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Chapter 1

Introduction

Compact objects - black holes and neutron stars - are fascinating objects, not
only for the astrophysicists, but for a wide range of researchers, including as-
tronomers, theoretical physicists, particle and nuclear physicists, condensed
matter physicists and arguably for the layman as well.

First theorized in the first part of the twentieth century (Schwarzschild,
1916; Baade and Zwicky, 1934), for a long time these objects have been con-
sidered just exotic ideas or mathematical curiosities. Pulsar were however de-
tected in the late 1960s (Hewish et al., 1968) and readily identified as rotating,
radiating neutron stars, while the first candidate black hole, Cygnus X-1, was
observed in 1972 (Shipman, 1975). Since then the interest in these objects has
steadily grown.

The reasons behind this interest are easily understood considering that com-
pact object dwell at the intersection of many different areas of physics, and are
ideal laboratories to explore the interplay between these areas.

Black holes, which are purely gravitational objects, are perfectly suited to
study the nature of gravity, its manifestations such as gravitational waves, and
the differences between various theories of gravity in the regime where they
are expected to be most relevant, i.e. the strong field regime. However, just
like any massive astrophysical object, black holes are interested by accretion
phenomena, which are thought to be the power source of some very bright
astrophysical emitters of electromagnetic signals, such as active galactic nuclei
or X-ray binaries.

At the same time, black holes exist in a variety of different mass scales,
from stellar mass to supermassive black holes billions of times heavier. The
latter play a very important and yet not fully understood role in the formation
and evolution of galaxies, as well as in shaping the large scale structure of the
universe, making them relevant to cosmology as well.

Neutron stars share with black holes the characteristic of being gravitation-
ally dominated systems; but because they are composed of baryon matter, they
display a much richer behaviour. It has been realized early on that the matter
in neutron star cores reaches extreme densities, exceeding the one in atomic
nuclei. This means that neutron stars could provide invaluable information
on the behaviour of matter in such extreme conditions (which are impossible
to achieve in laboratory experiments), such as details of the nucleonic interac-
tion, the properties of hyperons or of quark-gluon plasmas.
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4 CHAPTER 1. INTRODUCTION

The recent detections of gravitational waves from binary neutron stars (The
LIGO Scientific Collaboration and The Virgo Collaboration, 2017) and binary
black hole mergers (The LIGO Scientific Collaboration and the Virgo Collab-
oration, 2016; Abbott et al., 2016a; The LIGO Scientific Collaboration et al.,
2017b) has heralded the beginning of the era of gravitational-wave astronomy
and multi-messenger astronomy. The simultaneous detection of gravitational
and electromagnetic signals (The LIGO Scientific Collaboration et al., 2017a;
LIGO Scientific Collaboration et al., 2017) from a binary neutron star merger
has provided convincings evidence that establishes such events as the origin of
short gamma-ray bursts (SGRBs). Binary neutron stars are also now confirmed
as the single most likely site of production of heavy elements, through the r-
process nucleosynthesis taking place in the matter ejected from their merger;
furthermore, this nucleosynthesis process (or rather the radioactive decay of its
products) is expected to power another transient signal of great interest, the so
called kilonova (also known as macronova in the literature) (Metzger, 2017a;
Rosswog, 2013a).

While a lot of questions remain open, in the decades since their identifica-
tion significant progress has been made in developing our understanding of
these objects. This progress has been made possible thanks to an interplay of
theoretical and observational/experimental advances. A few highlights of the
observational discoveries have been e.g. the detection of very relativistic binary
pulsars and the measurement of their orbital parameters with impressive pre-
cision from radioastronomy observations (Kramer and Wex, 2009); the track-
ing of stellar orbits near the Galactic center, allowing a direct measurement
of the mass of the supermassive black hole in the center of our own Milky
Way galaxy (Gillessen et al., 2009); the increasingly accurate imaging of as-
trophysical jet structures employing very long baseline interferometry (VLBI).
The most striking, as well as one of the most recent, of these developments
has arguably been the above mentioned detection of gravitational waves from
merging binary black holes and neutron stars at LIGO (Laser Interferometer
Gravitational-Wave Observatory), which opened the upcoming era of gravita-
tional wave astronomy.

On the other hand, theoretical modelling has also greatly advanced our
understanding of compact objects. Significant progress has been made in un-
derstanding the mathematical structure of general relativity, and in develop-
ing relativistic analogues of the theories of hydrodynamics, viscosity, electro-
magnetism and neutrino interactions; approximation schemes for the Einstein
equations such as the post Newtonian (PN) formalism (Blanchet, 2006), grav-
itational self-force (GSF) formalism (Barack and Ori, 2003) or the effective one
body (EOB) model (Buonanno and Damour, 1999) have been developed, allow-
ing e.g. to compute the gravitational radiation waveforms from binary systems;
advances have been made in characterizing the nuclear forces and translating
this knowledge in equations of state (EOS) suitable to describe neutron stars;
or in estimating the opacity of BNS ejecta, a key ingredient to compute kilo-
nova light curves (Barnes et al., 2016). Many other examples would of course
be possible.

However in the last decade a new approach to the study of system of com-
pact objects has emerged. This goes under the name of numerical relativity, and
consists in employing computational techniques to perform large scale simu-
lations of these systems from which important information on their behaviour
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can be extracted. This is a relatively young field (the first successful evolution
of inspiralling and merging black holes able to extract the gravitational signal
was performed by Pretorius (2005)), but has quickly reached maturity and has
firmly established itself as a powerful research tool complementing the more
traditional ones. It is in this context that the present work has been developed
and carried out.

The biggest advantage of numerical relativity is that it can provide solu-
tions for highly non-trivial, non-idealized system configurations, where an an-
alytic solution cannot be obtained. The data generated by such simulations can
by analyzed as if resulting from an observation or an experimental measure,
enabling the researcher to infer the properties of the system. This has allowed
numerical studies to provide important information about e.g. the post-merger
gravitational wave signal of BNS system (Takami et al., 2015); the thermo- and
hydrodynamical properties of the matter ejected by such events; or the topol-
ogy and intensity of their the magnetic fields (Baiotti and Rezzolla, 2017).

Performing numerical simulations is however a very non-trivial endeavour
in itself, and requires particular care in order to be successful. The equations
encoding the physical theories describing the systems of interest have to be
cast in a suitable form to guarantee numerical stability; stable, accurate and
efficient numerical methods have to be devised to solve them in order both to
generate the initial data and computing its evolution; care must be taken in
coding these algorithm, to ensure their correctness and efficiency; and addi-
tional methods have to be designed and implemented to analyze the resulting
data. Finally large scale numerical simulations have a non-negligible compu-
tational cost which must be managed and reduced as much as possible.

In tackling one of the first issues that are encountered in the field of nu-
merical relativity, i.e. the development of a form of the equations suitable for
numerical implementation, I have contributed to develop a new first-order for-
mulation of the Einstein equations named FO-CCZ4, as published in Dumbser,
Guercilena, Koeppel, Rezzolla, and Zanotti (2017). So that they can stably inte-
grated numerically, systems of equations must be cast in hyperbolic form. This
mathematical requirement physically means that information must propagate
with finite speeds in the system under consideration (a natural requirement
for modern, relativistic theories) (Sarbach and Tiglio, 2012). In turn, it can be
shown that this implies the well-posedness of the system. Einstein equations
as expressed in the usual four-dimensional, covariant form, are not manifestly
hyperbolic, and thus must be manipulated to produce a well-posed system.

The FO-CCZ4 formulation described in this work has been proven to be
strongly hyperbolic and therefore able to sustain long term, stable simulations.
Like the CCZ4 formulation (Alic et al., 2012, 2013) on which it is based, it also
include a damping mechanism to reduce violations of the constraints, enhanc-
ing its accuracy. Furthermore the system of equations is manifestly linearly
degenerate in all its characteristics fields, which ensures that no shocks can be
generated by it, which removes the thorny issue of dealing with discontinu-
ous solutions ins the numerical evolution. While this is expected on physical
grounds for Einstein equations, it is not a property automatically satisfied by
all formulations. Finally, the FO-CCZ4 system is first order in both space and
time, which makes it suitable to be solved by use of the highly accurate, ef-
ficient and scalable discontinuous Galerkin (DG) (Hesthaven and Warburton,
2007) methods. We therefore developed an implementation of this formulation



6 CHAPTER 1. INTRODUCTION

which relies on a state-of-the-art ADER-DG numerical scheme with WENO-
subcell limiter. We have shown the code to easily pass all standard testbeds
with remarkable accuracy and we successfully applied it to the simulation of
isolated as well as colliding black holes. It has to be remarked that these are the
first three-dimensional simulations of black hole spacetimes employing a DG
scheme.

In order to treat non-vacuum spacetimes Einstein equations have to be cou-
ple with the equation of motion for the matter fields. The matter in these cases
is commonly described as a single perfect fluid (Font, 2008), and so the rel-
ativistic Euler equations are to be solved along with Einstein equations. Eu-
ler equations are however genuinely non-linear (Leveque, 1992), which means
they can develop shocks even starting from smooth initial data. In this con-
text the challenge is to develop numerical methods that are not only accurate,
but able to sharply resolve such discontinuities without developing spurious
oscillations or other pathologies. The standard choice in numerical relativ-
ity is to rely on high-resolution shock-capturing (HRSC) techniques (Rezzolla
and Zanotti, 2013). I have developed a novel numerical method, alternative
to HRSC ones, named “entropy limited hydrodynamics” (ELH) (Guercilena,
Radice, and Rezzolla, 2017) for the solutions of the equations of relativistic
hydrodynamics that is simpler than these techniques, making it suitable for
efficient implementation without sacrificing accuracy. This scheme is of flux-
limiter type, combining a high-order, accurate flux formula with a low-order,
stable one with a variable, solution dependent ratio. The ratio is obtained by
computing a “viscosity function” proportional to the local production of en-
tropy in the fluid. This has the immediate advantage that, since entropy can
only be produced by shocks in a perfect fluid, the low-order contribution is
only activated at the location of shocks, while accuracy is recovered automat-
ically on smooth parts of the solution. I have implemented the ELH scheme
in a finite-differences (FD) code and successfully tested in a number of special-
relativistic test cases, as well as general-relativistic simulations of isolated neu-
tron stars. In special-relativistic, one-dimensional tests such as shock tubes, the
code can sharply resolve discontinuities while in the case of smooth solutions
it recovers its nominal order of convergence (which can be easily adjusted to
fit the peculiarities of the problem under study). In three-dimensional general-
relativistic evolutions of neutron stars, I have shown the method to be stable
and accurate in a systematic comparison with the MP5 scheme (a typical HRSC
method), and to be able to handle highly relativistic and non-trivial scenarios,
such as the gravitational collapse of a neutron star to a black hole. Further-
more, despite a non-optimized implementation, the scheme is able to deliver
significant performance improvements, up to ∼ 50% in some cases.

Once all such issues pertaining to accuracy, stability and efficiency have
been properly addressed, numerical simulation reveal their power as scientific
tools to investigate the physics of compact objects. One particular physical
puzzle that numerical simulations have been successfully begun investigating
recently is related to the origin of heavy elements in our universe. Elements
heavier than iron are known to be produced primarily by neutron-capture pro-
cesses on lighter seed nuclei, and for elements with mass numberA higher then
approximately 120 the main such process is the rapid neutron-capture process,
or r-process. This process can take place in environments in which the neutron-
to-seed ratio is so high that the beta decay timescale becomes much longer
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than the neutron-capture one. Initially the matter ejected in core-collapse su-
pernovae (CCSN) was thought to be the main astrophysical site of r-process
nucleosinthesys, but recently the ejecta in BNS mergers has become a much
more promising candidate, also supported by spectroscopic observations (Ji
et al., 2016). The abundance patterns of heavy elements computed from BNS
mergers have been shown to match quite well the ones measured in our Galaxy
and our solar system in particular (Radice et al., 2016).

In this context I have participated in efforts to shed light on the dependence
of the elements abundance on the neutron star EOS (Bovard, Martin, Guer-
cilena, Arcones, Rezzolla, and Korobkin, 2017). By performing long term, ac-
curate simulations of BNS mergers, in which the masses of the stars under con-
siderations were systematically varied and employing several finite temper-
ature EOSs spanning a large range in stiffness, we where able to measure the
total amount of ejected mass (another very relevant but still poorly constrained
variable, (Dietrich and Ujevic, 2017; Dietrich et al., 2017b)) and the hydro- and
thermodynamical properties of this matter, including its morphology and an-
gular dependency. Employing then a nuclear reaction network (Winteler, 2012)
we recovered the heavy elements abundances for each BNS model. We found
that while the properties of the ejecta show some correlation with the stiffness
of the EOS, the r-process yields are remarkably robust against variations of
astrophysical conditions, and consistently match the solar abundances within
the present uncertainties on the properties of neutron-rich nuclei. We were also
able to estimate the light curves of the electromagnetic signal powered by the
radioactive decay of these elements, i.e. the so-called kilonovae (also known as
macronovae); and performed one of the most comprehensive investigations to
date regarding the angular distribution of the ejected material, revealing that
the dependence of ejecta properties such as the electron fraction Ye on the view-
ing angle might have significant repercussions on the light curves and spectra
of kilonovae and their detectability.

The research on better formulations of equations is being constantly car-
ried forward, spurred also by the increasing realism of simulations. The same
holds true for numerical methods, since more realistic and accurate simula-
tions require increasing computational resources. While computational facili-
ties available for scientific research are being funded and upgraded, changes
in computational architectures are part of this process. This means that suit-
able numerical methods must be devised to exploit their power. In this sense it
would be very beneficial a optimized, vectorized implementation of the ELH
method, coupled to highly scalable DG or compact FD (Lele, 1992) schemes. At
the same time it is hoped that such advances in the numerical framework can
increase the realism of the simulations to the point of providing a fully consis-
tent and complete description of the inspiral, merger and post merger of binary
neutron stars, including relativistic effects, neutrino interactions, viscosity, heat
transfer, magnetic fields and possibly multifluids (Andersson et al., 2017). Such
simulations could provide much tighter constraints on many of the issues left
open by our study (as well as others), such as the precise dependency of the
amount of ejected mass on the binary initial conditions and its microphysics,
the kilonova signature and its detectability, or the dynamical feedback of the
r-process nucleosynthesis on the ejecta morphology.

This thesis is organized as follows. Chapters 2 and 3 provide a review of
the relevant physical theories, i.e. general relativity and relativistic hydrody-
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namics and their formulation in a numerical context; followed by a description
of the mathematical theory of partial differential equations (PDE) and of the
numerical methods used in this work; part II presents the novel FO-CCZ4 for-
mulation in the context of the 3+1 decomposition of general relativity; part III
is devoted to the description of the ELH method and the results obtained from
it; the study of the r-process nucleosynthesis and kilonova light curves in BNS
merger ejecta is presented in part IV; finally I conclude in part V.

In the following I use the spacetime signature (−,+,+,+), with Greek in-
dices running from 0 to 3 and Latin indices from 1 to 3. I employ the Ein-
stein convention for the summation over repeated indices. Unless otherwise
stated, all quantities are expressed in a geometrized system of units in which
c = G = M� = 1.

Disclaimer note

The research and results presented in this thesis have been published in different
form in the following research articles:

• Dumbser et al. (2017);

• Guercilena et al. (2017);

• Bovard et al. (2017);

in which I appear as co-author and hold joint copyright. Chapters 3, 4, 5 and 6 are
partly based from these sources, adapted to fit into this thesis.

My specific contributions to these research articles have been:

• discuss, suggest and develop the form of the relevant equations;

• cross-check analytical derivations;

• implement numerical methods;

• discuss and suggest numerical tests of the models/methods;

• perform numerical tests

• interpret the test results;

• discuss and suggest testing scenarios for both the method and the code;

• perform the numerical tests;

• analyze, visualize and interpret the generated data;

• assess the significance of the results;

• write the content of the research carried out in the form of an article;

• revise, correct and improve the articles during the peer reviewing process.



Chapter 2

Mathematical framework

The following sections are intended as a very brief summary and introduc-
tion to the theory of general relativity, of relativistic hydrodynamics, and to the
particular formulations of these theories that are employed in numerical com-
putations. By necessity, the discussion is very succinct, therefore we list here a
few references to the literature which cover in greater detail these very broad
fields.

The standard reference to the theory of relativity is the classic textbook by
Misner et al. (1973), which also covers aspects of hydrodynamics and cosmol-
ogy. More formally rigorous are the monographs by Straumann (1984) and
Wald (1984), including details of the Lagrangian and Hamiltonian formula-
tions of general relativity.

The section on relativistic hydrodynamics is based mostly on the book by
Rezzolla and Zanotti (2013), which also includes an introduction to the deriva-
tion of the hydrodynamics equations from the principles of kinetic theory. A
different approach, based on a field theoretical point of view is explored in the
Living Reviews article by Andersson and Comer (2007).

Details on the 3+1 decomposition of the field equations can be found in
Baumgarte and Shapiro (2010); Bona et al. (2009); Gourgoulhon (2012) and
again in Rezzolla and Zanotti (2013). The latter also serves as the main refer-
ence for the flux-conservative form of the hydrodynamics equations and their
properties.

Finally, the section on gravitational waves is mostly modelled on the corre-
sponding one of Baumgarte and Shapiro (2010). A similar presentation can be
found in any book on relativity theory, including the ones referenced above. A
much more detailed discussion can be found e.g. in the monograph by Mag-
giore (2007).

This chapter is structured as follows: section 2.1 gives a very brief introduc-
tion to general relativity; section 2.2 introduces the theory of relativistic hydro-
dynamics; in section 2.3 the 3+1 approach to reformulate relativistic theories
in an initial value problem is reviewed, and then applied in sections 2.4 and
2.5 to obtain the corresponding formulations of Einstein and Euler equations,
respectively; finally section 2.6 summarizes the description and properties of
gravitational waves.

9



10 CHAPTER 2. MATHEMATICAL FRAMEWORK

2.1 General relativity and the Einstein field equa-
tions

In general relativity the Newtonian concepts of absolute time and absolute
space are superseded by the introduction of a dynamical spacetime. The space-
time is not simply, as in classical theories, the background on which physical
phenomena take place, but it is a dynamical entity, which acts on the matter
and energy present in the spacetime itself, and which is acted upon by matter
and energy. This interaction and the resulting dynamics of matter are what we
call gravitation.

Mathematically, the spacetime is represented as a four-dimensional mani-
fold (three spatial dimensions plus one time dimension) equipped with a met-
ric structure. This is usually indicated by the notation (M, g), whereM is the
manifold itself and g the metric tensor, a rank 2 symmetric tensor field which
encodes the metric structure of the spacetime.

Through the metric one defines a diffeomorphism between covariant and
contravariant vectors, so that tensor indices can be raised and lowered by con-
traction with the metric:

vµ := gµνvν . (2.1)

From the metric a norm is also defined as:

||v||2 := v2 := vµv
µ = gµνv

µvν . (2.2)

A vector v is said to be timelike if v2 < 0, spacelike if v2 > 0 and null or lightlike
if v2 = 0.

One also needs to define a notion of parallel transport or equivalently of a
covariant derivative operator for vectors in the spacetime, denoted by the symbol
∇. Out of the infinitely many possible definitions of such an operator, one is
singled out by requiring it to be torsion-free, and compatible with the metric:

∇λgµν = 0 , (2.3)

i.e. the covariant derivative of the metric is required to be identically zero.
The resulting operator allows to take the covariant derivative of any tensor

field in the spacetime, e.g. for a contravariant vector vµ:

∇νvµ := ∂νv
µ + Γµνλv

λ . (2.4)

The quantities Γµνλ (which despite the notation do not form a tensor) are called
Christoffel symbols and can be written in a coordinate basis, thanks to the re-
quirement (2.3), as:

Γσµν =
1

2
gσλ(∂νgλµ + ∂µgνλ − ∂λgµν) . (2.5)

The Christoffel symbols are symmetric in their last pair of indices, which cor-
responds to the absence of torsion.

It is also important to define a second derivative operator, the Lie derivative.
While the covariant derivatives compares tensors along infinitesimal displace-
ments in coordinate directions, the Lie derivative compares tensor at the end
points of an infinitesimal displacement along a given curve in the spacetime.
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Because of this the Lie derivative can be defined without the additional struc-
ture of the connection (represented by the Christoffel symbols) derived from
the metric structure of the manifold, which is instead necessary to define the
covariant derivative. The Lie derivative of a contravariant vector vµ along the
curve tangent to a second vector uµ is defined as:

(Luv)µ := uν∂νv
µ − vν∂νuµ . (2.6)

With these definitions in place it is possible to define the Riemann tensor
Rµναβ from the relation

2∇[µ∇ν]vα := Rβανµvβ (2.7)

for a generic vector v. The Riemann tensor quantifies the failure of second
covariant derivatives to commute for a given vector, and therefore offers a
measure of the curvature of the spacetime. It is an object constructed from
derivatives of the metric of order up to second, as its explicit expression in a
coordinate basis makes clear:

Rµναβ := ∂αΓµνβ − ∂βΓµνα + ΓνλαΓλνβ − ΓµλβΓλνα . (2.8)

Contracting the Riemann tensor one can construct the Ricci tensor Rµν ,

Rµν := Rλµλν , (2.9)

which is the simplest symmetric rank 2 tensor constructed from second order
derivatives of the metric. Finally it is useful to define the Ricci scalar R = Rλλ,
i.e. the trace of the Ricci tensor.

The language briefly introduced in the above paragraphs allows us to fi-
nally write the Einstein field equations. They take the form:

Rµν −
1

2
Rgµν = 8πTµν , (2.10)

and relate the curvature of the spacetime to the distribution of matter/energy
contained in it.

A few comments are in order to clarify the nature of these equations. First of
all, the symmetric tensor Tµν on the right hand side of the equations is referred
to as stress-energy tensor or energy-momentum tensor. It represents the distribu-
tion of matter and energy in the spacetime, and it depends on the fields de-
scribing the particular type of matter under consideration, such as e.g. baryon
density, temperature, electric and magnetic fields, scalar fields, et cetera. It will
also depend in general on the metric tensor gµν .

Secondly, the presence of the Ricci tensor and Ricci scalar on the left hand
side makes the equations of second order with respect to the metric tensor. The
equations are to be seen as a coupled set of differential equations for the metric:
given a certain distribution of matter/energy Tµν , it is in principle possible to
solve for the metric gµν . The non-linearity of the equations makes however the
search for a solution very difficult.

Note finally that the tensor Gµν = Rµν − 1
2Rgµν , known as the Einstein

tensor, on the left hand side of the equations is divergence-free:

∇µGµν = 0 . (2.11)
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On the other hand, one expects on physical grounds the stress-energy tensor to
be divergence-free, i.e.

∇νTµν = 0 , (2.12)

since equation (2.12) expresses the local conservation of energy and momen-
tum of the matter. Einstein equations equate this tensor on the right hand side
with the Einstein tensor on the left hand side, which for consistency has to be
divergence-free as well.

2.2 Relativistic hydrodynamics

Relativistic hydrodynamics is in essence the theory of the motions of fluids in a
relativistic setting, i.e. in a generic, curved spacetime. Just like it’s Newtonian
counterpart, it essentially consist in rewriting Newton’s equations of motion
for a point particle in such a way that they can be applied to the time evo-
lution of a set of fields (the mass density, energy density, momenta, et cetera)
describing the state of the fluid.

At the microscopic level any fluid is made of discrete particles interacting
with each other. While in principle it would be possible to prescribe initial
conditions for each one of this particles, then integrate the equation of motion
to get a complete description of the system, such an approach is not practical
nor desirable: on one hand the sheer number of particles to be dealt with is
humongous (generally at least on the order of Avogadro’s number,NA ∼ 1024),
which makes a direct integration of the equation of motion impractical if not
impossible; on the other hand, a microscopic description of the dynamics is
not needed, since one is typically more interested in an averaged description
of the behaviour of the fluid. In practice, we define a fluid element as a local
“portion” of the fluid, whose size is infinitesimal with respect to the global size
of the system, but still contains a very large number of particles. To each fluid
element we associate physical quantities that are averages of the corresponding
ones for each particle in the fluid element. Considering the collection of all
fluid elements that compose the fluid, such quantities are naturally written as
fields as a function of space and time. Note that a field theory perspective is
also necessary to couple general relativity with a theory of matter, since the
former is a field theory.

The central object in relativistic hydrodynamics is the stress-energy tensor
(or energy-momentum tensor). If we consider perfect fluids, in which viscosity
and heat fluxes can be neglected, and where stresses are isotropic, this takes
the form:

Tµν = ρhuµuν + pgµν , (2.13)

where ρ is the rest-mass density of the fluid (or baryon density), uµ its 4-
velocity and p its pressure. h = 1 + ε + p/ρ is the specific enthalpy of the
fluid, and ε its specific internal energy. Note that the perfect fluid hypothesis is
generally speaking justified in the study of neutron star binaries, since the dy-
namical timescales involved are much shorter than the viscous or heat transfer
timescale, and there are no preferred direction effects, so that the stresses can
be taken as isotropic.

The equations of motion of a fluid are equations (2.12) mentioned above,
which generalize Euler equations to a generic curved spacetime. When applied
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to the perfect fluid stress-energy tensor (2.13), they take the explicit form

uµ∇µuν +
1

ρh
Pµν∇µp = 0 (2.14)

uµ∇µe+ ρh∇µuµ = 0 , (2.15)

where e = ρ(1 + ε) is the energy density and Pµν = gµν + uµuν a projector
onto the hypersurface orthogonal to the fluid 4-velocity. When written in this
form they manifestly are equations for the evolution of the fluid velocity (or
momentum) and energy.

To these the continuity equation, which expresses the conservation of mass,
has to be added:

∇µ(ρuµ) = 0 . (2.16)

Note that the baryon density ρ is given by the product of a constant reference
baryon massmb and the baryon number density nb, i.e. the number of baryons
in a unit volume, since baryons are the dominant particle species in terms
of mass, even though other particles (e.g. electrons and photons) are clearly
present.

Equations (2.16), (2.14) and (2.15) are closed by a so-called equation of state
(EOS), i.e. a relation of the form p = p(ρ, ε) which gives the pressure as a
function of density and energy. The equation of state is an intrinsic property of
the fluid under study, and encodes information about its microphysics. Simple
EOSs considered in this work are the ideal gas EOS

p = ρε(Γ− 1) , (2.17)

where the adiabatic index Γ is a constant (typically Γ = 2); as well as the poly-
tropic EOS

p = KρΓ , (2.18)

where K is another constant (the polytropic constant).
We also consider realistic, nuclear physics motivated EOSs, in which the

pressure is also a function of the composition of the fluid, in particular of the
electron fraction Ye = ne/nb, i.e. p = p(ρ, ε, Ye). In this case the densities of
baryons and electrons (as well as protons, since by the assumption of charge
neutrality the number of electrons and protons coincide) are separately con-
served, so the continuity equation generalizes to the two following equations:

∇µ(ρbu
µ) = 0

∇µ(ρeu
µ) = 0 . (2.19)

Note that the equations of hydrodynamics as presented here can be derived
in a number of different ways. From a kinetic theory point of view they can be
seen as the equations resulting from applying a moment scheme to the Boltz-
mann equation for the distribution function of the fluid (see e.g. Rezzolla and
Zanotti (2013) for an introduction to the subject). From the point of view of
(classical) field theories, the equations are the Euler-Lagrange equations min-
imizing the action describing the fluid (Andersson and Comer, 2007). Such
perspectives are in fact not only much more rigorous and justified than the sim-
plified treatment presented here, but also more general. They are for instance
the starting point to go beyond the single component, perfect fluid model and
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investigate the properties of multifluids (i.e. fluids composed by more than
one species of particles), and/or fluids in which viscous effects or heat transfer
play a significant role.

2.3 Foliation of spacetime

In order to write the Einstein equations (2.10) in a way suitable for numerical
integration, they have to be expressed as an initial value boundary problem
(IVBP). To achieve this, the first step is to introduce a foliation of spacetime
into a succession of spatial hypersurfaces (see figure 2.1). If the spacetime is
globally hyperbolic (a condition that we assume to be fulfilled from now on),
this is always possible.

Figure 2.1: Representation of the 3+1 foliation of spacetime with hypersurfaces
of constant time coordinate Σt and Σt+dt. Figure courtesy of Rezzolla and Zanotti
(2013).

To begin, we define a scalar function t of spacetime, the coordinate time, and
consider the hypersurfaces of t = constant. We denote any such hypersurface
by the symbol Σ. The time vector tµ can be defined as

tµ = αnµ + βµ . (2.20)

The lapse function α is related to the norm of of ∇µt by gµν∇µt∇νt = −1/α2,
i.e. α is the local ratio between proper time and coordinate time. The vec-
tor nµ is the timelike normal to Σ, i.e. nµ = −αgµν∇νt. With this choice nµ

is normalized, timelike (which makes Σ a spacelike hypersurface), as well as
future-directed (i.e. it points in the direction of increasing t). Finally the shift
vector βµ is a purely spatial (i.e. βµnµ = 0) vector which indicates a change in
the spatial coordinates from one time slice to the next.

It is now possible to construct the 3-metric induced onto the spatial hyper-
surfaces by the spacetime 4-metric as

γµν = gµν + nµnν . (2.21)

With these definitions in place and having chosen a coordinate basis adapted
to the foliation (i.e. where tµ = (1, 0, 0, 0)), we can rewrite the spacetime line
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element ds2 as

ds2 = α2dt2 + γij(dx
i + βidt)(dxj + βjdt) , (2.22)

where we now write the shift and 3-metric with Latin indices as they are purely
spatial objects with vanishing time components. equationivalently, the covari-
ant 4-metric can be written as

gµν =

[
−α2 + βlβ

l βi
βj γij

]
, (2.23)

while the normal to the slices takes the form nµ = (1/α,−βi/α).
The 3-metric as defined in the preceding equations is an object intrinsic to

each spatial slice, and completely defines the geometry of that slice. To describe
the extrinsic geometry of the slice, i.e. how each three dimensional slice is
embedded in the surrounding four dimensional spacetime, it is necessary to
define the extrinsic curvature as well, which takes the form

Kµν = −1

2
Lnγµν , (2.24)

i.e. is the Lie derivative of the 3-metric with respect to the timelike vector nor-
mal to the spatial slices.

For completeness, it should be mentioned that the 3+1 formalism presented
in this section and in the following ones is not the only way to develop formula-
tions of general relativity (and more in general relativistic theories) suitable for
numerical implementation: alternatives are the generalized harmonics formal-
ism (e.g. Lindblom et al. (2006)); the characteristic evolution formalism (Wini-
cour, 2005); and the conformal approach (Friedrich, 2002; Husa, 2002). In this
work we focus however exclusively on the 3+1 approach.

2.4 3+1 split of Einstein equations

Having defined a foliation of spacetime as outlined in the previous section, it is
now possible to derive the splitting of the Einstein equations (2.10) into space
and time parts as an IVBP. The procedure consists of projecting Einstein equa-
tions along the time direction (by contracting with the timelike normal nµ) and
onto the spatial hypersurfaces (by contracting with the 3-metric γµν). Since the
tensors in the Einstein equations have rank two, three such projections are pos-
sible: a full projection along the timelike normal; a mixed projection, projecting
one index along the timelike normal and another onto the spatial slices; a full
projection along the timelike normal.

For later convenience, it’s useful to consider first these projections applied
to the stress-energy tensor and define the following symbols:

E := nµnνTµν , (2.25)
Si := −γµinνTµν , (2.26)
Sij := γµiγ

ν
jTµν ; (2.27)

as well as the trace S of Sij , S = γijSij .
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Projecting first two times onto the spatial hypersurfaces, i.e.

γµαγνβ(Rµν −
1

2
gµν − 8πTµν) = 0 , (2.28)

yields the equation
R+K2 −KijK

ij = 16πE , (2.29)

where K = γijKij is the trace of the extrinsic curvature. equation (2.29) is
called the Hamiltonian constraint. It is an elliptic equation, in which no time
derivatives appear.

We consider then the mixed projection first along the time direction and
then onto the spatial slices,

nµγνα(Rµν −
1

2
gµν − 8πTµν) = 0 , (2.30)

which yields the equation

∇iKi
j −∇jK = 8πSj . (2.31)

This equation, also an elliptic one, is the so-called momentum constraint. Note
that we have introduced here covariant derivatives constructed from the 3-
metric γij , which are denoted by∇i with a Latin index.

Finally we compute the double projection along nµ, i.e.

nµnν(Rµν −
1

2
gµν − 8πTµν) = 0 . (2.32)

This yields the equation

∂⊥Kij =−∇i∇jα+ α(Rij − 2KikK
k
j +KKij) (2.33)

− 8πα

[
Sij −

1

2
γij(S − E)

]
,

where the notation ∂⊥ is a shorthand for ∂t − Lβ, i.e. the partial time deriva-
tive minus the Lie derivative along the shift. This equation involves a time
derivative and it’s an actual evolution equation for the extrinsic curvature.

In order to close the system we need to consider the definition of the ex-
trinsic curvature, equation (2.24), which can be rewritten to yield an evolution
equation for the 3-metric:

∂⊥γij = −2αKij . (2.34)

The constraints equations (2.29),(2.31) are conditions allowing a spatial hy-
persurface Σ with data (γij ,Kij) to be embedded in the surrounding spacetime
with 4-metric gµν . They are elliptic equations, and must be solved to generate
suitable initial data for the general relativistic IVBP. Once they are satisfied on
a given slice, they are preserved on all other slices by the evolution equations.

The evolution equations are (2.34) and (2.33), which give the time deriva-
tives of the fields γij ,Kij . These are known as the ADM equations (from
Arnowitt et al. (1962)). While along with the constraint equations they allow to
formulate GR as a IVBP, they are not hyperbolic, and therefore unsuitable for
numerical implementation. The notion of hyperbolicity of a system of equa-
tions, including why it is a desirable property, is properly defined in chapter
4.
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2.4.1 Choice of a gauge

Note that neither the constraint equations (2.29),(2.31) nor the evolution equa-
tions (2.34),(2.33) provide any information on the value of the lapse α and shift
βi. The freedom in choosing these four functions is a restatement of the gauge
freedom of general relativity, i.e. the invariance of the equations and their solu-
tions under different choices of the frame of reference in which they are written.
A prescription for the gauge has to be chosen, and can be used to try to enforce
desirable properties in the resulting system of equations.

Typically such properties are the so called singularity avoidance, in which
the lapse is made to tend to zero in the vicinity of a black hole singularity,
therefore slowing proper time with respect to coordinate time and making
it possible to evolve the interior of black holes (this technique is referred to
as punctures evolution, as opposed to excision, where the inner part of black
holes is simply removed from the computational domain to avoid these com-
plications); and the freezing of horizons, i.e. avoiding that black horizons grow
without bounds, encompassing the whole computational domain and crashing
the simulation.

Many prescriptions have been developed to achieve these goals, but a few
of them can be considered standard. The usual choice for the lapse evolution
are the so called harmonic slicing and the 1+log slicing conditions. Harmonic
slicing (so called because the time coordinate is imposed to be an harmonic
function) takes the form

(∂t − βi∂i)α = −α2K ; (2.35)

while 1+log slicing is
(∂t − βi∂i)α = −2αK , (2.36)

and takes its name from the fact that for zero shift it can be easily integrated
to yield α = 1 + ln γ. Both conditions provide evolution equations for the
lapse, and have been used in long-term simulations. The singularity avoiding
capabilities of the 1+log conditions however are stronger than for harmonic
slicing, and so the former is the choice in most simulations.

For the shift evolution, one prescription has emerged has the best choice,
the so called Gamma driver condition. This condition can be seen as a simpli-
fication of the minimal distortion condition (i.e. minimizing the rate of change
of the spatial metric), and takes the form

∂tβ
i =

3

4
bi + βk∂kβ

i

∂tb
i = ∂tΓ̃

i − ηbi + βk∂kb
i , (2.37)

where bi is an auxiliary field and η is a damping constant usually set to a value
close to the total mass of the spacetime to be evolved. Γ̃i = γ̃jkΓ̃ijk is a con-
traction of the conformal 3-metric, which will be defined later in section 4.2 in
relation to the BSSNOK formulation of Einstein equations. Together with the
1+log slicing, the Gamma driver condition has been extremely successful in
dynamical moving punctures simulations, where black holes (and their singu-
larities) are left free to move onto the computational domain.
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2.5 Equations of relativistic hydrodynamics

Equations (2.16), (2.14) and (2.15) are not in a form suitable for numerical im-
plementation. They have to be cast in conservative form, that is to say in the
form

∂tU + ∂iF
i(U) = S(U) , (2.38)

where the fluxes F i and the sources S may depend on the vector of unknowns
U , but not on its derivatives. Equations of the form (2.38) manifestly show that
the integral of the quantity U over a fixed volume can only change due to a
non zero flux of this quantity across the surface boundary of the volume. If
the flux is zero (e.g. if the volume under consideration is the whole volume of
an isolated system), the quantity is exactly conserved. This conservation prop-
erty is strictly speaking only valid if the sources S are vanishing. If they are
not, equations of the form (2.38) are sometimes referred to as flux-conservative
equations or flux-balance equations.

The equations of relativistic hydrodynamics (2.16), (2.14) and (2.15) can be
cast in conservation form by defining the conserved variables as

U :=
√
γ

 D
Sj
τ


:=
√
γ

 ρW
ρhW 2vj

ρhW 2 − p− ρW

 . (2.39)

The fluxes and sources, containing metric-dependent terms, are given by

F i =
√
γ

 (αvi − βi)D
αSij − βiSj

α(Si −Dvi)− βiτ

 , (2.40)

and

S =
√
γ

 0
1
2αS

lm∂jγlm + Sk∂jβ
k − E∂jα

αSijKij − Sk∂kα

 . (2.41)

This formulation is known as the “Valencia formulation” and was first pro-
posed by Banyuls et al. (1997). Note that the sources terms for the momentum
and energy equations are non-vanishing, which corresponds to the fact that
the momentum and energy of the fluid are not independently conserved, but
the coupling of the fluid to the spacetime and vice versa has to be taken into
account (see e.g. Rezzolla and Zanotti (2013); Shibata (2016); Baumgarte and
Shapiro (2010) for details). In these equations the fluid three-velocity measured
by the normal observers is defined as

vi :=
1

α

(
ui

ut
+ βi

)
(2.42)

which also contains metric-dependent terms, and the Lorentz factor is W :=

(1− vivi)−
1
2 = αut. We also have used the fact that

√−g = α
√
γ.
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The eigenstructure of this system of equations is analyzed in chapter 4,
where they are shown to be hyperbolic. The necessity of casting the equations
in conservation form arises from the need to employ a conservative method
(i.e. loosely speaking, a method based on the conservation form of the equa-
tions) to integrate them, because this guarantees that the approximate solution
found will be a physical solution, i.e. in technical terms, an entropy satisfying
solution. These concepts are introduced and elaborated in chapter 3.

2.6 Gravitational waves

Binary systems of compact objects that this work is mostly concerned with are
strong emitters of gravitational waves (GW). Gravitational waves are, quite
literally, ripples in the spacetime continuum, i.e. wave like perturbations of the
metric components.

Gravitational waves are most easily described in vacuum and in the frame-
work of linearized gravity. Consider a spacetime metric that is only a small
deviation from a background solution, and where the background is chosen to
be Minkowski spacetime:

gµν = ηµν + hµν |hµν | � 1 . (2.43)

Introducing the trace reversed perturbation h̄µν = hµν− 1
2ηµνh

τ
τ and imposing

the gauge condition ∇µh̄µν = 0, the vacuum Einstein equations assume the
form

∇τ∇τ h̄µν = 0 , (2.44)

i.e. an homogeneous wave equation.
Using the remaining gauge freedom, one can impose the “transverse trace-

less” gauge (indicated by a TT superscript) on the metric perturbation, in which
h̄TTµ0 = 0 and h̄TTµµ = 0. Note that the second condition implies that h̄µν = hµν ,
so we can remove bars from the notation from now on. Fixing now a Cartesian
coordinate system in which the gravitational waves are travelling along the z
axis, the metric perturbation can be explicitly written as

hµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 . (2.45)

h+ and h× are the two polarization states of gravitational waves, so called
because the passage of a gravitational wave through a circle of test masses
lying in the xy plane would deform it along the x and y axes in the case of
the h+ polarization, and on the diagonal axes in the case of h×. Note that the
separation vector ξ between two free falling test masses subject to the passage
of the wave satisfies the equation

ξi =
1

2
∂2
t hijξ

j . (2.46)

Therefore the relative displacement δξ/ξ is proportional to h, which for this
reason is called the gravitational wave strain.
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Equation (2.44), being a wave equation, admits plane wave solutions of the
form Re(Aµνe

ikµx
µ

), where the wave vector kµ has components (ω, ki). Now
the linearized Einstein equations imply that kµ is a null vector, i.e. ω = |ki|,
which means GWs propagate at the speed of light. The previously described
gauge choices imply kµAµν = 0, i.e. gravitational waves are transverse.

In the context of linearized gravity it is also possible to give simple expres-
sions for the generation of GWs by a source. Consider again the equation

∇τ∇τ h̄µν = −16πTµν , (2.47)

i.e. equation (2.44) in which the stress-energy tensor, representing the wave
emitting matter source, has been reinstated. In the transverse-traceless gauge,
imposing outgoing boundary conditions, using a Green function approach and
expanding the solution in the wave zone in negative powers of r (the distance
from the source), the strain generated by the source can be written as

hTTij =
2

r
∂2
t ITTij (t− r) . (2.48)

Iij is the trace-free quadrupole moment of the mass distribution of the source,
i.e. Iij = Iij − 1

3ηijI
k
k where Iij =

∫
ρxixjd3x and ρ is the energy density of

the source. This enters the equation via the retarded time t− r, since due to the
finite speed of propagation of GWs, the strain h at (t, r) depends on the source
on the event’s past light cone. Equation (2.48) is only valid for slow-moving
sources in a weak-field regime.

From equation (2.48) explicit expressions for the energy, linear momentum
and angular momentum carried away by GWs can be derived. For the energy
E one finds that the GW luminosity can be written as

LGW = −dE

dt
= lim
r→+∞

r2

16π

∫
〈(∂th+)2 + (∂th×)2〉dΩ , (2.49)

where the integral is on all angular directions and the integrand is averaged
over several wavelengths. Equaiton (2.49) is widely known as the quadrupole
formula.

In numerical applications the extraction of gravitational waves from the
simulation results generally employs somewhat different techniques, since in
this case there appear issues that are not of concern in a purely analytic treat-
ment. These typically are the error associated with finite resolution; the finite
size of the computational domain; as well as various numerical artifacts that
can arise in particular applications (e.g. non-linear drifts appearing in the time
integration of waveforms (Reisswig and Pollney, 2011)).

There are different theoretical frameworks to perform gravitational wave
extraction. One possibility is characteristic extraction, where the sources are
evolved on a succession of spacelike hypersurfaces (i.e. the 3+1 formalism de-
scribed above), while the wave zone is evolved on null hypersurfaces in a com-
pactified domain, so that the GW signal can be immediately read off at null
infinity (Winicour, 2005). For simulations in which the grid does not extend
to infinity (the most common case), there exists the Zerilli-Moncrief formalism
(Moncrief, 1974; Nagar and Rezzolla, 2005), based on identifying perturbations
of the metric over a Schwarzschild background at large distances from the GW
sources.
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Nowadays the most commonly employed framework, which we also use,
is based on the Newman-Penrose formalism (Newman and Penrose, 1962). The
starting point is the computation of the Weyl tensor,

Cµναβ = Rµναβ −
1

2
(gµαRνβ − gµβRνα − gναRµβ + gνβRµα)

+
1

6
(gµαgνβ − gµβgνα)R . (2.50)

The ten independent components of the Weyl tensor can be expressed in five
complex scalars, the Newman-Penrose scalars, by contracting it with the vec-
tors of a suitable null tetrad (lµ, kµ,mµ, m̄µ), where lµ and kµ are radially out-
going and ingoing respectively, and m̄µ is the complex conjugate of mµ. The
fourth Weyl scalar Ψ4 is the defined as

Ψ4 = −Cµναβkµm̄νkαm̄β , (2.51)

and it can be shown that at infinity in the TT gauge the following relation holds
between Ψ4 and the metric perturbations h+, h× intrduced above:

Ψ4 = ḧ+ − iḧ× , (2.52)

where an overdot indicates a time derivative.
The procedure to extract gravitational waves is then to compute the Ψ4

scalar on spherical surfaces at various radii; decompose it in spherical har-
monics at each radius; use equation (2.52) to recover the waveform; and finally
extrapolate the signal at different radii to null infinity.
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Chapter 3

Numerical framework

This chapter serves as an introduction and review of the numerical methods
used to integrate the systems of PDEs that describe the physical system of in-
terest for this work, as described in the previous chapter. These schemes form
the backbone of the techniques employed to arrive at physical results. As for
chapter 2 we are limited by necessity to a rather brief and self-contained discus-
sion, and we list here several references to the literature, which provide more
detailed treatments and on which parts of this chapter are based.

An excellent introduction to the subject at hand is the monograph by Lev-
eque (1992), which both reviews the underlying theory and surveys a number
of numerical schemes, particularly finite-volumes (FV) ones.

The literature on finite-volumes schemes, employed to get the results dis-
cussed in chapter 6, is very vast, but useful publications on their applications
to numerical relativity (in particular to relativistic hydrodynamics) are the Liv-
ing Reviews articles by Font (2008) and Martí and Müller (2003), and the book
by Rezzolla and Zanotti (2013), which also contains an extensive discussion of
the Riemann problem. A comprehensive monograph on this particular subject
is the one by Toro (2009).

Basic finite-differences (FD) methods are touched upon on every textbook
on numerical methods. Useful ones for numerical relativity are the already
mentioned ones by Baumgarte and Shapiro (2010); Bona et al. (2009). The stan-
dard reference on compact finite-differences is Lele (1992).

Finite-differences methods for non-linear conservation laws, which are used
in the simulations of chapter 5, are best introduced in the papers by Zhang and
MacFadyen (2006); Mignone et al. (2010); Radice and Rezzolla (2012); Radice
et al. (2014b).

A comprehensive and detailed introduction on discontinuous Galerkin (DG)
methods is found in the monograph by Hesthaven and Warburton (2007), while
a briefer, more accessible one in Cockburn (2003). Finally, the particular flavour
of DG methods described in section 3.5.1 and used for the results of chapter 4,
the path-conservative ADER-DG schemes, is best approached from the work
of Dumbser et al. (2009, 2010).

The chapter starts with reviewing the concepts of consistency and conver-
gence of a method, as well as some properties of conservation laws, in section
3.1; sections 3.2, 3.3 and 3.4 are then devoted to defining the finite-volumes,
finite-differences and discontinuous Galerkin methods.

23



24 CHAPTER 3. NUMERICAL FRAMEWORK

3.1 Basic concepts

3.1.1 Conservation laws

In this section we consider equations in the form

∂tu+ ∂if
i(u) = 0 , (3.1)

on some domain Ω with initial data u(0, x) = u0, where u is a vector of m
unknowns, f is a d-dimensional (typically three-dimensional) flux. This is the
same form of the Euler equations introduced in section 2.5, cf. equation 2.38,
with a slightly different notation. We neglect here possible source terms on the
right-hand side of 3.1 since they are purely algebraic and do not pose numerical
issues. Note that the flux f can be a function of the solution u but not of its
derivatives.

In general, the numerical methods discussed in this chapter can be applied
to equations that are not written in the form 3.1 (this is the case of Einstein
equations and its various formulations presented in chapter 4). However many
methods and techniques have been developed thinking of conservative equa-
tions of this form. The reason is twofold: on one hand many physical laws
can be cast in the form 3.1, which transparently expresses the conservation of a
quantity; on the other, when conservation laws are non-linear, numerical meth-
ods based on the form 3.1 of the equations avoid problems known to arise in
the case of discontinuous solutions. This is clearly very relevant here for the
solution of the Euler equations.

A flux-conservative system of equation is said to be non-linear when the
flux f is a non-linear function of u. The solution of such systems can develop
shocks in finite time, even if the initial data is analytic. For this reason 3.1 has
to be interpreted in the sense of distributions. A function u is a weak solution
of 3.1 if, for all continously differentiable test functions v(t,x) with compact
support ∫ ∞

0

∫
Ω

(u∂tv + f i∂iv)dxdt =

∫
Ω

u0dx . (3.2)

It can be shown however that in general even scalar conservation laws admit
multiple weak solutions. To identify the “physically relevant” solution we in-
troduce the concept of entropic solutions. A convex function η(u) is said to
be an entropy function if its Hessian ∂2

uη symmetrizes the Jacobian of the flux
∂uf :

∂2
uη · ∂uf = [∂uf ]T · ∂2

uη . (3.3)

If so an entropy flux Φ exists, determined by the relation

[∂uη]T · ∂uf = [∂uΦ]T . (3.4)

The tuple (η,Φ) is called an entropy pair.
An entropic solution is weak solution that satisfies the following entropy in-

equality for any entropy pair

∂tη + ∂iΦ
i(u) ≤ 0 , (3.5)

in the sense of distributions.
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Kružkov (1970) proved for scalar conservation laws the existence and unique-
ness of the entropic solution under very general conditions. This has been ex-
tended to measure-valued solutions by DiPerna (1985), and to of conservation
laws on manifolds by Ben-Artzi and LeFloch (2006).

Unfortunately very little is known concerning existence, uniqueness and
stability of entropic solutions in the case of systems of conservation laws, in
particular for the multi-dimensional case. Not even the existence of entropy
pairs is guaranteed for general systems of equations. A promising approach is
the one based on divergence-measure vector fields by Chen et al. (2009). In this
framework Chen and Frid (2003) proved existence, uniqueness and stability
of the entropic solution of the Euler equations for a classical ideal-gas of one-
dimensional Riemann problems (see the following subsection). On the other
hand, for general equation of state the existence of a weak solution to the Rie-
mann problem is not even guaranteed Menikoff and Plohr (1989); Chen (2006).
In the relativistic case, the existence of solutions to the Riemann problem was
shown for ultrarelativistic equation of state by Smoller and Temple (1993).

The Riemann problem

The Riemann problem for a non-linear, hyperbolic system of conservation laws
in the form (3.1) (plus possibly algebraic source terms) refers to the solution
with discontinuous initial data of the form

u(0, x) =

{
uL if x < 0 ,

uR if x > 0 .
(3.6)

The subscripts L and R refer to a “left” and “right” state of the system, respec-
tively, and we have restricted the discussion to the one-dimensional case in
space, since this is the most common and useful situation. This type of problem
has become the standard model to study the behaviour of non-linear equations
with discontinuous initial data (see Rezzolla and Zanotti (2013) for a compre-
hensive introduction).

The Riemann problem also has a straightforward physical interpretation, at
least when the equations under study are the hydrodynamics ones. It models
a tube, filled with a fluid and divided in two halves by a membrane. The fluid
in the left and right parts of the tube is in a different state of density, pressure,
energy or velocity. At the initial time, the membrane is removed and the two
fluids are free to interact. The evolution of the system is then given by the in-
teraction of three types of non-linear hydrodynamical waves propagating from
the position of the initial discontinuity: rarefaction waves, contact discontinu-
ities and shocks.

The solution of the Riemann problem (which is self similar, i.e. u(t, x) =
u(x/t)) cannot in general be expressed in a closed analytic form. However it
can be computed to any degree of accuracy, and so it is in this sense known
exactly. The solution is based on identifying the particular wave pattern for a
given initial state. See figure 3.1 for a grphical representation of the Riemann
problem solution.

The Riemann problem is relevant for the more general solution of non-
linear conservation laws not only because of the theoretical insights it offers,
but because many numerical schemes incorporate the solution of Riemann
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Figure 3.1: Spacetime diagrams for the development of nonlinear waves in
the numerical solution of a Riemann problem (the Sod problem, Sod (1978))
. Shown from the top are the rest-mass density, the pressure and the velocity.
Right panels: The corresponding profiles at t = 0.25 of the evolution. Figure
courtesy of Rezzolla and Zanotti (2013).

problems in the solution algorithm (albeit generally employing an approximate
Riemann solver rather than an exact one), starting with the classic Godunov’s
method of Godunov (1959).

There exist a number of generalizations of the Riemann problem. As a
first step it is possible to consider multi-dimensional Riemann problems. The
term generalized Riemann problem refers however to discontinuous initial data
in which the left and right states are not constant, but polynomials of higher
order. Such generalizations make solving the Riemann problem considerably
more difficult however.
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3.1.2 Consistency, stability and convergence for linear prob-
lems

In this section we consider more generally an initial boundary value problem
(IBVP) defined on a domain Ω by an equation of the form

∂tu(t, x) = L[u(x, t)] , (3.7)

with initial data u(0, x) = u0(x) and appropriate conditions on the boundary
∂Ω of the domain. The unknown solution u(t, x) is a function of time t and of
the space coordinate x. For simplicity we carry on the discussion in the one-
dimensional case, but most of it can be extended to higher (typically three)
dimensions. In the same spirit, the unknown u is treated as a scalar function,
but the discussion can be extended to systems of equations, where u is actually
a vector field (in which case it is written as u). L is a differential operator acting
on u, and we consider in general operators that depend at most on the second
derivative in space of u.

We define a computational mesh in space, composed by the set of points
{xi} (often taken to be equally spaced), as well as succession of time steps {tn}.
Let u and ũ be the true, analytic solution to (3.7) and an approximate solution
obtained via some numerical method, respectively. uni and ũni are the values of
these functions at t = tn and x = xi (the precise sense in which these values
represent the values of the corresponding function at a given point depends on
the choice of the numerical method and will made explicit in discussing each
of them).

The numerical method used to discretize the operator L is denoted by L̃∆.
It depends on some discretization parameter ∆, typically related to the grid
spacing, i.e. the distance between two adjacent points xi and xi+1 of the mesh.

We consider initially the case in which the operatorL is linear, which greatly
reduces the complexity of the problem at hand. We define the pointwise error of
a numerical scheme as

Eni = ũni − uni , (3.8)

i.e. the difference of the numerical solution to the true one at a given point in
time and space. The global error is the norm ||E(t)|| of the pointwise error over
the computational domain. The usual choice for the norm is the L1-norm, or
sometimes the L2-norm. The use of the∞-norm, while in principle desirable,
leads to unrealistically stringent conditions for discontinuous solutions.

A numerical method is said to be convergent if

lim
∆→0

||E(t)|| = 0 ∀t , (3.9)

i.e. if at all times the global error vanishes as the discretization parameter (grid
spacing) tends to zero.

The local truncation error of the numerical scheme is defined as

Hn
i = L̃∆[u]− L[u] . (3.10)

The local truncation error is the difference between the original operator L and
its discrete version L̃∆, both applied to the true solution u, and thus measures
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how well the discrete version of the equation (3.7) approximates the original
one locally. We say that a numerical scheme is consistent if

lim
∆→0

||H(t)|| = 0 ∀t , (3.11)

i.e. if the local truncation error converges to zero in the continuum limit, for all
possible initial data u0. In particular a scheme is of order p if ||H(t)|| = O(∆p).

Finally, a scheme is said to be stable if the norm of the local truncation error
is limited:

sup
u6=0

||H(t)||
||u|| ≤ C ∀t , (3.12)

where the constant C does not depend on u.
For linear equations, the Lax-Richtmeyer equivalence theorem guarantees

that if a scheme is stable and consistent, then it is convergent (Lax and Richt-
myer, 1956; Richtmyer and Morton, 1994). Furthermore, if the scheme is of
order p, then E(t) = O(∆p), i.e. the global error converges to zero with the p-th
power of the discretization parameter.

3.1.3 Non-linear stability

To study the stability and convergence of non-linear equations it turns out to
be important to consider the properties of both the spatial discretization and
the time discretization. In the previous section we worked with semi-discrete
schemes, where time was continuous. This is generally a valid approximation
because the error term associated with the time discretization is often negligi-
ble compared to the one arising from the space discretization. In this section
we will consider instead fully discrete schemes, i.e. where both the time and
space dependence of the solution are discretized.

We introduce therefore a family of evolution operators {Ts}, depending on
the positive real parameter s (i.e. the time). They form a semi-group, i.e. Ts ◦
Tt = Tt+s, and are such that

u(t) = Tt(u0) , (3.13)

i.e. the initial data u0 is evolved to the time t by the operator Tt (see Kružkov
(1970) for details). The discrete version of the operators is denoted by T̃ ∆

s ,
which depends yet again on the single parameter ∆ since the time discretiza-
tion is usually linked to the space one by a stability condition, i.e. the Courant-
Friedrichs-Lewy condition (see the next section 3.1.4).

With these definitions, the fully discrete analogue of equation (3.7) can be
written as

u(t+ ∆t) = T ∆
∆t[u(t)] , (3.14)

and we can translate the definitions of the previous section in the fully discrete
case: the truncation error is

H(t) = T̃ ∆
∆t[u(t)]− T∆t[u(t)] ; (3.15)

a scheme is consistent if H tends to zero as ∆ tends to zero for some choice of
a norm; and in particular if ||H(t)|| = O(∆r) the scheme is said to be of order
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r; finally, the scheme is linearly stable if

sup
u 6=0

||H(t)||
||u|| ≤ C ∀t , (3.16)

for some C constant.
The Lax-Wendroff theorem (Lax and Wendroff, 1960) guarantees that if the

solution to a non-linear conservation law obtained with a consistent and con-
servative scheme, i.e. such that∫

Ω

T̃ ∆
s [v]dx =

∫
Ω

vdx (3.17)

for any v ∈ L1(Ω), converges in the L1-norm, then the solution u it converges
to is a weak solution of the equation. Therefore if a convergence condition can
be found, the Lax-Wendroff theorem will guarantee that the solution found is
a weak solution (but not necessarily an entropic one, this has to be proven by
different means).

We introduce now the concept of total variation of a function v(x), TV(v),
as

TV(v) = sup
ε→0

1

ε

∫
Ω

|v(x)− v(x− ε)|dx . (3.18)

If v is differentiable this is equivalent to

TV(v) =

∫
Ω

|v′(x)|dx , (3.19)

and this last expression can also be used more generally for distributions if the
derivative is interpreted as a distribution derivative.

A scheme is said to be TV-stable if for all initial data u0 with finite total
variation, there exist two positive constants C and ∆0 such that

TV(T̃ ∆
s [u0]) ≤ 0 ∀∆ < ∆0 . (3.20)

A TV-stable scheme, if consistent and conservative, is convergent and the Lax-
Wendroff theorem applies.

Most TV-stable schemes are actually so-called total variation diminishing
(TVD) schemes, i.e. such that

TV(T̃ ∆
∆t[u]) ≤ TV(u) . (3.21)

A way to ensure a scheme to be TVD is to require it to be monotone:

if u ≥ valmost everywhere, then T̃ ∆
t [u] ≥ T̃ ∆

t [v] . (3.22)

Crandall and Tartar (1980) and Crandall and Majda (1980) proved that mono-
tone schemes are TVD and converge to weak (and entropic solutions). How-
ever Harten et al. (1976) showed that monotone schemes are at most first order
accurate.

To achieve high order accuracy without sacrificing non-linear stability, non-
monotone TVD methods in one dimension have been formulated; but Good-
man and LeVeque (1985) proved that while such schemes exist in the one-
dimensional case, in higher dimensions they are again limited to first order
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accuracy. Therefore even weaker stability conditions have been considered,
such as schemes satisfying as maximum principle or monotonicity preserving
schemes, i.e. schemes that (at least in one-dimension) cannot generate spuri-
ous extrema. In practice, many schemes commonly employed, including the
ones presented here, have not been proven TV-stable or TVD, although nu-
merical evidence seem to confirm that they converge to the correct entropic
solutions. Furthermore for systems of equations no scheme has been proven
stable or convergent for generic initial data, even in the one-dimensional case
(Leveque, 2002).

3.1.4 The method of lines

A few of the methods discussed in the following sections (namely the original
Godunov’s method presented at the beginning of section 3.2 and the ADER-DG
scheme of section 3.5.1) are fully discrete schemes, i.e. schemes which define a
space and time discretization of the equations to be solved. The most common
choice is however to only discretize the spatial part of the equations, retaining
the exact time dependence. This means that a system of PDEs is transformed by
such an approach in a (coupled) system of ODEs: one ODE for every evolved
field and grid point in the computational mesh. When actually implementing
the scheme this resulting system of ODEs can be then solved by using one
of the many ODE time integrators available in the literature (see e.g. Hairer
et al. (1993); Hairer and Wanner (1996)), which effectively takes care of the
time discretization. This approach is known as the method of lines (Rezzolla and
Zanotti, 2013; Baumgarte and Shapiro, 2010).

Of the many possible time integrators, the most popular class is that of
Runge-Kutta (RK) methods. These are single-step methods (i.e. not depending
on the past timelevels of the solution) which achieve high order by taking a
suitable linear combination of different estimates of the time derivative of the
solution. They are generally easy to implement and do not require any special
startup procedure. Alternative methods, which are however not so common in
the solutions of PDEs, are e.g. multi-step methods, such as Adams-Bashforth
methods, Adams-Moulton methods or backward differentiation formulas.

All of these classes of methods contain explicit methods, in which the so-
lution at time tn+1 can be obtained explicitly from the one at previous time,
as well as implicit methods, where the solution at time tn+1 is to be found by
solving an implicit algebraic equation, e.g. by means of a Newton-Raphson
method. For non-stiff equations (such as the Euler equations), explicit meth-
ods, which are much simpler to implement and computationally cheaper, are
adequate; however equations containing stiff terms (see again Hairer and Wan-
ner (1996) for a definition) such as the equations of resistive magnetohydro-
dynamics would require prohibitively small timestep to be accurately solved
with an explicit method. In this case implicit methods, which generally have
a much larger region of stability and therefore allow for larger timesteps, are
better suited.

Another limitation on the choice of the timestep, which is common to all
systems of hyperbolic equations, is the Courant-Friedrichs-Lewy (CFL) condi-
tion (Courant et al., 1928). For a numerical scheme to be stable the timestep
must be small enough that, at any point, the domain of dependence of the
scheme should include the domain of dependence of the PDE. The former is
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defined as the union of all the points in the grid that contribute to compute the
solution at a given point at the next timestep; the latter is the union of all points
that on which the exact solution at the point in question depends. Physically,
this means that the propagation speed of a physical perturbation in the solu-
tion should always be smaller than the numerical speed ∆x/∆t. This leads to
the necessary condition

∆t ≤ ∆x

λ
, (3.23)

where ∆t is the timestep, ∆x the grid spacing and λ the maximum propagation
speed of the PDE. This is just a necessary condition, and in practical implemen-
tations the timestep is set to

∆t = CCFL
∆x

λ
. (3.24)

The constant CCFL ≤ 1 is generally known as the CFL or Courant factor.
In section 3.1.3 it has been stressed how in the case of non-linear equations

the time discretization also plays an important role to determine the stabil-
ity and convergence of a numerical scheme. In practice, many of the stability
proofs assume that the time discretization is carried out with the simple ex-
plicit first order Euler method. In practical applications however is desirable
to achieve high order in the time discretization, which as outlined above can be
easily done by replacing the Euler method with e.g. a high order RK method.
In this case however there is no guarantee that the stability properties of the
original scheme carry over to the modified one. For this reason is of particu-
lar interest a class of time integrators that go under the name of strong stability
preserving (SSP) methods (Shu and Osher, 1988; Shu, 1988; Gottlieb et al., 2001;
Gottlieb et al., 2009). Such methods can be written as a linear convex combina-
tions of single Euler steps, which guarantees that whatever stability property
characterizes the original discretization (e.g. monotonicity, TVD, . . . ), the high
order time discretization will preserve as well. For this reason SSP methods are
the time stepping procedure of choice for the integration of non-linear conser-
vation laws with discontinuous solutions such as e.g. Euler equations.

3.2 Finite-volumes schemes

Finite-volumes schemes date back to a very influential work by Godunov (1959).
Godunov realized that by assuming the solution to a conservation law to be
piecewise constant over some subdivision of the computational domain into
cells, the solution at the next time step can be computed exactly by solving
the Riemann problem at each cell interface.

Restricting momentarily the discussion to the scalar, one-dimensional equa-
tion ∂tu+∂xf = 0, Godunov’s method can be illustrated as follows. Let’s define
a uniformly spaced spatial and temporal grid,

xi = i∆x, i ∈ Z tn = n∆t, n ∈ N , (3.25)

where the constants ∆x and ∆t are the spatial and temporal grid spacing, re-
spectively. We also define xi±1/2 = (i ± 1

2 )∆x, i.e. the mid point between
two grid points. A cell is a space-time volume with extents [xi−1/2, xi+1/2] ×
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[tn, tn+1]. Furthermore we define the cell average of the solution over one cell at
a given time tn as:

uni =
1

∆x

∫ xi+1/2

xi−1/2

u(tn, x)dx . (3.26)

Note that uni = u(xi) +O((∆x)2), i.e. the cell average is a second order approx-
imation of the point value of the solution at the cell center in the grid spacing.
By averaging the conservation law over a space-time cell, we can rewrite it as

un+1
i = uni −

∆t

∆x
(Fi+1/2 − Fi−1/2) , (3.27)

where we have defined Fi±1/2 = 1
∆t

∫ tn+1

tn
f(u(t, xi±1/2))dt. It has to be stressed

that equation (3.27) is exact: no approximation has been introduced yet.
To solve equation (3.27) for un+1

i it is necessary to compute Fi±1/2. If one
assumes u to be piecewise constant and equal to its cell average within each
cell, i.e. u(tn, x) = uni for x ∈ [xi−1/2, xi+1/2], then a Riemann problem can
be computed at each cell interface, obtaining the values u(t, xi±1/2) for every i
and all times t ∈ [tn, tn+1]. In particular at the interface between the i-th and
(i+ 1)-th cells the Riemann problem for the following initial data is solved

u(tn, x) =

{
u− = uni if x < xi+1/2 ,

u+ = uni+1 if x > xi+1/2 ,
(3.28)

and similarly for every other cell pair. Figure 3.2 shows a schematic grpahi-
cal representation of how the Riemann problem solution at each cell interface
generates the solution at the next time step.

This procedure is possible as long as the timestep is small enough so that the
non-linear waves belonging to each Riemann fan do not intersect each other,
or that their interaction is entirely contained within one cell (see also Leveque
(1992) for further details). In particular the following condition has to be met:

∆t ≤ ∆x

c
, (3.29)

where c it the maximum propagation speed of the system. Furthermore the
time integrals in the definition of Fi±1/2 are trivial, since the value of the solu-
tion at the cell interface is constant in t ∈ [tn, tn+1].

Godunov’s method, as we have expressed it in equation (3.27), is fully dis-
crete, i.e. discrete both in time and space. As anticipated in section 3.1.4, we
work in general with semi-discrete methods, since these are easier to generalize
to higher order, and easier to couple with numerical methods for the solution
of other types of equation, which may not be in fully-discrete form. In discrete
form, Godunov’s method reads

∂tui(t) = −Fi+1/2 − Fi−1/2

∆x
, (3.30)

although the use of a high order time integrator is pointless in this case, since
the time update is already exact.
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Figure 3.2: Representation of the characteristic waves originating from each
cell interface as a result of the evolution from tn to tn+1 of the sequence of
Riemann problems in Godunov scheme. At each cell interface a Riemann fan
will be opened comprising shock waves (blue solid lines), rarefaction waves
(red solid lines) and contact discontinuities (green dotted lines). Figure courtesy
of Rezzolla and Zanotti (2013).

A general FV method basically consist of the semi-discrete Godunov’s method,
where the numerical fluxes Fi±1/2 are not generally computed by exactly solv-
ing a Riemann problem. In the three-dimensional case, for a system of conser-
vation laws, such a FV method can be expressed as

duijk
dt

= − 1

|Ωijk|

∫
∂Ωijk

f inidΣ , (3.31)

where, having defined Ωijk as the cell with barycentre xijk, |Ωijk| is its volume,
∂Ωijk its boundary, ni the outgoing normal to ∂Ωijk and Σ the surface ele-
ment on ∂Ωijk. For an equally spaced Cartesian grid xijk = (i∆x, j∆y, k∆z)T,
i, j, k ∈ Z, this simplifies to

duijk
dt

= − 1

∆x
[F xi+1/2,j,k − F xi−1/2,j,k]

− 1

∆y
[F yi,j+1/2,k − F

y
i,j−1/2,k]

− 1

∆z
[F zi,j,k+1/2 − F zi,j,k−1/2] , (3.32)

where F i are the components of the numerical fluxes in the three Cartesian
directions.

In a FV scheme such as (3.32), a lot of information is discarded in imposing
the solution to be piecewise constant. For this reason it is possible to construct
stable FV schemes with simplified or approximate Riemann solvers, with the
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benefit of a simpler implementation and increased performance. Examples of
such Riemann solvers are the Roe solver (Roe, 1981), the Marquina solver (Do-
nat and Marquina, 1996), the HLLE solver (Einfeldt, 1988). Note that although
these are called “Riemann solvers”, not all of them provide a numerical flux
function as F (uL, uR) = f(u(uL, uR)), i.e. by solving the original Riemann
problem and then evaluating the flux: some of them provide a numerical flux
directly. As shown by Harten et al. (1983) (see also Leveque (1992) again), if a
flux formula satisfies F (u, u) = f(u) (i.e. it is consistent), the resulting scheme
will be consistent and conservative.

3.2.1 Reconstruction operators and high order finite-volumes
schemes

FV schemes as described in the previous section are first order accurate in the
cell averages (but recall that the cell averages are themselves a second order
accurate approximation of the solution point values). It is possible to obtaining
a high order scheme by reconstructing the behaviour of the solution in every
cell interior from the information in the neighbouring cells. The concept is to
arrive at a better approximation of the values u± of the solution at each cell
interface, to be then fed to the Riemann solver, obtained from a higher order
approximation of the solution in the two adjacent cells. If the reconstruction
is non-linear, it is possible to obtain stable (e.g. TVD) schemes of order higher
than one.

A first possibility is to upgrade the solution from being piecewise constant
to piecewise linear, i.e.

ui(x) = ui + σi(x− xi) x ∈ [xi−1/2, xi+1/2] . (3.33)

Setting Riemann problem initial data to the values of this reconstructed solu-
tion evaluated at the cell interfaces, i.e. for the cell interface located at xi+1/2,
u− = ui(xi+1/2) and u+ = ui+1(xi+1/2), results in a scheme with overall second
order accuracy in the cell averages.

The slopes σi are determined from the values ui of the cell averages of the
solution in the neighbouring cells. Conditions that ensure the resulting scheme
to be TVD are known (Leveque, 1992), leading to non-linear slope limiters, such
as e.g. the minmod limiter:

σi =
1

∆x
minmod(ui+1 − ui, ui − ui−1) , (3.34)

where

minmod(a1, · · · , an) =


min ai if ai > 0 ∀i ,
max ai if ai < 0 ∀i ,
0 otherwise .

(3.35)

In greater generality, higher order FV schemes can be constructed by con-
sidering input values for the Riemann problem at cell interfaces resulting from
a high order polynomial reconstruction of the solution in each cell, as illus-
trated in figure 3.3. This leads to the concept of a reconstruction operator. A
reconstruction operator R is an operator acting on the volume (cell) averages
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Figure 3.3: Representation of the boundary-extrapolated values (red solid
boxes) providing the left and right states of the Riemann problem at each cell
interface for a high order FV scheme. The reconstruction is made using the
PPM method. Figure courtesy of Rezzolla and Zanotti (2013).

v̄i of a function v(x), and giving a high order approximation of the function
point value at a given point x0. We actually distinguish two operators, the
left-biased one and the right-biased one, defined such that

[R−({v̄i})] = lim
y→x−

v(y) +O(∆xr)

[R+({v̄i})] = lim
y→x+

v(y) +O(∆xr) , (3.36)

to accommodate the fact that v(x) might be discontinuous.
Many different such operators are available in the literature and many vari-

ations of them, such as the piecewise parabolic method (PPM) (Colella and
Woodward, 1984; Colella and Sekora, 2008), the piecewise hyperbolic method
(PHM) (Marquina, 1994), the essentially non-oscillatory (ENO) (Harten et al.,
1987; Shu and Osher, 1988; Shu and Osher, 1989) and weighted essentially non-
oscillatory (WENO) (Liu et al., 1994; Jiang and Shu, 1996) methods and the
monotonicity-preserving (MP) (Suresh and Huynh, 1997) algorithm. The re-
sulting methods, either formulated in a FV framework as described here, or
in a FD framework as detailed in section 3.3.3, all go under the label of high-
resolution shock-capturing (HRSC) techniques. While there is no formal defini-
tion of a HRSC scheme, they should generally satisfy three requirements: reach
at least second order accuracy; sharp resolution of discontinuities; absence of
spurious oscillations.
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The PPM reconstruction extends the slope-limiter procedure to a piece-
wise parabolic interpolation, employing several limiters to avoid introducing
of spurious oscillations.

The ENO scheme relies on standard Lagrange interpolation on multiple
overlapping stencils and uses a recursive procedure to determine the stencil
on which the solution is smoothest in order to avoid oscillations.

The WENO scheme modifies the original ENO approach. Instead of con-
sidering only the stencil on which the solution is smoothest and discarding
the others, the WENO reconstruction takes a weighted average of the recon-
structed polynomial on each stencil. The weights are chosen to be very small
for non-smooth stencils, while the order of accuracy is maximized in smooth
regions. WENO algorithms achieve a formal order of accuracy of 2r−1, where
r is the order of the ENO algorithm. Several modifications of the algorithms
exist, e.g. the mapped-WENO schemes (Henrick et al., 2005) or the WENOZ
scheme (Borges et al., 2008). Gerolymos et al. (2009) provide a comparative
study of different WENO schemes, reporting tabulated coefficients and imple-
mentation details for methods of order up to 17.

The MP scheme is essentially a higher order extension of the PPM scheme.
In the original scheme by Suresh and Huynh (1997) it uses a fifth order recon-
struction stencil (MP5), but MP methods of order three, seven and nine (MP3,
MP7, MP9) have been implemented as well (Obergaulinger, 2008). This is com-
bined with a flattening procedure designed to avoid the creation of artificial
extrema.

High order FV schemes can be extended to multiple dimensions, e.g. in a
direction-by-direction fashion for Cartesian grids.

Below we give the explicit formulas of the unlimited fifth order and seventh
order reconstruction stencils since they will play an important role in defining
the novel numerical scheme of chapter 5. We refer to these stencils as U5 and
U7; they are unlimited in the sense that they are simple interpolation formulas,
not attempting to regularize the solution or introduce additional dissipation in
any way. Note that the MP5 reconstruction operator is built on top of the U5
stencil. The expression for these stencils are:

vi+1/2 = 5R− :=
1

60
(2v̄i−2 − 13v̄i−1 + 47v̄i + 27v̄i+1 − 3v̄i+2) ; (3.37)

and

vi+1/2 = 7R− := − 1

140
v̄i−3 +

5

84
v̄i−2 −

101

420
v̄i−1 +

319

420
v̄i

+
107

210
v̄i+1 −

19

210
v̄i+2 +

1

105
v̄i+3 . (3.38)

These are the left biased reconstruction operators, giving the point value of
the function v(x) at xi+1/2. The right biased ones, reconstructing vi−1/2, are
obtained by simply reversing the order of the coefficients.

Note that in a FV framework the use of high order reconstruction generally
results in a degradation of the scalability of the code. Reconstruction operators
are essentially interpolation formulas, achieving high order by interpolating on
an increasingly high number of data points. When decomposing the computa-
tional domain in components, each one typically evolved by a different CPU,
ghost points have to be exchanged between components to provide boundary
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conditions at every timestep. The number of ghost points generally increases
with the order of the method, hindering the parallel performance of the algo-
rithm. The same issue arises in the context of FD methods, described in the
following section. The DG methods described in section 3.4 are instead ex-
plicitly designed so that the number of ghost points is constant (one for every
coordinate direction) at every order.

3.3 Finite-differences schemes

Many different numerical schemes go under the general moniker of finite-
difference schemes, sometimes having very little in common. Arguably, the
single property of these schemes that is constantly present in all of them is the
fact that they operate on point values rather than on volume averages, and this
sets them apart from FV schemes. For this reason in this section the notation vi
refers to the value of a function v(x) at the point xi, i.e. vi = v(xi), rather than
to its cell average as in the previous section.

The basic FD schemes are introduced in section 3.3.1. They are the schemes
to which the FD name is most commonly refers to. Because they are based
on the discretization of derivative operators rather then relying on a particular
form of the equations, they can (and generally are) applied to systems of equa-
tions not in flux-conservative form. On the other hand their simplicity makes
them unsuitable to deal with discontinuous solutions, commonly leading to
instabilities.

Compact FD (section 3.3.2) schemes are an interesting alternative to obtain
high order FD schemes avoiding large ghost zones. Due to the larger number
of degrees of freedom available in a compact FD stencil, they can be modified
to increase dissipation and deal with discontinuities.

Finally, FD schemes as generally applied to non-linear conservation laws,
presented in section 3.3.3, are on the surface very similar to FV schemes. They
however act on point values of the solution and avoid the use of Riemann
solvers, and are therefore considered separately.

3.3.1 Standard finite-differences

The simplest FD schemes are based on the idea of finding a discrete repre-
sentation of the derivative operators themselves. The definition of the first
derivative ∂xv(x0) of a function v(x) itself, i.e.

∂xv(x0) = lim
x→x0

v(x)− v(x0)

x− x0
, (3.39)

suggests, given an equally spaced grid xi = i∆x, to approximate the derivative
at a grid point xi as e.g.

∂xv(xi) '
vi+1 − vi
xi+1 − xi

=
vi+1 − vi

∆x
. (3.40)

This is a first order approximation of the derivative, i.e. the error term goes
likeO(∆x). Higher order approximations can be obtained by interpolating the
values vi in the vicinity of a given point with a high order polynomial and
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evaluating its derivatives at the desired point. This algorithm, which is readily
extended to unequally spaced grids (Fornberg, 1988) can generate FD approx-
imations of essentially any derivative order (including the 0-th derivative, i.e.
function interpolation) at any order of accuracy. This results in the well-known
standard centered finite-difference stencils, e.g.

∂xv(xi) =
1
4vi−2 − 2vi−1 + 2vi+1 − 1

4vi+2

3∆x
+O(∆x4) (3.41)

(a centered fourth order approximation of the first derivative); or

∂2
xv(xi) =

− 1
12vi−2 + 4

3vi−1 − 5
2vi + 4

3vi+1 − 1
12vi+2

∆x2
+O(∆x4) (3.42)

(a centered fourth order approximation of the second derivative).
Having defined a computational grid (commonly equally spaced), these

stencils can be used to approximate all the derivative operators in the equa-
tions to be evolved, thus defining a discretization of the equations. Since the
discretization is performed at the level of the derivative operators, this tech-
nique allows for the discretization of any system of equations, in any form (in
particular systems in non-conservative form).

Note however that employing these simple FD stencils generally results in
a non-conservative method, making this technique unsuitable for non-linear
conservation laws. Also, the algorithm described in Fornberg (1988) simply
returns the coefficients that result in the highest order of accuracy given the
number of points used by the stencil. This means that in the case of discon-
tinuous solutions spurious oscillations are almost guaranteed to be generated,
another reason the makes these methods unsuitable for non-linear conserva-
tion laws.

On the other hand, FD methods are often a good choice for linear or lin-
early degenerate system of equations, where unless the initial data is itself
discontinuous, no shocks can be produced in finite time, i.e. the solution is
always smooth. In this case, the above FD stencils achieve their full accuracy
without oscillations being problematic, and a modest amount of artificial dis-
sipation (e.g. Kreiss-Oliger dissipation (Kreiss and Oliger, 1973)) is sufficient
to stabilise the method. This is approach is particularly suited to very large
and complicated systems of equations, where FD methods are much easier to
implement than more sophisticated schemes. A prime example of this appli-
cation are the 3+1 Einstein equations (such as the BSSN or CCZ4 formulations
described in chapter 4)(see e.g. Brown et al. (2009a), as well as almost any
publication involving general-relativistic simulations of dynamical spacetimes
performed with the Einstein Toolkit (Löffler et al., 2012; Zilhão and Löf-
fler, 2013; Einstein Toolkit Website) and the McLachlan code).

Note that the stencils (3.41) and (3.42) are symmetric with respect to the
evaluation point, and so were called centered. The stencil (3.40) is instead asym-
metric (right-biased in this case), using only points on one side of the evalua-
tion point. Such stencils are said to be one-sided. One-sided stencils, as well as
stencils that are biased in one direction without being completely one-sided,
can be constructed for higher order derivatives as well (see again Fornberg
(1988)). Such stencils are named upwind stencils, because they can be used to
take advantage of the direction of propagation of information in the system
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(when this is known a priori), thus resulting in an upwind scheme. This is often
necessary in order to obtain a well-behaved scheme. One example are again
the 3+1 Einstein equations, where upwind stencils are known to be necessary
to discretize shift-advected terms (Pollney et al., 2011). This might not be nec-
essary in the FV schemes described above, because the Riemann solver should
take take care of this aspect. High order FD stencils are generally extended to
multiple dimensions in a direction-by-direction fashion on Cartesian grids.

Finally, note that FD stencils also achieve high accuracy by high order in-
terpolation on increasingly large stencils, i.e. high order FD methods suffer
from the same scalability problems described for high order FV methods. As
anticipated DG methods are able to circumvent this issue.

3.3.2 Compact finite-differences

Compact finite-differences (Lele, 1992) are an interesting extension of FD schemes
with very desirable properties. As their name implies, they are compact, i.e.
able to achieve high order on smaller stencils compared to standard FD schemes,
which can greatly help to improve the scalability of a compact FD implemen-
tation. They improve on standard FD stencils in many other respects however,
especially concerning the resolution of high frequency waves. On the other
hand they are more involved to implement than standard FD schemes, espe-
cially when boundary conditions other than simple periodic ones are required.

The starting point of compact FD schemes is to consider an approximation
for the derivative of a function v(x) at the point xi of the form

βv′i−2 + αv′i−1 + v′i + αv′i+1 + βv′i+2 =

c
vi−3 − vi+3

6∆x
+ b

vi−2 − vi+2

4∆x
+ a

vi−1 − vi+1

2∆x
, (3.43)

where the notation v′i represents the first derivative of v(x) at point xi, and
α,β,a,b and c are constants to be determined. Equation (3.43) represents a gen-
eralization of the standard central FD stencils introduced in the previous sec-
tion, in the sense that the derivative is approximated not only as a linear combi-
nation of the function values, but of the derivative values themselves. Clearly
the relation cannot be inverted locally to find the value of v′i but when applied
to the whole computational domain it results in a linear system (typically a
tridiagonal or pentadiagonal one, depending on how the boundary conditions
are implemented) that can be solved with standard methods.

The most noticeable advantage of formula (3.43) is that, by suitably choos-
ing the coefficients, it results in an approximation of v′i accurate up to tenth
order, despite only using points three grid spacings or closer to xi. This can
help tremendously in enhancing the scalability of a code.

Lele (1992) has further shown that formulas of the form (3.43) are able to
much better approximate the frequency content of oscillating functions. The
difference is particularly striking in multi-dimensional applications, in which
the wave resolution properties of standard FD stencils are very poor along the
coordinate axes, while compact FD stencils behave much better along any di-
rection.

Since formulas of type (3.43) have many more degrees of freedom than stan-
dard FD stencils using the same points, it is possible to choose the coefficients
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not to achieve the highest order of accuracy, but to further improve the wave
resolution properties, or introduce dissipation into the stencil. These possibil-
ities make compact FD stencils attractive for application to non-linear conser-
vation laws such as Euler equations (Kim and Sandberg, 2012). Similar stencils
can be constructed for higher order derivatives, as well as upwind and one-
sided ones. To the present date there have been however no applications of
compact FD stencils in the context of numerical relativity.

3.3.3 Finite-differences schemes for non-linear conservation laws

In the case of conservation laws, finite-differences schemes can be written, in
the case of Cartesian equally spaced grids, in the form

duijk
dt

= − 1

∆x
[F xi+1/2,j,k − F xi−1/2,j,k]

− 1

∆y
[F yi,j+1/2,k − F

y
i,j−1/2,k]

− 1

∆z
[F zi,j,k+1/2 − F zi,j,k−1/2] , (3.44)

which appears completely equivalent to equation (3.32) for FV schemes. The
important difference (linked to the fact that uijk represents the point value of
u rather than its volume average) however is that terms like F xi+1/2,j,k are not
defined via integrals on the corresponding cell, but [F xi+1/2,j,k − F xi−1/2,j,k]/∆x

is itself a high-order approximation of ∂xfx at xijk.
This can be achieved by the following construction. As in Shu and Osher

(1988) and Mignone et al. (2010), and restricting the discussion to the x-axis for
ease of notation, we define F x as

fxi =
1

∆x

∫ xi+1/2

xi−1/2

F x(ξ)dξ , (3.45)

i.e. the point values of the flux are the cell averages of the numerical flux F x.
We furthermore introduce the function Hx as the primitive of F x, i.e.

Hx =

∫ x

−∞
F x(ξ)dξ . (3.46)

With this definition equation (3.45) becomes

fxi =
1

∆x

∫ xi+1/2

xi−1/2

F x(ξ)dξ =
1

∆x
[Hx(xi−1/2)−Hx(xi+1/2)] . (3.47)

Straightforward differentiation of this relation results in the expression

∂xf
x
i =

1

∆x
[F x(xi−1/2)− F x(xi+1/2)] , (3.48)

for the derivative of the flux, as in the first line of (3.44).
Since the flux values fxi are by definition the cell averages of the numerical

flux, we can use the reconstruction operators defined in section 3.2.1 to ob-
tain non-oscillatory, high order approximation of the latter. Stated differently,
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FD schemes can also be included in the category of high-resolution shock-
capturing (HRSC) methods introduced in section 3.2.1.

Note that the operators are in this case applied to the flux, which highlights
another difference between FV and FD schemes for conservation laws: in the
former, the solution at cell interfaces is reconstructed, from which the numeri-
cal flux is defined; in the latter, the numerical flux is directly reconstructed.

Since no Riemann solver is involved in the scheme, to ensure stability the
reconstruction has to be upwinded. In the general case in which the sign of
f ′(u) is undetermined, this is achieved by splitting it into a right-going part f+

and a left-going one f−, so that f = f+ +f−. The left(right)-biased reconstruc-
tion operator is applied to the right(left)-going part of the flux, and the two
reconstructed values are then summed. Note that the use of a flux-splitting
procedure is similar to the use of a Riemann solver in FV methods. In fact,
many such methods can be associated with corresponding Riemann solvers.
From the many possible way of splitting the flux for upwinding, we select here
the Lax-Friedrichs (or Rusanov) formula (Shu, 1997), in which f+ and f− are
defined as

f± = f + au . (3.49)

Here a is the maximum local propagation speed of the system: a = max |f ′(u)|
where the maximum is taken over the points acted upon by the stencil.

In the case of a system of equations, where the solution u and the flux f are
vector valued, the procedure outlined above to compute the derivative ∂if i can
simply be carried out successively on every component of the system (which
we refer to as a “component split” of the system). This simple approach can
however result in spurious oscillations when a high order reconstruction is
employed. To remedy this issue it is possible to perform the reconstruction on
the local characteristic variables. Limiting the notation again to the x-axis for the
sake of clarity, we introduce the local Jacobian matrix of the flux:

Ax =
∂fx

∂u

∣∣∣∣
ū

. (3.50)

We need to reconstruct the numerical flux at the point xi+1/2, so the derivative
is evaluated at ū = (ui+1 + ui)/2, i.e. the average of the states of the fluid
in the neighbouring cells. Assuming the system to be strongly hyperbolic, Ax

is invertible with only real eigenvalues λn and a corresponding set of inde-
pendent right- and left-eigenvectors, rn and ln (in these expressions the index
n runs over the components of the system). Denoting R the matrix of right
eigenvectors, i.e.

Rjn = rjn , (3.51)

and L its inverse (the matrix of left-eigenvectors), we can define the local char-
acteristic variables as

w = Lu Q = Lfx . (3.52)

The reconstruction procedure can then be applied as follows: we locally
compute Q and w; let the reconstruction operator act on the components of
Q, where in the flux-splitting step w appears instead of u in equation (3.49);
finally we “transform back” the reconstructed value by multiplying with the
matrix of right-eigenvectors:

F xi+1/2 = RQi+1/2 . (3.53)
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The procedure is similarly applied in the other directions. In the results pre-
sented in chapter 5, where a FD method using the MP5 reconstruction is em-
ployed as reference for comparison purposes with a novel approach, the “char-
acteristic split” outlined above is always used in conjunction with the MP5 re-
construction.

Finite-differences flux-limiting schemes

A different different approach to finite-differences HRSC schemes is employed
in the so-called flux-limiting schemes (see Leveque (1992) for an introduction
and overview). A HRSC scheme is obtained by selecting a reconstruction op-
erator with HRSC properties, in particular with an in-built mechanism to sup-
press spurious oscillations and deal with discontinuous solutions. In a flux-
limiting scheme instead the numerical flux Fi+1/2 (we restrict hereafter the no-
tation to one spatial dimension for simplicity) is split (or “hybridized”) into
two parts, i.e.

Fi+1/2 = θFHOi+1/2 + (1− θ)FLFi+1/2 . (3.54)

In equation (3.54) FHOi+1/2 is a high order contribution to the flux, which is com-
puted without the use of any limiting procedure, or inserting any artificial dis-
sipation; FLFi+1/2 is instead a low order contribution, meant to introduce suf-
ficient numerical dissipation for the method to be stable even in the case of
discontinuous solutions; the parameter θ ∈ [0, 1] controls the relative ratio of
the two contributions.

The high order flux contribution can be obtained for example via the unlim-
ited reconstruction stencils introduced in section 3.2.1, i.e. the U5 (3.37) or U7
(3.38) operators. This is in fact the choice used in the numerical results of chap-
ter 5. The low order contribution is instead defined as the local Lax-Friedrichs
flux (hence the LF superscript):

FLFi+1/2 =
1

2
(fi + fi+1)− κ

2
(ui − ui+1) , (3.55)

where κ is an estimate of the local maximum propagation speed of the system,
i.e. κ = max |dfdu | with the maximum taken over the stencil of the high order
part.

Note that θ need not be a constant, but can be adjusted in space and time
as necessary. Within this framework it is possible in fact to choose the value
of θ such that the resulting scheme satisfies a maximum principle, i.e. if given
two constants m ≤ M the initial data satisfies m ≤ u0 ≤ M , the solution at
time t will satisfy m ≤ u(t) ≤ M as well. When applied to the Euler equations
of (relativistic) hydrodynamics, this can be exploited to construct schemes in
which the result of the evolution is always a physically admissible state (Wu,
2017) or more simply (as in the implementation tested in chapter 5) to ensure
that the rest-mass density never becomes negative.

Schematically, this can be illustrated as follows: for a single Euler time in-
tegration step, the result of the evolution of u can be explicitly written as

ui+ni =
1

2
(uni + 2λFi−1/2) +

1

2
(uni − 2λFi−1/2) , (3.56)

where the fluxes are defined as in equation (3.54) and λ depends on the max-
imum propagation speed of the system as well as on the CFL factor. There
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exist a value of θ that makes both terms in equation (3.56) positive, computed
following the algorithm in section 2.2 of Hu et al. (2013), but replacing the
rest-mass density ρ with its conserved relativistic counterpart D = ρW

√
γ (see

Radice et al. (2014b) for details). Applied to the continuity equation (2.16) this
guarantees that the density never becomes negative. We refer to this approach
as the positivity-preserving limiter, an integral part of the ELH scheme of chapter
5.

3.4 Discontinuous Galerkin methods

Discontinuous Galerkin schemes belong to the class of finite-elements meth-
ods. In a DG approach the computational domain is subdivided in a number
of non-overlapping elements, and in the interior of each element functions are
represented by a spectral expansion over a set of basis functions. The expan-
sion provides an accurate way to compute derivatives in the interior of each
element, while the solution itself is discontinuous across element boundaries.
A numerical flux is introduced to tie together the evolution of the elements.

DG methods posses a number of outstanding properties with respect to FV
and FD methods. First of all, they can be proven to be non-linearly stable at all
orders. They also satisfy an entropy inequality, meaning a solution to a non-
linear conservation law obtained with a DG method is always the entropic one
(Cockburn, 2003).

Secondly, they can exploit the so-called hp-adaptivity, referring to the pos-
sibility of both refining the size of the elements (h-adaptivity, h being a com-
mon shorthand for the grid spacing) and the accuracy of the spectral expansion
within a single element (p-adaptivity, p being the order of the method). This
means that (on smooth solutions), DG methods achieve polynomial accuracy
in the grid spacing (as FV or FD schemes) but spectral accuracy in the number
of basis functions employed.

Thanks to their very compact stencils, which in particular means they need
only one ghost point at any order, they have nearly-optimal scalability, which
makes them very attractive for large parallel applications. They also quite
naturally accommodate unstructured meshes (see e.g. Boscheri and Dumbser
(2017)).

Finally, they can be formulated in a covariant way, not needing a choice of
coordinate system (Meier, 1999).

On the other hand, the drawbacks of DG methods are a greater complex-
ity of the implementation; a larger memory footprint than other schemes; and
most importantly, more severe limitations on the size of the timestep. The lat-
ter is a consequence of the fact that in the interior of each element, the spectral
basis can be associated to a grid, and the limitation on the size of timestep is
scales naturally with the spacing of this grid rather than with the element size.

In the context of hyperbolic equations, DG methods have been applied
mostly to (first order) conservation laws of the form (3.1), and are generally
formulated in this context. We will proceed in our exposition in this way as
well for simplicity. Note however that DG methods can be applied to a larger
class of equations, such as equation of second order in space (e.g. Hesthaven
and Warburton (2007); Miller and Schnetter (2017)), or most importantly for the
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present work, to conservation laws written in full or partial non-conservative
form, as detailed in section 3.5.1.

3.5 Nodal semi-discrete DG methods

DG methods can be formulate as follows, where we refer for simplicity to a
Cartesian coordinate system. The computational domain Ω is split in non-
overlapping elements:

Ωi =[xi −
1

2
∆xi, xi +

1

2
∆xi]

×[yi −
1

2
∆yi, yi +

1

2
∆yi]

×[zi −
1

2
∆zi, zi +

1

2
∆zi] , (3.57)

where
xi = (xi, yi, zi) ∆xi = (∆xi,∆yi,∆zi) (3.58)

are the barycentre and the size of the element Ωi in each spatial coordinate di-
rection, respectively. Clearly the union of all elements is the whole domain Ω,
i.e. Ω =

⋃
Ωi. Note that we employ an index i which runs over all elements,

which implies some sort of ordering of the elements themselves has been cho-
sen, e.g. by employing a space filling curve.

In the finite-element DG context, the solution to a system of equations,
which we denote from now on by u, belongs to the space of tensor products of
piecewise polynomials of degree N in each spatial direction, itself indicated by
the symbol U . At a given time tn, the solution is represented by some unknown
degrees of freedom ûni,l associated to some spatial basis functions Φl(x) in each
element Ωi as follows:

u(x, tn) =
∑
l

ûni,lΦl(x) := ûni,lΦl(x) , (3.59)

where the spatial basis functions Φl(x) = ϕl1(ξ)ϕl2(η)ϕl3(ζ) are the tensor
products of one-dimensional basis functions ϕk(ξ) on the one-dimensional ref-
erence element [0, 1]. l := (l1, l2, l3) is a multi-index, a shorthand for three
indices which run over the degrees of freedom of each Cartesian direction in
the interior of each element.

The mapping from physical coordinates x ∈ Ωi to reference coordinates
ξ = (ξ, η, ζ) ∈ [0, 1]3 is simply given by x = xi− 1

2∆xi+(ξ∆xi, η∆yi, ζ∆zi)
T . A

common choice for the one-dimensional basis functions ϕk(ξ) are the Lagrange
interpolation polynomials passing through the Gauss-Legendre quadrature nodes
ξj of an N + 1 point Gauss quadrature formula (see figure 3.4). With this
choice the interpolation property ϕk(ξj) = δkj is satisfied. Due to this par-
ticular choice of a nodal basis, the entire scheme can be written in a dimension-
by-dimension fashion, where all integral operators can be decomposed into a
sequence of one-dimensional operators acting only on the N + 1 degrees of
freedom in the respective dimension.

Note that these choices are by no means unique. Choosing the Lagrange
polynomials as basis functions is very common, but other bases are sometimes
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chosen. Using Lagrange polynomials results in a nodal basis where the inter-
polation property is valid; a different basis choice can result in modal, rather
then nodal, DG schemes, in which the degrees of freedom ûni,l are simply the
coefficients of the basis functions in a spectral representation, but cannot be
identified as point values of the solution at the chosen nodes, as in the nodal
framework. Finally, while it is very common to choose Gauss-Lagrange nodes
in a nodal framework, other choices are possible. The advantage of Gauss-
Legendre nodes over e.g. equally spaced nodes is that it avoids matrices ap-
pearing later in the definition of the scheme to be severely ill-conditioned. An-
other popular choice with the same advantage is Gauss-Lobatto nodes, which
puts nodes on the boundary of the element, meaning two adjacent element
will each have a node in the same physical location, but the corresponding de-
grees of freedom (i.e. point values of the solution) might be different. These
possibilities are reviewed in Hesthaven and Warburton (2007).

In deriving a DG scheme, one first multiplies the equations to be solved
(3.1) (we refer in this section only to equations in flux conservative form, for
simplicity) by a test function Φk ∈ U , identical to the spatial basis functions of
equation (3.59) (this choice is distinctive of Galerkin schemes). After that, we
integrate over an element Ωi and obtain∫

Ωi

Φk
∂u

∂t
dx+

∫
Ωi

Φk∂jf
j(u)dx =

∫
Ωi

Φks(u)dx , (3.60)

where we have reintroduced the algebraic source terms s for generality. Here
dx = dx dy dz, i.e. the integration is over a coordinate volume, not a physical one.

Using the ansatz (3.59) the expression (3.60) (the so called weak formulation
of the DG scheme) can be rewritten as(∫

Ωi

ΦkΦldx

)
dûi,l

dt
+

∫
Ω◦
i

dΦk
dxj

f j(u)dx

+

∫
∂Ωi

ΦkD−
(
u−,u+

)
· ndS =

∫
Ωi

Φks(u)dx . (3.61)

In (3.61), upon explicitly inserting the expressions for the basis functions, the
first integral expands into the mass matrix, which is diagonal for our choice of
the basis and test functions; in the second integral the so-called stiffness matrix
appears, and this term accounts for the smooth part of the discrete solution in
the interior Ω◦i = Ωi\∂Ωi of the element Ωi; the third term takes the form of a
boundary integral (where S is the surface element and n the outward normal
vector to ∂Ωi) accounts for the jumps across the element interfaces (since the
solution can be discontinuous at these locations); the last term on the right-
hand side is simply due to the presence of the purely algebraic source terms
s.

In the boundary integral, the flux f has been replaced with the function
D−, which depends on the states u+ and u− at the edge of the two adjacent
elements. This function takes the role of a numerical flux. It needs to be spec-
ified explicitly since the solution is discontinuous at element boundaries (i.e.
u+ 6= u−), and as such the various elements would evolve completely inde-
pendently in its absence. One of the most common choices of numerical flux
(many are possible), giving satisfactory results in many cases, is the simple
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Lax-Friedrichs flux:

D− =
1

2
(f(u+) + f(u−)) +

a

2
n · (u+ + u−) . (3.62)

Here a is again (an estimate of) the maximum propagation speed of the sys-
tem of equations, a = max |∂uf |, where the maximum could be global or lo-
cal. Other choices of numerical flux are available, in fact all the flux formulas
discussed in section 3.2 are viable (e.g. Radice and Rezzolla (2011) employed
the HLLE flux formula to discretize the general relativistic Euler equations in
spherical symmetry).

Note that as the flux is general a non-linear function an aliasing error is
introduced in approximating it with the ansatz (3.59). This is in general un-
avoidable, and can lead to problems concerning the non-linear stability of the
scheme. It is however easily suppressed with the use of weak filtering (Hes-
thaven and Warburton, 2007).

Finally, DG methods can be combined with adaptive mesh refinement (AMR),
as e.g. implemented in a cell-by-cell framework based on a tree structure (Khokhlov,
1998), together with local time stepping (Dumbser et al., 2013; Dumbser et al.,
2014; Zanotti and Dumbser, 2015; Zanotti et al., 2015b,a).

3.5.1 Path-conservative ADER-DG schemes

DG methods as introduced in the previous section are applied to equations in
flux-conservative form. It is however possible to apply the DG discretization
framework even when the system of equation to solve is not in such form,
but contains non-conservative products, or is in fully non-conservative (quasi-
linear form),i.e.

∂tu+Ai∂ju = s(u) . (3.63)

In this case, the main risk is that, if the equations are genuinely non-linear
(as opposed to linearly degenerate) and the solution develops a discontinuity,
the numerical method will converge to a non-entropy (and thus unphysical)
solution. The path-conservative formulation guarantees that this won’t hap-
pen.

In this section we review the path-conservative ADER-DG schemes, that are
be used to obtain the results of chapter 4. The ADER scheme is a framework
to obtain a high order time discretization of the system through the use of a
predictor-corrector approach, resulting in a fully discrete scheme.

Basic ADER-DG scheme

The derivation of the path conservative ADER-DG method proceeds similarly
as the one of the previous section. The equations (3.63) are multiplied by a test
function Φk ∈ U , also in this case identical to the spatial basis functions of equa-
tion (3.59). We integrate over the spacetime element Ωi× [tn; tn+1] (integrating
in both space and time rather than simply in space) and obtain

tn+1∫
tn

∫
Ωi

Φk
∂u

∂t
dxdt+

tn+1∫
tn

∫
Ωi

Φk (A(u) · ∇u) dxdt =

tn+1∫
tn

∫
Ωi

Φks(u)dxdt , (3.64)
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where for brevity A := A · n. Again the resulting jump terms have to be
taken properly into account, since the solution is discontinuous across element
interfaces.

This is achieved with the aid of the path-conservative approach, initially
developed by Castro et al. (2006); Pares (2006) in the FV framework and sub-
sequently extended to the DG framework in Rhebergen et al. (2008); Dumb-
ser et al. (2009, 2010). In the ADER-DG framework, higher order in time is
achieved with the use of an element-local space-time predictor, denoted by
q(x, t), and which will be discussed later (as opposed to using a standard time-
stepping algorithm, such as e.g. a Runge-Kutta scheme, resulting in a RKDG
method). Starting from (3.59), one integrates the first term in time by parts and
makes use of the local predictor solution q instead of u. This leads to the weak
formulation (3.64) to be rewritten as∫

Ωi

ΦkΦldx

(ûn+1
i,l − ûni,l

)
+

tn+1∫
tn

∫
Ω◦
i

Φk (A(q) · ∇q) dxdt

+

tn+1∫
tn

∫
∂Ωi

ΦkD−
(
q−, q+

)
· ndSdt =

tn+1∫
tn

∫
Ωi

Φks(q)dxdt .

(3.65)

The jump terms are defined via a path-integral in phase space between the
boundary states at the left q− and at the right q+ of the interface as follows (see
also (Dumbser and Toro, 2011)):

D−
(
q−, q+

)
· n =

1

2

 1∫
0

A(ψ) · nds

(q+ − q−
)
− 1

2
Θ
(
q+ − q−

)
, (3.66)

withA · n = A1n1 +A2n2 +A3n3 the system matrix in normal direction and
where we have used the simple segment path

ψ = ψ(q−, q+, s) = q− + s
(
q+ − q−

)
, 0 ≤ s ≤ 1 . (3.67)

Note that in principle the integration path should belong to the family of paths
connecting the two states q− and q+ in phase space that define a weak solution
of the non-conservative system of equations (3.63). In practice constructing
such a path can be extremely difficult and expensive. Therefore the choice of
a simple segment path is preferred, since it turns out to be adequate in most
cases.

The last building block of the scheme, appearing in equation (3.66), is an
appropriate numerical viscosity matrix Θ0. Following Dumbser et al. (2009,
2010); Dumbser and Toro (2011), the path integral appearing in (3.66) can sim-
ply be computed via a Gauss-Legendre quadrature formula of sufficient order
of accuracy. In the results of chapter 4 we used one to three Gaussian quadra-
ture points. For a simple path-conservative Rusanov-type method (Dumbser
et al., 2009; Castro et al., 2010), the viscosity matrix reads:

ΘRus = smaxI, with smax = max
(∣∣Λ(q−h )

∣∣ , ∣∣Λ(q+
h )
∣∣) , (3.68)

where smax is the maximum propagation speed at the elements’ interface and
I is the identity matrix.
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Space-time predictor

The element-local space-time predictor q(x, t) allows the solution to be evolved
in time with a high order method. It is computed from the solution u(x, tn)
at time tn using a solution of the equations obtained “in the small”, that is to
say independently in each element, without considering the interaction with
the neighbors. In the ENO scheme of Harten et al. (1987), and in the original
ADER approach of Titarev and Toro (2002, 2005); Toro and Titarev (2006), to
obtain high accuracy in the time evolution the so-called Cauchy-Kovalewski
procedure was used. This is very cumbersome as it is based on analytically
computing a local Taylor series expansions in space and time of the equations,
where time derivatives are replaced by the (known) space derivatives at time
tn by successively differentiating the PDE system with respect to space and
time. See an example of the Cauchy-Kovalewski procedure applied to the
Euler equations of compressible gas dynamics in Dumbser et al. (2007). It is
however obvious that a highly complex PDE system (e.g. the FO-CCZ4 for-
mulation of section 4.4.2) is not amenable to such an approach, which heavily
relies on analytical manipulations of the PDE system. Therefore an alternative
procedure has been developed in the form of a local space-time DG predictor
(Dumbser et al., 2008; Dumbser and Zanotti, 2009; Dumbser et al., 2009), which
only requires the pointwise computation of source terms and non-conservative
products. The predictor solution q is again expanded into a local space-time
basis

q(x, t) =
∑
l

θl(x, t)q̂i,l := θl(x, t)q̂i,l , (3.69)

with the multi-index l = (l0, l1, l2, l3) (the additional index l0 being the time
index). The space-time basis functions θl(x, t) = ϕl0(τ)ϕl1(ξ)ϕl2(η)ϕl3(ζ) are
again generated from the same one-dimensional nodal basis functions ϕk(ξ)
as before. The spatial mapping x = x(ξ) is also the same as before and the
coordinate time is mapped to the reference time τ ∈ [0, 1] via t = tn + τ∆t.
Multiplication of the PDE system (3.63) with a test function θk and integration
over Ωi × [tn, tn+1] yields the following weak form in space and time, which
is different from (3.64), since now the test and basis functions are also time-
dependent:

tn+1∫
tn

∫
Ωi

θk(x, t)
∂q

∂t
dxdt+

tn+1∫
tn

∫
Ωi

θk(x, t) (A(q) · ∇q) dxdt =

tn+1∫
tn

∫
Ωi

θk(x, t)s(q)dxdt . (3.70)

Since we are now interested in a purely local predictor solution, we do not
account for the jumps in the solution, simply discarding the corresponding
terms. This will be taken care of later in the final corrector step of the ADER-
DG scheme (3.65). We have however to introduce the known discrete solution
u(x, tn) at time tn. To this end, the first term can be integrated by parts in time
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leading to ∫
Ωi

θk(x, tn+1)q(x, tn+1)dx−
∫
Ωi

θk(x, tn)u(x, tn)dx

−
tn+1∫
tn

∫
Ωi

∂

∂t
θk(x, t)q(x, t)dxdt =

tn+1∫
tn

∫
Ωi

θk(x, t)s(q)dxdt

−
tn+1∫
tn

∫
Ωi

θk(x, t) (A(q) · ∇q) dxdt . (3.71)

Upon inserting the ansatz (3.69), this equation becomes an element-local non-
linear system for the unknown degrees of freedom q̂i,l of the polynomials qh.
The solution to equations (3.71) can be computed easily via a fixed-point iter-
ation method, which is simple and fast converging (see e.g. in Dumbser et al.
(2009); Toro et al. (2009); Dumbser et al. (2014)).

ADER-WENO finite-volume subcell limiter

Gauss-Legendre basis at order N (N +1 nodes) NS = 2N +1 Finite Volume subcells
N = 2: NS = 5→
N = 3: NS = 7→
N = 4: NS = 9→
N = 5: NS = 11→

x = 0 x = 0.5 x = 1 x = 0 x = 0.5 x = 1

Figure 3.4: Left: Node locations in the reference 1D cell of the a DG scheme
with Gauss-Lagrange dsegrees of freedom. The coordinate x ∈ {0, 1} covers
the computational cell holding N degrees of freedom, where N + 1 is the order
of the method. Right: The finite volume subcell structure for the ADER-WENO
subcell limiter. Each cell is divided in a grid of 2N+1 subcells. Figure reproduced
from Dumbser et al. (2017).

The ADER-DG scheme as presented in the previous sections is unlimited,
in the sense that no explicit mechanism is introduced to regularize the solu-
tion should a discontinuity occur. The use of this scheme is therefore justified
for smooth solutions. If however discontinuities or singularities appear this
can lead to numerical instabilities or even to a failure of the computation. Fol-
lowing the ideas outlined in Dumbser et al. (2014); Zanotti et al. (2015b,a), the
scheme can be supplemented with a high-order ADER-WENO subcell finite-
volume limiter. This is at the same much more robust than the pure, unlimited
DG scheme, but still high-order accurate in both space and time.

The a posteriori limiting strategy is described in Dumbser et al. (2014);
Zanotti et al. (2015b,a). Each element Ωi that has been marked for limiting
is split into (2N + 1)3 finite-volume subcells (denoted by Ωi,s) and satisfying
Ωi =

⋃
s Ωi,s (see figure 3.4). Despite this very fine division of a DG element

the time-step of the overall ADER-DG scheme is not reduced. This is because
the CFL coefficient of the DG scheme scales as 1/(2N +1), while the CFL of the
FV scheme is of order unity. The solution in the subcells Ωi,s is represented at
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time tn by piecewise constant subcell averages ūni,s, i.e.

ūni,s :=
1

|Ωi,s|

∫
Ωi,s

u(x, tn)dx . (3.72)

These subcell averages are then evolved in time with a third-order ADER-
WENO finite-volume scheme that looks very similar to the ADER-DG scheme
(3.65), namely

(
ūn+1
i,s − ūni,s

)
+

tn+1∫
tn

∫
Ω◦
i,s

(A(q) · ∇q) dxdt+

tn+1∫
tn

∫
∂Ωi,s

D−
(
q−, q+

)
· ndSdt

=

tn+1∫
tn

∫
Ωi,s

s(qh)dxdt . (3.73)

In this equation again a predictor solution q is employed, computed from
an initial condition given by a WENO (Jiang and Shu, 1996) reconstruction
polynomial w(x, tn), itself computed from the cell averages ūni,s via a multi-
dimensional WENO reconstruction operator detailed in Dumbser and Kaeser
(2007); Dumbser et al. (2013). The inner cell interface values q̂−h are computed
by taking the value of the neighbouring subcell, i.e. by 0-th order extrapolation.

So for each subcell Ωi,s several reconstruction polynomials wk(x, tn) are
computed, by requiring integral conservation ofwk on a set of different stencils
Ski,s, i.e.

1

|Ωi,j |

∫
Ωi,j

wk
h(x, tn)dx = ūni,j ∀Ωi,j ∈ Ski,s . (3.74)

This system is solved via a constrained least-squares algorithm requiring at
least exact conservation in the cell Ωi,s itself (see Dumbser and Kaeser (2007)
for details). The final WENO reconstruction polynomial w is then obtained by
using a classical nonlinear weighted combination of the polynomialswk (Jiang
and Shu, 1996; Dumbser and Kaeser, 2007) as follows:

w(x, tn) =
∑
k

ωkw
k(x, tn), with ωk =

ω̃k∑
l

ω̃l
and ω̃k =

λk
(σk + ε)r

,

(3.75)
with

ωk :=
ω̃k∑
l

ω̃l
and ω̃k :=

λk
(σk + ε)r

, (3.76)

and where the oscillation indicators σk are computed as usual from

σk :=
∑
l≥1

∫
Ωi,s

∆x2l−1
i,s

(
∂l

∂xl
wk(x, tn)

)2

dx . (3.77)

The parameter ε in (3.76) is only needed to avoid division by zero. In the
results of chapter 4 it is set to ε = 10−14 and the exponent in the denominator
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is chosen as r = 8. The linear weights are chosen as λ1 = 105 for the central
stencil (i.e. k = 1), while all other stencils (i.e. k > 1) have linear weight λk = 1.
This choice corresponds also to the one made in Dumbser and Kaeser (2007).

It is very convenient to write the WENO reconstruction polynomials in
terms of a basis of functions ψl(x) as w(x, tn) = Ψl(x)ŵn

l . In this work, fol-
lowing Dumbser et al. (2013), the basis functions Ψl are defined exactly as the
Φl, i.e. as tensor products of Lagrange interpolation polynomials through the
Gauss-Legendre quadrature nodes. For the WENO limiter, we only used a
piecewise quadratic reconstruction, which leads to a nominally third-order ac-
curate scheme. As already mentioned before, the predictor is computed ac-
cording to (3.71), where the initial data u(x, tn) is replaced byw(x, tn) and the
spatial control volumes Ωi are replaced by the subcells Ωi,s.

Once all subcell averages ūn+1
i,s inside an element Ωi have been computed,

the limited DG polynomial u′(x, tn+1) at the next time level is obtained again
via a classical constrained least squares reconstruction procedure requiring

1

|Ωi,s|

∫
Ωi,s

u′(x, tn+1)dx = ūn+1
i,s ∀Ωi,s ∈ Ωi , (3.78)

∫
Ωi

u′(x, tn+1)dx =
∑

Ωi,s∈Ωi

|Ωi,s|ūn+1
i,s , (3.79)

and ∫
Ωi

u′(x, tn+1)dx =
∑

Ωi,s∈Ωi

|Ωi,s|ūn+1
i,s , (3.80)

where (3.80) is a constraint and imposes conservation at the level of the element
Ωi.
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Hyperbolic formulations of
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Chapter 4

The FO-CCZ4 formulation

This chapter is devoted to the presentation of a novel first order, strongly hy-
perbolic formulation of Einstein equations. General relativistic simulations re-
quire (among many other issues that have to be addressed) stable and accurate
methods for evolving the spacetime, i.e. for solving the Einstein field equa-
tions. The development of hyperbolic formulations of the Einstein equations
that allow for long term simulations of generic spacetimes, including the ones
encompassing the physical singularities arising in the presence of BHs, has
been therefore of great importance in the field of numerical relativity.

The first step in this direction has been the 3+1 (space + time) ADM for-
mulation presented in section 2.4 (Arnowitt et al., 1962). While this formula-
tion splits time and space and naturally presents general relativity as an initial
boundary value problem (IBVP), suitable for numerical implementation, it is
known to be not hyperbolic1, and therefore unstable in numerical applications.

Subsequently, a lot of effort has been devoted to find hyperbolic formula-
tions of the Einstein equations. A breakthrough has been the BSSNOK
(Baumgarte-Shapiro-Shibata-Nakamura-Oohara-Kojima) formulation (Shibata
and Nakamura, 1995; Baumgarte and Shapiro, 1999; Nakamura et al., 1987;
Brown, 2009), which achieves hyperbolicity via a conformal transformation of
the 3-metric and the promotion of some contractions of the Christoffel sym-
bols to independently evolved variables and, most importantly, by inserting
the momentum and Hamiltonian constraint expressions into the evolution sys-
tem. A general-covariant alternative is the Z4 formulation of Bona et al. (2003,
2004); Alic et al. (2009), which has been presented both in first- and second-
order form in the spatial derivatives. More successful have been formulations
based on the Z4 one that include a conformal transformation of the metric and
write the system in a form close to the BSSNOK one, namely Z4c (Bernuzzi and
Hilditch, 2010) and CCZ4 (Alic et al., 2012, 2013) (see also Sanchis-Gual et al.
(2014); Bezares et al. (2017)for some recent and slight variants). The Z4 family
of formulations also admits mechanisms to damp constraint violations as they
arise during the evolution Gundlach et al. (2005); Weyhausen et al. (2012); Alic
et al. (2012, 2013).

The formulation presented here is a first order version of the CCZ4 one,
and it was therefore named FO-CCZ4 and presented in Dumbser, Guercilena,

1at least when usual gauge choices are considered. See Sarbach and Tiglio (2012) for a discus-
sion.
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Koeppel, Rezzolla, and Zanotti (2017). It includes the constraint violation sup-
pression mechanism of CCZ4, but it has been engineered in such a way that
it was possible to prove, at least for a selected gauge choice, that it is strongly
hyperbolic (and therefore well suited for numerical applications) and that all
characteristics fields are linearly degenerate (which implies that no shocks can
be produced by these equations). Finally, being first order in space and time
makes it ideal for discretization with a DG scheme, which has been in fact the
choice for all tests presented here.

This chapter is structured as follows: in section 4.1 the concept of a hyper-
bolic system of equations is reviewed; in section 4.2 the BSSNOK formulation,
which introduced many of the ideas used in FO-CCZ4, is presented; section 4.3
describes the Z4 family of formulations, in particular CCZ4 on which FO-CCZ4
is based; finally section 4.4.2 presents the FO-CCZ4 system and the results of
numerical tests performed with it.

4.1 The notion of hyperbolicity

A first order system of partial differential differential equations can be written
the quasilinear form

∂tU +Ai(U)∂iU = 0 , (4.1)

where possible source terms on the right hand side have been set to zero for
simplicity, since they play no role in determining its hyperbolicity. The sum
over the repeated index i runs over the number n of spatial dimensions of the
problem. The matrices Ai (sometimes called the velocity matrices) are square
matrices of dimensions n × n, and can depend on the vector of unknowns U ,
but not on its derivatives. If they are independent on U then the system is
indeed linear.

Consider the contraction of Ai with the unit vector ni associated with any
direction in space:

A = Aini . (4.2)

Then we have the following definitions:

• ifA has real eigenvalues, the system (4.1) is hyperbolic;

• if A has real eigenvalues and a complete set of eigenvectors the system
(4.1) is strongly hyperbolic;

• if A has real eigenvalues but not a complete set of eigenvectors, the sys-
tem (4.1) is weakly hyperbolic;

• if the eigenvalues of A are real and distinct, the system (4.1) is strictly
hyperbolic (which implies it is strongly hyperbolic);

• if A is symmetric or can be made so, the system (4.1) is symmetric hyper-
bolic (which again implies it is strongly hyperbolic).

A system being hyperbolic simply means that perturbation in the unknown
fields propagate with finite speed. This is a requirement for modern physical
theories, but it not enough to imply the system is well behaved: this requires
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strong hyperbolicity. In particular in can be shown, e.g. Kreiss and Lorenz
(1989), that if the system is strongly hyperbolic, then:

||U(t,x)|| ≤ keat||U(0,x)|| ∀t > 0 , (4.3)

for some constants k and a, and any initial data U(0,x). Equation (4.3) states
that the norm of the solution at any time cannot grow faster than exponentially
with respect the norm at the initial time. This is a requirement (along with ex-
istence of the solution and its unicity) for the system to be well-posed. Clearly
this is a very desirable property in practical applications, because it guaran-
tees that no variable in the computation grows without bounds, crashing the
calculation.

Note that the Valencia formulation of the relativistic Euler equations pre-
sented in section 2.5 is strongly hyperbolic. Focusing for simplicity of the x
direction, its eigenvalues are

λ0 = αvx − βx

λ± =
α

1− v2c2s

{
vx(1− c2s)± cs

√
(1− v2[γxx(1− v2c2s)− vxvx(1− c2s)])

}
− βx ,
(4.4)

where cs is the local speed of sound cs =
√

∂p
∂e . The eigenvalues are not distinct,

the first one is degenerate with triple multiplicity, so the system is not strictly
hyperbolic. There is however a complete set of five eigenvectors (their explicit
expressions can be found in e.g. Rezzolla and Zanotti (2013)), which proves the
system is strongly hyperbolic.

In contrast the ADM system of section 2.4 is only weakly hyperbolic (see e.g.
Kidder et al. (2001)), and this can result in the appearance of unbounded grow-
ing modes in the evolution of a given spacetime. This behaviour has indeed
been observed in many applications and tests (e.g. Alcubierre et al. (2004a)),
and renders the ADM formulation unsuitable for numerical implementation.
In the following sections it will be detailed how these shortcomings can be
overcome and a strongly hyperbolic formulation of Einstein equations defined.

4.2 The BSSNOK formulation

As anticipated in the previous section, the BSSNOK system is based on three
building blocks: a conformal transformation of the metric; the promotion of the
connection coefficients to independently evolved variables; and the addition of
the constraints expressions to some of the evolution equations. The first two
ideas give rise to the following definitions for the evolved fields

φ :=
1

12
ln(γ) (4.5a)

K := γijKij (4.5b)

γ̃ij := e−4φγij (4.5c)

Ãij := e−4φ

(
Kij −

1

3
γijK

)
(4.5d)

Γ̃i := γ̃jkΓ̃ijk , (4.5e)
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where Γ̃ijk are the Christoffel symbols computed from the conformal metric
γ̃ij and γ is the determinant of the spatial metric γij . As can be seen, the 3-
metric (which is directly computed in the ADM system) has been replaced by
the conformal factor φ and the conformal metric γ̃ij . The same conformal trans-
formation has been applied to the extrinsic curvature Kij , which has also been
split in its trace K and trace-free part Ãij . The new variable Γ̃i is a particular
contraction of the conformal Christoffel symbols and, as anticipated, is inde-
pendently evolved. The full BSSNOK equations take then the form (see Brown
(2009) for a modern derivation):

∂⊥φ =
1

6
∂kβ

k − 1

6
αK (4.6a)

∂⊥γ̃ij = −2αÃij −
2

3
γ̃ij∂kβ

k (4.6b)

∂⊥K = α

(
ÃijÃ

ij +
1

3
K2

)
− γij∇i∇jα (4.6c)

+ 4π(Skk + E)

∂⊥Ãij = e−4φ [α(Rij − 8πSij)−∇i∇jα]
TF (4.6d)

− 2

3
Ãij∂kβ

k + α
(
KÃij − 2ÃikÃ

k
j

)
∂⊥Γ̃i = γ̃kl∂k∂lβ

i +
2

3
γ̃jkΓ̃ijk∂lβ

l (4.6e)

+
1

3
∇̃i(∂kβk)− 2Ãik∂kα+ 2αÃklΓ̃ikl

+ 12αÃik∂kφ−
4

3
α∇̃iK − 16παγ̃ijSj

∂⊥α = −2αK (4.6f)

∂tβ
i =

3

4
bi + βk∂kβ

i (4.6g)

∂tb
i = ∂tΓ̃

i − ηbi + βk∂kb
i , (4.6h)

where the operator ∂⊥ stands for ∂t −Lβ, i.e. the derivative with respect to co-
ordinate time minus the Lie derivative along the shift, and the notation [. . . ]TF

indicates terms that are made trace free with respect to the conformal metric.
The covariant derivatives ∇ and ∇̃ are constructed from the physical and co-
variant three metric respectively. For completeness, the gauge evolution equa-
tions for the 1+log and Gamma driver conditions (see section 2.4.1) have been
included as well, since they are employed in the results presented in chapters
5 and 6.

The three dimensional Ricci tensor Rij is split in two parts, Rij = R̃φij + R̃ij ,
the first involving the conformal factor φ and the second the derivatives of the
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conformal metric γ̃ij :

R̃φij = φ−2
[
φ
(
∇̃i∇̃jφ+ γ̃ij∇̃k∇̃kφ

)
(4.7a)

−2γ̃ij∇̃kφ∇̃kφ
]

R̃ij = −1

2
γ̃lm∂l∂mγ̃ij + γ̃k(i∂j)Γ̃

k (4.7b)

+ Γ̃kΓ̃(ij)k + γ̃lm
[
2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃kjl

]
.

Note that in equations (4.6c) and (4.6e) above the expressions of the Hamil-
tonian and momentum constraints respectively have been added to the right
hand side (see again Brown (2009) for details). Such manipulations are always
possible, since the constraints are identically zero for a solution of Einstein
equations. Their addition however turned out to be vital to guarantee the hy-
perbolicity of the system.

In numerically integrating these equations a constrained approach is typ-
ically used, i.e. the additional constraints det(γ̃ij) = 1 and tr(Ãij) = 0 are
enforced at every time step in the computation.

The BSSNOK system is first order in time, but second order in space, and
therefore it is a priori not clear how to define its hyperbolicity. One possibility
is to define auxiliary fields starting from the spatial derivatives of the original
evolved fields, and so bring the system in first order, quasilinear form. This
has been accomplished by Beyer and Sarbach (2004), which managed to prove
that for a large class of slicing conditions (including the standard harmonic
and 1+log slicing) and for a prescribed (i.e. not evolved) shift the first order
BSSNOK system is symmetric hyperbolic. A different definition of hyperbol-
icity, which applies to second order systems, has been exploited to prove that
the original, second order BSSNOK system is indeed strongly hyperbolic also
for generic shift conditions (see again Beyer and Sarbach (2004)). This explains
the remarkable success of this formulation in practical applications, which not
only behaves as desired in tests (e.g. Alcubierre et al. (2004a)), but is routinely
employed in realistic simulations by a number of groups around the world.

4.3 The Z4 family of formulations

The Z4 has been introduced initially in Bona et al. (2003) to get a fully covari-
ant formulation of Einstein equations which also provides a consistent way of
treating terms proportional to the constraints in the evolution equations. The
starting point is to introduce an additional auxiliary field, the 4-vector Zµ, in
the Einstein equations, so that they take the form:

Rµν + 2∇(µZµ) = 8π(Tµν −
1

2
Tgµν) . (4.8)

When the conditionZµ = 0 is satisfied, solutions to equations (4.8) are the same
as solutions of the original equations (2.10). Note that these equations, as well
as the Z4 system that results from them, can also be derived from an action
principle (Bona et al., 2010).
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Applying the 3+1 split to these equations as described in section 2.4, results
in the following system of equations:

∂⊥γij = −2αKij (4.9a)

∂⊥Kij = −∇i∇jα+ α
[
Rij − 2KikK

k
j + (K − 2Θ)Kij

]
(4.9b)

− 8πα

[
Sij −

1

2
γij(S − E)

]
∂⊥Θ =

α

2

[
R+ 2∇kZk + (K − 2Θ)K −KijK

ij

− 2

α
Zk∇kα− 16πE

]
(4.9c)

∂⊥Zi = α

[
∇j(K j

i − δ ji K) + ∂iΘ− 2K j
i Zj

− 1

α
Θ∇iα− 8πSi

]
, (4.9d)

where Θ = nµZ
µ = αZ0. The evolution equation for the extrinsic curvature

almost identical to the original ADM one (2.33), while the evolution equations
for the components of the Zµ vector replace the Hamiltonian and momentum
constraint equations. Note that they are indeed evolution equations, not ellip-
tic ones. However by imposing the conditions Zµ = ∂tZµ = 0 on the initial
slice, these two equations reduce to the usual constraint equations (Bona et al.,
2003). This means that initial data for the Z4 system can be constructed as
usual by solving the constraint equations on the initial slice, plus the initial
value Zi = Θ = 0 for the auxiliary fields. Evolution with the system (4.9) will
preserve these constraint.

Starting from the Z4 system, a number of other formulations of Einstein
equations can be recovered, including the BSSNOK one and the KST one (Kid-
der et al., 2001). The hyperbolicity of the system has been studied in Bona et al.
(2004) for a family of slicing conditions (including generalized versions of the
harmonic and 1+log slicing) and zero shift, and was proven to be strongly hy-
perbolic. A first order version of the system, first considered in Bona et al.
(2004) and then in more detail in Alic et al. (2009) where it was cast in flux-
conservative form, was also found to be strongly hyperbolic.

Despite these encouraging results neither the second order version of the
Z4 system nor the first order one have been applied to realistic simulations.
The main drawback has been the inability to identify a suitable replacement of
the Gamma driver shift conditions with the same horizon freezing properties:
tests involving BH spacetimes and different shift prescription have resulted in
a growth of the horizon radius (see Alic et al. (2009)).

To address this difficulty, conformal formulations of the Z4 system have
been developed, in which the usual gauge conditions can be applied unmodi-
fied and used to obtain long-term stable evolutions as for the BSSNOK formu-
lation. These systems, namely the Z4c one and the CCZ4 one, are the subject of
the next two sections.
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4.3.1 The Z4c formulation

The Z4c is a non-covariant, conformal formulation of the Einstein equations
based on the second order Z4 one, written in such a way to be as close as
possible to BSSNOK, initially developed by Bernuzzi and Hilditch (2010). Its
derivation starts from the following form of the Einstein equations:

Rµν + 2∇(µZµ) = 8π(Tµν −
1

2
Tgµν) +κ1

[
2n(µZν) − (1 + κ2)gµνnτZ

τ
]
. (4.10)

In equation (4.10) the additional terms on the right hand side, absent in (4.8),
are damping terms which drive to zero the growth of constraint violations (κ1

and κ2 being tunable damping constants). In applying the 3+1 approach to
these equations, Bernuzzi and Hilditch (2010) chose to discard non-principal,
non-damping terms, which breaks the covariance of the system, but allows to
write the final form of the equations in a form which is very similar to the
BSSNOK one (in the interest of brevity we do not report the full form of the
equations here). The resulting system was proven to be strongly hyperbolic for
the usual 1+log and Gamma driver gauge choices.

The Z4c formulation was extensively tested, in standard testbeds scenar-
ios as well as in realistic BH and NS simulations, including compact binaries
(Bernuzzi and Hilditch, 2010; Hilditch et al., 2013). In each case it was shown
to be superior to BSSNOK, leading to very similar results, but with much lower
levels of constraint violations. In the case of compact binaries, the system also
allows for the extraction of more accurate waveforms, reducing both the de-
phasing and the amplitude variation in simulations performed at different res-
olutions. In a further development constraint-preserving outgoing boundary
conditions have been found for the Z4c system (Ruiz et al., 2011), while they
are not available for BSSNOK. Due to these desirable properties, Z4c has been
employed in a host of different simulations of compact binaries, see e.g. Diet-
rich et al. (2015); Bernuzzi and Dietrich (2016); Dietrich et al. (2017a).

However successful, the Z4c system suffers from the drawback of being
non-covariant. The CCZ4 system was initially developed precisely to address
this issue.

4.3.2 The CCZ4 formulation

The CCZ4 (conformal and covariant Z4) system was developed by Alic et al.
(2012), starting from the Z4 form of the Einstein equations with damping terms,
i.e. equations (4.10). Casting the equations in the 3+1 form, one obtains the
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system

∂⊥γij = −2αKij (4.11a)

∂⊥Kij = −∇i∇jα+ α
[
Rij − 2KikK

k
j + (K − 2Θ)Kij (4.11b)

−κ1(1 + κ2)Θγij ]− 8πα

[
Sij −

1

2
γij(S − E)

]
∂⊥Θ =

α

2

[
R+ 2∇kZk + (K − 2Θ)K −KijK

ij

− 2

α
Zk∇kα− 2κ1(2 + κ2)Θ− 16πE

]
(4.11c)

∂⊥Zi = α

[
∇j(K j

i − δ ji K) + ∂iΘ− 2K j
i Zj

− 1

α
Θ∇iα− κ1Zi − 8πSi

]
, (4.11d)

analogous to the (4.9) one, but including the constraint-damping terms. In
contrast to Bernuzzi and Hilditch (2010), Alic et al. (2012) did not discard any
terms in equations (4.11), obtaining a fully covariant formulation.

A conformal transformation is then applied to the evolution variables, in a
fashion similar but slightly different from the BSSNOK case (4.5):

φ := γ−
1
6 (4.12a)

K := γijKij (4.12b)

γ̃ij := φ2γij (4.12c)

Ãij := φ2

(
Kij −

1

3
Kγij

)
(4.12d)

Γ̃i := γ̃jkΓ̃ijk (4.12e)

Γ̂i := Γ̃i + 2γ̃ijZj (4.12f)

Θ := αZ0 . (4.12g)

The differences from the BSSNOK variables are a different choice for the con-
formal factor φ; the definition of a new variable Γ̂i which depends on the Zi
for vector and it is evolved instead of Γ̃i; and naturally the inclusion of the Z4
variable Θ.
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With this choice of variables, the CCZ4 system can finally be written as:

∂⊥γ̃ij = −2αÃ
TF

ij −
2

3
γ̃ij∂kβ

k (4.13a)

∂⊥Ãij = φ2 [−∇i∇jα+ α (Rij +∇iZj +∇jZi − 8πSij)]
TF

+ αÃij (K − 2Θ)− 2αÃilÃ
l
j −

2

3
Ãij∂kβ

k (4.13b)

∂⊥φ =
1

3
αφK − 1

3
φ∂kβ

k (4.13c)

∂⊥K = −∇i∇iα+ α
(
R+ 2∇iZi +K2 − 2ΘK

)
− 3ακ1 (1 + κ2) Θ + 4πα (S − 3E) (4.13d)

∂⊥Θ =
1

2
α

(
R+ 2∇iZi − ÃijÃij +

2

3
K2 − 2ΘK

)
− Zi∂iα− ακ1 (2 + κ2) Θ− 8παE (4.13e)

∂⊥Γ̂i = 2α

(
Γ̃ijkÃ

jk − 3Ãij
∂jφ

φ
− 2

3
γ̃ij∂jK

)
+ 2γ̃ki

(
α∂kΘ−Θ∂kα−

2

3
αKZk

)
− 2Ãij∂jα

+ γ̃kl∂k∂lβ
i +

1

3
γ̃ik∂k∂lβ

l +
2

3
Γ̃i∂kβ

k − Γ̃k∂kβ
i

+ 2κ3

(
2

3
γ̃ijZj∂kβ

k − γ̃jkZj∂kβi
)

− 2ακ1γ̃
ijZj − 16παγ̃ijSj (4.13f)

∂⊥α = −2α (K −K0 − 2Θ) (4.13g)

∂tβ
i = fbi + βk∂kβ

i (4.13h)

∂tb
i = ∂⊥Γ̂i + βk∂kb

i − ηbi , (4.13i)

where again the 1+log and Gamma driver conditions have been included as
well. In equations (4.13) the Ricci tensor Rij is once again computed as Rij =

R̃φij + R̃ij , with the two terms defined as in equations (4.7), as for the BSSNOK
system. Note that an arbitrary given function K0 has been added to the slicing
condition. This will be exploited in the following sections to enforce some
particular behaviour of the lapse in a few test cases. Note also the κ3 coefficient
which has been added in equation (4.13f). This coefficient is not present in the
original system (4.11), and has been added to allow for stable evolutions of BH
spacetimes as described in the following.

The CCZ4 system has been thoroughly tested in standard testbeds and BH
spacetimes (including BBHs) (Alic et al., 2012), as well as in BNS simulations
(Alic et al., 2013). In all of the case considered the system allows for better
results than the BSSNOK formulation, both concerning the constraint viola-
tions and the GW dephasing; and it compares favourably with the Z4c system.
One unexpected caveat that has emerged in the use of the CCZ4 formulation
in BH spacetimes is the presence of non-linear couplings between the various
terms, such that in order to obtain stable evolutions with the value κ1 6= 0, the
coefficient κ3 needs to be set to the value 0.5, breaking the covariance of the
system (see Alic et al. (2012)). However in (Alic et al., 2013) a different solution
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was found, which enables stable evolutions of BH spacetimes while maintain-
ing spatial covariance of the system (and full covariance of its non-damping
terms).

The CCZ4 system has been extensively applied to realistic simulations of
compact objects (see e.g. Radice et al. (2014b) and the review article by Baiotti
and Rezzolla (2017)). To date however no proof of hyperbolicity of the system
(in its second order form) is available in the literature.

4.4 The FO-CCZ4 formulation

4.4.1 Introduction

The FO-CCZ4 formulation of the Einstein equations presented here and pub-
lished in Dumbser, Guercilena, Koeppel, Rezzolla, and Zanotti (2017) has been
developed to pursue two main goals: firstly, to formulate a version of the CCZ4
system which is first order in both time and space, and therefore can be read-
ily discretized with DG methods; secondly, to ensure the hyperbolicity of the
formulation, a comprehensive analysis of which is still lacking for the CCZ4
formulation.

The need for the second requirement is clear: while in practical terms even
a weakly hyperbolic system of equations could lead to a stable numerical in-
tegration, only a strongly hyperbolic formulation guarantees stability in every
scenario. The CCZ4 system has been applied to realistic simulations in several
cases, but the success of these applications does not rest yet on a very strong
theoretical foundation.

On the other hand, the requirement of a first order formulation is natu-
ral when taking into account the goal of coupling it with a DG discretization.
While DG methods can be formulated in such a way to accommodate sec-
ond order system of equations (see Hesthaven and Warburton (2007) for an
introduction; Field et al. (2010) and Miller and Schnetter (2017) for applica-
tions to numerical relativity), they are most naturally formulated for first or-
der systems. In fact, DG methods are generally introduced in the context of
flux-conservative equations, and as such we initially strove to cast CCZ4 in
a first order fully conservative form. It clearly emerged however that a fully
non-conservative formulation offers many advantages in simplifying the form
of the equations and obtain an hyperbolicity proof; moreover, since the path-
conservative ADER-DG method (described in section 3.5.1) we employed to
discretize FO-CCZ4 can easily handle non-conservative terms in the equations,
no workaround was necessary to numerically implement the system either.

The rest of this section is devoted to the description of the FO-CCZ4 system
and its properties. Section presents a detailed derivation of the equations; in
section 4.4.3 a proof of hyperbolicity is presented; in section 4.4.4 results per-
taining to an extensive set of tests, obtained with the path-conservative ADER-
DG method, are reported; finally section 4.4.5 summarizes our conclusions.
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4.4.2 The FO-CCZ4 system of equations

Reduction to first order: auxiliary variables definition

In order to reduce any system of equations from second to first order form,
derivatives of the original variables have to be promoted to new auxiliary vari-
ables, which will be then promoted to independently evolved variables. Start-
ing from the original CCZ4 system we introduce the following 33 auxiliary
variables, which correspond to first spatial derivatives of the metric terms:

Ai := ∂i lnα =
∂iα

α
(4.14a)

B i
k := ∂kβ

i (4.14b)

Dkij :=
1

2
∂kγ̃ij (4.14c)

Pi := ∂i lnφ =
∂iφ

φ
. (4.14d)

The following second order ordering constraints (Gundlach and Martin-
Garcia, 2006) are an immediate consequence of (4.14) and the symmetry of
second-order derivatives (note that the spacetime functions are assumed to be
twice continuously differentiable, since the spacetime is described as a differ-
entiable manifold in general relativity):

Aki := ∂kAi − ∂iAk = 0 , Bikl := ∂kB
i
l − ∂lB i

k = 0 ,

Dklij := ∂kDlij − ∂lDkij = 0 , Pki := ∂kPi − ∂iPk = 0 . (4.15)

Ãij is by construction trace-free, therefore the following additional con-
straint holds: γ̃ijÃij = 0; and thus

Tk := ∂k

(
γ̃ijÃij

)
= ∂kγ̃

ijÃij + γ̃ij∂kÃij = 0 . (4.16)

These relations will be employed later in order to enforce strong hyperbolicity
of the system. The time evolution equations for the auxiliary quantities are
obtained by the standard procedure of applying the time derivative operator
∂t to equations (4.14), exchanging the order of the space and time derivatives
on the right-hand side of the resulting equations and making use of the PDEs
(4.13a), (4.13c) and the evolution equations for the lapse and shift to eliminate
the time derivatives from the left hand side.

In principle many different first-order formulations of the CCZ4 system are
possible, since any non purely algebraic term in the original second-order sys-
tem can be written as a combination of conservative terms and non-conservative
products (see (Gundlach and Martin-Garcia, 2006; Hilditch and Richter, 2015)
for a parametric study of such families of systems). Two extreme cases are of
particular interest: the first being a fully conservative form of the equations, in
which all terms are cast in a flux-conservative form (see e.g. Alic et al. (2009)
as an example for the first-order Z4 system); and a second formulation, fully
non-conservative, similar to the ideas outlined in Alcubierre (2008), in which
by making maximum use of the first-order ordering constraints the variables
defining the 4-metric (α, βi, φ and γ̃ij) are evolved simply by a nonlinear
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system of ordinary differential equations (ODEs) and the rest of the dynam-
ics is encoded in non-conservative products. The coefficients of these non-
conservative products are only functions of α, βi, φ and γ̃ij and no terms in-
volving derivatives of these variables appear. The dynamical variables of the
FO-CCZ4 system (including the auxiliary variables involved in the formula-
tion of the Gamma-driver shift condition) are then: Ãij , K, Θ, Γ̂i, bi (bi being
the auxiliary field used to formulate the Gamma-driver condition) and the aux-
iliary variables Ak, Bik, Pk and Dkij . In this work we elected upon experimen-
tation to follow the second approach, so that our final system of 58 evolution
equations is in fully non conservative form and consist of 11 ODEs and 47
PDEs. The form of the system and the very special structure it assumes are
presented in section 4.4.3.

The FO-CCZ4 equations

The final first-order form of the FO-CCZ4 system is non-conservative and ap-
pears in the following form

∂Q

∂t
+A1(Q)

∂Q

∂x1
+A2(Q)

∂Q

∂x2
+A3(Q)

∂Q

∂x3
= S(Q), (4.17)

where the symbols shorthands for the state vector Q, the system matrices Ai

and the purely algebraic source terms S(Q) respectively.

From now on the discussion is restricted to the vacuum case for simplic-
ity, i.e. assume the stress-energy tensor to be identically null in the following.
The neglected matter terms can be trivially added to the equations as needed
since they are purely algebraic terms; as such they do not enter the principal
part of the system, and can be neglected in computing its eigenstructure and
determining its hyperbolicity. For the same reason they also do not pose any
issues to the numerical discretization. Therefore our final non-conservative
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first-order FO-CCZ4 system reads as follows:

∂tγ̃ij = βk2Dkij + γ̃kiB
k
j + γ̃kjB

k
i −

2

3
γ̃ijB

k
k

− 2α

(
Ãij −

1

3
γ̃ijtrÃ

)
− τ−1(γ̃ − 1)γ̃ij (4.18a)

∂t lnα = βkAk − αg(α)(K −K0 − 2Θc) (4.18b)

∂tβ
i = sβkBik + sfbi (4.18c)

∂t lnφ = βkPk +
1

3

(
αK −Bkk

)
(4.18d)

∂tÃij = βk∂kÃij + φ2

[
−∇i∇jα+ α (Rij +∇iZj +∇jZi)

]
− φ2 1

3

γ̃ij
φ2

[
−∇k∇kα+ α(R+ 2∇kZk)

]
+ ÃkiB

k
j + ÃkjB

k
i

− 2

3
ÃijB

k
k + αÃij(K − 2Θc)− 2αÃilγ̃

lmÃmj − τ−1γ̃ijtrÃ (4.18e)

∂tK = βk∂kK −∇i∇iα+ α(R+ 2∇iZi)
+ αK(K − 2Θc)− 3ακ1(1 + κ2)Θ (4.18f)

∂tΘ = βk∂kΘ +
1

2
αe2(R+ 2∇iZi) +

1

2
αe2

(
2

3
K2 − ÃijÃij

)
− αΘKc− ZiαAi − ακ1(2 + κ2)Θ (4.18g)

∂tΓ̂
i = βk∂kΓ̂i − 4

3
αγ̃ij∂jK + 2αγ̃ki∂kΘ + γ̃kl∂(kB

i
l) +

1

3
γ̃ik∂(kB

l
l)

+ s2αγ̃ikγ̃nm∂kÃnm +
2

3
Γ̃iB k

k − Γ̃kB i
k + 2α

(
Γ̃ijkÃ

jk − 3ÃijPj

)
− 2αγ̃ki

(
ΘAk +

2

3
KZk

)
− 2αÃijAj + s2αγ̃ik∂kγ̃

nmÃnm

+ 2κ3

(
2

3
γ̃ijZjB

k
k − γ̃jkZjB i

k

)
− 2ακ1γ̃

ijZj (4.18h)

∂tb
i = sβk∂kb

i + s
(
∂tΓ̂

i − βk∂kΓ̂i − ηbi
)
, (4.18i)
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with the PDEs for the auxiliary variables given by:

∂tAk = βl∂lAk − αg(α) (∂kK − ∂kK0 − 2c∂kΘ)− sαg(α)γ̃nm∂kÃnm

− sαg(α)∂kγ̃
nmÃnm − αAk (K −K0 − 2Θc) (g(α) + αg′(α))

+B l
k Al (4.19a)

∂tB
i
k = −s

(
−βl∂lB i

k − f∂kbi + µγ̃ij (∂kPj − ∂jPk)

−µγ̃ij γ̃nl (∂kDljn − ∂lDkjn)
)

+ sBlkB
i
l (4.19b)

∂tDkij = βl∂lDkij − s
(
−1

2
γ̃mi∂(kB

m
j) −

1

2
γ̃mj∂(kB

m
i) +

1

3
γ̃ij∂(kB

m
m)

)
− α∂kÃij +

1

3
αγ̃ij γ̃

nm∂kÃnm +B l
k Dlij +B l

j Dkli +B l
i Dklj

− 2

3
B l
l Dkij +

1

3
αγ̃ij∂kγ̃

nmÃnm − αAk
(
Ãij −

1

3
γ̃ijtrÃ

)
(4.19c)

∂tPk = βl∂lPk +
1

3
α∂kK −

1

3
∂(kB

i
i) + s

1

3
αγ̃nm∂kÃnm +

1

3
αAkK

+B l
k Pl + s

1

3
α∂kγ̃

nmÃnm . (4.19d)

In the preceding equations those terms that have been added to the PDEs to
obtain an approximate symmetrization of the sparsity pattern are indicated in
red (see the discussion in section 4.4.3 and figure 4.1). Note that the function
g(α) in equation (4.18b) controls the type of slicing gauge condition which is
emplyed. In particular g(α) = 1 leads to harmonic slicing and while g(α) =
2/α to the so-called 1 + log slicing condition Bona et al. (1995).

In order to obtain the shift advection terms in the evolution equations for
the auxiliary variables, the identities (4.15) have been employed. In fact it re-
sults to be very important to use the second-order ordering constraints (4.15)
in an appropriate way in order to guarantee strong hyperbolicity: a naive first-
order formulation of the original CCZ4 system will general only result in a
weakly, rather than strongly, hyperbolic system (see Gundlach and Martin-
Garcia (2006) for a detailed discussion on the use of second-order ordering
constraints in second order in space first order in time hyperbolic systems).
More over we have found that the use of first and second-order ordering con-
straints alone is in fact not sufficient to get a strongly hyperbolic system, but
that it is necessary to derive the PDE (4.19c) for the evolution of the Dkij field
from (4.13a) by exploiting Ãij being trace-free. This is done via the use of the
constraint Tk, by adding equation (4.16) to equation (4.19c). These additional
terms in the FO-CCZ4 equations, related to the constraints (4.15) and (4.16) are
the ones highlighted in red in equations (4.18a)-(4.19d), as mentioned above.

Note finally that a number of additional constants have been introduced in
the FO-CCZ4 system, mostly for reasons of convenience. These are:

• τ is a relaxation time introduced to enforce the algebraic constraints on
the determinant of γ̃ij and on the trace of Ãij weakly (i.e. without the
need to explicitly enforce these constraints after each evolution timestep
in a numerical implementation; see the discussion in Alic et al. (2012)).

• e is a cleaning speed for the Hamiltonian constraint. This has been in-
troduced following the ideas of the generalized Lagrangian multiplier
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(GLM) approach of Dedner et al. (2002). In practice, this constant affects
the speed at which violation of the Hamiltonian constraint are propa-
gated away from their source. Note that the cleaning of the constraints is
a non-physical process, and as such e > 1 (i.e. superluminal propagation
speeds) is allowed; this choice would lead to faster constraint propaga-
tion, helping in reducing constraint violations; and is in fact also needed
for strong hyperbolicity for certain gauge choices.

• µ > 0 appears in equation (4.19b) and allows to adjust the relative contri-
bution of second-order ordering constraints.

• s appears in the PDEs controlling the shift evolution. It simply allows to
switch on or off the evolution of the shift vector, i.e. if s = 0 the gauge
condition for the shift reduces to ∂tβ

i = 0, while for s = 1 the usual
Gamma driver condition is recovered.

• c allows to turn off some of the algebraic source terms of the system.

Note that instead of evolving the lapse α and the conformal factor φ, their
logarithms ln(α) and ln(φ) are evolved. While not a standard choice, this is a
very simple way of preserving the positivity of the respective variables, even
at the discrete level. Note also that at a black hole puncture location the lapse
would vanish and its logarithm diverge. Therefore a positive lower limit on
their values is imposed in our numerical implementation. Since the numerical
method we selected to dicretize the FO-CCZ4 system is a DG scheme, in which
the solution in every computational element is represented by an interpolat-
ing polynomial as described in the previous chapter, in an element surround-
ing the puncture the DG polynomial might if fact reach values lower than this
lower limit due to the Runge phenomenon. However it would in any case not
diverge.

The following explicit expressions and identities apply to various terms ap-
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pearing in the evolution equations:

trÃ = γ̃ijÃij , and γ̃ = det(γ̃ij) (4.20)

∂kγ̃
ij = −2γ̃inγ̃mjDknm := −2D ij

k (4.21)

Γ̃kij = γ̃kl (Dijl +Djil −Dlij) (4.22)

∂kΓ̃mij = −2D ml
k (Dijl +Djil −Dlij)

+ γ̃ml
(
∂(kDi)jl + ∂(kDj)il − ∂(kDl)ij

)
(4.23)

Γkij = γ̃kl (Dijl +Djil −Dlij)− γ̃kl (γ̃jlPi + γ̃ilPj − γ̃ijPl)
= Γ̃kij − γ̃kl (γ̃jlPi + γ̃ilPj − γ̃ijPl) (4.24)

∂kΓmij = −2D ml
k (Dijl +Djil −Dlij) + 2D ml

k (γ̃jlPi + γ̃ilPj − γ̃ijPl)
− 2γ̃ml (DkjlPi +DkilPj −DkijPl)

+ γ̃ml
(
∂(kDi)jl + ∂(kDj)il − ∂(kDl)ij

)
− γ̃ml

(
γ̃jl∂(kPi) + γ̃il∂(kPj) − γ̃ij∂(kPl)

)
(4.25)

Rmikj = ∂kΓmij − ∂jΓmik + ΓlijΓ
m
lk − ΓlikΓmlj (4.26)

Rij = Rmimj (4.27)

∇i∇jα = αAiAj − αΓkijAk + α∂(iAj) (4.28)

∇i∇iα = φ2γ̃ij (∇i∇jα) (4.29)

Γ̃i = γ̃jlΓ̃ijl (4.30)

∂kΓ̃i = −2D jl
k Γ̃ijl + γ̃jl∂kΓ̃ijl (4.31)

Zi =
1

2
γ̃ij

(
Γ̂j − Γ̃j

)
Zi =

1

2
φ2(Γ̂i − Γ̃i) (4.32)

∇iZj = Dijl

(
Γ̂l − Γ̃l

)
+

1

2
γ̃jl

(
∂iΓ̂

l − ∂iΓ̃l
)
− ΓlijZl (4.33)

R+ 2∇kZk = φ2γ̃ij (Rij +∇iZj +∇jZi) . (4.34)

Here, we have again made use of the second-order ordering constraints
(4.15) by symmetrizing the spatial derivatives of the auxiliary variables as fol-
lows:

∂(kAi) :=
∂kAi + ∂iAk

2
, ∂(kPi) :=

∂kPi + ∂iPk
2

∂(kB
i
j) :=

∂kB
i
j + ∂jB

i
k

2
, ∂(kDl)ij :=

∂kDlij + ∂lDkij

2
. (4.35)

In general the above expressions contain terms contributing to the purely
algebraic source term as well as to the non-conservative products, which need
to be separate in the numerical implementation. Note also that the Ricci ten-
sor Rij is directly calculated from its definition in terms of the Riemann ten-
sor Rmikj , the Christoffel symbols and their derivatives ab definitionem, i.e. we
don’t employ the typical split of the Ricci tensor as e.g. used in Alic et al. (2012).
Since in general the identity γ̃ij = 1 cannot be guaranteed to hold exactly at
the discrete level (unless the algebraic constraints are rigorously enforced), the
contracted Christoffel symbols Γ̃i are also directly computed from their defini-
tion.
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The use of the second-order ordering constraints (4.15) and the constraint
Tk to achieve strong hyperbolicity is motivated by examining the structure of
the sparsity pattern of the system matrix A · n = A1n1 + A2n2 + A3n3. In
figure 4.1 the sparsity pattern of the system matrix in the normal direction
n = 1/

√
3(1, 1, 1) for the Gamma-driver shift condition and the 1 + log slic-

ing condition for a randomly perturbed flat Minkowski spacetime is p[lotted,
neglecting all matrix entries whose absolute value is below a threshold of 10−7.
The blue dots represent the original sparsity structure without the use of the
second-order ordering constraints (4.15) and the constraint (4.16); while the
combination of the blue and the red dots shows the sparsity pattern after those
terms have been added to the PDE system. Our approach for finding a suit-
able form of the ordering constraints to be added is based on the approximate
symmetrization of the sparsity pattern of the system matrix, in order to avoid
Jordan blocks, which cannot be diagonalized. Such Jordan blocks are evidently
present in the sparsity pattern indicated by the blue dots alone in figure 4.1, i.e.
without the use of the ordering constraints.

It is clearly evident from figure 4.1 that the first 11 varibles of the FO-CCZ4
system, i.e. γ̃ij , α, βi and φ, are only evolved via ODEs and that the entire
system does not include spatial derivatives of these variables: all entries in the
first 11 rows and columns of the system matrix are zero. However this deos
not imply that the FO-CCZ4 system is symmetric hyperbolic (in the sense of
Friedrichs (1954)). Further work in this direction would be needed to achieve
a symmetric hyperbolic form of FO-CCZ4. Note finally that in order to main-
tain the split of the system into 11 pure ODEs (4.37) for the metric variables α,
βi, γ̃ij and φ, and with no spatial derivatives of these quantities appearing in
the remaining PDE system (4.38), and 47 PDEs, it is not possible to add damp-
ing terms proportional to the first-order ordering constraints (4.14) to the sys-
tem. These terms would contain spatial derivatives of said variables and may
eventually lead to Jordan blocks which cannot be diagonalized. We therefore
refrain from adding these terms, in contrast to what has been done in Brown
et al. (2012). For the same reason also writing the system in a flux-conservative
form is not possible, since the fluxes would in general depend on the 4-metric
and spatial derivatives of α, βi, γ̃ij and φ would appear.

4.4.3 Proof of strong hyperbolicity

As mentioned above, by defining the state vectorQT :=
(
γ̃ij , lnα, β

i, lnφ, Ãij ,K,Θ, Γ̂
i, bi, Ak, B

i
k, Dkij , Pk

)
containing a total of 58 variables, the FO-CCZ4 system (4.18a)-(4.19d) can be
written in the compact form (4.17). The explicit ordering of the 58 variables for
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γ̃ij α βi φ Ãij KΘ Γ̂i bi Ak Bi
k Dkij Pk

Pk

Dkij

Bi
k

Ak

bi

Γ̂i

Θ
K

Ãij

φ

βi

α

γ̃ij

Figure 4.1: Sparsity pattern of the system matrix A · n with n = (1, 1, 1)/
√

3
for a randomly perturbed flat Minkowski spacetime using the Gamma-driver
shift condition (s = 1) and 1 + log slicing (g(α) = 2/α), without the use of the
constraints (4.15) and (4.16) (blue dots) and with the use of these constraints
(blue & red dots). The achieved approximate symmetrization of the sparsity
pattern is evident. Note also the complete absence of non-zero entries in the
first 11 lines and columns corresponding to the variables γ̃ij ,α, βi and φ, which
clearly highlights the special structure of our FO-CCZ4 system that can be split
into a set of pure ODEs and a reduced PDE system, as discussed in Section
4.4.3. Figure reproduced from Dumbser et al. (2017).

the complete state vectorQwe employ is explicitly given below as

QT =
(
γ̃xx, γ̃xy, γ̃xz, γ̃yy, γ̃yz, γ̃zz,

lnα, βx, βy, βz, lnφ,

Ãxx, Ãxy, Ãxz, Ãyy, Ãyz, Ãzz,

K,Θ, Γ̂x, Γ̂y, Γ̂z,

bx, by, bz,

Ax, Ay, Ax,

Bxx, B
x
y, B

x
z, B

y
x, B

y
y, B

y
z, B

z
x, B

z
y, B

z
z,

Dxxx, Dxxy, Dxxz, Dxyy, Dxyz, Dxzz, Dyxx, Dyxy, Dyxz,

Dyyy, Dyyz, Dyzz, Dzxx, Dzxy, Dzxz, Dzyy, Dzyz, Dzzz,

Px, Py, Pz

)
. (4.36)
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The vector Q can be split into two parts: QT = (V T ,UT ). The vector V
contains the 11 quantities defining the 4-metric, V T := (γ̃ij , lnα, β

i, lnφ). The

vectorU encompasses the remaining 47 dynamic variablesUT :=
(
Ãij ,K,Θ, Γ̂

i, bi, Ak, B
i
k, Dkij , Pk

)
.

As detailed above the vector V is evolved in time only via ODEs of the type

∂V

∂t
= S′(Q) , (4.37)

where S′(Q) contains the first 11 elements of the vector of source terms S(Q).
Therefore the eigenvalues associated with this ODE subsystem, i.e. the propa-
gation speeds for the variables of vector V are trivially zero. Since equations
(4.18a)–(4.19d) do not contain any spatial derivative of the quantities in V due
to our choices in employing the ordering constraints, the columns in the ma-
trices of the related eigenvectors are trivially the unit vectors. The remaining
reduced system to be analyzed is related to the vector U of the dynamic quan-
tities and shows the very particular structure

∂U

∂t
+B1(V )

∂U

∂x1
+B2(V )

∂U

∂x2
+B3(V )

∂U

∂x3
= S′′(Q) , (4.38)

where the source term S′′(Q) contains the remaining elements of the source
vector S(Q) and where the system matrices Bi depend only on the vector V ,
but not on U .

An immediate consequence of the very particular splitting of (4.17) into
the ODEs (4.37) and the reduced PDEs (4.38) is that all fields appearing in the
system (4.38) and thus in (4.17) are linearly degenerate (see Toro (2009) for a
detailed discussion), since the eigenvalues λi depend only on V and not on
U and hence ∂λi/∂Q · ri = 0, ∀λi. This in turn means that smooth initial
data evolved through the FO-CCZ4 system cannot generate shock waves and
discontinuous solutions, since this would require the compression of character-
istic lines and therefore the presence of genuinely nonlinear fields (Toro, 2009;
Rezzolla and Zanotti, 2013).

To prove the strong hyperbolicity of the FO-CCZ4 system proposed above,
we explicitly compute the entire eigenstructure of the system matrix B1 in
the x1 direction, restricting however our analysis to the simple shift condition
βi = 0 (hence s = 0) and for the case of harmonic slicing, i.e. g(α) = 1. Since
for this simplified shift condition there is no need for the auxiliary fields bi and
Bik, their corresponding PDEs can be neglected in the analysis (the associated
eigenvalues are simply zero and the eigenvectors are the unit vectors). Note
that in principle the system principal symbol eigenstructure should be com-
puted in every direction in space. This is however not necessary in the case
of formulations of Einstein equations, since they are isotropic (see Sarbach and
Tiglio (2012) for details).

Eliminating the Gamma driver auxiliary variables, U is reduced to 35 com-
ponents, namely UT = (Ãij ,K,Θ, Γ̂

i, Ak, Dkij , Pk). The 35 eigenvalues of ma-
trixB1 in x1 direction are

λ1,2,··· ,21 = 0 , λ22,23 = ±
√
γ̃11φα e ,

λ24,25,··· ,29 = +
√
γ̃11φα , λ30,31,··· ,35 = −

√
γ̃11φα . (4.39)
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The associated complete set of 35 right eigenvectors defining the right eigen-
vector matrixR are given explicitly below.

rT1 =

(
γ̃11

γ̃33
,
γ̃12

γ̃33
,
γ̃13

γ̃33
,
γ̃22

γ̃33
,
γ̃23

γ̃33
,
γ̃33

γ̃33
, 0, · · · , 0

)
rT2 =

(
0, · · · , 0, γ̃11γ̃11, γ̃11γ̃12, γ̃11γ̃13, 0, 0, 0, 1, 0, · · · , 0

)
rT3 =

(
0, 0, 0, 0, 0, 0, 0, 0, 2γ̃11γ̃12, 2γ̃11γ̃22, 2γ̃11γ̃23, 0, 0, 0, 0, 1, · · · , 0

)
rT4 =

(
0, 0, 0, 0, 0, 0, 0, 0, 2γ̃11γ̃13, 2γ̃11γ̃23, 2γ̃11γ̃33, 0, 0, 0, 0, 0, 1, · · · , 0

)
rT5 =

(
0, 0, 0, 0, 0, 0, 0, 0, 0,

γ̃33

(γ̃22 γ̃33 − γ̃2
23)

,− γ̃23

(γ̃22 γ̃33 − γ̃2
23)

,− γ̃
12

γ̃11
,

1, 0, 0, 0, 0, · · · , 0)

rT6 =

(
0, 0, 0, 0, 0, 0, 0, 0, 0,− γ̃23

(γ̃22 γ̃33 − γ̃2
23)

,
γ̃22

(γ̃22 γ̃33 − γ̃2
23)

,− γ̃
13

γ̃11
,

0, 1, 0, 0, 0, · · · , 0)

rT7 =
(
0, 0, 0, 0, 0, 0, 0, 0, γ̃12γ̃11, γ̃12γ̃12, γ̃12γ̃13,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, · · · , 0)

rT8 =
(
0, 0, 0, 0, 0, 0, 0, 0, 2γ̃12γ̃12, 2γ̃12γ̃22, 2γ̃12γ̃23,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, · · · , 0)

rT9 =
(
0, 0, 0, 0, 0, 0, 0, 0, 2γ̃12γ̃13, 2γ̃12γ̃23, 2γ̃12γ̃33,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, · · · , 0)

rT10 =

(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,− γ̃

12

γ̃11
, 0, 0, 0, 0, 0, 1, 0, · · · , 0

)
rT11 =

(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,− γ̃

12

γ̃11
, 0, 0, 0, 0, 0, 1, 0, · · · , 0

)
rT12 =

(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,− γ̃

12

γ̃11
, 0, 0, 0, 0, 0, 1, 0, · · · , 0

)
rT13 =

(
0, 0, 0, 0, 0, 0, 0, 0, γ̃13γ̃11, γ̃13γ̃12, γ̃13γ̃13, 0, · · · , 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

)
rT14 =

(
0, 0, 0, 0, 0, 0, 0, 0, 2γ̃13γ̃12, 2γ̃13γ̃22, 2γ̃13γ̃23, 0, · · · , 0, 1, 0, 0, 0, 0, 0, 0, 0

)
rT15 =

(
0, 0, 0, 0, 0, 0, 0, 0, 2γ̃13γ̃13, 2γ̃13γ̃23, 2γ̃13γ̃33, 0, · · · , 0, 1, 0, 0, 0, 0, 0, 0

)
rT16 =

(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,− γ̃

13

γ̃11
, 0, · · · , 0, 1, 0, 0, 0, 0, 0

)
rT17 =

(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,− γ̃

13

γ̃11
, 0, · · · , 0, 1, 0, 0, 0, 0

)
rT18 =

(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,− γ̃

13

γ̃11
, 0, · · · , 0, 1, 0, 0, 0

)
rT19 =

(
0, 0, 0, 0, 0, 0, 0, 0,−γ̃11(2γ̃11γ̃

11 + 3γ̃12γ̃
12 + 3γ̃13γ̃

13),

−γ̃12(γ̃12γ̃
12 + γ̃22γ̃

22 + γ̃23γ̃
23) + γ̃11γ̃

12γ̃11,

−γ̃13(γ̃13γ̃
13 + γ̃23γ̃

23 + γ̃33γ̃
33) + γ̃11γ̃

13γ̃11,

0, 0, 0, 0, 0, 0, γ̃22, γ̃23, γ̃33, 0, · · · , 0, 1, 0, 0)
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rT20 =
(
0, 0, 0, 0, 0, 0, 0, 0,−γ̃12(2γ̃11γ̃

11 + 3γ̃12γ̃
12 + 3γ̃13γ̃

13),

−γ̃22(γ̃12γ̃
12 + γ̃22γ̃

22 + γ̃23γ̃
23) + γ̃11γ̃

12γ̃12,

−γ̃23(γ̃13γ̃
13 + γ̃23γ̃

23 + γ̃33γ̃
33) + γ̃11γ̃

13γ̃12,

0, 0, 0, 0, 0, 0, γ̃22
γ̃12

γ̃11
, γ̃23

γ̃12

γ̃11
, γ̃33

γ̃12

γ̃11
, 0, · · · , 0, 1, 0

)
rT21 =

(
0, 0, 0, 0, 0, 0, 0, 0,−γ̃13(2γ̃11γ̃

11 + 3γ̃12γ̃
12 + 3γ̃13γ̃

13),

−γ̃23(γ̃12γ̃
12 + γ̃22γ̃

22 + γ̃23γ̃
23) + γ̃11γ̃

12γ̃13,

−γ̃33(γ̃13γ̃
13 + γ̃23γ̃

23 + γ̃33γ̃
33) + γ̃11γ̃

13γ̃13,

0, 0, 0, 0, 0, 0, γ̃22
γ̃13

γ̃11
, γ̃23

γ̃13

γ̃11
, γ̃33

γ̃13

γ̃11
, 0, · · · , 0, 1

)
rT22,23 =

(
∓ 1√

γ̃11

(
2γ̃11γ̃

11 + 3γ̃12γ̃
12 + 3γ̃13γ̃

13
)
eφ,±

√
γ̃11γ̃12eφ,±

√
γ̃11γ̃13eφ,

±
√
γ̃11γ̃22eφ,±

√
γ̃11γ̃23eφ,±

√
γ̃11γ̃33eφ,∓3

√
γ̃11eφ,

∓3

2

√
γ̃11(e2 − 1)eφ, (3e2 − 7)γ̃11, (3e2 − 7)γ̃12, (3e2 − 7)γ̃13,−3, 0, 0,

−1/γ̃11
(
2γ̃11γ̃

11 + 3γ̃12γ̃
12 + 3γ̃13γ̃

13
)
, γ̃12, γ̃13, γ̃22, γ̃23, γ̃33,

0, · · · , 0, 1, 0, 0)

rT24,30 =
(

0, 0, 0, 0, 0, 0,∓3φ
√
γ̃11, 0,−4γ̃11,−4γ̃12,−4γ̃13,−3, 0, · · · , 0, 1, 0, 0

)
rT25,31 =

(
∓2φγ̃12/

√
γ̃11,±φ

√
γ̃11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−2

γ̃12

γ̃11
,

1, 0, · · · , 0)

rT26,32 =

(
∓2φγ̃13/

√
γ̃11, 0,±φ

√
γ̃11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−2

γ̃13

γ̃11
,

0, 1, 0, · · · , 0)

rT27,33 =

(
∓ φγ̃22/

√
γ̃11, 0, 0,±φ

√
γ̃11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,− γ̃

22

γ̃11
,

0, 0, 1, 0, · · · , 0)

rT28,34 =

(
∓2φγ̃23/

√
γ̃11, 0, 0, 0,±φ

√
γ̃11, 0, 0, 0, 0, 0, 0, 0, 0, 0,−2

γ̃23

γ̃11
,

0, 0, 0, 1, 0, · · · , 0)

rT29,35 =

(
∓ φγ̃33/

√
γ̃11, 0, 0, 0, 0,±φ

√
γ̃11, 0, 0, 0, 0, 0, 0, 0, 0,− γ̃

33

γ̃11
,

0, 0, 0, 0, 1, 0, · · · , 0) .

The associated 35 left eigenvectors, which define the inverse of the right
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eigenvector matrix (L = R−1), read

l1 =

(
1

3
γ̃33γ̃

11,
2

3
γ̃33γ̃

12,
2

3
γ̃33γ̃

13,
1

3
γ̃33γ̃

22,
2

3
γ̃33γ̃

23,
1

3
γ̃33γ̃

33, 0, · · · , 0
)

l2 =

(
0, · · · , 0,− γ̃12γ̃

12 + γ̃13γ̃
13

γ̃11γ̃11
,
γ̃12

γ̃11
,
γ̃13

γ̃11
,− 1

γ̃11
+

1

3
γ̃11,

1

3
γ̃11

γ̃12

γ̃11
,

1

3
γ̃11

γ̃13

γ̃11
,

1, 2
γ̃12

γ̃11
, 2
γ̃13

γ̃11
,
γ̃22

γ̃11
, 2
γ̃23

γ̃11
,
γ̃33

γ̃11
, 0, 2

γ̃12γ̃12

γ̃11γ̃11
, 2
γ̃12γ̃13

γ̃11γ̃11
,
γ̃12γ̃22

γ̃11γ̃11
, 2
γ̃12γ̃23

γ̃11γ̃11
,
γ̃12γ̃33

γ̃11γ̃11
,

0, 2
γ̃13γ̃12

γ̃11γ̃11
, 2
γ̃13γ̃13

γ̃11γ̃11
,
γ̃13γ̃22

γ̃11γ̃11
, 2
γ̃13γ̃23

γ̃11γ̃11
,
γ̃13γ̃33

γ̃11γ̃11
,
−2− γ̃12γ̃

12 − γ̃13γ̃
13

γ̃11
,

−4
γ̃12

γ̃11γ̃11
+
γ̃11γ̃

12

γ̃11
,−4

γ̃13

γ̃11γ̃11
+
γ̃11γ̃

13

γ̃11

)
l3 =

(
0, · · · , 0, 1

2

γ̃12

γ̃11
,

1

2

γ̃22

γ̃11
,

1

2

γ̃23

γ̃11
,

1

3
γ̃12,−

1

2

1

γ̃11
+

1

3
γ̃12

γ̃12

γ̃11
,

1

3
γ̃12

γ̃13

γ̃11
,

0, 0, 0, 0, 0, 0, 0,− γ̃
12

γ̃11
, 0, 0, 0, 0, 0,− γ̃

13

γ̃11
, 0, 0, 0, 0, γ̃12,

1

2

1

γ̃11
+ γ̃12

γ̃12

γ̃11
, γ̃12

γ̃13

γ̃11

)
l4 =

(
0, · · · , 0, 1

2

γ̃13

γ̃11
,

1

2

γ̃23

γ̃11
,

1

2

γ̃33

γ̃11
,

1

3
γ̃13,

1

3
γ̃13

γ̃12

γ̃11
,−1

2

1

γ̃11
+

1

3
γ̃13

γ̃13

γ̃11
,

0, 0, 0, 0, 0, 0, 0, 0,− γ̃
12

γ̃11
, 0, 0, 0, 0, 0,− γ̃

13

γ̃11
, 0, 0, 0, γ̃13,

γ̃13
γ̃12

γ̃11
,

1

2

1

γ̃11
+ γ̃13

γ̃13

γ̃11

)
l5 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, · · · , 0)

l6 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, · · · , 0)

l7 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, · · · , 0)

l8 = (0, · · · , 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

l9 = (0, · · · , 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

l10 = (0, · · · , 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

l11 = (0, · · · , 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

l12 = (0, · · · , 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

l13 = (0, · · · , 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

l14 = (0, · · · , 0, 1, 0, 0, 0, 0, 0, 0, 0)

l15 = (0, · · · , 0, 1, 0, 0, 0, 0, 0, 0)

l16 = (0, · · · , 0, 1, 0, 0, 0, 0, 0)

l17 = (0, · · · , 0, 1, 0, 0, 0, 0)

l18 = (0, · · · , 0, 1, 0, 0, 0)

l19 =

(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1

3
,

1

3

γ̃12

γ̃11
,

1

3

γ̃13

γ̃11
, 0, · · · , 0, 1, 0, 0

)
l20 = (0, · · · , 0, 1, 0)

l21 = (0, · · · , 0, 1)
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l22,23 =

(
0, 0, 0, 0, 0, 0, 0,∓ 1

3
√
γ̃11(e2 − 1)eφ

,
1

6γ̃11(e2 − 1)
, 0, 0, 0, 0, 0,

− γ̃11

6(e2 − 1)
,− γ̃12

3(e2 − 1)
,− γ̃13

3(e2 − 1)
,− γ̃22

6(e2 − 1)
,− γ̃23

3(e2 − 1)
,

− γ̃33

6(e2 − 1)
,−1

6

γ̃11γ̃12

γ̃11(e2 − 1)
,−1

3

γ̃12γ̃12

γ̃11(e2 − 1)
,−1

3

γ̃13γ̃12

γ̃11(e2 − 1)
,

−1

6

γ̃22γ̃12

γ̃11(e2 − 1)
,−1

3

γ̃23γ̃12

γ̃11(e2 − 1)
,−1

6

γ̃33γ̃12

γ̃11(e2 − 1)
,−1

6

γ̃11γ̃13

γ̃11(e2 − 1)
,

−1

3

γ̃12γ̃13

γ̃11(e2 − 1)
,−1

3

γ̃13γ̃13

γ̃11(e2 − 1)
,−1

6

γ̃22γ̃13

γ̃11(e2 − 1)
,

1

3

γ̃23γ̃13

γ̃11(e2 − 1)
,

−1

6

γ̃33γ̃13

γ̃11(e2 − 1)
,

2

3

γ̃11

γ̃11(e2 − 1)
,

2

3

γ̃12

γ̃11(e2 − 1)
,

2

3

γ̃13

γ̃11(e2 − 1)

)
l24,30 =

(
0, 0, 0, 0, 0, 0,∓ 1

6φ
√
γ̃11

,± 1

3φ(e2 − 1)
√
γ̃11

,− 1

6(e2 − 1)γ̃11
, 0, 0,

− γ̃11

6γ̃11
,− γ̃12

6γ̃11
,− γ̃13

6γ̃11
,

γ̃11

6(e2 − 1)
,

γ̃12

3(e2 − 1)
,

γ̃13

3(e2 − 1)
,

γ̃22

6(e2 − 1)
,

γ̃23

3(e2 − 1)
,

γ̃33

6(e2 − 1)
,

γ̃12γ̃11

6(e2 − 1)γ̃11
,

γ̃12γ̃12

3(e2 − 1)γ̃11
,

γ̃12γ̃13

3(e2 − 1)γ̃11
,

γ̃12γ̃22

6(e2 − 1)γ̃11
,

γ̃12γ̃23

3(e2 − 1)γ̃11
,

γ̃12γ̃33

6(e2 − 1)γ̃11
,

γ̃13γ̃11

6(e2 − 1)γ̃11
,

γ̃13γ̃12

3(e2 − 1)γ̃11
,

γ̃13γ̃13

3(e2 − 1)γ̃11
,

γ̃13γ̃22

6(e2 − 1)γ̃11
,

γ̃13γ̃23

3(e2 − 1)γ̃11
,

γ̃13γ̃33

6(e2 − 1)γ̃11
,

−2

3

γ̃11

(e2 − 1)γ̃11
,−2

3

γ̃12

(e2 − 1)γ̃11
,−2

3

γ̃13

(e2 − 1)γ̃11

)
l25,31 =

(
∓ γ̃12γ̃

11

6φ
√
γ̃11

,∓−3 + 2γ̃12γ̃
12

6φ
√
γ̃11

,∓ γ̃12γ̃
13

3φ
√
γ̃11

,∓ γ̃12γ̃
22

6φ
√
γ̃11

,∓ γ̃12γ̃
23

3φ
√
γ̃11

,

∓ γ̃12γ̃
33

6φ
√
γ̃11

, 0,± γ̃12

3φ(e2 − 1)
√
γ̃11

,− (3e2 − 1)γ̃12

12(e2 − 1)γ̃11
,− γ̃22

4γ̃11
,− γ̃23

4γ̃11
,

− γ̃12γ̃
11

6γ̃11
,

1

4γ̃11
− γ̃12γ̃

12

6γ̃11
,− γ̃12γ̃

13

6γ̃11
,
γ̃12γ̃

11

6(e2 − 1)
,

1

2
+

γ̃12γ̃
12

3(e2 − 1)
,
γ̃12γ̃

13

3(e2 − 1)
,

γ̃12γ̃
22

6(e2 − 1)
,
γ̃12γ̃

23

3(e2 − 1)
,
γ̃12γ̃

33

6(e2 − 1)
,
γ̃12γ̃

12γ̃11

6(e2 − 1)γ̃11
,

1

2

γ̃12

γ̃11
+

γ̃12γ̃
12γ̃12

3(e2 − 1)γ̃11
,

γ̃12γ̃
12γ̃13

3(e2 − 1)γ̃11
,
γ̃12γ̃

12γ̃22

6(e2 − 1)γ̃11
,
γ̃12γ̃

12γ̃23

3(e2 − 1)γ̃11
,
γ̃12γ̃

12γ̃33

6(e2 − 1)γ̃11
,
γ̃12γ̃

13γ̃11

6(e2 − 1)γ̃11
,

1

2

γ̃13

γ̃11
+

γ̃12γ̃
13γ̃12

3(e2 − 1)γ̃11
,
γ̃12γ̃

13γ̃13

3(e2 − 1)γ̃11
,
γ̃12γ̃

13γ̃22

6(e2 − 1)γ̃11
,
γ̃12γ̃

13γ̃23

3(e2 − 1)γ̃11
,

γ̃12γ̃
13γ̃33

6(e2 − 1)γ̃11
,− (1 + 3e2)γ̃12γ̃

11

6(e2 − 1)γ̃11
,− (1 + 3e2)γ̃12γ̃

12

6(e2 − 1)γ̃11
− 1

4γ̃11
,

− (1 + 3e2)γ̃12γ̃
13

6(e2 − 1)γ̃11

)
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l26,32 =

(
∓ γ̃13γ̃

11

6φ
√
γ̃11

,∓ γ̃13γ̃
12

3φ
√
γ̃11

,∓−3 + 2γ̃13γ̃
13

6φ
√
γ̃11

,∓ γ̃13γ̃
22

6φ
√
γ̃11

,∓ γ̃13γ̃
23

3φ
√
γ̃11

,

∓ γ̃13γ̃
33

6φ
√
γ̃11

, 0,± γ̃13

3φ(e2 − 1)
√
γ̃11

,− (3e2 − 1)γ̃13

12(e2 − 1)γ̃11
,− γ̃23

4γ̃11
,− γ̃33

4γ̃11
,

− γ̃13γ̃
11

6γ̃11
,− γ̃13γ̃

12

6γ̃11
,

1

4γ̃11
− γ̃13γ̃

13

6γ̃11
,
γ̃13γ̃

11

6(e2 − 1)
,
γ̃13γ̃

12

3(e2 − 1)
,

1

2
+

γ̃13γ̃
13

3(e2 − 1)
,
γ̃13γ̃

22

6(e2 − 1)
,
γ̃13γ̃

23

3(e2 − 1)
,
γ̃13γ̃

33

6(e2 − 1)
,
γ̃13γ̃

12γ̃11

6(e2 − 1)γ̃11
,

γ̃13γ̃
12γ̃12

3(e2 − 1)γ̃11
,

1

2

γ̃12

γ̃11
+

γ̃13γ̃
12γ̃13

3(e2 − 1)γ̃11
,
γ̃13γ̃

12γ̃22

6(e2 − 1)γ̃11
,
γ̃13γ̃

12γ̃23

3(e2 − 1)γ̃11
,

γ̃13γ̃
12γ̃33

6(e2 − 1)γ̃11
,
γ̃13γ̃

13γ̃11

6(e2 − 1)γ̃11
,
γ̃13γ̃

13γ̃12

3(e2 − 1)γ̃11
,

1

2

γ̃13

γ̃11
+

γ̃13γ̃
13γ̃13

3(e2 − 1)γ̃11
,

γ̃13γ̃
13γ̃22

6(e2 − 1)γ̃11
,
γ̃13γ̃

13γ̃23

3(e2 − 1)γ̃11
,
γ̃13γ̃

13γ̃33

6(e2 − 1)γ̃11
,− (1 + 3e2)γ̃13γ̃

11

6(e2 − 1)γ̃11
,

− (1 + 3e2)γ̃13γ̃
12

6(e2 − 1)γ̃11
,− (1 + 3e2)γ̃13γ̃

13

6(e2 − 1)γ̃11
− 1

4γ̃11

)
l27,33 =

(
∓ γ̃22γ̃

11

6φ
√
γ̃11

,∓ γ̃22γ̃
12

3φ
√
γ̃11

,∓ γ̃22γ̃
13

3φ
√
γ̃11

,∓−3 + γ̃22γ̃
22

6φ
√
γ̃11

,∓ γ̃22γ̃
23

3φ
√
γ̃11

,

∓ γ̃22γ̃
33

6φ
√
γ̃11

, 0,± γ̃22

3φ(e2 − 1)
√
γ̃11

,
−γ̃22

6(e2 − 1)γ̃11
, 0, 0,− γ̃22γ̃

11

6γ̃11
,

− γ̃22γ̃
12

6γ̃11
,− γ̃22γ̃

13

6γ̃11
,
γ̃22γ̃

11

6(e2 − 1)
,
γ̃22γ̃

12

3(e2 − 1)
,
γ̃22γ̃

13

3(e2 − 1)
,

1

2
+

γ̃22γ̃
22

6(e2 − 1)
,

γ̃22γ̃
23

3(e2 − 1)
,
γ̃22γ̃

33

6(e2 − 1)
,
γ̃22γ̃

12γ̃11

6(e2 − 1)γ̃11
,
γ̃22γ̃

12γ̃12

3(e2 − 1)γ̃11
,
γ̃22γ̃

12γ̃13

3(e2 − 1)γ̃11
,

1

2

γ̃12

γ̃11
+

γ̃22γ̃
12γ̃22

6(e2 − 1)γ̃11
,
γ̃22γ̃

12γ̃23

3(e2 − 1)γ̃11
,
γ̃22γ̃

12γ̃33

6(e2 − 1)γ̃11
,

γ̃22γ̃
13γ̃11

6(e2 − 1)γ̃11
,
γ̃22γ̃

13γ̃12

3(e2 − 1)γ̃11
,
γ̃22γ̃

13γ̃13

3(e2 − 1)γ̃11
,

1

2

γ̃13

γ̃11
+

γ̃22γ̃
13γ̃22

6(e2 − 1)γ̃11
,

γ̃22γ̃
13γ̃23

3(e2 − 1)γ̃11
,
γ̃22γ̃

13γ̃33

6(e2 − 1)γ̃11
,

− (1 + 3e2)γ̃22γ̃
11

6(e2 − 1)γ̃11
,− (1 + 3e2)γ̃22γ̃

12

6(e2 − 1)γ̃11
,− (1 + 3e2)γ̃22γ̃

13

6(e2 − 1)γ̃11

)
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l28,34 =

(
∓ γ̃23γ̃

11

6φ
√
γ̃11

,∓ γ̃23γ̃
12

3φ
√
γ̃11

,∓ γ̃23γ̃
13

3φ
√
γ̃11

,∓ γ̃23γ̃
22

6φ
√
γ̃11

,∓−3 + 2γ̃23γ̃
23

6φ
√
γ̃11

,

∓ γ̃23γ̃
33

6φ
√
γ̃11

, 0,± γ̃23

3φ(e2 − 1)
√
γ̃11

,
−γ̃23

6(e2 − 1)γ̃11
, 0, 0,− γ̃23γ̃

11

6γ̃11
,

− γ̃23γ̃
12

6γ̃11
,− γ̃23γ̃

13

6γ̃11
,
γ̃23γ̃

11

6(e2 − 1)
,
γ̃23γ̃

12

3(e2 − 1)
,
γ̃23γ̃

13

3(e2 − 1)
,
γ̃23γ̃

22

6(e2 − 1)
,

1

2
+

γ̃23γ̃
23

3(e2 − 1)
,
γ̃23γ̃

33

6(e2 − 1)
,
γ̃23γ̃

12γ̃11

6(e2 − 1)γ̃11
,
γ̃23γ̃

12γ̃12

3(e2 − 1)γ̃11
,
γ̃23γ̃

12γ̃13

3(e2 − 1)γ̃11
,

γ̃23γ̃
12γ̃22

6(e2 − 1)γ̃11
,

1

2

γ̃12

γ̃11
+

γ̃23γ̃
12γ̃23

3(e2 − 1)γ̃11
,
γ̃23γ̃

12γ̃33

6(e2 − 1)γ̃11
,

γ̃23γ̃
13γ̃11

6(e2 − 1)γ̃11
,
γ̃23γ̃

13γ̃12

3(e2 − 1)γ̃11
,
γ̃23γ̃

13γ̃13

3(e2 − 1)γ̃11
,
γ̃23γ̃

13γ̃22

6(e2 − 1)γ̃11
,

1

2

γ̃13

γ̃11
+

γ̃23γ̃
13γ̃23

3(e2 − 1)γ̃11
,
γ̃23γ̃

13γ̃33

6(e2 − 1)γ̃11
,

− (1 + 3e2)γ̃23γ̃
11

6(e2 − 1)γ̃11
,− (1 + 3e2)γ̃23γ̃

12

6(e2 − 1)γ̃11
,− (1 + 3e2)γ̃23γ̃

13

6(e2 − 1)γ̃11

)
l29,35 =

(
∓ γ̃33γ̃

11

6φ
√
γ̃11

,∓ γ̃33γ̃
12

3φ
√
γ̃11

,∓ γ̃33γ̃
13

3φ
√
γ̃11

,∓ γ̃33γ̃
22

6φ
√
γ̃11

,∓ γ̃33γ̃
23

3φ
√
γ̃11

,

∓−3 + γ̃33γ̃
33

6φ
√
γ̃11

, 0,± γ̃33

3φ(e2 − 1)
√
γ̃11

,− γ̃33

6(e2 − 1)γ̃11
, 0, 0,− γ̃33γ̃

11

6γ̃11
,

− γ̃33γ̃
12

6γ̃11
,− γ̃33γ̃

13

6γ̃11
,
γ̃33γ̃

11

6(e2 − 1)
,
γ̃33γ̃

12

3(e2 − 1)
,
γ̃33γ̃

13

3(e2 − 1)
,
γ̃33γ̃

22

6(e2 − 1)
,

γ̃33γ̃
23

3(e2 − 1)
,

1

2
+

γ̃33γ̃
33

6(e2 − 1)
,
γ̃33γ̃

12γ̃11

6(e2 − 1)γ̃11
,
γ̃33γ̃

12γ̃12

3(e2 − 1)γ̃11
,
γ̃33γ̃

12γ̃13

3(e2 − 1)γ̃11
,

γ̃33γ̃
12γ̃22

6(e2 − 1)γ̃11
,
γ̃33γ̃

12γ̃23

3(e2 − 1)γ̃11
,

1

2

γ̃12

γ̃11
+

γ̃33γ̃
12γ̃33

6(e2 − 1)γ̃11
,
γ̃33γ̃

13γ̃11

6(e2 − 1)γ̃11
,

γ̃33γ̃
13γ̃12

3(e2 − 1)γ̃11
,
γ̃33γ̃

13γ̃13

3(e2 − 1)γ̃11
,
γ̃33γ̃

13γ̃22

6(e2 − 1)γ̃11
,
γ̃33γ̃

13γ̃23

3(e2 − 1)γ̃11
,

1

2

γ̃13

γ̃11
+

γ̃33γ̃
13γ̃33

6(e2 − 1)γ̃11
,− (1 + 3e2)γ̃33γ̃

11

6(e2 − 1)γ̃11
,− (1 + 3e2)γ̃33γ̃

12

6(e2 − 1)γ̃11
,

− (1 + 3e2)γ̃33γ̃
13

6(e2 − 1)γ̃11

)
Similar results can be obtained for the x2 and x3 directions.

Since the FO-CCZ4 system has only real eigenvalues and a complete set of
linearly independent eigenvectors (and the matrix of eigenvectors is uniformly
bounded) proves the strong hyperbolicity of the system. Note that the eigen-
vectors r22,23 are only linearly independent of r24,···35 if e 6= 1.

The analysis presented above is limited to the case of the harmonic slicing
and zero shift. In principle it would be desirable to prove hyperbolicity for the
choice of Gamma driver and 1+log slicing, since these are the gauge conditions
effectively employed in realistic simulations of e.g. binary black holes and bi-
nary neutron stars. At the moment however we have been able to prove strong
hyperbolicity for general lapse and shift conditions and general spatial metrics
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only as long as one of the three independent off-diagonal components of the
three-metric is zero. When considering the Gamma driver shift condition in
particular, we have checked numerically that the system matrix is diagonaliz-
able for a wide set of spacetimes, including the perturbed Minkowski metric,
the Schwarzschild metric and the Kerr metric. On the basis of these fuindings
we conjecture that the system is strongly hyperbolic in general, but an analyti-
cal proof of this statement is unfortunately still missing.

4.4.4 Numerical implementation and tests

In the following subsections the results of a battery of standard tests is pre-
sented, exploring the ability of the FO-CCZ4 formulation to carry out long-
term stable evolutions of a number of different spacetimes. For this purpose
we employ the path-conservative ADER-DG method with WENO subcell lim-
iting described in section 3.5.1 (recall that one of the goals in developing FO-
CCZ4 is to derive a firsto order formulation suitable for discretization with DG
methods). In every test case we set initially Θ = 0, Γ̂i = Γ̃i and bi = 0, and the
algebraic constraints on the unit determinant of γ̃ij and the zero trace of Ãij
have been rigorously enforced in the discrete solution uh at the beginning of
each time-step. However hey have not been enforced during the computation
of the intermediate time-steps of the space-time predictor qh. For comparison,
in the very common case of a semidiscrete scheme evolved in time with a high-
order Runge-Kutta (RK) time integrator, our choice corresponds to to enforc-
ing the constraints after a full time-step, but not in the RK intermediate stages.
We therefore set τ → ∞ and thus neglect the corresponding source terms. In
tests involving black holes, the lower limit on the lapse is set to 10−20. In the
following the notation PN to indicate an ADER-DG scheme using piecewise
polynomials of degree N is employed.

If not specified otherwise the HLLEM method described below is used to
define the numerical fluxes at element boundaries. This choice allows to reduce
the numerical dissipation of the ADER-DG method for the quantities evolved
via ODEs, i.e. for α, βi, γ̃ij and φ. So in alternative to the Rusanov scheme of
section 3.5.1 we also employ the recently-proposed path-conservative HLLEM
method (Dumbser and Balsara, 2016) (a generalization of the original HLLEM
method of Einfeldt et al. (1991)) and for which the jump terms on the element
boundary read

D−
(
q−, q+

)
· n = − sL

sR − sL

 1∫
0

A(ψ) · nds

(q+ − q−
)

+
sLsR
sR − sL

(
q+ − q−

)
− sLsR
sR − sL

R∗δ∗L∗
(
q+ − q−

)
,

(4.40)

with

δ∗ = I11×11 −
Λ−∗
sL
− Λ+

∗
sR

, and Λ±∗ =
1

2
(Λ∗ ± |Λ∗|) . (4.41)

In the preceding equations R∗ and L∗ are the matrices containing only the
right and left eigenvectors of the characteristic fields associated with the eigen-
values Λ∗ that one wants to resolve exactly in the HLLEM Riemann solver.
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These internal waves are none other than the 11 stationary contact waves asso-
ciated with the 11 ODEs for α, βi, φ and γ̃ij : their wave speed is zero and thus
Λ∗ = 0 and δ∗ = I11×11. The associated 11 eigenvectors are the unit vectors,
henceR∗ = I58×11 and L∗ = I11×58. With the left and right signal speeds sim-
ply chosen as sL = −smax and sR = +smax and computing smax as in equation
(3.68), the HLLEM scheme takes the same form of equation (3.66) but with a
viscosity matrix given by

ΘHLLEM = smax (I58×58 − I58×11I11×58) . (4.42)

Linearized gravitational-wave test

Firstly we test FO-CCZ4 in a simple one-dimensional wave-propagation test
problem in the linearized gravity regime. The setup of this test follows the
one described by Alcubierre et al. (2004b). We choose a computational domain
Ω = [−0.5, 0.5] with periodic boundary conditions in the x direction. Two
simulations are run until a final time of t = 1000, one using 4 P5 elements (i.e.
a total of 24 degrees of freedom) and one using 2 P9 elements (i.e. 20 degrees
of freedom). Since no discontinuities or singularities are present, we run this
test with the unlimited version of the ADER-DG scheme, i.e. switching of the
WENO subcell limiter. The exact solution for the metric is given in this case by

ds2 = −dt2 + dx2 + (1 + h)dy2 + (1− h)dz2 ,

with h := ε sin (2π(x− t)). We choose the wave amplitude ε = 10−8, small
enough so that terms O(ε2) can be neglected, i.e. the linear regime. Given that
the shift is identically zero in the metric (4.4.4) (βi = 0), we set s = 0 in the
system and employ the harmonic slicing g(α) = 1. Also K0 = 0 and c = 0 are
set and we switch off the damping terms of the system, setting κ1 = κ2 = κ3 =
η = 0.

Note that in the case of s = 0 and harmonic slicing, it is necessary to set
e > 1 in order to get a strongly hyperbolic system. We select the value e = 2.
From the metric (4.4.4), the the extrinsic curvature reduces toKij = − 1

2∂tγij/α,
resulting in Kxx = Kxy = Kxz = Kyz = 0, Kyy = − 1

2∂th and Kzz = + 1
2∂th.

From this information, the conformal factor φ, the conformal spatial metric γ̃ij ,
the traceless conformal extrinsic curvature Ãij and all auxiliary variables can
be computed by a direct calculation according to their definitions, completing
the setup of the initial data.

In figure 4.2 the temporal evolution of the Hamiltonian and momentum
constraints is shown, as well as the errors of the algebraic constraints on the
determinant of the conformal metric and on the trace of Ãij . A comparison of
the extrinsic-curvature component Ã22 with the exact solution is provided at
the final time t = 1000, showing overall an excellent agreement between nu-
merical and exact solution. The quality of the results obtained with the ADER-
DG scheme and FO-CCZ4 formulation, is significantly superior to the results
shown in Alcubierre et al. (2004b) for the same test problem using a finite dif-
ference scheme, despite the test setup in Alcubierre et al. (2004b) employing
many more grid points (between 50 and 200) compared to the mesh used in
these simulations. Note that a meaningful comparison between high order
finite-difference schemes and DG schemes must be made taking into account
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Figure 4.2: Linearized gravitational-wave test using an ADER-DG P5 scheme
with 4 elements (top row) and an ADER-DG P9 scheme with only 2 elements
(bottom row). The temporal evolution of the constraints (left column) is shown
together with the waveform for the component Ã22 of the traceless conformal
extrinsic curvature after 1000 crossing times at time t = 1000 (right column).
Figure reproduced from Dumbser et al. (2017).

the number of points per wavelength for finite-difference methods and degrees
of freedom per wavelength for DG schemes, rather than e.g. the size of DG el-
ements.

Gauge-wave test

The gauge-wave test problem has also been suggested by Alcubierre et al.
(2004b). The metric in this case is

ds2 = −H(x, t)dt2 +H(x, t)dx2 + dy2 + dz2 ,

with H(x, t) := 1 − A sin (2π(x− t)). Again zero shift is implied, therefore we
use s = 0 together with harmonic slicing, i.e. g(α) = 1. In this case too the
undamped version of the FO-CCZ4 is used, in particular we set κ1 = κ2 =
κ3 = η = 0 and e = 2. The computational domain is two-dimensional, Ω =
[−0.5, 0.5] × [−0.05, 0.05] with periodic boundary conditions in all directions.
Because the shift is identically zero, the extrinsic curvature is again given by
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Kij = −∂tγij/(2α), i.e. Kyy = Kzz = Kxy = Kxz = Kyz = 0 and the remaining
primary variables are

φ2 = H−1/3, α =
√
H, Kxx = −πA cos (2π(x− t))√

1−A sin (2π(x− t))
.

We set in this case too K0 = 0 and c = 0. The auxiliary variables can be directly
obtained from their definitions.

Initially the test was run with a perturbation amplitude of A = 0.1 until
t = 1000, using the unlimited ADER-DG P3 scheme and 100 × 10 elements
covering the computational domain. Figure 4.3 shows the ADMD constraints
violations as a function of time. Clearly only a very moderate growth of the
constraints, sublinear in time, is present. It is worth emphasizing that despite
using the undamped version of the FO-CCZ4 system, a stable evolution is nev-
ertheless obtained. In contrast the original second-order CCZ4 formulation
was reported to fail for this test problem in the undamped version, and only
the damped CCZ4 system achieved a stable evolution (see Alic et al. (2012) for
details). Both the first- and the second-order formulations of the BSSNOK sys-
tem also fail this test (see Alic et al. (2012); Brown et al. (2012)). In figure 4.3
we also provide a direct comparison of the solution after 1000 crossing times
for the conformal factor φ, the lapse α, as well as for the trace of the extrinsic
curvatureK. The overall very good agreement between the numerical solution
and the exact one is apparent.

The gauge-wave test has a smooth, nontrivial analytical solution and is
also tests the nonlinear regime of the equations, making it ideal to perform
a convergence study. To this end, we reran this test with different choices of
discretiziation order of the numerical scheme on a sequence of successively
refined meshes. To enter the fully non-linear regime, we choose a very large
perturbation amplitude of A = 0.9. The final simulation time is set to t = 10.

The L2 norm of the error on the conformal factor φ, the lapse α and the trace
of the extrinsic curvature K, together with the observed order of convergence
of the different schemes are summarized in table 4.1. Essentially we observe
the expected order of convergence of the scheme (i.e. its nominal order) for
N = 3 and N = 4, while superconvergence is observed for N = 5 and N = 7.
This is most likely due to the strong non-linearity of the PDE system, appear-
ing due to the choice ofA = 0.9, so that some leading errors may be dominated
by quadratic terms in the metric and the conformal factor, which can lead to
a faster error decay than N + 1 for coarse meshes. We expect that this super-
convergence phenomenon would disappear on sufficiently refined meshes; but
since the absolute errors are already getting close to machine accuracy on the
meshes used here, it is not possible to refine the mesh much more with double-
precision arithmetics. For the fifth-order scheme using 100 × 10 elements a
comparison between the numerical and exact solution of the wave profiles for
φ, α, K and Dxxx is displayed in figure 4.4 at the final time t = 10: again the
agreement between exact and numerical solutions is excellent.

Robust stability test

A staple of spacetime codes test suites, the robust stability test is also taken
from Alcubierre et al. (2004b). While in the previous test cases a simple frozen
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Figure 4.3: Gauge-wave test case with amplitude A = 0.1. Temporal evolution
of the Hamiltonian and momentum constraints (top left). Comparison of the
wave form of the conformal factor φ (top right), the lapse α (bottom left) and
the trace of the extrinsic curvature K (bottom right) with the exact solution at
time t = 1000. Since in this test the momentum constraint M3 = 0, it is not
plotted when using a logarithmic axis. Figure reproduced from Dumbser et al.
(2017).

shift condition ∂tβ
i = 0 was enforced (by setting s = 0), here we employ the

classical Gamma-driver shift condition, paired to the 1 + log slicing condition,
i.e. g(α) = 2/α. The parameter f of the Gamma driver is set to the typical value
of f = 0.75 (Alic et al., 2012). We set e = 2, κ1 = κ2 = κ3 = 0, K0 = 0, c = 1
and η = 0.

As per the test specifications, we start from the flat Minkowski metric

ds2 = −dt2 + dx2 + dy2 + dz2 ,

to which an uniformly distributed random perturbation is added. The per-
turbation affects all variables of the FO-CCZ4 system. The two-dimensional
computational domain chosen is Ω = [−0.5, 0.5]2 and we run four simulations
with the unlimited ADER-DG third-order scheme on four successively refined
meshes, consisting of 10ρ × 10ρ elements, corresponding to 40ρ × 40ρ degrees
of freedom, where ρ ∈ {1, 2, 4, 8}. The perturbation amplitude is ε = 10−7/ρ2,
i.e. three orders of magnitude larger that those suggested in Alcubierre et al.
(2004b).
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Table 4.1: Numerical convergence results for the large amplitude gauge-wave
test problem with A = 0.9 at a final time of t = 10. The L2 errors and corre-
sponding observed convergence order are reported for the variables φ, α and
K. Table reproduced from Dumbser et al. (2017).

Nx ×Ny L2 error φ O(φ) L2 error α O(α) L2 error K O(K)
N = 3

60× 6 3.0492E-04 8.9295E-04 1.1176E-02
80× 8 8.5100E-05 4.4 2.4729E-04 4.5 3.1193E-03 4.4

100× 10 3.2704E-05 4.3 9.4724E-05 4.3 1.1996E-03 4.3
120× 12 1.5158E-05 4.2 4.3826E-05 4.2 5.5628E-04 4.2

N = 4
60× 6 2.1446E-05 3.3190E-05 1.5793E-03
80× 8 3.3430E-06 4.6 6.4050E-06 4.1 1.8676E-04 5.3

100× 10 9.8295E-07 4.3 2.1320E-06 3.8 4.8667E-05 4.7
120× 12 3.7104E-07 4.4 8.5418E-07 4.1 1.7326E-05 4.6

N = 5
60× 6 4.0478E-05 1.4412E-04 1.3372E-03
80× 8 1.2792E-06 8.5 4.0905E-06 8.8 4.5055E-05 8.4

100× 10 1.4713E-07 7.5 4.4742E-07 7.7 5.2647E-06 7.5
120× 12 3.0080E-08 7.1 8.8915E-08 7.2 1.0837E-06 7.1

N = 7
30× 3 3.0806E-05 1.2306E-04 9.6081E-04
40× 4 4.7556E-07 14.5 1.8946E-06 14.5 1.2950E-05 15.0
60× 6 2.4404E-09 13.0 8.6716E-09 13.3 8.0893E-08 12.5
80× 8 1.0925E-10 10.8 3.5637E-10 11.1 3.8987E-09 10.5

The ADM constraint violation as function of time is plotted in figure 4.5 for
all four simulations. It can be seen that after an initial decay the constraints
remain essentially constant in time for all different grid resolutions, indicat-
ing that our FO-CCZ4 system indeed passes the robust stability test with the
standard Gamma driver and 1 + log gauge conditions.

Convergence tests on three-dimensional black-hole spacetimes

We then consider the evolution of isolated Schwarzschild and Kerr black holes
of mass M = 1 in 3D Cartesian Kerr-Schild coordinates, order to perform a
convergence study in a realistic, non-trivial scenario. The metric in these coor-
dinates is known analytically and thus the primary variables of our evolution
system are given by

α = S−
1
2 , βi =

2H

S
li , γij =

 1 + 2Hl2x 2Hlxly 2Hlxlz
2Hlxly 1 + 2Hl2y 2Hlylz
2Hlxlz 2Hlylz 1 + 2Hl2z

 ,

with

H := M
r3

r4 + a2z2
, S := 1+2H , lx :=

rx+ ay

r2 + a2
, ly :=

ry − ax
r2 + a2

, lz :=
z

r
,
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Figure 4.4: Highly nonlinear gauge-wave test case with very large amplitude
A = 0.9. Comparison of the wave form with the exact solution at time t = 10
for an ADER-DG P5 scheme and 100 × 10 elements. Figure reproduced from
Dumbser et al. (2017).

and

r :=

√
(x2 + y2 + z2 − a2)/2 +

√
((x2 + y2 + z2 − a2)/2)2 + z2a2 .

Exploiting the fact that the solution is stationary, i.e. ∂tγij = 0, the extrinsic
curvature Kij is computed as follows (Rezzolla and Zanotti, 2013):

Kij =
1

2α
(∇iβj +∇jβi) .

K0 is set as K0 =
(
K − βk∂kα

)
/
(
α2g(α)

)
, so that ∂tα = 0 and the Gamma-

driver shift condition is simplified to ∂tβi = fbi, ∂tBik = f∂kb
i and ∂tbi = ∂tΓ̂

i.
This choice of gauge has the consequence that the above exact solution corre-
sponds to a stationary solution of the FO-CCZ4 system. In other words, we
remove the advection terms from the evolution equations of the shift βi and
the variable bi (see also Alcubierre (2008)). The conformal factor φ and the aux-
iliary variables can be computed according to their definition. We choose the
computational domain as Ω = [1, 5]3M3, and as boundary conditions the exact
solution, given by the initial condition, is imposed at all times. Note that the
BH is in any case centered on the point x = y = z = 0, so that we evolve only
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Figure 4.5: Robust stability test case with Gamma-driver shift condition and
1 + log slicing with random initial perturbation of amplitude 10−7/ρ2 in all
quantities on a sequence of successively refined meshes on the unit square in
2D using an ADER-DG P3 scheme. Top left: 10×10 elements, corresponding to
40×40 degrees of freedom (ρ = 1). Top right: 20×20 elements, corresponding to
80×80 degrees of freedom (ρ = 2). Bottom left: 40×40 elements, corresponding
to 160 × 160 degrees of freedom (ρ = 4). Bottom right: 80 × 80 elements,
corresponding to 320 × 320 degrees of freedom (ρ = 8). Figure reproduced from
Dumbser et al. (2017).

a section of the domain offset from the singularity (but encompassing regions
both inside and outside of the horizon), i.e. we effectively employ excision. We
set e = 2, c = 1, η = 0, and again employ the undamped CCZ4 system with the
1 + log slicing, i.e. we set κ1 = κ2 = κ3 = 0, f = 0.75 and g(α) = 2/α.

Again we perform several simulations with different ADER-DG schemes
on a sequence of successively refined meshes, until a final time of t = 10M .
The Rusanov method is used as approximate Riemann solver at the element
interfaces. In the case of the Schwarzschild black hole we of course set the
dimensionless BH spin a = 0, while for the Kerr black hole we choose a = 0.9.
The numerical convergence rates are reported for both cases in table 4.2, where
we observe that the designed order of accuracy N + 1 of our high order fully-
discrete one-step ADER-DG schemes has been properly reached.
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Table 4.2: Numerical convergence results of FO-CCZ4 with simplified gamma-
driver for the Schwarzschild black hole (left) and the Kerr black hole (right) in
3D Cartesian Kerr-Schild coordinates at a final time of t = 10. The L2 errors
and corresponding observed convergence order are reported for the variables
φ. Table reproduced from Dumbser et al. (2017).

Schwarzschild black hole
Nx L2 error φ O(φ) Nx L2 error φ O(φ)

N = 3 N = 5
10 6.2008E-06 5 2.5618E-06
15 1.2046E-06 4.0 10 3.8444E-08 6.1
20 3.8623E-07 4.0 15 3.1675E-09 6.2
25 1.5837E-07 4.0 20 5.0252E-10 6.4

Kerr black hole
Nx L2 error φ O(φ) Nx L2 error φ O(φ)

N = 3 N = 5
10 1.0038E-05 5 2.1336E-06
15 1.9331E-06 4.1 10 4.7108E-08 5.5
20 5.8999E-07 4.1 15 3.9143E-09 6.1
25 2.3312E-07 4.2 20 7.0393E-10 6.0

Evolution of a single puncture black hole

We next have applied the FO-CCZ4 formulation to a single puncture (i.e. Bowen-
York initial data) black hole (Brandt and Brügmann, 1997). Again we choose
a BH mass of M = 1 and a dimensionless spin of a = 0 (i.e. we evolve a
Schwarzschild BH, albeit in a different gauge then the usual one). The black
hole is located at the origin of a three-dimensional computational domain Ω =
[−150, 150]3M3 with periodic boundary conditions in all directions. The do-
main is discretized employing a two-level mesh with grid spacing ∆x = ∆y =
∆z = 2.5M within the inner level Ωb = [−15, 15]3M3, while ∆x = ∆y =
∆z = 7.5M is used in the outer part of the domain. In the innermost region
Ωl = [−3, 3]3M3, covering the puncture itself, the third-order subcell ADER-
WENO finite-volume limiter is activated throughout the entire simulation. In
is important to mention that this simulation could only be run by activating
the finite-volume subcell limiter, since a scheme more robust than a pure DG
one is needed in order to deal with the puncture singularity. Without such a
limiter we observed the code crashing after just a few time-steps. In our simu-
lation we use an ADER-DG P3 scheme (N = 3), corresponding to 2N + 1 = 7
finite-volume subcells per DG element, i.e. the effective mesh spacing in terms
of points (cell averages) inside the domain Ωl is ∆x = ∆y = ∆z = 0.357M .
Note that we set up the mesh so that the puncture is located at the boundary
of DG elements, and given the location of the degrees of freedom in the sub-
cell grid (see figure 3.4), no grid point coincides with the puncture. We set the
FO-CCZ4 parameters to κ1 = 0.1, κ2 = 0, κ3 = 0.5 and η = 0. The constant
µ accounting for the second-order ordering constraints in the evolution of Bik
is set to µ = 1/5, while for this test we use c = 1 and e = 1 to be as close as
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possible to a standard second-order CCZ4 formulation, where the cleaning of
the Hamiltonian constraint is done at the speed of light2. For convenience and
since the puncture is not moving, we neglect the algebraic source term on the
right-hand side of the Gamma-driver equation (4.19b).

The initial data for the metric and the lapse function are computed via a
stand alone version of the TwoPunctures code (Ansorg et al., 2004), itself a
part of the Einstein Toolkit software (Löffler et al., 2012). Explicitly, the lapse is
set initially to

α =
1

2

(
1− 1

2
M
r∗

1 + 1
2
M
r∗

+ 1

)
, (4.43)

where r∗ = (r4 + 10−24)
1
4 and r is the coordinate distance of a grid point from

the puncture. The auxiliary quantities (which are spatial derivatives of the pri-
mary quantities) are obtained via a simple fourth order central finite difference
applied to α and γij . The shift and the extrinsic curvature are set initially to
zero.

The evolution was carried out until a final time of t = 1000M . Figure 4.6
plots the behaviour in time of the average L2 error of the ADM constraints,
which we define as

L2 =

√∫
Ω
ε2dx∫

Ω
dx

,

where ε denotes the local deviation from zero of either the Hamiltonian H con-
straint or one component of the momentum constraint Mi. Also shown in fig-
ure 4.6 are a view of the 3D grid setup and a zoom into the central region,
where the lapse function and the shift vector are shown at a time of t = 200M .
Towards the end of the simulation, we note a growth of the constraints, but
this may simply be related to our inappropriate and simplistic choice of the
boundary conditions. Further research on this topic will be carried out in the
future.

These are the first results obtained for a puncture black-hole spacetime us-
ing a fully three-dimensional DG finite-element method with AMR and LTS.
Previous results obtained with high order DG schemes for black-hole space-
times were essentially limited to the one-dimensional case (see, e.g. Field et al.
(2010); Brown et al. (2012); Miller and Schnetter (2017)).

Preliminary results for moving punctures

The last test we performed is an application, albeit only preliminary at this
point, of the FO-CCZ4 system to the evolution of a binary system of two mov-
ing puncture black holes. We consider a head-on collision of two non-rotating
black holes of equal mass M = 1 with zero initial linear momentum. The BHs
are located at positions x− = (−1, 0, 0) and x+ = (+1, 0, 0) on the x−axis. The
three-dimensional domain is chosen Ω = [−25, 25]3M3 and flat Minkowski
spacetime is used to supplement boundary conditions everywhere and at all
times. The FO-CCZ4 parameters are set to κ1 = 0.1, κ2 = 0, κ3 = 0.5, η = 0
and we choose c = 1, e = 1 and µ = 1/5. Again the initial metric and the lapse

2For the Gamma driver the system is empirically found to be hyperbolic also for the choice
e = 1.
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Figure 4.6: Time evolution of the ADM constraints for the single puncture
black hole using an ADER-DG P3 scheme with AMR and ADER-WENO sub-
cell finite-volume limiter until t = 1000 (left). Color contours for the lapse at
t = 200 and grid setup showing the domain Ω, the refined box Ωb and the
zone with active subcell finite-volume limiter Ωl (center). Zoom into the center
region at t = 200 with color contours for α and shift vector βi (right). Figure
reproduced from Dumbser et al. (2017).

are provided by the TwoPunctures code (Ansorg et al., 2004), with the lapse
set initially to

α =
1

2

(
1− 1

2
m−
r∗−
− 1

2
m+

r∗+

1 + 1
2
m−
r∗−

+ 1
2
m+

r∗+

+ 1

)
, (4.44)

where r∗− and r∗+ (the coordinate distances of a grid point from either punc-
ture) are defined analogously to the previous section and m− and m+ are the
so called bare masses of the two black holes (see Ansorg et al. (2004)) and in this
case are equal. The auxiliary quantities are computed from the primary vari-
ables via a fourth-order central finite-difference method. Note that although
the punctures are moving, we neglect the algebraic source term on the right-
hand side of the Gamma-driver equation (4.19b), ad we use the simple and
well-tested Rusanov method as an approximate Riemann solver on the ele-
ment boundaries. The shift and extrinsic curvature are initially set to zero in
this case as well.

The domain is discretized again with a two-level mesh of spacing ∆x =
∆y = ∆z = 5/12M within the inner level Ωb = [−2.5, 2.5]3M3, while ∆x =
∆y = ∆z = 1.25M is used in the outer part of the domain. In the innermost
zone Ωl = [−5/3, 5/3]3M3 the third-order subcell ADER-WENO finite-volume
limiter is activated throughout the entire simulation. As for a single puncture,
we use an ADER-DG P3 scheme (N = 3), whose 2N + 1 = 7 finite-volume
subcells lead to an effective mesh spacing inside the domain Ωl of ∆x = ∆y =
∆z = 0.0595. Once again we remark that the use of the finite-volume subcell
limiter is essential in order to obtain a stable evolution. The simulation was
run until a final time of t = 40M .

The evolution of the contour surfaces of the lapse and the shift vector are
displayed in figure 4.7. The contour surfaces of the conformal factor at the final
time as well as the evolution of the ADM constraints violations are depicted in
figure 4.8. Clearly, no sign of growth in the violation of the constraints appears,
even after the two punctures have merged at t ' 10M .

Although these results are meant as a proof-of-concept rather than as a
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Figure 4.7: Time evolution of the contour surfaces of the lapse α and the shift
vector βi for the head-on collision of two puncture black holes of equal mass
M = 1 at times t = 0, 5, 7, 8, 10M and t = 15M , from top left to bottom right.
Figure reproduced from Dumbser et al. (2017).
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Figure 4.8: Head-on collision of two puncture black holes: contour surfaces
of the conformal factor φ at time t = 34M after the merger (left) and time
evolution of the ADM constraints (right). The curves for the second and third
momentum constraint almost coincide. Figure reproduced from Dumbser et al.
(2017).

realistic modelling of the inspiral and merger on binary black-hole systems,
they provide convincing evidence that the evolution of binary systems of black
holes can be evolved stably with our path-conservative ADER-DG scheme
with ADER-WENO subcell finite-volume limiter and the FO-CCZ4 formula-
tion proposed here. A more detailed and systematic investigation, which should
include the study of the emission of gravitational waves from the system, as
well as a proper way of tracking the BH horizons, will be the subject of future
work.
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4.4.5 Conclusions

This chapter has presented the work related to FO-CCZ4, a new formulation of
the Einstein equations based on the conformal and covariant Z4 (CCZ4) system
of Alic et al. (2012), which is strongly hyperbolic and first order in both space
and time. The system consists of 58 evolution equations for the vector of state
variable given by

QT :=
(
γ̃ij , lnα, β

i, lnφ, Ãij ,K,Θ, Γ̂
i, bi, Ak, B

i
k, Dkij , Pk

)
.

To the best of our knowledge, this is the first time that a first-order, strongly
hyperbolic formulation of the CCZ4 system has been proposed. The chapter
also summarizes the results of numerical tests conducted with the FO-CCZ4
formulation when discretized with a path-conservative ADER-DG numerical
method.

The guiding principle in order to obtain a strong hyperbolic formulation
of the equation has been the approximate symmetrization of the sparsity pat-
tern of the system matrix, via the appropriate use of various typologies of con-
straints, with the goal of avoiding the appearance of Jordan blocks that cannot
be diagonalized. A second technique employed to obtain the FO-CCZ4 formu-
lation as presented in this chapter is the use of first-order ordering constraints
in such a way to reduce the evolution equations for the lapse α, the shift βi, the
conformal metric γ̃ij and the conformal factor φ to a system of pure ordinary
differential equations (as opposed to PDEs) (Alcubierre, 2008). In other words,
whenever differential terms with respect to α, βi, φ and γ̃ij appear, they are re-
placed by the corresponding auxiliary variables Ak, Bik, Pk and Dkij , thus be-
coming algebraic source terms. This choices greatly simplified the hyperbolic-
ity analysis of the FO-CCZ4 system, since the eigenvalues and eigenvectors as-
sociated with α, βi, φ and γ̃ij become trivial. A further advantage is that for the
rest of the analysis a reduced system of partial differential equations relative
to only 47 dynamic variables (namely U = (Ãij ,K,Θ, Γ̂

i, bi, Ak, B
i
k, Dkij , Pk))

can be considered. What’s more the system matrix of the reduced system is a
function of α, βi, φ and γ̃ij only, which not only substantially simplifies the hy-
perbolicity analysis but also leads to the important result that all fields of our
FO-CCZ4 system are linearly degenerate. This in turn implies that no shock
waves can be generated from smooth initial data by evolving it with the FO-
CCZ4 system.

In contrast with the first-order Z4 system proposed in Bona et al. (1997);
Alic et al. (2009), the FO-CCZ4 system is written in a fully non-conservative
form, which is another key idea of the present approach. It’s worth pointing
out that the above mentioned simplifications are not possible if a conserva-
tive formulation of the system is sought, e.g. the ones proposed in Bona et al.
(1997); Alic et al. (2009). This follows by the fact that the Jacobian ∂F /∂Q of
the flux F (Q) would in general depend also on the dynamical variables and
the quasi-linear form of the system would also contain differential terms in α,
βi, φ and γ̃ij . This by construction not the case in the present non-conservative
formulation.

Thanks to the choices outlined above we have been able to provide a proof
of strong hyperbolicity for completely general lapse and spatial metric for the
simple gauge choice βi = 0, by a direct explicit calculation of all eigenvalues
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and all left and right eigenvectors of the system. While it would be desirable
to prove hyperbolicity also for more realistic choices of the shift condition, e.g.
for the Gamma-driver gauge, at the moment we have only reached a proof for
general lapse and shift conditions and general spatial metrics only as long as
one of the three independent off-diagonal components of the three-metric is
zero. We conjecture that the formulation is strongly hyperbolic in all cases, but
a general analytical proof is at present missing and left to future work.

We have implemented numerically the FO-CCZ4 system via a discretiza-
tion based on a family of high order fully-discrete one-step ADER discontin-
uous Galerkin (DG) schemes, coupled with an ADER-WENO finite-volume
limiter (the latter being necessary in order to deal with the physical singular-
ities arising in the case of black hole spacetimes). The non-conservative na-
ture of the formulation is naturally treated within the DG framework by the
use of path-conservative schemes, first proposed by Castro and Parés in the
finite-volume context (Castro et al., 2006; Pares, 2006) and later extended also
to ADER-DG schemes in Dumbser et al. (2009, 2010). In order to ensure the
positivity of the numerical solution of α and φ, we have evolve the logarithms
of these quantities.

Following a well established practice, we have applied the FO-CCZ4 for-
mulation to a series of standard test cases, i.e. a subset of the Apples-with-
Apples tests suggested in Alcubierre et al. (2004b), namely the gauge-wave
test, the robust stability test and the linear-wave test bed. Besides providing ev-
idence that the new system is able to reproduce accurately and with moderate
costs the known analytic solutions, we have carried out numerical convergence
studies of the method on the gauge-wave test in the highly nonlinear regime,
as well as on further tests involving Schwarzschild and Kerr black holes using
3D Cartesian Kerr-Schild coordinates. We have also provided numerical evi-
dence that the FO-CCZ4 formulation coupled with ADER-DG schemes (with
the ADER-WENO finite-volume subcell limiter) is able to perform a long time
integration of a single puncture black hole with the usual Gamma driver and
1 + log gauge conditions. Finally we have also shown some first preliminary
results for two moving puncture black holes. To the best of our knowledge, the
numerical results shown here represent the first simulations of the 3+1 Einstein
equations ever done with high order DG and WENO finite-volume schemes on
three-dimensional grids.

Future research will concern the extension of the present algorithms to dy-
namic AMR (adaptive mesh refinement), as well as the extraction of the gravi-
tational waveforms generated by binary black-hole mergers (see Centrella et al.
(2010); Bishop and Rezzolla (2016) for reviews) and binary neutron-star merg-
ers (see Baiotti and Rezzolla (2017) for a review), and also the characterization
of black hole horizon properties.
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Chapter 5

The Entropy Limited
Hydrodynamics Scheme

5.1 Introduction

In order to study astrophysical systems involving compact objects, such as
black holes and neutron stars, large-scale general-relativistic hydrodynamical
numerical simulations have been shown to be a very powerful tool (Font, 2008;
Shibata and Taniguchi, 2011; Rezzolla and Zanotti, 2013; Martí and Müller,
2015; Shibata, 2016; Baiotti and Rezzolla, 2017; Paschalidis, 2017). Performing
such simulations however is a very non-trivial task, which requires dealing
with a plethora of different physical, mathematical and computational issues.
One of the most challenging of such issues, which can lead to significant dif-
ferences on the outcome of said simulations, especially when the resolution
employed is not very high, is the choice of the numerical method for which is
employed in the solution of the relativistic hydrodynamics equations.

As already mentioned in chapter 3, in this context the most commonly used
methods are generally known as high-resolution shock-capturing (HRSC) tech-
niques. HRSC methods have been shown in general to be very effective in take
care of shocks waves and suppressing spurious oscillations in the numerical
solution of PDEs, and have been employed with varying degree of success in
astrophysical simulations. Recently much effort has gone into improving these
schemes (e.g. by employing innovative mesh refinement techniques such as
in DeBuhr et al. (2015)) or moving beyond them; one promising and popular
alternative is that of discontinuous Galerkin (DG) methods, which have been
introduced in section 3.4 and used in obtaining the results of chapter 4. Both
“standard” HRSC schemes and their improvements however potentially suf-
fer from a few shortcomings. First they are in general complex to derive and
implement, or to extend and modify (e.g. in order to increase the formal order
of accuracy. This does not apply to DG methods however); they often depend
on a large number of a priori unknown coefficients, requiring some degree of
optimisation (e.g. a typical example being WENO methods); they may lead to
load imbalance in parallel implementations as a result of their complexity.

In this chapter an alternative approach, different from the HRSC mindset,
is proposed, able to address some of these shortcomings. These alternative

97



98 CHAPTER 5. THE ENTROPY LIMITED HYDRODYNAMICS SCHEME

scheme is named “entropy-limited hydrodynamics” (ELH) and we formulate
it in a finite-differences framework. This is a variant of the “flux-limiting” FD
scheme described in chapter 3, where the underlying concept prescribing how
the limiter should be activated and driven is relatively straightforward: to de-
termine which gridpoints are in need of the low-order contribution, we employ
a “shock detector”, which not only marks regions of the computational domain
in need of limiting, but also determines the relative ratio of the high and low-
order fluxes.

Such a shock detector is offered by the entropy viscosity function described
by Guermond et al. (we refer primarily to Guermond et al. (2011), but see
also Guermond and Pasquetti (208); Zingan et al. (2013)), in which the local
production of entropy is used to identify shocks. Since entropy is produced
only in the presence of shocks, this choice results in a stable method, which
is nonetheless able to recover high-order in regions of smooth flow. We have
extended the definition of the entropy viscosity function from the classical to
the relativistic regime, and rather than a prefactor to additional viscous terms
in the hydrodynamical equations, we choose to employ it to drive the lower-
order flux in the flux limiting scheme. Therefore in contrast to the approach of
Guermond et al. (2011) the underlying equations of relativistic hydrodynamics
are not modified in this approach by introducing additional entropy-related
terms.

In the following the method itself and the details of our implementation
are described, followed by a summary of the results of tests we conducted in
order to gauge its behaviour against a standard HRSC method, namely the
MP5 scheme (Suresh and Huynh, 1997). This chapter is structured as follows:
in sections 5.2 and 5.3 the ELH method and its present implementation are
described, while the results of the numerical tests are presented in section 5.4.
Conclusions and an outlook are collected in section 5.5.

5.2 Description of the ELH scheme

As mentioned, the ELH scheme belongs to the category of flux-limiting schemes,
described in section 3.3.3. Therefore it consists of mainly two building blocks:
a function detecting shocks and limiter scheme of the high order fluxes. The
lmiter has been described in section 3.3.3. In the following the shock detector
is presented.

Since the hybridisation of the high order fluxes with the Lax-Friedrichs ones
should be activated only in regions of the flow that are problematic, a criterion
to flag such regions is needed. We introduce to this end a regularisation func-
tion that we refer to as the “viscosity” ν (see further below on the choice of this
name). Hence we redefine the parameter θ ∈ [0, 1] in equation (3.54) as

θ := min

[
θ̃, 1− 1

2
(νi + νi+1)

]
, (5.1)

so that the contribution of the Lax-Friedrichs flux depends linearly on the vis-
cosity. The value of the coefficient θ̃ is the one mentioned in section 3.3.3 to
guarantee the positivity of the rest-mass density. It is clear that the choice (5.1)
for the limiting coefficient θ results in additional dissipation being inserted
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when ν attains large values, as well as in near-vacuum regions. Conversely in
regions of smooth flow and away from near vacuum, θ is close to unity, ensur-
ing that the high order flux is dominant over the low order one and preserving
the high accuracy of the method.

Naturally the viscosity ν needs to be associated to some property of the
flow. To this end we follow the ideas of Guermond et al. (2011) and associate ν
to the local specific entropy s. Generally speaking the precise functional form
of s on the other thermodynamical and hydrodynamica variables will depend
on the EOS of the fluid. In this work we restrict ourselves to the simple case of a
perfect fluid with an ideal-fluid EOS (i.e. equation (2.17)), implying the follow-
ing form of the specific entropy (apart from constant multiplicative factors):
(Rezzolla and Zanotti, 2013)

s = ln

(
ε

ρΓ−1

)
. (5.2)

Clearly the specific entropy satisfies the second law of thermodynamics. We
can introduce therefore the entropy residual, or entropy-production rate,R as

R := ∂µ(ρsuµ) ≥ 0 . (5.3)

The inequality satisfied by R is a restatement of the second principle of ther-
modynamics.

The expected behaviour of the entropy residual based on its thermodynam-
ical interpretation is that it cannot decrease in time (for an isolated system) and
that is non-null only in very small spatial regions, in the neighbourhood of
shocks, in fact ideally expressed a delta function peaked at the location xs of
shocks, i.e. R ∝ δ(x − xs). A physical justification for this latter expecta-
tion is rather simple to motivate. Euler equations generally apply to perfect
fluids, and while they can capture non-ideal features (i.e. shocks), the descrip-
tion of the latter is only approximate. As long as the flow is smooth and the
perfect-fluid approximation holds, all phenomena are reversible and there can
be no production of entropy, thereforeR = 0. However in those regimes where
the perfect-fluid approximation breaks down and non-ideal effects appear, i.e.
at the location of shocks, the entropy production is nonzero and the entropy
jumps locally to a higher value. Since shocks are regions of dimension N −1 in
spatial manifolds with N spatial dimensions, the entropy residualRmust be a
Dirac delta peaked at shock locations for it to provide a finite contribution.

It is therefore a quite natural choice to set the entropy viscosity νe propor-
tional to the entropy residual, defining it as

νe := ce∆|R| . (5.4)

The absolute value on R is introduced in the expression since the inequal-
ity (5.4) is not guaranteed to be satisfied strictly at the discrete level. In fact
R should approximate a delta function, and is therefore expected to oscillate,
reaching potentially negative values in practical numerical applications. In ex-
pression (5.4), ∆ is the spacing of the mesh, ce is a positive tunable constant
with dimensions of [time]3 × [temperature] × [mass]−1, making νe dimension-
less. Note that despite νe not having the dimensions of a physical viscosity, we
refer to it nonetheless as the “entropy viscosity”, mostly for convenience and
in analogy with the very similar quantity defined in Guermond et al. (2011).
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An further advantage of this definition of the viscosity is the ability of the
resulting scheme to differentiate automatically between shocks and contact dis-
continuities. This property follows by the observation that at the location of
contact discontinuities there is no entropy production and therefore the viscos-
ity there would be zero as well (Rezzolla and Zanotti, 2013).

A potential problem of the definition (5.4) is that it can lead the viscosity
reach unbounded high values, since the entropy residual R is itself not phys-
ically upper limited. However the value of θ should not exceed unity, and so
the viscosity must not exceed this value as well. To satisfy this requirement
and cut-off potentially problematic large values of the entropy viscosity, we set
the viscosity to be actually used in the limiter (5.1) as

ν := min[νe, cmax] . (5.5)

where νe is given by equation (5.4). cmax is a tunable dimensionless coefficient
playing the role of an upper limit. In the following we have assumed both ce
and cmax to equal to one in all of the tests presented.

5.3 Implementation details

We employ a rather straightforward numerical implementation for the compu-
tation of the entropy residual (5.3). First its definition is rewritten in a way that
involves only derivatives of the specific entropy s

R = ∂µ(sρuµ) = s∂µ(ρuµ) + ρuµ∂µs = ρuµ∂µs , (5.6)

where the continuity equation (2.16) was used to obtain the final expression in
(5.6). By expressing the 4-velocity uµ in terms of the fluid three-velocity vi, we
finally write the residual as

R = ρW
(
∂ts+ vi∂is

)
. (5.7)

In equation (5.7) the spatial derivatives of the specific entropy are approx-
imated by standard centered finite-difference stencil of order p + 1, where p is
the order of the stencil used to approximate the physical fluxes. This restriction
on the order of the derivative operators is a consequence of the need to ensure
that the viscosity converges to zero fast enough so not to spoil the overall con-
vergence of the scheme at the nominal order. The time derivative in (5.7) is also
approximated by finite differences. At every iteration the current value of the
specific entropy and the values at the two previous timesteps are combined to
compute a second-order approximation of ∂ts via a one-sided stencil:

(∂ts)
n =

1

2∆t

(
3sn − 4sn−1 + sn−2

)
+O

(
(∆t)2

)
. (5.8)

Note that the time derivative of the specific entropy in equation (5.7) is com-
puted with a low-order method. In principle this could be a limiting factor for
the convergence of the overall scheme. In practice we have found that the spa-
tial discretization error dominates over the temporal one. As a consequence
the scheme achieves high order convergence as expected. Note also that the
high order flux fHO is computed component by component (refer to section
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3.3.3 for the description of components vs. characteristic reconstruction). The
unlimited reconstruction operators that we employ (namely U5 and U7, (3.37)
and (3.38) respectively) are linear in fact linear, and as such they commute with
the matrices used to perform the characteristic decomposition. There is there-
fore no difference in this case between component-by-component and charac-
teristic decomposition. Switching to the much simpler components reconstruc-
tion leads to a significant speed-up of the code (up to ∼ 50%, depending on
the setup of the grid on the computing nodes) with respect to the MP5 scheme,
since there is no need to compute the system eigenvectors and apply the result-
ing matrix (the performance difference is also due to other intrinsic differences
in the formulation of the schemes, so that in fact the ELH scheme is somewhat
faster than MP5 also when the components reconstruction is employed for the
latter). The MP5 reconstruction, being nonlinear, does not commute with the
characteristic decomposition. As a result, when using MP5 we always switch
to characteristic variables, since this is known to reduce spurious numerical
oscillations in high order methods (Suresh and Huynh, 1997).

We choose to further modify the viscosity before using it in equation (5.1).
First, because the viscosity is found to be very close to zero in near-vacuum re-
gions, we improve the behaviour of the scheme close to atmosphere values by
simply setting the viscosity to some small and constant value νv . A grid point
xijk gets assigned this value of the viscosity whenever the rest-mass density at
the given point, and at all nearest neighbours, is below a certain threshold ρv ,
i.e. if

ρi+l,j+m,k+n < ρv ∀ l,m, n = −1, 0, 1

then

νijk = νv .

To clarify this point, is useful to rewrite (5.5) slightly:

ν :=

{
νv if ρ < ρv

min[νe, νmax] elsewhere .
(5.9)

In all of the numerical tests presented in the following section we have used
νv = 10−12 and ρv = 10−11M−2

� (i.e. the threshold is 5 orders of magnitude
larger then the atmosphere floor, ρatmo = 10−16M−2

� ). Secondly (following the
original implementation in Guermond et al. (2011)) we introduce a smooth-
ing step which removes unwanted oscillations in the viscosity profile. This is
accomplished by applying a five-point stencil of the form

ν̄ijk :=

2∑
l=−2

2∑
m=−2

2∑
n=−2

al am an νi+l,j+m,k+n , (5.10)

where the coefficients al have values a0 = 0.58, a±1 = 0.06 and a±2 = 0.15 to
the viscosity grid function. The stencil in equation (5.10) is constructed so that
it approximates the convolution of a given function with a Gaussian kernel of
characteristic cutoff length scale 4 times the grid spacing, in such a way that the
residual of the transfer function of the target filter and of its approximation is



102 CHAPTER 5. THE ENTROPY LIMITED HYDRODYNAMICS SCHEME

minimised over a broad range of wavelengths (see Sagaut and Grohens (1999)
for details).

A further advantage follows from the application of this smoothing proce-
dure, in addition to dampening oscillations in the viscosity. In our approach
the viscosity is computed once at the beginning of every timestep before its
value is used in (5.1), i.e. the viscosity is kept constant during the Runge-Kutta
substages. Therefore it “lags behind” in time with respect to the solution of the
hydrodynamical variables. The smoothing procedure partly addresses this is-
sue, even though in practice we have found that this does not represent a prob-
lem in our tests. The smoothing (5.10) also prevents the viscosity to plunge to
very small values where it should instead be non negligible. This can happen,
e.g. close to stellar surfaces as a result of oscillations in the solution. The appli-
cation of the smoothing operator removes this problem by joining seamlessly
the values of the viscosity in the neighbouring points.

5.4 Numerical tests

In this section the results of the tests obtained with the ELH method are re-
ported. In each case we compare the ELH results with those obtained using the
monotonicity preserving, fifth-order scheme (MP5). Unless otherwise stated,
we couple the ELH method to the fifth-order U5 stencil (3.37), in order to have a
fair and meaningful comparison between methods of the same order. In some
cases however we employ the seventh-order stencil U7 (3.38). The two vari-
ants of the ELH scheme resulting from the choice of a different stencil will be
referred to as EL5 and EL7, respectively. It is important to remark that in all
tests no attempt was made to tune the coefficients ce and cmax introduced in
section 5.2: they have both been set to unity. Despite this very simple choice,
the ELH method is stable and accurate in all cases considered. It however pos-
sible, in fact likely, that the curent results could be further improved by careful
exploration of the changes in the solution upon a change of ce and cmax; how-
ever we leave this exploration to future work.

5.4.1 Special-relativistic tests

This section is concerned mostly with one-dimensional tests, restricted to special-
relativistic (as opposed to general-relativistic) hydrodynamics. The metric gµν
is therefore fixed to the flat Minkowski metric ηµν and no spacetime evolution
is performed.

Smooth nonlinear wave

First, in order to show the accuracy of the scheme, we test it in the case of a
smooth solution and measure rigorously its convergence order, so as to show
that the entropy-driven limiter does not spoil the convergence properties of the
high order method upon which it is built. The test setup has been discussed in
Radice and Rezzolla (2012) (itself adapted from Zhang and MacFadyen (2006)).
We consider a one-dimensional, large-amplitude, smooth, nonlinear wave with



5.4. NUMERICAL TESTS 103

0.9

1.0

1.1

1.2

1.3

1.4

ρ

t = 0

Exact

EL5

0.0 0.5 1.0 1.5 2.0

x

0.9

1.0

1.1

1.2

1.3

1.4

ρ

t = 1.55

Figure 5.1: Rest-mass density profiles for the smooth nonlinear wave test. The
EL5 data shown corresponds to the coarsest resolution of 100 gridpoints over
the domain. Figure reproduced from Guercilena et al. (2017).

initial rest-mass density profile given by

ρ0(x) =

{
1 + exp

[
−1/(1− x2/L2)

]
if |x| < 1

1 elsewhere ,
(5.11)

where L = 0.3. The initial data employs a polytropic EOS, p = Kργ̃ , with
K = 100 and γ̃ = 5/3, and we evolve it in time with the ideal-fluid EOS (2.17)
with Γ = 5/3. Since in this test discontinuities are absent (so that γ̃ = Γ) and
there are no stability issues, we use as time integrator the standard fourth-order
RK4 method (as opposed to the RK3 SSP method) with a timestep of ∼ 0.13
times the grid spacing.

The test has an analytic solution (visible in figure 5.1 with a black solid line)
which consists of a wave profile propagating towards the right and “steepen-
ing” in the direction of its motion. At time tc ' 1.6 the wave turns into a
shock. the analytic solution can be computed using the method of character-
istics (Anile, 1990) up to the formation of the caustic, on a Lagrangian grid. A
sufficiently accurate approximation is obtained by computing it on a very fine
grid of 105 gridpoints and interpolating the solution using cubic splines on the
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Figure 5.2: L1-norm of the error on the rest-mass density for the smooth
nonlinear-wave test at time t = 0.8. Figure reproduced from Guercilena et al.
(2017).

Eulerian grid. This solution, which we refer to as the “exact” solution, is then
the one used as reference against which the numerical solutions are compared.

The test has been performed twice, with both the EL5 and EL7 variants of
the ELH method, showing that high order schemes can be employed with great
ease in our approach, simply by swapping a lower-order stencil for a higher-
order one; this operation is far more demanding in standard finite-volume or
finite-differences HRSC schemes.

In figure 5.2 the L1-norm of the error with respect to the analytic solution
at time t = 0.8 is shown for the various schemes and at various resolutions.
Different resolutions are parametrized by the number of gridpoints used on
the x-axis. We have employed a total of seven resolutions, each twice as fine as
the preceding one, going from 100 gridpoints up to 6400. At the lowest resolu-
tions all schemes produce very similar deviations from the exact solution, MP5
being the most accurate by a small margin. As the resolution is increased, the
gap in accuracy between EL5 and MP5 decreases and disappears at very high
resolutions. The error curve for the EL7 scheme, being a higher-order scheme,
decreases much more rapidly with resolution: at the highest resolution of 6400
gridpoints its error is two orders of magnitude lower than for the fifth-order
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Figure 5.3: Convergence order computed on the smooth nonlinear-wave test as
a function of time to caustic formation. Figure reproduced from Guercilena et al.
(2017).

schemes.

The convergence order of the various schemes has also been explicitly com-
puted using the data at resolutions of 1600 and 3200 gridpoints. The result is
shown in figure 5.3 as a function of time, up to the time at which the shock is
developed. The computed order should be equal to the nominal order of each
scheme as long as the solution is smooth, gradually degrading to first order as
the caustic is approached. It can be clearly seen that this description is matched
by every scheme. The convergence order of EL5 in particular is almost exactly
five. EL7 similarly appears to saturate just below its nominal convergence or-
der of seven. Deviations from the nominal convergence order of each scheme
are due to contaminations from other error sources, which become increas-
ingly significant at high resolution. These additional sources of error are the
truncation error due to the time-integrator, the accuracy of the inversion from
conservative to primitive variables, and the low-order approximation for the
evolution of the entropy. It is however clear that the ELH method does not in-
terfere with the convergence properties of the underlying stencil, so that their
accuracy can be exploited.
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Figure 5.4: Profiles of the rest-mass density (left), velocity (center) and pressure
(right) for the special-relativistic Sod test at t = 0.6. The solution is computed
on a grid of 800 points. The EL5 scheme correctly captures the features of
the solution despite oscillations at the discontinuities. Figure reproduced from
Guercilena et al. (2017).

Shock-tube tests

Shock-tube tests are a standard way of gauging the performance of hydrody-
namics codes and their ability to handle discontinuous solutions. As a first
shock-tube test the special-relativistic version of the classical Sod test (Sod,
1978) was chosen. The adiabatic index for both the polytropic initial data EOS
and the ideal-fluid evolution EOS is in this case Γ = 1.4 and the right (R) and
left (L) initial states are

(ρR, vR, pR) = (0.125, 0, 0.1) ,

(ρL, vL, pL) = (1, 0, 1) . (5.12)

The analytic solution consists in a left-going rarefaction wave and a right-going
shock wave separated by a right-going contact discontinuity. We perform the
test with a variety of spatial resolutions ranging from ∆x = 0.01 to ∆x =
3.125× 10−4, and a timestep ∆t = 0.1 ∆x.

The test results at time t = 0.6 are shown in figure 5.4 for the EL5 and
MP5 schemes at resolution ∆x = 1.25 × 10−3. Both schemes capture the main
features of the solution as described above, with the shocks being resolved
within∼ 3 gridpoints, as are the constant plateaus in the pressure and velocity.
The EL5 scheme displays however some oscillations downstream of the shock,
plus some over- and undershoots around the location of the discontinuities and
in the transition between the rarefaction wave and the surrounding flat regions.
The MP5 scheme on the other hand is able to avoid such artefacts. This is not
surprising since MP5 is a monotonicity preserving scheme (the number of local
maxima and minima cannot increase by effect of this method, therefore over-
and undershoots cannot occur by construction) while EL5 is not. Note however
that this property of the MP5 scheme is valid only for scalar equations in one
spatial dimension. It important to stress that the EL5 scheme is nonetheless
indeed stable and that the oscillations that are present in the solution converge
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Figure 5.5: Rest-mass density profiles, zoomed on the right edge of the rar-
efaction wave (left) and on the shock (right) for the special-relativistic Sod test
at t = 0.6, computed with EL5 at different resolutions (parametrized by the
number of points on the x axis). The oscillations in the solution can be seen
converging away with resolution. Figure reproduced from Guercilena et al. (2017).

away with resolution (see figure 5.5).
The behaviour of the viscosity in this test is displayed in figure 5.6. It devel-

ops four well distinct peaks, each corresponding to the four nonlinear waves
generated by the Riemann problem, namely: the edges of the rarefaction wave,
where the solution is continuous but non-smooth, the contact discontinuity
and the shock. The viscosity is higher in correspondence with the shock with
respect with the peaks present at the location of the other features. It can also
be seen clearly how the peaks in the viscosity sharpen as the resolution is in-
creased, mirroring the decreasing size of the aforementioned features (see fig-
ure 5.5), and tending as expected towards a delta function at infinite resolution.

The second shock-tube test selected is a more extreme “blast-wave” test
(Martí and Müller, 2003). The adiabatic index used is Γ = 5/3 and the right
and left initial states are

(ρR, vR, pR) = (10−3, 0, 1) ,

(ρL, vL, pL) = (10−3, 0, 10−5) . (5.13)
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Figure 5.6: Profiles of the viscosity in logarithmic scale for the special-
relativistic Sod test at t = 0.6, computed with EL5 at different resolutions
(parametrized by the number of points on the x axis). The four peaks corre-
spond to the four different features of the solution, i.e. from left to right, the
edges of the rarefaction wave, the contact discontinuity and the shock (vertical
dashed lines highlight their location). As the resolution increases, they tend to
delta functions. Figure reproduced from Guercilena et al. (2017).

The exact solution consists in a right-going shock wave, followed by a con-
tact discontinuity and a left-going rarefaction wave. The same resolutions and
timestep choices as for the Sod test are employed.

Figure 5.7 displays the solution of the blast-wave test at time t = 0.4. Note
that this is a very extreme test (the pressure has an initial jump of five orders
of magnitude) in which the contact discontinuity and shock wave move at es-
sentially the same speed, resulting in a very narrow constant rest-mass density
state between the two. The oscillations in the EL5 scheme data are in this case
more severe than in the Sod shock-tube test, especially around the shock loca-
tion. Consequently the solution with the EL5 scheme tends to a decrease of the
pressure between the rarefaction wave and the shock wave with respect to the
analytical solution. The error is however of . 7 % at most; the MP5 scheme
performs better and has a relative error in pressure that is ∼ 1%. In both cases,
the agreement with the exact solution improves with resolution.
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Figure 5.7: Profiles of the rest-mass density (left), velocity (center) and pressure
(right) for the special-relativistic blast-wave test at t = 0.4. The solution is
computed on a grid of 800 points. The inset in the density panel magnifies the
blast wave, showing also the exact solution in black. Inversion failures due to
oscillations when using the EL5 scheme spoil the quality of the solution. Figure
reproduced from Guercilena et al. (2017).

Finally a three-dimensional shock-tube problem is performed, involving
non-grid-aligned shocks, namely the relativistic-explosion test. The initial data
in this case is given by{

(ρ, vi, p) = (1, 0, 1) if r ≤ 0.4 ,

(ρ, vi, p) = (0.125, 0, 0.1) otherwise ,

where r is the distance from the origin. The computational domain is a cube
of side 1 centered on the origin, and we use a grid spacing of ∆x = 0.01 and
a timestep ∆t = 0.1 ∆x. The adiabatic index for this test is again Γ = 1.4.
The features of the solution are similar to those of the Sod test i.e. an ingo-
ing rarefaction wave and an outgoing shock, separated by an outgoing contact
discontinuity. Note however that because of the spherical symmetry of the
test (compared to the planar symmetry in the Sod case), the regions at the two
sides of the contact discontinuity are no longer constant states in rest-mass den-
sity, velocity and pressure, but posses a radial dependence, which is however
smooth.

The rest-mass density for this test at time t = 0.25 is shown in figure 5.8,
on the (x, y) plane as well as on the x axis. Both EL5 and MP5 perform very
similarly, the differences being barely noticeable in the two-dimensional plot.
The one-dimensional plot of the x axis profiles reveal that while both schemes
capture the features of the solution, as in the Sod test, the EL5 scheme is slightly
more oscillatory.

Overall, these shock-tube tests demonstrate how the entropy-driven hy-
bridisation of the high order stencil is sufficient to stabilise the scheme even for
discontinuous initial data and it is remarkable that such a simple scheme can
achieve good accuracy.
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Figure 5.8: Rest-mass density for the relativistic-explosion test at time t = 0.25.
In the top panel the distribution on the (x, y) plane is plotted, MP5 on the left
side and EL5 on the right. In the bottom panel, the rest mass density is plotted
on the x axis. Both schemes capture very well the solution. Figure reproduced
from Guercilena et al. (2017).

5.4.2 Three-dimensional general-relativistic tests:
neutron stars

Being interested in the practical applications of the ELH scheme to general-
relativistic hydrodynamics and the modelling of compact stars, we then a se-
ries of three-dimensional tests mostly based on the evolution of single, iso-
lated neutron stars in general relativity (with the exception of grazing-collision
test of section 5.4.2), employing the EL5 variant of the scheme. In each test
we employ for the evolution the ideal-fluid EOS (2.17) with Γ = 2. The neu-
tron star initial data is constructed using a polytropic EOS p = Kργ̃ also with
γ̃ = 2 and K = 100 M−2

� . For the spacetime evolution we employ the BSS-
NOK formulation of section 4.2 with standard 1+log and Gamma driver gauge
conditions, discretized with a finite-differences algorithm (see section 3.3.1).
This BSSNOK implementation is provided by the McLachlan code, part of
the open-source Einstein Toolkit (Löffler et al., 2012; Zilhão and Löffler,
2013; Einstein Toolkit Website).
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Isolated star in the Cowling approximation

At first we perform the evolution of a stable non-rotating (or TOV, from Tolmann-
Oppenheimer-Volkoff) neutron star in a fixed spacetime (i.e. adopting the Cowl-
ing approximation). The goal of the test is to assess the properties of the EL5
scheme over long timescales. Despite its conceptual simplicity (a TOV is just a
static solution of the Einstein-Euler equations) such test can be rather challeng-
ing. The reason lies in the stationary nature of the location of the stellar surface,
which is the hardest feature to simulate due to the steep gradient in the hydro-
dynamics variables. Because this feature is essentially stationary errors can
accumulate and grow in its vicinity, affecting the accuracy of the simulation
locally as well as globally. This behaviour is to be contrasted with the typical
situation encountered when evolving inspiralling binary neutron stars, where
the stellar surfaces move very supersonically with respect to the floor and most
of the errors at the surface are absorbed into the shocks.

We build and evolve a TOV model with central rest-mass density 1.28 ×
10−3M−2

� , yielding a (baryon) rest mass of 1.5M� and a radius of ∼ 10M�.
We perform the test on a single refinement level with outer boundaries placed
at 16M� and a resolution of ∆i = 0.2M� ' 0.3 km. The timestep is set to 0.15
times the grid spacing, and the time integrator is RK3.

Figure 5.9 shows the distribution of the viscosity on the equatorial (x, y)
plane. A local annular peak around the location of the stellar surface is clearly
visible, corresponding to the location where the hydrodynamical variables ex-
perience the most violent variations, leading to large values of the viscosity.
In the external low-density fluid, the viscosity is set to a small constant value
almost everywhere as detailed in section 5.3. The inner part of the neutron star
is expected to be isentropic, as it consists of a shock-free perfect fluid. Indeed it
can be clearly seen how in the stellar interior the viscosity is nonzero but also
102 to 103 times smaller than at the surface, i.e. a value which does not sig-
nificantly affect the evolution. Such features of the viscosity profile are typical
in all the tests we considered, in each case in which a sharp matter/vacuum
interface is present.

The general behaviour of the EL5 scheme, when compared to the MP5
scheme, is well illustrated by figure 5.10, which shows the rest-mass density
distribution on the equatorial (x, y) plane for the two schemes (the left part of
the panel, i.e. for x < 0, refers to the MP5 scheme, while the right part, i.e. for
x > 0, to the EL5 scheme). Both schemes accurately capture the solution in the
stellar interior, but significant differences arise at the surface and in the exterior.
The MP5 scheme shows a rather diffusive behaviour, with a smooth transition
to the external near vacuum state (i.e. to a region close to the rest-mass density
floor) and extended low-density tails. The EL5 scheme on the other hand pro-
duces a sharper edge. Oscillations in the solution can be seen just outside of the
star, resulting in shell-like structures around the surface, which are particularly
noticeable in the coordinate axes directions. The stellar exterior is much closer
to the vacuum with the EL5 scheme and, in contrast to MP5, it also displays
small-scale dynamics at very low densities. Note that the use of a higher-order
stencil in the ELH approach, e.g. EL7, does not yield improvements in the solu-
tion; the treatment of the low-density regions is far more delicate and the mass
conservation is degraded.

The nature of the oscillations visible in the solution computed with the EL5
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Figure 5.9: Two-dimensional viscosity distribution relative to its upper limit on
the equatorial (x, y) plane at time t = 4500M� for the Cowling TOV test. The
viscosity peaks at the stellar surface, identified as a shock by the scheme, and
drops in the interior. Figure reproduced from Guercilena et al. (2017).

scheme are clarified in figure 5.11, which shows the rest-mass density profiles
along different radial cuts. Along the x direction the oscillations in the EL5 data
have a large amplitude (a similar behaviour is observed along the y and z axes).
On the other hand, on the three-dimensional diagonal (i.e. along the x = y =
z line), the EL5 scheme manages to capture the sharp transition between the
stellar interior and the outside vacuum almost perfectly, without significant
oscillations or other artefacts. The use of the MP5 scheme leads instead to
smooth profiles that are only slowly decaying in all directions. Note that in
both cases the amount of rest-mass outside the star is minute, being only 10−7

of the initial rest-mass for the EL5 scheme and ∼ 10−5 for the MP5 scheme.
The direction-dependent behaviour shown in figure 5.11 for the EL5 scheme

is due to the well-known anisotropy of the phase error common to finite-differencing
stencils (Vichnevetsky and Bowles, 1982; Lele, 1992). The MP5 scheme is able
to mask this behaviour, but at the price of sacrificing the ability to sharply re-
solve the stellar surface. We expect that the performance of the EL5 scheme
could be improved through the use of multidimensional stencils (i.e. employ-
ing a multidimensional interpolation in the reconstruction step), as opposed to
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Figure 5.10: Two-dimensional rest-mass density distribution relative to the ini-
tial data maximum value on the equatorial (x, y) plane at time t = 4500M�
for the Cowling TOV test; the left part of the panel (i.e. x < 0) refers to the
MP5 scheme, while the right (i.e. x > 0) part to the EL5 scheme. Oscillations
are visible with the EL5 scheme at the stellar surface, but the exterior fluid is
visibly less dense than in the MP5 case. Figure reproduced from Guercilena et al.
(2017).

the current approach in which the stencil is simply oriented in the direction of
the flux to be reconstructed.

The quantitative differences between the two schemes are summarized in
figure 5.12, where the evolution of the total rest mass and of the central rest-
mass density are plotted. We recall that the total rest mass (or baryon mass), is
defined as

M :=

∫
ρW
√
γ d3x , (5.14)

where the integral extends over the whole computational domain. From the
continuity equation (2.16) it follows that M should be conserved in absence of
a net total flow of matter in or out of the domain. The numerical schemes we
employ are conservative (see e.g. Leveque (1992)), and therefore preserve the
value of the rest mass to the one determined by the initial data. Nonetheless,
violations of this conservation can take place in at least three different ways.
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Figure 5.11: One-dimensional rest-mass density profiles in the x (top) and d
direction (bottom) at time t = 4500M� relative to the initial data maximum
value for the Cowling TOV test. The oscillations seen in the EL5 data are a
direction dependent artefact, absent in the diagonal direction. Figure reproduced
from Guercilena et al. (2017).

First, winds originating at the stellar surface (physically, as e.g. in binary neu-
tron star merger, or spuriously as in a stationary case such as the present one)
can yield a net loss of mass when they reach the outer boundary and leave the
computational domain. Second, matter can be spuriously created or destroyed,
in a way that is hard to control, because of floating-point or interpolation errors
at the boundaries of refinement levels (this is not the case for this particular test
clearly, since we employ a single grid, but it is important to point it out, since it
is instead relevant for the following tests). Finally, when a value of the density
is floored, e.g. as result of a failure of the conversion between conserved and
primitive variables, mass is spuriously created or destroyed. It is therefore im-
portant to characterize the interplay between the numerical scheme and these
grid related effects.

The left panel of figure 5.12 shows deviations of the rest mass from the
initial value, in absolute value, for both schemes. The EL5 scheme is evidently
much better at conserving mass in this test than MP5, and leads to a cumulative
deviation of ∼ 10−7M�, which is almost three orders of magnitude smaller
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Figure 5.12: Deviation of the total rest mass (left panel) and central rest-mass
density (right panel) from the initial values for the Cowling TOV test. Figure
reproduced from Guercilena et al. (2017).

than the MP5 value.
The central rest-mass density also undergoes an evolution (right panel of

figure 5.12), with oscillations triggered by the treatment of the stellar surface.
Both schemes perform at a similar level of accuracy, with relative variations
from the initial value no greater than about 0.3% (even though spurious peaks
are present in both data series at various, different times). The frequency con-
tent in the two data series is noticeably different, with the MP5 scheme seeming
to show more pronounced high-frequency modes. However, at later times both
schemes appear to relax and oscillations decrease significantly in amplitude.

Isolated star in a dynamical spacetime

For the following test the Cowling approximation is relaxed and w test the ELH
method coupled with a dynamically evolved spacetime. We evolve the same
initial data for a isolated stable star as in the previous section (i.e. with central
density 1.28 × 10−3M−2

� , baryon mass of 1.5M� and radius ∼ 10M�). The
test is preformed on a grid consisting of three refinement levels centered on
the star with sides lengths 16, 32 and 60 M� from finest to coarsest, and with
a constant refinement factor of 2. The spatial resolution of the innermost and
finest level is set to ∆i = 0.2M� ' 0.3 km, and the timestep to 0.15 times the
grid spacing. This factor is largest possible to guarantee the positivity of the
rest-mass density (see discussion in section 3.3.3 and in Radice et al. (2014b) for
details). The atmosphere value of the density is set to 10−16 M−2

� , i.e. almost
13 orders of magnitude smaller than the maximum value. As a time integrator
we select the third-order SSP Runge-Kutta RK3. Unless stated differently the
same grid setup is employed for each of the following single star tests.

The distribution of rest-mass density on the equatorial (x, y) plane is shown
in figure 5.13, again with the MP5 and EL5 schemes shown on the left and right
parts of the panel, respectively. It can be appreciated how the MP5 scheme
produces rest-mass tails which are even more dense and extended than in the
Cowling case, making the near vacuum solution obtained by the EL5 scheme
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Figure 5.13: Two-dimensional rest-mass density distribution relative to the ini-
tial data maximum value on the equatorial (x, y) plane at time t = 4485M�
for the dynamical TOV test. The matter tails are even more extended in MP5
case compared with the Cowling test, EL5 instead preserves its behaviour at
the stellar surface and exterior. Figure reproduced from Guercilena et al. (2017).

all the more striking.
A further difference from the Cowling test is to be seen in the conservation

of the rest mass (left panel of figure 5.14). Also in this case the EL5 scheme is
able to conserve the initial value to an accuracy roughly two orders of mag-
nitude better than the MP5 scheme. It is interesting to notice however how
the behaviour of the EL5 scheme is much more smooth and predictable; MP5
by contrast leads to both spurious losses and gains of mass, resulting in the
zero crossings clearly visible in the figure. This is due to interpolation errors
arising during the restriction and prolongation operations between different
refinement levels. These errors are more severe with MP5 due to the presence
of long tails of low density matter in the stellar exterior, as we checked by
varying the extent of the refinement levels. In contrast, the EL5 scheme is less
affected since the exterior of the star (especially away from the coordinate axes)
is nearly vacuum.

The evolution of the central rest-mass density, which is shown in the right
panel of figure 5.14, is similar to the one shown in the previous section for
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Figure 5.14: Deviation of the total rest mass (left panel) and central rest-mass
density (right panel) from the initial values for the dynamical TOV test. Figure
reproduced from Guercilena et al. (2017).

the Cowling approximation, with both schemes varying no more than 0.2%
from the initial value, but with MP5 displaying oscillations at much higher
frequency.

This point can be investigated further by computing the power spectral
density (PSD) of the density time series, in order to quantitatively gauge the
differences between the two schemes. The PSD is computed over the first
5000M� of data and with the use of a Hann window function. Before com-
puting the PSD, any linear trend in the signal is removed via a least-squares
fit.

Figure 5.15 shows the PSDs for both schemes, along with the oscillation
frequencies of this stellar model as computed in a perturbative fashion fol-
lowing the methods discussed in Yoshida and Eriguchi (2001); Takami et al.
(2011), shown as vertical dashed lines. In both cases the PSD is dominated by a
low-frequency component due the well-known secular changes in the central
rest-mass density (Font et al., 2002) which disappear with resolution. Peaks
are however clearly visible above the noise. The lowest-frequency peaks cor-
respond to the fundamental oscillation mode of the star and its first overtone,
while the following ones are higher overtones and are progressively more off-
set from the corresponding perturbative eigenfrequencies. The peaks in the
EL5 data appear to be more clearly identifiable and less broad than in the MP5
case. Above ∼ 8000 Hz (not shown in figure 5.15) the MP5 scheme shows sig-
nificant high-frequency noise, clearly visible in the first part of the correspond-
ing curve in figure 5.14. These same frequencies are instead greatly suppressed
in the EL5 scheme. This test also highlights that the EL5 scheme captures quite
well the physical behaviour of the system as predicted from perturbative meth-
ods and is free from some of the artefacts which appear instead in the evolution
with the MP5 scheme.
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Figure 5.15: PSD of the central rest-mass density evolution and physical eigen-
frequencies of the stellar model for the dynamical TOV test. Note the good
agreement between the first eigenfrequencies and the peaks in the data. Figure
reproduced from Guercilena et al. (2017).

Perturbed isolated star

The next test we perform is a slight modification of previous setup, i.e. we
evolve the same isolated neutron star model, but applying a small velocity
perturbation to the initial solution. The perturbation is radially outgoing and
with a profile growing linearly in radius to a maximum value of 0.005.

This scenario, which is more realistic than the simple smooth-wave test of
section 5.4.1, can be employed to measure the convergence order of the EL5
and MP5 methods. We performed three sets of simulations at resolutions 0.24,
0.12 and 0.06 M� on the finest level, extracting the evolution of the rest-mass
density over time. The initial perturbation is added so that the density evolu-
tion is not dominated by the truncation error, but posses a cleaner behaviour.
Otherwise as the resolution is increased the density evolution would show ad-
ditional high-frequency modes, which would make the dependence on reso-
lution discontinuous, making it difficult to compute the instantaneous conver-
gence order.

The instantaneous convergence order has been computed using the values



5.4. NUMERICAL TESTS 119

Figure 5.16: Instantaneous convergence order measured in a perturbed TOV
simulation, computed from the L1-norm of the rest-mass density. Figure repro-
duced from Guercilena et al. (2017).

of the L1-norm of the rest-mass density over the domain at the three resolu-
tions, and it is shown in figure 5.16. Because this is the instantaneous conver-
gence order and because the underlying system is oscillating, the curves are
somewhat noisy (especially for MP5); however, as clear when taking the run-
ning average, both schemes generally show a convergence order just below
three, consistent with the results in Radice et al. (2014a,b). It is also however
apparent how EL5 maintains a fairly constant order of convergence through
time, while the behaviour of MP5 is more irregular, especially at later times.

While both hydrodynamics schemes are formally fifth-order accurate, other
components of the algorithm and computing infrastructure operate at different
degrees of accuracy. In particular, both the time integrator and the prolon-
gation operator are third-order accurate, which most likely accounts for the
convergence order being closer to three than to five. The result is also consis-
tent with the ones found for the MP5 scheme in Radice et al. (2014a,b, 2015).
Overall this test highlights how both the ELH and MP5 schemes perform fairly
consistently over time, with no major loss of accuracy.
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Migration test

A quite important test is the migration of a TOV star, moving from a solution
on the unstable branch of equilibrium solutions to a stable one. Recall that for
any given EOS, increasingly massive but stable TOV models can be constructed
by using increasingly large values of the central rest-mass density. This process
can continue until a maximum mass is reached, at which point an increase of
the central rest-mass density corresponds to a decrease of the mass of the star.
Models on this second branch of the mass/density curve are unstable, upon
perturbation they will evolve to either a stable configuration or collapse to a
black hole. This is precisely the physical scenario that the migration test simu-
lates: a model on the unstable branch of the mass/density curve is constructed,
then force its migration to a stable configuration by applying a suitable velocity
perturbation.

This is a very common test for numerical relativity codes (see e.g. Font et al.
(2002); Baiotti et al. (2005); Baiotti et al. (2003); Cordero-Carrión et al. (2009);
Thierfelder et al. (2011)), and has been studied in detail in Radice et al. (2010).
We build a non-rotating stellar model on the unstable branch of the equilib-
rium solutions with central rest-mass density of 7× 10−3M−2

� (yielding a total
rest mass of 1.6M� and a radius of 6M�). The migration is then triggered by
injecting a radially outgoing velocity perturbation where the velocity grows
linearly in radius, reaching a maximum value of 0.01 (note that an outgoing
perturbation is employed to ensure that the system evolves towards a stable
configuration; an ingoing perturbation would cause a compression of the star
and might lead to a collapse to a black hole instead; see section 5.4.2 for this
second scenario). The star then undergoes a series of violent expansions and
contractions as it migrates to the stable branch and then settles on the new equi-
librium. During each contraction and expansion strong shocks are formed, and
the shocked matter is ejected at large velocities.

The rest-mass density distribution is shown in figure 5.17 on the equatorial
(x, y) plane for both schemes during one of the contractions of the star, just
before the central rest-mass density reaches a maximum (see also figure 5.18).
The snapshot clearly shows that both the EL5 and MP5 schemes produce al-
most identical results for this test. This is not surprising and mainly due to
the matter outflow driven by the stellar oscillations, which rapidly fills the do-
main and removes the sharp feature of the stellar surface, which is the most
problematic structure to resolve and the main difference in the two schemes.

The behaviour over time of the maximum rest-mass density is shown in
figure 5.18, where the values are normalized to their initial value. The agree-
ment between the two schemes is extremely good during the entire evolution
and the main difference between the two solutions is the presence of some
high-frequency modes near the maxima of the density in the EL5 data. Such
oscillations are the result of inward-propagating shock waves generated in the
outer layers of the star during the contraction phase. Figure 5.19 shows a mag-
nification of the behaviour of the maximum rest-mass density at the peak of
the first contraction, comparing not only the two schemes but also the evo-
lutions with two different resolutions. At high resolution, both the MP5 and
the EL5 scheme show small-scale and high-frequency oscillations that are less
pronounced in the low-resolution data. Interestingly, these oscillations are es-
sentially smoothed out in the low-resolution run of the MP5 scheme, while
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Figure 5.17: Two-dimensional rest-mass density distribution relative to the ini-
tial data maximum value on the equatorial (x, y) plane at time t = 1167M� for
the migration test. Virtually no difference can be detected in the two schemes
behaviour. Figure reproduced from Guercilena et al. (2017).

they are very visible in the low-resolution EL5 run. This seems to indicate that
the two schemes tend, with increasing resolution, towards a solution where
the small-scale oscillations are present and therefore physically correct and
not a numerical artefact. Finally, as the evolution progresses, the contrac-
tion/expansion phases become less and less violent as part of the kinetic en-
ergy is converted into internal energy, thereby leading to milder and milder
shocks, and the high-frequency oscillations in the central rest-mass density all
but disappear.

Isolated rotating neutron star

We perform one last test involving a stable (or metastable) isolated relativis-
tic star, namely the evolution of a rapidly and uniformly rotating star. We set
up axisymmetric initial data relative to a uniformly rotating neutron star with
polytropic EOS with K = 100M−2

� and Γ = 2, having a central rest-mass
density of 1.28 × 10−3M−2

� and a polar to equatorial axis ratio of 0.8. The ini-
tial data was computed using the RNS code (Stergioulas and Friedman, 1995).
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Figure 5.18: Central rest-mass density in the migration test. The agreement be-
tween the two schemes is apparent over the whole evolution, apart from high-
frequency modes at the maxima in EL5 data. Figure reproduced from Guercilena
et al. (2017).

This setup results in a star with total rest mass 1.6M�, radius 10M�, rotation
frequency f = 673.2 Hz (about 60% of the mass shedding frequency) and di-
mensionless angular momentum J/M2 = 0.46.

Again figure 5.20 reports the rest-mass density distribution on the equa-
torial (x, y) plane for both the EL5 and MP5 schemes at time t = 4300M�,
i.e. after about 14 rotation periods. Clearly both schemes evolve the rotat-
ing star with no noticeable problems and again the part of the domain ex-
terior to the stellar surface rapidly fills with matter. In this case as well the
behaviour of the two methods in the low-density regions is rather different,
with the MP5 scheme filling the exterior volume by uniform but comparatively
higher-density material, while the EL5 scheme produces a more rarefied stellar
exterior but with small-scale condensations (cf. figures 5.10 and 5.13 for the
equivalent behaviour in the absence of rotation).

Differently from the behaviour seen in the case of non-rotating stars, the
dynamics of the low-density material in the stellar exterior results in a degra-
dation of the conservation of mass for the EL5 scheme. This is shown in the
left panel of figure 5.21 (cf. the left panels of figure 5.12 and 5.14 for the equiv-
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Figure 5.19: Magnification of the central rest-mass density evolution around
the first contraction of the migrating star. The low-resolution data (thin curves)
corresponds to figure 5.18 and to a grid spacing of 0.2M�. The high-resolution
data (thick curves) corresponds to a grid spacing of 0.086M�. The high-
frequency modes present in the EL5 data at low resolution persist at high reso-
lution in both schemes. Figure reproduced from Guercilena et al. (2017).

alent behaviour in the absence of rotation). The deviation of the total rest-mass
density from its initial value is more than one order of magnitude larger for
the EL5 scheme than for MP5 and reaches values of ∼ 10−5M�. This is the re-
sult of failures in the conversion from the conserved variables to the primitive
ones, triggered by oscillations in the solution. The mechanism is as follows:
the solution can be locally evolved to an unphysical state; in this case the rest-
mass density could reach values below the atmosphere floor value; if so the
conversion routine resets the affected cells to the (higher) atmosphere value;
thus effectively creating spurious mass. We speculate that most of these fail-
ures result from the large tangential velocity that is acquired by the shell-like
distribution of matter that builds up in the case of the EL5 scheme and that is
present already in the non-rotating case. While rather innocuous in the absence
of rotation, this shell of matter can fling material to large distances (but within
the computational domain) and lead to a much more chaotic dynamics of the
fluid in the low-density regions (see the discussion in sec. 3.2.3 of Radice et al.
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Figure 5.20: Two-dimensional rest-mass density distribution relative to the ini-
tial data maximum value on the equatorial (x, y) plane at time t = 4300M� for
the rotating star test. The behaviour of the star exterior is dynamic and chaotic
with EL5 as compared with MP5. Figure reproduced from Guercilena et al. (2017).

(2014b)).

To assess the impact, if any, of the fluid dynamics in the stellar exterior
on the evolution of the star itself, i.e. to understand if the above described is-
sues result in a degradation of the solution for the high density part, we plot
the evolution of the central rest-mass density for the two schemes in the right
panel of figure 5.21. It can be seen that the low-density fluctuations appearing
in the stellar exterior with the EL5 scheme do not impact the solution in the
stellar interior: the low-frequency central density oscillations essentially being
in phase for the two schemes. It is also apparent that the EL5 scheme yields
rather constant-amplitude oscillations and this should contrasted with the be-
haviour of the MP5 scheme, where the oscillations are comparatively larger in
the first∼ 2000M� of the evolution. In both cases however the oscillations are
extremely small and below 0.1% of the initial value.
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Figure 5.21: Deviation of the total rest mass (left panel) and central rest-mass
density (right panel) from the initial values for the rotating-star test. Figure
reproduced from Guercilena et al. (2017).

Grazing collision of neutron stars

Moving further from test of (meta-)stable, isolated stars, we perform a truly
dynamical test: the motion across the numerical grid of two neutron stars in a
grazing collision. The setup for this test is in fact very similar to that of a binary-
neutron star system in quasi-circular orbit. The most obvious difference, in fact
basically the only one, is that contrary to a BNS the initial momenta of the two
stars do not result in quasi-circular orbits and that the initial fluid velocity can
be taken to be arbitrary. The initial data in this case is set up by generating
two identical TOV models (the same as considered in sections 5.4.2 and 5.4.2),
superimposing the two data sets on the computational grid and imparting suit-
able initial momenta resulting in a small, but nonzero, impact parameter. Such
initial data is only approximated, since the stars are not in the hydrostatic equi-
librium and the intial metric and extrinsic curvature are not a solution of the
Einstein constraints equations.

These violations of the ADM constraints and of hydrostatic equilibrium
lead to rather large initial oscillations in the evolution (see Kastaun et al. (2013);
Tsatsin and Marronetti (2013) for a more detailed discussion of a more sophisti-
cated setup in which the stars are also subject to a spin up). The impact of these
oscillations can however be reduced significantly simply by setting the initial
distance of the two stars to a rather large value (which results in the approxi-
mate initial data to approach more closely constraint satisfying, physical initial
data). However these oscillations simply do not interfere with the main goal
of this test, i.e. validating the ability of the ELH scheme to preserve sharply the
features of the stellar surface also when the star moves across the numerical
grid.

We set the star centers at positions (x1, y1, z1) = (50,−50, 0) and (x2, y2, z2) =
(−50, 50, 0) in units of M�, i.e. symmetric with respect to the grid center on
the (x, y) plane and at a distance of ∼ 141 M�. The initial 3-velocities are
(vx1 , v

y
1 , v

z
1) = (0,−0.1, 0) and (vx2 , v

y
2 , v

z
2) = (0, 0.1, 0) respectively. We evolve

the system on a cubic grid of radius 512 M�, but employ reflection symmetry
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Figure 5.22: Two-dimensional rest-mass density distribution relative to the ini-
tial data maximum value on the equatorial (x, y) plane for the grazing-collision
tests at time t = 768M�, i.e. after the point of closest approach. Figure repro-
duced from Guercilena et al. (2017).

boundary conditions across the (x, y) plane and 180 degrees rotation symme-
try boundary conditions across the (y, z) plane to reduce the computational
cost. The grid structure consists of two identical box-in-box refinement levels
hierarchies with refinement factor 2, each centered on a star and consisting of
5 cubic levels with radii 12, 25, 50, 100, 200 M�, plus the coarse base level with
radius 512 M�, so that the grid spacing in the innermost refinement level is
∆i = 0.2M� ' 0.3 km. The refinement levels moved to track the positions of
the stars during the evolution (see also Radice et al. (2016) for further details
on the initial data and grid structure). We set again ∆t = 0.15 ∆x.

The two stars initially traverse the grid in the x direction and approach
each other, then their trajectories bend in a gravitational scattering process; we
do not follow the dynamics of the process after the first fly-by. Figure 5.22
shows the rest-mass density distribution on the (x, y) plane. The snapshots
of one of the two stars (which are identical to each other due to the chosen
boundary conditions) are taken at time t = 768 M�, i.e. when the two stars
are past the point of closest approach and are flying apart. The deformation
due to the velocity boost, the acquired spin angular momentum and the tidal
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Figure 5.23: Deviation of the total rest mass (left panel) and central rest-mass
density (right panel) from the initial values for the grazing-collision test. Figure
reproduced from Guercilena et al. (2017).

gravitational interaction can be clearly seen. From the hydrodynamics point
of view the behaviour of the MP5 and EL5 schemes is consistent with what
found in the previous tests, in particular the TOV in a dynamical spacetime:
EL5 shows a sharper star surface with respect to MP5, as well as a surrounding
region closer to vacuum, while the bulk of the star itself is very well resolved
by both schemes.

Once gain we judge quantitatively the performance of the two schemes by
looking at the conservation of the total rest mass (left panel of figure 5.23). The
evolution of this quantities is similar in this case to the what has been seen
in the rotating-star case, i.e. a better performance by the MP5 scheme. Note
however that the differences between the schemes are far smaller in the grazing
collision test, less than one order of magnitude. Note also that in contrast with
the preceding tests the grid structure in this case is much more complicated
as well as dynamically updated to track the stars. Interpolation errors at the
refinement level boundaries play therefore a greater role in the conservation of
rest mass.

To the same end we show the evolution of the rest-mass density at the star
centers in the right panel of figure 5.23, which is very similar for both schemes.
There is an initial sudden increase in the density of about 4% with respect to the
initial value, due to the evolution scheme bringing the star in hydrostatic equi-
librium from the approximate initial state. The density then oscillates around
this new value, due to perturbations that in this case are not only induced
by the treatment of the stellar surface, but also by the violations of the ADM
constraint but and by the gravitational interaction. Both schemes however re-
produce well all of these effects and show a very good agreement.

Gravitational collapse to a black hole

The final test we consider the (violently dynamical) collapse of an unstable star
to a black hole. This is also a common numerical-relativity benchmark (see e.g.
Font et al. (2002); Baiotti et al. (2005); Baiotti and Rezzolla (2006); Thierfelder
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Figure 5.24: Two-dimensional rest-mass density distribution relative to the ini-
tial data maximum value on the equatorial (x, y) plane at time t = 61M� for
the collapse test. Streams of matter ejected during collapse and accreting back
onto the black hole are clearly visible and more prominent in EL5 data. Figure
reproduced from Guercilena et al. (2017).

et al. (2010)), which allows us to validate ELH in the presence of a physical
singularity and of an apparent horizon. The setup consists of a nonrotating star
with central rest-mass density 8×10−3M−2

� , corresponding to a baryon mass of
1.5M� and radius 6M�, and initiate the collapse with a velocity perturbation
analogous to the one used in the migration test, but with the opposite sign,
i.e. radially ingoing. This test is therefore in some sense the counterpart of the
migration test of section 5.4.2.

The time of black-hole formation is defined, as customary in numerical rel-
ativity, as the time of first detection of an apparent horizon in the numerical
domain. In the given chosen setup, this happens at t ' 48M�. Because we
use singularity avoiding slicing conditions, we do not need to excise the inte-
rior spacetime of the black hole (Baiotti and Rezzolla, 2006; Baiotti et al., 2007;
Thierfelder et al., 2010). However we do set the hydrodynamical variables to
their atmosphere values inside a surface with the same shape as the appar-
ent horizon, but radius r = 0.9 rAH in every angular direction, rAH being the
radius of the apparent horizon. This hydrodynamic excision is not strictly nec-
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Figure 5.25: Maximum rest-mass density (top), minimum lapse (middle) and
L2-norm of the Hamiltonian constraint (top) for the stellar-collapse test. Note
that the violation of the Hamiltonian constrain will grow on longer timescales
as it is typical of BSSNOK evolutions (Alic et al., 2013). Figure reproduced from
Guercilena et al. (2017).

essary (our code can handle the collapse without it, regardless of the scheme
we employ). We have however observed that its use improves the accuracy
of the subsequent evolution. Most notably it improves the behaviour of the
rest-mass density and we therefore choose to employ it nonetheless.

In figure 5.24 we show a snapshot of the rest-mass density on the equato-
rial (x, y) plane just after the collapse has taken place according to the above
definition. A central area of uniform, low density is clearly visible. This is
where the hydrodynamical excision has been applied, in the interior of the BH
apparent horizon. Note how in this plot this area appears of identical size and
shape for the two codes. The region outside the horizon are instead filled with
matter spuriously ejected from the outer layers of the star during the collapse.
The rest-mass density is evidently higher in the case of the EL5 scheme, cor-
responding to a slightly higher amount of matter ejected during the collapse.
This spurious ejection is in turn triggered by larger oscillations around the stel-
lar surface when the EL5 scheme is employed. For both schemes however the
total rest mass outside the horizon is tiny, ∼ 10−6M� for the EL5 scheme and
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∼ 10−9M� for MP5, and thus dynamically irrelevant on the properties of the
solution. Note that most of this matter is gravitationally bound and hence ac-
cretes back onto the newly formed black hole, resulting in streams of infalling
matter. This is particularly evident along the coordinate directions, where the
numerical viscosity of the high order finite-differences stencil is smaller, inde-
pendently of the scheme employed (cf. figure 5.11).

How the two schemes actually agree very closely between each other is
summarised in figure 5.25. Here the evolution of the central rest-mass density,
minimum lapse and L2-norm of the Hamiltonian constraint violation are plot-
ted. The peaks and discontinuities in the curves at about 50M� correspond
to the time of collapse and are present because we exclude points inside the
horizon in the calculation of both extrema and norms. In each panel, before
the time of formation of the apparent horizon, the curves corresponding to the
EL5 and MP5 schemes are essentially on top of each other (the largest differ-
ences being of the order of 0.3%, 0.6%, and 4.7% for each plot, respectively),
showing the very good agreement in the evolution between the two schemes.
Note also that after the apparent horizon formation, due to our approach of
hydrodynamic excision and to the way we compute norms and extrema, the
upper panel of figure 5.25 shows the maximum of the density in the exterior of
the horizon rather than the central density. The disagreement in the EL5 and
MP5 curves relates therefore to the tiny amount of residual matter outside of
the black hole, and as such it has no relevance on gauging the agreement of the
black-hole solution.

A final confirmation of the equivalence between the two numerical solu-
tions can be obtained by comparing directly quantities pertaining to the black
hole itself, such as the BH masses as computed using the dynamical horizon
formalism (Ashtekar and Krishnan, 2003). This quantity is shown in figure
5.26. As can be seen from the figure, we find again very close agreement be-
tween the two schemes.

5.5 Conclusions

This chapter has presented a new high order numerical method for the solution
of the Euler equations of (general-relativistic) hydrodynamics, which has been
named “entropy-limited hydrodynamics” (ELH). This is flux-limiting scheme
(see section 3.3.3), i.e. it maintains stability by combining a high order numer-
ical flux with a stable low-order method, namely the Lax-Friedrichs flux. The
flux-limiting is activated and driven by a shock indicator based on a measure
of the entropy generated by the solution. This approach has been inspired by
the entropy-viscosity method proposed recently for the solution of the classical
equations of hydrodynamics (Guermond et al., 2011), but extended to the rela-
tivistic case. It is also important to stress that differently from Guermond et al.
(2011), our approach does not require any change in the equations of relativistic
hydrodynamics.

To assess the robustness and accuracy of this new method, which has been
implemented in the WhiskyTHCEL code (itself based on the WhiskyTHC code),
it has been tested and validated with an extensive series of tests, comparing the
results of ELH with those obtained with another well-tested and high order
HRSC scheme: the fifth-order monotonicity-preserving MP5 method (Suresh
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Figure 5.26: Ratio of the apparent-horizon mass to the ADM mass in the stellar-
collapse test. Note that the growth is actually very small and is amplified here
to show the difference between the two schemes. Figure reproduced from Guer-
cilena et al. (2017).

and Huynh, 1997). We have found that the ELH scheme is stable and able to
cope with shocks and discontinuities, both in classical test such as shock-tube
tests, as well as in realistic astrophysical simulations.

Under all the whole extensive range of conditions in which it has been
tested the scheme has been found to be stable and to yield accuracy that is
comparable, if not better, of that of the MP5 method. In some tests involv-
ing nonrotating or nonmoving stars, it offers definite advantages, such as a
sharper resolution of the surface/vacuum interface. At the same time however
it shows a worse conservation of the baryon mass for stars that are rotating
or moving across the computational domain (the opposite is true for station-
ary non-rotating stars, where the new method conserves rest mass more accu-
rately). Remarkably, all of the results presented here were obtained without
any fine tuning of the two arbitrary coefficients that enter the definition of the
scheme. Thanks to its linearity and simplicity, the ELH method can also offer
advantages in terms of performance. In our tests we have found EL5 to be
∼ 50% faster than MP5, even though the current implementation is not partic-
ularly optimized. A definite advantage of ELH, which we did not yet exploit,
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is that it lends itself easily to vectorization. Note however that the exact speed-
up that can be achieved with ELH depends also on external factors, such as
the grid setup and number of ghost zones, which generally vary for different
applications. An interesting development in this sense would be the use of
this scheme in a discontinuous Galerkin framework, whose superior scalabil-
ity properties should decouple the performance of the ELH method from the
grid setup.

The work presented here could be improved in at least two ways. The abil-
ity of the scheme to capture steep gradients such as stellar surfaces, already
quite good, could be further enhanced and the full capabilities of the scheme
further exploited by coupling it to truly multidimensional stencils. Secondly,
the two free coefficients that appear in the method, and that we have here set to
unity for simplicity, could potentially be tuned to optimise some of the features
of the solution. Both of these aspects will be explored in future work.

In conclusion it has been shown that entropy-limited hydrodynamics is a
robust, stable, and accurate alternative to commonly employed HRSC schemes.
Its performance reaches the level of accuracy and stability necessary to apply
it to realistic astrophysical simulations. Given these encouraging prospects,
work is already in progress to apply this method to realistic simulations of bi-
naries involving neutron stars and black holes.
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Chapter 6

Equation of state dependence
of r-processes and kilonova
signals

6.1 Introduction

Recently the era of gravitational-wave astronomy and multi-messenger astron-
omy has begun with the detection of gravitational waves from binary neutron
stars (The LIGO Scientific Collaboration and The Virgo Collaboration, 2017)
(BNS) and binary black hole mergers (The LIGO Scientific Collaboration and
the Virgo Collaboration, 2016; Abbott et al., 2016a; The LIGO Scientific Collab-
oration et al., 2017b). In the case of the gravitational-wave event GW170817
a simultaneous electromagnetic counterpart was detected (The LIGO Scientific
Collaboration et al., 2017a; LIGO Scientific Collaboration et al., 2017), providing
convincing evidence that the puzzle of the origin of short gamma-ray bursts
(SGRBs) is to be solved in terms of merging BNSs (Eichler et al., 1989; Narayan
et al., 1992; Rezzolla et al., 2011; Berger, 2014; The LIGO Scientific Collabo-
ration and The Virgo Collaboration, 2017; The LIGO Scientific Collaboration
et al., 2017a). So far only one single neutron star merger has been detected
in the gravitational-wave band, but more are expected to be observed in the
coming years.

Among the various electromagnetic counterparts that a merger of neutron
stars is expected to generate, one that has recently received significant atten-
tion is that of a kilonova (Li and Paczyński, 1998; Rosswog et al., 2013; Pi-
ran et al., 2013; Grossman et al., 2014; Perego et al., 2014; Wanajo et al., 2014;
Just et al., 2015; Sekiguchi et al., 2015; Radice et al., 2016; Just et al., 2016;
Sekiguchi et al., 2016; Metzger and Zivancev, 2016; Tanaka, 2016; Barnes et al.,
2016; Rosswog et al., 2017; Wollaeger et al., 2017). This is a signal visible in
the infrared/optical band which is powered by the decay of heavy elements
produced in the neutron-rich matter ejected from the merger. The dominant
contributions to the kilonova signal come from the elements near the second r-
process peak (i.e. 133I, 132Te and 133Xe), and subdominant ones from the third
r-process peak and unstable transuranian elements. Throughout the history
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of our universe this nucleosynthesis process has given rise to about half of the
elements heavier than iron. They can be formed in the aftermath of a BNS
merger due to the onset of rapid neutron-capture processes (r-processes, (Met-
zger, 2017a)). A kilonova has been indeed detected in coincidence with the
gravitational-wave event GW170817, but kilonovae may have potentially been
observed already in correspondence with a few GRBs: GRB 130603B (Berger
et al., 2013; Tanvir et al., 2013), GRB 060614 (Yang et al., 2015; Jin et al., 2015)
and GRB 050709 (Jin et al., 2016). However very large uncertainties in these
measurement have prevented an unambiguous identification.

The fundamental concept of the r-process has been known for decades (Bur-
bidge et al., 1957), but its astrophysical site of onset had not been unambigu-
ously identified previously. For matter to undergo r-process nucleosynthesis, a
very neutron-rich environment is required and this puts constraints on the po-
tential astrophysical sites where the process should take place. The two most
commonly suggested astrophysical sites are core-collapse supernovae (CCSNs)
and BNS mergers. Recent simulations of CCSNs have shown however that
the environment in the outer layers of the star undergoing the explosion is
not neutron-rich enough and have been unable to reproduce the observed so-
lar system abundances of heavy elements (Hüdepohl et al., 2010a,b; Fischer
et al., 2010; Wanajo, 2013) (note however that rare forms of CCSN driven by
magnetic fields are also a viable possibility (Winteler et al., 2012; Mösta et al.,
2014; Nishimura et al., 2017)). Conversely neutron star mergers are increas-
ingly considered the main source site of heavy elements. This conclusion has
been strongly supported by recent observations of ultrafaint dwarf galaxies (Ji
et al., 2016), whose heavy-element abundance favors BNS over CCSN as the
events which have generated it.

From the numerical point of view, numerical-relativity simulations with
neutrino transport have shown that not only significant amounts of material
are ejected (due to a variety of physical processes) in BNS mergers, but the
environment in the ejecta provides the necessary conditions to trigger and sus-
tain robust r-process nucleosynthesis. Broadly speaking the four mechanisms
responsible for matter ejection are: dynamical ejecta (Rosswog et al., 1999; Rez-
zolla et al., 2010; Roberts et al., 2011; Kyutoku et al., 2014; Rosswog, 2013b;
Bauswein et al., 2013; Foucart et al., 2014; Hotokezaka et al., 2013; Wanajo et al.,
2014; Sekiguchi et al., 2015, 2016; Radice et al., 2016; Lehner et al., 2016; Di-
etrich and Ujevic, 2017), neutrino-driven winds (Dessart et al., 2009; Perego
et al., 2014; Just et al., 2015; Martin et al., 2015b,a; Just et al., 2016; Murguia-
Berthier et al., 2014; Fujibayashi et al., 2017), magnetically driven winds (Shi-
bata et al., 2011; Kiuchi et al., 2012; Siegel et al., 2014; Rezzolla and Kumar,
2015; Ciolfi and Siegel, 2015), and viscous evolution of the accretion disk (Be-
loborodov, 2008; Metzger et al., 2008; Goriely et al., 2011; Fernández and Met-
zger, 2013). Their typical time scales are approximately ∼ 10 ms for dynamical
ejecta, ∼ 100 ms for magnetically driven or neutrino-driven winds, and ∼ 1 s
for viscous evolution. Note however that due to the high computational cost
of performing long-term fully relativistic simulations, mostly dynamical ejecta
have been studied in full relativity, while other mechanisms have been the sub-
ject of mostly Newtonian simulations.

In the work presented in this chapter we present the results and analysis
of a number of high-resolution numerical-relativity simulations of BNS merg-
ers, with the goal to investigate the effects of the neutron-star initial masses,
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mass ratios and equation of state (EOS) on the resulting r-process nucleosyn-
thesis as well as the corresponding kilonova signals. We consider three fully
temperature-dependent EOSs spanning a wide range of stiffness. For each
EOS, we consider three equal-mass initial setups covering a realistic range of
initial BNS masses. Additionally, we consider for each EOS one unequal-mass
case.

We have found that the amount of dynamically ejected mass is of the order
of 10−3M�, i.e. consistent with current constraints on the typical BNS merger
rates and observed abundances of heavy elements in the Milky Way. Although
some variation in the properties of the ejected mass (i.e. typical values of the
electron fraction, entropy or velocity) are observed and appear to loosely cor-
relate with the choice of EOS or neutron-star mass for a given BNS model,
these differences have minimal influence on the final r-process nucleosynthe-
sis yields. Given the kilonova light curves associated to our simulations, we
find that the prospects for their direct observation are rather limited; however
this may be not a conclusive statement, given the approximations made in our
current analysis. Finally we have studied an interesting geometrical structure
in the angular distribution of the ejecta which could have important implica-
tions on the properties of the kilonova signal.

This chapter is structured as follows: section 6.2 summarizes the main prop-
erties of the physical models and their numerical implementation that we em-
ploy to study the BNS evolution as well as to recover the heavy-element abun-
dances. In section 6.3 the initial BNS configurations that we evolve are sum-
marized.Sections 6.4–6.5.4 present our results and findings in terms of the mass
ejected, the electron fraction, the specific entropy, and the ejecta velocity. Sec-
tions 6.7–6.8 report our estimates for the kilonova light curves and their de-
tectability, together with the constraints on the merger rates of BNSs. Finally
the coclusions are presented in section 6.9.

6.2 Overview of the physical models and of the com-
putational infrastructure

In this section the salient features of the physical models we employ to study
the evolution of the BNS systems are introduced. Details about the numerical
methods used and their implementation are also given. Note that since the
approach we have chosen does not significantly differ from well-known ones
already described in the literature (as well as in previous chapters), the discus-
sion is rather succinct.

6.2.1 Neutrino treatment in the framework of general-relativistic
hydrodynamics

As explained in chapter 2, in particular sections 2.2 and 2.5, we model the
neutron-star matter (as well as the matter ejected by the system) as a perfect
fluid. As equation of state we use temperature-dependent EOSs (the choice
of EOSs will be explained in more detail in section 6.3; note however that the
use of a simple barotropic EOS would not be suitable for our purposes, since it
would not capture the non-isentropic processes taking place in the fluid. Neu-
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trino interactions depend instead sensitively on the temperature and composi-
tion of the fluid). The fluid evolution is described by the continuity equation,
which expresses the conservation of baryon mass, and the relativistic Euler
equations (taking the form of local conservation of the fluid stress-energy ten-
sor components), as elaborated in section 2.5.

Since neutrino interactions can modify the composition of the material,
and in particular the value of the electron fraction (which would be other-
wise simply advected by the fluid velocity) we have to include their treatment
to the otherwise purely hydrodynamic one. To this end we employ a “leak-
age” scheme (van Riper and Lattimer, 1981; Ruffert et al., 1996; Rosswog and
Liebendörfer, 2003), taking into account cooling due to neutrino emission, not
modelling neutrino absorption and the subsequent heating. So a source term
must be added both to the continuity equation and Euler equations, which take
the form (Galeazzi et al., 2013)

∇α(nb u
α) = 0 , (6.1)

∇α(ne u
α) = R , (6.2)

∇βTαβ = Quα , (6.3)

where nb and ne are the baryon and electron number density, uα is the fluid
4-velocity and Tαβ is the fluid stress-energy tensor. We denote with R the net
lepton-number emission rate, whileQ is the net neutrino-cooling rate, and both
are defined per unit volume and in the fluid rest-frame. A detailed discussion
on the estimation of Q and R is contained in Galeazzi et al. (2013); Radice et al.
(2016).

Contrary to the approach presented in chapter 5, we have chosen for the
simulations presented here to solve the hydrodynamics equations with a finite-
volumes method, as introduced in section 3.2 (applied of course to the flux-
conservative formulation of equations (6.3), i.e. the formulation of section 2.5
plus the neutrino source terms presented here). We employ the fifth-order
MP5 (Suresh and Huynh, 1997) reconstruction scheme and the HLLE Riemann
solver (Harten et al., 1983), as well as the positivity-preserving limiter of Hu
et al. (2013); Radice et al. (2014b) (introduced in section 3.3.3). We also make
use of the refluxing technique (Berger and Colella, 1989) to minimize numeri-
cal spurious losses or gains of mass at the interface between refinement levels.
This choice of setup, much more conservative than the somewhat innovative
techniques presented in chapters 4 and 5, stems from a need of reliability of the
numerical scheme. FV schemes and HRSC methods are a time-tested combi-
nation which leads to robust results, so they were selected in order to ensure
that the final results would be physically meaningful. The scheme briefly dis-
cussed here is implemented in the WhiskyTHC code of Radice and Rezzolla
(2012); Radice et al. (2014b).

A similar choice was made for the integration of Einstein equations for the
spacetime evolution: we employed a fourth order finite-differences method
applied to the BSSNOK formulation (Shibata and Nakamura, 1995; Baumgarte
and Shapiro, 1999; Brown, 2009) of Einstein equations. The gauge conditions
are the standard “1+log” and “Gamma driver” choices (see, e.g. Baumgarte
and Shapiro (2010)). The spacetime evolution scheme was provided by the
Mclachlan code (Brown et al., 2009b), and coupled to the hydrodynamics
evolution through the evaluation of the fluid stress-energy tensor as customary.
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An adaptive mesh refinement (AMR) approach, provided by the box-in-
box, Berger-Oliger-type AMR capabilities provided by the Carpet driver (Schnet-
ter et al., 2004), was used to increase resolution as well as extend the spatial
domain, placing the outer boundary as close as possible to the wave zone. A
Cartesian 3D grid with six levels of mesh refinement (promoted to seven after
merger) was employed, so that the finest, innermost level during the inspi-
ral has a resolution of 0.15M� ' 215 m. The outer boundary of the domain
extends to 512M� ' 760 km. The timestep is fixed to a factor of 0.15 of the
grid spacing (as necessary to allow the positivity preserving limiter to operate
properly, see section 3.3.3) and as in chapter 5 the third-order strong stability
preserving Runge-Kutta method (RK3) was used for the time integration.

6.2.2 Outflow analysis: Tracer particles and outflow detectors

Since we are interested primarily in the behaviour and properties of the matter
after merger, specific techniques have to be employed to follow its the flow. We
employed two different such techniques. The first one is the use of tracer par-
ticles (Wanajo et al., 2014; Kastaun et al., 2016; Mewes et al., 2016; Bovard and
Rezzolla, 2017), i.e. massless particles which are placed in the computational
domain at some point during the computation and then passively advected by
the fluid. In the simulations presented here a total of 2 · 105 tracers are placed
with a uniform distribution in the density interval 107 g/cm

3 . ρ . 1015 g/cm
3

at the time of merger (see Bovard and Rezzolla (2017) for a discussion on why
this distribution of tracers is the optimal one). Fluid properties, both hydro-
and thermodynamical are interpolated at the tracers location at each timestep,
providing a detailed description of the evolution of the associated fluid ele-
ment. Since the history of the evolution of a tracer particle provides the initial
input for the nuclear reaction network discussed in section 6.2.4, which finally
allows to compute the abundances of heavy elements produced, a mass has to
be associated to each tracer, in order to be able to combine the nucleosynthesis
output of all tracers in a mass-averaged fashion (not however that this concept
of “tracer mass” has no bearing on the inertia of the tracer, but it is only used in
the nucleosynthesis computation: as said above, the tracers are passively ad-
vected by the fluid). A way of defining the tracer mass is provided for example
in Bovard and Rezzolla (2017). More details are provided in section 6.6.

The second technique employed to follow the ejected material consists in
the use of so-called outflow detectors, i.e. spherical surfaces placed at a fixed
coordinate radius around the center of the computational domain. These de-
tectors measure the flux of the fluid quantities through their surface; recording
it as a function of time. In our simulations we define nine detectors set at radii
between 100 and 500M� from the center of the domain (which is also the lo-
cation of the merger remnant) with a separation of 50M�. Each detector has
a resolution of 55 points in the polar and 96 points in the azimuthal direction,
and the detector located at a radius of 200M� ≈ 300 km is selected as the fidu-
cial one. As the fluid passes through a detector surface, hydrodynamical and
thermodynamical variables are interpolated onto it at each timestep, allowing
to record the entire evolution of the fluid properties in all angular directions.
Note that when defining the total ejected mass we compute it by integrating
the unbound mass flux over the surface of the fiducial detector. This choice is
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in contrast to another common one, e.g. Hotokezaka et al. (2013), which con-
sists in integrating the rest-mass density of all unbound fluid elements over
the whole computational domain (see section 6.5.1 for further details and a
comparison between the two methods).

6.2.3 Selection of unbound material

It is furthermore necessary to define a criterion to identify gravitationally un-
bound material, which will not accrete back onto the merger remnant and can
be considered ejected from the system. Bound material will have very different
properties from unbound matter, and it won’t undergo r-process nucleosyn-
thesis or contribute to the kilonova signal. It is therefore necessary to define a
selection criterion to identify unbound matter. Note that such a selection is of
course necessary regardless of whether tracer particles or outflow detectors are
used to analyze the flow.

Identifying gravitationally unbound material is not a straightforward pro-
cess mostly due to the finite size of the computational domain. Ejecta can only
be followed to its the edge, which is still relatively close to the BNS merger
product, sot they can still be influenced by its gravitational pull. This problem
can be alleviated in principle by using a larger grid (or even a compactified
domain, extending all the way to infinity), but this comes at greater computa-
tional cost and some numerical drawbacks (e.g. poor resolution, either in an
AMR setup or a compactified domain). A related problem is that we are in-
terested in tracking the evolution of the ejected material to study the kilonova
signal. This is however expected to peak days after merger, and computing the
evolution of the ejecta for such long timescales is currently computationally
unfeasible in full numerical-relativity simulations, which are limited at most to
timescales of the order of tens/hundreds of milliseconds after merger.

Consequently a criterion to define unbound material is therefore needed
and we choose to define a fluid element as “unbound” if it satisfies the so-called
geodesic criterion (e.g. Kastaun and Galeazzi (2015); Sekiguchi et al. (2015)), i.e.
if ut ≤ −1, where ut is the covariant time component of the fluid element
4-velocity. The justification of such a criterion is clear when considering its
Newtonian limit. In this case ut ≈ −1 − φ − v2/2, where φ is the gravitational
potential (Rezzolla and Zanotti, 2013). At large separations from the gravi-
tational source, the gravitational potential can be neglected, φ ' 0 and thus
ut ≈ −1 − v2/2 ≤ −1. The criterion amounts therefore to imposing that the
fluid element should have non-zero velocity at infinity.

Clearly this is not the only possible choice. An alternative one, that has
been studied in Kastaun and Galeazzi (2015), is the so-called Bernoulli criterion,
which defines a fluid element to be unbound if hut ≤ −1, h being the fluid
specific enthalpy. Unless otherwise stated, in the following we only consider
the geodesic criterion, and the adjective “unbound” will refer exclusively to
material satisfying it. We have however considered the impact that the choice
of the criterion for material to be unbound can have on the properties of the
dynamically ejected material in section 6.5.5, where we present a comparison
of the results obtained with the geodesic and Bernoulli criteria. Note however
that since h ≥ 1 (Rezzolla and Zanotti, 2013), it is clear that the Bernoulli crite-
rion will be in general less restrictive than the geodesic one, always yielding a
larger amount of ejected material than the geodesic one.
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6.2.4 Nucleosynthetic processes: the nuclear network

Once the evolution of the ejected matter has been recorded by the (unbound)
tracers, we carry out the nucleosynthesis calculations with a complete nuclear
reaction network, namely the WinNet one (Winteler et al., 2012; Korobkin et al.,
2012).

A nuclear network is a system of coupled ordinary differential equations
(ODE) governing the evolution of the abundances of a set of element and par-
ticle species. The abundances are evolved under the influence of the possible
reactions responsible for creating, destroying and exchanging particles of the
various species. Each of the equations can be written as

dYi
dt

=
∑
j

N i
jλjYj+∑

j,k

N i
j,kρNA〈j, k〉YjYk+

∑
j,k,l

N i
j,k,lρ

2N2
A〈j, k, l〉YjYkYl , (6.4)

where Yi := Ni/NB is the abundance of the i-th species, i.e. the ratio of the
number of particles of species i and the number of baryons; ρ is the rest-mass
density; NA is Avogadro’s number; Ni,[j,[l]] are numerical factor to account for
the total number of particles destroyed or created in a given interaction and
avoid double counting; and most importantly λi is the reaction rate of species
i with species j, while 〈j, k〉 and 〈j, k, l〉 are two- and three-body integrated
collision cross-sections (see Hix and Thielemann (1999); Lippuner and Roberts
(2017) for a derivation and further details). Note that the three terms in equa-
tion (6.4) refer to reactions that destroy or create a particle of species iwith one,
two or three other reactant particles, respectively.

The abundances evolution depends on the rest-mass density of the material
and its temperature as functions of time. While ρ(t) is a function prescribed a
priori (in this case from the trajectory of a tracer), the temperature has to be
computed by taking into account the energy released by the nuclear reactions
themselves. The total energy released for unit time and per baryon is

ε̇ = −ε̇ν + ε̇ext −
1

∆t

∑
i

Yi(mi −Aimu) . (6.5)

The first term is the energy lost due to neutrino cooling, the second a possible
external energy source, while the third is the energy released by the nuclear
reactions. In this equation ∆t is the network timestep, mi the mass of a par-
ticle of species i, Ai is species i mass number (i.e. the total number of baryon
in a particle of that species), and mu is the atomic mass unit. Knowing the en-
ergy production, the variation in entropy ∆s from the previous iteration can be
computed, and by inverting the EOS relation (which for the WinNet network
is the Helmholtz EOS (Timmes and Arnett, 1999; Timmes and Swesty, 2000))
we recover the temperature.

The set of equations (6.4) can be very stiff, due to the very different timescales
associated to different reactions. To ensure stability the ODE system is there-
fore integrated using the first-order, implicit backwards Euler method (see e.g.
Hairer et al. (1993); Hairer and Wanner (1996)).



142CHAPTER 6. NUCLEOSYNTHESYS PROCESSES AND KILONOVA SIGNALS

Generally speaking, in such computations the system is assumed to be in
nuclear statistical equilibrium (NSE) when the temperature is high enough.
This means that all strong reactions are in equilibrium with their inverse ones.
This situation can also be thought of as an equilibrium between the reaction
of forming a nucleus (Z,N) from Z free protons and N free neutrons, and
its inverse reaction, namely completely dissociating a nucleus (Z,N) into Z
protons and N neutrons. When nucleons are in chemical equilibrium with all
other nuclear species, the energetic cost of turning Zi protons and Ni neutrons
into a single nucleus must be zero, i.e.

µi = Ziµp +Niµn , (6.6)

where µ[i,p,n] are the chemical potentials of the i-th species, of free protons and
free neutrons, respectively. Therefore if the conditions for NSE are satisfied
(in our computations, this means that T ≥ 10GK), rather then computing the
abundances from equations (6.4), they are set in such a way to satisfy equation
(6.6).

The main final output of the network is a set of abundances, one for each
nuclear species, taken at a late time when the system has settled to an equi-
librium state. By considering such abundances for every representative tracer
trajectory in a given simulation and summing them taking into account the
mass associated with each tracer, the abundance plots of section 6.6 can be
generated.

Over 5800 nuclei between the valley of stability and the neutron-drip line
are taken into account by WinNet. The reaction rates are taken from the compi-
lation of Rauscher and Thielemann (2000) for the Finite Range Droplet Model
(FRDM, see Möller et al. (1995)) and we consider weak-interaction rates includ-
ing neutrino absorption on nucleons (Möller et al., 2003; Fröhlich et al., 2006).
Neutron-capture rates for nuclei with atomic number Z & 80 and neutron-
induced fission rates are taken from Panov et al. (2010). We furthermore in-
clude beta-delayed fission probabilities from Panov et al. (2005). WinNet has
been used as a benchmark in a recent comparison with another general-purpose
nuclear reaction network (Lippuner and Roberts, 2017), showing a very good
overall agreement.

We post-process representative subsets of unbound tracers from the hydro-
dynamical simulations according to three different methods of selection (see
section 6.6). As already mentioned above, from every tracer a time series of
the rest-mass density, temperature, specific entropy, and electron fraction is ex-
tracted, on which the nuclear network acts. As most of the tracer trajectories
were simulated only until ∼ 20 ms after the merger, we extrapolate them to
very large distances using the following prescriptions for the position, density
and temperature evolution (Fujimoto et al., 2008; Korobkin et al., 2012)

r(t) = r0 + v0t, (6.7)

ρ(t) = ρ0

(
t

t0

)−3

, (6.8)

T (t) = T [s, ρ(t), Ye(t)] . (6.9)

where ρ is the total rest-mass density, r the coordinate radius, v the 3-velocity,
s the specific entropy, and Ye := ne/nb the electron fraction. The subscript
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“0” indicates the last available values from the hydrodynamical simulations,
and the temperature is computed from the Helmholtz EOS (Timmes and Ar-
nett, 1999; Timmes and Swesty, 2000). This ansatz for the ejecta expansion is
well justified, at least at late times, as shown in Bovard and Rezzolla (2017),
where tracers were reported to move ballistically along radial directions and
to expand adiabatically at large distances from the merger product.

Note that the network is “self-heating”: it computes the energy released
by the r-processes and includes its impact on the evolution of the fluid entropy
(Freiburghaus et al., 1999), rather than simply using the values provided by the
tracer evolution. The major contribution to the radioactive heating is expected
to come from beta decays and we assume the energy to be about equally dis-
tributed between thermalising electrons and photons, and escaping neutrinos
and photons (Metzger et al., 2010).

6.3 Physical setup and initial data

We consider both equal- and unequal-mass BNS systems on quasi-circular or-
bits, with initial configurations constructed from three different EOSs, span-
ning a wide range in stiffness. From the stiffest to the softest, these EOSs are:
(i) DD2 (Typel et al., 2010); (ii) LS220 (Lattimer and Swesty, 1991) with com-
pressibility parameter K = 220 MeV; SFHO (Steiner et al., 2013). Note that
recent calculations in Tews et al. (2016) have shown that the LS220 EOS does
not satisfy constraints stemming from a lower bound on the energy per nu-
cleon provided by the unitary-gas approximation. This result disfavours the
LS220 as a viable model for the microphysics of neutron stars, but since this
EOS is also one of the most well-studied in numerical applications, we include
it in our study since it provides a useful comparison with the literature. Addi-
tionally, the DD2 and SFHO EOSs include additional light nuclei that are not
included in the LS220, which impacts the neutrino interactions (Stellarcollapse
Website).

For each EOS, we consider three different equal-mass setups, with neutron-
star gravitational masses of 1.25, 1.35 and 1.45M�, respectively; and one unequal-
mass system, with star masses of 1.2 and 1.35M�, resulting in a mass ratio
q = 0.9 and a total ADM mass (see Gourgoulhon (2012) for a definition) of the
system which is intermediate between the two lightest equal-mass configura-
tions for the same EOS. The stars’ initial separation is chosen to be 45 km, re-
sulting in an inspiral phase of approximately ∼ 3 orbits. Table 6.1 summarizes
the properties of each system. The stars initial states are computed at neutrino-
less beta equilibrium, i.e. at zero neutrino chemical potential, thus setting the
initial values of the electron fraction. The initial data for every binary was con-
structed using the LORENE pseudo-spectral elliptic solver (Gourgoulhon et al.,
2001) and refers to irrotational binaries in quasi-circular orbit.

6.4 Overview of the general dynamics

This section discusses the outcome of the simulations, comparing the outflow
properties of the dynamically ejected material such as the mass ejected Mej,
the electron fraction Ye, the specific entropy s, and the ejecta velocity vej, for
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EOS q M1 M2 R1 R2 MADM

Model [M�] [M�] [ km] [ km] [M�]
LS220-M1.25 LS220 1.0 1.25 1.25 12.80 12.80 2.48
LS220-M1.35 LS220 1.0 1.35 1.35 12.75 12.75 2.67
LS220-M1.45 LS220 1.0 1.45 1.45 12.67 12.67 2.87
LS220-q09 LS220 0.9 1.21 1.35 12.81 12.75 2.61
DD2-M1.25 DD2 1.0 1.25 1.25 13.20 13.20 2.48
DD2-M1.35 DD2 1.0 1.35 1.35 13.23 13.23 2.68
DD2-M1.45 DD2 1.0 1.45 1.45 13.25 13.25 2.87
DD2-q09 DD2 0.9 1.22 1.35 13.19 13.23 2.55
SFHO-M1.25 SFHO 1.0 1.25 1.25 11.97 11.97 2.48
SFHO-M1.35 SFHO 1.0 1.35 1.35 11.92 11.92 2.68
SFHO-M1.45 SFHO 1.0 1.45 1.45 11.87 11.87 2.87
SFHO-q09 SFHO 0.9 1.22 1.35 11.97 11.92 2.55

Mb,1 Mb,2 MTOV RTOV C1 C2 J
Model [M�] [M�] [M�] [ km] - - [M2

�]
LS220-M1.25 1.36 1.36 2.04 10.65 0.144 0.144 6.42
LS220-M1.35 1.47 1.47 2.04 10.65 0.156 0.156 7.26
LS220-M1.45 1.60 1.60 2.04 10.65 0.169 0.169 8.20
LS220-q09 1.32 1.47 2.04 10.65 0.140 0.156 6.98
DD2-M1.25 1.35 1.35 2.42 11.90 0.140 0.140 6.40
DD2-M1.35 1.47 1.47 2.42 11.90 0.151 0.151 7.31
DD2-M1.45 1.59 1.59 2.42 11.90 0.161 0.161 8.19
DD2-q09 1.31 1.47 2.42 11.90 0.136 0.151 6.68
SFHO-M1.25 1.36 1.36 2.06 10.31 0.155 0.155 6.40
SFHO-M1.35 1.48 1.48 2.06 10.31 0.167 0.167 7.28
SFHO-M1.45 1.61 1.61 2.06 10.31 0.181 0.181 8.20
SFHO-q09 1.32 1.48 2.06 10.31 0.150 0.167 6.67

Table 6.1: Summary of the properties of the systems under consideration.
The columns denote, respectively: the EOS; the gravitational mass ratio q :=
M1/M2 at infinite separation; the gravitational masses M1,2 of the two stars at
infinite separation; the stars’ radii R1,2 at infinite separation; the ADM mass
M

ADM
of the system; the baryon masses Mb,1,2; the maximum mass of a non-

rotating model of the given EOS M
TOV

; the radius of the maximum mass non-
rotating model of the given EOS R

TOV
; the compactnesses C1,2 := M1,2/R1,2;

the total angular momentum J at the initial separation. Table reproduced from
Bovard et al. (2017).

the different simulation parameters. Each simulation was run until at least
10 ms after merger, in order to ensure a sufficient time for the dynamical ejecta
to reach 300 km, which is where its properties are measured.

Given the initial separation of each BNS model, we simulate approximately
∼ 3 orbits before merger. The time of merger is defined as the time at which
the gravitational-wave amplitude reaches its first peak, as customary (Baiotti
et al., 2010); in the following we define the time origin such that t = 0 cor-
responds to the time of merger. Given the maximum mass of non-rotating
neutron star models M

TOV
corresponding to our choices of masses and EOSs,

and the initial mass of the merging binaries, all the mergers that do not yield a
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prompt collapse to a black hole produce a hypermassive neutron star (HMNS),
i.e. a neutron star whose mass exceeds the maximum mass supported by uni-
form rotation, Mmax ' 1.20M

TOV
(Breu and Rezzolla, 2016), and that is in a

metastable equilibrium state supported by differential rotation, with a quasi-
universal rotation profile (Hanauske et al., 2017).

The three binaries which instead collapse to a black hole are SFHO-M1.35,
SFHO-M1.45, and LS220-M1.45 with the latter two yielding a prompt col-
lapse: for SFHO-M1.45 the collapse is right at the time of merger and results
in very little material being ejected (see the discussion in section 6.5.1), while
for LS220-M1.45 the collapse takes place about ∼ 0.5 ms after merger, which
is sufficient for material to be ejected. For SFHO-M1.35 the collapse to a black
hole takes place at ∼ 10 ms after merger instead, when the HMNS has lost
sufficient angular momentum.

Figure 6.1: Evolution of the electron fraction (left parts of panels) and of the
temperature (right parts of panels) on the (x, z) plane (top panels) and on
the (x, y) plane (bottom panels), for the different EOSs, namely: DD2, LS220,
SFHO, from left to right. All panels refer to binaries with masses of 2×1.35M�
and at the same representative times: 5 ms (top row), 10 ms (middle row), and
15 ms (bottom row) after the merger. Figure reproduced from Bovard et al. (2017).

To show the spatial distributions of various quantities pertaining to the
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ejected matter in the simulations, figure 6.1 plots three different time slices
(5, 10, 15 ms from top to bottom) of the electron fraction (left panels) and the
temperature (right panels) in the (x, y)- (bottom panels) and (x, z)-planes (top
panels) for the three 1.35M� equal-mass initial data with different EOSs.

Mej 〈Ye〉 〈s〉 〈vej〉 〈v∞〉
Model [10−3M�] - [ kB/baryon] [10−1c] [10−1c]
LS220-M1.25 0.61 0.08 10.3 2.2 1.6
LS220-M1.35 0.82 0.10 12.7 2.2 1.5
LS220-M1.45 1.09 0.11 10.5 2.6 2.1
LS220-q09 0.90 0.09 11.9 2.2 1.5
DD2-M1.25 0.96 0.13 13.9 2.3 1.7
DD2-M1.35 0.58 0.14 16.5 2.4 1.8
DD2-M1.45 0.50 0.17 19.2 2.7 2.1
DD2-q09 0.46 0.14 18.5 2.3 1.7
SFHO-M1.25 0.55 0.14 15.6 2.5 2.0
SFHO-M1.35 3.53 0.16 12.7 2.7 2.2
SFHO-M1.45 0.01 0.24 35.9 3.1 2.6
SFHO-q09 0.76 0.16 18.8 2.4 1.8

tH,peak Lpeak mJ,peak mH,peak mK,peak

Model [days] [1040 erg/s] [AB] [AB] [AB]
LS220-M1.25 0.53 2.24 −12.6 −12.6 −12.4
LS220-M1.35 0.51 2.00 −12.5 −12.4 −12.2
LS220-M1.45 0.48 2.62 −12.8 −12.7 −12.5
LS220-q09 0.50 1.94 −12.4 −12.3 −12.1
DD2-M1.25 0.50 2.24 −12.6 −12.5 −12.4
DD2-M1.35 0.50 2.44 −12.7 −12.7 −12.5
DD2-M1.45 0.50 2.89 −12.9 −12.9 −12.5
DD2-q09 0.53 2.34 −12.7 −12.6 −12.4
SFHO-M1.25 0.47 2.54 −12.8 −12.7 −12.5
SFHO-M1.35 0.53 3.36 −13.2 −13.2 −13.0
SFHO-M1.45 0.16 0.86 −11.1 −10.9 −10.5
SFHO-q09 0.60 2.92 −12.0 −13.0 −12.9

Table 6.2: Summary of the mass-averaged quantities of section 6.5 and kilonova
observational quantities of section 6.7 computed from the simulations. The
columns are, respectively: Mej the dynamical mass ejecta measured at 300 km,
〈Ye〉 the mass-averaged electron fraction, 〈s〉 the mass-averaged entropy, vej

the mass-averaged velocity of the ejecta, 〈v∞〉 the velocity of the ejecta at infin-
ity using equation (6.12), tH,peak the peak time in the H-band of the kilonova
signal, Lpeak the peak luminosity of the kilonova, mX,peak the peak absolute
magnitude in the X = J,H,K bands respectively. Table reproduced from Bovard
et al. (2017).

As anticipated in the introduction, when considering dynamical ejecta there
are two main processes which can eject material, namely tidal forces and shock
heating. The former are a straightforward process arising from tidal interac-
tions during merging and eject material primarily along the orbital plane: they
are a manifestation of the gravitational interaction of the two stars. Shock heat-
ing instead results in an approximately spherically symmetric ejection of mat-
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ter (Sekiguchi et al., 2015) and depends on the thermal properties of the fluid
rather than on the gravitational interaction. These two distinct mechanisms
are illustrated in figure 6.1 where the orbital plane region shows lower Ye and
denser material, while the polar regions have higher Ye and less dense material.

We first consider the tidal ejecta. This kind of ejecta tends to be very neutron-
rich, since it becomes unbound immediately during and following merger, and
originates from matter near the surfaces of the stars. These tidal tails can be ob-
served in the (x, y)-plane at 5 ms (top row) panels of figure 6.1, where the they
are visible in the outer regions beyond 300 km. This ejected material also tends
to present lower temperature, around 1 MeV. In contrast, in the (x, z)-plane, Ye

reaches much higher values of approximately 0.3 (i.e. the matter is much less
neutron rich), that are not observed in the orbital plane. These higher values in
the electron fraction are due to the material being shocked-heated. In the po-
lar regions right above the HMNS, no material is ejected tidally and neutrinos
become free streaming very close to the merger product. As a result of weak
interactions by means of which the free neutrons are converted into protons,
the material becomes less neutron-rich. However, as the angle from the pole
decreases, the material becomes more optically thick and more neutron-rich
as the neutrino interactions are not as strong. This angular dependence is also
seen in the temperature profiles as there are higher temperatures near the polar
axis when compared with the orbital plane.

Note that although neutrinos are only treated simplistically (Galeazzi et al.,
2013) in these simulations, this broad-brush description is qualitatively similar
to more sophisticated approaches, such as the use of an M1 neutrino transport
scheme, which leads to an increase in the amount of ejected material in the
polar regions (Foucart et al., 2016b,a,c; Sekiguchi et al., 2015, 2016) and higher
Ye.

There is a clear overall trend to be deduced from figure 6.1 concerning the
dependence of the simulation outcome from the EOSs employed. The “softer”
an EOS is, the hotter the matter tends to be. This is due to the fact that a
softer EOS allows for a deeper gravitational well, which in turn allows for the
material to become hotter. This dependence is clearest when comparing the
softer SFHO and the stiffer LS220 EOSs (left and right columns), where the
temperature in the (x, y)-plane is much hotter for the SFHO than the LS220, as
per the explanation sketched above. As a result, because neutrino interactions
depend on the temperature, the electron fraction is also higher the softer an
EOS is. Again this is most clear when examining the fluid properties on the
(x, y)-plane of the SFHO and LS220 simulations, where the data referring to the
LS220 EOS is much more neutron-rich when compared with the SFHO EOS.

6.5 Properties of the matter outflow

This section is dedicated to a comprehensive discussion of the properties of
the matter that is dynamically ejected at and after the merger, focusing on the
total amount of ejected matter as well as on the distribution of this matter in
terms of the electron fraction, the specific entropy and the velocity of the fluid
elements.
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Figure 6.2: Evolution of the dynamically ejected unbound mass Mej as mea-
sured through a detector at radius 300 km when using the geodesic criterion
and for the various binaries considered. The star denotes the time of black-hole
formation for model SFHO-M1.35. Binaries LS220-M1.45 and SFHO-M1.35
collapse shortly after merger and are not visible in the plot. Figure reproduced
from Bovard et al. (2017).

6.5.1 Total ejected mass

It essential to accurately measure the total amount of ejected material from
a binary merger in order to characterize the amount r-process elements pro-
duced and the potential observable properties of the kilonova signal (see sec-
tion 6.7). In section 6.2.2 the definition of the total ejected mass was anticipated,
which makes use of an outflow detectors to measure the flux of unbound ma-
terial at a given radius. As said we consider the detector placed at a radius of
200M� ≈ 300 km as the fiducial detector through which to measure the amount
and properties of the ejected material. To compute the total mass ejected, the
flux of the rest-mass density through the detector’s spherical surface is com-
puted and then integrated over the whole sphere. This gives the total mass-
flux which can be integrated over time to provide a measurement of the total
dynamically ejected material Mej. In this calculation, only the flux associated
to unbound fluid elements contributes to the integral. Explicitly, for a detector
at a given radial distance, the total ejected mass is given by

Mej(t) :=

∫ t

0

∫
Ω

ρ∗W (αvr − βr)√γΩdΩdt′ , (6.10)

where
√
γ

Ω
is the surface element on the detector (i.e. the square root of the

determinant of the 2-metric induced on the detector by the spacetime 4-metric);
the term ρ∗W (αvr − βr) is the flux of mass through the sphere, expressed in
terms of the 3+1 quantities: the lapse function α, the shift vector βi, and the
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fluid 3-velocity vi, the Lorentz factor W := (1 − vivi)−1/2 and the fraction of
the rest-mass density that is unbound ρ∗, i.e. of fluid elements that do satisfy
the geodesic criterion. The integral of the mass flux can then be integrated in
time over the whole post merger period, i.e. from t = 0 to Tf . Tf is the time at
the end of the simulation, which is far enough so that the mass flux becomes
negligible and the integration can be stopped.

In figure 6.2 the amount of ejected material computed through equation
(6.10) is plotted over time for the LS220 (blue), DD2 (green), and SFHO (red)
EOSs and the different masses and mass ratios1. The results of figure 6.2 are
also summarised in table 6.2, where Mej refers to the mass ejected at t = 10 ms
after merger.

The qualitative behaviour of all simulations is similar. There is a large ejec-
tion of material, due to tidal interactions and shock heating, that reaches the
detector approximately 1 ms after merger and continues for about 4− 5 ms be-
fore the flux becomes zero. The details of the behaviour of the mass ejection
over time, in particular the time at which the mass flux becomes negligible are
partly due to the choice of the geodesic criterion. In section 6.5.5 we discuss
how this picture changes when considering the Bernoulli criterion, which re-
sults in material being ejected also at later times.

Figure 6.2 shows that the amount of ejected material is in the range 0.5−1×
10−3M� in all cases, with two exceptions. The first is the binary SFHO-M1.45,
which collapses immediately to a black hole and produces very little ejected
material (almost an order of magnitude less than the others), as most matter is
accreted back onto the black hole. Conversely, the binary model SFHO-M1.35
ejects a significant amount of material when compared with the other models.
This binary also collapses to a black hole around 9 ms after merger (see the
star symbol in figure 6.2) and since the SHFO EOS is a rather soft one, the
HMNS present before collapse is the most compact we have simulated. Under
these conditions, it is natural that the larger compressions attained will lead to
stronger shock heating and hence to a larger dynamical mass ejection.

An alternative method of measuring the amount of ejected mass with re-
spect to equation (6.10) consists in evaluating a volume integral of the rest-
mass density of the unbound material over the entire computational domain
(Hotokezaka et al., 2013; Sekiguchi et al., 2015; Lehner et al., 2016; Dietrich
et al., 2017b), i.e.

Mej(t) =

∫
ρ∗W

√
γd3x. (6.11)

As a consistency cross-check we have employed this measurement for model
LS220-M1.35 and found that Mej(t) in this case is obviously not a monoton-
ically increasing function of time, but reaches a maximum of Mej = 0.80 ×
10−3M�. This measurement differs only by 4 % from that obtained via equa-
tion (6.10), showing the robustness of our mass ejection analysis procedure and
that the 300 km measurement radius is the most robust choice. The reason why
the use of of equation (6.11) results in a non-monotonically increasing curve,
which is also an apparent downside of this method, is that because of the fi-
nite size of the domain, material that reaches the outer boundary is no longer

1Unless specified otherwise, from now on the same color scheme is employed to refer to the
various EOSs: simulations with the LS220 EOS are shown in blue, DD2 in green, and SFHO in red.
The different masses are instead denoted by different line styles: 1.25M� is dashed, 1.35M� is
solid, 1.45M� is dotted, and q = 0.9 is dash-dotted.
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include in the calculation and causes the total ejected mass to decrease. Con-
sidering this artefact, it is necessary to choose a time at which to evaluate the
total ejected mass. We have evaluated equation (6.11) at ∼ 3 ms after merger
where it reaches a maximum. Note that this introduces some level of arbitrari-
ness in the estimation of the total ejected mass. This specific arbitrariness does
not arise with the flux-integral method (6.10), which is integrated over all time.
However in that case a choice needs to be made for the extraction radius. In our
calculations we have found that the difference between the detector at 300 km
and a detector at 740 km of radius is about 30% in total ejected mass irrespec-
tive of EOS. Although detectors further away from the remnant have a slightly
higher ejected mass, the properties of the fluid are very close to atmosphere at
these radii, which should therefore be avoided.

It is interesting to note that our measured values of the ejected masses are
systematically smaller than those reported in Sekiguchi et al. (2015) for the
same masses and EOS. This is likely due to the simplistic neutrino treatment
employed here and to the fact that more-sophisticated M1-scheme with heat-
ing, such as that used in Sekiguchi et al. (2015, 2016), can allow for material to
be more energetic and hence to become more easily unbound (Foucart et al.,
2016b). On the other hand our measurements agree well with those of Lehner
et al. (2016), where a similar leakage approach was employed; at the same time,
the preliminary use of an M0-scheme as that used in Radice et al. (2016) (which
is a middle-ground alternative to leakage or M1-schemes in terms of sophis-
tication and physical realism) is insufficient to explain this difference in the
ejected mass. Since the amount of ejected material depends also on the spe-
cific properties of the computational infrastructure, such as the location of the
extraction radius in equation (6.10), or the size of the computational domain
in equation (6.11), only a direct comparison of the various neutrino-transport
schemes within the same code can quantify the variance of the ejected matter
on the neutrino treatment or the numerical specifications.

6.5.2 Electron fraction distribution

The electron fraction is a critical piece of information to determine the r-process
nucleosynthesis yields since Ye is effectively a measure of how many free neu-
trons are available. Typically low-Ye environments (i.e. richer in neutrons)
favour a robust r-process and yield a higher fraction of heavier elements while
in high-Ye regimes (i.e. with less free neutrons) the production of very heavy
elements tends to be suppressed. Differences in Ye also correspond to potential
differences in the properties of the resulting kilonova signal, due to the efficient
production (or lack thereof) of high-opacity elements such as lanthanides. In
particular the so-called “blue” kilonovae (i.e. peaking at higher frequencies, in
the optical band) are possible in environments with Ye & 0.25 and “red” kilo-
novae (peaking in the infrared) in environments with Ye . 0.25 (Metzger and
Zivancev, 2016; Metzger, 2017a) (we will discuss the angular distributions of
the thermodynamical quantities and their impact on the kilonova in section 6.7
and 6.7.1).

In figure 6.3 histograms of the mass distribution of the ejected matter over
the electron fraction are shown for all 12 simulations, as computed from the
data relative to our fiducial detector at radius 300 km; different panels refer to
different EOSs, while the different lines refer to different masses and mass ra-
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Figure 6.3: Distributions of the ejected mass fraction as function of the electron
fraction Ye, as measured by a detector at radius 300 km. The range of Ye is
divided into bins of width 0.01. The histograms are normalized over the total
ejected mass Mej. The left panel refers to the DD2 EOS simulations, the middle
one to the LS220 EOS and the right one to the SFHO EOS; different line types
mark binaries with different masses and mass ratios. Figure reproduced from
Bovard et al. (2017).

tios. To produce such histograms in each patch into which the detector sphere
is subdivided the local electron fractino value is recorded and the local amount
of ejected mass is estimated. These values are then integrated over time up
to Tf to produce the mass ejected along with the corresponding Ye; the result-
ing Ye range is divided into bins of width 0.01 and the unbound mass of each
patch at each time is assigned to a bin according to its corresponding value of
Ye, thereby generating the histograms shown in figure 6.3.

Irrespective of the EOS and mass configuration, common qualitative fea-
tures can be spotted. For all EOSs the ejected mass is distributed in a range of
Ye varying from approximately 0.04 up to 0.4, peaking at Ye . 0.2. The only
exception is the SFHO-M1.45 model, in which little material is ejected due to
black hole formation and whose distribution peaks at higher values of Ye. This
spread of the electron fraction over a wide range is due to the inclusion of a
neutrino treatment, which causes the number of electrons to change due to
weak interactions. Failure to take such interaction into account would result in
a very different distribution, sharply peaked at very low values of Ye, i.e. pure
neutron matter (see e.g. Radice et al. (2016)).

The LS220 runs (left panel) exhibit very similar distributions for all mass
configurations, peaking at approximately Ye = 0.05 with a secondary peak at
Ye ≈ 0.2 before sharply dropping off at electron fraction values of Ye & 0.3. The
distributions of the DD2 (middle panel) also all exhibit a similar behaviour,
with a sharp increase at Ye ∼ 0.05 before broadening out with a sharp drop
around Ye ∼ 0.3. Finally, the distributions of the SFHO runs (right panel)
exhibit a somewhat different behaviour, although spanning a similarly broad
range in Ye. The main differences in this case are the tail of the distribution at
higher values of the electron fraction. In all cases most of the ejected matter is
found at low values of the electron fraction, i.e. it is very neutron-rich, which
suggests a robust r-process in all of the cases considered.

This conclusion is also supported by table 6.2, where the average values
〈Ye〉 of the electron fraction are reported for all 12 runs. The averages are com-
puted over the mass/electron fraction histograms of figure 6.3. As can be seen
in all simulations, the average value of the electron fraction in the ejecta is
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Figure 6.4: Distributions of the ejected mass fraction as function of the electron
fraction Ye, as measured by a detector at radius 300 km. This is the same as
figure 6.3, except that the curves are here grouped by mass configuration rather
than EOS so as to highlight the dependence on the latter. For clarity, unequal-
mass binaries are not shown. Figure reproduced from Bovard et al. (2017).

approximately 0.15 or lower, indicating on average a very neutron-rich envi-
ronment. The only exception is model SFHO-M1.45 where 〈Ye〉 = 0.24.

In figure 6.4, to help the comparison of the results across different EOSs, the
distributions are arranged according to the total mass of the BNS (the unequal-
mass cases are excluded) instead of EOS as in figure 6.3. In all panels there is a
noticeable trend in the distributions of Ye, which is most evident in the 1.25M�-
case (left panel). In this case 〈Ye〉 = 0.08, 0.13, and 0.14 for LS220, DD2, and
SFHO EOSs, respectively. This increase in Ye is expected when considering
that neutrino interactions depend strongly on the temperature. The average
entropy (see section 6.5.3) of these simulations is 10.3, 13.9, and 15.6 kB/baryon
respectively. Entropy is related to temperature and the higher the entropy, the
higher the average temperature, cf. figure 6.3, and hence more free neutrons
are converted into neutrinos through positron capture, increasing Ye.

This effect is also related to the compactness of the object, albeit this re-
lation should be treated carefully. SFHO is the softest EOS among the ones
considered, which leads to the most compact objects. This results in higher
temperatures during the merger, which causes an increase in the neutrino re-
actions, which decreases the number of neutrons and as expected has the higest
average Ye. In contrast, from table 6.1 one would expect that because LS220 is
more compact than DD2, LS220 should have a higher average Ye and entropy
when the opposite is this the case. This difference is due to compactness being
a property calculated for cold beta-equilibrium where the effects of composi-
tion are minimal. As discussed in section 6.3, the LS220 EOS does not include
light nuclei which can change the composition and the neutrino interactions,
so this seemingly non-monotonic relation between compactness and average
Ye arises from different constructions of the EOS. When comparing DD2 and
SFHO and excluding LS220, there is a clear monotonic relationship between C
and Ye.

When comparing our results with those of simulations with similar initial
data, there is a disagreement with computed values of the electron fraction. For
example for the DD2-M1.35 model with our measured value of 〈Ye〉 = 0.14,
the authors of Sekiguchi et al. (2015) report 〈Ye〉 = 0.29 with an M1-scheme
independent of resolution and 〈Ye〉 = 0.26 with a leakage scheme with a reso-
lution of 200 m. However a similar distribution in Ye is observed in Palenzuela
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et al. (2015); Lehner et al. (2016), which use a similar leakage scheme to the one
used here.

6.5.3 Specific entropy distribution

The next thermodynamic quantity we consider is the distribution of the ejected
material over the entropy per baryon s. The specific entropy is important in
r-process nucleosynthesis as it is an indicator of the neutron-to-seed ratio, the
“seeds” being the nuclei initially present in the matter and undergoing neutron
capture. High initial neutron-to-seed ratios favour the production of heavy
nuclei during the r-process nucleosynthesis, even at relatively high electron
fractions. In radiative environments such as those found in the ejected mat-
ter the specific entropy will scale with the temperature as s ∝ T 3, so that the
shock-heated (and hotter) part of the dynamical ejecta will exhibit higher spe-
cific entropies. In turn at high temperatures the presence of high energy pho-
tons enhances the photodissociation of seed nuclei, do that a higher specific
entropy will increase the neutron-to-seed ratio and thus r-process nucleosyn-
thesis. In contrast the cold, tidal dynamic ejecta usually exhibit low entropy,
but extremely neutron-rich material (Korobkin et al., 2012). The distribution of
the specific entropy, computed with the same procedure as the electron fraction
distribution in the previous section, is shown in figure 6.5, while the average
values 〈s〉 are reported in table 6.2.
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Figure 6.5: Distributions of the ejected mass fraction as function of the specific
entropy s, measured by a detector at radius 300 km from the domain origin.
The range of s is divided into bins of width 2 kB/baryon. The histograms are
normalized over the total ejected mass Mej. The left panel refers to the LS220
EOS simulations, the middle one to the DD2 EOS and the right one to the SFHO
EOS. Figure reproduced from Bovard et al. (2017).

Again many EOS-independent qualitative features can be observed. For
all EOSs the mass distribution peaks at s ≈ 2 kB/baryon, rapidly decaying to-
wards higher entropies. In the case of the binaries run with the DD2 EOS (mid-
dle panel), the qualitative behaviour of different mass configurations is similar
up to approximately s ' 100 kB/baryon. At larger entropies, the DD2-M1.25
binary has a more rapid drop-off and there is very little material that reaches
higher entropies. The remaining models exhibit similar behaviour with a flat-
tening of the curve at higher entropies. The average entropy value is in all four
cases 〈s〉 ≈ 15 kB/baryon. All of binaries with the LS220 EOS (left panel) show
a very similar qualitative behaviour among themselves and strong analogies
with the DD2 binaries. In particular the distributions show a rapid increase at
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around 2 kB/baryon (for the 1.45M� binary this peak is at around 8 kB/baryon
and is 4 times smaller), with an additional second peak at 20 kB/baryon for
the 1.35M� case that is not present in the other masses. For all masses there
is a rapid decrease in specific entropy, with average entropies that are slightly
lower than the DD2 and SFHO binaries and with a smaller spread between the
values, being approximately s ∼ 11 kB/baryon.

The simulations with binaries employing the SFHO EOS (right panel) show
a similar qualitative behaviour when compared with the other runs, at least at
low entropies. The distributions peak at about 5 kB/baryon and a rapid drop
follows, although different binaries show different fall-offs rates at around
50 kB/baryon. In the SFHO-M1.25 case the distribution begins to decrease less
rapidly at higher entropies while the SFHO-M1.35 model shows the fastest
decrease. This is to be contrasted to the DD2 and LS220 simulations (where
the specific entropies correlate with the initial masses of the stars) and is re-
flected in the average values of the specific entropy, with the SFHO-M1.25
model having 〈s〉 = 15.6 kB/baryon, while SFHO-M1.35 a smaller value of
〈s〉 = 12.7 kB/baryon. Lastly the average specific entropy of the SFHO-M1.35
binary is almost twice as large, likely due to the fact that the small amount of
ejected matter has been efficiently heated on account of its rarefaction. While
somewhat puzzling, this non-monotonic behaviour of the specific entropy with
the SFHO binaries is likely due to the comparative softness of this EOS, which
enhances the nonlinearity associated with shock-heating effects.

Similarly to the behaviour of the electron-fraction distributions, the av-
erage entropy tends to increases with the softness of the EOS (taking how-
ever into consideration the cavets at the end of section 6.5.2), being highest
for the softest EOS, i.e. SFHO. For example focusing on the 1.25M� binaries,
〈s〉 = 10.3, 13.9, 15.6 kB/baryon, for the LS220, DD2, SFHO EOSs, respectively.
This dependence is not particularly surprising as softer EOSs produce a higher
temperature and the temperature is directly related to the specific entropy. This
relation holds for almost all cases, even when including the low-mass ejecta of
SFHO-M1.45; the only exception is offered by the SFHO-M1.35 binary, where
this discrepancy is likely due to there being at least 5 times as much ejecta as
the other binaries.

6.5.4 Ejection velocity distribution

Figure 6.6 shows the velocity distribution of the ejecta computed in analogy
to those of the electron fraction or specific entropy distributions presented in
the previous two sections. Note that unlike e.g. Radice et al. (2016), we here
distinguish between the velocity of the ejected material vej as measured in the
simulation and that of the ejecta at spatial infinity vinf . We compute vej di-
rectly from the local Lorentz factor W , i.e. vej =

[
(W 2 − 1)/W 2

]1/2, where we
assumed that the detectors are are sufficiently far away from the merger prod-
uct so that the Minkowski metric holds. As discussed in Bovard and Rezzolla
(2017), this is a rather good approximation since it was shown there that the
ejected matter moves essentially radially and there is only a subdominant ve-
locity component in the angular directions, hence v2 ≈ v2

r , which enables us to
compute vej ' vr from W . An obvious consequence of distinguishing between
vej and vinf is that our values of the ejecta velocities are systematically higher
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than in Radice et al. (2016).
Again, figure 6.6 reveals that every simulation exhibits similar qualitative

behaviour. The ejecta velocity is never lower than 0.15 c; the bulk of the matter
has velocities of vej ≈ 0.25 c, and at higher velocities of vej & 0.6 c the mass dis-
tribution quickly drops to zero. Table 6.2 reports the average velocity 〈vej〉 for
all the runs. A trend clearly emerges from our data, with the higher-mass con-
figurations systematically producing higher-ejecta velocities. More precisely
the ejecta velocity appears to be tightly correlated with the compactness of the
neutron stars involved in the merger (cf. table 6.1). Also in this case this trend
is not particularly surprising since higher-mass configurations result in more
compact starts, which in turn experience stronger torques and more efficient
shock heating.
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Figure 6.6: The same as in figure 6.3 but for the ejecta velocity vej. The range of
vej is divided into bins of width 0.05 and the histograms are normalized over
the total ejected mass. Figure reproduced from Bovard et al. (2017).

In table 6.2 the column denoted by 〈v∞〉 shows estimates of the ejecta ve-
locity at infinity, which is achieved in the homologous expansion phase. This
velocity is used in our approximate model of kilonova emission (see section
6.7) and is computed assuming a ballistic radial motion from r = 300 km to
infinity in the spherically symmetric gravitational field of an object with the
same ADM mass of the BNS system under consideration, i.e.√

1− 2MADM

r

1√
1− 〈vej〉2

=
1√

1− 〈v∞〉2
. (6.12)

In the Newtonian limit, MADM = M and expression (6.12) simply reduces to
the familiar energy conservation equation: 1

2 〈vej〉2 −GM/R = 1
2 〈v∞〉2.

6.5.5 Impact of the unbound material selection criterion

In section 6.2.3 we introduced the criteria by which we determine whether the
material is bound or unbound, and considered only the geodesic criterion in
pour analysis. This choice is justified by the simplicity of the criterion and by
the fact that it provides a lower bound for the total ejected material (Kastaun
and Galeazzi, 2015). An additional benefit is that it does not implicitly depend
on the EOS selected, while the Bernoulli criterion h does, via the enthalpy de-
pendence. This implies that a fluid element, with the same rest-mass density,
temperature, and electron fraction, can be unbound or bound depending on
the EOS when the Bernoulli criterion is employed. This is a relatively minor
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trade-off since through the introduction of the enthalpy, the effects of pressure
and temperature are taken into account. It is therefore interesting to study the
dependence of the properties of the eject matter on the unboundedness crite-
rion.

Since the specific enthalpy is always grater than one, h ≥ 1, we have that

|hut| ≥ |ut| , (6.13)

and thus the Bernoulli criterion will always result in more material being con-
sidered unbound. However a slight modification of this formula is required.
In our simulations we have a so called atmosphere that acts as a lower bound
for the hydrodynamical (and thermodynamical) quantities. As discussed in
section 6.5.1 we have chosen to evaluate the ejecta at 300 km away from the
merger remnant to avoid atmosphere-related effects at greater radii. But due
to the introduction of the enthalpy in the Bernoulli criterion, we need to ensure
that we are sufficiently above the atmosphere value to avoid unphysical enter-
ing our calculations. To achieve this instead of defining unbound elements as
satisfying the relation hut ≤ −1, we consider the following modified criterion

hut ≤ (hut)|atmo , (6.14)

where we evaluate hut at the values set by our atmosphere setup, which is
EOS-dependent. For example, for the LS220 EOS this term assumes the value:

hut ≤ −1.000163 , (6.15)

instead of −1. Even though this difference is small, the modified constraint
does exclude some material from being considered as unbound.

Having made this consideration, we compare the results of the geodesic
criterion, the original Bernoulli criterion and the modified Bernoulli criterion
in the fiducial case of the LS220-M1.35 model. In figure 6.7 the differences
between the three selection criteria are shown, using the mass ejection curve.
Overall the behaviour we recover for the different criteria is similar, with an
ejection phase beginning approximately 2 ms after merger followed by a de-
crease in the mass flux. While the material as selected by the geodesic criterion
approaches a constant value of ejected mass at late times, both Bernoulli cri-
teria show a slightly longer increasing phase before settling to a constant. In
table 6.3 we show the comparison of the total amount of ejected material for
the three criteria and find that by selecting one of the Bernoulli criteria, we ob-
tain approximately 2.5 times as much ejected material when compared to the
geodesic one. This increase in the amount of ejecta is similar across all simula-
tions we have performed: the ejected mass is larger by a factor of 1.5 to 4 with
the Bernoulli criterion as compared with the geodesic one.

In figure 6.8 we plot again the mass distribution in the ejecta of the vari-
ous quantities relevant for the r-process nucleosyntehsis, for the representative
LS220-M1.35 model only. The average values are summarized in table 6.3.
For the electron fraction and entropy, we do not see drastic changes and the
overall structure of the distribution between different criteria. In both cases
there is a slight increase in entropy and Ye which is to be expected. With both
Bernoulli criteria, taking the enthalpy into account includes some thermody-
namic effects which will result in more material being ejected due to shock
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Figure 6.7: The mass ejection according to different unboundedness criteria for
the LS220-M1.35 model. In green is the geodesic criterion, blue is the original
Bernoulli one, and red is the modified Bernoulli thresholded on the atmosphere
value. All values have been measured through a detector at 300 km. Figure
reproduced from Bovard et al. (2017).

Mej 〈Ye〉 〈s〉 〈vej〉
Criterion [10−3M�] - [ kB/baryon] [10−1c]

geodesic 0.82 0.10 12.3 0.22
Bernoulli 2.09 0.11 13.8 0.15

modified Bernoulli 2.07 0.11 13.1 0.15

Table 6.3: Average values of the ejected mass, electron fraction, specific entropy
and ejecta velocity for different unboundedness criteria in the representative
LS220-M1.35 model. Table reproduced from Bovard et al. (2017).
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Figure 6.8: Comparison of the mass distribution of electron fraction, specific
entropy and ejecta velocity in the ejected matter of the representative model
LS220-M1.35 for the three unboundedness criteria. Figure reproduced from Bo-
vard et al. (2017).

heating. This implies a higher entropy and additionally, more material to un-
dergo neutrino interactions. However the effects are minimal and the overall
nucleosynthesis process will be essentially unaffected.

The most striking differences are to be found instead in the vej distribution.
In the case of the geodesic criterion, interpreted in its Newtonian limit, a fluid
element has to have non-zero velocity at infinity to be considered unbound.
This implies a lower cutoff in the velocity distribution, as slowly moving ele-
ments, even though able to cross a given detector surface, would not be con-
sidered unbound. For both Bernoulli criteria this strict requirement is relaxed
by the presence of the enthalpy, which acts as a multiplicative factor larger
than one. This means that even slowly moving elements, provided they have
sufficiently high enthalpy, would be counted as unbound, and so the velocity
distribution acquires a lower end tail and its mean is shifted towards lower
values.

6.6 r-process nucleosynthesis

This section is dedicated to the study of the r-process nucleosynthesis of the
dynamically ejected matter and the resulting heavy element yields. We focus
on the optimal selection of the tracers, on how the nucleosynthesis process
varies with the specific entropy of the ejected matter and on those behaviours
that are essentially independent of the EOS.

6.6.1 Comparison of tracer selection methods

In section 6.2.2 a method to associate a mass to the t passively advected trac-
ers was mentioned. The method, developed in Bovard and Rezzolla (2017)
essentially consists in locally integrating a mass flux through a sphere of given
radius. In this section two additional tracer-selection criteria are introduced
(keeping in mind that the unboundness criterion is always anyway enforced)
and the corresponding procedures to associate a mass to the tracers; we then
compare the impact that this different selection strategies have on the final nu-
cleosynthesis yields.
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The first criterion introduced in section 6.2.2 simply consists in considering
from a given simulation all tracers that are unbound without further selection,
associate to each of them a mass by locally integrating a mass flux through a
sphere of given radius as in Bovard and Rezzolla (2017) (in the present case
the sphere is the fiducial outflow detector at radius 200M�), then sum the nu-
cleosynthesis yields from all tracers using the corresponding mass as weight
to recover the final abundance pattern. Since the total number of unbound
tracers in one of our simulations can reach several thousands (40,000 being a
typical value), this approach involves the post-processing and book-keeping of
many tracer trajectories, thus becoming computationally rather costly. For this
reason, we develop the alternative selection criteria described below.

A first alternative consists in considering the distributions of the ejected
mass as a function of the electron fraction presented in section 6.5.2 and draw-
ing one representative, unbound tracer from each bin. Given the bin width of
∆Ye = 0.01, this results in about 40 tracers for every simulation, a reduction of
a factor of a thousand with respect to the first criterion. A mass is then asso-
ciated to each tracer by assigning to it the mass of the bin it was drawn from.
We refer to this procedure as to the “1D” criterion, since the tracers are drawn
from a one-dimensional distribution.
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Figure 6.9: Comparison of the relative abundances Yi of the r-process as func-
tion of the mass number A for the three tracer selection criteria. In blue, the
abundances produced by the “1D” criterion; in orange the ones produced by
the “2D” criterion; in green the abundances obtained considering all unbound
tracers. The black filled circles indicate the solar abundances. Figure reproduced
from Bovard et al. (2017).

A third selection criterion considered is essentially an improved version of
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the 1D criterion. It consists in considering the ejected mass histogram over
both the electron fraction and the specific entropy; we then draw one represen-
tative, unbound tracer from each bin, and associate to it the mass of the bin it
was drawn from. We refer to this procedure as to the “2D” criterion, since the
tracers are drawn from a two-dimensional distribution. For each simulation,
this results in a total of roughly 1,000 tracers to be considered (i.e. the number
of Ye/s bins used to produce the distribution).

We apply the nucleosynthesis computations to the tracers selected using
the three criteria discussed above, computing the heavy element yields in the
fiducial case of the binary model LS220-M1.35. The results are displayed in
figure 6.9, where for comparison the abundance pattern of the solar system is
also displayed (filled circles); the relative differences from our computations
to the solar abundances are shown in the bottom panel. As can be seen, the
original approach of considering all unbound tracers reproduces quite well
the solar abundances over the whole range of mass numbers considered, as
does the 2D criterion. The 1D criterion instead presents significant deviations,
especially around the third peak (i.e. A ' 195) and around the rare-earth peak
(i.e. A ' 165). The origin of these deviations is clear, a posteriori: it is due to the
fact that the 1D criterion is systematically biased towards low-entropy tracers,
which has a significant impact over the final abundances, as we discuss in the
next section.

The so-called 2D criterion is computationally much less expensive than sim-
ply considering all unbound tracers; it allows for a simple and unambiguous
definition of the tracer mass; yet it leads to an almost unbiased abundance cal-
culation. Therefore we decided to adopt it as our preferred tracer-selection
criterion and all following results are computed with this choice, unless other-
wise stated.

6.6.2 Nucleosynthesis of heavy elements

Figure 6.10 illustrates the nucleosynthesis results for all ∼ 40,000 unbound
tracers of the representative simulation of the LS220-M.1.35 binary. Indi-
vidual tracers with s < 70 kB/baryon are plotted in gray while tracers with
s ≥ 70 kB/baryon are plotted in orange. The mass-integrated abundances are
indicated by the blue line. As a consequence of the relatively low electron
fractions in most of the ejected material (i.e. with Ye ≈ 0.1; see figure 6.3
and table 6.2), for each tracer the strong r-process component (from the sec-
ond to the third r-process peak) is well reproduced. We find however that the
entropy distribution of the ejecta gives rise to specific features in the abun-
dance pattern. The low-entropy component (i.e. s < 70 kB/baryon) leads to
the pattern that is observed in the neutron-rich ejecta of Newtonian simula-
tions. On the contrary the high-entropy (i.e. s ≥ 70 kB/baryon) part of the
ejecta, which carries only about 6 % of the total ejected mass, has a nucleosyn-
thesis pattern with a shifted second and third peaks. Additionally it presents
diminished abundances in the rare-earth region, and effectively fills the gap
between third r-process peak and elements in the lead region. We note that the
abundance pattern of these tracers is very similar to the “fast” ejecta found by
Mendoza-Temis et al. (2015). While we do not find them to expand faster in
the beginning, their unusual abundance distribution can be traced back to an
extremely high initial neutron-to-seed ratio Yn/Yseed & 1,000 and comparably
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Figure 6.10: Final r-process abundances for all unbound tracers of the
LS220-M.1.35 binary. Gray lines are the yields for individual tracers with
low entropies s < 70 kB/baryon, and orange lines mark single tracers with high
entropies s ≥ 70 kB/baryon. The mass-integrated nucleosynthesis yields are
shown with a blue line, and the black filled circles show the solar abundances.
Figure reproduced from Bovard et al. (2017).

low initial densities ρ . 109 g/cm3. Due to the enormous amount of neutrons
at low densities, the seed nuclei require substantially more time to incorporate
the neutrons, delaying the freeze-out time (i.e. the time when Yn/Yseed = 1).
In fact the time window for the r-process to occur in this minority part of the
ejected material is & 100s instead of . 1s. The r-process also runs along a path
much closer to the valley of stability for these tracers, such that the magic neu-
tron numbers are reached at higher mass numbers, and the abundances settle
down for a pattern in between s-process and r-process.

Figure 6.11 reports the final heavy-elements relative abundances for all of
the 12 BNS models outlined in table 6.1 as a function of the mass numberA. As
in previous figures, the different panels refer to the different EOSs considered
and the various binaries are represented with lines of different types. In this
plot the results are normalized to have a total mass fraction of 1 and again
shown with filled circles are the scaled solar system r-process abundances.
Clearly in all cases a successful r-process is obtained, leading to the produc-
tion of the r-process pattern from the second (i.e. A ∼ 130) to the third (i.e.
A ∼ 195) peak.

There are however different admixtures due to the different electron-fraction
distributions of the ejected material as detailed in section 6.5.2. For the equal-
mass binaries we observe a tendency towards slightly enhanced abundances
below the second r-process peak with increasing mass of the neutron stars.
This is because more massive BNS systems have a higher electron fraction on
average. Furthermore, the contributions from tracers with high initial neutron-
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Figure 6.11: Final relative heavy-elements abundances for all the 12 BNS mod-
els as a function of mass number A. The abundances are normalized so that
the total mass fraction is unity, while the different panels and lines refer to the
various EOSs, masses and mass ratios, respectively (see legends). The black
filled circles report instead the observed solar abundances, while the vertical
lines mark a few representative r-process elements: 133Cs, 138Ba, 139La, 153Eu,
165Ho, 197Au. Figure reproduced from Bovard et al. (2017).

to-seed ratios enhance both the second r-process peak and the region with
A ≈ 200 in all cases. The most extreme example is the SFHO-M1.45 binary,
which immediately collapses to a black hole after merger, ejects very little mass
and with a comparatively high electron fraction. As a result the part of ejected
material with low specific entropy leads to nuclei that mainly have mass num-
bers with A . 130, while the material with high specific entropy – and thus
high neutron-to-seed ratios – dominates the final abundances beyond the third
r-process peak, leading to an enhanced abundance for A & 200. The distinc-
tive features observed in the final abundances in the case of the SFHO-M1.45
binary suggests therefore the possibility of using the chemical yields either as
a confirmation of the prompt production of a black hole after the merger, or as
an indication of this process in the case in which the post-merger gravitational-
wave signal is not available.

All things considered however, the most striking result shown in figure
6.11 is the very good and robust agreement of the various abundance patterns,
where by robust we mean a behaviour that is only very weakly dependent on
the EOS or the initial neutron-star masses, at least for the sample considered
here. For example when considering the second peak at A ∼ 130, all four
different types of initial data predict a similar abundance of 133Cs. Although
the lanthanides show a slight disagreement with the solar abundances around
the mass numberA ∼ 145 (which may be explained by other forms of ejecta, for
example from accretion disks (Siegel and Metzger, 2017)), from 153Eu up 197Au
in the third r-process peak, there is no disagreement in the final abundances for
different initial data and EOSs.

While this agreement might be partly aided by our simplified neutrino
treatment, this result not only confirms the robustness of the r-process yields
from BNS mergers already noted in the literature, but it also shows how the
uncertainties associated in modelling the microphysics and initial data of BNS
mergers have a very limited impact on the nucleosynthesis produced from
the merger. As discussed later in section 6.7, although the final abundance
curves are essentially independent of the initial data and EOS, the kilonova
light curves produced from the decaying elements depend strongly on these
parameters and thus allow for a way to distinguish between the different sce-
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Figure 6.12: Angular distribution of the ejected mass at the final time for all
simulations. Figure reproduced from Bovard et al. (2017).

narios.
Note that in fact the spread in our r-process patterns due to different choices

of EOSs or initial masses is much less than the one associated to uncertainties
in the nuclear-physics modelling of nuclei involved in the r-process, e.g. the
choice of the fission fragment distribution (Eichler et al., 2015) or the nuclear-
mass model (see e.g. Mumpower et al. (2015); Martin et al. (2016)) where varia-
tions can change the abundance of a given element by an order of magnitude.

6.7 Ejecta morphology and kilonova light curves

6.7.1 Angular distributions of the ejected matter

Outflow detectors allows to study not only the global properties of the ejected
material, but also the angular distribution of the ejected material on the detec-
tor surface and hence virtually at spatial infinity. Besides having an interest
in their own right, anisotropies in the distribution of the ejected matter could
have important consequences on the kilonova signal of a given binary configu-
ration, and impact its detectability, especially when considering the effect that
the viewing angle could have on the effective observed kilonova signal in pres-
ence of such anisotropies. To the best of our knowledge this is the first time that
an analysis of this type has been carried out.

We consider the angular distribution of ejected mass as defined by equation
(6.10), where in this case however the integration over the angular directions
does not span the whole 2-sphere, but only a single patch of the outflow detec-
tor. We also study the mass-averaged distribution of the electron fraction, the
specific entropy and the ejecta velocity. Similarly to equation (6.10), these are
defined as

〈χ〉 :=

∫ Tf

0

∫
∆Ω

χρ∗W (αvr − βr)S dΩ dt /∫ Tf

0

∫
∆Ω

ρ∗W (αvr − βr)S dΩ dt , (6.16)
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Figure 6.13: The same as in figure 6.12 but for the electron fraction. Figure
reproduced from Bovard et al. (2017).

where χ is any one of Ye, s or vej, and the same consideration as above applies
to the integration over the angles.

In figure 6.12 we collect Mollweide projections of the fiducial outflow detec-
tor relative to the time-integrated rest mass for all models. Several properties
of the angular distribution of the ejected matter are apparent. Firstly the binary
SFHO-M1.45, which immediately collapses to a black hole after the merger, is
immediately identifiable as there is close to no ejected matter in this case. Sec-
ondly it is clear that in each binary most of the mass is ejected on the orbital
plane, which is consistent with expectations that the material ejected here is
mostly of dynamical origin and the ejection mechanism is due to the torques
in the system at merger (other types of ejecta, such as neutrino/magnetically
driven winds or ejecta from viscous heating would display a more isotropic
structure). Third, while concentrated at low latitudes, the ejected mass is not
uniformly distributed but shows considerable anisotropies; this is simply due
to the disruption of the flow produced by the tidal torques and this concen-
trates the emission of matter into rather small regions on the detector surface.
The only binary that appears to evade this trend is SFHO-M1.35, which has
ejected matter also at latitudes as high as ∼ 45◦ and seems to peak around
∼ 30◦.

In a similar fashion, the distribution of the electron fraction Ye is shown
in figure 6.13. It is apparent how the electron fraction tends to anticorrelate
with the amount of ejected mass: regions in which the ejected mass fraction
is higher (such as the orbital plane) tend to have very low Ye and vice-versa.
This consistent with the results of section 6.5.2, where most of the ejected mass
is shown to be very neutron-rich. On the other hand it can be seen that in
other regions, such as the poles, the material is very neutron-poor, but has
correspondingly low values of ejected mass. The evidence provided in figure
6.13 that matter ejected around the poles is less neutron-rich (i.e. with Ye &
0.25) suggests the possibility that material there might undergo a less robust r-
process, leading to a suppressed production of lanthanides and thus to a lower
opacity. This bimodal anisotropy in the distribution of the electron fraction
could then lead to either a “blue” kilonova, i.e. to a kilonova signal with a
comparatively strong optical component, if the line of sight is mostly along
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Figure 6.14: Angular distribution of the mass fraction of lanthanides in the
representative case of the binary LS220-M1.35; the data refers to the final
simulation time.. Figure reproduced from Bovard et al. (2017).

the polar regions, or to a “red” kilonova, i.e. to a kilonova signal peaking in
the infrared, if the line of sight is mostly along the equatorial regions Metzger
(2017a); Tanaka (2016).

To check the plausibility of such a scenario we have explicitly computed
the angular distribution of the lanthanides mass fraction in the representative
LS220-M1.35 model, i.e. by computing the lanthanides mass fraction of ev-
ery unbound tracer in the simulation and by plotting their location on the 2-
sphere, as shown in figure 6.14; to produce this plot the lanthanides mass frac-
tion values have been averaged over patches of angular size 10◦ × 10◦. As can
be seen, even near the poles the lanthanides mass fraction is rather high, i.e.
XLa ≈ 10−2. This is far larger than the generally accepted limit on this value
that leads to a sufficient suppression of the medium opacity for a blue kilonova
to be observed, i.e. XLa ∼ 10−5. Very similar values have been obtained in all
other BNS models. Therefore this result seems to indicate that a blue-kilonova
scenario is probably unlikely to originate from the dynamical ejecta in view of
GW170817 (Metzger, 2017b), according to our calculations. Note however that
despite the three orders of magnitude difference between the expected value of
the lanthanides mass fraction and the one computed here, our conclusions may
be biased by an oversimplified neutrino treatment. A proper neutrino-transfer
treatment of the propagation of neutrinos in the ejected matter could in fact
modify, in part at least, our results. Indeed more sophisticated neutrino treat-
ments, such as the one employed in Foucart et al. (2016c), have been shown
to produce higher values of the electron fraction around the polar regions. All
things considered, our results suggest that while a blue kilonova component
cannot be ruled out conclusively, it also seems to require an electron-fraction
distribution that is considerably different from the one computed here.

Similar observations as for the Ye morphology hold true for the distribution
of the specific entropy, as shown in figure 6.15: the entropy anticorrelates with
the ejected matter, as regions close to the orbital plane tend to have small en-
tropies, while around the poles values of the entropy can be very high. These
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Figure 6.15: The same as in figure 6.12 but for the specific entropy.

Figure 6.16: The same as in figure 6.12 but for the ejecta velocity.

corresponds to the tails shown in figure 6.5, extending to specific entropies of
200 kB/baryon and above. The case of the SFHO-M1.45 model is particularly
striking, with most of the ejected material at extremely high entropy. As ob-
served in the previous discussion, however, this model also ejects an almost
negligible amount of mass, which enhances the shock-heating efficiency.

The velocity distribution, shown in figure 6.16, is instead rather peculiar.
For many models, especially the lower mass ones, including the unequal-mass
models in the rightmost column of the figure, the material appears to be ex-
panding at the same velocity in most directions, save for a few “hot” or “’cold”
spots of limited angular size. In the three higher mass models, shown in the
third column of figure 6.16, some large-scale structure could be present, but
there is no evidence of the correlation observed for the electron fraction or en-
tropy.

6.7.2 Kilonova light curves and observability

We use the simple gray opacity model of kilonovae developed in Grossman
et al. (2014) to assess the observability of the infrared transients associated to
the decay of r-process elements. The comparatively small ejected masses re-
sulting from our simulations preclude the use of more sophisticated radiative
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transfer treatments (left for future work) when these ejecta could be a signifi-
cant source of opacity (the “lanthanide curtain”) for potential secondary out-
flows, such as magnetically Siegel et al. (2014) and viscously driven wind from
an accretion disk, or neutrino-driven wind from the hypermassive neutron star
Perego et al. (2014).

In the model of Grossman et al. (2014) the background dynamical ejecta
are approximated by a homologously expanding spherically symmetric shell
of density ρ(r, t) = ρ0(t0/t)

3(1 − v2/v2
max)3 (also described in detail in Wol-

laeger et al. (2017)), and vmax = 2〈v∞〉, taken from table 6.2. The luminosity
output is computed by integrating the nuclear heating rate from the nuclear
network over the layer of matter from which photons can diffuse out. A sim-
ilar model is used in (Perego et al., 2014; Martin et al., 2015b; Rosswog et al.,
2017). We employ an effective gray opacity κ = 10 cm2 g−1, which was re-
cently demonstrated to reproduce the infrared luminosity of lanthanide- and
actinide-contaminated ejecta reasonably well (Wollaeger et al., 2017). Note that
the same study shows the flux in the optical bands to be strongly suppressed
when detailed opacities of lanthanides are used; for this reason, we consider
here only the infrared magnitudes J , H and K-bands in the Two Micron All
Sky Survey (2MASS) Skrutskie et al. (2006).

The nuclear heating which powers the kilonova for each model is calcu-
lated with the nuclear network code WinNet (Winteler et al., 2012; Korobkin
et al., 2012) (cf. section 6.2.4) using the average electron fraction 〈Ye〉, specific
entropy 〈s〉 and expansion velocity 〈v∞〉 as given in table 6.2. We compute
the nucleosynthesis yields with reaction rates based on the finite-range droplet
model (FRDM) (Möller et al., 2012) only. This is motivated by the fact that nu-
clear mass models show little discrepancy in the heating rates at epochs around
t ' 1 day (Rosswog et al., 2017), where the peak magnitudes for our models
are expected.
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Figure 6.17: Synthetic light curves in the infrared 2MASS J,H andK-bands for
all of the binaries considered. Figure reproduced from Bovard et al. (2017).

The resulting peak bolometric luminosities, peak magnitudes in the in-
frared bands, and the peak epochs in the H-band are presented in table 6.2,
while the light curves in the three infrared bands (indicated by different line
colors) are shown in figure 6.17, with different line types referring to the differ-
ent binaries.

Clearly all of our models show a very similar behaviour, peaking around
half a day in the H-band and rapidly decreasing in luminosity after one day,
reaching a maximum magnitude of −13. We note that these luminosities are
smaller than those normally expected (see e.g. (Tanaka, 2016) for a recent re-
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view), which peak around magnitude of∼ −15; this difference is not surprising
and is mostly due to the amounts of ejected mass, which is normally assumed
to be ∼ 10−2M� and hence at least one order of magnitude larger than what
measured here. With 3-minute J-band exposure on the VISTA telescope (Emer-
son et al., 2004), these magnitudes result in a detection horizon of ∼ 100 Mpc,
which, in combination with a very short time around the peak, makes these
light curves extremely difficult to detect in a follow-up survey. As observed in
the follow-ups to GW170817, light curves were observed that originate from
a kilonova (The LIGO Scientific Collaboration and The Virgo Collaboration,
2017; Cowperthwaite et al., 2017; Metzger, 2017b) which suggests that a signi-
ificant amount of material, on the order of 10−2M�, became unbound. As this
amount of ejecta is above the amount we have seen in dynamical merger sim-
ulations, this suggests that the source of the radioactive decay powering the
kilonova is not in the dynamical ejecta, but in other sources such as neutrino
drive winds or viscous ejecta (Metzger, 2017b).

6.8 Constraints on BNS merger rates

In section 6.6 the robustness of the r-process nucleosynthesis from BNS merg-
ers has been shown; it is necessary to establish whether the amount of ejected
material in such a BNS merger is sufficient to explain the observed amounts
of r-process material in the Milky Way. To this end (following Rosswog et al.
(2017)) we show in figure 6.18 the constraints on the rate of BNS mergers and
the required amount of ejected material needed per merger. More specifi-
cally, assuming the total amount of r-process material in the Galaxy is Mr,gal ≈
19,000M� and given a certain merger rate – either per year and galaxy equiv-
alent (yr−1 gal−1, bottom horizontal axis) or per year and cubic Gigaparsec
(yr−1 Gpc−1, top horizontal axis) – the black line shows the amount of ejected
material per merger required to explain the observed abundances. Similarly
the red line has the same meaning, but only takes into account elements with
A & 130, with a total galactic mass of Mr,gal ≈ 2,530M� (McMillan, 2011; Ross-
wog et al., 2017). The blue-shaded horizontal region indicates the range of
dynamically ejected material from BNS mergers in quasi-circular (QC) orbits
covered by our simulations as reported in table 6.2 (note that the SFHO-M1.45
model has been omitted because it is not representative); the other two shaded
horizontal regions report instead the typical abundances coming from the sec-
ular ejecta (pink-shaded region) or from the dynamic ejecta relative to mergers
of BNSs in eccentric orbits (green-shaded region).

These constraints should be compared with actual measurements of the
merger rates as deduced from different experiments and indicated as verti-
cal lines. We show as the dot-dashed black line the predicted merger rate from
the GW170817 observation (The LIGO Scientific Collaboration and The Virgo
Collaboration, 2017). In addition we show the observed upper bound on BNS
mergers observed in the first LIGO operating run O1, and the predicted upper
bounds for the planned future runs O2 and O3 (Abbott et al., 2016b). Differ-
ent population-synthesis models are also displayed corresponding to galac-
tic chemical evolution (GCE) (Côté et al., 2017), supernova (SN) (Chruslinska
et al., 2017), and SGRBS (Petrillo et al., 2013).

The red line, the horizontal-blue shaded region, and the GW170817-relate
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Figure 6.18: Ejected material per merger for a given BNS merger rate required
to reproduce the observed mass of all (black) and A > 130 (red) r-process ele-
ments in the Milky Way. The dark blue-shaded regions correspond to the range
of values of ejected mass reported in Table 6.2. The red-shaded region corre-
sponds to ejected masses from other sources of ejecta. The dashed vertical gray
lines report the observed, O1, and predicted, O2 and O3, upper bounds on BNS
mergers from LIGO. The dot-dashed black line is predicted merger rate from
GW170817. The orange, light blue, and yellow shaded regions correspond to
observational constraints from galactic chemical evolution (GCE), supernova
(SN), and short gamma-ray bursts (SGRBs) population synthesis models as de-
fined in the text. Figure reproduced from Bovard et al. (2017).

curve overlap in figure 6.18 which indicates that the measured amount of dy-
namical ejecta of ∼ 10−3M� from the presented simulations is sufficient to
reproduce the observed r-process mass abundances with A > 130 in the Milky
Way. Associated with GW170817 was a SGRB (The LIGO Scientific Collabora-
tion et al., 2017a; LIGO Scientific Collaboration et al., 2017) and this confirms
that BNS mergers are the central engine of SGRBS and thus the rate constraint
predicted by SGRBS (Petrillo et al., 2013) is likely indicative of BNS merger
rates. This implies that although we find that there is lower amounts of dy-
namical ejecta then reported in Newtonian simulations (cf. section 6.5) the
frequency of BNSs merger is likely to be sufficiently high to compensate. Fur-
thermore, the geodesic criterion that we employ is a conservative one and only
provides a lower bound on the amount of material ejected; by adopting a differ-
ent criterion, e.g. the Bernoulli one (see discussion in section 6.5.5), the amount
of ejected material can increase up to a factor of 4 for the same simulation.

A different, more exotic scenario of the source r-process is dynamical ejecta
from eccentric BNSs megers. Ejecta masses from these configurations are in
fact much larger (Radice et al., 2016; ?), and would be sufficient to explain the
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observed mass values; however these events are likely very rare and current
rate constraints are not well understood (Lee et al., 2010).

It is important to note that our simulations only focus on the dynamical
ejecta. There are multiple other channels through which material can be ejected
from a merger as mentioned in the introduction to this chapter and they will
contribute to the total amount of r-process elements created. For example sim-
ulations of neutrino-driven winds have found similar amounts of ejected mate-
rial as dynamical ejecta (Fujibayashi et al., 2017). Likewise, matter ejected from
a BH-torus system could be as high as 0.1M�, as estimated semi-analytically
in Giacomazzo et al. (2013). This suggests that even if the mass ejected from
a single channel is alone insufficient to explain the observed r-process masses,
the combination of all ejected material from a BNS merger is likely to. In this
sense the blue-shaded horizontal region only represents a lower bound on the
total ejected material.

6.9 Conclusions

Observations, especially the recent simultaneous detection of an electromag-
netic counterpart and a gravitational wave signal from a binary neutron star
merger, now support the conclusion that material is dynamically ejected from
the merger of neutron stars binaries and that such material is neutron-rich
and its nucleosynthesis can provide the astrophysical site for the production
of heavy elements in the Universe. Furthermore, this simultaneous detection
provides confirmation of the long-standing conjecture that the merger of neu-
tron stars is behind the origin of SGRBs.

With the use of fully general-relativistic simulations of the inspiral and
merger of binary systems of neutron stars, we have investigated in this work
the impact that the variation in initial masses, mass ratio, and most importantly
the EOS have on the r-process nucleosynthesis taking place in the dynamical
ejecta from BNS mergers, on its heavy-element yield and on the resulting kilo-
nova signal.

We have shown that the r-process nucleosynthesis from BNS mergers is
very robust in that it depends only very weakly on the properties of the bi-
nary system, particularly the EOS, bearing in mind however that a parameter
space exploration depending on the EOS is still rather limited (also partly due
to the lack of publicly available fully temperature dependent EOS tables). In
the future we intend to explore it more fully with a larger set of EOSs. While
similar conclusions have been reported before, the confirmation coming from
our study strengthens the evidence that BNS mergers are the site of production
of the r-process elements in the galaxy.

With the two different approaches we have employed to measure the amount
of matter ejected dynamically, we found that it is . 10−3M�, which is smaller
than usually assumed. There are a however number of factors that need to be
taken into account in considering this estimation, such as: the EOS considered;
the neutrino treatment; the criterion for matter unboundness; the resolution;
and finally the numerical methods used. Although these systematic factors can
lead to differences as large as one order of magnitude even for the same initial
data, we find it unlikely that the mass ejected dynamically can ever reach the
values sometimes assumed in the literature of 10−2− 10−1M�. Clearly a more
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detailed and comparative study is necessary to better constrain the uncertain-
ties behind the amount of mass lost by these systems.

Using a simplified and gray-opacity model we have assessed the observ-
ability of the infrared transients associated to the decay of r-process elements,
i.e. of the kilonova emission. We have found that all our binaries present a
very similar behaviour, with light curves peaking around ∼ 1/2 day in the H-
band and rapidly decreasing in luminosity after one day, reaching a maximum
magnitude of −13. These rather low luminosities are most probably the direct
consequence of the small amounts of ejected matter, thus making the prospects
for detecting kilonovae rather limited. Observations of the kilonova associated
with GW170817 suggest in fact higher total ejecta masses (Abbott et al., 2017)
but this total also includes other ejection mechanisms apart from dynamical
tides, such as neutrino driven winds, disk or viscous ejecta. Thus a detailed
comparison with the new observations will require more sophisticated calcu-
lations with improved neutrino treatments to disentagle all sources of ejecta.

As a final remark we note that even though the r-process abundance pat-
tern does not give us simple clues to the original BNS parameters, e.g. it does
not allow to disentangle various EOS and mass configurations, there are dis-
tinguishing features in the ensuing kilonova signal relatable through the differ-
ence in ejecta properties obtained in our simulations. We have found that softer
EOSs tend to result in a higher average electron fraction, which implies differ-
ences in the type of kilonova produced (blue vs red kilonova). We have also
found that this difference in electron fraction is highly angular dependent with
higher electron fractions around the polar regions and lower along the orbital
plane. Even though there is significantly less material ejected along the poles
versus the plane, our simulations show that the simplified kilonova modelling,
such as that of a homogeneously expanding group of material, need to be ad-
justed to account for this anisotropic emission. We reserve the investigation of
this issue to future studies, where an improved neutrino treatment will be also
implemented.
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Chapter 7

Conclusions

The study of binary systems of compact objects is a fascinating field of research,
richly connected to a variety of issues and open questions of mathematical, nu-
merical and physical nature. In fact, it can be argued that no single area of
specialization covers the full spectrum of expertise needed to describe these
complex systems; only the interplay between different fields can lead to a sat-
isfactory understanding of them. Furthermore, such an understanding would
have important repercussions and would be able to shed light on many unre-
solved questions in various areas of physics, which naturally pushes binaries
of compact objects at the forefront of research. Among the most pressing of
such open questions it is worth citing the nature of the gravitational interac-
tion, i.e. the search for a theory of gravitation alternative to general relativity;
the details of the equation of state governing matter at the highest densities, be-
yond nuclear saturation density, and the repercussions this would have of our
understanding of nuclear forces; and the precise mechanism and characteris-
tics of the electromagnetic transient signals that are thought to be associated
with these systems, in particular short gamma ray bursts and kilonovae.

In the last decade numerical relativity has become one of the most impor-
tant and powerful tools to investigate these systems. A numerical approach
has the advantages of being able to treat very general, non-idealized systems;
to include, in principle at least, as much physical details as needed; and to test
the prediction of theories for which no experimental test is available. On the
other hand, numerical relativity raises a number of intrinsic issues which have
to be addressed as well to ensure its usefulness as a research tool. In this work
I have considered various mathematical, numerical and physical issues that
arise in, or can be treated with, the field of numerical relativity.

First I have tackled the problem of the stability of the formulation of Ein-
stein equations is employed in numerical simulations, by contributing to the
development of the FO-CCZ4 formulation. This formulation has been proved
hyperbolic, and therefore able to sustain stable simulations in a variety of con-
ditions. While FO-CCZ4 is not the first formulation for which a proof of hy-
perbolicity exists, historically progresses in the stability of formulations have
been achieved heuristically, with a mathematical understanding being devel-
oped only later. Therefore this is an important addition to the state of the filed.
Furthermore, the FO-CCZ4 is first order in both space and time, which makes
it suitable to be discretized with the highly efficient, accurate and scalable DG
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methods. DG methods are currently a hot topic in computational research and
the field of numerical relativity in particular, since their superior scalability
properties makes them ideal to harness the power of next generation super-
computers. Indeed, we verified that a state of the art ADER-DG implementa-
tion of the FO-CCZ4 formulation produces results of remarkable accuracy and
stability for all relevant test cases. It is in fact hoped that this formulation and
its ADER-DG discretization scheme will make one of the basic algorithms in
the upcoming software framework ExaHyPE (Charrier et al., 2018), which is
being developed by a consortium of various institutions to address precisely
these needs.

The need for better numerical methods is clearly not limited to the con-
text of Einstein equations, but for all other systems of equations the solution
of which is needed to obtain a complete description of the system under con-
sideration; including, for baryon matter system such as binary neutron stars,
the relativistic Euler equations. In this case however an additional difficulty
arises in that the Euler equations can generate shocks in a finite time, which
means the numerical method used to solve them has to be not only accurate
and efficient, but able to deal with discontinuous solutions. To this end I have
developed the ELH scheme, alternative to the HRSC methods commonly em-
ployed in numerical relativity. Being a flux-limiter method, based on a sim-
ple hybridisation procedure of the numerical flux, the scheme is much simpler
than most HRSC schemes and amenable to efficient implementation. In fact,
even in the non-optimized implementation developed so far it has showed a
marked performance improvement over the HRSC-type MP5 scheme. Further-
more the hybridisation of the flux in this scheme is based on a self-consistent
thermodynamical property of perfect fluids, i.e. the local production of en-
tropy, known to denote the onset of a shock. The ELH scheme has been shown
to reach comparable or sometimes better accuracy than MP5 in a number of
tests at a fraction of the computational cost. In the future, a modification of
the scheme to adapt it to the DG framework would make for a more than com-
petitive alternative to current hydrodynamics evolution schemes. At the same
time the scheme can be extended and improved, applying it to the solution of
the magnetohydrodynamics equations and possibly even to the equations of
neutrino transport.

The final topic addressed in this work is more of physical nature than the
previous two, which are mathematical/numerical issues arising the use of nu-
merical methods, and therefore could also be seen from a certain point of view
as technical points in the development of a research tool, rather than a research
subject in their own right. It concerns the final outcome of binary neutron
star mergers in general, and in particular the details of two physical process
of great importance that are thought to take place in the ejecta from neutron
star mergers, namely the r-process nucleosynthesis and the kilonova emission.
One of the points in understanding these processes, not closely investigated
up until now, is their dependence, if any, of the neutron star equation of state,
which is itself still not conclusively constrained. To this end I have participated
in a project involving running detailed, large scale simulations of binary neu-
tron star mergers varying systematically the equation of state of dense matter
and the initial masses of the neutron stars involved. By extracting the abun-
dances of heavy elements produced in each model system with the help of a
nuclear network, we were able show that the physics of the r-process is rather
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insensitive to these changes, producing in each case an abundance pattern in
agreement with the one measured in the Solar system or in our Galaxy. Fur-
thermore the distribution of the thermo- and hydrodynamical properties of
the ejected matter with respect to the viewing angle of the system revealed a
complex structure which might be of great importance to properly predict the
properties of the kilonova signal and that will be the focus of future investiga-
tions.

In summary, the work presented in this thesis presents a series of steps for-
ward in the understanding of binaries of compact objects. It has been partially
published in Dumbser, Guercilena, Koeppel, Rezzolla, and Zanotti (2017); Guer-
cilena, Radice, and Rezzolla (2017) and Bovard, Martin, Guercilena, Arcones,
Rezzolla, and Korobkin (2017), and embodies my genuine contribution. I hope
that it will provide a useful advancement on the final goal of numerical rel-
ativity, i.e. to produce a physically complete, mathematically self-consistent,
accurate description of relativistic astrophysical systems, from which details of
their behaviour can be reliably extracted.
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Zusammenfassung

Kompakte Objekte - Schwarze Löcher und Neutronensterne - sind nicht nur
für Astrophysiker faszinierende Objekte, sondern auch für eine breite Schicht
anderer Wissenschaftler, etwa Astronomen, theoretische Physiker, Kern- und
Teilchenphysiker, Festkörperphysiker und wohl auch für interessierte Laien.

Zuerst vorhergesagt in der ersten Hälfte des 20. Jahrhunderts (Schwarz-
schild, 1916; Baade and Zwicky, 1934), wurden diese Objekte lange Zeit als
exotische Ideen und mathematische Kuriositäten abgetan. Dies änderte sich
erst mit der Entdeckung von Pulsaren in den späten 1960-Jahren (Hewish et al.,
1968), die bald als rotierende und Energie abstrahlende Neutronensterne iden-
tifiziert wurden, sowie 1972 durch die Beobachtung von Cygnus X-1, dem ers-
ten Kandidaten für ein Schwarzes Loch (Shipman, 1975).

Die Gründe für das Interesse an schwarzen Löchern kann man leicht verste-
hen, wenn man bedenkt, dass kompakte Objekte viele verschiedene Bereiche
der Physik berühren und somit ideale Laboratorien sind um das Wechselspiel
dieser Bereiche zu untersuchen.

Schwarze Löcher, die rein gravitative Objekte sind, eignen sich perfekt um
das Wesen der Gravitation, seine Manifestierung in Effekten wie Gravitations-
wellen und die Unterschiede zwischen den verschiedensten Gravitationstheo-
rien in dem Bereich zu studieren in dem sie am wesentlichsten sind, nämlich
im Regime mit besonders starken Feldern. Genauso wie alle anderen massiven
astrophysikalischen Objekte sind Schwarze Löcher von besonderer Bedeutung
für Akkretionsprozesse, welche als die Energiequelle von einigen sehr hellen
astrophysikalischen Emittern elektromagnetischer Signale, wie z.B. von akti-
ven Galaxiekernen oder Röntgendoppelsternen, vermutet werden.

Zudem gibt es Schwarze Löcher auf einer Vielzahl von Massenskalen, ange-
fangen bei stellaren Massen bis hin zu supermassereichen Schwarze Löchern,
welche millionen- bis milliardenfach schwerer als ihre stellaren Konterparts
sind. Supermassereiche schwarze Löcher spielen eine wichtige, wenn auch noch
nicht ganz verstandene Rolle in der Entstehung und Entwicklung von ganzen
Galaxien und darüber hinaus der Struktur des beobachtbaren Universums,
wodurch sie auch für die Kosmologie relevant sind. Neutronensterne teilen
sich mit Schwarzen Löchern die Eigenschaft, durch Gravitation dominiert zu
sein, jedoch zeigen Neutronensterne durch ihren Aufbau aus baryonischer Ma-
terie ein reicheres dynamisches Verhalten. Bereits früh wurde realisiert, dass
Materie in Neutronensternkernen extreme Dichten erreicht, welche die von
Atomkernen noch übersteigt. Daraus folgt, dass Neutronensterne wichtige In-
formationen über Materie unter solch extremen Bedingungen (welche nicht im
Labor erreicht werden können) liefern können, unter anderem Details der nu-
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klearen Wechselwirkungen, der Eigenschaften von Hyperonen oder des Quark-
Gluon-Plasmas.

Es wird außerdem vermutet, dass Neutronensterne Vorläufer von einigen
der energiereichsten kurzlebigen astrophyskalischen Signale sind, beispielwei-
se kurzen Gammastrahlenausbrüchen, welche als Nachwirkungen von Ver-
schmelzungen von Doppelneutronensternsystemen angenommen werden (Baiot-
ti and Rezzolla, 2017).

Doppelneutronensterne werden auch zunehmend als die höchstwahrschein-
lich einzige Produktionstelle schwerer Elemente identifiziert, durch die r-Prozess
Kernsynthese, die in der von ihrer Verschmelzung hinausgeworfen Materie
stattfindet; außerdem wird erwartet, dass dieser Kernsyntheseprozess (oder
besser gesagt der radioaktive Zerfall der Erzeugnisse) ein weiteres sehr inter-
essantes Übergangssignal generiert, die sogenannte Kilonova (in der Literatur
auch Macronova genannt) (Metzger, 2017a; Rosswog, 2013a).

Obwohl noch viele Fragen offen sind, ist in den vergangenen Jahrzehnten
seit ihrer Entdeckung ein signifikanter Fortschritt in deren Verständnis erzielt
worden. Dies wurde durch ein Wechselspiel and theoretischen Weiterentwick-
lungen und neuen Beobachtungen erreicht, darunter sind z.B. die Entdeckung
eines ultrarelativistischen Doppelpulsars sowie die Bestimmung seiner Orbit-
parameter mit beeindruckender Präzission durch Radiobeobachtungen (Kra-
mer and Wex, 2009), das Verfolgen der Umlaufbahnen von Sternen nahe unse-
rem galaktischen Zentrums, wodurch direkte Rückschlüsse auf die Masse des
supermassiven Schwarzen Lochs im Zentrum der Milchstraße möglich sind
(Gillessen et al., 2009), sowie den immer genauer werdenden Beobachtungen
astrophysikalischer Jetstrukturen mittels Langbasisinterferometrie (VLBI: very
long baseline interferometry). Die beeindruckendste und jüngste Entwicklung
ist jedoch die kürzlich erfolgte Detektion von Gravitationswellen zweier ver-
schmelzender Schwarzer Löcher mit dem LIGO Observatorium (Laser Interfe-
rometer Gravitational-Wave Observatory), welche eine neue Ära der Gravita-
tionswellenastronomie eingeleitet hat (The LIGO Scientific Collaboration and
the Virgo Collaboration, 2016).

Auf der anderen Seite haben theoretische Studien und Modelle unser Ver-
ständnis kompakter Objekte wesentlich vorangebracht. Beim Verständnis der
mathematischen Struktur der allgemeinen Relativitätstheorie sowie der Ent-
wicklung relativistischer Theorien der Hydrodynamik, Viskosität, Elektrody-
namik und Neutrinowechselwirkungen, Approximationen der Einsteingleichun-
gen wie die Post-Newtonsche (PN) Entwicklung (Blanchet, 2006), Gravitation-
Self-Force-Formalismus (GSF) (Barack and Ori, 2003) oder der effektiven Ein-
körperapproximation (EOB) (Buonanno and Damour, 1999) wurden große Fort-
schritte erzielt. Dies erlaubt etwa die Bestimmung der Gravitationswellen die
von einem Doppelsystem (BNS: Binary Neutron Star oder BBH: Binary Black
Hole-System) emittiert werden. Fortschritte wurden auch bei effektiven Mo-
dellen für die starke Wechselwirkung erzielt, welche stets verbesserte Zustands-
gleichungen (EOS: equation of State) ergeben, die sich dazu eignen Materie in
Neutronensternen zu beschreiben. Ein weiteres Beispiel sind Theorien zur Be-
stimmung der Opazität von BNS-Massenauswürfen, die ein wesentlicher Bau-
stein in der Berechnung von Kilonova-Lichtkurven sind (Barnes et al., 2016).
An dieser Stelle wäre es natürlich möglich noch unzählige weitere Beispiele
aufzulisten.

Im vergangenen Jahrzehnt hat sich allerdings eine grundlegend neue Me-
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thode etabliert, ein gravitativ gebundenes System von kompakten Objekten zu
beschreiben. Diese Methode wird Numerische Relativitätstheorie genannt und
besteht daraus, auf vergleichsweise großen Längen- und Massenskalen die Re-
lativitätstheorie auf dem Computer numerisch zu lösen und dabei interessante
Observablen zu extrahieren. Diese wissenschaftliche Disziplin ist relativ jung
– die erste erfolgreiche Simulation von zwei umeinander kreisenden und ver-
schmelzende Schwarzen Löchern bei der auch das Gravitationswellensignal
berechnet werden konnte, wurde von Pretorius (2005) durchgeführt – wurde
aber schnell zur vollen Reife entwickelt und hat sich mittlerweile als mächtiges
Forschungswerkzeug fest etabliert, da es traditionelle Methoden gut ergänzen
kann. In diesem Kontext wurde die vorliegende Arbeit entwickelt und durch-
geführt.

Die größte Stärke der numerischen Relativitätstheorie ist, dass sie Lösun-
gen für nicht-idealisierte und damit nichttriviale gravitative Systeme liefern
kann, welche einer analytischen Betrachtung nicht zugänglich sind. Die da-
mit erzeugten Daten können auf die gleiche Weise analysiert werden wie ex-
perimentelle Messungen oder Beobachtungen und erlauben Forschern damit
wichtige Rückschlüsse auf die Eigenschaften dieser Systeme zu ziehen. Da-
durch konnten numerische Untersuchungen wichtige Beiträge liefern, etwa
zum Gravitationswellensignal eines gerade verschmolzenen Doppelsternsys-
tems (“Post-Merger”) (Takami et al., 2015), den thermo- und hydrodynami-
schen Eigenschaften von Materie, die bei solchen Ereignissen das System ver-
lässt oder zur Topologie und Intensität von magnetischen Feldern (Baiotti and
Rezzolla, 2017).

Die Durchführung von numerischen Simulationen ist an und für sich ein
nichttriviales Unterfangen und erfordert eine besondere Aufmerksamkeit, um
erfolgreich zu sein. Die Gleichungen, die die relevanten physikalischen Theo-
rien beschreiben müssen in eine geeignete Form gebracht werden, um eine nu-
merisch stabile Evolution zu gestatten. Effiziente, stabile und akkurate Metho-
den müssen entwickelt werden, um sowohl die Anfangswerte als auch deren
Zeitentwicklung auf dem Computer zu berechnen. Die Umsetzung des Al-
gorithmus in einer geeigneten Programmiersprache erfordert Konzentration
und Aufmerksamkeit, ferner müssen Analysemethoden erdacht und entwi-
ckelt werden, um den berechneten Daten einen Sinn zu entnehmen. Letztlich
sind die rechnerischen Kosten einer relevanten numerische Simulation nicht
zu vernachlässigen, sie erfordern den Einsatz von Supercomputern.

Eines der ersten Probleme, denen man im Bereich der numerischen Rela-
tivitätstheorie begegnet, ist die Umformulierung der allgemeinen Relativitäts-
theorie zu einem numerisch integrierbaren Anfangswertproblem. Ich habe da-
zu beigetragen, eine neue Formulierung erster Ordnung namens FO-CCZ4 zu
entwickeln, die in Dumbser, Guercilena, Koeppel, Rezzolla, and Zanotti (2017)
veröffentlicht ist. Um numerisch stabil integriert werden zu können, müssen
solche Gleichungssysteme zuerst in hyperbolische Form gebracht werden. Die-
se mathematische Voraussetzung bedeutet physikalisch, dass Information sich
nur mit endlicher Geschwindigkeit ausbreiten kann, was eine natürliche Eigen-
schaft moderner relativistischer Theorien ist (Sarbach and Tiglio, 2012). Es lässt
sich weiter zeigen, dass aus Hyperbolizität die Wohldefiniertheit eines Dif-
ferentialgleichungssystems folgt. Die Einsteingleichungen in ihrer typischen
vierdimensionalen und kovarianten Formulierungen sind nicht unmittelbar
als hyperbolisch erkennbar und müssen daher in geeigneter Weise umgeformt
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werden, um ihre hyperbolische und wohldefinierte Natur preiszugeben.
Man konnte zeigen, dass die FO-CCZ4-Formulierung, die in dieser Arbeit

beschrieben wird, stark hyperbolisch ist und sich somit für stabile Langzeitent-
wicklungen eignet. Ebenso wie die CCZ4-Formulierung (Alic et al., 2012, 2013),
auf welcher die FO-CCZ4-Formulierung basiert, beinhaltet sie einen Dämp-
fungsmechanismus um die Verletzungen der Zwangsbedingungen zu redu-
zieren und damit die lokale Genauigkeit zu erhöhen. Außerdem ist das Glei-
chungssystem in all seinen charakteristischen Feldern manifest linear degene-
riert, sodass keine Stoßwellen (Schocks) erzeugt werden können und damit
das Problem von Diskontinuitäten in der numerischen Lösung nicht auftritt.
Dies ist zwar auf Grund von physikalischen Argumenten keine überraschen-
de Eigenschaft, aber sehr wohl leiden einige Formulierungen unter diesem
Problem. Zuguterletzt ist das FO-CCZ4-System eine partielle Differentialglei-
chung erster Ordnung in Zeit und Raum. Dadurch ist es geeignet, mit sehr ak-
kuraten, effizienten und skalierbaren diskontinuierlichen Galerkin-Verfahren
(DG) gelöst zu werden (Hesthaven and Warburton, 2007). Wir entwickelten
dementsprechend eine Umsetzung dieser Formulierung in Form eines Compu-
terprogramms, welche auf einem modernen ADER-DG-Verfahren mit WENO-
Subcell-Limiter basiert. Wir haben demonstriert, dass der Code mühelos alle
Standardtests mit erstaunlicher Genauigkeit besteht und haben ihn erfolgreich
auf die Zeitentwicklung eines statischen (isolierten) sowie zweier kollidieren-
den schwarzen Löcher angewendet. Es sei angemerkt, dass dies die ersten drei-
dimensionalen Simulationen von Schwarzen Löchern mit DG-Verfahren sind.
Um auch nicht materiefreie Raumzeiten wie z.B. BNS oder Akkretionsschei-
ben behandeln zu können, müssen die Einsteingleichungen mit den Bewe-
gungsgleichungen der Materiefelder gekoppelt werden. In den meisten Fällen
wird zur Beschreibung von Materie eine ideale Flüssigkeit verwendet (Font,
2008), welche den relativistischen Eulergleichungen unterliegt, die dann zu-
sammen mit den Einsteingleichungen gelöst werden müssen. Die Eulerglei-
chungen sind allerdings inherent nichtlinear (Leveque, 1992), d.h. sie können
bereits aus den Anfangswerten Stoßwellen entwickeln. Die besondere Heraus-
forderung zum Lösen dieser Gleichungen ist daher die Entwicklung von nu-
merischen Methoden die nicht nur akkurat sind, sondern die auch Diskonti-
nuitäten scharf auflösen können ohne dabei künstliche Oszillationen o.ä. zu
entwickeln. Die Standardwahl in der numerischen Relativitätstheorie fällt da-
her auf hochauflösende schockeinfangende Techniken (HRSC: High-resolution
shock-capturing) (Rezzolla and Zanotti, 2013). Ich habe alternativ zu den HRSC-
Methoden eine neue numerische Methode entwickelt, die sich “Entropie-be-
schränkte Hydrodynamik” (ELH: Entropy limited hydrodynamics) nennt (Guer-
cilena, Radice, and Rezzolla, 2017). Die ELH-Methode ist numerisch einfacher
als HRSC-Methoden und erlaubt damit schnellere Rechnungen ohne Verlust
von Genauigkeit. Das ELH-Schema begrenzt den erhaltenen Strom und verbin-
det eine akkurate Flussformel höherer Ordnung mit einer numerisch stabileren
niedriger Ordnung in einem lösungsabhängigen Verhältnis. Dieses Verhältnis,
mit welchem die beiden Formeln miteinander gemischt werden, wird durch ei-
ne “Viskositätsfunktion” bestimmt, welche proportional zur lokalen Produkti-
on von Entropie im Fluid ist. Da Entropie in perfekten Fluiden nur durch Stoß-
wellen erzeugt werden kann, wird das korrekte aber mit niedriger Ordnung
rechnende Verfahren nur in Gegenwart von Stoßwellen angewandt, während
das Verfahren höherer Ordnung automatisch im glatten Bereich der Lösung
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angewandt wird. Ich habe das ELH-Schema in einem Finite-Differenzen-Code
(FD) implementiert und erfolgreich an einer Anzahl von speziell-relativistischen
Testfällen sowie allgemein relativistisch berechneten isolierten Neutronenster-
nen getestet. In speziell relativistischen eindimensionalen Tests wie den Stoß-
rohrtests kann der Code Diskontinuitäten scharf auflösen und dabei gleichzei-
tig die theoretische Konvergenzordnung im Bereich der homogenen Lösung
aufrechterhalten. In dreidimensionalen allgemeinrelativistischen Zeitentwick-
lungen von Neutronensternen habe ich die Methode mit einem MP5-Verfahren
(einer typischen HRSC-Methode) verglichen und sie als stabil und akkurat
verifizieren können. Sie zeigte sich außerdem in der Lage, stark relativisti-
sche Ereignisse wie den Gravitationskollaps eines Neutronensterns zu einem
schwarzen Loch korrekt zu beschreiben. Darüberhinaus ist das Verfahren in
einigen Fällen rechnerisch um bis zu 50% schneller als vergleichbare HRSC-
Methoden, obwohl bei der Implementierung auf Performanz kein besonde-
res Augenmerk gelegt wurde. Nachdem all diesen Themen wie Korrektheit,
Stabilität und rechnerischer Effizient Zeit und Raum gegeben wurde, können
numerische Simulationen ihre Fähigkeit als Werkzeuge zur Untersuchung der
Physik kompakter Objekte unter Beweis stellen. Ein spezielles Rätsel welches
numerische Simulationen vor kurzem erfolgreich angegangen sind ist die Un-
tersuchung zum Ursprung von schweren Elementen in unserem Universum.
Es ist bekannt , dass chemische Elemente die schwerer als Eisen sind zuvor-
derst durch Neutroneneinfang von leichteren Saat-Nuklei entstanden sind. Im
Gegenzug sind Elemente mit Massenzahl A & 120 in erster Linie durch den
schnellen Neutroneneinfach (r-Prozess) entstanden. Dieser Prozess kann in Um-
gebungen stattfinden, in denen das Verhältnis von Neutronen zu Saat-Nuklei
so hoch ist, dass die Zeitskalen für Betazerfälle viel länger werden als die für
Neutroneneinfang. Während man noch vor einiger Zeit davon ausging, dass
die durch Kernkollaps-Supernovae (CCSN: Core-collapse supernovae) emit-
tierte Materie der Hauptort zum Abspielen von r-Prozessen ist, ist mittlerweile
der Ausstoß von Doppelneutronensternsystemen – auch durch spektroskopi-
sche Untersuchungen bestätigt (Ji et al., 2016) – ein vielversprechenderer Kan-
didat geworden. Die Isotopenhäufigkeit von schweren Elementen die durch
Simulationen von Neutronensternverschmelzungen berechnet wurden zeigen
sich als kompatibel mit denen, welche in unserer Galaxie und unserem Son-
nensystem gemessen wurden (Radice et al., 2016).

Zu diesem Themenbereich habe ich beigetragen, den Zusammenhang zwi-
schen der Isotopenhäufigkeit und Zustandsgleichungen von Neutronenster-
nen zu untersuchen (Bovard, Martin, Guercilena, Arcones, Rezzolla, and Ko-
robkin, 2017). Durch akkurate Parameterstudien an Langzeitsimulationen von
Verschmelzungen von Doppelsternsystemen in welchen die Massen der bei-
den untersuchten Sterne systematisch verändert wurden sowie durch den Ein-
satz von verschiedenen Hochtemperaturzustandsgleichungen die einen großen
Bereich an Steifheit abdecken waren wir in der Lage, die totale Menge von
emittierter Masse (eine weitere sehr relevante, aber bislang kaum bestimmte
Variable, (Dietrich and Ujevic, 2017; Dietrich et al., 2017b)) sowie die hydro-
und thermodynamischen Eigenschaften dieser Materie (inklusive ihrer Mor-
phologie und Winkelabhängigkeit) zu bestimmen. Mit den Messdaten fütter-
ten wir anschließend ein Nukleares Reaktionsnetzwerk (Winteler, 2012) und
berechneten die Isotopenhäufigkeiten von schweren Elementen für jedes BNS-
Modell. Wir fanden heraus, dass trotz einer gewissen Korrelation zwischen
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Ejekta und Steifheit der EOS, die r-Prozess Ausbeute erstaunlich robust ge-
genüber Variationen der astrophysikalischen Bedingungen ist und konsistent
die Isotopenhäufigkeiten im Sonnensystem mit ihren derzeitigen Ungenauig-
keiten in Bezug auf die Eigenschaften neutronenreichen Nukeli abbildet. Wir
waren ebenfalls in der Lage, die Lichtkurve des elektromagnetischen Signals,
welches durch den radioaktiven Zerfall der Elemente erzeugt wird, zu verfol-
gen – die sogenannte Kilonovae (auch Macronovae genannt) – sowie eine der
derzeit aufwändigsten Untersuchungen bezüglich der Winkelverteilung des
Ejektas durchzuführen. Diese hatte zum Ergebnis, dass die Abhängigkeit der
Eigenschaften der ausgeworfenen Materie wie der Elektronendichte Ye auf den
Betrachtungswinkel einen großen Einfluss auf die Lichtkurven, Spektren und
Detektierbarkeit der Kilonovae haben kann. Immer leistungsfähigere Compu-
ter erlauben zunehmend realistischere Simulationen und treiben um so mehr
die Forschung an geeigneteren Formulierungen der Gleichungen sowie der nu-
merischen Methoden, mit denen sie gelöst werden, vorran. Insbesondere müs-
sen sich die Methoden den architektonischen Gegebenheiten der Computerge-
nerationen anpassen. Es würde sich daher lohnen, eine optimierte, vektorisier-
te Version der ELH-Methode zu entwickeln und mit einem hochskalierenden
DG- oder kompakten FD-Schema (Lele, 1992) zu koppeln. Solche Fortschritte
lassen an eine Simulation hoffen, die ein komplettes und konsistentes Bild des
Eindrehens und Verschmelzens von Neutronensternsystemen inklusive rela-
tivistischen Effekten, Neutrinointeraktionen, Viskosität, Wärmetransport, ma-
gnetischen Feldern und möglicherweise Multifluiden (Andersson et al., 2017).
Solche Simulationen können viele offene Forschungsfragen klären, etwa den
präzisen Zusammenhang von der Menge der ausgeworfenen Masse zu den
Anfangswerten und ihrer Mikrophysik, der Kilonova-Signatur und ihrer De-
tektierbarkeit oder dem dynamischen Feedback der r-Prozess Nukleosynthese
auf die Morphologie der Ejekta.
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