where C−1
∆ and C−1

Σ are the normalization factors that have been suggested in

the following form [137137]

C∆ = CΣ = 〈N〉ω[ε] , (5.33)

with ω[ε] being the scaled variance of a single-particle energy distribution in the

VDW system. It is necessary to calculate ω[ε], ω[E], and 〈EN〉 to proceed.

In the VDW gas the average single-particle energy ε is independent of the
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parameter b, but it is modified due to a presence of the attractive mean field:

ε = εid(T )− aN
V

= 3 T +m
K1(m/T )

K2(m/T )
− a n , (5.34)

where εid is the average single-particle energy in the relativistic ideal gas. The

variance of the single-particle energy is insensitive to the presence of the VDW

mean field, and one obtains

ω[ε] =
ε2 − ε2

ε
=

T 2

ε

∂ εid
∂T

. (5.35)

The mean total energy is

〈E〉 =

〈(
εid − a

N

V

)
N

〉
= εid 〈N〉 −

a

V
〈N2〉 = εid 〈N〉 −

a

V
〈N〉2 − a 〈N

2〉 − 〈N〉2

V
. (5.36)

The first and second terms in the right hand side of Eq. (5.365.36) are proportional to

〈N〉. On the other hand, the third term remains finite outside the critical point

in the thermodynamic limit V →∞. Therefore, one obtains

〈E〉 ∼= (εid − an) 〈N〉 . (5.37)

For ω[E] one then finds

ω[E] ≡ 〈E
2〉 − 〈E〉2

〈E〉
=

1

〈E〉
T 2

(
∂〈E〉
∂T

)
µ/T

= ω[ε] +
(εid − 2an)2

εid − an
ω[N ] . (5.38)

Finally, the correlations between E and N can be calculated as the following

〈EN〉 − 〈E〉 〈N〉 = T 2

(
∂〈N〉
∂T

)
µ/T

= (εid − 2an) 〈N〉ω[N ] . (5.39)

Substituting the above relations into Eqs. (5.315.31) and (5.325.32) one finds the fol-



5.5 Strongly intensive quantities 69

0 1 2 30

1

2

3

- 1

m e t a s t a b l em e t a s t a b l e
1 0

2

1

0

u n s t a b l e
l i q u i d

T/T
C

n / n C

g a s

∆ [ E * , N ]

- 5
- 10

1

2

1 0
4 0

Figure 5.6: The strongly intensive measure ∆[E∗, N ] (5.425.42) of excitation en-
ergy and particle number fluctuations calculated from the VDW equation in the
nonrelativistic limit for the pure phases in the reduced (T/Tc, n/nc) coordinates.
Several lines of constant values of ∆[E∗, N ] are shown.

lowing expressions for the strongly intensive quantities:

∆[E,N ] = 1 − an(2εid − 3an)

ε2id − ε2id
ω[N ], (5.40)

Σ[E,N ] = 1 +
a2n2

ε2id − ε2id
ω[N ] . (5.41)

In the absence of the attractive interactions (i.e., a = 0), one can readily see from

Eqs. (5.405.40) and (5.415.41) that ∆[E,N ] = Σ[E,N ] = 1, thus, in the EV model the

strongly intensive quantities are the same as in the ideal Boltzmann gas.

The expressions (5.405.40) and (5.415.41) for ∆[E,N ] and Σ[E,N ] become more

transparent if one subtracts the rest energy m from the total energy, i.e.

E → E∗ = E − mN , and then considers the non-relativistic limit, εid = 3T/2

and ε2id− ε2id = 3T 2/2. In this case only the kinetic energy fluctuations contribute

to ε2id. In the context of heavy-ion collision experiments the E∗ can be identified
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Figure 5.7: The strongly intensive measure Σ[E∗, N ] (5.435.43) of excitation en-
ergy and particle number fluctuations calculated from the VDW equation in the
nonrelativistic limit for the pure phases in the reduced (T/Tc, n/nc) coordinates.
Several lines of constant values of Σ[E∗, N ] are shown.

with the total excitation energy. One obtains

∆[E∗, N ] = 1− 2

3

an(3T − 3an)

T 2
ω[N ] = 1 − 9ñ

4T̃

[
1 − 9ñ

8T̃

]
ω[N ] , (5.42)

Σ[E∗, N ] = 1 +
2

3

a2n2

T 2
ω[N ] = 1 +

27

32

ñ2

T̃ 2
ω[N ] . (5.43)

The quantities ∆[E∗, N ] and Σ[E∗, N ] are depicted in Figs. 5.65.6 and 5.75.7, respec-

tively. Both the Σ[E∗, N ] and ∆[E∗, N ] measures approach unity in both zero

density, n→ 0, and packing, n→ 1/b, limits. They both diverge at the CP. The

Σ[E∗, N ] measure is always positive and does not become smaller than unity,

while the ∆[E∗, N ] measure attains both positive and negative values.

These results, obtained within classical VDW equation, confirm that strongly

intensive quantities do exhibit critical behavior. Thus, these measures are suitable

in the search for the CP of strongly interacting matter in heavy-ion collision

experiments.



Chapter 6

Quantum statistical van der

Waals fluid

The Maxwell-Boltzmann VDW equation (5.15.1) is valid for classical systems, where

the effects of quantum statistics are neglected. In this chapter a generalization

of the VDW equation to include effects of the quantum statistics (Fermi-Dirac

or Bose-Einstein) is described. We illustrate this new formalism by successfully

treating the nuclear matter as a fermionic VDW system of nucleons. The content

of this chapter follows Refs. [138138, 139139, 140140]. Identical formulation derived with a

different method was later obtained by other authors in Ref. [141141].

6.1 van der Waals equation with quantum

statistics

Proper treatment of quantum effects is crucially important for a description of

statistical equilibrium at small temperatures and “non-small” densities. A good

example is the nuclear matter. The ground state of nuclear matter is located

at T = 0, and it cannot be described by the classical Maxwell-Boltzmann VDW

fluid: Models which neglect the Fermi statistics exhibit clearly unphysical behav-

ior in the zero temperature limit. For example, the entropy of the ideal Boltzmann

gas becomes negative in this limit, contradicting the 3rd law of thermodynam-

ics (see [138138] for details). Thus, the classical VDW equation is inappropriate for
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the nuclear matter description.

A quantum statistical generalization of the classical VDW model had not been

developed previously. The same is true regarding the extension of the VDW the-

ory to multi-component quantum statistical systems. These are important new

steps, not only for applications in nuclear and hadronic physics, but also for

numerous applications in condensed matter physics. Their impact on character-

ization of various properties of materials will be described elsewhere.

The free energy of the classical single-component VDW fluid is given by

Eq. (5.45.4). It is postulated here to remain valid for quantum statistics, be it

either Fermi-Dirac or Bose-Einstein distribution. This implies the following free

energy of the quantum statistical VDW fluid:

F (T, V,N) = Fid(T, V − bN,N)− a N
2

V
, (6.1)

where Fid(T, V,N) is the free energy of the corresponding ideal quantum fluid.

This modified VDW equation thus includes quantum statistics (see Ref. [140140] for

more details). The CE pressure reads

p(T, V,N) = −(∂F/∂V )T,N = pid(T, V − bN,N)− a N
2

V 2
, (6.2)

where pid(T, V,N) is the CE pressure of the ideal quantum gas. For Maxwell-

Boltzmann statistics pcl
id(T, V − bN,N) = NT/(V − bN), and in this case

Eq. (6.26.2) coincides with the classical VDW equation (5.15.1). The total entropy

S = −(∂F/∂T )V,N of the quantum statistical VDW fluid reads S(T, V,N) =

Sid(T, V − bN,N). One can easily see that entropy is always positive and that

S → 0 with T → 0, which respects the 3rd law of thermodynamics.

Equation (6.26.2) gives the pressure of the quantum statistical VDW model in the

CE. To transform this quantum VDW equation to the GCE, the CE chemical po-

tential is3 calculated as µ(T, V,N) = (∂F/∂N)T,V , and, denoting µ ≡ µ(T, V,N)

and N/V ≡ n, the resulting equation is solved to obtain the GCE particle density

n(T, µ) [138138]

n(T, µ) =
nid(T, µ∗)

1 + b nid(T, µ∗)
, (6.3)
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where µ∗ = µ− b p− a b n2 + 2 a n. The GCE pressure reads

p(T, µ) = pid(T, µ∗)− a [n(T, µ)]2 . (6.4)

The following transcendental equation for µ∗ is solved numerically at given T

and µ pair:

µ∗ = µ− b pid(T, µ∗) + 2 a
nid(T, µ∗)

1 + b nid(T, µ∗)
. (6.5)

After µ∗ is found, the calculation of all other quantities is straightforward. More

than a single solution may occur at a given T and µ pair. Then, the solution

with the largest pressure should be chosen, in accordance with the Gibbs cri-

terium (see [138138] for details).

6.2 Nuclear matter as a fermionic van der Waals

system of nucleons

Nuclear matter is a hypothetical homogeneous, stationary, and infinite system of

strongly interacting uncharged nucleons. The thermodynamics of nuclear matter

(and its droplets) and its applications to the production of fission fragments were

studied from the 1930s, and extensions to the liquid drop statistical multifrag-

mentation models for heavy ion collisions were considered from the 1970s (see

Refs. [33, 142142, 143143] for a review of these early developments). Nowadays, nuclear

matter is described in many different models, in particular by relativistic mean-

field (RMF) theory [144144, 145145, 146146, 147147, 148148]. Experimentally, the discovery of

the liquid-gas phase transition in nuclear matter has been claimed in different

experiments [149149, 150150, 151151, 152152, 153153, 154154].

The liquid-gas phase transition in nuclear matter originates from the interplay

of short-range repulsive and intermediate-range attractive interactions between

nucleons. These two dominant contributions to nuclear interactions are found in

NN -scattering experiments and yield the well known nuclear saturation proper-

ties at normal nuclear density and zero temperature. The repulsive interactions

generally are attributed in mesonic field theory to the vector ω meson exchange
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Figure 6.1: Pressure isotherms in (a) (p, v) and (b) (p, n) coordinates, calculated
with the fermionic Van der Waals equation of state for nucleons with parameters
a ∼= 329 MeV·fm3 and b ∼= 3.42 fm3 (r ∼= 0.59 fm). The dashed-dotted lines
present the metastable parts of the VDW isotherms at T < Tc, whereas the
dotted lines correspond to unstable parts. The full circle on the T = Tc isotherm
corresponds to the critical point, while the open circle at T = 0 in (b) shows the
ground state of nuclear matter.

while the attraction is taken to be mediated by the scalar mesons, σ and π.

Here, nuclear matter is described by the fermionic VDW equation. Restricting

the model to small temperatures, T ≤ 40 MeV, pion production, as well the for-

mation of baryonic resonances (like N∗ and ∆), can be neglected. For simplicity,

the formation of the nucleon clusters (i.e., α, ordinary nuclei) is also neglected.

Then, the number of nucleons N is conserved and appears as an independent

variable in the CE. The chemical potential µ in the GCE regulates the nucleon

number density. We consider the symmetric nuclear matter, which consists of an

equal number of protons and neutrons11.

The VDW equation for nucleons then has two parameters, a and b, which

characterize the interactions between nucleons. These parameters are fixed by

reproducing the known properties of the nuclear ground state: p = 0 and ε/n =

m+E/A ∼= 922 MeV at T = 0 and n = n0
∼= 0.16 fm−3. Here E/A ∼= −16 MeV is

the binding energy per nucleon. Then a ∼= 329 MeV fm3 and b ∼= 3.42 fm3. Note

that the parameter b of the proper particle volume can be expressed in terms of a

corresponding classical hard-core radius r as b = 16πr3/3. This gives r ∼= 0.59 fm

for the effective hard-core nucleon radius in the nuclear ground state.

1The asymmetric nuclear matter can readily be modeled by employing the two-component
fermionic VDW equation for protons and neutrons. This extension is considered in Chapter 88.
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The corresponding Fermi-Dirac VDW pressure isotherms for nuclear matter

are depicted in Fig. 6.16.1 (a) and (b), respectively for the (T, v) and (T, n) coor-

dinates, where v ≡ 1/n is the specific volume per nucleon. They are calculated

within the quantum statistical Fermi-Dirac VDW equation of state using Eq. (6.26.2)

with interaction parameters a and b adjusted to the nuclear matter ground state,

as described above. The critical parameters are a prediction of the model: The

critical temperature is found as Tc ∼= 19.7 MeV, while the critical density is

nc ∼= 0.07 fm−3 ∼= 0.4n0, less then one-half of the normal nuclear density22. The

predicted Tc value in the model is close to experimental estimates [153153, 154154, 155155].

At T < Tc two phases are predicted: the gas and liquid phases, which are sepa-

rated by a first-order phase transition. The mixed phase region is obtained from

the Maxwell construction of equal areas for the p(v) isotherms. The ground state

of cold nuclear matter with n = n0
∼= 0.16 fm−3 and T = 0 has zero pressure and

is located exactly on the boundary between the mixed phase and liquid phase

at zero temperature. Note also that the maximum value of the nucleon number

density in the VDW model is nmax = 1/b, which equals nmax
∼= 0.29 fm−3 for the

obtained value of the parameter b.

6.3 Baryon number susceptibilities near the

critical point of nuclear matter

The phase structure of nuclear matter in the T -µ plane is studied in this section.

The nucleon number fluctuations, previously studied in Chapter 55 for the classi-

cal VDW fluid, are considered here for the fermionic VDW fluid. The number of

nucleons in nuclear matter is a conserved quantity. Therefore, the χi can be iden-

tified with the net-baryon number susceptibilities. Such a calculation provides a

useful qualitative guidance regarding the structure of the conserved charge fluc-

tuations in the (T, µ) plane in the vicinity of the critical point. Thus, it is a

useful tool for the ongoing search for the chiral CP in QCD matter.

2The Boltzmann approximation leads to nc = 1/3b ∼= 0.10 fm−3 and Tc = 8a/(27b) ∼=
28.5 MeV.
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The nucleon number density n = χ1 T
3 and the scaled variance

ω[N ] =
χ2

χ1

=
T

n

(
∂n

∂µ

)
T

= ωid(T, µ∗)

[
1

(1− bn)2
− 2an

T
ωid(T, µ∗)

]−1

, (6.6)

are depicted in the upper panels of Fig. 6.26.2. The quantity ωid(T, µ∗) is the scaled

variance of the particle number fluctuations in the ideal Fermi gas.

The phase transition line, µ = µmix(T ), shown in Fig. 6.26.2, starts from the

nuclear matter ground state with T = 0 and µ0
∼= 922 MeV, and ends at the CP

at Tc ∼= 19.7 MeV and µc ∼= 908 MeV. At each point of the phase transition line,

two solutions with different particle densities (the liquid and the gas states), but

equal pressures co-exist, i.e., this is the line of the first-order phase transition.

At T > Tc only a single fluid solution, n(T, µ), exists.

A rapid, although continuous, change of particle number density is seen in

a narrow T -µ band (the so-called crossover region), at T > Tc is seen in the

Fig. 6.26.2a.

The skewness

Sσ =
χ3

χ2

= ω[N ] +
T

ω[N ]

(
∂ω[N ]

∂µ

)
T

, (6.7)

and the kurtosis

κσ2 =
χ4

χ2

= (Sσ)2 + T

(
∂[Sσ]

∂µ

)
T

, (6.8)

exhibited, respectively, in Fig. 6.26.2c and Fig. 6.26.2d, show a rich structure in this

crossover region, characterized by multiple rapid sign changes of Sσ and κσ2 even

far away from the CP.

The fluctuation patterns shown in Fig. 6.26.2 are qualitatively consistent with

the predictions of the classical VDW equation shown in the previous Chapter 55.

The presented findings are also consistent with results based on effective QCD-

inspired models (see, e.g., Refs. [131131, 156156, 157157]), and follow model-independent

universality arguments with regards to critical behavior in the vicinity of the

QCD critical point [127127, 128128].
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Figure 6.2: Contours of the (a) particle number density n(T, µ), (b) scaled vari-
ance ω[N ] (6.66.6), (c) skewness Sσ (6.76.7), and (d) kurtosis κσ2 (6.86.8), as calculated
for symmetric nuclear matter in (T, µ) coordinates within VDW equation of state
for fermions. The open circle at T = 0 denotes the ground state of nuclear mat-
ter, the solid circle at T = Tc corresponds to the CP, and the phase transition
curve µ = µmix(T ) is depicted by the solid line.

6.4 Beyond van der Waals model

Over the years, many modifications to the original VDW equation (5.15.1) were

developed for chemistry-related applications. These modifications concern both

the attractive and repulsive terms, and yield a class of the VDW-like equations

of state for real gases. The procedure to include quantum statistics into the

VDW model can be generalized for these real gas models. More specifically, one

assumes that the free energy F (T, V,N) of the quantum statistical real gas model

has more general form compared to the standard VDW model (6.16.1), namely [140140]

F (T, V,N) = Fid(T, V f(n), N) +N u(n). (6.9)
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Here the function f(n) quantifies the fraction of the total volume which is avail-

able for particles to move in at the given value of the particle density n. It has to

take values in the range 0 ≤ f(n) ≤ 1 and, compared to the standard EV model,

it corresponds to a more general EV procedure. The quantity u(n) in (6.96.9) is

the self-consistent density-dependent mean field, corresponding to intermediate-

range attractive interactions. All other quantities are calculated from free energy

via standard thermodynamic identities (see [140140] for details).

The VDW model follows as a partial case of Eq. (6.96.9) with f
VDW

(n) = 1− b n
and u

VDW
(n) = −a n. Many other options are possible. To illustrate this, we con-

sider a set of different fermionic VDW-like models for symmetric nuclear matter.

Only two-parameter models are considered, where function f(n) depends only on

the VDW-like eigenvolume parameter b, and where mean field u(n) depends only

on the VDW-like attraction parameter a. The repulsive term is based on either

VDW or Carnahan-Starling [158158] EV models:

1. VDW excluded volume

f(n) = 1− bn.

2. CS excluded volume

f(n) = exp

(
− (4− 3η)η

(1− η)2

)
, η = bn/4.

The attractive term is based on VDW, Redlich-Kwong-Soave [159159, 160160], Peng-

Robinson [161161], and Clausius based equations:

1. VDW

u(n) = −a n.

2. Redlich-Kwong-Soave

u(n) = −a
b

log(1 + bn).

3. Peng-Robinson

u(n) = − a

2
√

2b
log

(
1 + bn+

√
2bn

1 + bn−
√

2bn

)
.
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Figure 6.3: The nucleon number density dependence of the binding energy
per nucleon E/A in symmetric nuclear matter calculated within eight different
real gas models at T = 0. The thin lines denote calculations within four mod-
els with the VDW EV term, i.e. they correspond to VDW (solid black line),
Redlich-Kwong-Soave (dashed red line), Peng-Robinson (dash-dotted blue line),
and Clausius (dotted orange line) models. The thick lines correspond to models
with the Carnahan-Starling EV term.

4. Clausius

u(n) = − an

1 + cn
.

All combinations give a total of eight different models. The values of a and b

are fixed by the ground state of nuclear matter separately for each model, in the

same way it was done for the VDW model33.

All considered models provide qualitatively similar description of nuclear mat-

ter, in particular regarding the critical parameters and critical fluctuations (see

all of the details in [140140]). Differences between models are more pronounced

if one compares stiffness between the resulting equations of state. This is il-

lustrated by the density dependence of the binding energy per nucleon E/A at

T = 0 shown in Fig. 6.36.3: The behavior of E/A is changes significantly between

different real gas models at densities above the saturation density n0. The VDW

3In general, Clausius equation permits variation of three parameters: a, b, and c. In the
present work c ≡ b is assumed.
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model yields the stiffest equation of state, with the nuclear “incompressibility”

factor K0 = 9 (∂P/∂n)T ∼= 763 MeV in the ground state. This is well above

the empirical range 250 − 315 MeV [162162]. On the other hand, the model with

Carnahan-Starling EV term and Clausius attraction term yields K0
∼= 333 MeV,

much closer to empirical estimates, and better than the K0
∼= 550 MeV value

obtained in the standard Walecka model [163163]. The present formalism permits

variation of the third parameter c in the Clausius model. The parameter c can be

varied to obtain the needed value of K0. Thus, the Clausius model leaves room

for further improvement in the description of nuclear matter.

This new class of quantum statistical real gas models opens many potential

applications, both in nuclear/hadronic physics and, hopefully, in other fields as

well. These will be explored further elsewhere.



Chapter 7

From nuclear matter to lattice

QCD

Frequently, the hadronic equation of state is modeled in the context of high-

temperature QCD with the aforementioned ideal hadron resonance gas (Id-HRG)

model. In theory, the Id-HRG takes into account attractive interactions medi-

ated by narrow resonances11. The Id-HRG, however, fails to describe the basic

qualitative features of the baryon-baryon interactions. In particular, the nucleon-

nucleon interactions are strongly repulsive at small distances, and attractive at

intermediate distances, and both without any resonance structure in the scatter-

ing phase shifts. These important features of the nucleon-nucleon interaction are

manifested in a straightforward manner in the framework of the van der Waals

model, as seen in previous Chapter 66. This ansatz is generalized here to include

the baryon-baryon interactions in the full HRG, mainly following the results of

Ref. [166166].

7.1 The VDW-HRG model

Within the newly developed quantum statistical VDW formalism for spin 1/2

nucleons we are now ready to add further baryon-baryon interactions into the

HRG model. One may wonder whether such a generalization is necessary, in

1Note, however, that this approximation may not be appropriate for wide resonances [164164,
165165]
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particular for the high-temperature region of the phase diagram away from the

nuclear matter ground state. After all, doesn’t the ideal HRG model describe

so successfully many lattice QCD observables in temperature range T ∼ 100 −
150 MeV, where, as one believes, confinement is at work? However, the agreement

between Id-HRG and lattice QCD deteriorates drastically in the crossover region.

The complete breakdown of the Id-HRG model is so dramatic for both, higher

order fluctuations and correlations of conserved charges [167167], that statements like

that this behavior proves that hadrons melt quickly with increasing temperature

and virtually disappear at T > 160 MeV [168168] form a virtual paradigm for the

“standard scenario” in the relativistic heavy ion community. Is this paradigm

actually supported by a critical and objective analysis? The effect that baryon-

baryon VDW interactions have on these observables suggests that this may not

be the case.

A minimal extension of the Id-HRG model is described below. It includes

the VDW interactions between (anti)baryons. This model is referred to as the

VDW-HRG. It is based on the following assumptions:

1. VDW interactions are taken to exist between all pairs of baryons and be-

tween all pairs of antibaryons. The VDW parameters a and b for all (anti)baryons

are taken to be equal to those of nucleons, as obtained from the fit to the ground

state of nuclear matter.

2. The baryon-antibaryon, meson-meson, and meson-(anti)baryon VDW in-

teractions are set to zero.

The present VDW-HRG model is a “minimal-interaction” extension of the

Id-HRG model, which describes the basic properties of nuclear matter. Whether

significant VDW interactions exist between hadron pairs other than (anti)baryons

is not clearly established. It has been argued that short-range interactions be-

tween baryons and antibaryons are dominated by annihilation processes and not

by repulsion [9393], and this is the motivation to exclude VDW terms for them in

this study. Presence of significant mesonic eigenvolumes, comparable to those

of baryons, leads to significant suppression of thermodynamic functions in the

crossover region at µB = 0, which is at odds with lattice data (see Refs. [5656, 9393]).

The attractive interactions involving mesons, on the other hand, normally lead

to resonance formation [169169], which are already included in HRG by construc-
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tion. For these reasons the meson-related VDW interactions are neglected in this

study. The VDW-HRG consists of three distinct sub-systems: VDW baryons,

VDW antibaryons, and non-interacting mesons. The total pressure reads

p(T,µ) = PB(T,µ) + PB̄(T,µ) + PM(T,µ), (7.1)

with

PB(T,µ) =
∑
j∈B

pid
j (T, µB∗j )− a n2

B, (7.2)

PB̄(T,µ) =
∑
j∈B̄

pid
j (T, µB̄∗j )− a n2

B̄, (7.3)

PM(T,µ) =
∑
j∈M

pid
j (T, µj), (7.4)

where M stands for mesons, B for baryons, and B̄ for antibaryons, pid
j are the

Fermi-Dirac and Bose-Einstein ideal gas pressures, µ = (µB, µS, µQ) are the

chemical potentials which regulate the average values of total baryonic number

B, strangeness S, and electric charge Q, and µ
B(B̄)∗
j = µj − b PB(B̄) − a b n2

B(B̄)
+

2 a nB(B̄). nB and nB̄ are the total densities of baryons and antibaryons, re-

spectively. They are calculated as the derivatives of PB(B̄) with respect to the

baryochemical potential, i.e.

nB(B̄) = (1− b nB(B̄))
∑

j∈B(B̄)

nid
j (T, µ

B(B̄)∗
j ) . (7.5)

The calculation of the mesonic pressure PM(T,µ) is straightforward. The

calculations of the baryon or antibaryon pressures, and other related observables

proceed essentially analogous to the single-component cases. The shift ∆µB in

the chemical potential due to VDW interactions is

∆µB = µB∗i − µi = −b PB(B̄) − a b n2
B(B̄) + 2 a nB(B̄) (7.6)

i.e. it is identical for all (anti)baryons. It is determined by the numerical solution

of the transcendental equation (7.67.6) for this quantity.
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Figure 7.1: The temperature dependence of (a) scaled pressure and energy den-
sity, and of (b) the square of the speed of sound at zero chemical potential,
as calculated within Id-HRG (dashed black lines), EV-HRG (dash-dotted red
lines), and VDW-HRG (solid blue lines). Lattice QCD results of Wuppertal-
Budapest [1212] and HotQCD [1313] collaborations are shown, respectively, by sym-
bols and green bands.

7.2 Comparison to lattice QCD data

The temperature dependence of the scaled pressure p/T 4, energy density ε/T 4,

and the speed of sound squared c2
s = dp/dε is compared to lattice QCD data at

µ = 0 for the Id-HRG and the VDW-HRG scenarios in Fig. 7.17.1. For additional

clarity, the calculations where attractive VDW interactions are “switched off”

(a = 0) are denoted as EV-HRG.

There is important difference between the present approach and earlier studies

involving hadronic interactions [5656, 9393], namely, only the EV interactions between

(anti)baryons are included, but no interactions involving any other hadron pairs.

As the matter at µB = 0 is meson dominated and the mesons are modeled as

point-like non-interacting particles, no significant suppression of thermodynamic

functions is seen below T = 160 MeV. The temperature dependence of the speed

of sound squared, c2
s, is consistent with lattice data and shows a minimum at

T ∼ 155 − 160 MeV, in contrast to the Id-HRG where c2
s decreases slowly and

monotonically.

In addition to the GCE thermodynamical functions, the VDW-HRG model
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Figure 7.2: The 2nd order susceptibilities of conserved charges are plotted as
function of the temperature dependence of These include (a) the net number
of light quarks χL2 , (b) the net baryon number χB2 , (c) the net strangeness χS2 ,
and (d) the baryon-electric charge correlator χBQ11 . Calculations are done within
Id-HRG (dashed black lines), EV-HRG (dash-dotted red lines), and VDW-HRG
(solid blue lines). Lattice QCD results of the Wuppertal-Budapest [4141, 4444] (for
χBQ11 preliminary results [170170, 171171] are used) and HotQCD [4242] collaborations are
shown, respectively, by symbols and green bands.

does also allow to calculate the fluctuations of conserved charges:

χBSQlmn =
∂l+m+np/T 4

∂(µB/T )l ∂(µS/T )m ∂(µQ/T )n
. (7.7)

The fluctuations of the net number of light quarks L = (u + d)/2 = (3B + S)/2

are also calculated.

The 2nd order susceptibilities are shown as function of the temperature in

Fig. 7.27.2 for (a) the net number of light quarks χL2 , (b) the net baryon number

χB2 , (c) the net strangeness χS2 , and (d) the baryon-electric charge correlator

χBQ11 . The χL2 calculated within the VDW-HRG model shows a very different
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behavior compared to Id-HRG at T > 160 MeV, and agrees well with the lattice

data obtained from Ref. [4141] up to T = 180 MeV. A qualitatively similar picture

is obtained for χB2 . The qualitative difference between Id-HRG and VDW-HRG

appears to be driven by the eigenvolume interaction terms between (anti)baryons,

while the inclusion of VDW attraction leads to an improved agreement with the

lattice data. This is illustrated by the EV-HRG calculations, shown by dash-

dotted red lines in Fig. 7.27.2. The strangeness susceptibility χS2 is described fairly

well by Id-HRG model while it is strongly underestimated by the VDW-HRG

model.

The correlator χBQ11 between the net baryon number and net electric charge

has a very different temperature dependence in Id-HRG and VDW-HRG. The

χBQ11 increases rapidly above T > 150 MeV in Id-HRG, in stark contrast to the

lattice data. On the other hand, this correlator exhibits a broad bump with a

maximum at T ∼ 160 − 190 MeV in the VDW-HRG. This agrees qualitatively

with the correlator obtained by the lattice QCD.

Higher order fluctuations are analyzed in Fig. 7.37.3: All observables show very

different behavior between the Id-HRG and the VDW-HRG models. The net-light

quark number χL4 /χ
L
2 increases monotonically in the Id-HRG. This overshoots the

lattice data at T ∼ 140 MeV. The VDW-HRG model, in contrast, exhibits a non-

monotonic behavior, with a wide peak at T ∼ 120− 145 MeV. Thus, the VDW-

HRG model resembles the lattice data [4444]. The bump in the lattice data seems

to appear at slightly higher temperatures. Also the peak in the T -dependence

of the net strangeness χS4 /χ
S
2 is rather well reproduced within the VDW-HRG.

In contrast, the Id-HRG model shows no maximum at all, at odds with lattice

QCD.

It is remarkable that the VDW-HRG model shows flavor hierarchy: the peak

for the net-light quark number χ4/χ2 is located at lower temperatures as com-

pared to the peak in the net-strangeness. This is also the lattice QCD result!

Scientists argued that this observation is related to flavor separation in the con-

jectured deconfinement “transition” of QCD [4444]. The VDW-HRG model is based

on hadronic degrees of freedom. Hence, an interpretation of the observed flavor

dependence in χ4/χ2 as indication of complete deconfinement at ∼ 155 MeV is

doubtful. Also, the presence of the peaks themselves does not exclude a large
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Figure 7.3: The temperature dependence of the χ4/χ2 cumulant ratio for (a) the
net number of light quarks, (b) the net baryon number, (c) the net strangeness,
and for (d) the χ6/χ2 cumulant ratio for net baryon number. Calculations are
done within Id-HRG (dashed lines), EV-HRG (dash-dotted lines), and VDW-
HRG (solid lines). The lattice QCD results of the Wuppertal-Budapest collabo-
ration [4444, 4343] are shown by symbols.

contribution of confined baryons and mesons to the EoS at T ∼ 160− 200 MeV.

Let us turn to higher-order fluctuations of the net-baryon number: The net-

baryon kurtosis, χB4 /χ
B
2 , shows the expected Skellam behavior for the Id-HRG

model with values very close to unity. The VDW-HRG model, on the other

hand, shows a strong decrease at T = 130 − 165 MeV, i.e. even below the so-

called “crossover region”, even though the VDW-HRG model does not involve a

deconfinement transition to quark-gluon degrees of freedom. The χB4 /χ
B
2 values

turn negative at T > 165 MeV. This strong decrease of χB4 /χ
B
2 is also seen in the

lattice data [4343], starting at T = 145 MeV, although the χB4 /χ
B
2 does not drop

below zero on the lattice.

The temperature dependence of the sixth order cumulant ratio χB6 /χ
B
2 is pre-
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dicted by the VDW-HRG model: It exhibits very strong variations and a non-

monotonous behavior in the “crossover region”. Will a similarly dramatic T -

dependent behavior be observed in the corresponding lattice simulations once

they become available?

For many observables, the qualitative agreement of the VDW-HRG calcula-

tions with the lattice data in the “crossover region” as presented here is quite

astounding. The fact that quantitatively it is far from perfect is hardly surpris-

ing. Indeed, we have modeled the VDW interactions between baryons in the

simplest way possible: The VDW interactions between all baryons are taken to

be the same as those between nucleons, which are obtained from nuclear matter

properties at T = 0. Conceptually, the VDW-HRG model is quite different from

an underlying fundamental QCD theory. However, the analysis presented here is

essentially parameter-free: no new parameters are adjusted to lattice data. In-

deed, the two VDW parameters, fixed by reproducing the saturation properties

of nuclear matter [138138, 141141], are independent of any lattice data! While there is

other model input, e.g., the list of hadrons and their decay properties, they are

known and fixed experimentally. It is feasible that VDW parameters could be

different for different baryon pairs, and along with other input parameters like

mass, width, etc. may be temperature and density dependent. The agreement

of the VDW-HRG model with the lattice data can be improved considerably by

allowing for a decrease of the nucleon/baryon eigenvolumes, b ' 2− 3 fm3. Such

modifications do not necessarily diminish the agreement of the VDW-HRG model

with the properties of nuclear matter: as suggested in Ref. [172172], the heavier

and/or strange baryons may have smaller eigenvolumes, thus reducing effectively

the average b. Alternative ways of generalizing the attractive part of the VDW

interactions from nucleons to the full HRG may be considered. The VDW-HRG

model presented here leaves plenty of room for improvement. However, major

qualitative changes to the results presented here are not expected.

7.3 Finite net baryon density

The VDW-HRG model is not restricted to the vanishing net-baryon density.

It can easily be applied at finite µB, in contrast to lattice QCD where direct
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Figure 7.4: The χB4 /χ
B
2 kurtosis ratio for the net baryon number fluctuations

calculated in the VDW-HRG model is exhibited in the T -µB plane. The possible
chemical freeze-out line in heavy-ion collisions obtained in Section 3.23.2 is sketched
by the dashed line.

calculations at finite baryochemical potential are hindered by the sign problem.

The T -µB dependence of the kurtosis ratio χB4 /χ
B
2 of the net-baryon fluctuations

is exhibited in Fig. 7.47.4 as an illustration. It is assumed that µS = µQ = 0 for

simplicity. The region of negative χB4 /χ
B
2 at small µB is smoothly connected to

the region of the liquid-gas phase transition in nuclear matter. Obviously, the

nuclear liquid-gas transition is relevant for the χB4 /χ
B
2 values all the way up to

T ∼ 200 MeV, including the prescribed region of “chemical freeze-out” in heavy-

ion collisions (see dashed line in Fig. 7.47.4). The VDW-HRG model predicts a

non-monotonic behavior of χ4/χ2 with respect to the collision energy, in stark

contrast to the ideal HRG [173173]. This implies that non-trivial fluctuations of net-

baryon number in heavy-ion collisions manifest traces of the nuclear liquid-gas

phase transition (see also [174174] and [175175]).

This result is directly relevant for the ongoing and future fluctuation mea-
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surements performed in heavy-ion collision experiments. Proper understanding

of the role played by the nuclear matter physics is crucial for interpretation of

the fluctuation measurements. First such measurements were recently published

by STAR collaboration [122122, 123123, 176176] within the Beam Energy Scan program

at RHIC. There is also an ongoing analysis within the GSI-HADES experiment,

at lower collision energies and closer to the nuclear matter region. The study of

higher-order moments of event-by-event fluctuations is a major part of the future

CBM experiment at FAIR [177177].

7.4 Imaginary chemical potential

The dependence of the net-baryon density on temperature T and (baryo)chemical

potential µB
22 in QCD can be considered as the following series expansion:

ρB(T, µB)

T 3
=
∞∑
k=1

bk(T ) sinh(kµB/T ), (7.8)

with the hitherto unknown temperature-dependent coefficients bk(T ). Analytic

continuation to imaginary µB = iµ̃B yields

ρB(T, µ̃B)

T 3
= i

∞∑
k=1

bk(T ) sin(kµ̃B/T ). (7.9)

The net-baryon density at imaginary chemical potential becomes an imaginary

complex number itself. The coefficients bk(T ) turn out to be nothing else but the

Fourier coefficients of the trigonometric series expansion of the ρB(T, µ̃B).

The form (7.97.9) is particularly useful for lattice QCD. Lattice simulations are

not hindered by the sign problem at imaginary chemical potential. Thus, lattice

simulations at imaginary µ shed information on the QCD equation of state at

real µ, provided that analytic continuation works (see, e.g., Refs. [178178, 179179], or

more recent [180180, 181181]).

The preliminary results of the Wuppertal-Budapest collaboration for coeffi-

cients bk(T ) of the imaginary µB expansion (7.97.9) were recently reported in [182182].

2We assume here µS = µQ = 0 for simplicity.
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They are exhibited in Fig. 7.57.5, and show a peculiar hierarchy: the higher coef-

ficient order k corresponds to the higher temperature values where bk starts to

deviate from zero. Moreover, one clearly observes the alternating sign hierarchy:

odd order coefficients, b1 and b3, are positive while the even order coefficients, b2

and b4, are negative.

The lattice results can be compared to the predictions of the (non)interacting

HRG model. To keep things simple, we neglect the quantum statistical effects.

This is a good approximation for the baryon-related observables of interest.

Only the first coefficient, b1(T ), is non-zero in the ideal HRG model. Its

behavior in the Id-HRG model is consistent with lattice data at T . 190 MeV.

The Id-HRG description clearly breaks down at T > 160 MeV, where the b2(T )

deviates from zero on the lattice. Let us now turn to the VDW-HRG model: the

coefficients bk(T ) can be calculated analytically in this model. First, it follows

from Eq. (7.57.5) that, in the Boltzmann approximation, the cumulative density of

all baryons nB is the solution of the following equation

nB = (1− b nB) e
µB
T φB(T ) exp

(
− b nB

1− b nB

)
exp

(
2 a nB
T

)
, (7.10)

where

φB(T ) =
∑
i∈B

∫
dmρi(m)

dim
2
i T

2π2
K2

(mi

T

)
, (7.11)

with ρi being a properly normalized mass distribution for hadron type i, taking

into account non-zero resonance width, and where sum goes over all baryons

in the system (but not antibaryons). Due to the baryon-antibaryon symmetry

the total density of antibaryons nB̄ satisfies an identical equation with a change

µB → −µB. By plugging in the following fugacity expansion

nB(B̄)

T 3
=

1

2

∞∑
k=1

bk(T ) exp

(
±k µB

T

)
(7.12)
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Figure 7.5: The temperature dependence of the Fourier coefficients bk(T ) in
Eq. (7.97.9) calculated in the VDW-HRG model (dashed lines), and the EV-HRG
model with b = 1.07 fm3 (solid lines). The preliminary lattice data of the
Wuppertal-Budapest collaboration [182182] are shown by symbols.

of the total (anti)baryon density into the Eq. (7.107.10) one obtains

b1(T ) = 2
φB(T )

T 3
, (7.13)

b2(T ) = −4
(
b− a

T

)
φB(T )

φB(T )

T 3
, (7.14)

b3(T ) = 9

(
b2 − 8

3

a b

T
+

4

3

a2

T 2

)
[φB(T )]2

φB(T )

T 3
, (7.15)

b4(T ) = −64

3

(
b3 − 39

8

a b2

T
+ 6

a2 b

T 2
− 2

a3

T 3

)
[φB(T )]3

φB(T )

T 3
. (7.16)

The baryon-baryon VDW interactions do not affect the first coefficient b1(T ),

which coincides with the Id-HRG result. On the other hand, the higher-order

terms are affected non-trivially. The VDW-HRG model calculation results are

exhibited in Fig. 7.57.5 by the dashed lines. As before, the VDW parameters a and

b are fixed by the nuclear matter ground state, The VDW-HRG model describes

the drop of b2(T ) fairly well up to T ' 170− 180 MeV. At higher temperatures

the model misses both the b2 and the higher order terms. This behavior is rather

similar to the previously shown comparison regarding lattice data at µB = 0 .
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The analysis can be further simplified by “switching off” the attraction term,

i.e. letting a = 0. In this EV-HRG model one has

b1(T ) = 2
φB(T )

T 3
, b2(T ) = −4 [bφB(T )]

φB(T )

T 3
, (7.17)

b3(T ) = 9 [b φB(T )]2
φB(T )

T 3
, b4(T ) = −64

3
[b φB(T )]3

φB(T )

T 3
, (7.18)

i.e. the alternating sign structure seen in lattice data is obtained analytically!

By adjusting the baryon-baryon EV parameter to a smaller value, b ' 1.07 fm3

(rB = 0.40 fm), the lattice data is well reproduced up to T ' 185 − 190 MeV,

simultaneously for all four coefficients. This preliminary study clearly illustrates

the potential of lattice QCD observables at imaginary chemical potential to con-

strain properties of the hadron-hadron interactions in high-temperature QCD.
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Chapter 8

Multi-component quantum

statistical van der Waals equation

Useful applications of the quantum statistical VDW equation were illustrated in

previous two chapters. At the same time, all these applications have been limited

to a single-component case: the VDW parameters a and b for all particle pairs

in a (sub)system must be identical. A multi-component generalization opens

up more applications. One example is asymmetric nuclear matter, which could

be described as a two-component VDW mixture of protons and neutrons. The

multi-component formulation will also allow to take into account the formation

and interaction of nucleonic clusters (light nuclei) in the nuclear matter. Finally,

the flavor-dependent VDW interactions discussed in the previous chapter, can

naturally be modeled in such a framework.

In this chapter a general formalism of the VDW model, with both repulsive and

attractive interactions, for the multi-component system of particles is introduced.

This new formalism includes the quantum statistical effects. It is developed in a

similar fashion to the single-component VDW fluid in Chapter 66. At the same

time, it allows to specify arbitrary attraction and repulsion parameters for each

pair of particle species. Thus, all previously considered EV/VDW models follow

as different partial cases of this formalism.
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8.1 Canonical ensemble formulation

The classical multi-component system with VDW interactions can be defined

within the CE in terms of the following pressure function:

p(T, n1, . . . , nf ) =
∑
i

T ni

1−
∑

j b̃ji nj
−
∑
i,j

aij ni nj , (8.1)

where ni is the particle density for ith species (i = 1, . . . , h) and T is the system

temperature. Parameters aij and b̃ji in Eq. (8.18.1) correspond to the VDW attrac-

tive and repulsive interactions, respectively. The first term in Eq. (8.18.1) coincides

with the pressure of the “Crossterms” EV model, that is Eq. (2.162.16) in Chapter 22.

The second term in Eq. (8.18.1) gives the negative contribution to the CE pressure

due to attractive interactions between all pairs of particles.

A starting point for further steps is a construction of the free energy

F (T, V, {Ni}). Solving the differential equation p = −(∂F/∂V )T,{Ni} for F one

obtains

F (T, V, {Ni}) =
∑
i

F id
i (T, V −

∑
j

b̃jiNj, Ni) −
∑
i,j

aij
NiNj

V
. (8.2)

A function F id
i (T, V,Ni) is the free energy of a classical (Boltzmann) ideal gas for

particle species i. It is given by Eq. (5.55.5).

Expressions (8.18.1) and (8.28.2) do not include the effects of quantum statistics. To

include these effects it is assumed that free energies F id
i in Eq. (8.28.2) correspond

to the ideal quantum gas expressions (Fermi or Bose). This is done in a clear

analogy to the single-component quantum statistical VDW fluid in Chapter 66.

Such a procedure satisfies the following properties. It leads to a mixture of the

ideal quantum gases if all b̃ij = 0 and aij = 0. It gives the classical model (8.18.1)

in the regions of the thermodynamical parameters where quantum statistics can

be neglected. Finally, the entropy obtained for the quantum VDW gases is non-

negative and it goes to zero at T → 0.

Using the free energy, one can calculate all other thermodynamical functions in

the CE. Pressure p, total system entropy S and energy E, and chemical potential
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µi for ith particle species are obtained:

p(T, {nk}) ≡ −
(
∂F

∂V

)
T,{Nj}

=
∑
i

pid
i

(
T,
ni
fi

)
−
∑
i,j

aij ni nj , (8.3)

S(T, V, {Nk}) ≡ −
(
∂F

∂T

)
V,{Nj}

= V
∑
i

fi s
id
i

(
T,
ni
fi

)
, (8.4)

E(T, V, {Nk}) ≡ F + TS = V
∑
i

fi ε
id
i

(
T,
ni
fi

)
− V

∑
i,j

aij ni nj , (8.5)

µi(T, {nk}) ≡
(
∂F

∂Ni

)
T,V,{Nj 6=i}

= µid
i

(
T,
ni
fi

)
+
∑
j

b̃ij p
id
j

(
T,
nj
fj

)
−
∑
j

(aij + aji)nj , (8.6)

where

fi ≡ 1−
∑
j

b̃jinj, (8.7)

and where pid
i , sid

i , εid
i , and µid

i are the ideal quantum gas expressions for the CE

pressure, entropy density, energy density, and chemical potential for ith particle

species, respectively. They are given as functions of temperature and particle

number density.

8.2 Grand canonical ensemble formulation

Let us introduce the notations

p∗i ≡ pid
i

(
T,
ni
fi

)
, n∗i ≡ nid

i

(
T,
ni
fi

)
, s∗i ≡ sid

i

(
T,
ni
fi

)
, µ∗i ≡ µid

i

(
T,
ni
fi

)
.

(8.8)

The following equation follows from the last relation in (8.88.8) due to the thermo-

dynamical equivalence of the CE and GCE in the thermodynamical limit:

ni
fi

= nid
i (T, µ∗i ) , i = 1, . . . , h , (8.9)
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where nid
i (T, µ∗i ) is the GCE ideal gas density at temperature T and chemical

potential µ∗i . Equation (8.98.9) can be rewritten as the system of linear equations

for particle densities ni:∑
j

(δij + b̃ji n
∗
i )nj = n∗i , i = 1, . . . , h . (8.10)

Equations (8.98.9) and (8.108.10) imply that ni ≡ ni(T, {µi}). From above equations

one also finds:

p∗i = pid
i (T, µ∗i ) , n∗i = nid

i (T, µ∗i ) , s∗i = sid
i (T, µ∗i ) . (8.11)

Therefore, the GCE pressure reads

p(T, {µi}) =
∑
i

p∗i −
∑
i,j

aij ni nj . (8.12)

The GCE pressure p(T, {µi}) can be calculated once all µ∗i have been determined.

Indeed, the calculations of p∗i and n∗i are straightforward, while ni can be recovered

by solving the system of linear equations (8.108.10). Finally, substituting p∗i and ni

into (8.128.12) one obtains the pressure. All other thermodynamical functions in the

GCE are obtained from p(T, {µi}) and its partial derivatives.

The system of equations for µ∗i reads

µ∗i +
∑
j

b̃ij p
∗
j −

∑
j

(aij + aji)nj = µi , i = 1, . . . , h . (8.13)

In general, this system of equations has to be solved numerically. In the present

work this system is solved using the Broyden’s method. If multiple solutions of

equations (8.138.13) are found then the solution with the largest pressure should be

taken according to the Gibbs criterium.

The GCE entropy and energy densities are calculated from the corresponding
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partial derivatives of the pressure:

s(T, {µi}) ≡
∂p

∂T
=
∑
i

fi s
∗
i , (8.14)

ε(T, {µi}) ≡ T

(
∂p

∂T

)
{µj}

+
∑
i

µi

(
∂p

∂µi

)
T,{µj 6=i}

− p =
∑
i

fi ε
∗
i −

∑
ij

aij ni nj ,

(8.15)

where ε∗i = εid
i (T, µ∗i ).

Three applications are considered in order to illustrate the above formalism

for the multi-component VDW system.

8.3 Asymmetric nuclear matter as a VDW mix-

ture of protons and neutrons

Symmetric nuclear matter was considered in Chapter 66 within the single-

component Fermi-Dirac VDW equation for nucleons. Let us consider here a more

general case of an asymmetric nuclear matter. The thermodynamic equilibrium

in such system can be specified by the temperature, T , the proton density, np,

and the neutron density, nn. The two-component Fermi-Dirac VDW equation for

protons and neutrons then reads

p(T, np, nn) = pid
p

(
T,
np
fp

)
+ pid

n

(
T,
nn
fn

)
− app n2

p − apn np nn − anp nn np − ann n2
n, (8.16)

where fp = 1 − b̃pp np − b̃np nn and fn = 1 − b̃pn np − b̃nn nn. pid
p(n) is the ideal

gas pressure function for protons (neutrons), which includes the spin degeneracy

factors dp = dn = 2. Isospin symmetry is assumed. This implies mp = mn ≡
mN ' 938 MeV/c2 and b̃pp = b̃nn, b̃pn = b̃np, app = ann, and apn = anp. The

model is determined by four interactions parameters: b̃pp, b̃pn, app, and apn. These

correspond to the isospin-dependent nucleon-nucleon interactions.

It is useful to characterize the asymmetry of the nuclear matter by the proton

fraction y = np/(np + nn), and the total nucleon density by nN = np + nn.



100 Chapter 8. Multi-component quantum statistical van der Waals equation

The y takes values between 0 and 1. The value y = 1/2 corresponds to the

symmetric nuclear matter, i.e. np = nn. In this case the Eq. (8.168.16) reduces to a

single-component VDW equation for nucleons,

p(T, nN , y = 1/2) = pid
N

(
T,

nN
1− bNN nN

)
− aNN n2

N , (8.17)

where the nucleon ideal gas pressure pid
N now contains the spin-isospin nucleon

degeneracy factor dN = 4, and where

aNN =
app + apn

2
and b̃NN =

b̃pp + b̃pn
2

. (8.18)

Equation (8.178.17) coincides with Eq. (6.26.2) used in Chapter 66 to describe symmetric

nuclear matter. The parameters aNN and b̃NN are fixed by the properties of the

nuclear ground state: aNN ' 329 MeV fm3 and b̃NN ' 3.42 fm3 (see Section 6.26.2

for details). In this section these aNN and b̃NN values are preserved. At the same

time, the apn/app and b̃pn/b̃pp ratios are treated as free parameters. Variations in

these ratios correspond to different scenarios for the isospin dependence of the

nucleon-nucleon potential.

The nuclear symmetry energy S(n) is an observable sensitive to the isospin part

of nucleon-nucleon interactions. It characterizes the dependence of the energy per

nucleon E/A ≡ ε/nN−mN on the proton fraction y. In the widely used parabolic

approximation the E/A is

E/A (n, y) ≈ E/A (n, y = 1/2) + 4S(n) (y − 1/2)2. (8.19)

The symmetry energy at saturation density is defined as

J ≡ S(n0) =
1

8

∂2(E/A)

∂y2

∣∣∣∣
nN=n0, y=1/2

, (8.20)

and it roughly corresponds to the difference in energy per nucleon at nN =

n0 ' 0.16 fm−3 between pure neutron matter (y = 0) and symmetric nuclear

matter (y = 1/2).

Dependence of J on different values of the apn/app and b̃pn/b̃pp ratios is shown
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Figure 8.1: Dependence of the symmetry energy J on the ratio b̃pn/b̃pp of the
repulsive VDW parameters for three different values of the ratio apn/app of the
attractive VDW parameters. Both ratios characterize the difference in VDW
interactions between the proton-neutron and proton-proton channels.

in Fig. 8.18.1. A conservative empirical range J ' 25 − 35 MeV suggested in

Ref. [163163] is depicted by the shaded area. In the fully symmetric scenario, i.e.

for app = apn = aNN and b̃pp = b̃pn = b̃NN , the value of symmetry energy

J ' 18 MeV underestimates significantly the empirical estimates. In this case

the total symmetry energy value is attributed solely to the decrease of the spin-

isospin degeneracy factor, from 4 in symmetric nuclear matter to 2 in pure neutron

matter. This mechanism is not sufficient to describe the empirical data. On the

other hand, either the increase in apn or a reduction in b̃pn leads to an improved

agreement with the data.

More stringent restrictions on the values of parameters apn and b̃pn can be

obtained by analyzing additional observables. These may include the density

dependence of the symmetry energy, or the higher order terms of expansion of

the E/A (8.198.19) in terms of the proton fraction y. Such studies will be considered

elsewhere.



102 Chapter 8. Multi-component quantum statistical van der Waals equation

8.4 Mixture of interacting nucleons and α par-

ticles

Modeling of the nuclear matter should be extended by the inclusion of light nuclei.

As a simplest example let us consider a mixture of nucleons and α particles

for the case of symmetric nuclear matter, i.e. np = nn. Assuming chemical

equilibrium, the only conserved quantity is the baryon number B = NN + 4Nα.

Thus, the numbers of nucleons, NN , and the number of α’s, Nα, are not separately

conserved. The N -α mixture has one independent baryonic chemical potential µ

which regulates the baryonic density n ≡ nN + 4nα. The chemical potentials of

nucleons and alphas are, respectively, µN = µ and µα = 4µ.

The pressure of the system reads

p = pid
N(T, µ∗N) + pid

α (T, µ∗α)− aNN n2
N − aNα nNnα − aαN nαnN − aαα n2

α ,

(8.21)

where

pid
N(T, µ∗N) =

gN
6π2

∫ ∞
0

dk k4√
m2
N + k2

[
exp

(√
m2
N + k2 − µ∗N

T

)
+ 1

]−1

, (8.22)

pid
α (T, µ∗α) =

gα
6π2

∫ ∞
0

dk k4√
m2
α + k2

[
exp

(√
m2
α + k2 − µ∗α
T

)
− 1

]−1

, (8.23)

with mN
∼= 938 MeV and gN = 4, and mα

∼= 4mN − 28.3 MeV and gα = 1. The

α-particle mass explicitly incorporates the empirically known binding energy of

the α-particle, equal to about 28.3 MeV.

The system of equations (8.138.13) for µ∗N and µ∗α at given T and µ reads

µ∗N = µ − b̃NN p
∗
N − b̃Nα p

∗
α + 2 aNN nN + (aNα + aαN)nα , (8.24)

µ∗α = 4µ − b̃αN p
∗
N − b̃αα p

∗
α + 2 aαα nα + (aαN + aNα)nN , (8.25)

and it is solved numerically.

The VDW parameters which reproduce properties of the nuclear ground state
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are employed for nucleons (see Chapter 66):

aNN = 329 MeV fm3 and b̃NN = 3.42 fm3. (8.26)

In this illustrative study we neglect attractive VDW interactions involving

α-particles, i.e

aαα = aαN = aNα = 0, (8.27)

but we do include repulsive eigenvolume interactions between α-α and α-N pairs.

The eigenvolume parameter of the α-particle is taken to be

b̃αα = 16 fm3, (8.28)

which corresponds to an effective hard-core radius of rα ' 0.98 fm. The cross

terms are calculated according to (2.152.15) and (2.172.17). This gives

b̃αN ' 13.45 fm3 and b̃Nα ' 2.87 fm3. (8.29)

The addition of α particles to the model does not lead to significant changes in

the phase diagram of nuclear matter. The phase diagram is very similar to the one

obtained previously for the purely nucleonic system (see Figure 6.26.2 in Chapter 66).

There is a slight change in the location of the CP of nuclear matter: the critical

temperature Tc increases from 19.68 MeV to 19.89 MeV, and the critical baryon

density nc increases from 0.0723 fm−3 to 0.0734 fm−3 (see Table 8.18.1). The mass

fraction of α-particles, Xα = 4nα/(nN + 4nα), is approximately 1.4% at the CP.

Tc (MeV) µc (MeV) nc (fm−3) pc (MeV · fm−3) Xα

pure N 19.68 907.67 0.0723 0.525 0
N+α mixture 19.89 907.57 0.0734 0.562 0.014

Table 8.1: Thermodynamical properties of the mixture of interacting nucleons
and α-particles at the critical point (CP). The comparison with the purely nu-
cleonic matter (Chapter 66) is shown.

The behavior of α mass fraction Xα is not trivial. To illustrate this, we show

the dependence of Xα on the baryon chemical potential µ for three different
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Figure 8.2: Dependence of the α mass fraction Xα on the baryon chemical
potential µ for three different isotherms. The dashed red line corresponds to
T = 10 MeV, below the critical temperature. The solid black line corresponds to
the critical isotherm T = Tc ' 19.89 MeV. The dash-dotted blue line corresponds
to T = 25 MeV, above the critical temperature.

isotherms (Figure 8.28.2).

The dashed red line depicts the isotherm T = 10 MeV below the critical

temperature. The Xα increases smoothly with chemical potential until reaching

the µ = µmix point of the liquid-gas coexistence curve. At this point, nuclear

matter undergoes the first-order phase transition from a relatively dilute gas of

nucleons and α particles into a dense liquid composed mainly of nucleons. The

α mass fraction drops orders of magnitude at this point. This is caused by the

repulsive EV interactions between nucleons and α particles, which suppress the

bigger α particles in dense nuclear matter. Note that metastable parts of the

T = 10 MeV isotherm, which also exist, are not shown in Fig. 8.28.2.

The behavior of Xα at the critical isotherm T = Tc (solid black line in Fig. 8.28.2)

is qualitatively similar. The Xα undergoes a rapid but continuous drop in the

vicinity of the CP. This correlates with a rapid increase of the baryon density

with µ near CP.

Finally, the isotherm T = 25 MeV above the critical temperature is shown in

Fig. 8.28.2 by the dash-dotted blue line. The µ-dependence of Xα shows a broad
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maximum. This maximum approximately corresponds to the crossover region of

the phase diagram (see 6.26.2), where a rapid but smooth increase of the baryon

density with µ takes place.

The example presented in this subsection elucidates the repulsive VDW in-

teractions as a mechanism for cluster dissolution at high baryon densities. This

conclusion is not new: the EV interactions had previously been used in the RMF

models of nuclear matter for this purpose [183183, 184184, 185185]. More realistic studies of

nuclear matter should take into account the attractive interactions involving the

α particles. The effects related to the Bose-Einstein condensation of α particles

could play a significant role [186186]. Other nuclear clusters such as d, t, etc. should

be included as well. These extensions will be considered elsewhere.

8.5 Flavor-dependent VDW interactions in

HRG and lattice data at µB = 0

As a final example, we consider flavor-dependent VDW interactions in HRG

model in the context of the lattice QCD data. The major influence of the baryon-

baryon VDW interactions on lattice QCD observables was shown in Chapter 77.

Previously we assumed identical VDW interactions for all (anti)baryon pairs. It

was possible to model this simplest scenario within essentially a single-component

quantum statistical VDW model. At the same time, it is evident that different

baryon pairs can have different VDW parameters. In particular, it can be argued

that heavier strange hadrons may have a smaller size, owing to smaller cross

sections involving these particles [187187]. Thermal analysis of the hadron yield

data [172172] also suggests such a possibility.

In this section we include VDW interactions only for (anti)baryon pairs, simi-

larly to Chapter 77. We extend the VDW-HRG model of Chapter 77 by considering

different VDW parameters for non-strange and strange baryons. The VDW pa-

rameters obtained in Chapter 66 from a fit to nuclear ground state are employed

for pairs of non-strange baryons, i.e.

aNS = 329 MeV fm3 and b̃NS = 3.42 fm3. (8.30)
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Figure 8.3: The temperature dependence of (a) χB2 and (b) χB4 /χ
B
2 net baryon

number susceptibilities, as calculated within Id-HRG (dashed black lines), VDW-

HRG with aS = aNS and b̃S = b̃NS (solid blue lines), and VDW-HRG with

aS = aNS/8 and b̃S = b̃NS/8 (dash-dotted orange lines), at zero chemical po-
tential. Lattice QCD results of Wuppertal-Budapest [4141, 4343] and HotQCD [4242]
collaborations are shown, respectively, by symbols and green bands.

At the same time, it is assumed that an effective hard-core radius of strange

baryons is twice smaller than the one for non-strange baryons. This means that

the eigenvolume bS of a strange baryon is 8 times smaller than eigenvolume bNS

of a non-strange baryon. The attractive VDW parameters aNS are also assumed

to be smaller compared to the non-strange ones by a common factor of 8:

aS = aNS/8 ' 41 MeV fm3 and b̃S = b̃NS/8 ' 0.43 fm3. (8.31)

Such a parametrization ensures that the difference in VDW parameters between

strange and non-strange baryons is significant. Thus, it provides a nice illus-

tration for the multi-component VDW formalism. The repulsive cross term co-

efficients, characterizing the EV interactions between strange and non-strange

baryons, are calculated according to Eqs. (2.152.15) and (2.172.17). The attractive cross

term coefficients are calculated as a geometric mean, i.e.

aij =
√
ai aj. (8.32)

This particular mixing rule is motivated by its common use in chemistry [188188,

189189].
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Figure 8.4: The temperature dependence of (a) net-strangeness susceptibility
χS2 and (b) baryon-strangeness correlator ratio CBS = −3χBS11 /χ

S
2 , as calculated

within Id-HRG (dashed black lines), VDW-HRG with aS = aNS and b̃S = b̃NS

(solid blue lines), and VDW-HRG with aS = aNS/8 and b̃S = b̃NS/8 (dash-dotted
orange lines), at zero chemical potential. Lattice QCD results of Wuppertal-
Budapest [4141, 4343] and HotQCD [4242] collaborations are shown, respectively, by
symbols and green bands.

The temperature dependencies of the net baryon susceptibilities χB2 and χB4 /χ
B
2

are calculated within ideal HRG (Id-HRG), VDW-HRG with aS = aNS and

b̃S = b̃NS, and VDW-HRG with aS = aNS/8 and b̃S = b̃NS/8, at µ = 0. These

dependencies are compared to the lattice QCD data of Wuppertal-Budapest [4141]

and HotQCD [4242] collaborations in Fig. 8.38.3. The scenario with weaker VDW

interactions involving strange baryons yields an improved agreement with the

lattice data. This is primarily caused by the decreased overall effect of the repul-

sive EV interactions.

The strangeness related observables are expected to be more sensitive to

modifications involving VDW interactions of strange baryons. We consider

the net-strangeness susceptibility χS2 and the baryon-strangeness correlator ra-

tio CBS = −3χBS11 /χ
S
2 to demonstrate this. The latter observable was suggested

in Ref. [190190] as being particularly sensitive and useful diagnostic for the QCD

matter. The calculation results for these two observables are shown in Fig. 8.48.4.

They are compared with corresponding lattice results of Wuppertal-Budapest [4141]

and HotQCD [4242] collaborations.

The standard VDW-HRG model, one with identical VDW parameters for non-

strange and strange baryons, does not improve the agreement with the lattice
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data compared to the Id-HRG, as already discussed in Chapter 77. In fact, the

agreement becomes significantly worse at high temperatures. In the scenario

with smaller VDW interactions for strangeness, on the other hand, the existing

agreement of Id-HRG is preserved, as seen from Fig. 8.48.4a.

None of the considered scenarios describe well the lattice data for

CBS (Fig. 8.48.4b): The lattice data are underestimated by all three models. The

two VDW-HRG models do show a characteristic inflection point in temperature

dependence of the CBS, which seems to be present in the lattice data as well.

The reduction of VDW interactions for strange baryons yields improved agree-

ment with lattice data. The underestimation of CBS in HRG models may indi-

cate the hitherto undiscovered strange hadrons. Supplementing the conventional

HRG with additional, experimentally uncharted strange hadrons predicted by

quark model calculations and observed in lattice QCD spectrum calculations was

shown to improve agreement between lattice and Id-HRG model for CBS [191191].

Similar effect can be expected for the VDW-HRG based models.



Chapter 9

Pure glue initial state scenario

This chapter deals with the search for new exotic states of strongly interacting

matter, and is loosely connected to other parts of this work. Thus, this part can

be read on its own. It describes signatures of the purely gluonic initial state of

matter created in high-energy hadron and heavy-ion collisions. Such a scenario

was recently proposed in Refs. [3131, 3232]. Here the results of Refs. [192192, 193193, 194194]

are summarized.

9.1 Pure glue scenario

The high-energy proton-proton, proton-nucleus, and nucleus-nucleus collisions

create extremely excited QCD matter. Proper understanding of the early stage

dynamics of these collisions is of great importance in deducing the QCD matter

properties from the corresponding experiments. One of the central questions

is how the initially highly non-equilibrium system evolves to a state of apparent

partial thermodynamic equilibrium at later stages of nuclear collisions. Presently,

the community favors a paradigm of an extremely rapid (teq less than 0.3 fm/c)

thermalization and chemical saturation of soft gluons and light quarks, their

masses and momenta emerging from the decay of coherent massive color flux

tubes of strings, which are formed in the primary hadron-hadron collisions. There

exist several models which describe the initial state in terms of non-equilibrium

parton cascades [2323, 195195], minijets [196196], color glass condensate [197197], coherent

chromofields [198198, 199199] etc.
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The large gluon-gluon cross sections lead to the idea [200200] that the gluonic

components of colliding nucleons interact more strongly than the quark-antiquark

ones. As demonstrated in Ref. [201201], strong non-equilibrium effects in the gluonic

sector persist only for a short time ∼ 1/Qs, where Qs ' 1 − 2 GeV is the so-

called saturation scale [202202], but at later times the system reaches a state of a

partial thermodynamic equilibrium. The two-step equilibration scenario of the

quark-gluon plasma (QGP) was proposed in [203203, 204204, 205205]. It was assumed

that the gluon thermalization takes place at the proper time τg < 1 fm/c and the

(anti)quarks equilibration occurs at τth > τg. The estimates of Ref. [2323] show that

τth can be of the order of 5 fm/c. Later, such a scenario for heavy-ion collisions

was considered by several authors, see e.g. [3333, 206206, 207207, 208208, 209209, 210210, 211211, 212212,

213213, 214214].

Recently the pure glue scenario for the initial state of Pb+Pb collisions at

Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) ener-

gies was proposed in [3131, 3232]. Following this idea, let us describe qualitatively

the evolution of the idealized purely gluonic matter created in relativistic nuclear

collisions.

According to the lattice QCD calculations [215215], the quarkless purely gluonic

matter should undergo a first-order phase transition at the critical temperature

Tc ' 270 MeV. At this temperature the deconfined pure glue matter transforms

into the confined state of the pure Yang-Mills theory, namely into a glueball

fluid. Let us assume now that a hot thermalized gluon fluid, containing no

(anti)quarks, is created in the initial stage of nuclear collision. As the system

cools and expands, it will reach a mixed phase region at T = Tc. Only after

the initial glue plasma has completely transformed into the glueball fluid will the

system cool down further. The heavy glueballs produced during the hadronization

process of a pure glue plasma form a glueball gas. It was shown recently that

lattice data below Tc is described well by a Hagedorn-Glueball gas with mass-

dependent EV interactions [216216]. The heavy glueballs will later evolve into the

lighter states, presumably via a chain of two-body decays, and finally decay into

hadronic resonances and light hadrons. The evolution of the temperature of the

system in such a scenario is sketched in the left panel of Fig. 9.19.1.

Of course, in a more realistic scenario one should take into account that some
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Figure 9.1: Left panel: Schematic picture of the temperature evolution in a
high-energy collision in the pure glue scenario with Yang-Mills first-order phase
transition from gluons to glueballs. The picture is contrasted with evolution
within conventional scenario of (2+1)-flavor fully equilibrated QCD. Right panel:
Transition temperature in the net-baryon free QCD matter versus the effective
number of quark flavors. The figure is adapted from Ref. [3232].

quarks will be produced already before and during the first-order phase transi-

tion. The dynamics of quark production will actually influence the nature of the

transition: with increasing number of quark degrees of freedom the temperature

of transition will decrease, and at some point the first-order phase transition will

instead become a crossover. This is schematically shown in the right panel of

Fig. 9.19.1. The realization of particular scenario certainly depends on the energy

and size of the colliding objects. Technically, this scenario can be modeled by

introducing the time-dependent effective numbers of quark degrees of freedom,

and such a framework is employed in this work to study signatures of the pure

glue initial state.

9.2 Entropy production in chemically non-

equilibrium QGP

In this subsection the evolution of the initially pure glue matter is considered in a

framework of the simplest analytical dynamical model: the ideal one-dimensional

scaling (Bjorken) hydrodynamics [217217].

It is assumed that a thermally (but not necessarily chemically) equilibrated
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QGP is formed initially in a nuclear collision. Model parameters typical for cen-

tral Pb+Pb collisions at the LHC energy of
√
s
NN

= 2.76 TeV are used, where the

Bjorken-type longitudinally boost-invariant model is expected to provide reason-

able description of the early stage dynamics. The equation of state is assumed

to be the one of an ideal gas of massless quarks and gluons at zero chemical po-

tential. The deviations from chemical equilibrium for quarks and antiquarks are

described by introducing the corresponding (anti)quark fugacity factor λq. At

the same time, the deviations from chemical equilibrium for gluons are neglected,

assuming that their fugacity is equal to unity during the whole process of the

hydro evolution.

This present setup is the simplest possible dynamical description of a pure glue

initial scenario which nevertheless allows to obtain analytically some qualitative

features which are expected to hold within a more realistic framework. The

equation of state in the model reads

ε = 3P = σT 4, σ =
π 2

30

(
16 + λq

21

2
Nf

)
, (9.1)

where T is the temperature and Nf = 3 is the number of quark flavors. The

first and second terms in the last equation describe, respectively, the contribu-

tions of gluons and quark-antiquark pairs to the energy density. The parameter

λq changes from zero for the pure gluonic system to unity for chemically equili-

brated QGP. The solution of the Bjorken hydrodynamical equation reads

ε = ε(τ0)
(τ0

τ

)4/3

, (9.2)

where the parameter τ0 corresponds to the initial proper time of the hydrody-

namic expansion. The solution (9.29.2) is not new and is identical to the standard

chemicallly equilibrated QGP case. The crucial new element, however, is the

explicit time dependence of the equation of state, characterized by the time-

dependent fugacity factor λq(τ). In principle, the τ -dependence of the λq can be

determined by solving additional rate equations [3333, 208208, 213213]. The qualitative



9.2 Entropy production in chemically non-equilibrium QGP 113

analysis, however, is made simpler by introducing the analytic parametrization

λ(τ) = 1 − exp

(
τ0 − τ
τ∗

)
, (9.3)

where τ∗ is the model parameter characterizing the quark chemical equilibration

time. Calculations from different authors give different estimates for τ∗ ranging

from τ∗ ∼ 1 fm/c [214214] to τ∗ ∼ 5 fm/c [2323]. One should have in mind, however,

that this parameter may depend on the combination of nuclei and the bombard-

ing energy. In the present work the values of τ∗ are varied between 0 (instant

equilibration), 1 fm/c (fast equilibration), 5 fm/c (moderate equilibration), and

10 fm/c (slow equilibration).

Introducing the (absolute) quark chemical potential, µq = T lnλq, and using

thermodynamic relations, one can write down the following expression for the

entropy density of the chemically undersaturated QGP

s ' 32π 2

45
T 3

[
1 + λq

(
21

32
− 0.16 lnλq

)
Nf

]
. (9.4)

Within the Bjorken model the total entropy per unit space-time rapidity η =

tanh−1(z/t) can be expressed as

dS(τ)

dη
= πR2

As(τ)τ, (9.5)

where RA is the geometrical radius of the colliding nuclei. Utilizing the Bjorken

solution (9.29.2) and the time-dependent equation of state one can show that, for

a monotonically increasing λq(τ), the sτ is also an increasing function of τ , i.e.

sτ ≥ s0τ0, where the equality holds only in the equilibrium limit, λq = 1. This

fact entails a non-trivial conclusion: the total entropy per unit space-time ra-

pidity is not conserved. Rather, it is gradually increasing during the system

expansion from the pure glue initial state. This increase occurs within the ideal

hydrodynamics, in absence of viscosity effects, and it is only attributed to an

increasing number of degrees of freedom.

In order to illustrate this effect, the calculation results for central Pb+Pb col-

lisions at LHC are performed. The initial energy density at τ0 = 0.1 fm/c is
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Figure 9.2: The τ -dependence of (a) the temperature and (b) the entropy per unit
space-time rapidity of the chemically undersaturated QGP (uQGP) produced in
central Pb+Pb collisions (

√
s
NN

= 2.76 TeV). The different curves correspond to
different values of the quark chemical equilibration time τ∗.

fixed such that final dS(τ)
dη

at Tf ' 155 MeV corresponds to the measured pion

yield [8585] (see Ref. [192192] for more details). The temporal evolution of the tem-

perature and the entropy per unit space-time rapidity is exhibited in Fig. 9.29.2 for

different values of τ∗. One can see that temperature of the chemically undersat-

urated QGP is noticeably higher than in the equilibrium scenario, especially at

τ . τ∗. The total entropy per unit space-time rapidity gradually increases and

reaches the freeze-out value during the time interval ∆τ ∼ τ∗. Results show that

about 25% of the total entropy is generated during the hydrodynamic expansion.

The total entropy increase in insensitive to the value of τ∗ while the characteristic

time of this increase process is of the order of τ∗.

It should be stressed that this effect of entropy production is present in ideal

hydrodynamics and it is attributed to increasing number of degrees of freedom.

This is different from the case of entropy production via dissipative processes

which are determined by transport coefficients and usually modeled by the viscous

hydrodynamics. The inclusion of chemically nonequilibrium effects may require

modification of the viscosity coefficients extracted from the fit of collective flow

observables [218218, 219219].
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9.3 Electromagnetic probes of a pure glue initial

state at LHC

A crucial test of the pure glue initial scenario may be provided by the electro-

magnetic probes, i.e., by emission of thermal photons and dileptons.

A proper comparison with the experimental data at LHC will require a more

realistic setup. For this reason we will now use the longitudinally boost-invariant

(2+1)-dimensional hydrodynamics. Its equations are written as

∂T µν

∂xν
= 0 , (9.6)

where

T µν = (ε+ P )uµuν − Pgµν (9.7)

is the energy-momentum tensor, uµ is the four-velocity, ε and P are the local

rest-frame energy density and pressure, respectively, and gµν is the metric tensor

with g00 = 1 in Cartesian coordinates (t, x, y, z), with z oriented along the beam

axis.

We use the the curvilinear light-cone coordinates (τ, x, y, η)11. Then, the fluid’s

four-velocity takes the form uµ = γ⊥(cosh η,v⊥, sinh η), where v⊥ is the trans-

verse velocity in the symmetry plane z = 0 and γ⊥ = (1− v2
⊥)−1/2 stands for the

transverse Lorentz factor.

A more realistic lattice-based equation of state for chemically non-equilibrium

QCD matter is also employed. More specifically, the pressure P (T, λq) is taken

as linear interpolation between the limiting pure glue (λq = 0) and full QCD

(λq = 1) cases, i.e.

P (T, λq) = λq PQCD(T ) + (1− λq)PYM(T )

= PYM(T ) + λq [PQCD(T )− PYM(T )], (9.8)

where PQCD(T ) and PYM(T ) are, correspondingly, the lattice QCD equations of

1The τ =
√
t2 − z2 is the proper time and η = 1

2 ln t+z
t−z is the space-time rapidity
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Figure 9.3: Temperature dependence of the scaled pressure p/T 4 obtained in
lattice QCD calculations of the Wuppertal-Budapest collaboration for the (2+1)-
flavor QCD [1212] (red line) and for the Yang-Mills matter [215215] (blue line). The
black dash-dotted line depicts the difference between the pressure in full QCD
and in Yang-Mills theory.

state for (2+1)-flavor full QCD [1212] and purely gluonic Yang-Mills (YM) the-

ory [215215]. These quantities are depicted in Fig. 9.39.3. It follows from (9.89.8) that

PYM(T ) plays the role of a partial pressure of gluons in full QCD within this

model. Also shown in Fig. 9.39.3 is the difference PQCD(T ) − PYM(T ), which is

present in Eq. (9.89.8) as a term proportional to λq. By construction, the EoS con-

tains a first-order phase transition at T = 270 MeV for all λq < 1. This phase

transition gets weaker and weaker as λq approaches unity.

The parametrization (9.39.3) for the time dependence of the (anti)quark fugacity

λq is preserved, however, it is now assumed that the temporal argument in (9.39.3)

now corresponds to the local proper time τP of a fluid cell element, which is

determined dynamically as the solution to the equation

uµ∂µτP (τ, x, y, η) = 1 , τP (τ0, x, y, η) = τ0 , (9.9)

where the parameter τ0 corresponds to initial longitudinal proper time of the

hydrodynamic expansion. This equation is solved simultaneously with the hy-

drodynamical equations of motion. In general, the τP values are found to be
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Figure 9.4: The contour plots of the quark fugacity (a) and the temperature (b) in
the x−τ plane for the 0–20% most central Pb+Pb collisions at

√
sNN = 2.76 TeV.

The solid curves show contours of λq and T . The dark red region labeled by
FOPT corresponds to the mixed-phase region of the first-order phase transition
at T = Tc ' 270 MeV. The dash-dotted curves in (b) depict isotherms calculated
for equilibrium QCD matter with λq = 1.

smaller than the ’global’ time τ due to the presence of non-zero transverse flow.

The numerical solution to the hydro equations is obtained with the help of

the vHLLE hydrodynamic code [2828], modified in order to include the effects of

chemical non-equilibrium as described above (see Ref. [193193] for more details).

The initial conditions are fixed within the event-averaged Glauber Monte Carlo

model as described in Refs. [220220] and [193193].

The contour plot of the quark fugacity λq in the x−τ plane is given in Fig. 9.49.4a.

The dashed line shows the isotherm T = 155 MeV which presumably corresponds

to the hadronization hypersurface. One can see that typical lifetimes of the

deconfined phase in the considered reaction do not exceed 10 fm/c. One also

observes that deviations from chemical equilibrium (λq . 0.9) may survive up to

the hadronization stage. The contour plot of the temperature in the plane (x, τ)

is shown in the right panel of Fig. 9.49.4. The chemically undersaturated matter

has fewer effective degrees of freedom, hence it is much hotter as compared to

the equilibrium case, especially at the earlier times.
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9.3.1 Photons

The emission of direct22 photons from expanding matter created in relativistic

A+A collisions has several components [221221, 222222]: a) ’prompt’ photons from bi-

nary collisions of initial nucleons, b) ’thermal’ photons from the high-temperature

deconfined phase, c) direct photons from the low-temperature hadronic phase.

The contribution of prompt photons becomes dominant at large transverse mo-

menta. Unfortunately, this greatly reduces the sensitivity of photon pT -spectra

to chemical nonequilibrium effects.

Within the leading order approximation in the strong coupling constant, the

following sources of thermal photon production in the deconfined matter are

dominant [223223]:

1) QCD Compton scattering (A+ g → A+ γ, where A = q, q̄),

2) quark-antiquark annihilation (q + q̄ → g + γ),

3) bremsstrahlung reactions (A+B → A+B+γ, where A = q, q̄ and B = q, q̄, g),

4) ’off-shell’ qq̄–annihilation with rescatterings of (anti)quark on another parton

in the initial state33. It is clear that photons can not be produced in a pure glue

matter without charged (anti)quark partons.

We denote the invariant photon production rate in the chemically undersatu-

rated QGP as Γ(Ẽ, T, λ), where Ẽ is the photon energy in the rest frame of the

fluid element. In our case of a boost invariant (2+1)–dimensional expansion the

invariant yield of thermal photons is calculated as

dN th
γ

d2pTdY
=

∫
d 2xT

+∞∫
τ0

dτ τ

+∞∫
−∞

dη Γ(Ẽ, T, λ) θ(T − Tf ) , (9.10)

where pT is the transverse momentum of the photon, Y is its longitudinal rapidity,

Ẽ = γ⊥ pT
[

cosh(Y −η)−vx cosϕ−vy sinϕ
]

where ϕ is the angle between pT and

the reaction plane, and Tf is the minimum (cutoff) temperature, i.e. radiation

from fluid cells with T > Tf is considered only.

2Direct photons are the ’non-cocktail’ photons, i.e. those which are not produced in decays
of π0, η, ρ, η′, and φ mesons in the final stage of the reaction.

3According to Ref. [224224], the next-to-leading order corrections to the rate of photon produc-
tion in equilibrium QGP do not exceed 20%.
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Figure 9.5: Spectra of (a) thermal and (b) direct photons in the 0–20% and
20-40% central Pb+Pb collisions at

√
s
NN

= 2.76 TeV calculated with the cutoff
temperature of 155 MeV. The dashed, dash-dotted, and solid curves correspond
to τ∗ = 0, 1, and 5 fm/c, respectively. Dots with error bars show the experimental
data [225225].

For Γ(Ẽ, T, λ) the parametrization QGP-UA [193193] (based on [223223]) of the

photon production rate in a chemically nonequilibrium QGP is applied. This

parametrization takes into account the suppression of the thermal photon emis-

sion rates in undersaturated QGP via the multiplication of the equilibrium rates

with the corresponding (anti)quark fugacity factors.

The left panel of Figure 9.59.5 shows the results for the thermal photon spectrum

in the 0–20% and 20–40% central Pb+Pb collisions at
√
s
NN

= 2.76 TeV calcu-

lated with the cut-off temperature of Tf = 155 MeV. The low-pT spectrum looks

very similar in all scenarios, while there is a sizable difference at high pT . The

spectra of direct photons, i.e. those that additionally include the prompt pho-

tons, is depicted in the right panel of Fig. 9.59.5. The inclusion of prompt photons

makes the difference between different scenarios at high pT rather small.

The direct photon production in Pb+Pb collisions at LHC has been consid-

ered in various theoretical models ([221221, 226226, 227227, 228228]. As noted in Ref. [225225],

the present uncertainties in the heavy-ion photon data at LHC do not allow to

conclusively discriminate between the various scenarios.
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Figure 9.6: Elliptic flow vγ2 of (a) thermal and (b) direct photons as a func-
tion of transverse momentum pT in the 0 − 40% central Pb+Pb collisions at√
s
NN

= 2.76 TeV calculated with the cutoff temperature of 155 MeV. The dashed,
dash-dotted, and solid curves correspond to τ∗ = 0, 1, and 5 fm/c, respectively.
Experimental data are taken from Ref. [229229].

The photon elliptic flow vγ2 (pT ) is calculated by

vγ2 (pT ) =

∫ 2π

0
dϕ dNγ

d2pT dY
cos(2ϕ)∫ 2π

0
dϕ dNγ

d2pT dY

. (9.11)

The photon spectrum, entering this equation includes both thermal and

prompt components. We assume that prompt photons are azimuthally sym-

metric. Therefore, they contribute only to the denominator of (9.119.11) reducing vγ2

at large pT . The results of the calculations of the photon elliptic flow are shown

in Fig. 9.69.6. In the pure-glue scenario the momentum anisotropy is significantly

enhanced for the high-pT thermal photons. As seen from Fig. 9.69.6, the inclusion

of prompt photons notably decreases the effect.

9.3.2 Dileptons

We also analyze spectra of thermal dileptons produced in nuclear collisions at

the LHC energies. It is assumed that dileptons are produced in the qq̄ → e+e−

processes. The additional factor λ2
q is introduced into the dilepton production

rate which takes into account the quark suppression in a chemically nonequilib-

rium QGP. Thus, the rate of thermal dilepton production in the net baryon-free
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Figure 9.7: Invariant mass distribution of thermal dileptons in (a) 0–20% and
(b) 20–40% central Pb+Pb collisions at

√
s
NN

= 2.76 TeV calculated for τ∗ =
0, 1 and 5 fm/c. All results correspond to the cut-off temperature Tf = 155 MeV.

undersaturated QGP is (see details in Ref. [193193])

dN

d4x d4Q
= Cq λ

2
q exp

(
− Qu

T

)
, (9.12)

where Q = p+ + p− is the dilepton total four-momentum, and T and u are,

respectively, the local values of temperature and four-velocity of the medium.

The rate (9.129.12) is obtained in the Boltzmann approximation for the (anti)quark

phase-space distributions and neglects the quark and lepton masses.

The results of calculating the dilepton mass spectrum in 0−20% and 20−40%

central Pb+Pb collisions at
√
s
NN

= 2.76 TeV are shown in Fig. 9.79.7 for the cut-

off temperature Tf = 155 MeV. One can see that the initial quark suppression

leads to a strong reduction of the dilepton yield at M & 2 GeV. Note that we do

not include contributions of hard (Drell-Yan) dileptons [222222] produced in binary

collisions of initial nucleons.

The elliptic flows of thermal dileptons in the same reaction are shown in Fig. 9.89.8

for several values of τ∗. Similar to direct photons we predict a strong enhancement

of the dilepton elliptic flow as compared to the equilibrium scenario (τ∗ = 0).
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Figure 9.8: Same as Fig. 9.79.7 but for elliptic flow of thermal dileptons vdp
2 .

9.4 Collision energy and system-size scan

The presented calculations, as well as their comparison to experimental data,

show that the pure glue initial scenario does not spoil the existing agreement

of hydro simulations with the data at LHC energies. On the other hand, the

effect of initial pure gluodynamic evolution, in particular the first-order phase

transition at T ' 270 MeV, is almost completely washed out in most observables

at LHC energies due to the very long timespan spent in quark production phase.

It is evident that the gluodynamical effects must be more pronounced at lower

collision energies where the initial temperatures are much closer to the critical

temperature Tc = 270 MeV of the deconfinement phase transition in the Yang-

Mills theory.

The optimal experimental laboratory conditions to observe the strong effects of

this first-order phase transition can be simply estimated with the one-dimensional

Bjorken model. We consider at first the two limiting cases: the fully equilibrated

(2+1)-flavor evolution and the pure gluodynamic evolution. The corresponding

equations of state, as before, are taken from the lattice QCD simulations. We

also consider both the heavy-ion (A+ A) and the smaller p+ p systems. Unlike

for LHC energy above, we adopt τ0 = 0.5 fm/c in the present analysis. The initial

entropy density s0 at a given collision energy is estimated by using the available

experimental data on pion multiplicity. The uncertainties of the obtained results

are estimated by varying the transverse radius R, namely from R = (6 − 9) fm
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Figure 9.10: The τ -dependence of the temperature for (2+1)-flavor QCD and
pure SU(3) scenarios in p̄+p collisions at

√
s
NN

= 32 GeV. The uncertainty bands
result from variation of the transverse radius.

The values of the extracted initial temperature for p+ p and A+A are shown

in Fig. 9.99.9. The resulting initial temperature in pure SU(3) case at collision

energies
√
s
NN

. 100 GeV is only slightly above the phase transition temperature

of Tc ' 270 MeV. This especially concerns the p+p collisions. Thus, these

energies look promising for observing the effects of the phase transition in the

pure glue scenario.



124 Chapter 9. Pure glue initial state scenario

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 01 2 0
1 4 0
1 6 0
1 8 0
2 0 0
2 2 0
2 4 0
2 6 0
2 8 0

( a )

c e n t r a l  c e l l

 τ*  =  0  ( F u l l  Q C D )
 τ*  =  1  f m / c
 τ*  =  5  f m / c
 τ*  =  1 0  f m / c
 τ*  =  ∞  ( P u r e  g l u e )

T (
Me

V)

τ  ( f m / c )

H a r d  S p h e r e s  I C ,  R 0  =  0 . 6  f m ,  T 0  =  2 7 3  M e V

- 2 - 1 0 1 20 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

( b )
F O P T

1 5 5
2 0 0

R 0  =  0 . 6  f m ,  T 0  =  2 7 3  M e V
H a r d  S p h e r e s  I C τ *  =  5  f m / c

τ (
fm

/c)

x  ( f m )

5 0
1 0 0
1 5 0

2 0 0
2 5 0
2 7 0
3 0 0

3 5 0
4 0 0

T  ( M e V )

Figure 9.11: The temperature profile of the longitudinally boost invariant (2+1)-
dimensional hydro evolution for pp̄ collisions in the pure glue initial state scenario.
The hard spheres overlap transverse density profile with radius R = 0.6 fm is used
as initial condition. The normalization is fixed in order to yield the initial temper-
ature of 273 MeV in the central cell. (a) The τ -dependence of the temperature in
the central cell for different quark equilibration times: τ∗ = 0 (instant equilibra-
tion), 1 fm/c (fast equilibration), 5 fm/c (moderate equilibration), 10 fm/c (slow
equilibration), and τ∗ →∞ (pure gluodynamic evolution). (b) The temperature
profile in the x− τ plane for τ∗ = 5 fm/c.

This conclusion is supported by more realistic (2+1)-dimensional simulations,

which employ time-dependent fugacity factors and use the interpolated lattice

QCD equation of state, as described earlier. For these simulations we assume a

hard-sphere initial energy density profile with radius R = 0.6 fm. The normal-

ization is fixed in order to yield the initial temperature of 273 MeV in the central

cell, which is slightly above the critical temperature of 270 MeV. Figure 9.119.11a

shows the τ -dependence of the temperature in the central cell for different quark

equilibration times: τ∗ = 0 (instant equilibration), 1 fm/c (fast equilibration),

5 fm/c (moderate equilibration), 10 fm/c (slow equilibration), and τ∗ →∞ (pure

gluodynamic evolution). In the pure gluodynamic scenario, τ∗ →∞, the system

spends a very long time in the mixed phase region. A fast quark equilibration

shortens the time period spend in the mixed phase significantly. Nevertheless,

a significant fraction of system evolution takes place in the mixed phase of the

gluon-glueball deconfinement phase transition even with a presence of a moder-

ately fast quark equilibration (τ∗ = 5 fm/c), as illustrated by Fig. 9.119.11b. Thus,

significant effects of the initial pure glue state on electromagnetic and hadronic

observables are expected for this collision setup.
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These results illuminate the future HESR-collider option with the central

PANDA experiment [230230] detector as an exciting upgrade for FAIR: it looks

potentially promising in the search of even heavier hadrons and glueballs than

previously envisioned, and for new exotic states of matter.
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Chapter 10

Summary

In this thesis the role of hadronic interactions in the hadronic equation of state,

modeled on the basis of the famous van der Waals equation, is studied compre-

hensively. While the VDW equation is not the most conventional choice for nu-

clear/hadronic physics applications, the simplicity of the VDW approach makes it

extremely useful. This framework allows to include the two most basic ingredients

of hadron-hadron interaction: the short-range repulsion, modeled by excluded-

volume corrections, and the intermediate range attractions taken in mean-field

approximation.

The EV aspect of the HRG model has been explored in the literature before,

but rather sparingly. Here a systematic investigation of EV effects on the equa-

tion of state and especially on the thermal fits to hadron yield data was presented.

A hitherto little known, and surprisingly strong sensitivity of the thermal fits to

heavy-ion hadron yield data to the choice of hadron eigenvolumes is uncovered.

It is rooted in the little-explored possibility that different hadron species have

different eigenvolumes. Obtained results challenge the robustness of the chemical

freeze-out temperature and baryochemical potential determination from the ther-

mal fits. At the same time, the extracted values of the entropy per baryon S/A

ratio are found to be robust with regards to this systematic uncertainty of the

HRG model: extracted S/A values are virtually independent of the details of the

modeling of the EV interactions. The Monte Carlo approach to EV interactions

which was introduced in this thesis has allowed to study the simultaneous effects

of EV and of exact charge conservation in HRG for the first time.
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Surprisingly many new aspects and generalizations of the full VDW equation,

containing both attractive and repulsive interactions, were uncovered throughout

this work. These include the GCE formulation, the generalization to quantum

Fermi-Dirac and Bose-Einstein statistics, and extensions to multi-component rel-

ativistic systems with fluctuating numbers of particles. In spite of the great phe-

nomenological value of the VDW model, in particular regarding its applications

in QCD, these textbook level extensions were never discussed before.

The GCE formulation of the VDW equation allows to obtain the structure of

critical fluctuations analytically. The volume-independent ratios of cumulants,

namely the scaled variance, skewness, and kurtosis of particle number fluctua-

tions, are calculated and analyzed. These quantities show rich structures around

the CP. These results are universal for any classical VDW fluid, and they are also

qualitatively consistent with numerical results of various effective QCD theories

containing a CP.

The quantum statistical Fermi-Dirac VDW equation for nucleons is applied to

describe basic properties of symmetric nuclear matter. The VDW parameters a

and b are fixed by reproducing the known properties of the nuclear ground state.

The values a ∼= 329 MeV fm3 and b ∼= 3.42 fm3 are obtained. The resulting model

contains the nuclear liquid-gas phase transition and describes basic nuclear matter

properties. Further improvement in description of nuclear matter properties can

be achieved by considering more involved VDW-like models. This possibility is

also illustrated in the present work. The quantum statistical generalization of the

VDW equation developed in this thesis is quite general, and can be applied for

any fluid. Thus, its applications are not restricted to QCD physics, but may also

find themselves in chemistry and/or industry. These are the next future steps.

A particularly interesting result obtained in this work is a strong connection

between two seemingly disconnected regions of the QCD phase diagram: the

low-temperature, high net baryon density region of nuclear matter, and the high

temperature, zero net baryon density region probed by lattice QCD simulations.

The inclusion of VDW interactions between baryons into HRG leads to qual-

itatively different behavior of many lattice observables in the crossover region

compared to the widely used ideal HRG. In many cases this behavior resembles

closely the lattice data. For instance, the model predicts the drop of the χB4 /χ
B
2
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cumulant ratio for the net baryon number fluctuations in the crossover region,

which is also seen on the lattice. These results suggest that hadrons do not melt

quickly with increasing temperature, as one could conclude on the basis of the

commonly performed ideal HRG model analysis. The VDW-HRG model calcu-

lations at finite chemical potential also imply that the nuclear liquid-gas phase

transition manifests itself into non-trivial fluctuations of the net baryon number

in heavy-ion collisions.

Part of the work was devoted to the search of new exotic states of matter. The

signatures of the purely gluonic state of matter created in heavy-ion collisions

were illustrated in that regard. The hydrodynamical simulations performed in

this work show that about 25% of the total final entropy is generated during

the hydrodynamic expansion of chemically non-equilibrium, initially pure glue

matter. Calculations of photon and dilepton spectra show that existing agreement

of models with the experimental data at LHC is not spoiled in the pure glue

scenario. The obtained results do suggest a possibility to look for the traces of

the chemically non-equilibrium gluon-dominated phase transition in collisions of

small-sized nuclei at energies available at the RHIC.

Author hopes that these developments will be useful for practitioners in dif-

ferent fields, and that new exciting discoveries will be achieved on their basis.



130 Chapter 10. Summary



Bibliography

[1] H. Stoecker and W. Greiner, Phys. Rept. 137, 277 (1986).

[2] P. Koch, B. Muller and J. Rafelski, Phys. Rept. 142, 167 (1986).

[3] D. Hahn and H. Stoecker, Nucl. Phys. A 476, 718 (1988).

[4] L.P. Csernai, Introduction to relativistic heavy ion collisions, (Wiley, New

York, 1994).

[5] C. Y. Wong, Introduction to high-energy heavy ion collisions, (World Sci-

entific, Singapore, 1994).

[6] W. Florkowski, Phenomenology of Ultra-Relativistic Heavy-Ion Collisions,

(World Scientific, Singapore, 2010).

[7] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).

[8] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).

[9] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz and K. K. Szabo, Nature 443,

675 (2006) [hep-lat/0611014].

[10] S. Durr et al., Science 322, 1224 (2008) [arXiv:0906.3599 [hep-lat]].

[11] K. Fukushima and T. Hatsuda, Rept. Prog. Phys. 74, 014001 (2011)

[arXiv:1005.4814 [hep-ph]].

[12] S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg and K. K. Szabo,

Phys. Lett. B 730, 99 (2014) [arXiv:1309.5258 [hep-lat]].



132 BIBLIOGRAPHY

[13] A. Bazavov et al. [HotQCD Collaboration], Phys. Rev. D 90, 094503 (2014)

[arXiv:1407.6387 [hep-lat]].

[14] P. Braun-Munzinger, K. Redlich and J. Stachel, In Hwa, R.C. (ed.) et al.:

Quark gluon plasma 491-599 [nucl-th/0304013].

[15] J. Letessier and J. Rafelski, Eur. Phys. J. A 35, 221 (2008) [nucl-

th/0504028].

[16] F. Becattini, arXiv:0901.3643 [hep-ph].

[17] A. Andronic, Int. J. Mod. Phys. A 29, 1430047 (2014) [arXiv:1407.5003

[nucl-ex]].

[18] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998) [Prog. Part. Nucl.

Phys. 41, 225 (1998)] [nucl-th/9803035].

[19] M. Bleicher et al., J. Phys. G 25, 1859 (1999) [hep-ph/9909407].

[20] W. Cassing and E. L. Bratkovskaya, Phys. Rept. 308, 65 (1999).

[21] W. Cassing and E. L. Bratkovskaya, Nucl. Phys. A 831, 215 (2009)

[arXiv:0907.5331 [nucl-th]].

[22] Y. Nara, N. Otuka, A. Ohnishi, K. Niita and S. Chiba, Phys. Rev. C 61,

024901 (2000) [nucl-th/9904059].

[23] Z. Xu and C. Greiner, Phys. Rev. C 71, 064901 (2005) [hep-ph/0406278].

[24] Z. W. Lin, C. M. Ko, B. A. Li, B. Zhang and S. Pal, Phys. Rev. C 72,

064901 (2005) [nucl-th/0411110].

[25] P. Huovinen, P. F. Kolb, U. W. Heinz, P. V. Ruuskanen and S. A. Voloshin,

Phys. Lett. B 503, 58 (2001) [hep-ph/0101136].

[26] H. Petersen, J. Steinheimer, G. Burau, M. Bleicher and H. Stocker, Phys.

Rev. C 78, 044901 (2008) [arXiv:0806.1695 [nucl-th]].

[27] C. Gale, S. Jeon and B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013)

[arXiv:1301.5893 [nucl-th]].



BIBLIOGRAPHY 133

[28] I. Karpenko, P. Huovinen and M. Bleicher, Comput. Phys. Commun. 185,

3016 (2014) [arXiv:1312.4160 [nucl-th]].

[29] C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, Comput.

Phys. Commun. 199, 61 (2016) [arXiv:1409.8164 [nucl-th]].

[30] P. Romatschke, Eur. Phys. J. C 77, 21 (2017) [arXiv:1609.02820 [nucl-th]].

[31] H. Stoecker et al., J. Phys. G 43, 015105 (2016) [arXiv:1509.00160 [hep-

ph]].

[32] H. Stocker et al., Astron. Nachr. 336, 744 (2015) [arXiv:1509.07682 [hep-

ph]].

[33] T. S. Biro, E. van Doorn, B. Muller, M. H. Thoma and X. N. Wang, Phys.

Rev. C 48, 1275 (1993) [nucl-th/9303004].

[34] K. Geiger and J. I. Kapusta, Phys. Rev. D 47, 4905 (1993).

[35] J. Cleymans and H. Satz, Z. Phys. C 57, 135 (1993) [hep-ph/9207204].

[36] J. Cleymans and K. Redlich, Phys. Rev. Lett. 81, 5284 (1998) [nucl-

th/9808030].

[37] J. Cleymans and K. Redlich, Phys. Rev. C 60, 054908 (1999) [nucl-

th/9903063].

[38] F. Becattini, J. Cleymans, A. Keranen, E. Suhonen and K. Redlich, Phys.

Rev. C 64, 024901 (2001) [hep-ph/0002267].

[39] F. Becattini, M. Gazdzicki, A. Keranen, J. Manninen and R. Stock, Phys.

Rev. C 69, 024905 (2004) [hep-ph/0310049].

[40] A. Andronic, P. Braun-Munzinger and J. Stachel, Nucl. Phys. A 772, 167

(2006) [nucl-th/0511071].

[41] S. Borsanyi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti and K. Szabo, JHEP

1201, 138 (2012) [arXiv:1112.4416 [hep-lat]].



134 BIBLIOGRAPHY

[42] A. Bazavov et al. [HotQCD Collaboration], Phys. Rev. D 86, 034509 (2012)

[arXiv:1203.0784 [hep-lat]].

[43] R. Bellwied, S. Borsanyi, Z. Fodor, S. D. Katz, A. Pasztor, C. Ratti and

K. K. Szabo, Phys. Rev. D 92, no. 11, 114505 (2015) [arXiv:1507.04627

[hep-lat]].

[44] R. Bellwied, S. Borsanyi, Z. Fodor, S. D. Katz and C. Ratti, Phys. Rev.

Lett. 111, 202302 (2013) [arXiv:1305.6297 [hep-lat]].

[45] R. Dashen, S. K. Ma and H. J. Bernstein, Phys. Rev. 187, 345 (1969).

[46] R. Hagedorn and J. Rafelski, Phys. Lett. 97B, 136 (1980).

[47] R. Hagedorn, Z. Phys. C 17, 265 (1983).

[48] M. I. Gorenstein, V. K. Petrov and G. M. Zinovev, Phys. Lett. 106B, 327

(1981).

[49] J. I. Kapusta and K. A. Olive, Nucl. Phys. A 408, 478 (1983).

[50] D. H. Rischke, M. I. Gorenstein, H. Stoecker and W. Greiner, Z. Phys. C

51, 485 (1991).

[51] L. D. Landau and E. M. Lifshitz, Statistical Physics (Oxford: Pergamon)

1975.

[52] G. D. Yen, M. I. Gorenstein, W. Greiner and S. N. Yang, Phys. Rev. C 56,

2210 (1997) [nucl-th/9711062].

[53] M. I. Gorenstein, A. P. Kostyuk and Y. D. Krivenko, J. Phys. G 25, L75

(1999) [nucl-th/9906068].

[54] C. G. Broyden, Mathemathics of Computation 19, 577 (1965).

[55] CuteHRG package, to be published.

[56] V. Vovchenko, D. V. Anchishkin and M. I. Gorenstein, Phys. Rev. C 91,

024905 (2015) [arXiv:1412.5478 [nucl-th]].



BIBLIOGRAPHY 135

[57] K. A. Olive et al. [Particle Data Group], Chin. Phys. C 38, 090001 (2014).

[58] L. M. Satarov, V. Vovchenko, P. Alba, M. I. Gorenstein and H. Stoecker,

Phys. Rev. C 95, 024902 (2017) [arXiv:1610.08753 [nucl-th]].

[59] V. Vovchenko, V. V. Begun and M. I. Gorenstein, Phys. Rev. C 93, 064906

(2016) [arXiv:1512.08025 [nucl-th]].

[60] V. Vovchenko and H. Stoecker, J. Phys. G 44, 055103 (2017)

[arXiv:1512.08046 [hep-ph]].

[61] V. Vovchenko and H. Stoecker, Phys. Rev. C 95, 044904 (2017)

[arXiv:1606.06218 [hep-ph]].

[62] V. Vovchenko, M. I. Gorenstein, L. M. Satarov and H. Stöcker, in “New
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