STK3 is a therapeutic target for a subset of acute myeloid leukemias

SUPPLEMENTARY MATERIALS

Supplemental Figure 1: Comparison of the impact of STK3 knock-down in AML#22 and two healthy donors. CD34+ hematopoietic progenitor cells were isolated from two healthy donors (N#14, N#15) and infected with lentiviral particles expressing the shRNA targeting STK3. Cell counts were performed at indicated time points. AML#22 cells served as positive control. All results were normalized to non-target control shRNA transduced cells to control for differential proliferation kinetics between the samples. Data are presented as mean \pm SD.

Supplemental Figure 2: Expression of YAP in AML cell lines and primary AML samples. (A) Basal YAP expression analyzed at mRNA levels by qPCR and at protein levels by western blot assay in indicated cell lines is shown. Data are presented as mean ± SD. (B) Basal YAP expression at mRNA levels and at protein levels analyzed in indicated primary AML cells is shown. Data are presented as mean ± SD. (C) YAP expression assessed by western blot after UCN-01 treatment, STK3 knock-down or STK3 over-expression in MV4:11 cells. (D) YAP expression analyzed in indicated primary AML cells after UCN-01 treatment. Hela cells were used as positive controls and GAPDH served as loading controls.

Supplemental Figure 3: Gene ontology (GO) analysis of differentially phosphorylated proteins after STK3 knockdown in MV4:11 cells. The most enriched cellular processes are highlighted. Note that the cell cycle pathway was the most enriched process.

Supplementary Table 1: A list of phosphopeptides quantified in cells infected with control shRNA and shRNA against STK3. See Supplementary_Table_1

Supplementary Table 2A: Human leukemia cell lines used in the study

Name	Age	Gender	Disease status	FAB	Model for mutations	Doubling time (h)	Reference
MV4:11	10	Male	At diagnosis	M5	MLL-AF4, FLT3	~50	Lange et al.,Blood (1987)
HL60	36	Female	At diagnosis	M2	NRAS, cMYC	~40	Collins SJ., Blood (1987)
MOLM13	20	Male	At relapse	M5	MLL-AF9, FLT3	~50	Matsuo et al., Leukemia (1997)
OCI-AML3	57	Male	At diagnosis	M4	NPM1	~48	Quentmeier et al., Leukemia (2005)
Kasumi-1	7	Male	At relapse	M2	AML1-ETO	~70	Asou <i>et al.</i> , Blood (1991)

Supplementary Table 2B: Human primary AML samples used in the study

sample ID	gender	patient age at sample collection	status at sample collection		molecular genetics	disease at initial diagnosis
	[m/f]	[age]	[initial diagnosis/ relapse]	- cytogenetics		
AML2	f	67	initial diagnosis	Normal karyotype	NPM ^{wt} , FLT3 ^{wt}	de novo
AML22	m	75	relapse	FISH i.O.	$NPM^{\rm mut}$, $FLT3^{\rm wt}$	de novo
AML24	m	71	initial diagnosis	n.a.	NPM ^{wt} , FLT3 ^{wt}	de novo
AML28	m	64	initial diagnosis	Normal karyotype	NPM ^{wt} , FLT3- ITD	de novo
AML29	f	58	initial diagnosis	Normal karyotype	NPM ^{mut} , FLT3- ITD	de novo
AML31	f	54	initial diagnosis	del(5q)	NPM ^{wt} , FLT3 ^{wt}	secondary AML
AML54	m	62	initial diagnosis	del(7q)	NPM ^{wt} , FLT3 ^{wt}	de novo

Supplementary Table 3: shRNA and sgRNA sequences used in the study

RNAi or CRISPR-Cas9	Target	Sequence
shScr	human scramble control	CAACAAGATGAAGAGCACCAA
shSTK3	human STK3	GAATGCCAAACCTGTATCAAT
sgSTK3#1	human STK3	CGTTACCTCTTAGGCGCCGG
sgSTK3#2	human STK3	TGGTGAGGTTGCATTTCCTT