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Chapter 1

Introduction

1.1 Overview

The era of gravitational wave multimessenger astronomy is here. The simulta-
neous detection of both gravitational and electromagnetic waves by the LIGO
Scientific Collaboration and collaborators in August 2017 [263, 264, [148] from
the merger of neutron stars heralds the beginning of a new era of astronomy. The
simultaneous detection confirms long held conjectures of neutron stars mergers
being the origin of short gamma-ray bursts (SGRBs) [184), [78| 210, 27, 36] and
the origin of the heavy elements in the universe [[139, 138, [78]].

It is also an equally exciting time for the field of numerical relativity. Due to
the complicated nonlinear nature of the Einstein equations, binary neutron stars
can only be modelled numerically and numerical relativity has a critical role to
play in the explanation of what has been observed: from the computation of the
gravitational wave signal, to the modelling of the merger remnant, to the formation
of an electromagnetic counterpart. In the coming years, numerical relativity will
play a fundamental role in the emerging field of gravitational wave astronomy.

In anticipation of the detection of gravitational waves from GW170817, the
modelling of neutron stars has become increasingly sophisticated in the previous
years and significant progress has been made over the last decade to accurately
simulate their inspiral, merger and post-merger dynamics [23, [192]. Advances
in treatments of more sophisticated microphysics, such as neutrino transport and
magnetic fields, have lead to increasingly more realistic simulations and are un-
covering a wealth of new physics in both the gravitational and electromagnetic
spectrum.

As observed in GW170817, the electromagnetic spectrum of merging neutron
stars is rich. In particular, one electromagnetic counterpart that has recently re-
ceived significant attention is that of a kilonova [[146,222,1196, 107,194,272, 1123,
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228,201, 1124,1229, 174, 258,126,219, 275,1168]]. A kilonova is an infrared/optical
signal powered by the decay of a variety of heavy elements, with a dominant con-
tributions from the elements near the second 7-process peak (i.e., 331, 3*Te and
133X e), and subdominant ones from the third r-process peak and unstable transura-
nian elements. These elements can be formed after a BNS merger due to the onset
of rapid neutron-capture process. A kilonova has been observed with GW170817
[263], however prior other strong kilonova candidates have potentially already
been observed in GRB 130603B [37, 260], GRB 060614 [277, |122]] and GRB
050709 [121], but the very large uncertainties in these measurement have so far
prevented an unambiguous identification.

The power source of kilonovae is the decay of elements produced during the
r-process and throughout the history of our universe this process has given rise to
about half of the elements heavier than iron. While its fundamental concept has
been known for decades [52], its astrophysical origin has not been unambiguously
identified yet. For matter to undergo r-process nucleosynthesis, in fact, a very
neutron-rich and explosive environment is required and this puts constraints on
the potential astrophysical sites where the process should take place. The two
commonly suggested astrophysical sites are core-collapse supernovae and BNS
mergers. Recent simulations of core-collapse supernovae (CCSN) have shown
that the environment in the outer layers of the explosion is not neutron-rich enough
and have been unable to reproduce the observed solar system abundances of heavy
elements [117, 116} 83} 273]], although rare forms of CCSN driven by magnetic
fields are also a possibility [274} 179, 1835]]. In contrast, neutron star mergers are
considered an increasingly likely source of heavy elements. Recent observations
of ultrafaint dwarf galaxies [120] have strongly pointed towards BNS mergers
being the main site of production of r-process elements.

Furthermore, increasingly sophisticated numerical-relativity simulations with
neutrino transport have shown that not only significant amounts of material are
ejected (due to a variety of physical processes) in BNS mergers, but the environ-
ment in the ejecta provides the necessary conditions to trigger and sustain robust
r-process nucleosynthesis. Numerous simulations ranging from Newtonian to full
relativistic, with a variety of microphysical treatments, have shown four broad
ejection mechanisms. These are: dynamical ejecta [221} 209, 214, [137, 216, 31,
87, 114} 272, 228, 229, 201}, [142} |68]], neutrino-driven winds [67, 194, 123, 164
163] 1124, 181}, 93], magnetically driven winds [237, 131}, 245, 211}, 159], and vis-
cous evolution of the accretion disk [35} (172} 103} [82]]. Their typical time scales
are approximately ~ 10 ms for dynamical ejecta, ~ 100 ms for magnetically
driven or neutrino-driven winds, and ~ 1 s for viscous evolution. Due to the high
computational cost of performing long-term fully relativistic simulations, mostly
dynamical ejecta have been studied in full relativity, while other mechanisms have
been the subject of mostly Newtonian simulations.
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In this thesis I develop a new technique of the use of tracers to study prob-
lems in the micro- and macroscopic aspects of post-merger dynamics in binary
neutron star mergers, with particular attention to the dynamical ejecta and result-
ing r-process nucleosynthesis. The use of tracers is a novel concept [45] but has
been relatively unexplored in the context of neutron star mergers. Tracers, while
appearing to be relatively simple theoretically, do have subtle technical issues that
need to be resolved before their use in numerical simulations. Tracers have a long
history in the field of fluid dynamics, both in theory and experiment, as they can
be used to “trace” the evolution of a fluid that is otherwise inaccessible to the ex-
perimentalist. For example, in the evolution of a fluid in a tank, tracers can take
the form of a coloured dye which can be used to follow the evolution of vortices
in a stratified fluid [46]]. In grid based code, the evolution of a fluid is non-trivial
to disentangle because the grid is fixed and a fluid element cannot be followed. In
contrast, a smoothed-particle hydrodynamics code has this information directly
because the evolved quantities are particles which represent the fluid and thus the
fluid evolution is trivially obtained.

Although the evolution of tracers is simple - they are passively advected -
there are many subtle issues that must be resolved before we can use them in
simulations. For example, tracers, by definition are passively advected and thus
cannot have any mass as having a mass would violate the passivity condition since
they would then have to be taken into account in the energy-momentum tensor.
Thus tracers must remain massless. However, despite being massless, it is useful
to associate a mass, for example with the calculation of kilonova light curves. In
this thesis, we develop a method to do this and apply it to the calculation of r-
process nucleosynthesis and kilonova light curves. As we want to compute these
physical quantities from the fluid and tracers only represent a sampling of the fluid,
in order to ensure that we are correctly sampling the underlying fluid we must
ensure that the way the tracers are placed initially is sufficient to properly capture
the evolving fluid. I found that the most effective way to place the tracers is
uniformly across the distribution of density. At first, this approach seems counter-
intuitive as one would expect that when studying material that eventually becomes
unbound, one must place a lot of tracers at low-densities near the surface as this
material is most likely to be ejected tidally. However in practice this is not the
case and doing so oversamples low-density ejecta while undersampling ejecta that
comes from deeper in the gravitational potential well.

Using this newly developed tracer method, I apply it to two different areas of
the post-merger of binary neutron stars: bound material [[110, 8] and unbound ma-
terial [44]. After the merger of two neutron stars, if there is not prompt collapse
to a black hole, a metastable object called a hypermassive neutron star is formed.
This object is prevented from promptly collapsing to a black hole through differ-
ential rotation [110]. Physically, this represents different regions of the neutron
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star rotating at different rates and provide additional support to the prevention
of collapse. The nature of differential rotation of the hypermassive neutron star
is still not a settled question, but recent simulations have shown that the simple
model of a constant rotation profile are not found in numerical simulations and
that a modification of this law is required. Another interesting feature of the re-
manent is that there is a phase difference between m = 2, [ = 2 bar mode and the
rotation i.e., regions of higher density have lower rotation and regions of lower
density have higher rotation. In [110] we found an explanation for this behaviour
using tracers restricted to the inner region of the remanent where material remains
bounded. Because the tracers allow the fluid lines to be followed, we were able
to show that a Bernoulli-like conservation law holds and that as a result of this
conservation this reciprocal relationship is a natural consequence of a conserved
quantity. Tracers explicitly illustrate this relationship as they allow, for the first
time to our knowledge, the evolution of quantities along fluid lines in grid-base
numerical relativity simulations.

As further application of tracers to bound material, in [8]], tracers were used to
analyse the influence of dissipative effects on the post-merger remnant. To model
neutron stars, the assumption of a perfect fluid is used, that is a fluid that does not
have heat transfer or dissipative effects and the pressure is isotropic. Although this
assumption is well met when considering simplified treatments of neutron stars,
the inclusion of neutrinos causes the timescales associated with these effects to
decrease significantly and potentially become the same order of magnitude as the
lifetime of the hypermassive neutron star.

Finally, the tracer method is applied to the creation of the heavy elements in
the dynamical ejecta. In order to calculate the nucleosynthesis in a nuclear net-
work, the thermodynamical history of the fluid element is required. This history is
needed as it starts the initial reactions in the network. A previously used method
[201] required adiabatically extrapolating from a sphere. Although this method is
easier to implement it has draw backs as the expansion of the fluid is very close,
but not quite adiabatic [45]. Using the tracers, we are able to follow the history
of the fluid element that is otherwise inaccessible in a grid-based code. Because
tracers are massless, a method must be derived that associates a “mass’ with trac-
ers so the final integrated abundances can be properly weighed. Using a variety of
equations of state and masses, a systematic investigation of dynamical ejecta with
neutrino transport was done using these tracer methods as the central technique
to study the resulting r-process. We found that the amount of dynamical ejecta
is very sensitive to the various input parameters and faces large systematic errors
with the resolution. However, despite these, the average amount of dynamical
ejecta is roughly ~ 103 M, which is consistent with that observed in GW 170817
[265].

This thesis is organised as follows: Chapter [2]deals with all the mathematical,
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physical, and numerical background needed to study neutron star mergers on su-
percomputers; Chapter |3| introduces the method of tracers into grid based codes
of merging neutron stars and finds the optimum placement to compare with the
underlying fluid; Chapter [ applies this tracer method to bound material and is
used to explain the observed phase-difference present in the post-merger rema-
nent of a neutron star merger and its connection to differential rotation; Chapter [5]
further applies tracers in bound material to studying the effects of dissipation in
the modelling of neutron star mergers; Chapter[6|applies the tracers to the study of
unbound material, in particular a comprehensive study of dynamical ejecta from
neutron star mergers were simulated and r-process abundances and kilonova light
curves were produced; finally Chapter [/| ends with some conclusions and future
research directions.

1.2 Notation

Throughout this entire thesis, unless otherwise specified, we use a system of units
such that c = G = M, = 1, where c is the speed of light in vacuum, G is
the gravitational constant, and M is the mass of the Sun. We use Einstein’s
convention of summation over repeated indices. Latin indices run over 1,2, 3,
while Greek indices run over 0, 1,2, 3. The spacetime metric signature we adopt
is (—,+,+, +).



Chapter 2

Background

This background chapter is meant to provide a bird’s eye view of the physics and
numerics involved in solving problems in numerical relativity. As much of the
material that is presented is standard textbook material, only the most salient fea-
tures will be discussed. These details given are sufficient to understand the basics
of the results presented in this thesis. For detailed discussions of general relativ-
ity, numerical relativity, and related topics, we refer the reader to the following
numerous excellent textbooks [230, 271, 227,70, 154, (197, 29, 1213, |233]].

2.1 The Einstein field equations

We begin with a very high level overview of the Einstein equations. To start we
assume that spacetime is represented by a four dimensional manifold M equipped
with a symmetric metric tensor g. For simplicity, we assume that this manifold
is sufficiently well behaved to avoid any technical mathematical issues. As the
manifold is equipped with a metric, we can represent the infinitesimal distance
between two points on the manifold by ds?, which takes the form

ds® = Gudxtdx” (2.1)

where g, is the metric tensor and are determined by solving the Einstein equa-
tions. This line element defines an invariant distance between two points on our
manifold. We choose the signature of this manifold to be (—,+,+,+). This
means that there are three different possibilities for the sign of ds?>. We denote
ds® > 0 as spacelike, ds*> = 0 as null or lightlike, and ds* < 0 as timelike. These
definitions extend to any scalar, for example the norm of the 4-velocity which we
will define later.

From the metric tensor we can now define two important quantities. First are
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the Christoffel symbols,

1
[Mgs = §g“(g,\5,5 + grs3 — GBsn)- (2.2)

The Christoffel symbols allow us to define the covariant derivative, which extends
the notion of the derivative to curved spaces. For example, for vectors, the covari-
ant derivative is defined

V' = 0,0 +v°T" s, (2.3)

and higher order versions follow similarly. Using the Christoffel symbol, we can
define the Riemann curvature tensor

Rpa;w = aurpua - 8urpua + Fp/D\FAVJ - FpVAF/\ua~ (24)

The Riemann curvature tensor is defined through the parallel transporting of a
vector around in a loop and provides a method of measuring the curvature of a
manifold. Although it is a rank-4 tensor, the Riemann curvature tensor possesses
numerous symmetries with the most important being the Bianchi identities,

VARO(@A, + V(SRan\ + VVRQQ,\(; = 0. (2.5)

In total, it can be shown that in 4 dimensions there are only 20 independent com-
ponents of the Riemann curvature tensor. Continuing with the Riemann curvature
tensor, we can define a further tensor from the contraction of two indices. This
yields the Ricci tensor and is defined as

R;w = R)\,u,)\ua (26)
which in turn allows us to define the Ricci scalar
R :=R",. (2.7)

From these ingredients the Einstein equations are defined as
1
G =R, — §Rgu,, =811, (2.8)

where T}, is the stress-energy tensor that describes the energy-momentum distri-
bution of matter. From the Bianchi identities it can be shown that

V,.G" = 0. (2.9)

Given these equations the overall goal is simple, we want to solve the Einstein
equations for the metric g, for a given fluid configuration 7,,,. However, due to
the complicated non-linear nature of the Einstein equations, there is no possibility
of an analytical solution to a neutron star merger. Indeed the idealised two body
problem in general relativity cannot be solved exactly so instead a numerical so-
lution must be sought. In the next sections, the machinery required to find such a
solution will be developed.
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2.2  3+1 formalism

Although general relativity is coordinate independent, in order to solve problems
numerically, the computer needs some coordinate system to evolve the equations
in. Furthermore, given that the Einstein equations are a set of coupled PDE:s, ini-
tial data is required. Likewise, because the computer is a finite system, it cannot
extend the coordinates to infinity so some boundary conditions must also be spec-
ified. Mathematically, the goal is rewrite the Einstein equations as an initial value
boundary problem.

We follow the standard approach and derive here the essential features of the
3+1 decomposition of Einstein’s equations. The justification for this name is clear,
we want to split the equations into a 3D spatial part and a 1D time component.
Ideally, this will set-up the Einstein equations as a set of PDEs that evolve in time
and can be attacked with numerical methods.

The method to achieve this requirement is to foliate the spacetime into non-
intersecting 3D hypersurfaces. It can be shown that if we assume that the space-
time is globally hyperbolic, this condition is always satisfied [213]. With this
mathematical technicality satisfied, the idea is simple: spacetime is foliated into
non-intersecting spatial hypersurfaces defined by a constant time coordinate ¢ and
then these hypersurfaces are evovled according to some evolution equation.

Figure [2.2]illustrates this decomposition. The hypersurfaces >. are defined by
the condition ¢ = constant. Given this constraint, we can define a normal vector n
to these hypersurfaces. Such a vector can be defined as

n, = AV,t = {4,0,0,0}, (2.10)

where the constant A is to be determined. In order to fix this constant, we re-
quire that it corresponds to an observer, hence is timelike, and is future-directed.
Timelike vectors are normalised such that

nfn, = g"A*> = -1, (2.11)
from which we can define
1
a? = (2.12)

_ ﬁ :
and thus our normalisation vector is chosen to be
n, = —aV,t. (2.13)

with the negative sign chosen to satisfy the future-directed condition. This func-
tion «v is referred to as the lapse function as it measures the rate of changing of
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A
t+dt

zt — Bidt $—————> 4z (t + dt)

Zt—}—dt 2L

2t

Figure 2.1: figure

Figure 2.2: Illustration of the 3+1 decomposition of spacetime with hypersurfaces
of constant time coordinate >; and ;. 4. Figure courtesy of [213].

coordinate time along the vector n*. Given that we have defined a normal vector,
we can also define a projection operators that will project the spatial hypersur-
faces. This projection operator is defined as

Yuv = Guv + n,ny, (214)
where v;; = g;; and
=gt (2.15)

where 7% = 0 but 4/ # ¢g”. We also denote ~;; as the spatial 3-metric. An-
other important property of this metric is that 4%/~ = §° so the spatial 3-metric
can raise and lower spatial indices. With this definition, we denote the spatial
projection operator as

v, =", +nl'n,, (2.16)

which will project a given tensor into its spatial, i.e., ¢ = 1,2, 3, components.
Similarly we can define time projection operator as

N#, .= —ntn, . (2.17)
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In terms of time evolution of the hypersurface, i.e., V ,t, this is not the direction
in which the coordinate ¢ changes. This is clear as

1
PPVt = — £1, (2.18)
(0%

and hence these vectors are not parallel, as the inner product is not 1. To find this
vector along which time-evolution is given, we define

t = an” + B*, (2.19)

where 3# = (0, %) is the shift function. This vector is constructe from the time-
like component an* and spatial component 3#. This decomposition is illustrated
in Figure 2.2 with the green arrow representing t and the blue and red lines repre-
senting the spatial and timelike components respectively. It immediately follows
from the definition that

V=1, (2.20)

and hence t* is parallel to the direction of evolution of the time coordinate.
With the above definitions, it can be shown [[106, 213]] that the line element in
the 3+1 decomposition becomes

ds* = —a’dt* + v;;(da’ + B'dt)(dz’ + B dt). (2.21)

Written in this way, the line element emphasises the origin of the naming of a. If
we set dz’ = 0 we have that

ds® = —a2dt?, (2.22)

which is just a measurement of the proper time between two hypersurfaces, i.e., how
much proper time elapses between the two surfaces. Likewise, 3° measures the
change in coordinates of a point

't — x4 it (2.23)

i.e., how much the point “shifts”. Finally the metric written in this form the normal
vector becomes

1 ‘
ny={-a,0,0,0}  n'=—{1,-p}, (2.24)
!
and another relation can be derived relating the determinants

V=g =a\/7q. (2.25)

'Tt is easy to verify indeed that N*,t¥ = an* and v*,t¥ = 3" as expected.
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2.3 Einstein equation formulations

In the previous section, the machinery of the metric was developed that lead natu-
rally to a split into a temporal and spatial part. However, all that has been accom-
plished is simply re-writing the metric in a different way. To proceed, equations
of motion for «, /3°, 7i; are required. However it is important to note that due to
the gauge freedom of general relativity, there is some arbitrariness allowed in the
evolution equations. This is due to the Bianchi identities which reduces the num-
ber of independent components of the metric from 10 to 6. The remaining four
undetermined quantities express the freedom in changing coordinates. It is for this
reason that «v, 3 are referred to as gauge quantities and can be chosen freely.

To proceed, let us first consider a very general overview of Einstein’s equa-
tions, with the goal of evolution equations in mind. From Section 1 we have that
the Christoffel symbols have a generic structure of

I'~ f(9,09), (2.26)

in other words they are some function of the metric and its derivatives. The Rie-
mann tensor, is defined in terms of derivatives of the Christoffel symbols, so the
generic structure is

Riji ~ h(T,0T) = h(g,dg,%g) , (2.27)

in other words the Riemann tensor is some function of the metric and its first and
second derivatives. The Ricci tensor is just a contraction of the Riemann tensor
so it does not introduce any higher order derivatives. This means that at most, the
left-hand side of the Einstein equations is a function of second order derivatives of
the metric. A similar situation arises in classical mechanics where Newton’s law
relates the second order derivative of position a =  to the forces. The common
technique in solving Newton’s laws is to introduce another variable, the velocity,
so the equations change from

d*r  dx dv
F=m—s—> —=v,—=F. 2.28
ar A (228)
In doing this transformation, we have converted a second order differential equa-
tion to two coupled first order differential equations. The reason for doing this is
that equations of the form
df
— =F(f,1 2.29
dt <f7 ) Y ( )
are in practice easier to deal with numerically. Thus our goal is to do a similar
thing for the Einstein equations.
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To proceed with this decomposition, we first define the following useful oper-
ator

D, ="V, (2.30)

which is the three-dimensional covariant derivative and naturally extends the def-
inition of the covariant derivative to hypersurfaces. It is easy to verify it satisfies
the same properties as the regular covariant derivative.

Another useful quantity to define is that of the extrinsic curvature, which can
be interpreted as how curved a surface is in embedded in a higher dimensional
space. Although many equivalent definitions are possible [213], the simplest one
is defining it in terms of a Lie derivative of the 3-metric.

1
Ky = =5 La%is (2.31)

where n is the normal vector Eq. Expanding out the terms results in the
expression

It is important to note that this expression is purely geometrical and the equations
of general relativity have not been introduced. This is because the extrinsic cur-
vature plays the analogous role of v = dz/dt is the simple Newtonian example.
In order to find an evolution equation for K;; we must use information from the
Einstein equations directly.

To achieve this set of evolution equations, we consider projecting the Einstein
equations into spatial and temporal quantities.

S =7 Tag (2.33)
S, = —",nPT.s, (2.34)
S :=S",, (2.35)
E:=n“n"T,g. (2.36)

With these definitions in place, we first consider the temporal projection
nn? (Gap — 87TLs5) =0, (2.37)

which yields after some algebra and applications of the Gauss-Codazzi equations
[213]]

@R+ K? - K;; K"V = 167F, (2.38)
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where ®) R denotes the three dimensional spatial Ricci scalar. Likewise K is the
tracer of the extrinsic curvature. Continuing with the spatial-temporal projection

Y0P (Gop — 87Thp) = 0, (2.39)
yields
D;(K"7 —4"K) = 8rS5". (2.40)
Finally the spatial projection
YA (Gop — 87 Tog) = 0, (2.41)
yields

&gKij = — DiDjCY + BkakKZ‘j + szajﬂk -+ Oé((3)RZ‘j
+ KKij — 2Ky K*;) + dralyi; (S — E) — 25,]. (2.42)

Thus we have derived the evolution equations for ~;; through Eq. (2.32) and Kj;
through Eq. (2.42). Additionally, we have two sets of constraints Eqs. (2.40),
known as the Hamiltonian constraint, and ([2.41)), known as the momentum con-
straints, which do not involve time derivatives and hence are not evolution equa-
tions. Naively, it seems that we have derived an overdetermined system as we
have an evolution equation for both K}, v;; and a set of four constraints. This is
not the case however as Maxwell’s equations exhibit similar behaviour with two
sets of evolution and equations two sets of constraint equations. Thus in order
of a solution to be valid, it must be evolved and satisfy the constraint equations.
In typical numerical simulations, this enforcement of the constraints is typically
not enforced at each step as doing so involves solving expensive elliptic equations
and thus constraints are simply monitored to ensure that violations are not large.
Also note that the constraints do not depend on the lapse or shift as the constraints
are valid along fixed hypersurfaces and not on their evolution. Thus the lapse and
shift must be specified by some other method.

Although we have derived evolution equations, they are still not sufficient for
numerical evolution due to their weak hyperbolicity properties. In order to trans-
form them into a more numerically stable form that also ensures hyperbolicity, we
do a conformal tracless transformation. In particular, we consider the BSSNOK
[236, 28, 150] formulation here, however other formulations are possible. For ex-
ample, CCZ4 [11] is a variation of the Z4 [42] that has better constraint satisfying
properties. Indeed, it is an on-going area of research as the CCZ4 system has
recently been derived as first-order system [76].
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We now proceed with a brief overview of the BSSNOK formulation. We first
define some new variables, specifically

1

0 =) (2.43a)
K =K, (2.43b)
By = e My (2.43c¢)
Aij — o0 ( K — %%]‘ K> (2.43d)
I =4k, (2.43e)

where I ;1 are the Christoffel symbols computed from the conformal metric 7;;.
The BSSNOK and gauge equations take then the form:

1 1
dip = gﬁkﬁ’“ — éaK (2.44a)
~ 2
017y = =20y — 275063 (2.44b)
IS 1 .
aLK = (Az‘jAZ] + §K2> - ’}/Z]viVjO[ (244C)

+47(S*, + E)

01 Aij = e [a(Ry; — 87Sy;) — ViV;a]" " (2.444)
_ gfxijakﬁk o (KA, —24,4%)

o' =39,0,8" + ;wkfijkalﬁl (2.44e)
F ST — 24%0h0 + 2044

~. 4 . .
+ 120 A% 00 — 30V K — 1670775,

oo = —20K + Foa (2.44f)
. 3 . .

o3 = ZBZ + %05 (2.44g)

OB = oI —nB' + 6, B, (2.44h)

where the operator 0, stands for 0,— Lg, that is to say the derivative with respect to
coordinate time minus the Lie derivative along the shift, and the notation [. . .]7"
is used to indicate terms that are made trace free with respect to the conformal
metric. The covariant derivatives V and V are constructed from the physical and
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covariant three metric, respectively, and  ~ 1/M (M being the mass of the
system).

The three dimensional Ricci tensor I2;; is split in two parts, ;; = Rz + Rz‘j,
where the first involves the conformal factor ¢ and the second the derivatives of
the conformal metric 7;;:

R =¢7lo (ﬁi@ﬂﬁ + :Yij@k@k¢) (2.45a)
— 27,V V4]

. 1, ) i .

Rij = =57 00n%; + 0y I (2.45b)

+ fkf(ij)k +4m [kal(ifj)km + sz’mfkﬂ} :

In integrating these equations a constrained approach is used, i.e., we enforce the
constraints det?;; = 1 and trflij = (0 at every step.

The spacetime evolution is taken care of by the McLachlan code [48] to
evolve the spacetime variables in the BSSNOK formulation. McLachlan ap-
proximates the equations using standard central finite-difference operators of fourth-
order accuracy [236, 28, 50], with upwinding of the shift advection terms and
Kreiss-Oliger dissipation [134] to ensure stability. The gauge conditions are the
standard “1+log” and “Gamma driver” choices (see e.g., [29]])

2.4 General relativistic hydrodynamics

Until now, we have focused only on the evolution and structure of the left-hand
side of the Einstein equations, the spacetime. As such we have left the energy-
momentum tensor 7}, unspecified. However, in order to study the evolution of
neutron stars, which are composed are a source of energy-momentum, we must
now specify a form of this tensor.

A fundamental approach that could be used to define this tensor would be to
use kinetic theory and build up the energy-momentum tensor from distribution
functions. Such a fundamental approach is possible [213] and we shall see in
Section [2.6] that this method of deriving equations of motion is preferred in the
evolution of neutrinos. However, a more traditional approach that is found in
many textbooks, e.g., (227, [70} 54], is to consider the energy-momentum tensor
in the rest-frame of the fluid.

To define the energy-momentum tensor in the rest frame, we make the as-
sumption that the underlying fluid that can be used to model neutron stars is that
of a perfect fluid. A perfect fluid has no heat transport and no viscosity and the
pressure is assumed to isotropic. It can be shown that under these assumptions the
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energy-momentum tensor for a perfect fluid can be written as

ﬂy:p<l+e+g>uM@+pQw. (2.46)

Here we define i
ut =2 (2.47)

dr

as the four velocity of the perfect fluid with position 2* and proper time 7. Another
connection that we enforce is that the 4-velocity is timelike,

uu, = —1. (2.48)

Additionally, p is the rest-mass density, p is the pressure, and ¢ is the specific
internal energy. The rest-mass density p is, in principle, defined as

pr=Y mn;, (2.49)

where 7 represents the particle species, m; the rest-mass, and n; the number den-
sity. In practice, this quantity reduces to

0= My, (2.50)

where m;, is the mass of baryons and 7, is the number density of baryons. The rea-
son for this split is that protons and neutrons are the dominant species of particles
in the fluid even though other species, such as electrons, are present. Addition-
ally, sometimes another simplifying consideration is to take protons and neutrons
to have the same mass and denote the combination as the “baryonic” mass with a
value of my;, ~ 930 MeV.

It is also useful to define two additional useful quantities: the total energy
density

e:=plcd+e), (2.51)
and the specific enthalpy
iuzezp. (2.52)

The factor of ¢? has been readded in the definition of the total energy to emphasise
the origin from the rest mass.

It is a natural question to ask how justified it is to model a neutron star as a per-
fect fluid. Putting aside concerns of physical issues with constructing non-perfect
fluids in general relativity [213], the important factor is whether the dynamical
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timescale is shorter or longer than the heat or viscous timescales. The dynamical
timescale of gravitational systems is given by

Tayn ~ (Gp) V2, (2.53)

and in the case of neutron stars, we take the average density to be the nuclear
saturation density pp.. ~ 2.3 x 10 g/cm? which leads to a dynamical time scale
of

Tagn ~ 2 X 107%s. (2.54)

In comparison, and will be further discussed in Chapter [5] the viscous and heat
timescales can be on the order of 108 s, although with neutrinos these timescales
can be reduced but still remain larger than 74,,, and this simplifying assumption is
justified. Additionally, there are is no implicit preferred directional processes in
the merger of neutron stars, so the assumption of isotropic pressure is valid.

Once an energy-momentum tensor has been selected, we can proceed in deriv-
ing the equations of motion. As a consequence of the Bianchi identities, we have
that the covariant derivative of the energy-momentum tensor is conserved

v, = 0. (2.55)

In addition to the conservation of energy-momentum another equation must
be added, to represent the conservation of rest-mass. This reads as a simple con-
servation law of the rest-mass density flux as

V,.(pu")=0. (2.56)

Taken together, equations (2.53) and (2.56) are the governing equations of
relativistic hydrodynamics. Plugging in the definition of a perfect fluid Eq. (2.46)
and doing some basic manipulation, yields the following set of equations

u'Vup+ pV,ut =0, (2.57)

1
'V u, + p—hh“,,Vup =0, (2.58)
u'V e+ phV,ut = 0, (2.59)

where h*, = g,,, + u,u, is the projection tensor.

However there is still additional information that needs to be added. There are
6 unknown quantities are u;, p, €, ]ﬂ but only 5 equations. Thus in order to close
the system, an additional piece of information must be given. This is the equation
of state and relates the thermodynamic variables to each other. We shall discuss

2Recall that u,u? = —1 hence u,, has 3 independent components instead of 4.
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equations of state in Section in more detail and for now we simply take it as
given that the pressure is given as a function of the thermodynamic variables

p=p(pe). (2.60)

Unfortunately, as it currently stands Egs. -[2.59) are not in a form that
amenable to numerical methods. In order to so, these equations must be written
in conservative form in which the well-developed theory of hyperbolic methods
(145,129,224, 213, 233]] may be applied. An system of equations is in conservative
form when it takes the following structure

o,U + 0,;F" = S(U), (2.61)

where U are the vector of unknowns, F? are the fluxes, and S are the source terms
which may depend on the unknowns. Integrating over Eq. [2.61] and applying the
divergence theorem leads to the classic result of conservation of the given quantity,
in the limit of source terms vanishing.

It can be shown [24] that the Egs. can be written in conservative
form by defining the conserved quantities as

D pW
U:=1| 5 = phWQUj , (2.62)
E phW? —p
the fluxes as
' avtD — 3D
F = aSij — BiSj , (2.63)
aS’ — K
and source terms as
0
S = ﬁ %aSzkﬁﬂm + 518]61 — Eﬁja s (264)

CKSinij — Sj(?ja

where we have introduced some additional definitions of the 3-velocity v,

e L (% + 5i> : (2.65)

(0%

and the Lorentz factor W

Wi= ——— = o', (2.66)
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and all other quantities are defined as in Section[2.2] This formulation is known as
the Valencia formulation due to significant work originating from Valenica, Spain.

With this formulation, the equations of hydrodynamics have been converted
into a form that makes them amenable to numerical methods. The numerical
scheme used to solve the hydrodynamics evolution equations is a finite-volume
method applied to the above flux-conservative formulation. To solve this scheme,
we use the code WhiskyTHC code [202,204] which implements the above equa-
tions into the EinsteinToolkit. WhiskyTHC makes use of a fifth-order MP5
[253]] reconstruction operator, the HLLE Riemann solver [[111] and the positivity-
preserving limiter of Ref. [115, 204]]. Additionally, the refluxing technique [38]
is used to minimize numerical spurious losses or gains of mass at the interface
between refinement levels. Although this specific system has been used, an in-
teresting alternative approach has recently been developed that uses entropy as a
method to solve the hydrodynamics equations [[108]].

2.5 Equation of State

In order to solve Egs. one additional equation must be specified, the
equation of state (EOS). The equation of state is derived independently of the
evolution equations and must be provided. For example, the simplest equation
of state, that also have been used sigificantly in numerical relativity, is that of an
ideal gas. It can be shown that the EOS for this simple case takes the form of a
polytrope, i.e.,

p(p) = Kp7, (2.67)

where K is the polytropic constant and I" is the polytropic index. For ex-
ample, it can be shown that for a degenerate non-relativistic electronic fluid, the
polytropic index is I' = 5/3 [213]. Building from this simple description, piece-
wise polytropes are also used, which consist of multiple polytropes with different
polytropic indices and are matched at the boundaries.

In general, the equation of state depends on more thermodynamical variables
such as the rest-mass density or temperature, which are difficult to model with
simplistic treatments such as the polytropic EOS. Currently, the most general form
of EOS used in numerical relativity are those that have a temperature-dependence
whereas polytropes are “cold” i.e., 7' = 0, although hybrid EOSs that have a ther-
mal component can also be used. The use of a temperature-dependent equation of
state is essential because in order to include neutrino effects, the composition and
temperature of the fluid are required.

So in order to close the system of equations (2.68) and (2.69) an equation
of state (EOS) of the form p = p(p,¢,Y,) is required, where p is the rest-mass
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density, € is the specific internal energy, and Y, is the electron fraction.

In this thesis, temperature-dependent equations of state are used, spanning a
wide range in stiffness. From the stiffest to the softest, these EOSs are: (i) DD2
[269]; (i1) LS220 [140] with compressibility parameter K = 220 MeV; SFHO
[249]. Note that recent calculations in Ref. [261]] have shown that the L.S220
EOS does not satisfy constraints stemming from a lower bound on the energy per
nucleon provided by the unitary-gas approximation. This result disfavours the
L.S220 as a viable model for the microphysics of neutron stars, but since this EOS
is also one of the most well-studied in numerical applications, we include it in our
study since it provides a useful comparison with the literature. Additionally, the
DD2 and SFHO EOSs include additional light nuclei that are not included in the
LS220 and these change the neutrino interactions [250].

2.6 Neutrinos

In the previous sections, the physics that would be simulated is a somewhat sim-
plified view of neutron stars as it lacks any type of microphysics. In the context
of mergers, there are two important sources of microphysics that must be added
in, each with their own complications. The two types of microphysics are elec-
tromagnetic fields and neutrino transport. The inclusion of electromagnetic fields
yields the theory of general relativistic magnetohydrodynamics (GRMHD) [213].
In this work we do not include any magnetic fields. Instead, the focus is on the
influence of neutrino microphysics in the post-merger evolution of a neutron star.
Neutrinos change the composition of the material and play an important role de-
termining the initial conditions under which nucleosynthesis takes place.

In terms of dynamical evolution, neutrinos play a relatively minor role as dur-
ing the post-merger phase they remain trapped until O(100 ms) after merger when
the diffusive timescale from the trapped regions starts to cool the star [193], al-
though a further refinement in the context of viscous dissipation will be given in
Chapter. [5] Instead, neutrinos play an important role in material ejected by the
merger where neutrinos are free-streaming. Here, weak interactions significantly
change the composition of the ejecta depending on the rest-mass density and the
temperature, as will be discussed in detail in Chapter 6]

In the idealised case, neutrino transport would be governed by a Boltzmann
equation. However, this equation is a 7D dimensional equation in, 4 terms for the
spacetime position and 3 for the momentum, and too computationally infeasible
for inclusion in current numerical relativity codes. Instead, a simplification must
be used. The scheme we consider here is the simplest scheme a so-called grey
leakage scheme [95]. Grey schemes integrate over the energy and assume that
the neutrinos have an average energy. Spectral schemes (i.e., non-grey) have been



CHAPTER 2. BACKGROUND 21

used in numerical relativity however only with Newtonian-based codes [194]. Al-
ternative approaches to leakage schemes are so-called moment-based schemes,
such MO [201]] or M1 [235]].

To take into account neutrinos in a leakage schemes, changes in energy due to
neutrino are approximated by neutrino emission source terms. These source terms
are derived from the theory of weak interactions and cause the baryon number
to change. Typically, baryon number is conserved, however when neutrinos are
included, a source term must be added to the conservation equation because beta
decay can convert neutrons and protons into electrons and neutrinos (and vice-
versa). This change modifies the continuity equation and can be written as

Vaneu®) =R, (2.68)

where 7, is the electron-number density and where R is the net lepton number
emission/absorption rate per unit volume in the fluid rest-frame, which is a func-
tion of input neutrino interactions which depend on the thermodynamical proper-
ties such as rest-mass density. Likewise, the conservation of energy and momen-
tum now becomes, with the introduction of sources

VT = Qu”, (2.69)

and () is the net neutrino cooling/heating rate per unit volume in the fluid rest-
frame [201]. A detailed discussion on the computations of ¢) and R within the
WhiskyTHC code employed here is contained in Refs. [95, 201] which include
numerical implementation details of the leakage scheme and the interactions in-
cluded.



Chapter 3

On the use of tracer particles in
simulations of binary neutron stars

In order to study the effects of macro- and microphysics in the post-merger dy-
namics in binary neutron star mergers, this chapter is dedicated to the discussion
of the method developed in order to study these regimes in a novel way that hereto
has been unused in grid-based numerical relativity simulation The techniques
derived in this chapter will be used in the remaining chapters so explore macro-
scopic and microscopic effects in the post-merger of a binary neutron star merger.

3.1 Introduction

The question of what astrophysical process produces the heavy elements have
been a topic of extensive discussion since it was first suggested in the 1970s [139]
that r-process would be produced in the merger of compact objects. Prior to the
detection of GW 170817, the site that had already received significant interest was
the possibility that BN'S mergers would be the most likely progenitors of the heavy
elements in the universe [[139, 146, 260, 37, 259, 220, 228, 201]]. The detection
of gravitational waves from GW 170817 along with the follow-up kilonova appear
now to have completely confirmed this prediction and will be discussed further in
Chapter[6] As such, a detailed method to study the ejected material is required.
During the initial post-merger stages of a binary neutron star merger, a sig-
nificant amount of material, known as dynamical ejecta, is ejected due to tidal
interactions and from various numerical simulations is on the order of 1072 —
10~ M [114 131} 201} 168, 169] and this material exists in an environment that is

I'This chapter is based on the work of [45] where I was the first author. All figures in this
chapter have been reproduced from [45]. My contribution to the work of [45] was to run all the
simulations, analyse all the data, generate all the figures, and write all the text of the paper.
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very conducive towards rapid process neutron capture, r-process, nucleosynthesis
[146) 223116, 171} 214]].

A neutron rich environment is required for r-process reactions to occur and
thus this limits the potential astrophysical sites that could produce the r-process
elements and mostly restricting it to compact objects. The paradigm, for many
years, was thought that core collapse supernova (CCSN) were the source of the
heavy elements in our universe [217, [163]. However, recent recent improve-
ments in the simulations of CCSN have shown that although CCSN eject suffi-
cient amounts of r-process rich material, the environment around the explosion
does not appear to be sufficiently neutron-rich enough to reproduce the observa-
tions of the abundances observed in the solar system [15]. Furthermore, recent
observations of metallicity in ultra-faint dwarf galaxies, specifically that of Retic-
ulum II disfavours CCSN and instead point towards BN'S mergers as being the pri-
mary source of r-process [120]. Specifically, to explain the yields of barium and
europium measured in this ultra-faint dwarf galaxy would require approximately
~ 2000 supernovas would be required whereas a single neutron star merger would
be sufficient.

In the context of numerical simulations, and prior to GW170817, BNS merger
simulations have been significantly improved with neutrino microphysics and have
further provided numerical evidence that supports the BN'S merger scenario as be-
ing the main progenitor of r-process as the ejecta from the mergers is very neutron
rich [23]. Furthermore, as this ejected material expands, it was conjectured, and
definitively verified with GW170817, that the material would undergo radioactive
decay and could potentially create an electromagnetic counterpart, the so-called
“kilonova” 146,258, 168]]. With the detection of GW 170817, a kilonova was ob-
served and hence, there is vested interest in accurately studying the composition,
evolution and outflow from a BNS merger and the different types of mechanisms
that can cause the fluid to undergo nucleosynthesis.

From extensive numerical simulations, four types of ejection channels have
been classified: dynamical ejecta [209, 214} (137,216, 31]], neutrino-driven winds
[67, 194} 272] 1123, 228, 164, 163, 124} 229] [182], magnetically driven winds
237, 131} 245, 211, [59]], and viscous evolution of the accretion disc [[103} [128]].
All these ejection channel classifications have different ejecta properties in total
amount of ejected material, electron fraction compositions, velocities, and so on,
which can produce different nucleosynthetic signatures and different light curves
emitted from a kilonova, [222, 196, (107, 194} 272} (123}, 228, 201}, 124, 229, 258,
168]] and a discussion of the results of such a calculation will be done in Chapter 6]

An essential piece of physical information needed in order to study the nucle-
osynthesis produced from these different categories of ejecta is that of the thermo-
dynamic history of the ejecta, i.e., the temperature, entropy, and electron fraction,
of a fluid element is required. By following the fluid through a simulation, a time



CHAPTER 3. TRACER PARTICLES IN NUMERICAL SIMULATIONS 24

series of every quantity is produced and then can be used as the input for nuclear-
reaction networks to determine the abundances of the different elements [[163].
However, the timescales required for the nuclear reactions to occur is on the order
of seconds to days, and these timescales are far beyond the current capabilities
of numerical-relativity codes, which can run at most a few tens of milliseconds
after the merger in full 3D and at most a few seconds assuming axisymmetry. As
such, this presents a problem on how to evolve and solve the two physical process
simultaneously.

In the ideal case, a nuclear-reaction network would be solved simultaneously
with the fluid evolution in the simulation, however currently this is numerically
infeasible due to the vast timescales required for the evolution of the nuclear net-
work - potentially reaching several years of simulated time - so all nuclear reac-
tions must be treated in a post-processing step. Furthermore, the different classifi-
cations of ejecta mechanisms have different timescales over which they dominate,
ranging from ~ 10ms for dynamical ejecta, to ~ 1s for the viscous ejecta in
the disk. This difference in timescales requires different numerical models and
physical assumptions to be made and thus to overcome these technical issues and
various approaches have been used by numerous groups to study these systems in
detail.

One approach is to use Newtonian codes, eschewing general relativity com-
pletely [82,1163]. An advantage of Newtonian codes is that they are computation-
ally and mathematically much simpler and can be run for longer times. Hence,
they have been used to study the long-term evolution of the fluid as it outflows,
such as that required by the neutrino driven winds — which has timescales of
~ 100 ms [[163] — and the viscous forces of the accretion disk [82]]. These codes
also study the nucleosynthesis produced from the ejecta and the fluid history is
recorded by tracer particles (hereafter simply “tracers”). Another approach is to
use smoothed particle hydrodynamics (SPH) [196) 220, 107,170, [163] instead of
grid-based codes. One major advantage here is that it allows for exact evolution of
the fluid’s thermodynamic properties because the fluid itself is made of interact-
ing particles. While this approach is beneficial for the nucleosynthesis analysis,
normally it does not provide solutions in full general relativity. Furthermore this
approach cannot be evolved for the long term as the Newtonian codes can. Fi-
nally, for grid-based codes which fully solve the Einstein equations, there are two
approaches that have been used to follow the thermodynamic history of the ejecta.
The first is that of tracers which passively follow the fluid as it evolves record-
ing the properties of the fluid as it evolves [272]], providing a history of the fluid
lines. The second is to use a spherical surface that the fluid passes through and
use that as the initial conditions for the ejecta; assuming the fluid to be under-
going adiabatic expansion, it is then possible to extrapolate the dynamics to long
timescales [201]. While both methods can successfully reproduce the r-process,
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[272) 201, 44], there is a benefit in using the former over the latter. The second
method, in fact, is simpler to implement but it does not allow for the history of
the fluid element to be recorded. With the thermodynamical history of the fluid
element, the tracers are able to be input into radiative-transfer codes that allow for
the calculation of kilonova light curves [107]]. Thus, it is important that the tracers
accurately represent the underlying fluid.

Besides the study of the ejected matter, another area of research in which
the use of tracers is particularly beneficial is the evolution of the binary merger
product (BMP), that is, of the metastable object that forms after a binary neutron
merger. Significant work recently has gone into understanding the nature of the
stability of this BMP [23] and tracers provide a novel way of interpreting the
resulting behaviour of the BMP that is otherwise inaccessible to only studying the
fluid evolution [[110, |&]].

Although simple in principle, the use of tracers in numerical relativity is far
from settled. As observational quantities can be computed from tracer data, it is
critical to ensure that the tracers used accurately represent the underlying fluid. As
such, many issues such as the effects of placements of the tracers and of assigning
tracers mass have not been adequately discussed or settled. Furthermore, tracers
are an inherently particle-based idea while the most advanced GR simulations use
a grid-based code. Thus relating how tracers properly relate to the underlying fluid
requires special care which we discuss in detail. In this Chapter, I present and
implement the first detailed discussion of the use tracers in numerical-relativity
simulations. Focus is paid to two explicit areas in particular: unbound material in
the form of dynamical ejecta, and bound material in the core of a BMP formed
from the merger of two neutron stars.

More specifically, when considering unbound matter the question of how well
the tracers match the underlying material is essential as it has important implica-
tions for kilonova modelling cf. Chapter [f] To investigate this question, I have
evaluated four different placement schemes that could be used to initially dis-
tribute the tracers and how well their predictions match those obtained when us-
ing information from the actual fluid flow. Contradicting our naive expectations
that the best placements are those that are correlated with the rest-mass density
distribution or that follow the fluid that is marked unbound, it is shown that the
most effective method to initially distribute tracers is to simply uniformly sam-
ple across the rest-mass density distribution as this leads to the closest matching
with the hydrodynamical information on the unbound material flowing across the
computational domain.

In contrast, the question of bound material represents a different goal as de-
tailed thermodynamical evolution of the tracers is not required. Here, the goal is
to simply sufficiently follow as many tracers as possible to ensure a good sam-
pling of the evolution of the fluid within the merger remanent. Here, I have show
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that tracers can provide insight into the stability of the BMP as they can be used
to track the evolution of fluid elements or to calculate the evolution of quantities
conserved along streamlines that would otherwise be inaccessible in a grid-based
code [[110,127]] which will be used in Chaptersf]and [5| Such a method of investi-
gating the evolution of a fluid has not been fully explored and here I introduce the
power of this method to answering complicated physical problems with simple
physical answers.

This chapter is organised as follows: in Sec.[3.2]I review the mathematical and
numerical setup employed to solve the equations of relativistic hydrodynamics but
also those describing the motion of the tracers and their analysis. Section [3.3]is
instead dedicated to the study of the dynamics of unbound material and to the
discussion of the various placement schemes that we have considered. The results
in this section should be contrasted with those presented in Sec. for bound
material, where we analyse tracers in the core of an HMNS produced by a BNS
merger. Finally, in Sec. [3.5]1 summarise our results and discuss how these results
will be applied to the work of Chapters 4H6|

3.2 Mathematical and numerical setup

3.2.1 Relativistic hydrodynamics and neutrino transport

Although already discussed extensively in Chapter [2] I will repeat the basics of

the simulation set-up to make this discussion as self-contained as possible and also

remind the most salient features that are required for the evolution of the tracers.
Recalling this, Einstein’s theory of general relativity can be written as

1
R, — §Rg,w =811 . (3.1)
In order to solve the above equations, we use the 3+1 decomposition
ds® = —(a® — Bi3")dt* + 2B;dx*dt + ~y;;da’da? (3.2)

where o is the lapse, 3; is the shift vector, and v;; is the 3-metric cf. Section To
evolve the spacetime, we then decompose the spacetime into a conformal-traceless
3+1 formulation known as the BSSNOK formulation of the Einstein equations
cf. Section [2.3] This decomposition deals with the spacetime, but to simulate
BNS mergers, we require a description for the underlying matter. To do so, we
model the neutron stars as perfect fluids, where the energy-momentum tensor is
given by

T = (e+p) uyu, +p g, (3.3)
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where u* := dx*/dr is the four velocity of the fluid with position z* and proper
time 7, e is the energy density, and p is the pressure.

In order to close the system of equations (2.68)) and (2.69) an equation of state
(EOS) of the form p = p(p, €, Y,) is required, where p is the rest-mass density, € is
the specific internal energy, and Y, is the electron fraction. The EOSs we use are
the LS220 EOS of [140] with a nuclear compressibility parameter K = 220 MeV
and the DD2 EOS [269]]. These EOSs have been used extensively in numerous
simulations, e.g., [95,1110, 201} 23]] and provide useful test cases, although LS220
is ruled out [261]] on theoretical grounds, it has been extensively used in numerical
relativity simulations and thus provides a standard template to test against.

On the computational side, I solve the spacetime equations numerically using
the Mclachlan code [49] which is part of the Einstein Toolkit [153].
The hydrodynamics are solved using the WhiskyTHC code [203,204]]. WhiskyTHC
implements finite-volume and finite-difference with high-resolution shock-capturing
methods.

3.2.2 Initial data and grid setup

As discussed in the introduction, there are two types of material behaviour to
capture depending on whether our analysis focuses on unbound or bound ma-
terial. However, in both cases, the BNSs are considered to be irrotational and
were computed using the multi-domain spectral-method code LORENE [104] un-
der the assumption of a conformally flat spacetime metric and employing the EOS
at beta-equilibrium. These assumptions are justified for this study as the influence
of rotation only adds another physical parameter that is a free parameter and un-
necessarily adds complication.

For the study of the unbound material, quasi-circular initial data — at least four
orbits — with an initial gravitational mass of M = 1.35 M, and initial separation
of 45 km with the LS220 EOS was produced. This set-up reflects a standard of
initial data used in more complicated simulations done in numerical relativity. In
contrast, for the bound material, again quasi-circular initial data with a gravita-
tional mass of M = 1.35M and initial separation of 45 km is chosen, but with
the DD2 EOS instead of the LS220. The reason for choosing a different EOS is
that DD2 is stiffer than LS220 and collapses to a black hole at a later time allowing
sufficiently long timescales to investigate the structure of the core before collapse.

Because the fluid that becomes unbound is located far away from the merger
site, e.g., at distances 2 300 km from the centre of the grid, a higher resolution
is desirable to better capture the fluid. For this reason, a resolution of Ahs =
0.15 Mg ~ 220m for the finest refinement level was used for the unbound ma-
terial evolution and 7-symmetry imposed. m-symmetry is useful in numerical
relativity simulations as only half the domain is required to be evolved and thus



CHAPTER 3. TRACER PARTICLES IN NUMERICAL SIMULATIONS 28

saves on computational cost. However, as shall be discussed in Chapter [}, it can
hide the evolution of odd-degree modes that can influence the evolution of the
post-merger object. For the bound material, resolution is not as important for
investigating some aspects of the fluid properties, see, e.g., [110], but for com-
pleteness Ahs = 0.15 M =~ 220 m was also used for the finest refinement level
but with no m-symmetry to ensure that the one-arm stability is allowed to develop
[200]. Both simulations had five refinement levels, reflection symmetries, and an
outer boundary of 512 M ~ 760 km.

3.2.3 Tracer evolution

As discussed in the introduction, the thermodynamical history of the fluid element
is required and in order to follow the evolution of the fluid and obtain this infor-
mation, tracers are placed in the fluid which are able to record the properties of
the fluid at a given point. These tracers are massless — a point which requires a
more extensive discussion see Sec [3.2.4]— and are passively advected through the
equation [87, [1735]]

di

dt
where the velocity vector o refers to the three-velocity of the fluid with respect
to the coordinates. Although this equation seems simple, it is important not to
mix up the definitions of the different values. The position vector & refers to the
coordinates of the tracers while © refers to the velocity of the fluid and the fluid
velocity is evolved through the Einstein equations and are specified at every step.
In the 3+1 formalism this velocity is related to the fluid velocity through

, (3.4)

Y

—

v:=av -0, (3.5)

with « the lapse, U the three-velocity of the fluid, and B the shift vector. To solve
Eq. (3.4), a simple forward Euler scheme is used where the At is equal to the
time-step of the finest grid. Although this scheme is simple, it is sufficient for
the purposes of evolution of the tracers as higher order schemes do not provide
additional accuracy as the evolution is not bound by the time-step, but instead the
velocity of the fluid. Indeed, a comparison with a higher-order Adams-Bashforth
time-stepping scheme yielded no significant improvement in the results and only
required more computation time. Thus a simple forward Euler scheme is chosen.

In the simulation, this equation must be solved for each individual tracer and
thus the number of tracers is a specified user-parameter denoted by /V;. Here, the
value is set to N; = 10° throughout. As we shall see in Chapter@ the total number
of tracers required for nucleosynthesis is only on the order of ~ 1000.
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One potential computational issue is that the tracers do not interact and are
considered point particles they can, in principle, occupy the same coordinates. In
practice, however, this does not happen in the simulations performed as the veloc-
ity is sufficiently different at every point so that numerically it is challenging to
achieve this. Furthermore, as the tracers pass through the grid, the value of various
variables is recorded satisfying the requirement of recording the thermodynami-
cal evolution. Specifically, the most important quantities for nucleosynthesis are
(p,T,Y.), which are evolved through the main evolution code. In addition to
these quantities, other properties of the fluid are recorded, such as the position,
fluid-velocity, and so on. In what follows, any time a quantity of the tracers is
referenced, it has been recorded like the other thermodynamical quantities. As a
final technical point, note that since the variables are computed only on the grid
points, as it typical in a grid-based code, and in general the tracers will not be on
the grid points, the desired properties are interpolated to the (x,y, z) position of
the tracer using the default interpolator of the EinsteinToolkit.

3.2.4 Tracer mass flux

The overall goal of the tracers, in the context of unbound material, is to obtain
the thermodynamical evolution of the tracers that can be used as input for the
nuclear network. For a given trajectory, the values produced from the tracers are
used as the initial data for the evolution of the r-process, which is evolved for the
thousands of potential reactions that come into play. After a sufficient simulated
time, the final abundance curve is produced for a given tracer. This is repeated for
all the different tracers which will result in different final abundances depending
on the initial input. In order to produce a final abundance, the individual tracers
must be weighed in some way.

To do this, a “mass” must be associated to each tracers. In contrast to SPH
codes, where the tracers explicitly represent the underlying fluid and can have
a mass, the tracers we employ are massless and attention needs to be paid when
wanting to assign a "mass* to an individual tracer. In some fully general-relativistic
works, e.g., Ref. [173]], tracers have been assigned an associated mass; this con-
cept, however, is potentially misleading. First, since tracers play only a pas-
sive role without a coupling to the fluid besides that of following the advection
equation (3.4)), assigning a mass to the tracers breaks these assumptions. This
is because if a tracer has a mass, it, in principle, will contribute to the energy-
momentum tensor as it represents a source of energy-momentum. In our formu-
lation of the right-hand side of the Einstein equation, contributions due to point
sources are not considered at all and thus having tracers with mass will not be
properly evolved. Furthermore, although the amount of material is ejected is
rather small, on the order of less than 1% of the total mass, the highly compli-
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cated nonlinear nature of the Einstein equation means that small perturbations can
have drastic effects at later times. Thus assigning the tracer mass without includ-
ing them properly in the energy-momentum tensor is physically inconsistent.

Second, if one does want to assign a mass to a tracer, the question arises to
what mass should be assigned. One method involves the tracer mass being ini-
tially associated with a mass based on its surroundings. A huge problem with this
method is that then at later times this mass cannot represent the same mass it did
initially since the underlying properties will have changed. For example, in this
viewpoint, the tracer is considered a hollow sphere and the mass is simply the
volume times the density within this sphere. Now if the initial mass is calculated
from the rest-mass density where the tracer is initially at, say in the crust where
densities are on the order of ~ 10'%g/cm? then at a later time the density will
have decreased significantly as is want to do with unbound material. For example
a few hundred kilometres from the centre of the merger, the density has decreased
by about 6 orders of magnitude and clearly does not represent the same mass as it
did before.

Finally, if one did want to use the above scheme with its problems, in order
to calculate a mass from a density, some volume has to be specified and tracers
represent idealised point particles and thus don’t have any volume. Overall, the
issue is trying to assign methods that are explicit in SPH codes to grid based codes
where such methods are not clear.

Despite having made these remarks, and since nucleosynthesis calculations
require masses to weight the different abundance curves, a scheme to assign a
“mass” with the tracers is necessary. A simple method around this mass asso-
ciation is to use the idea of flux through a surface. A flux through a surface is
a well-defined quantity both mathematically and physically and doesn’t rely on
any assumptions made. To this end, the flux of the tracers is calculated through
a given 2-sphere of coordinate radius R, which we take to be 200 My ~ 295 km
[201, 44]. Although this distance seems arbitrary, it turns out that the distribu-
tions of the thermodynamical quantities is relatively independent of radius and
will be discussed in more detail in Chapter [} So for now, a representative radius
of 295 km is sufficient.

Following standard definitions in many branches of physics, “tracer mass cur-
rent” at a given iteration ¢ can be defined as

i =3(E ;) = pW(ad — B) = > _ W;(&,t)p;(Z,t) 6;(&,1), (3.6)
J

where we sum over the tracers that cross through a surface of a given radius dur-

ing that iteration. The justification for this definition is well-motivated by other

physics. In standard fluid mechanics, the flux is typically defined as a density

times a velocity. In general relativity, a similar definition can be made, but in
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order to make the expression relativistically consistent, the rest-mass density is
not used but instead the rest-mass density times the Lorentz factor is required. A
simplification can immediately be made, effectively removing the effects of gen-
eral relativity, transforming the expression into a more familiar special relativity
expression. This can be done because we evaluate this flux far from the BMP, and
the space-time geometry is approximately flat, i.e., o >~ 1, B ~ (), so that the final
special-relativistic expression provides a good approximation. As the infor-
mation about the velocity, Lorentz factor, and the rest-mass density are recorded,
this quantity is well defined for each tracer and thus an associated current with
the tracers crossing the surface can be made. Integrating this current over the sur-
face gives a mass-flux and integrating this over time gives a mass. Explicitly, this
defines a “tracer mass flux” as

Mi(t>=fi-ﬁﬁd5=f§i-ﬁd5, (3.7)

where the surface element on a sphere is taken to be d.S = r? sin §dfd¢ and again
the special relativity expression is taken since the integral is evaluated sufficiently
far away from the BMP and spacetime is to good approximation flat. Then a
simple differential equation for the “tracer mass” is obtained in the form of

d M, . .
=M= Z M; (3.8)
This equation can be integrated to obtain a mass associated with the tracers. We
stress that this “mass” is only valid as the tracers pass through the surface and does
not represent the true mass unbound that would be measured when calculating the
flux of the underlying fluid through a sphere. In Sec.[3.3.4] we will compare the
mass flux computed via the tracers, i.e., Eq. (3.8)), with the corresponding quantity
computed using standard hydrodynamical quantities, e.g., the rest-mass current,
and demonstrate that this method can reasonably well approximate that of the
“exact” answer from the underlying fluid. In contrast, for the bound material, we
are only interested in following the streamlines of the fluid, which is the most fluid
dynamical role that passively advected tracers play. In this case, the mass of the
tracers is irrelevant.

3.3 Tracing unbound material

We start our discussion on the use of tracers by considering the case in which they
are employed to describe the dynamics of matter that is gravitationally unbound.
For the case considered here, this material is the dynamical ejecta, i.e., ejecta that
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is launched in the first few milliseconds of the merger due to tidal interactions.
Although this is the only case studied here, due to computational limitations, a
priori there is no reason that the tracer method will not also apply to situations
such as neutrino-driven wind ejecta.

In merger simulations, a grid must be created and due to computational lim-
itations, must have a finite size. This presents a computational issue as matter
that ultimately undergoes r-process nucleosynthesis is material that becomes “un-
bound” which is sufficiently far away from the merger. Physically, this ejecta has
velocities that are roughly ~ 0.2c cf. Chapter [0] and thus over the time period of
seconds will distances that are many orders larger than the width of the compu-
tational grid boundary of 512 M. Thus a criterion to determine what material
becomes “unbound” is required.

The simplest criteria that can be derived is known as the geodesic criterion and
corresponds to tracers reaching infinity with no kinetic energy. This means that
a tracer is considered to be unbound when the corresponding fluid element has
the covariant time component of the four-velocity u; < —1, which corresponds to
considering tracers as moving on geodesics and reaching infinity with zero energy
[213]. To see the motivation for such a justification, sufficiently far away from
the merger remanent, the spacetime becomes Minkowski, as discussed above, and
thus in this limit the covariant time component can be approximated as

1
U~ —1—¢— —v?. 3.9)
2
In the simplest case, the tracer is unbound when it reaches infinity with zero ve-
locity and is gravitationally unbound so the condition for reaching infinity with
these quantities is

Utinf = —1. (3.10)

It is possible for a tracer to have greater than zero velocity so this simple limit sets
the bound. It is important to note that this interpretation is only valid sufficiently
far away from the merger product and it is possible for tracers within the merger
product to satisfy the geodesic criterion and are physically not unbound at all so
by itself, the geodesic criterion at a single point in time alone is not sufficient
to determine if a tracer is unbound. To avoid this issue, every tracer records the
value of the underlying fluid’s w; at that point and it is then determined in a post-
processing stage whether or not the tracer should be counted for comparison with
the fluid quantities. This decision is done by checking that the tracer satisfies the
geodesic criterion at all times, after it becomes unbound since it is possible for
the tracer to become unbound, then undergo shock heating and become rebound.
Finally, due to the high velocity of the ejecta, tracers can easily reach the boundary
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of the grid and, in this case, the tracer properties are set to atmosphere values and
dealt with in a post-processing step.

In addition to the geodesic criterion, other criteria could be used, such as
the Bernoulli criterion hu; < —1, which has been explored, for instance, in
Ref. [128]. Here however, only the geodesic criterion is used of the geodesic cri-
terion as it is sufficiently robust, does not require any tuning and makes minimal
assumptions. A more detailed discussion of the influence of boundness criterion
on ejecta can be found in Chapter [6]

3.3.1 Initial placement

An often neglected aspect of the treatment of tracers is, namely, their initial place-
ment. Despite this being a very important step, as it can significantly influence
the overall results recorded by the tracers, a detailed study of the influence on the
initial placement has hereto not been done.

The final goal here is to accurately capture the essential properties of the un-
derlying fluid in the tracers. In order to properly represent the underlying fluid,
we need to ensure that we are sampling the fluid in a sufficiently accurate man-
ner. The important first step is to ensure that when we initially place the tracers,
we are sampling the material that is most likely to become unbound. However,
different placements of the tracers initially can potentially lead to different rep-
resentative properties. One potential placement scheme, which was followed in
Refs. [164, 1735, is to place more tracers where there is higher rest-mass density.
This process is done randomly with more tracers being placed at higher densities
and fewer at lower densities. Foucart et al. [87] have successfully used tracers to
measure fluid properties but no discussion is made on the initial placement pro-
cedure. Finally, Wanajo et al. [272] have used tracers in their study of r-process
nucleosynthesis, focussing however only on the (z,y), (v, 2), and (x, z) planes;
also in this case no discussion is made on the impact of the placement of the tracers
on their conclusions. Thus how effective tracers are with respect to the underlying
fluid and how their results would change if they change the initial placement has
been unexplored. In what follows we discuss three different placement schemes
and the corresponding dynamics.

Before deciding where to place the tracers, we must decide when they should
be first distributed. Luckily, when studying BNS merger, the most natural selec-
tion of placement time is straightforward: at the merger. Prior to the merger, in
fact, there is no mass outflow, beyond some small spurious outflow due to initial
conditions and the inevitable and tenuous mass loss at the stellar surface. Another
timing option is to let the simulation evolve for a few milliseconds after merger,
which is when much of the dynamical ejecta is produced, and then place the trac-
ers to best capture this material. Once this optimal time is fixed, we need a way
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Figure 3.1: Histograms showing the distribution of the underlying rest-mass den-

sity of the fluid (light-yellow shade) compared with the initial placement of the

tracers for the “correlated” (green) and the “anticorrelated” (red). The histograms

are normalised with respect to the total number of cells for the fluid and 10° for

the tracers. The placement is done at merger.

to distribute the tracers. A priori, there is no obvious “best choice” for what the
correct initial placement of tracers is. However, since we are also interested in
using the tracer flux to get a representative mass, choosing a scheme that is based
on an initial rest-mass density distribution does have merit. Furthermore, it is rea-
sonable to expect that low rest-mass density material around the merging stars are
going to be good candidates for material that will become unbound. Conversely,
we do not expect material at the high densities in the core of the merger product to
be ejected in contrast with the schemes of [[164, [175]. Material inside the neutron
star that is between these two extremes can still be ejected due to the complicated
merging process, which can eject material from within the neutron star.

In light of these considerations, at the chosen time during the simulation we fix
a Cartesian box surrounding the BMP and place tracers at the grid points within
this box, distributed according to a scheme that is weighted with some probability
distribution. In practice we have considered four different options that we discuss
in detail below.

Tracers correlated/anticorrelated

To begin, the most natural probability distribution, namely, placing tracers using
a distribution function which is directly correlated to the rest-mass density dis-
tribution at merger is investigated. In other words, within the fixed box that is
used to determine where the tracers are placed, the number of cells within a given
rest-mass density range are counted, then normalised by the total number of cells,
giving a distribution of how many cells have a given rest-mass. From this number,
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that percentage of tracers is distributed randomly over cells with that given density
range, making sure that no more than one tracer is assigned to a given cell.

This procedure is illustrated in both panels of Fig. Here the light-yellow
shaded distribution represents the underlying rest-mass density distribution pro-
duced by the fluid evolution and is calculated directly from the grid data. For
this initial data, the fluid rest-mass density ranges from ~ 10'® g/cm? in the core
out to ~ 107 g/cm?® in the material around BMP, which represents approximately
20 % of the rest-mass density cells. The reason for this sudden drop is that in our
simulations there is an “atmosphere” set at ~ 6 x 103 g/cm? [203] 204] which
corresponds to the bottom of the equation of state table. In an ideal case, the
rest-mass density around the surface of the neutron star would be vacuum, but
computationally this presents immense challenges as the surface of the star would
decrease a discontinuous drop from higher rest-mass densities to vacuum which
poses numerical challenges. This is avoided by adding an ‘“atmosphere” which
smooths out this discontinuity. As such, there is some material present outside the
neutron star that is evolved, albeit at significantly lower densities than the neu-
tron star itself. The rest-mass density of this atmosphere is at least three orders of
magnitude smaller than the neutron star, so this cut-off ensures that no tracers are
placed at the (unphysical) atmospheric rest-mass densities.

The left panel of Fig. [3.1]compares the rest-mass distribution computed from
the fluid evolution with the one adopted for the tracers, to which it is “correlated”
within a rest-mass density range (light-green shade). More specifically, the lower
rest-mass density is set to the same as the fluid while the upper rest-mass density
is taken to be 10 g/cm?3. We then select 10° cells randomly from the underlying
fluid bins. The variations between the “correlated” distribution and that of the fluid
are very small and are negligible, with the only difference occurring just below
10* g/cm? where the fewest number of fluid cells with that rest-mass density exist
due to being near the core of the neutron star where material is already unlikely to
become unbound.

In contrast, this distribution should be compared with the one obtained when
the tracer distribution is “anticorrelated” with the rest-mass density and that is
shown in the right panel of Fig.[3.1](light-red shade). Effectively, this is the reverse
of the correlated distribution. However subtleties arise when trying to associate
tracers to all the cells because at higher densities, there are simply not sufficiently
enough cells to use. This means in practice all higher rest-mass densities cells are
first filled and then randomly the lower densities are filled densities, thus resulting
in an almost reflected distribution from the underlying distribution. It is not a
perfect reflection due to the aforementioned point as tracers are placed at every
cell at higher rest-mass densities, leading to a flattening of the distribution in the
this region. At lower densities, on the other hand, there is an increase in the
distribution which is due to the random selection.
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Figure 3.2: Left: Histograms showing the distribution of the underlying rest-mass
density of the fluid (light-yellow shade) compared with the initial placement of the
tracers for the uniform (blue). The histograms are normalised with respect to the
total number of cells for the fluid and 10° for the tracers. The placement is done
at merger. Right: The same as in the left panel but showing the distribution of the
underlying rest-mass density of the fluid (light-yellow shade) compared with the
placement of the tracers for the u; placement scheme (purple). The histograms are
normalised with respect to the total number of cells for the fluid and 10° for the
tracers. The placement is made 1.8 ms after the merger.

Tracers uniformly distributed

The third placement to be considered is that of a uniform distribution. In this
case, the rest-mass density range is distributed evenly into 20 bins with trac-
ers in them. Doing this procedure results in a distribution that does not follow
the underlying rest-mass density distribution at all, but instead places an equal
number of tracers at all densities. The resulting distribution is shown in the left
panel of Fig.[3.2) (light-blue shade) and when comparing with the underlying fluid
(light-yellow shade) it can clearly be observed that this placement oversamples
the higher densities (i.e., = 10'° g/cm?®) while it undersamples the lower densities
(.e., <10®g/cm?).

Tracers following unbound matter

The last placement that has been considered is different from the previous three
in at least two important aspects. Firstly, the time of placement is completely
different from the others. To wit, tracers were not placed until just before the
first dynamical outflow is about to pass through a radius of 200 M, radius. This
radius is chosen because it is the radius through which the tracer-flux is computed.
Additionally, at this radius, a detector is placed that can capture the outgoing
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flow [201]. For this particular set-up, the time after merger for this criteria to be
satisfied was approximately 1.8 ms. It is at this time the dynamical ejecta are close
to, but have not passed the 200M/, radius.

The second major difference is that instead of placing the tracers based on the
rest-mass density, they are placed based on u; and only placed into cells where
u; < —1, 1.e., at that time the cell represented unbound material. Then, from all
these flagged cells, 10° tracers are randomly placed at these number of cells where
the geodesic criterion is satisfied. The resulting distribution is shown in the right
panel of Fig. [3.2] (light-purple shade) and it is interesting to note that even though
the tracers were distributed based on wu,, the distribution still has approximately the
same structure as that of the evolved ﬂui The main differences when comparing
with the underlying fluid are that the tracer distribution overshoots the rest-mass
density between 10° — 10® g/cm?® and does not place tracers at higher densities of
10'° g/cm?. This is likely due to the fact that higher rest-mass density material is
closer to the BMP and less likely to be unbound. Also note that the underlying
fluid distribution densities extend above rest-mass densities of 10*° g/cm? but do
not appear in the right panel of Fig. because the latter maintains the same
dynamic range of the other three panels in Figs. and

3.3.2 Three-dimensional dynamics of unbound tracers

As previously discussed, an important aspect of material that undergoes nucle-
osnythesis is that it is unbound, i.e., it will escape from the merger and form the
heavy elements. To ensure that the ejected has had sufficient time to become un-
bound a all the simulations presented here have been run for at least 10 ms after
merger. By this time, when using the geodesic criterion, in fact, there is essentially
no flux of unbound material or of tracerﬂ through a 2-sphere of radius 200 M.
Furthermore, 10 ms is also a sufficient time for the tracers and the fluid to reach
the outer boundary of the computational domain when they are, as previously
discussed, dealt with in a post-processing step.

In order to get a feel for the spatial distributions of the various placements
Fig. [3.3] displays a visualisation of the tracers for the four different placement
schemes discussed above (from top to bottom: ‘“correlated”, “anticorrelated”,
“uniform”, and “unbound”) at three different times corresponding roughly to when
the unbound material passes through spheres of radii 200, 300, 500 M, (i.e., t ~
2,3, and 7ms after the merger, respectively). On the (z,y), (y,2), and (z, 2)
planes are the shown the values of the rest-mass density using the colourbar in the

2Note that the distribution coming from the fluid evolution is different than that on the left
panel of Fig. @since it refers to a different time in the simulation.

3This is not necessarily the case when using the Bernoulli criterion, which is less restrictive
and allows for mass being ejected also at later times as will be discussed in Chapter@
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Figure 3.3: Visualisation of the tracers for four different placement schemes (top
to bottom) at three different times (left to right). From top to bottom: “correlated”,
“anticorrelated”, “uniform”, and “unbound”. From left to right to ~ 2,3, 7ms
after merger. On the (z,y), (v, 2), and (z, z) planes are the shown the values of
the rest-mass density using the colourbar in the left lower corner. A colourbar on
the right lower corner is also used to visualise the rest-mass density of the fluid
elements hosting the tracers. Note the different colour scales for the fluid and the
tracers.
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Figure 3.4: Visualisation of the tracers for four different placement schemes (top
to bottom) at three different times (left to right). From top to bottom: “correlated”,
“anticorrelated”, “uniform”, and “unbound”. From left to right to ~ 2,3, 7ms
after merger. On the (z,y), (v, 2), and (z, z) planes are the shown the values of
the rest-mass density using the colourbar in the left lower corner. A colourbar on
the right lower corner is also used to visualise the electron fraction Y, of the fluid
elements hosting the tracers.
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Figure 3.5: Visualisation of the tracers for four different placement schemes (top
to bottom) at three different times (left to right). From top to bottom: “correlated”,
“anticorrelated”, “uniform”, and “unbound”. From left to right to ~ 2,3, 7ms
after merger. On the (x,¥), (v, z, and (z, z) planes are the shown the values of
the rest-mass density using the colourbar in the left lower corner. A colourbar

on the right lower corner is also used to visualise the kinetic energy at infinity,
K:=—u — 1.
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left lower corner. A colourbar on the right lower corner is also used to visualise
the rest-mass density of the fluid elements hosting the tracers. Note the different
colour scales for the fluid and the tracers.

For the case of “correlated” tracers (first row), it is evident that there is a
presence of a large number of tracers at high latitudes, which correspond to those
initial tracers that are at low rest-mass density which mostly originate from near
the surface of the neutron star. This is to be contrasted with the dynamics of
“uncorrelated” tracers (second row), which shows the anticorrelated placement
which has significantly fewer tracers at higher latitudes and closer to the BMP,
simply as a result of having undersampled the fluid elements at low rest-mass
densities, i.e., those near the surface, and oversampled those at high rest-mass
density, i.e., those near the core. Unsurprisingly, the “uniform” tracers strikes a
balance between the two (third row). Finally, the case of “unbound” tracers (fourth
row) shows a very different structure, where it is possible to clearly distinguish the
different “waves” of matter ejected dynamically (left and central columns) and
where an almost spherically “dome” develops over the BMP product and which
is not present in the other placements. Note that this should not be interpreted
as an indication that the mass outflow is spherically symmetric as the tracers in
this case are not a faithful description of the rest-mass density as the tracers do
not represent mass. Although it may appear that there is more, recall that in the
tracer-flux description above that the tracer-flux involves the rest-mass density so
though there appear to more tracers, the total mass-flux they represent is lower.
Indeed, this picture is clear when using the colourbar to track the actual rest-mass
density of the fluid and it is possible to note that high rest-mass density material
(coloured red) is ejected mostly near the equatorial plane, while low rest-mass
density material (coloured blue) is ejected at higher latitudes. This also implies,
importantly, that the ejected material has a strong angular dependence and we
be explored further in Chapter [6| This is particularly important in view of the
previous studies of nucleosynthesis with tracers carried out in Ref. [272]], where
the tracers were analysed only on the (z,v), (v, 2), and (z, z) planes, and of the
fact that the angular dependence of the tracers can change the potential observed
properties (see Refs. [164, [163] for an extended discussion). The snapshots in
Fig.[3.3|demonstrate that there is significant material that lies outside these planes;
indeed, as we will further discuss in Sec. about 50 % of the mass ejected lies
within 10 degrees of the orbital plane, while the remaining 50 % occurs at higher
angles from the equator.

Figure [3.4]is similar to Fig. [3.3]but we use the colourbar to represent the value
of the electron fraction Y, carried by the various tracers. The importance of Y, in
terms of nucleosynthesis is that lower electron fractions will produce the heavier
elements, while higher electron fraction produces the lighter elements. An in-
tuitive way to view this is that a lower electron fraction means a higher density
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of neutrons being available which means that heavier elements are more able to
form as the r-process has more material to react with, while the opposite picture
happens for higher values of the electron fraction.

In all placements, a similar distribution of the electron fraction is visible, with
low Y, values near the equator and increasingly high values near the poles. For
all distributions, this increase in Y, is correlated with a decrease in the rest-mass
density. Thus despite having potentially high-Y, ejecta in the polar regions, it is
associated with only a modest amount of ejected matter. Overall, the snapshots
indicate that there will be a strong angular dependence of the r-process nucleosyn-
thesis; a detailed discussion of this will be presented in an Chapter [6]and how this
distributions agrees with neutrino interactions.

The final figure, Fig. is similar to the two previous ones but refers now
to the kinetic energy at infinity, i.e., K := —u; — 1, so that X' > 0 corresponds
to u; < —1. Clearly, all snapshots show that, independently of the placement
criterion chosen, the material near the equator is just unbound, but, as the latitude
increases, the material becomes more unbound, increasing to a maximum at the
poles. Similarly, at late times, we can see that all the high-energy material has
already been ejected in the violent dynamics accompanying the early postmerger
and that and most values of K are close to zero.

In summary, when analysed in a combined manner the three-dimensional dy-
namics of the unbound tracers shown in Figs. [3.3H3.5] reveals that the ejected
matter near the poles has lower densities, but larger values of electron fraction
and kinetic energy, and such a picture has implications for the detection and ob-
servation of kilonova as will be discussed in Chapter [6]

3.3.3 Distribution dynamics of unbound tracers

Another useful feature of the tracers is that they can answer questions about the
evolution of the fluid flow that are not able to be answered in regular grid-based
codes. To this, a key assumption often made in studying the outflow material in r-
process nucleosynthesis and in kilonova modelling [[146,1107], is that the unbound
material is expanding adiabatically, i.e., that the internal energy remains constant.
In addition, the material is assumed to expand radially, so that the rest-mass den-
sity decreases in time as ~ t—3. While all reasonable, our use of tracers allows the
testing of these assumptions as the direct thermodynamical history of the tracer
is recorded. This is done in Fig. by reporting the time evolution of the distri-
bution functions of representative quantities, i.e., the rest-mass density, the radial
position, the specific entropyﬂ In these plots, the worldlines of the various tracers

4A diagram showing the evolution of the distribution function of the radial position of the var-
ious tracers effectively represents a spacetime diagram, thus offering the opportunity to visualise
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Figure 3.6: Evolution of the distribution functions for three representative quanti-
ties: the rest-mass density, the radial position and the specific entropy. From left
to right are the “correlated”, “anticorrelated”, “uniform”, and “unbound” place-
ments. The yellow lines represent the adiabatic expansion for each of the plotted
quantities. Note that the “unbound” placement starts 1.8 ms after the merger. Hor-
izontal black lines correspond to the times shown in Figs. [3.3H3.5]



CHAPTER 3. TRACER PARTICLES IN NUMERICAL SIMULATIONS 44

are marked with small dots whose colour marks the corresponding fraction; as
a result, a dark/light trajectory will indicate that a large/small number of tracers
with the corresponding quantity having the reported values at a given time.

In the top left panel of Fig. [3.6] the evolution diagram of the evolution of
rest-mass density, with the dashed-gold curve representing adiabatic expansion,
p ~ t~3 is displayed. The four sub-panels distinguish the various criteria adopted
for the initial placement, while the horizontal black lines correspond to the times
shown in Figs. In all cases, the general trend of the adiabatic expansion
can be seen very clearly and involves both tracers with high rest-mass density and
tracers with low rest-mass density. However, it is important to note that while the
general trend is for an adiabatic expansion, not all tracers follow this behaviour.
For example, in the case of “correlated” tracers, the panel shows that there is a
small fraction of tracers (light blue) corresponding to higher rest-mass densities
that does not always follow the adiabatic expansion prior. Another feature is the
number of tracers that reach close to atmospheric values and that eventually repre-
sents a large fraction of the total number (dark blue). In all placements considered
there is a clear gradient of colours with increasing rest-mass density. An excep-
tion to this behaviour is offered by the case of “anticorrelated” tracers, where the
fraction gradient is not as strong. This is a manifestation of the initial placement
scheme: there are more tracers at high rest-mass densities and of those that be-
come unbound, they represent a significant fraction of the unbound material.

Similarly, in the top right panel of Fig. shows a standard spacetime dia-
gram of the radial distance from the origin of the tracers; note that the “unbound”
placement starts 1.8 ms after the merger as discussed above. In the adiabatic ap-
proximation, the expansion radius 7 should scale linearly with time, i.e., 7 ~ t,
and the figure shows clearly that most tracers do follow a very close to radial ejec-
tion. In addition, we can see the wide distribution of the tracers. Our domain
is approximately 750 km wide from the origin in each direction and the tracers
have a radial distance ranging from 300 km up to 800 km at any given time. This
spatial distribution has been discussed in terms of the neutrino-drive wind ejecta
[163] but has not been explored in the dynamical ejecta case in general relativity
and will be discussed further in Chapter [0

Finally, in the bottom panel of Fig. the evolution of the distribution func-
tion for the specific entropy is displayed.For an adiabatic expansion, they distri-
bution functions would simply be represented by a vertical line for each tracer.
The panel clearly allows for the verification of this assumption and it can be noted
that indeed many of the tracers obey this adiabatic expansion, but not all. For
example, it is clear that at high entropies the tracers do not expand adiabatically
and that tracers can actually increase their entropy, for instance as a result of ad-

the (radial) worldlines of the tracers.
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Figure 3.7: Left panel: Comparison between the distributions in electron frac-
tion as computed with the tracer mass-fluxes through the surface at 200 M, as
computed with the different placement schemes (coloured lines) and the outflow
(black line). Because the ejected masses are different in the various cases, all
curves have been normalised to the masses of their respective total values. Shown
in the bottom part is the relative error, which is smaller for the uniform distribu-
tion placement. Right panel: The same as in the left but when the distributions
are absolute and not normalised.

ditional shocks with the outgoing matter. Hence, this panel illustrates that the
assumptions made that the ejected matter follows an adiabatic flow is a very valid
approximation for much of the unbound material, but in order to have the most
robust input data for the nuclear network, one needs to have the full history of the
fluid element. This is in contrast with the analysis of [201]], where the unbound
material was expanded adiabatically from the surface of the outflow sphere.

3.3.4 Tracer and fluid information

In the previous sections it was shown how different choices of the initial place-
ment of the tracers can lead to different dynamics of the tracers and hence to
different measurable quantities, for example in the electron fraction. However,
these experiments are merely qualitative and do not provide a quantitative method
of determining which method is the “best”. A quantitative method needs to be
determined which will demonstrate which of these possible choices should be the
recommended one in numerical simulations in order to most accurately represent
the underlying fluid. To answer this question and hence determine the efficacy
of the different placements, the tracer flux is compared with the mass-flux of the
underlying fluid. In this comparison, the tracer distributions of the most important
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thermodynamical and physical quantities, i.e., electron fraction, entropy, energy at
infinity, angular distribution of the mass flux, are compared with the correspond-
ing distributions from the underlying fluid evolution which is hereafter referred to
the latter as the (fluid) “outflow”. As in the previous discussions, the computation
of the distributions are done through the fluxes of a fluid across a spherical detec-
tor at 200, from the origin and consider only material that is unbound according
to the geodesic criterion, u; < —1.

Perhaps the most important quantity of all thermodynamical quantities is the
electron fraction Y,, which measures how neutron rich the material is. In addition
to determining the elements created through r-process, the value also has impor-
tant implications for the signal observed from a kilonova, see Chapter [f] for a
detailed discussion. It is for these reasons that the electron fraction is the quantity
which will be used to determine which placement best matches that of the under-
lying fluid. In Fig.[3.7|the distributions of the electron fraction using the different
placement prescriptions (marked with lines of different colour) along with the dis-
tribution obtained with the fluid “outflow” (black) are plotted. Also plotted in the
bottom panel is the error between each of the tracer prescriptions with that of the
“outflow”. In the left panel, in particular, all curves are normalised to the amount
of rest-mass ejected in the various cases, M,; ., so that the integral of the various
distributions is unity. In the case of the outflow, the normalisation mass is the
total amount of ejected material while in the case of the tracers, it is the “mass”
measured by Eq. In the right panel of Fig. such a normalisation is not
used and the distributions refer to the absolute amount of ejected matter for the
different distributions. Here again, the mass of the outflow is the actual measure
of ejected material while the tracer mass is only a representative sample.

Overall, the fluid-outflow distribution (black solid line) shows that the electron
fraction has a main peak at Y, ~ 0.04 and a secondary one at Y, ~ 0.19. Con-
centrating on the left panel, clearly the “anticorrelated” and “uniform” placements
both give the correct value for the Y, ~ 0.04 peak with a relative error of ~ 1072
and 1073 respectivelyﬂ On the other hand, the “unbound” (u;) and the “corre-
lated” placements over- and underestimate it respectively by roughly the same
amount of 1071, In particular, for the secondary peak, the “correlated” placement
overestimates the peak significantly with an error of about 50%; a much better
agreement is obtained with the “unbound” and “uniform” distributions, with er-
rors that are of a few percent only. In the intermediate electron-fraction range,
i.e., for 0.04 < Y, < 0.19, all placements provide an accurate description, with

~J

the only exception of the “unbound” placement, which tends to underestimate the

SFor the purposes of this comparison, the question of whether or not the distribution and phys-
ical and what type of r-process material it would produce is relegated to Chapter [6| The only
important point is the comparison and not the physical interpretation.
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Figure 3.8: Distributions in rest-mass density of the tracers (light-yellow shade)
and the corresponding distributions when the tracers cross the 200 M, surface.
Shown from left to right are the distributions corresponding to the “correlated”,
“anticorrelated”, “uniform”, and “unbound”.

underlying fluid. Hence, all things considered, it can be concluded that the initial
tracer placement that provides the best match with the consistent fluid evolution
is the “uniform” distribution.

This is a somewhat surprising result as one would have naively expected that
the “correlated” placement would have provided a more faithful representation of
the fluid dynamics since the material that is closest to the surface of the neutron
star is the most likely material, a priori, to become unbound and it exists at low
densities. In order to appreciate why this is not the case, Fig. [3.8] reports the
initial distributions of the rest-mass density of the tracers (light-yellow shade) and
the corresponding distributions when the tracers cross the 200 M, surface. In
particular, the comparison presented in the top left panel allows one to appreciate
that initially there were significantly more tracers at low rest-mass densities for
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the “correlated” placement, so that there is an effective oversampling at lower
rest-mass densities and, consequently, undersampling at high rest-mass densities.
Indeed, this is clearly illustrated as there are no tracers that come from above ~
10'? g/cm? while almost all tracers below 10° g/cm?® become unbound. Because
the lower densities also have higher values of Y., the “correlated” placement de-
facto leads to an oversampling around Y, ~ (.18 (hence the second broad peak
in the distribution) and to an undersampling at Y. ~ 0.05 (hence the smaller first
peak in the distribution).

Not surprisingly, the “anticorrelated” placement suffers of the opposite prob-
lem. It undersamples cells at lower rest-mass densities resulting in there being
fewer tracers with large values of Y,. More precisely, the top right panel of Fig.[3.§]
shows that there is a significant number of tracers above 102 g / cm?, which have
low values of Y., thus yield a good agreement with the first peak. However, at
lower rest-mass densities, a higher percentage of tracers that become unbound
come from lower densities and hence we are effectively and significantly under-
sampling matter at low densities. For example, only about 1 % of the initial trac-
ers were placed at the lowest initial rest-mass density of ~ 107 g/cm?, but almost
20 % of the tracers that are unbound come from these rest-mass densities. Exam-
ining the bottom left panel of Fig. one can also appreciate that the “uniform”
placement distribution is, in a sense, the average of the above two placements. It
uniformly samples from all densities and hence has no oversampling or under-
sampling at high and low rest-mass densities. As shown in Fig. tracers that
are initially at 10'* g/cm?® become unbound, as in the case of the “anticorrelated”
placement; at the same time, the tracers at low rest-mass densities are unbound,
thus making the “uniform” placement be the most effective one, besides being
also the simplest to implement.

When considering the “unbound” placement, the bottom right panel of Fig.[3.§|
shows that there is a remarkably good match between the initial distribution of the
placed tracers and the distribution at detector crossing, especially for medium and
high rest-mass densities, which is not surprising given that it focuses on material
just before it becomes unbound. Yet, while such a placement nicely reproduces
the counts at the two peaks in electron fraction, it also fails to capture the val-
ues between the two peaks, as shown in the left panel of Fig. This is most
likely due to the fact that this placement completely misses some of the mate-
rial that the other tracer placements otherwise capture. In particular for example,
it undersamples the material that is at low rest-mass density, which is well cap-
tured by the correlated placement for example. Hence, the behaviour in Figs.
and highlights a potential drawback of the “unbound” placement procedure.
This placement, in fact, while it can nicely sample the unbound material, only
captures material that is unbound at a given moment and neglects any material
that might become unbound and that has not yet become unbound, most notably,
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Figure 3.9: Comparison between the distributions in electron fraction as computed
with the tracer mass-fluxes through the surface at 200 M, as computed with the
different placement schemes (coloured lines) and the outflow (black line). The
quantities considered are: the entropy, the velocity at infinity, and the angular
distribution; all curves have been normalised to the corresponding total ejected

masses (cf. Fig.[3.7).

the very low rest-mass density material. Furthermore, this distribution is highly
time-dependent as how close to the crossing-time is necessary is left as a free
parameter.

However the electron fraction isn’t the only quantity that one can compare. In
Fig. [3.9] the thermodynamical and physical quantities similar the one presented
in Fig. are illustrated. These three quantities are: the specific entropy (left),
the velocity at infinity (middle), and the angular distribution (right). Here, only
a comparison between the fluid outflow (black line), the “uniform” distribution
placement (blue line), and the “correlated” placement (green line) is done as dis-
cussed above, it represents the best placement tested. In terms of the distributions,
note how the specific-entropy distributions are all rather similar, although the “uni-
form” placement undersamples at the first peak and does not show a local mini-
mum at around 15 kg /baryon. The velocity at infinity is another measure of the
u; and here we do not see great agreement at higher values. These higher values
correspond to the more energetic tracers, thus indicating that both the “uniform”
and the “correlated” placement tend to oversample the highly energetic material.
Similar considerations apply to the angular distribution of the ejected, where the
two placement schemes show rather similar results, both in agreement with the
fluid evolution, even though the tracer mass flux shows slightly more mass at the
higher angles. Interestingly, the tracer evolution is also able to reproduce the local
maximum at ~ 45° which a numerical artefact of the Cartesian grid and was first
mentioned in Ref. [201]].

In conclusion, it was found that out of all the initial tracer placements consid-
ered, the “uniform” placement results in the best agreement with the underlying
fluid based on a comparison with the electron fraction. The reason for this agree-
ment is that “uniform” method samples both high and low rest-mass densities
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uniformly, avoiding over- or undersampling in these regimes and captures the best
of both distributions. Additionally, a priori, the “unbound” distribution sounds
like the best method to capture the underlying fluid, it fails to properly reproduce
all the measurements and suffers in comparison with the “uniform” method.

3.4 Tracing bound material

In this section, the discussion changes towards the use of tracers in the bound case
by applying the tracer method to the case in which they are employed to describe
the dynamics of matter that is gravitationally bound. Despite already having a
complete description of the fluid dynamics as measured by Eulerian observers,
i.e., the observer at “infinity”, there are a number of reasons why using tracers
could be a powerful tool as it represents a shift to a Lagrangian viewpoint, i.e., an
observer who “lives” on a fluid element. The most important of such reasons is
that tracers following bound fluid elements allow for the disentanglement of the
local dynamics of the fluid from the global one, such as in the case of differential
rotation. Because both of these dynamics can be complex and operate on different
timescales, having the possibility of setting them apart is quite valuable to interpret
the results of simulations. As discussed previously, there are several examples of
the successful use of tracers in bound material (see, e.g., the interesting analysis
of precessing and tilted disk accretion in Ref. [175]), but here the concentrated is
focused on the dynamics of the HMNS produced by the merger of a binary system
of neutron stars [|110]] which will be delved into more detail in ChapterEf}

More specifically, the focus of this section is not on dynamical ejecta, but in-
stead on studying the rotational properties of the HMNS produced by the merger
of a binary system of neutron stars. When two neutron stars merger, the merger
remanent is a metastable object which can survive for some time before ultimately
collapsing to a black hole. For every equation of state, there exists a maximum
mass above which the neutron star will promptly collapse to a black hole. How-
ever, to derive this maximum mass, the assumption is made that the star is non-
rotating. With the exception of perfectly head-on collisions, there is some non-
zero angular momentum which will be transferred to the merger remanent which
results in a rotating object. This rotation adds additional support to prevent col-
lapse and thus larger masses than the non-rotating case are possible. To complicate
this picture is that the remanent is subject to violent oscillations and, at the same
time, it is subject to a barmode deformation that leads to a copious emission of
gravitational waves which makes disentangling the physics of each effect compli-
cated. Hence, a deeper understanding of the distribution of angular momentum
and angular velocity can help in determining under what conditions the HMNS
will collapse to a black hole in a more realistic case. It is therefore useful to study
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the angular velocity of the fluid as a first step to decoupling these processes. The
angular velocity (2, is defined as

Q:=av®— %, (3.11)

where ¢ refers to the azimuthal direction (see Chapter 4| where a more detailed
discussion will be presented). Hereafter focus will be concentrate on the HMNS
produced when two identical neutron stars with a (gravitational) mass of 1.35 M,
and described by the hot DD2 EOS, but a much large sample of binaries will be
explored in Chapter [4]

3.4.1 Initial placement

Unlike the case of the dynamical ejecta of the previous sections, selecting the op-
timal initial placement when studying bound flow is much less problematic since
the ultimate goal is not to accurately capture the underlying fluid, but instead en-
sure that the fluid is well sampled to obtain tracers in all regions. Thus as long
as it is clear as to what region of the fluid that is to be studied, then placing trac-
ers is mostly a matter of deciding a good time for the seeding and employing a
sufficiently large number of tracers so that all parts of the flow are properly repre-
sented. For the case of angular velocity, the motion in the core of the HMNS needs
to be tracked thus it is straightforward to set the time of the merger as the time for
the tracer seeding as this is the time when the HMNS forms. Furthermore, for the
spatial placement no probability distribution associated with the rest-mass den-
sity is required but instead simply placing a single tracer in each of the fluid cells
that are mark to be within a certain region of the computational domain, namely,
the core of the HMNS. In practice, using ~ 10° tracers is more than sufficient
to ensure that every cell within the core had a tracer in it. With this placement
scheme of the 10° initially placed tracers, approximately 6000 remained on the
(x,y) plane for the entire simulation run time, thus allowing the study of the fine
details of the fluid motion on this plane to be done.

3.4.2 Dynamics of the HMNS

In Fig. a representative time is plotted, approximately ~ 5.5 ms after the
merger and of the evolution of the rest-mass density (left) and the angular velocity
(right). In the top panel the frame of an observer at infinity (Eulerian) is chosen,
while in the bottom the “corotating frame” is chosen. Here a corotating frame
is a frame defined to be rotating at a frequency that is half of the instantaneous
gravitational-wave frequency, Qqw where here Qgw/2 = 1291 Hz. The tracers
plotted here are just a representative of the ~ 6000 tracers that remain in the (x, y)
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plane throughout the entire evolution. For each tracer, a small filled circle is used
to report the position at the given time, and the solid lines of decreasing size are
the position at two previous times separated by ~ 0.3 ms. The “tails” that are
produced in this manner provide a simple way to visualise the tracer streamlines
and hence the evolution of the fluid as it rotates around the core. Also, the num-
ber of tracers is sufficient to completely cover the core and all key features are
represented by numerous tracers, however only representative ones are plotted to
illustrate the rich evolution of the feature that is difficult to observe without the
streamlines.

The benefit of tracers is immediate and clarifies and illustrates the evolution of
the fluid when in the corotating frame. In the top panel of Fig.[3.10] the evolution
of the tracers in the Eulerian frame is a complete mess. Given a time series it
would be possible to observe the | = m = 2 bar deformation that forms, but the
evolution of the tracers do not illustrate this feature. Contrast this to the corotating
frame plotted in the bottom left panel of Fig.[3.10] Here the underlying rest-mass
density clearly exhibits an [ = m = 2 deformation and the tracers clearly see
illustrate that there is a central bar around which the tracers flow. In addition to
this bar deformation, there are two vortices that trap fluid (bottom of Fig.
that are not clear in the Eulerian frame. This pattern can be even more clearly
seen in the angular velocity, where these side vortices have higher angular veloc-
ity compared with the central bar. Additionally, the tracers illustrate further the
structure of the angular velocity distribution. In this panel, white refers to “non-
rotating” within the corotating frame, i.e., fluid elements are rotating exactly at
the corotating frequency. Blue regions are rotating slower and red regions faster
than the corotating respectively. This rotating explains the vortices in the fluid, as
in these regions, the fluid is revolving faster than the corotating frequency — and
hence move counterclockwise — while other tracers either corotate — hence they
appear not to move — or rotate more slowly than the corotation frequency — and
hence move clockwise. This behaviour is not possible to determine in the Eule-
rian frame where everything is rotating and there is no stationary reference to use.
This combined use of tracers and the corotating frame demonstrates the ability to
visualise features of the core that are otherwise difficult to visualise in an Eulerian
picture.

A similarity with the dynamical ejecta, in the case of bound material, is that
the tracers record the values of variables along fluid lines. For dynamical ejecta,
this is used for r-process, but for the bound material they allow for the computa-
tion of quantities that should be conserved along streamlines. For example, it is
expected that if fluid is perfect and the flow is isentropic the Bernoulli constant
will be conserved [213]]. Keeping track of such quantities can be extremely useful
to explain a behaviour which would otherwise appear puzzling when only con-
sidering the bulk motion of the fluid. As will be shown in Chapter {4}, it will be
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Figure 3.10: Distributions on the (z,y) plane of the rest-mass density (left pan-
els), and of the angular velocity (right panels). The top panels are relative to the
Eulerian frame at time ¢ = 5.5 ms, while the bottom panels refer to a corotating
frame with angular velocity Qc, := Q — Qaw/2, where Qgw = 2582 Hz is the
instantaneous gravitational-wave frequency. Also shown are portions of the flow-
lines of several tracer particles that remain close to the (z, y) plane and for which
we show only the final part of the flowlines (i.e., for the last ~ 0.285 ms), using
small dots to indicate the particle position at the time indicated in the frame. In
addition, the initial parts of the trajectories have increasing transparency so as to
highlight the final part of the trajectories.
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Figure 3.11: Top panels: Evolution of the entropy for tracers in the HMNS that
are eventually either in the inner core (i.e., r < 4 km; left panel), in the middle
core (i.e., 4 < r < 6 km; middle panel), or in the outer core (i.e., 6 < r < 8 km;
right panel). Bottom panels: evolution of the Bernoulli constant hu, (light blue
line), the classical Bernoulli constant v?/2 + ¢ + p/p (blue line) and its main
contributions: € + p/p (green line) and the kinetic term v? /2 (red line). The grey-
shaded area refers to the postmerger transient when the HMNS is far from an
equilibrium.
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shown that the dependence of the angular velocity depends inversely on the rest-
mass density, through the Bernoulli constant. This conjecture explains why the
rest-mass density and angular velocity profiles have a clear 90 degree phase dif-
ference (cf. left and right panels of Fig.[3.10)). This assertion, however, is difficult
to verify without tracers and the streamlines they can be provide.

Recall that in relativistic hydrodynamics a perfect fluid with four-velocity u,
the quantity h (u - £) is Lie-dragged along w [213]]

Ly(hu-€) =0, (3.12)

where h := (e + p)/p is the specific enthalpy, e := p(1 + €) is the total energy
density, and & is a Killing vector of the spacetime and also a generator of the
symmetry obeyed by the fluid. If spacetime admits a timelike Killing vector so
that the fluid motion is stationary, then the quantity B := hu, is a constant of the
fluid. In its classical limit, Eq. (4.13) becomes

1
(1 +e+ E) (1 + o+ 5’52) = const. , (3.13)
p

where ¢ is the gravitational potential and v is the local fluid velocity. When
neglecting higher-order terms and taking the gravitational potential to be indepen-
dent of time and essentially constant across the HMNS, expression further
reduces to

(162 et 73) — const. | (3.14)

2 P

which coincides with the classical expression for the Bernoulli constant [213].
When consider the above simulation, it is clear that during the post-merger phase
of a BNS merger there is no timelike Killing vector, however the Bernoulli con-
stant can still be computed using the tracer particles and can be used to measure
how well the Bernoulli constant is actually conserved along streamlines in this
complicated situation.

This computation is done and illustrated in Figure and this example pro-
vides a simple example of how the evolution of tracers allows one to quickly and
simply perform the analysis of very precise regions of the fluid and can illus-
trate hidden physical laws that are not evident at first. In particular, the panels in
Fig. show the time evolution of several quantities relative to three tracers that
have been chosen as representative of three areas areas of the HMNS: the inner
core (i.e., r < 4 km), the middle core (i.e., 4 < r < 6 km), and the outer core
(i,e., 6 < r < 8 km). The top panels, in particular, show the evolution of the
specific entropy which, during the violent post-merger phase, undergoes a sudden
jump due to heating, but quickly settles to become approximately constant. The
bottom panels, instead, shows the evolution of the Bernoulli constant in light blue.
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In essence, Fig. shows that even though the post-merger phase does not
exhibit a timelike Killing vector, the Bernoulli constant stays roughly constant
across the interior of the HMNS. This constant behaviour can be used to explain
the phase difference between the where the rotation-profile is out-of-phase with
the barmode from the rest-mass density, as will be discussed in more detail in
Chapter [4]

3.5 Conclusions

In this chapter the basics of tracers, so called massless particles, were investigated
for bound and unbound material. Tracers are massless particles that are passively
advected and provide an effective way of recording the thermodynamical history
of the fluid in grid-based codes. However, while not particularly expensive to
compute, the use of tracers requires a judicious initial placement, both in time and
space, and especially if the portion of the fluid one is interested in is the one that
is gravitationally unbound. This is because different placements can potentially
lead to different physical observables and hence to different physical conclusions
on the properties of the underlying fluid.

In particular the efficacy of how well the tracers can match the underlying
fluid in the context of dynamical ejecta was evaluated by directly comparing re-
sults from the fluid itself. More specifically, four different placement schemes
that could be used to initially distribute the tracers were evaluated and how well
their evolution matches that when compared with information from the actual fluid
flow. The four schemes considered were built by constructing distribution func-
tions of the tracers that are either directly correlated with the rest-mass density
distribution, or anti-correlated, or uniformly distributed, or, as a final case, inde-
pendent on the rest-mass density and related instead to the portion of fluid that
is unbound. Countering naive expectations that a placement that follows the rest-
mass density would result in the best tracer evolution or indeed with a placement
that picks up the fluid just before it becomes unbound, it was found that the most
effective method of placing tracers initially is to uniformly sample them across the
rest-mass density distribution. The reason for this for this placement is that this
leads to the closest matching with the unbound material that is flowing through a
detector at roughly 300 km from the centre of the merger. This match has been
compared across a number of physical quantities, such as the unbound rest-mass,
the distributions of electron fraction, specific entropy and kinetic energy. Interest-
ingly, the most important reason why a uniform distribution represents the optimal
one is that it has the merit of sampling sufficiently from both the high and low rest-
mass density regions that are ejected during the merger. Other methods, in fact,
tend to either underestimate or overestimate the contributions coming form certain
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regions of the fluid.

In addition, tracers can be also used for bound material. In particular they
allow for a fine analysis of the motion of the fluid in regions that are highly com-
plex, providing information on the properties of the fluid and on the quantities
that should be conserved along streamlines if the flow is adiabatic. This was il-
lustrated by considering the motion of tracers in the core of an HMNS produced
in the merger of a BNS system. It was shown that tracers provide a novel way
to show the evolution of the fluid and display features that are otherwise difficult
to observe and analyse. As a representative example, it was shown that the fluid
vortices can form in the HMNS where matter is locally trapped and that these
vortices are located in regions of low rest-mass density and high fluid velocity, as
expected from the conservation of the Bernoulli constant.

The results of this chapter provide the framework for the next three chapters
as they discuss particular applications of tracers touched upon briefly here. In
particular, in Chapter ] and Chapter [5|the application of tracers to bound material
will be explored further. In Chapter[6] the tracer data as input for radiative-transfer
models to calculate the light curves resulting from the corresponding kilonova for
unbound dynamical ejecta.



Chapter 4

Rotational properties of
hypermassive neutron stars from
binary mergers

In this chapter, the tracer method of Chapter [3]is used in the context of bound ma-
terial in the post-merger phase, focusing specifically on the problem of differential
rotation. [1

4.1 Introduction

Prior to the direct detection GW 170817 of gravitational waves from merging neu-
tron stars, the formation of heavy compact objects with large amounts of angular
momentum was expected, for example, from the collapse of the iron core in Type-
II supernova. When a significant amount of angular momentum is present, the
neutron star is prevented from collapse by additional pressure support coming
from the rotation. The simplest case of rotation, uniform rotation, while theoreti-
cally easy to model, is not an effective way of sustaining large rotation rates — on
the order of a few thousand kHz — in realistic stars where the densities vary over
several orders of magnitude. Instead, a far easier way of maintaining this support
from collapse is by distributing the angular momentum differentially in radius, or
“differential rotation”. If this differential rotation law is known, by measuring the
mass of the object, one can obtain an estimate of how far from or how close to
gravitational collapse to a black hole equilibrium configuration is. As such, pro-

IThis chapter is based on the work of [110]. All figures in this chapter have been reproduced
from [[110]. My contribution to the work of [[110] was to run additional simulations — specifically
those of the temperature-dependent EOS with tracers —, do data analysis, generate all the figures,
write and edit the text of the paper.
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viding a rotational law is essential, especially after the detection of GW170817
where, although the post-merger wasn’t seen, the prospects of detecting a signal
from this part of the merger is likely. Additionally, estimates of the mass from
other channels, such as kilonova modelling, can be used to validate models and
predictions from a differential rotation law.

Over the past decades, a large number of works have explored this problem
in full general relativity, either through the construction of equilibrium configura-
tions [30, 155} 240} 238, 13, 96, 252, [101]] or through their dynamical production
in core-collapse supernovae [186] or in binary neutron star mergers [23]. Unfortu-
nately, there is a distinct lack of a physically motivated law of differential rotation.
In lieu of this, almost all of these previous works have assumed that the rotation
law is particularly simple. Specifically, the assumption made is that the angular
momentum, j := hu, is constant, where h is the specific enthalpy and u, the co-
variant azimuthal component of the four-velocity. One physical advantage of the
law is that it satisfies the Rayleigh criterion for local dynamical stability against
axisymmetric perturbations, dj /d) < 0, where (2 is the angular velocity.

However, perhaps the biggest benefit of the law is that it is analytically simple,
with the angular velocity decreasing monotonically from the center of the star and
with the degree of differential rotation being regulated by a single dimensionless
parameter, normally referred to as A. Despite this simplicity, numerous studies
have shown that for a given degree of differential rotation, different classes of so-
lutions are possible for a given set of parameters [[13, [101] and also potentially
reaching as large as four times that of the maximum mass of nonrotating configu-
rations M, . In contrast, when assuming a uniformly-rotating model, a variance
of only 20% is seen [47]]. These results have implications for constraining the
maximum of a neutron star e.g., [160], and thus an understanding of how dif-
ferential rotation affects the stability of a hypermassive neutron star can lead to
constraints on the equation of state.

However, even with this simplistic law, little work has been done to make suit-
able generalizations [96]] for a wider space of equilibria and general prescriptions
for differential rotation. This means that while the 7 — constant law of differential
rotation has been useful so far to explore the equilibria of differentially rotating
compact stars, such as isolated neutron stars, its study in neutron merger simula-
tions is harder to justify where clear violations of a j — constant law are observed.
Numerous studies over the past decade have indeed shown that the formation of
a hypermassive neutron star (HMNS), that is, a neutron star whose mass exceeds
the maximum mass of a uniformly rotating star, the law of differential rotation is
rather different [241} 18, 12, (151, 39, [210, 165]]. This means that a law of differ-
ential rotation that, while maybe not analytically simple, reflects the results from
hydrodynamical simulations.

Some preliminary work in this direction has been undertaken in Refs. [128,
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127], where the properties of the angular-velocity distribution in the merged ob-
ject were analyzed in detail, although only for a very limited number of binaries.
These studies agree with earlier simulations of Ref. [238]], and these more studies
have found that the angular-velocity profile of the HMNS exhibits a slowly rotat-
ing core and an envelope that rotates at angular frequencies that scale as r~%/2,
where r is the radius from the centre. Although irrotational binaries are most
likely to be physical, extensions to initial data with rotation has shown similar
results [[129] suggesting that differential rotation observed in the HMNS is robust.
In contrast to previous studies, here, a more systematic approach is adopted.
In particular, a large number of equations of state, masses, and mass ratios are
studied. The results of these numerous simulations confirm the more early results
of Refs. [[238, [128, [127]], however, it is exhibited here that the rotation law ex-
hibits “quasi-universality” which has hitherto not been discussed in the context of
differential rotation. Quasi-universal relationships have been found in both iso-
lated [276, 191, 248, (112, 71}, 155, 47] and in binary systems [276, 165} 254, 212]
and are a very powerful tool it allows complicated non-linear simulations to be
summarised by a few dimensionless parameters, which themselves are typically
functions of a few simple observables such as mass or radius. In the case to be pre-
sented here, the angular-velocity distributions found are to be, independently of
the EOS, composed of an almost uniformly rotating core and a disk with angular
frequencies Q(r) oc 7~3/2, This disk, which is in the outer regions of the HMNS,
plays an important role in longer term evolution — here longer term means longer
than the timescale of the simulations, which is on the order of 10s of milliseconds
— through accretion and the creation of a torus around a black hole. Both of these
physical effects are important within the proto-magnetar model for short gamma-
ray bursts [278],[173,51] and the subsequent extended X-ray emission [211}59].
This chapter is organized as follows: Section[4.2)is dedicated to a brief overview
of the mathematical and numerical setup employed in the simulations, while in
Secs. and the results of the simulations are obtained results obtained when
modelling high- and low-mass binaries, respectively with particular focus paid
to the distributions of rest-mass density and angular velocity, and illustrates the
approach to obtain time and azimuthally averaged profiles. Section [4.5] focuses
on the use of tracer particles, introduced in Chapter (3| to disentangle the physi-
cally meaningful results from the possible contamination of gauge effects, while
Sec. {.6] discusses the “quasi-universal” features of the angular-velocity profiles
and how to correlate them with the properties of the progenitor stars in the binary.
Also discussed in Sec. is the amount of mass in the disk and the influence of
the thermal component of the EOS on the results presented. Finally, Sec.4.7| pro-
vides a discussion in terms of the dynamics of tracers on the conservation of the
Bernoulli constant in the quasi equilibrium of the HMNS. Sec.[4.§|provides a dis-
cussion of the effects of resolution and symmetries on the lifetime and evolution
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of the HMNS.

4.2 General Framework

4.2.1 Mathematical and numerical setup

The mathematical and numerical setup used for the simulations reported here is
the same discussed in Refs. [254, 256] and presented in greater detail in other
papers [18], 19/ 21]] and in Chapter[2] For completeness a brief review is done here
the basic aspects as some of the numerical methods used differ from those in other
parts of the thesis.

Like the previous simulations performed, all simulations presented here are
performed using the fourth-order finite-differencing code McLachlan [49,[153],
which is part of the publicly available Einstein Toolkit [l]. This code
solves a conformal traceless formulation of the Einstein equations [183, 1236, 28],
with a “1 + log” slicing condition and a “Gamma-driver” shift condition [6} 198].
A difference here, however, is that the simulations were not performed with the
code WhiskyTHC but instead with the general-relativistic hydrodynamics finite-
volume code Whisky [20], which has been extensively tested in simulations in-
volving the inspiral and merger of binary neutron stars [18} [19, 209, 22]. All
simulations are performed in general relativity using the of energy, momentum
and rest mass [213]] and are cast in the conservative Valencia formulation [85]]
cf. Chapter 2| Their numerical solution is obtained employing the Harten-Lax-
van Leer-Einfeldt [[111] approximate Riemann solver [111] in conjunction with
the Piecewise Parabolic Method [61]] for the reconstruction of the evolved vari-
ables. For the time integration of the coupled set of hydrodynamic and Einstein
equations the Method of Lines with an explicit fourth-order Runge-Kutta method
is used. All simulations use a CFL number of (.35 to compute the timestep.

An adaptive mesh refinement (AMR) approach based on the Carpet mesh-
refinement driver [226] is used to both increase resolution and extend the spa-
tial domain, placing the outer boundary as close as possible to the wave zone.
The grid hierarchy consists of six refinement levels with a grid resolution vary-
ing from Ahs = 0.15 M, (i.e., ~ 221 m) for the finest level to Ahy = 4.8 M,
(i.e., >~ 7.1 km) for the coarsest level, whose outer boundary is at 514 M, (i.e., ~
759 km). To reduce computational costs, a reflection symmetry across the z = 0
plane and a m-symmetry condition across the = 0 plane has been adopted , al-
though this assumption will be tested in Section 4.8] on the influence this has on
the overall results. The initial configuration for the quasi-equilibrium irrotational
binary neutron stars has been generated with the use of the LORENE-code [104]
and an initial coordinate separation of the stellar centers of 45 km has been used
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for all binaries. For each EOS considered equal-mass binaries where each star
has initial gravitational masses that are either M/ = 1.25M, (low-mass binaries;
cf. Sec. or 1.35M, (high-mass binaries; cf. Sec. at infinite separation
have been used.
A quantity that is particularly important in the analysis is the angular velocity,
(), which is defined as the amount of coordinate rotation
_do dx? B u®

T oAt dt out’ ‘.1

where u? and u' are components of the four-velocity vector u/. The corresponding
three-velocity as measured by the same Eulerian observer is then defined as

. Lt 1 /o .
V= z—(u—-l-ﬁZ), 4.2)

_ t
nuu“ a \Uu

where « is the lapse function, B is the shift vector, n* is the unit timelike vector
normal to a constant ¢ hypersurface, and +;; is the three-dimensional metric. With
the above definition the angular velocity within the 3 + 1 split can be expressed as

Q=av® — 5%, (4.3)
where
s v —yo”
v? = Prai 2 IR “4.4)
b _ zpY —yp*
B - .TQ +y2 + ZQ 9 (4'5)

are the three-velocity and shift vector components as computed from the Cartesian
grid with coordinates (z,y, z). Written in this form, one can interpret ) as con-
sisting of a lapse-corrected part of the ¢-component of the three-velocity, minus a
frame-dragging term provided by the ¢-component of the shift vector.

4.2.2 Microphysical matter treatment

In order to evolve the binaries, the evolution equations must be closed with an
equation of state (EOS). The equation of state provides a relation among the ther-
modynamical quantities of neuron star matter, for example the rest-mass density
and the pressure. Typically, the general independent thermodynamical quantities
of an equation of state are the rest-mass density, electron fraction, and the temper-
ature. However, in some cases, a simplified treatment is acceptable. For exam-
ple, during the inspiral, the neutron star is “cold” and a temperature independent
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EOS is sufficient to represent the matter inside of a neutron star. However, as the
neutron stars merger, large shocks are formed within the neutron star which are
inherently temperature dependent and thus a proper treatment of the neutron star
is required, as discussed in Chapter 2] Although ideal, the number of fully consis-
tent thermodynamic EOSs is limited, especially after the detection of GW 170817,
the parameter space that these tabulated EOSs provide is rather limited. To get
around this fact, and in order to study the more extremes of the EOS parameter
space, here a simple piecewiese-polytrope set of EOSs is used. Thermal effects
are included through the addition of an ideal-fluid component which is able to ac-
count for shock heating. This means that the pressure p and the specific internal
energy e are therefore composed of a cold nuclear-physics part and of a “thermal”
ideal-fluid componen [119]

P = DPc +pth7 6:ec—i_Ethu (46)

where p and e are the pressure and specific internal energy, respectively. The
cold part p., €. are modelled with five different nuclear-physics EOSs. Two of
such EOSs, namely APR4 [5] and SLy [72], belong to the class of variational-
method EOSs and the underlying particle composition within these models con-
sists mainly of neutrons with little admixtures of protons, electrons and muons.
Additionally, two more EOSs, i.e., GNH3 [99] and H4 [100], are built using rel-
ativistic mean-field models which include, above a certain rest-mass density, hy-
peronic particles.

However, a change is made for the fifth and final EOS, namely ALF2 [7]. This
EOS is more a model for hybrid stars than for neutron stars because it implements
a phase transition to colour-flavor-locked quark matter. Within this model, the
hadronic particles begin to deconfine to quark matter above a certain transition
rest-mass density pians = 3 Puuc, Where poue == 2.705x 1014 g/cm? is the nuclear-
matter rest-mass density.

Note that all of the EOSs used in the calculations satisfy the current obser-
vational constraint on the observed maximum mass in neutron stars, i.e., 2.01 £+
0.04M, [14], although evidence from GW 170817 does rule out some stiffer EOSs
[263]. Instead of using the data tables of the various EOSs, it is more suitable to
convert them to piecewise polytropes [206]. Each EOS has been parametrized,
based on specifying its stiffness in three rest-mass density intervals i = 2, 3,4,
measured by the adiabatic index I'; = d log p;/d log p;. Additionally, a unique
polytrope with I'; = 1.357 has been added for all of the used EOS to account for
the star’s low rest-mass density region p < ppyc.

2This class of EOSs is referred in the literature as the so-called “hybrid EOS” [213]] and should
not be meant to indicate that the star is composed of a hybrid hadron-quark matter present in hybrid
stars.
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model EOS | M | R | Maowm | My | M/R | Jou T | 1M
o) | on] | M) | (M) )
GNH3-M125 GNH3 | 1.250 | 13.817 | 2.4780 | 1.3464 | 0.13358 | 273.29 | 6.4067 | 18.890
GNH3-M135 GNH3 | 1.350 | 13.777 | 2.6746 | 1.4641 | 0.14468 | 281.58 | 7.2766 | 16.450
H4-M125 H4 1.250 | 13.533 | 2.4780 | 1.3506 | 0.13638 | 273.25 | 6.4058 | 18.610
H4-M135 H4 1.350 | 13.550 | 2.6746 | 1.4687 | 0.14711 | 281.61 | 7.2770 | 16.344
ALF2-M125 ALF2 | 1.250 | 12.276 | 2.4779 | 1.3672 | 0.15034 | 273.16 | 6.4014 | 16.455
ALF2-M135 ALF2 | 1.350 | 12.353 | 2.6746 | 1.4877 | 0.16136 | 281.42 | 7.2708 | 14.581
SLy-M125 SLy 1.250 | 11.469 | 2.4779 | 1.3720 | 0.16092 | 273.04 | 6.3977 | 14.000
SLy-M135 SLy 1.350 | 11.465 | 2.6745 | 1.4946 | 0.17386 | 281.34 | 7.2663 | 12.309
APR4-M125 APR4 | 1.250 | 11.052 | 2.4779 | 1.3783 | 0.16700 | 273.05 | 6.3973 | 13.226
APR4-M135 APR4 | 1.350 | 11.079 | 2.6746 | 1.5020 | 0.17992 | 281.37 | 7.2665 | 11.720
LS220-M132 | LS220 | 1.319 | 12.775 | 2.6127 | 1.4360 | 0.15108 | 278.68 | 6.9891 | 15.113
LS220-M135 | LS220 | 1.350 | 12.750 | 2.6740 | 1.4733 | 0.15638 | 281.29 | 7.2656 | 14.112
model EOS M ko \/M>
(Mo)]

GNH3-M125 GNH3 | 1.250 | 0.11753 | 18424

GNH3-M135 GNH3 | 1.350 | 0.10841 | 1139.9

H4-M125 H4 1.250 | 0.12361 | 1746.5

H4-M135 H4 1.350 | 0.11483 | 1111.1

ALF2-M125 ALF2 | 1.250 | 0.13049 | 1132.6

ALF2-M135 ALF2 | 1.350 | 0.12037 | 733.63

SLy-M125 SLy 1.250 | 0.10266 | 634.27

SLy-M135 SLy 1.350 | 0.092993 | 390.29

APR4-M125 APR4 | 1.250 | 0.099787 | 512.14

APR4-M135 APR4 | 1.350 | 0.090990 | 321.78

1S220-M132 | LS220 | 1.319 | 0.099289 | 840.93

LS220-M135 | LS220 | 1.350 | 0.096575 | 688.26

Table 4.1: All binaries evolved and their properties. The various columns denote
the gravitational mass M of the binary components at infinite separation, the cor-
responding radius R, the ADM mass Mapy of the binary system at the initial sep-
aration, the baryon mass M,,, the compactness C := M /R, the orbital frequency
forb at the initial separation, the total angular momentum .J at the initial separa-
tion, the dimensionless moment of inertia I /M 3 at infinite separation, the ¢ = 2
dimensionless tidal Love number k5 at infinite separation, and the dimensionless
tidal deformability \/M? defined by \ := 2k, R /3.



CHAPTER 4. ROTATIONAL PROPERTIES OF HMNS 65

The “cold” nuclear-physics contribution to each EOS is obtained after express-
ing the pressure and specific internal energy €. in the rest-mass density range
pi—1 < p < p; as (for details see [32, 134, 1255, 256])
pli1

c:KiFia c— €& Kz .
[y p € € + T, —1

4.7)

For an overall consistency, the rest-mass density ranges used for the piecewise
polytropes have been chosen to be the same for the different EOSs (p, = 5.012 X
10" g/cm? and p3 = 10'® g/cm?). The transition densities p; to the low rest-mass
density polytrope and the EOS-dependent adiabatic indexes ['; are summarized in
Table 2 of [255]]. Due to the implementation of the hadron-quark phase transition,
the ALF2 EOS has the largest softening at the rest-mass density boundary po
(I'y =4.070 and I's = 2.411). Finally, the “thermal” part of the EOS is given by

Pth = PEth (Fth - 1) ) €th — € — €¢. (4.8)

where the last equality in (4.8) is really a definition, since € refers to the computed
value of the specific internal energy. In all of the piecewise polytrope simulations
used hereafter, a value of I'y;, = 2.0 is taken, but see [255] [256] for an analysis
of the effect of different I'y;, and Sec. for a discussion of the impact of 'y,
on the results presented here. Detailed information on all the binaries and their
properties is collected in Table

Finally, note that in order to verify the hybrid-EOS approach and numerical
setup and contrast the results with an alternative one, an additional simulation
has been performed using the “hot”, i.e., temperature dependent, Lattimer-Swesty
(LS220) EOS [140]. For this simulation the hydrodynamic equations are solved
employing the WhiskyTHC code [203}204] and the BSSNOK formulation of the
Einstein equations [11]].

4.3 High-mass binaries

The following sections are devoted to the analysis of the high-mass binary sys-
tems. To begin the discussion of the dynamics, a representative binary that is
high-mass is chosen, specifically the ALF2-M1 35 equation of state. Recall here
that high mass means initial data of the form 2 x 1.35 M. To contrast, in the
following section, the low-mass case of ALF2-M125 will be discussed .

The first point to address is that of collapse time. For the EOSs considered
here, with the exception of APR4 and LS220, all the high-mass cases collapse to
a black hole within the simulation time, as is displayed in Fig. d.Tjwhich shows the
lapse-function approaching zero and the density blowing up for these cases. Note
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that lapse values close to 1 correspond to a flatter spacetime while those values
close to 0 represent very curved space. Similarly, the density suddenly increasing
is also a tell-tale sign of a black hole formation. In contrast, the low-mass cases
do not collapse at all within the simulation time, cf.

Following the bottom panel of Fig.d.1] prior to the merger — note that merger,
t = 0 := ty, is defined as the time of the peak gravitational wave emission
— , the maximum of the rest-mass density is essentially constant in time. This
maximum value of the rest-mass density corresponds to the centre of the neutron
star. Likewise, the minimum of the lapse does not change too much prior to the
merger. This lack of change is that during the inspiral, the two orbiting neutron
stars do not experience significant tidal forces which due to the effects of strong
gravity. The differences between the respective values for each EOS is due to the
softness or stiffness of a given EOS.

At merger, however, this picture changes. Slightly before merger, tidal effects
become more important and the two distinct maxima that are visible correspond
to the tidally deformed individual stars. Immediately after merger, there is a “tran-
sient” phase —here defined to be ¢ € [0, 4] ms— where there are strong and irregu-
lar fluctuations of the rest-mass density and the lapse. These fluctuations are due
to the violet and shock-dominated dynamics right after merger. It is during this
phase that the emergence of these two distinct maxima, known as the “double-
core” structure, can be see in Fig. @ and result in the maximum and minimum of
the rest-mass density and lapse functions no longer corresponding to the central
density. A toy model of this phase has been developed in [255] that can be used
to illustrate the complicated dynamics of this phase.

Sooner after this initial transient phase, i.e., times with ¢ 2 4ms, these two
maxima merger into a single maximum at the HMNS’s centre. This is a robust
merging of two maxima into a single “bar” as it appears in other works with
different numerical set-ups, EOSs, and masses e.g., [239, [18]. This next phase,
known as the “post-transient” phase, there is significant oscillation of both the
rest-mass density and the lapse exhibiting an average increasing and decreasing
value respectively. Additionally, it is possible to note a continuous decrease in the
oscillation frequency, which signals the approaching of the “zero-frequency’ limit
and hence the quasi-radial stability limit to gravitational collapse [257]. Finally,
there is a either a rapid change in the maximum and minimum, which signals a
collapse to a black hole, or reaching a “quasi-equilibrium” state where there is
little change in either quantity.

4.3.1 Density evolution and gravitational-wave emission

Prior to merger, the central rest-mass density is below nuclear saturation den-
sity,i.e., pmax =~ 2.17 ppue. This value is below the onset of a quark-hadron
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Figure 4.1: Minimum value of the lapse function a,;, (upper panel) and maxi-
mum of the rest-mass density pp,.x in units of the nuclear-matter rest-mass density
Pruc (lower panel) versus time in milliseconds after the merger for the high-mass
simulations. All models collapse to a black hole except for the APR4 and L.S220
EOSs.



CHAPTER 4. ROTATIONAL PROPERTIES OF HMNS 68

OALF2: M=133M, — | ]
tr trr Lrrr he ]
/ \ ! !
~//\\\_/»\ ;
| ‘5IH IIIIIO‘HIH.‘1I5
t [ms]

Figure 4.2: Gravitational-wave amplitude |h| (black line) and strain amplitude in
the + polarisation h (green line) for the ALF2-M135 binary at a distance of
50 Mpc. Shaded in gray is the portion where a time average is performed, while
the arrows indicate the times when representative distributions of the rest-mass
density and angular velocity are shown in Fig. [4.3] Finally, the dotted vertical
lines mark the time of merger and the first detection of an apparent horizon.
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Figure 4.3: Distributions of the rest-mass density (upper row, log scale) and of
the fluid angular velocity (lower row) in the (z,y) plane for the ALF2-M135
binary at three different post-merger times as indicated in Fig. @.2] The iso-
contours have been drawn at log(p) = 13.6 + 0.2n (upper row) and 2 =
{0,0.5,1.0,1.5,2.0} kHz (lower row), n € N.

phase transition, which occurs at roughly p ~ 3 pyyc, so all of the matter inside
the HMNS is composed of neutrons and mixtures of protons and neutrons [/].
However, during the transient post-merger phase the maximum central densities
reaches above this number, for example for the APR4-M135 model the maxi-
mum central density is 5p,,.. However, due to the strongly oscillating nature of
this phase, the mixed phase does not remain in the HMNS and confines again to
hadronic matter. The exact nature of this evolution can be important when one
considers the “strange matter hypothesis” which states that a strange quark-phase
is the true ground state of matter. If this is the case, the resulting neutron star could
transform into a quark state after certain conditions are met [[109, 74,41, 154] and
during this transition, a large amount of energy would be released in the form of
neutrinos and gamma-rays [73].

For times after 5 ms, the maximum rest-mass density is constanly above the
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phase-transition threshold and thus the HMNS will contain an inner region of
deconfined mixed-phase matter. However, the HMNS collapes very quickly to a
black hole, so even though a pure-quark phase will appear, it will only exist for
ashort period of time.

Turning to gravitational waves, the standard is to only consider the (¢,m) =
(2,2) mode, which has been found to be the most dominant mode [253], 208]]),
although a discussion on the one-arm stabilities will briefly be discussed in Sec-
tion 4.8| where other modes may be important. Figure 4.2| shows the gravitational-
wave amplitude |h| := (h2 + h%)'/? and h, at a distance of 50 Mpc as a function
of time. The absolute maximum of |h| corresponds to the time of merger for all
of the different simulation runs, as discussed previously. The last peak of h
corresponds approximately to the time when the black hole is formed (i.e., tgy =
14.16 ms), which is defined as the time when the apparent horizon is first detected.
In order to study the rotation profile of the HMNS, a time-averaging procedure
will be required and this is illustrated as the grey region in Fig. 4.2

The upper row of panels in Fig. {f.3]illustrate the evolution of the HMNS rest-
mass density during the post-merger phase. The three different snapshots have
been taken at t = 1/4, 1/2 and 3/4tgy. The left panel visualizes the rest-
mass density distribution at ¢} = tgy/4 ~ 3.6 ms, shows that the overall rest-
mass density of the HMNS is much higher than the rest-mass density at merger
time. The double-core structure in the inner area of the HMNS is right on the
verge of merging to a single core and the maximum rest-mass density reached,
Pmax = 3.1pnue, 18 slightly above the onset of the underlying hadron-quark phase
transition. In the central and right upper panels of Fig. (t,, = tgu/2 =~ 7.1ms
and t,, = 3tpn/4 ~ 10.7 ms) the double-core structure is no longer present.
The value of the central rest-mass density maximum p, >~ 3.8 pp,. at ¢,; is clearly
above the onset of the underlying hadron-quark phase transition.

4.3.2 Angular-velocity evolution: 2D slices

In this section, the focus is turned to that of the angular velocity €2, defined in
Eq. @.3), in the post-merger evolution of the HMNS. In the lower panels of
Fig. the distribution of ) in the (x,y) plane is shown for the same times
as for the rest-mass density in the upper panels. In the first two milliseconds after
the merger the time variation of €2 is very rapid, with two inner maxima placed
between the double-core rest-mass density maxima (left lower panel). In the in-
termediate part of the post-merger (i.e., for ¢ € [3 ms, tgy]), 2 has a roughly time
independent global structure in a frame corotating at half the frequency of the
gravitational-wave emission, {2, (see Sec. for a more detailed discussion).
This structure then remains stationary for several milliseconds (right lower panel).
Approximately two milliseconds before black hole formation, €2 largely increases
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Figure 4.4: Distributions on the (x,y) plane for the ALF2-M135 binary at ¢, of
the two contributions to the angular velocity ). The left and central panels refer
to the quantities cv® and — 3%, respectively [cf. Eq. (#.3)]. The right panel shows
instead the distribution of the radial component of the fluid three-velocity v".

in the center of the HMNS (not shown in Fig.[4.3).

It is clear that the angular-velocity distribution exhibits an m = 2 mode,
known as a “bar” mode. It is an m = 2 mode since odd modes are not present
due to m-symmetry and the m = 0 mode is a constant. The two maxima rotate
with the same frequency of ~ 1.4 kHz around the centre of the HMNS, cf. upper
middle panel of Fig. with a radial distance of about ~ 6km. In contrast,
these two maxima are accompanied by two minima minima in the inner regions
of the HMNS, where the angular velocity can even become negative, i.e., with
the minima counter-rotating relative to the outer layers of the HMNS. The largest
gradients in the (2-profile take place at ~ 3 km from the center.

It is clear by examining both the p and ) distributions that there is a clear
phase difference of ~ 90 degrees between the two quantities. This feature is
robust and is seen in all simulations presented here. However, until now, no simple
explanation for this difference exists. As alluded to in the previous chapter, and as
will be shown in more detail in Section 4.7| using tracers, this relationship can be
explained by a simple conservation of a Bernoulli-like quantity. Effectively, areas
of large rest-mass density are coincide with regions of low velocity and vice-versa.

An important, but somewhat subtle question, is whether the spatial properties
of €2 are physical quantities and not a result of the chosen gauge conditions. Recall
that (2 is defined in terms of the lapse- and shift-functions which are entirely gauge
dependent. Thus it is possible that numerous features of the angular velocity are
simple a result of gauge artefacts and would vanish in a different coordinate sys-
tem. Simulations by [127]] have shown that the influence of gauge deformations
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are small in cases similar to the type being performed here. To double check this
fact, the evolution of the relevant components of the three-metric, 7,,, Y44 and v,4,
was examined and exhibited no corresponding structure which would result in the
given distribution of the angular velocity.

A second test is to directly examine the components of the angular veloc-
ity, specifically the shift component —3% and the azimuthal fluid velocity av?,
cf. Eq. (4.3), together with the radial component of the three-velocity v". These
are displayed in Figure 4.4 which shows the equatorial structure of these three
quantities at time ¢,,,. The left panel, in particular, displays av?, and has almost
the same global structure as that shown by (2 (see lower right panel of Fig. #.3)),
with the only (obvious) difference that the maximum and minimum amplitudes
are smaller. The central panel of Fig. shows the shift component 3¢ with the
same colorcode, indicating that it not only has a similar spatial structure to the
rest-mass density, but it is also considerably smaller, becoming essentially zero in
the outer layers of the HMNS (i.e., for » = 15km). Both of these facts indicate
that the influence of gauge quantities on the values of {2 cannot be responsible for
the 90-degrees phase shift, which has instead a rather intuitive explanation given
above.

In addition, the right panel of Fig. 4.4{shows the radial component of the three-
velocity ©", with red regions indicating fluid cells with outward radial motion,
while blue regions refer to fluid moving inward. Note that at the outer parts of the
HMNS (i.e., for r 2 15 km) the flow is mostly outwards along the two dense spiral
arms. These will feed the matter ejected dynamically that will eventually lead to
the production of heavy elements [272, 201, 44] and will be discussed further in
Chapter @ On the other hand, the distribution of the radial velocity in the inner
parts of the HMNS (i.e., for » < 10km) shows a clear quadrupolar structure
produced by the propagation of the m = 2 rest-mass density perturbation. To
clarify the properties of this structure it is sufficient to imagine an ¢ = m = 2 tidal
wave moving along the surface of an otherwise spherical star. The local velocity
will be a ¢ = 2, m = 4 succession of positive and negative radial velocities as the
tidal wave sweeps through the surface. Additional considerations along these lines
will be made when discussing the motion of tracer particles in Sec. 4.5 which,
since they are comoving with the fluid, are not affected by gauge effects.

In conclusion, the above discussion strongly favours the interpretation that the
m = 2 distribution of the angular velocity is not due to gauge effects and is a
physical effect.

One important final remark is that the results presented so far only focus on the
equatorial plane. By examining higher z-planes yields little change in the angular
velocity for z < 8 km, although the strength of the m = 2 deformation decreases.
For higher z-values, the angular velocity becomes almost axisymmetric due to
a decrease in the rest-mass density and the HMNS blending smoothly with the
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Figure 4.5: Averaged fluid angular velocity )(r)/(27) kHz on the equatorial plane
for the ALF2-M135 binary as averaged at different times and with intervals of
length At = 1ms. Shown as a thick dashed black line is a reference profile
scaling like r—3/2.

outward-moving wind of the dynamically ejected material.

4.3.3 Angular-velocity evolution: azimuthal averages

For high-mass binaries, the angular velocity distribution exhibits an m = 2 de-
formation that persists over long time scales, assuming there is no collapse to a
black hole. As the spacetime reaches a stationary evolution and the deformation
is slowly dissipated away, considering an azimuthal averages reduces the problem
to a one-dimensional one and can easily be compared with other angular velocity
profiles from different EOSs. As will be shown in Sec. [4.4] this approximation
of an azimuthal average gets better as the mass of the system decreases and the
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m = 2 deformation lessens. B
The time- and azimuthally averaged angular velocity is defined as €2(r, t) as

t+At/2 o7
Qr,t) = / / Qr, ¢, ') dodt’ . (4.9)
t—At/2 J—=x
and its evolution is shown in Fig. {4.5] for the ALF2-M135 binary. Note that to
better illustrate the time dependence, a small time averaging domain (At = 1 ms)
has been used; the influence of the time-averaging window will discussed more in
Section Shown are six representative time segments, which span almost the
whole HMNS lifetime from merger (2.98 ms) to gravitational collapse (13.74 ms).
Shortly after merger, here defined to be ¢ < 3 ms, the angular velocity pro-
file exhibits considerable variation due to angular momentum transport from the
centre of the neutron star to the outer layers, which is represented by the light-
shaded blue lines. Thus transfer results in the inner regions, i.e., between 0 and
5 km, rotating slower and thus their overall angular velocity decreases. As this
angular momentum is transferred outwards, these outer regions are more rapidly
rotating and this creates the large increase observed around 5km. As time pro-
gresses, the variation amongst the curves e.g., between 7 — 13 ms decreases as the
HMNS is reaching a stationary configuration. This stationary configuration all has
similar features with a slowly rotating inner core for < 3km with about 2 ~ 1
kHz and then this sharp increase to almost {2 ~ 1.5kHz between 7-8 km. At
larger radii, the angular velocity decreases monotonically corresponding to r—3/2
for r 2 15 km. This is a Keplerian rotation law and will be examined more closely
in Sec. Finally, the black curve in Fig. shows the rotation profile of the
HMNS on the merger of collapsing to a Kerr black hole (f ~ 13.7ms) and can
therefore be taken as the stationary azimuthally averaged angular-velocity profile.
About two milliseconds before black-hole formation, the angular-velocity profile
increases and the position of the maximum moves inwards as a result of angular-
momentum conservation.

4.3.4 Temperature evolution

Until now, the focus has been strictly on the rest-mass density and the angular
velocity and now the focus is turned to a new quantity, specifically that of the fluid
temperature and the influence temperature has on the rotation law. The influence
of temperature has previously been studied in [[127] using the Shen, Horowitz, and
Teige EOS [231, 232]] and agree generally with the results presented here, even
though only one EOS was studied. To make a more quantitative comparison, a
comparison with the L.5220-M132 run will be made, which uses temperature-
dependent EOS and uses the WhiskyTHC code [203, 204] in contrast with the
previous simulations.
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Figure [4.6] illustrates the equatorial distributions of the temperature at t =
6.71ms (left panel) and at ¢ = 23.83 ms (right panel) in a “corotating frame”,
that is, in a frame that is rotating at a frequency that is half of the instantaneous
gravitational-wave frequency. Note that the difference in the collapse time with
the previous of ALF2-M135 does not survive this long. In both simulations,
two “hot spots” are observed to be formed in the early post-merger phase (see
left panel of Fig. which remain stable for approximately 12 ms. Although
not present in this figure — they will be presented in more detail in Sec. -
the fluid lines from the tracer analysis indicate that these hot spots are vortices
around which the fluid elements rotate. Indeed, when comparing with Fig. {.3]
this temperature distribution follows exactly that of the angular velocity of that
simulation. For example the position of the maxima of the temperature distribu-
tion agrees with the position of the maxima of the angular velocity. An intuitive
explanation of this is that in these regions, fluid velocity is higher and experiences
the largest shear and compression which result increases in the local temperature.
In detail, this relationship has regions of smaller pressure/rest-mass density coin-
ciding with regions of larger temperature which can be verified by comparing the
left panel of Fig. with the temperature in the left panel of Fig. which are
illustrated at the same time.

In addition to the hot spots, the temperature distribution shows local increases
along the edges of the m = 2 density perturbation (again where the fluid shear is
largest in the corotating frame) and along the spiral arms, where outward moving
material is ejected dynamically from the HMNS. In these regions, the effects of
neutrinos will be important as the neutrino interactions are heavily temperature-
dependent. As time passes, the hot spots disappear as the HMNS reaches a station-
ary state cf. the right panel of Fig. 4.6 However at this point, one slight difference
is that the high-temperature region is not in the centre of the HMNS, which is
slowly rotating and colder, but in an annular region around 8 km from the centre
where the angular velocity varies more rapidly.

In conclusion the effects of temperature have a minimal impact on the overall
rotation profile and angular velocity distributions, barring minor qualitative differ-
ences such as the precise location of the maxima of the rest-mass density or the an-
gular velocity. Also note that although only the ALF2-M135 and LS220-M132
binaries were compared, the overall picture holds across all simulations. Indeed,
as will be shown in Sec.[d.6| when considering quasi-universal relations, the non-
effect of temperature will be more evident.
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Figure 4.6: Distributions on the (z, y) plane and in a corotating frame of the tem-
perature for the L.S220-M132 binary at ¢ = 6.71ms (left panel) and at ¢ =
23.83 ms (right panel). The isocontours correspond to 7" = {10, 20, 30,40, 50}
MeV. Note the presence in the left panel of two hot spots, which do not coin-
cide with the maximum rest-mass density (see also Fig. [5.4] which reports other
quantities relative to this binary).
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4.4 Low-mass binaries

In the previous sections, attention was paid to the high-mass binaries. Now the
case of the low-mass binaries is addressed. Again, the ALF2 EOS is chosen as
the representative binary, denoted by ALF2-M125. For the low mass case, the
total mass of the system is 2 x 1.25 M, and only the equal mass case is examined.
In analogy with Fig. |.1] Fig. illustrates the evolution of the minimum value
of the lapse function and of the maximum rest-mass density for the five EOSs.
None of the resulting HMNS collapses to a black hole within the simulated time
range because of the smaller initial masses of the binaries although they will likely
collapse on timescales of ~100 ms [18, 209]. It is also interesting to note that
the post-merger oscillations in the maximum rest-mass density are all suppressed
within about 10-15 ms from the merger, with stiffer EOSs (e.g., GNH3) requiring
more time than the softer ones (e.g., APR4).

In Fig. the emitted gravitational waves waves of the late inspiral, merger,
and post-merger are displayed and can be contrasted with that of the binary shown
in Fig. Here the maximum amplitude at the merger is comparable of that with
the high-mass run, but by about 10 ms after the merger, the difference is at most
of 20% of that in the inspiral. This is due to the rapid disappearance of the non-
axisymmetric deformation of the rest-mass density in the HMNS, which attains
an almost axisymmetric distribution within ~ 20 ms after the merger (see upper
panels in Fig. . The three different times indicated in Fig. refer tot = 1/4,
1/2 and t = 3ts,/4, where tg5, = 40.38 ms is the time when the simulation is
terminated.

Figure 4.9 reports the distributions on the equatorial plane of the rest-mass
density (upper panels) and of the angular velocity (lower panels) at the three dif-
ferent times indicated in Fig. This figure should be compared with Fig.
which refers to a high-mass binary of the same (ALF2) EOS. Note that for ¢t <
16 ms, the rotation profile (see lower left panel in Fig. 4.9) shows the same quali-
tative structure as for the high-mass case, even though the overall values of {2 are
somewhat lower (note the different color scale in Figs. and 4.9). Although
in a weaker form, the low-mass binary also shows the 90-degree shift between
the m = 2 deformation in the rest-mass density and in the angular velocity, which
was discussed in Sec.[4.3.2]in terms of the manifestation of the Bernoulli theorem,
cf. Eq. @.13)].

Furthermore, for ¢ 2 16 ms (see middle and right panels in Fig. the rest-
mass density and the rotation profile have reached a stationary state in which a
small m = 2 perturbation is still present, but is subdominant when compared to
the overall axial symmetry. The inner part of the HMNS (r < 6 km) is where the
rest-mass density is the largest, but is also rotating rather slowly (€2 ~ 0.5 kHz);
this region is much broader than in the high-mass binary and the sharp transition to
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Figure 4.7: Minimum value of the lapse function o,,;, (upper panel) and maxi-
mum of the rest-mass density pp., in units of p,,. (lower panel) versus time in
milliseconds after the merger for the low-mass simulations; this figure should be
contrasted with Fig. .1}
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a r~3/2 outer profile takes place at a larger radius (6.5 < r < 8.5 km). The panels
on the right column of Fig. clearly indicate that at later times the HMNS
has reached a high degree of axial symmetry, although not a complete one, since
gravitational waves are still being emitted (cf. Fig. 4.§).

Similar to the discussion of that at the end of Sec.[4.3|for the high-mass bina-
ries, the analysis was only carried out in the equatorial plane. When examining
higher values of the z-plane, a qualitatively similar picture emerges with little
variation in the rest-mass density and the angular-velocity profiles up to about
z < 9km. At higher values in the z-plane, the densities are comparable to that of
the outflowing material and the angular velocity increases in the central regions,
where it has the largest values.

In conclusion, most of the properties of the higher-mass binaries apply to the
case of the ALF2-M125 with only differences being qualitative. Furthermore,
this comparison extends to the other EOSs considered and thus this case can be
considered representative.

4.5 Tracer particles evolution

As discussed in Sec. the influence of gauge effects on the simulation are
an important consideration and it must be insured that the angular velocity is
physical and not simply due to gauge effects. In that section, examination of
the metric coefficients and the components of the lapse- and shift-functions were
examined and demonstrated how the fields considered are physical. However the
strongest evidence is that of the tracers,i.e., massless particles that are advected
with the fluid, introduced in Chapter To do a detailed analysis, the binary
selected is .S220-M132, which was, as previously discussed evolved with the
WhiskyTHC code [203}204]].

Firstly, the upper panels of Fig. [5.4] report, for the LS220-M132 binary and
at time t = 6.7ms, the rest-mass density p (left panel), the angular velocity €2
in the corotating frame (middle panel) and in the Eulerian frame (right panel),
i.e., an observer at infinity. Similarly, the bottom row of panels in Fig. [5.4] shows
the same quantities, but for a later time of ¢ = 23.8ms. The times shown are
representative ones but the dynamics for this EOS is qualitatively very similar to
those presented in Secs. and The only difference is that although the
binary LS220-M132 belongs to the high-mass class, its evolution does not lead
to a collapse to a black hole over the timescale during which the simulations have
been carried out, i.e., ~ 27.3 ms after merger.

Also shown in Fig. [5.4] are the flowlines of several tracer particles that re-
main close to the (z,y) plane (i.e., with small velocity in the z direction). More
specifically, only the final part of the flowlines (i.e., for the last ~ 0.285 ms) are
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Figure 4.8: Gravitational-wave amplitude |h| (black line) and strain amplitude in
the + polarisation h, (green line) for the ALF2-M125 binary at a distance of
50 Mpc. Shaded in gray is the portion where a time average is performed, while
the arrows indicate the times when representative distributions of the rest-mass
density and angular velocity are shown in Fig.[4.9] Finally, the dotted vertical line
marks the time of merger. This figure should be contrasted with the equivalent
one, Fig.[4.2] for the high-mass binaries.
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Figure 4.9: Distributions of the rest-mass density (upper row, log scale) and of
the fluid angular velocity (lower row) in the (z,y) plane for the ALF2-M125
binary at three different post-merger times as indicated in Fig. §.8] The iso-

contours have been drawn at log(p) = 13.6 + 0.2n (upper row) and 2 =
{0,0.5,1.0,1.5,2.0} kHz (lower row), n € N.
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Figure 4.10: Distributions on the (z,y) plane and in the corotating frame of the
rest-mass density (left panels), and of the angular velocity (middle panels) for
the LS220-M132 binary, where ()., := Q — ¢ where 2y = 1.368 kHz (top),
1.425kHz (bottom). Shown instead in the right panels is the distribution of the
angular velocity, €, in the Eulerian frame. The top row refers to ¢ = 6.71 ms,
while the bottom one to t = 23.83 ms. Also shown are portions of the flowlines of
several tracer particles that remain close to the (z,y) plane and for which is only
shown in the final part of the flowlines (i.e., for the last ~ 0.285 ms), using small
dots to indicate the particle position at the time indicated in the frame. In addition,
the initial parts of the trajectories have increasing transparency so as to highlight
the final part of the trajectories.
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visualised, using small dots to indicate the particle position at the time indicated in
the frame. Furthermore, the initial parts of the trajectories have increasing trans-
parency so as to highlight the final part of the trajectories. This approach has at
least two advantages. First, it provides a measure of the linear velocity (faster trac-
ers leave longer tracks); second, the presence of the filled dots and the increasing
transparency allow one to read-off the direction of motion.

The top panels in Fig. show the dynamics of the fluid in the inner parts
of the HMNS and highlight that two distinct regions can be identified. The first
region is in the core of the HMNS, where there is an ellipsoidal structure or-
thogonal to the angular-velocity distribution. Within this ellipsoid, fluid elements
essentially move clockwise along isobaric surfaces, with linear velocities that are
rather small in the inner regions. In addition to this ellipsoidal motion, the tracers
also show the presence of two small “vortices”, i.e., regions of increased vorticity
in this frame, which also coincide with the regions of highest angular velocity,
and which border the areas where velocity drops almost to zero (in this frame).
Note that it appears that the tracers that are “trapped” in these vortices where they
remain without traversing the boundary to the central ellipsoid and where they
have an inverse sense of rotation (counter-clockwise). Stated differently, the vor-
ticity distribution in the corotating frame would show two islands of vorticity with
different signs, referring to clock and counterclockwise rotation. Tracers in one
region do not migrate to the other region. This is mostly the result of using a coro-
tating frame in a flow that is differentially rotating. It is quite intuitive, in fact, that
if €2 is positive but not uniform, the transformation to a corotating frame amounts
to a net subtraction of a positive amount of angular velocity, hence leading to areas
of now negative angular velocity. This becomes more apparent when considering
the corresponding picture in the Eulerian frame, as shown in the right panels of
Fig.[54]

The bottom panels of Fig. on the other hand, refer to a much later stage
of the HMNS evolution (i.e., ¢ = 23.83 ms) and clearly show that by this time
the HMNS has attained an almost axisymmetric structure, combined with a much
smaller m = 2 perturbation. As discussed in the previous cases, also here the rota-
tional profile of the HMNS contains an inner area with < 5 km which is rotating
slowly and almost uniformly at 2 ~ 0.5 kHz, followed by a sharp increase at
5 < r < 7km reaching a maximum value €2 ~ 1.5kHz at r ~ 8 km and decreas-
ing continuously for r 2> 8 kmﬂ Since this behaviour follows the one described
previously for hybrid EOSs, it suggests that both the rest-mass density and the

3Note that the angular-velocity distribution in the lower central panel of Fig. refers to
the corotating frame and that this frame is rotating at half the angular frequency of the emitted
gravitational waves, €, . Because the maximum of the angular velocity {2,ax is of the order of
Qg /2 (cf. left panel of Fig. , the ring structure in this panel is approximately at zero angular
velocity.
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angular-velocity distributions are preserved when using a fully three-dimensional
EOS and radiative losses are taken into account. In turn, this confirms that an
analysis carried out with piecewise polytropes and a thermal component does not
introduce a bias in the results.

The tracers in the lower panels of Fig. [5.4] further illustrate the axisymmetric
nature of the flow, with the fluid moving along essentially circular orbits that are
tangent to isobaric surfaces. The quasi-circularity is shown in the spacetime dia-
gram reported in Fig. where the worldlines of selected tracers in the relevant
region of the HMNS and after passing them through a running-average window
of 5ms to remove the high-frequency jitter are shown. Note that after the tran-
sient period, where angular momentum is transferred out and particles move to
lower rest-mass density regions, the tracers remain at essentially constant radial
coordinates.

It is interesting to note that because the angular velocity refers to the corotating
frame and because this frame is rotating at half the gravitational-wave frequency
Qo /2 ~ Q2/2 & Quax, see Fig. of Section [4.6), tracers in the inner and
outer regions of the HMNS will be both rotating clockwise while tracers belonging
to the intermediate regions are almost at rest (white regions). Only those tracers
that are trapped in the vortices are moving counter-clockwise (light red regions).

To recap, the analysis of the motion of tracer particles discussed in this sec-
tion indicates that the angular-velocity distributions presented so far are not con-
taminated by gauge effects, but rather reflect physically meaningful quantities.
The angular-velocity € is defined directly in terms of the lapse and shift, which
are gauge-dependent quantities and could potentially change the behaviour of the
angular-velocity depending on the gauge selected. The evolution of the tracers are
comoving with the fluid elements [45]] and thus they follow the fluid evolution. As
shown, they exhibit behaviour as predicted by the gauge-dependent quantities and
illustrate the robustness of the results to the choice of gauge. An additional use of
the tracers, explained in detail in Section 4.7, will further illustrate the origin of
the phase offset demonstrated in Fig. 4.3

4.6 ““Quasi-universal’”’ behaviour

4.6.1 Averaged profiles

When taking the time- and azimuthally averaged profiles of the angular velocity,
plotting them with different EOSs and masses, reveals an interesting and infor-
mative result. In order to ensure a fair comparison, as discussed in Sec. §.3.3]
the time averages are performed across a time interval At, cf. Eq. (4.9), centered
around tg, /2 and with extent ¢, /3, where tg, corresponds either to the time of
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Figure 4.11: Worldlines of selected tracers in the outer regions of the HMNS
where the angular frequencies scale like »~%/2. Note how in these regions the trac-
ers remain at essentially constant radial coordinates; the gray-shaded area shows
the region where Q(r) oc 773/2 (see Sec. for a definition and discussion).
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Figure 4.12: Comparison of the time- and azimuthally averaged rotation profiles
for different EOSs. Solid curves show the profiles for high-mass runs (M =
1.35M,), whereas dashed curves refer to low-mass simulations (M = 1.25M,).
Shown as a thick dashed black line is a reference profile scaling like r~3/2.

black-hole formation (in the case of high-mass binaries) or to the final time of the
simulation (in the case of low-mass binaries). As will be discussed in Section 48]
the influence of the resolution on the lifetime of the HMNS and the time-intervals
on the time-averaging will be shown to be minimal. Using this procedure ensures
that all simulations have the same well-defined criteria for choosing the integra-
tion time. The exact width of this window will change for different binaries, but
it ensures that all angular velocity calculations will have the same proportion of
HMNS lifetime relative to the total lifetime. Finally, these time intervals have
been indicated with gray-shaded regions in Figs. {.2]and 48] respectively

To this end, Figure 4.12] illustrates the results of the time- and azimuthally
averaged angular velocity profiles for the different simulated binaries. As can
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be seen in Fig. there appears to be a relationship between all the different
curves that depends weakly on the EOS and thus is labelled “quasi-universal”. In
more detail, each angular velocity profile exhibits a slowly rotating and almost
completely uniform inner core. This is followed by a transition to a more rapidly
rotating outer region, narrowly taking place roughly between 3 — 4km. This
sharp increase in the rotation rate leads to large shear forces that cause the local
temperature to increase cf. Fig. 1.6] After this rapidly rotating region, the rotation
profile starts decreasing as r~%/2 in the outer regions of the star and also regions
outside of the star. This differential rotation profile is rather different from the
one normally considered in the literature, i.e., the ;7 — constant law that has been
explored in the past both in equilibrium configurations [240, 238,113}, 196,252, 101]
and in dynamical ones [17, 158} 153,162, 98, 131,190, [125} 244, 245, 152].

Although this general picture is rather robust across all EOSs and hence is
“quasi-universal”, there are some small differences that do arise with the variation
of the composition. Specifically, the size of slowly rotating inner core depends
on both the EOS and on the initial mass of the stars with a trend towards larger
rotating inner cores for the larger initial masses and the opposite for the smaller
masses. For example, for the high-mass run of the GNH3 and SLy EOS the slowly
rotating core is rather small (r < 4 km) while for the low-mass run of the ALF2
EOS it extends up to » < 7km. In terms of the maximum rotation rate, there is a
weak dependence on the EOS, with the general trend being towards softer EOSs
having a larger maximum in comparison with stiffer EOSs. This is likely due to
the softer EOS resulting in a more compact object which will result in a faster
spinning object in comparison with a less compact object.

Following the previous approaches of 132} 134} 255, 256/ 212], a method to re-
late how to relate the “quasi-universal” features of the averaged angular-velocity
profiles with some of the properties of the merging neutron stars, such as the mass
and radius, when they are at infinite separation is considered. As discussed pre-
viously, observations of merging neutron stars, such as GW170817, can provide
information on the properties of the neutron star. Often times, however, the infor-
mation obtained from analysing the signal does not come in the form of a single
quantity like the mass or radius, but often in terms of a combined quantity such
as the compactness or the tidal Love number. These quantities themselves do not
uniquely determine any particular EOS or mass as many different EOSs can lead
to similar results. However, the power of these combinations is that they often
occur in “universal” or “quasi-universal” relationships which allows constraints
to be placed on data, even with limited information.

Such correlations from the above simulations are summarised in Fig.
The first quantity to consider is that of how the maximum angular velocity angular
velocity (2,.,., of the averaged profiles relates to the angular frequency correspond-
ing to the largest peaks of the post-merger power spectral density €25 := 27 f5 (left
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Figure 4.13: Left panel: maximum value €),,, of the time- and azimuthally
averaged rotation profiles (see Fig. as a function of (half of) the main
gravitational-wave frequency of the emitted by the HMNS (2,. Middle panel:
Qumax as a function of the average rest-mass density p := M/R? relative to the
initial stellar models. Right panel: €2,,., as a function of the initial stellar com-
pactness C := M/R.

panel of Fig. [2550 1256, 212]] where f> is defined to be a peak in the power
spectral density and is also typically the strongest peak frequency.

Physically, this f>-frequency is customarily interpreted as twice the spinning
frequency of the m = 2-deformed HMNS [251} 255] and is therefore not sur-
prising that it should tightly correlate with the maximum angular frequency of
the averaged angular-velocity profiles as the m = 2 mode is the dominant source
of the gravitational waves. Another interesting feature of the value of ()., dis-
played in Fig.[d.13|is that not vary significantly with time and is thus the value of
Qumax remains relatively constant till the end of the simulation despite the m = 2
deformation being washed out or negligible. This means that even though the
HMNS has almost reached an axisymmetric configuration, the gravitational-wave
frequency €1, ~ {2, can still be used to measure the maximum angular velocity
of the fluid. Additionally, the correlation shown between (1., and 2y confir-
mations that the measurements of the angular-velocity distributions discussed in
Sec. [4.3]is physically meaningful. This is because €2 is defined in terms of the
gravitational waves, which are a gauge-independent, and thus a correlation be-
tween the two is unlikely to be due to gauge-dependent quantity.

In the central and right panels of Fig. d.13]are the correlations of €2,,,x with the
average rest-mass density p := M/R? and the stellar compactness C := M/R,
where these quantities are defined from the initial data values. In this case as



CHAPTER 4. ROTATIONAL PROPERTIES OF HMNS 89

well, the correlation between the two quantities is linear. This has a straight for-
ward interpretation because stiffer EOSs — which will have a smaller compact-
ness — have HMNSs that have comparatively larger radii and thus smaller average
densities which in turn means smaller angular velocities are required to attain a
quasi-stationary hydrostatic equilibrium and the opposite holds for the softer EOS
case. This logic also extends to the same EOS but with different initial masses as
the lower mass binaries will have comparatively smaller average densities which
explains why the triangles have systematically lower averaged maximum angular
velocities, cf. central panel of Fig.[4.13] Finally, a similar line of reasoning applies
for the stellar compactness displayed in the right panel of Fig.[4.13]

As previously mentioned, Fig. .12 shows that the fluid flow in the outer re-
gions of the HMNS, i.e., for > 15km, exhibits a profile scaling like 7—/2. To
explain this behaviour, consider the spacetime around a Kerr black hole, which
describes a rotating black hole. Outside this Kerr black hole, a fluid particle fol-
lowing a geodesic on the equatorial plane will have orbital angular frequencies
given by Kepler’s expression [213]]

VM
Vit a/M

where a := .J/M is the spin parameter of the Kerr black hole, J is the total angular
momentum, and M is the total gravitational mass. Of course this approximation
is not strictly valid as the object considered here is a HMNS and not a Kerr black
hole, and the spacetime metrics will differ — indeed the lower-mass binaries do not
even collapse — and furthermore the motion of the fluid elements in the simulation
are not completely geodetic, but this simplified picture provides a clear physical
model of the behaviour outside the HMNS.
Within this model, the following quantity can be defined

Qkep(T) (4.10)

x(r) == Q*(r)r®, 4.11)

which would tend asymptotically to the mass of the black hole if 2 = Qgep,
if the motion was a geodetic one, and if this was a Kerr spacetime. Thus x(r)
provides a measure of how “Kerr-like” the material is behaving. An advantage
of this quantity is that it can be used to define where flow starts having angular
frequencies scaling like 3/,

This dependence is shown in Fig. which plots the behaviour of x(r) for
the binaries simulated. Clearly, all of the profiles converge to a rather constant
value for large radii, thus indicating that the low rest-mass density regions of
the HMNS exhibit a flow with angular frequencies scaling like r=3/2. To define
the region where the flow does this transition, the scale height of y, x'/x =
(dx/dr)/x, is used. To define the appropriate limit, consider a flow with Q(r) o
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Figure 4.14: Radial dependence of the quantity x(r) := Q273 for all of the simu-
lated binaries. Note that all profiles reach an almost constant value for r 2 25 km.
The gray-shaded area shows the region where the flow starts to having angular
frequencies scaling like r—3/2; see Table for the exact values of Rg;q for the
various EOSs.
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r=3/2, which implies that '/ will be zero. Thus the region where the disk is said
to begin is thus defined when the monotonically decreasing function x’/x reaches
a sufficiently small value, is chosen to be x’/x < 0.05.

There are two important reasons for having a disk form in the outer regions of
the HMNS. Firstly, when the core of the HMNS eventually collapses to a rotating
black hole, the presence of mass around the outside of the black hole will ensure
that the black hole is not “naked” [161] and is instead surrounded by a torus which
can potentially lead to the formation of a relativistic jet. The formation of such
a jet will be discussed in the subsequent section. The second reason is that a
flow with Q oc r~%/2 satisfies the Rayleigh stability criterion for rotating fluids
against axisymmetric perturbations. and thus the differentially rotating disk
surrounding the will likely only accrete onto the uniformly rotating core of the
HMNS on a dissipative timescale. Thus it is possible that the disk will not affect
the long-term stability required in the proto-magnetar model for short gamma-ray
bursts [278} 1173, 51] and the subsequent extended X-ray emission [211]].

4.6.2 Mass in the disk

The distribution of rest mass in the HMNS is of great astrophysical importance as
it regulates the amount of mass that is ejected in the merger and that can subse-
quently feed r-process nucleosynthesis and an electromagnetic counterpart to the
merger via the radioactive decay of by-products of the r-process, i.e., via a kilo-
nova [147, 135 171}, 214, 126, 25, 259, 220, [107, (149, 201, '44]). In addition, as
mentioned in the previous section, the knowledge of the rest-mass distribution in
the HMNS, and in particular of the portion of it in the disk, is important to deter-
mine how much of the HMNS will “survive” the process of gravitational collapse
of the HMNS to a black hole and end up in building a torus around the black hole.

To this end, the rest-mass distribution has been computed as a function of the
radial distance from the origin as

2w g T
My (7) ::/0 /O/OﬁWpTQSin(G)drded), (4.12)

with W = au’ being the Lorentz factor and the other quantities defined as pre-
viously. This quantity is illustrated in Figure 4.15 which shows the radial depen-
dence of the total rest mass in the HMNSs when normalised with the total initial
rest mass 2 My, o. For both the high- and low-mass binaries, the distributions refer
to times which are in the middle of the averaging intervals in Figs. [4.2] and 4.§]

“Recall that this classical-physics criterion can also be seen as requiring that the specific angu-
lar momentum j = Q(7)r? increases outwards for a stably rotating fluid configuration.
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Figure 4.15: Integrated rest mass M, (r) as function of the radial coordinate and
normalised with the total initial rest mass. The gray shaded area shows the region
where the disk starts; see Table [4.2] for the exact values of Ry for the various
EOSs.
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model Rone | Qmax | Mb0nee | Mo,0mar/(2Mpo) | Raisk | My aisk | Mp,disk/(2 My o)
[km] | [kHz] | [Mg)] [%] [km] | [Mg] [%]
GNH3-M125 7.92 1.04 1.56 57.89 18.96 0.10 3.79
GNH3-M135 5.19 1.25 0.97 33.12 19.27 0.05 1.65
H4-M125 9.98 1.02 1.99 73.70 17.08 0.26 9.66
H4-M135 8.36 1.20 2.18 74.20 17.07 0.12 4.10
ALF2-M125 9.04 1.23 2.04 74.49 15.71 0.32 11.73
ALF2-M135 6.20 1.31 1.46 49.35 16.39 0.04 1.35
SLy-M125 7.31 1.51 2.13 77.44 14.15 0.10 3.63
SLy-M135 6.43 1.63 2.16 72.17 15.05 0.09 3.01
APR4-M125 7.57 1.52 2.15 78.49 14.56 0.12 4.43
APR4-M135 6.76 1.59 2.30 76.40 14.70 0.18 5.85

Table 4.2: Summary of the HMNS properties. The various columns denote the
radial position Rq, . of the maximum of the averaged angular-velocity profiles
Qmax, the total rest mass inside R, ., i.e., My = My(Rq,,,), the ra-
dial position Rg;x where the disk starts, and the total rest mass outside Rgjsk,
i.e., Mb,disk =2 Mb,O — Mb(Rdisk)-

max max)

i.e., at t = tgy/2 for the high-mass binaries and at ¢ = tg,/2 for the low-mass
binaries.

Independent of the EOS and initial mass, all the rest-mass distributions indi-
cate that the rest mass M, (r) does not change significantly for » > 15km, so
that the missing amount of rest mass is the one that has been ejected dynamically
soon after the merger. However, it is important to note that largest majority of this
ejected matter is gravitationally bound and only a very small fraction of it will be
ejected and unbound [272, 201, 44]].

Additionally in Figure shows a somewhat expected result, namely, that bi-
naries with softer EOSs have considerably more compact rest-mass distributions,
reaching 80% of the total within only » < 7.5 km, quite independently of the ini-
tial mass of the binary. By contrast, binaries with stiffer EOSs (e.g., GNH3 or H4)
have less compact distributions, reaching 80% of the total only for » < 10 km,
and a bit less for low-mass binaries.

Another useful measure of the rest-mass distribution is that of the mass in the
disk, which is defined to be the rest mass confined in the region of the HMNS in
the disk. More specifically, if Ry is the radial location (on the equatorial plane)
where the disk starts,i.e., where y’/x < 0.05, then the rest mass in the disk is
defined as Mb,disk =2 Mb70 - Mb (Rdisk)-

In addition, another definition of mass that can be considered is that of the
mass that is inside the maximum value of the averaged angular-velocity profile.
This is computed by first defining Ry, as the location where the angular-velocity
profile reaches its maximum. Then, since Rq_. < Rgisk, the mass inside R

max max
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can be calculated using the same expression as (4.12). This concept of mass is
referred to as M q,.... -

All these results are summarised in Table for all of the binaries simulated.
Overall, the table illustrates that the mass outside R, _, and the mass outside Rg;sk
are rather similar (the former being slightly larger since since Rq, .. < Raisk) and
can be quite large, being almost 0.3 M, for some of the soft-EOS low-mass bi-
naries and of the order of 0.1 M, for the other binaries. Finally, an important
consideration is that of long-term angular-momentum transport and neutrino ra-
diation. These physical effects will change quantitatively these values, but they
should not be expected to change the qualitative picture that low-mass soft-EOS

binaries will have comparatively larger disks.

4.6.3 Influence of the thermal component

This next section is dedicated to assessing the impact of the thermal component
of the EOS on the results presented so far. The influence of the thermal compo-
nent was briefly discussed in Sec. and here a more in-depth discussion will
be presented. Recall, that with the exception of the LS220 EOS, all of the EOSs
simulated do not have a nuclear-physics thermal component and that thermal ef-
fects are accounted for via a hybrid EOS in which an ideal-fluid contribution is
added to the total pressure, recall Sec. #.2.2] for details. The choice of the adia-
batic index I}, is somewhat arbitrary (the only mathematical constraint being that
1 < T'w < 2, but see discussion in [213]). Since the value of I'y, regulates the
amount of thermal pressure produced after merger and hence, to some extent, the
equilibrium properties of the HMNS, it is important to investigate the effects on
the rest-mass density and angular-velocity distributions.

The effects of the different Gammas are shown in Fig. . 16|for the ALF2-M125
binary. Note that although only a single case is shown, the results are similar for
other binaries. Indicated with green (black) solid, dashed and dotted lines is the
averaged angular velocity (rest-mass density) profiles for I'y, = 2.0,1.8 and 1.6,
respectively. The curves are obtained after averaging in the azimuthal direction
and over a time interval [1/3tg,,2/3ts,]. Figure illustrates that a larger
value of I'yy, yields a larger pressure support and hence prevents the matter in the
HMNS to reach large values of compression. This explains why the maximum
rest-mass density is larger for smaller values of the thermal adiabatic index (see
black lines). In turn, since a larger pressure support implies that the HMNS is less
compact (compressed) and since the angular momentum is essentially the same
for the binaries with different I'y;, considered here, it is not surprising that the
maximum value of the averaged angular velocity increases as the contribution of
the thermal component is decreased (see green lines).

What is possibly more important to note is that the changes induced by the
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Figure 4.16: Time- and azimuthally averaged rest-mass density profiles (black
lines) and angular-velocity profiles (green lines) of the ALF2-M125 binary for
different values of the thermal adiabatic index I';,. The time and azimuthal aver-
ages have been performed in the same manner as in Fig. [4.12]

different values of I'y;, are quantitative only and also rather small, i.e., with relative
variations of < 10% in the angular velocity. The qualitative behaviour, however,
remains unchanged, most notably, in the disk, thus removing the influence of the
thermal component of the EOS as a potential bias in previous the analysis.

4.7 On the Bernoulli constant

As discussed in section the evident 7/2 phase difference in the distribution
of the angular velocity and of the density, so that areas of low pressure (rest-mass
density) are accompanied by regions of large velocity, can be explained in terms
of the manifestation of the Bernoulli theorem. To illustrate this observation, a
rather idealised description of the quasi-stationary equilibrium of the HMNS and a
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series of assumptions that will simplify the mathematical treatment and hopefully
improve the physical understanding.

Recall that in relativistic hydrodynamics and for a perfect fluid with four-
velocity u, the quantity h (u - £) is Lie-dragged along w [213]]

Zulhu-£€) =0, (4.13)

where h := (e + p)/p is the specific enthalpy, e := p(1 + €) is the total energy
density, and £ is a Killing vector of the spacetime and also a generator of the
symmetry obeyed by the fluid. A direct consequence of Eq. is that in the
case in which the spacetime admits a timelike Killing vector, then the quantity
B := hu, is a constant of the fluid; this is the general-relativistic extension of the
classical Bernoulli theorem.

Of course, the assumption of a stationary spacetime during the evolution of the
HMNS is not true and the HMNS is emitting gravitational waves, which are the
most evident manifestation of a non-stationary spacetime. Yet, because at least
energetically these modulations of the spacetime are small when compared with
the total bulk (kinetic) energy of the system, it can be considered the assumption
not to be unreasonable even though it is evidently not strictly true.

In its classical limit, Eq. becomes

1
(1 + e+ E) (1 + ¢+ 552) — const. (4.14)
P

where ¢ is the gravitational potential and where v is the local fluid velocity. When
neglecting higher-order terms, expression (4.14]) further reduces to

(162 Fo+et 73) — const. | 4.15)
2 P

which coincides with the classical expression for the Bernoulli constant [213].
Next, to translate into a classical Newtonian language with the assumption on
the existence of a timelike Killing vector, the gravitational potential is taken to be
independent of time and essentially constant across the HMNS, so that Bernoulli’s
theorem effectively reduces to the well-known condition that, along a fluidline,

1
(—172 + e+ £> = const. . (4.16)
2 p

To validate whether or not the classical Bernoulli constant (4.16) is actually a
constant along a fluidline, the Bernoulli constant has been calculated for a number
of tracer particles and shown for three representative fluidlines in Fig. for the
LS220-M132 binary. These tracers have been selected because they are origi-
nally in the equatorial plane and have an essentially zero velocity in the vertical
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Figure 4.17: Top panels: evolution of the radial positions for tracers in the
LS220-M132 binary that are eventually either in the inner regions of the HMNS
(left panel), or at some distance from the rotation axis (central panel), or in outer
regions of the HMNS (right panel). Bottom panels: evolution of the classical
Bernoulli constant (4.16) relative to these tracers (blue solid lines), and its main
contributions. The gray-shaded area refers to the post-merger transient when the
HMNS is far from an equilibrium.
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rotation, hence representing particles that are genuinely moving in the equatorial
plane. The three panels in the top row of Fig. show the evolution of the radial
positions for tracers that at the end of the simulation are either in the inner regions
of the HMNS [i.e., r(t = tg,) = 4 km, left panel], or at some distance from the
rotation axis [i.e., 7(t = tg,) = 8km, central panel], or in outer regions of the
HMNS [i.e., r(t = tz,) = 12km, right panel]. The gray-shaded area refers to
the post-merger transient when the HMNS is far from an equilibrium. Note that
these selected particles can experience large excursions from their original posi-
tions (shown as dashed horizontal lines) due to the complex motion around the
core per Fig.[5.4] but that on average they do not stride too far away.

The panels in the bottom row of Fig. show instead the values of the
classical Bernoulli constant relative to the corresponding tracers in the top
row (blue solid lines), but also the two main quantities contributing to it, namely:
€ + p/p (green solid lines | and v2/2 (red solid lines). While the values of (#.16)
are strictly not constant in time (especially in transient post-merger phase indi-
cated with the gray-shaded areas), they also do not vary significantly around the
initial values. More importantly, it is very clear that there is a phase opposition
in the evolution of the pressure term ¢ + p/p and of the kinetic term v?/2, so
that large values of the former correspond to low values of the latter and vicev-
ersa. This is exactly what one would expect in the presence of a fluid satisfying
Bernoulli’s theorem, hence supporting the explanation of the phase difference in
the distribution of angular velocity, recalling that v ~ )r, and density being a
result of the conservation of the Bernoulli quantity B = hu,. All that has been
discussed above for the three representative tracers holds true for all others that
are taken in the neighborhood of the equatorial plane.

4.8 Time-averaging, symmetries, and resolutions

Finally, this last section, the impact that the time-averaging techniques, the use
of a m-symmetry and the chosen spatial resolution are evaluated for the influence
they have on the robustness of the presented results. Recall that all the simulations
reported here have used six refinement levels and a rather high spatial resolution,
namely, Ahs = 0.15 M, ~ 221 km on the finest refinement level. Furthermore,
to reduce computational costs, a a reflection symmetry across the z = 0 plane and
for most simulations a 7w-symmetry condition across the z = 0 plane has been
employed.

SNote that € ~ p/p at all times and hence they are not shown separately.
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Figure 4.18: Comparison of different averaging techniques for the time- and
azimuthally averaged angular-velocity profiles for different EOSs. The begin-
ning of the averaging window has been fixed at 6 ms. 7op panels: For all
EOSs and masses, the different panels refer to different lengths of the window,
namely, 5, 7, 9ms, so that the from left to right the data refer to time windows
[6,11], [6,13] and [6, 15] ms, respectively. Bottom panels: The same as above
but when the averaging window is not the same for the different EOSs and masses
but is determined by the gravitational-wave frequency fo = Q5/(27). As a result,
from left to right the averaging windows are: [12, 18, 24| x 1/ f,, respectively.
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Figure 4.19: Averaged angular-velocity profiles when the averaging windows is
set to be 7ms for all EOSs and masses, but where the initial averaging time is
varied and set to be 5 (red line), 6 (blue line), 7 (green line), and 8 ms (black line),
respectively. The four lines refer to averaging windows given by [5,12], [6, 13],
[7,14], and [8, 15] ms, respectively; note that the top part of each panel refers to
the low-mass binary, while the bottom one to the high-mass one.

Impact of time-averaging techniques

The choice of the origin and length of the time-averaging window has been guided
by two principal considerations: avoiding the initial post-merger phase and avoid-
ing the phase briefly preceding the collapse to a black hole. Avoiding the initial
post-merger phase is important because the HMNS is rapidly changing in its at-
tempt to reach an equilibrium; the matter dynamics in this phase is quite irregular,
as can be seen in the gravitational waves [212]], and differs significantly from the
evolution at later times when the system reaches a more equilibrium state. On
the other hand, avoiding the stage preceding the collapse to a black hole is impor-
tant because again in such a stage the dynamics is far from equilibrium and any
information on the angular velocity does not reflect a quasi-stationary solution.

Within these constraints, there are two free parameters available to produce
the time averages: the initial time of the averaging window and its width. Recall
that in the previous section a time-averaging centered about ¢, /2 with a width of
tin/3 where tg, is chosen as the time to collapse to a black hole in the high-mass
cases and the end of the simulation in the low-mass cases. These values ensure
that the above mentioned considerations are realised and have no influence on
the angular-velocity profiles. Although these constraints may appear restrictive,
the effect of different times and how they influence the averaging procedure is
considered next.

To this end, several initial and final values of the averaging procedure have
been chosen and plotted in Fig. .18] More precisely, the top panels of Fig. .18
report the angular-velocity profiles when the initial time of the averaging window
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is taken to be 6 ms after the merger, independently of the EOS and mass of the bi-
nary. Furthermore, the different panels from left to right refer to different lengths
of the window, namely, 5, 7, 9 ms, so that the windows data refer to time windows
[6,11], [6,13] and [6, 15] ms, respectively. Clearly, independent of the window
length, the qualitative features are essentially identical, exhibiting a slowly rotat-
ing core, followed by an increase to a maximum, followed by a decrease to a flow
with Q(r) oc r=3/2.

The bottom panels of Fig. on the other hand, show similar information in
that the initial time is still fixed to 6 ms, but the averaging window is not the same
for the different EOSs and masses. Rather, it is determined by the gravitational-
wave frequency fo = €9/(27), which is related to the maximum of the angular
velocity Q. (cf. Fig. B.13). In this way, each binary will have an average win-
dow which is set to be a multiple of the spinning frequency of the HMNS. In
practice the averaging window has been set to be At = [12, 18, 24] x 1/ f, in the
panels from left to right, respectively. Also in this case, the qualitative behaviour
of the various angular-velocity profiles is the same and the differences are of a few
percent at most.

As a final variant of the possible way of performing the time averages, re-
ported in Fig. is the angular-velocity profiles when the averaging windows
is set to be 7ms for all EOSs and masses, but where the initial averaging time
is varied and set to be 5, 6, 7 and 8 ms, respectively. As a result, the four lines
reported in each panel refer to averaging windows given by [5, 12], [6, 13], [7, 14],
and [8, 15] ms, respectively; note that the top part of each panel refers to the low-
mass binary, while the bottom one to the high-mass binary. Also when considering
this different technique it emerges rather clearly that the averaging procedure has
little influence on the angular-velocity distribution. However, two exceptions are
also equally clear and for obvious reasons. The first one is offered by the binary
ALF2-M135 case, whose HMNS collapses at approximately 15 ms (cf. Fig.
and whose “late-time” averaging window is obviously spoiled by the large in-
crease in ) occurring before the collapse. The second exception is given instead
by the binary GNH3-M1 35, which has instead a long-lasting transient post-merger
phase, with the two stellar cores still clearly visible. Also in this, the “early-time”
averaging is not representative of a quasi-stationary stage. Excluding these two
obvious pathological averaging windows, the maximum angular-velocity changes
by 5% at most for all masses and EOSs.

Impact of 7-symmetry

Next to be considered is the impact of having imposed a m-symmetry in the sim-
ulations. While this is a perfectly reasonable option in view of the considerable
savings in computational costs, it does not allow the development of an m = 1
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Figure 4.20: Left panel: angular velocity distribution on the equatorial plane at
four representative times for a binary with the LS220 EOS evolved without 7-
symmetry; note the appearance of an m = 1 deformation in addition to the larger
m = 2 deformation. Right panel: corresponding azimuthal and time-averaged
profile for the same binary with w-symmetry (black dashed line) and without
(black solid line) at a resolution of Ax = 0.15. Additionally, low resolution
runs of Az = 0.20 (red solid line) and Az = 0.25 (green solid line) are shown.
All resolutions exhibit the same behaviour already discussed above.
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instability that has been reported by a number of groups [/7, 200, [143]]. While
the gravitational-wave signal associated with the instability is always smaller than
the dominant one coming from the m = 2 deformations in the HMNS, so that
its observation by current generation detectors is unlikely and will require third-
generation detectors [200]], it is useful to verify whether the presence of the one-
arm instability would leave an imprint on the angular-velocity profiles despite the
azimuthal average.

Thus, to test the influence of symmetry on the result, an additional simulation
was conducted using an equal-mass binary with the LS220 EOS and a gravita-
tional mass of 2 x 1.350 M, (cf. binary LS220-M135 in Table[6.1)), evolved with
and without T-symmetry to investigate the exact influence of the instability on the
rotation profiles. The corresponding angular-velocity distribution on the equato-
rial plane for the simulation without the 7-symmetry is shown in the left panel of
Fig. 4.20] at four representative times after the merger and when the HMNS has
reached a quasi-stationary state. Comparing such a panel with the bottom rows of
Figs. f.3]and 4.9 where the 7-symmetry is imposed, highlights the presence of a
small m = 1 deformation. The right panel of Fig. on the other hand, reports
the corresponding azimuthal and time-averaged profile for two simulations. The
black dashed line refers to the m-symmetric run, while the black solid line to the
run without m-symmetry; in both cases the average is done between ¢ = 5 ms and
t =12ms.

Clearly, no sign of the m = 1 deformation is present, as one would expect
from an averaging process; rather, the angular velocity shows similar quantitative
behaviour with and without the use of m-symmetry. The greatest difference is
in the very centre of the HMNS where the angular velocity is higher with 7-
symmetry than without. The maximum angular velocity is 1% larger with -
symmetry and the location of the maximum is slightly shifted to larger radii. Both
runs exhibit quasi-circular orbits at larger radii. Thus the conclusion is that that in
the very interior of the HMNS, the use of m-symmetry plays a small role, but also
that outside a core region of ~ 5 km the influence is minimal and does not affect
the conclusions.

Impact of grid resolution

Since the stability properties of the HMNS phase depend on the resolution (see
[19] where this was first investigated systematically), the determination of its life-
time against gravitational collapse requires a systematic and very careful resolu-
tion study. At the same time, because of the development of large shocks, the
convergence order after the merger is inevitably very low i.e., of order unity or
less. In fact, different resolutions would mostly produce phase differences in the
dynamics of the fluid and spacetime variables, hence with only a small impact on
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the results that are expressed in terms of time and azimuthal averages.

Notwithstanding these considerations, it is reasonable to ask how significant
are the changes in the angular-velocity profiles when the simulations are per-
formed at different resolutions. The simulations considered here were first pub-
lished in Ref. [256] where the influence of the resolution on the dynamics of the
HMNS by using three different resolutions for a binary described by an ideal-fluid
EOS was described. As remarked in [256], the rather high resolution employed in
these simulations on the finest refinement level, i.e., Ahs = 0.15 M, provides a
description of the HMNS which is very close to that obtained with an even higher
resolution of Ahs; = 0.125 M.

The results of the present resolution study are summarized in the right panel
of Fig. for the LS220-M135 binary. More specifically, in the right panel of
Fig. the averaged angular velocity for the binary LS220-M1 35 for three dif-
ferent resolutions on the finest refinement level, i.e., Ahs = 0.15,0.20,0.25 M, ~
221,295, 369 m is plotted. These three times are denoted as “high”, “medium” and
“low resolution”, respectively. All simulations do not use a w-symmetry, except
where noted. Also although a resolution of Az = 0.25 M may appear coarse, it
is routinely used in numerical-relativity simulations of binary neutron stars (see,
e.g., [65, 1156, |81]) and has been shown to be high enough to provide physically
robust results (see [65]] for an extensive discussion).

Clearly, at all resolutions the profile of the angular-velocity is similar, namely,
showing a slowly rotating core, rising to a maximum around 8 km before decreas-
ing to a r—3/2 profile. The largest differences between resolution are in the centre
of the HMNS, where the rest-mass densities are the highest and the metric func-
tions show the largest gradients. Despite this, all resolutions reach a maximum
angular-velocity at around 8 km with a variation with resolution that is at most
5%. This small variance demonstrates the robustness of the maximum angular-
velocity and illustrates that quasi-universal relations proposed in Sec. {.6| are a
robust feature of the HMNS.

4.9 Conclusions

The long-term stability of astrophysical compact objects is an important aspect of
their evolution to understand in order to confirm physical theories. The formation
of these compact objects can arise from different channels, such as Type-II core
collapse supernovae or from the merger of binary neutron stars. These rotating
objects possess large amounts of angular momentum and their stability cannot be
attributed to uniform rotation alone, but instead require a differentially rotating
object. However, the exact nature of this differential rotation remains unknown
and if it is discovered, if it is a “universal” law or dependent of the system consid-
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ered.

Previous work on the study of rotation in the HMNS has focused mainly on
two categories: analytical and numerical. The analytical studies assume a differ-
ential rotation law of a certain form, known as the j — constant law in which the
angular velocity decreases monotonically away from the centre of the star and the
amount of rotation is controlled by a singular dimensionless parameter. The alter-
native approach is that of the numerical simulation, where no law of differential
rotation is assumed by is instead extracted numerically from the evolved simu-
lation. General features have emerged here, such as a slowly rotating core and
an envelope that rotates at frequencies scaling like ~%/2. This empirical result is
clearly very different from what is expected when using a j — constant law of
differential rotation.

To shed some light on these differences, and to obtain a comprehensive picture
of the rotational properties of HMNSs from binary neutron-star mergers, a large
number of numerical simulations in full general relativity of binary neutron stars
described with various EOSs and masses has been carried out. These simulations
confirm the preliminary results in Refs. [238] [128, [127], but, more importantly,
demonstrate that the angular-velocity distribution have only a modest dependence
on the EOS, thus exhibiting the traits of “quasi-universality”. More specifically,
the EOS-independent angular-velocity distributions found here are characterized
by an almost uniformly rotating core and a disk. The rest mass contained in such
disk can be quite large, ranging from ~ 0.03 M, in the case of high-mass binaries
with stiff EOSs, up to ~ 0.2 M, for low-mass binaries with soft EOSs. In these
numerical simulations there is also a puzzling, at first, result that there is a phase
difference between the distributions of the rest-mass density and the angular ve-
locity. However, there is a simple explanation in terms of a Bernoulli-like constant
that can easily be shown to hold using tracers in bound material.

Even though the work presented here is extensive, there are some important
technical points that must be made. Firstly, the binaries that were simulated here
were all equal mass. Studies of non-equal mass binaries have shown that this isn’t
a big issue [38]] as these cases exhibit similar angular velocity profiles, but an ex-
tensive study is required. Second, the effects of neutrinos is not taken into account
in all simulations, except for the fully temperature-dependent LS220 EOS. From
this run, in comparison with the others, it is clear that neutrinos do not play an
important in the differential rotation law. This is because the neutrino-diffusion
timescale is at least one order of magnitude larger than the one considered here
[193] Third, the simulations here have neglected magnetic fields, even though
magnetic fields are very likely to play a role in post-merger dynamics, especially
in light of GW170817. This is because magnetic fields can transfer angular mo-
mentum from the inner regions to the outer regions which would affect the ro-
tation law considered here. However, this transfer will take place on an Alfvén
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timescale, which is much longer than the one considered here. In this sense, the
quasi-universal behaviour reported here should be taken as representative of the
first few tens of milliseconds after the merger and studied with magnetic fields
[S8] indicate that the results should remain valid also in the presence of magnetic
fields and at least within ~ 40 ms after merger.

In conclusion, the use of tracers developed in Chapter [3] provides a unique
tool to study the evolution of post-merger effects in bound material and can be
used to visualise complicated flow that is otherwise inaccessible to other, more
standard techniques. This use of tracers will be further used in the next chapter to
investigate the effects of shear and bulk viscosity in the post-merger evolution of
a binary neutron star merger.



Chapter 5

On the importance of viscous
dissipation and heat conduction in
binary neutron-star mergers

In this chapter, the tracer method of Chapter [3] is now applied to the problem
of dissipative effects in the post-merger evolution of a binary neutron star As
discussed in Chapter [2| the assumption of a perfect fluid is made in numerical
relativity, however a closer examiniation of the conditions this assumption can be
made with the user of tracers.

5.1 Introduction

With the detection of GW170817, the need for increasingly more accurate nu-
merical relativity simulations is needed. Improvement lies not only in the com-
putational and numerical side, but also increasing the accuracy of the physical
models themselves. For example, as introduced in Chapter 2] the fluid composi-
tion of a neutron star is taken to be a perfect fluid, i.e., one without dissipation or
shear effects. Almost all present simulations, with a few exceptions [75}234], of
neutron-star mergers make this assumption and hence neglect the transport prop-
erties of the material, assuming that they are too small to operate on dynamical
timescales [40].

In this chapter, this assumption of perfect fluid behaviour is challenged by
exploring the impact of viscosity and thermal transport after merger, exploiting
results of simulation discussed in Chapter (4| and using the tracers introduced in

I'This chapter is based on the work of [9]. All figures in this chapter have been reproduced
from [9]]. My contribution to this work was to run the numerical relativity simulations, do the data
analysis, generate the figures, and write parts of the text.
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Chapter As mentioned previously, enormous progress (241, 118} 112} 151}, [39]
has been made in the modelling of neutron stars although the extensions beyond
the perfect fluid model are limited. During the post-merger phase, the post-merger
object is metastable to gravitational collapse over tens of milliseconds cf. Chap-
ter 4] and is subject to many different physical scales. For example, in the inner
region of this object, ~ 10 km across, can reach several times nuclear-matter satu-
ration (number) density ng ~ 0.16 fm~3 and temperatures of tens of MeV, which,
as will be shown below, allow for the possibility of shear and thermal effects to be
important. Thus estimates of the timescales of transport and dissipation processes
for a typical post-merger scenario are calculated and it is shown that such effects
are likely to be important in future simulations.

5.2 Thermal equilibration

The first process to investigate is to establish whether or not the effects of heat
diffusion is important. To this end, consider a region of size z that is hotter than its
surrounding with a temperature difference of AT'. Suppose now that the material
in this region has a specific heat per unit volume ¢y and thermal conductivity k.
This means that the extra thermal energy in this region is easily approximated by

En ~ cvzp, AT, (5.1)

up to some numerical constant pre-factor depending on the geometry. Addition-
ally, the heat conduction rate is simply

Win ~ AT Z4yp, (5.2)

assuming a smooth temperature distribution. By dividing these two scales give
the timescale of thermal equilibrium time,

Te = B /Win ~ cv 20, /5, (5.3)

which is the timescale required to dissipation all the extra thermal energy. In
order to estimate this quantity in neutron stars, the values of ¢y and x must be de-
termined. It can be shown that the specific heat is typically dominated by neutron,
yield ¢y ~ 1.0 m;n}/ 5T, assuming a Fermi liquid of neutron density n,, with
Landau effective mass m,, [144]. The thermal conductivity is written as

K X Z Ki OC Z NV 5.4)

where n; is the number density, v; the characteristic speed, and J\; is the mean
free path of the ith species respectively. The terms that dominate are those that
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have large mean free paths and high densities so although neutrons are rather
abundant, they are strongly interacting and hence have a very small mean free
path. Thus the particles that dominate the thermal conducitivity are electrons and
neutrinos. Although neutrinos are very important in the evolution of a neutron star,
below a few MeV, the neutrino mean free path becomes longer than the merger
region [23, 207]], so neutrinos become free streaming and thus escape the system
and cannot contribute to the sum and hence the only option is the electrons. It
can be shown that thermal conductivity of electrons is temperature-independent
Ke ~ 1.5 ng/ 3 /o (Eq. (40) of [243]]), where n. is the electron number density and
a =~ 1/137. Plugging all these numbers into the approximation for the timescale
yields a lower bound for the thermal equilibration time in the electron dominated
regime

79 = 5% 10%s (5.5)

0.1 % m} no\3 [ Zyp 2 T
8 (x_p) (0.8 mn) (@) <1 km) (1 MeV> !
where n; is the baryon number density, ny nuclear saturation density and x, =
n./n, is the proton fraction. Clearly, this timescale is far too large to have an
impact on the ~ 10 ms timescale of post-merger processes [23].

The previous section assumed that the electrons were dominating at lower
temperatures. However at higher temperatures i.e., 7' > 10 MeV, neutrinos become
trapped for nucleon density n = ng, and thus the neutrino mean free path, which
at high density depends strongly on in-medium corrections [207, 2135]], becomes
smaller than the star. Electron neutrinos form a degenerate Fermi gas with a Fermi
momentum pr, of about half that of the electrons. Their mean free path is longer
than that of the electrons, so they dominate the thermal conductivity [102], which
is given by r, ~ 0.33n2° /(G2(m*)?nY/*T), where Gy = 1/(293 MeV)? is the
Fermi coupling. Again, plugging in these scales yields the timescale for thermal
transport via neutrinos

[y

7~ 0.7s (5.6)

1
(O3 amn 2<ztyp>2 T\
T, 0.8m, ) \2u, ) \1km/ \10MeV )
Thus, in contrast to that of electron-dominated equilibration, the neutrino-driven
thermal transport is within the timescale of the lifetime of a neutron star merger.
For example, if the length scales are on the order of 0.1 km, this timescale is on

the order of a few tens of milliseconds which is within the simulation time of an
HMNS evolution.
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5.3 Shear dissipation

The next effect to consider is that of shear dissipation. To measure this effect,
consider the shear-viscosity timescale. To define this timescale, consider a fluid
of rest-mass density p flowing in the x direction at velocity v,, having kinetic
energy per unit volume

1

€kin = Epvi7 (5.7)
If the fluid has shear viscosity 7, then the energy dissipated per unit time and unit
volume is
dv,, 2
Wshear ~ 1] ( d ) ) (58)
z

and the time needed for shear viscosity to dissipate a significant fraction of the
kinetic energy is again

Ty = ekin/wshear‘ (59)

Assuming that the low is fairly uniform, with the velocity varying by a factor
of order unity over a distance zy,, in the z direction, so dv, /dz ~ v, /2y, gives

2
~ pztyp
7—77 ~ .

2n

To evaluate this timescale, again there are two regimes to consider, the electron-
dominated and the neutrino-dominated. Considering first the electron-dominated
regime (7" < 10 MeV), the dominant transverse contribution from [242] [Eq. (2.4)
in [159]] with the damping scale ¢; = 4ap?,, /7, yield

(5.10)

14/9
ne/

ne 2 0.2 (5.11)

a5/3T5/3"

Plugging this and representative values into the timescale yields

5 5 14

2T \3(ng\9/0.1\ 9
(©) ~ 1.6 % 10° (Ztyp> o) (22 512
T 8 i 1km/ \1 MeV/ \n T, ’ ( )

B

which, like the thermal dissipation from the previous section is too long compared
to the lifetime of the HMNS.

Now, considering the high-temperature, neutrino-dominated regime (7" 2 10 MeV)
neutrinos produce a much larger shear viscosity [102]

M~ 0.46 023/ (Go(m)*nl/*T?) (5.13)
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which plugging into the timescale equation yields

) ~ 0.1 myy \'( pe 4( “typ )2( T )2

Ty s <xp> (0.8 mn) (2 Mu) Tkm/ \10MeV) 19
Again, this timescale is significantly longer than the lifetime of a HMNS.

However, like eq. (5.6), this result depends only weakly on the density, via the

proton fraction z,, the effective mass m} and the ratio y./p, which in realistic

simulations do not vary more than an order of magnitude. A more dominant ef-

fect is that of the typical length scale, 2y, which can reasonably have values of

0.01 km in simulations due to turbulence or high-order non-axisymmetric insta-
bilities [[130} 77}, 1200, [143].

5.4 Bulk viscosity

To investigate the potential of influence of this bulk viscosity an “averaged” bulk
viscosity ( is defined, which is a measurement of the response to a periodic
compression-rarefaction cycle. In nuclear matter, dissipation arises because the
rate of beta equilibration of the proton fraction via Urca processes occurs on the
same timescale, so that the proton fraction lags behind the applied pressure. Thus
if the oscillations after the merger are roughly periodic the dissipation induced
by density variations occurring on a timescale t4.,5 can be estimated by using the
bulk viscosity evaluated at frequency f = 1/tgens, Which can be measured by
tracers. The extremal points of the bulk viscosity are largest when the internal
equilibration rate matches the frequency of the oscillation. Furthermore, because
the equilibration rate is sensitive to the temperature, the bulk viscosity shows a
resonant maximum as a function of temperature (e.g., Fig. 7 in [10]). For oscilla-
tions with a timescale t4e,s, the resonant maximum value is [10]

C_max = }/C N tgens » ifg = 02/(47TB77L) s (5.15)

where B=— (1/n) (00p/9xy)|, and C'=n (90/9n)|, are the nuclear suscep-
tibilities with respect to baryon density and proton fraction, where the chemical
potential oyt = p,, — 1, — it characterises, in the absence of neutrino trapping,
the degree to which the system is out of beta equilibrium. This maximum value
Cmax depends only on properties of the EOS and is independent of the flavor re-
equilibration rate. Changing the re-equilibration rate moves the curve in Fig. 7
in [10] “horizontally”, changing the temperature at which the maximum value is
attained.

Note that the maximum bulk viscosity is a monotonically increasing function
of number density and Fig. [5.1| shows the prefactor Y; for nuclear matter obeying
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Figure 5.1: Density dependence of the maximum-bulk-viscosity prefactor Y
[Eq. (5.13)] for various EOSs. Solid lines are for cold matter (7" = 0.1 MeV)
while dashed lines are for hot matter (7' = 10 MeV). For LS220 only a single
curve at 7'=1 MeV is given due to numerical issues in the EOS table.
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Figure 5.2: Momentum difference relevant to the direct-Urca channel as a func-
tion of density, for the EOSs shown in Fig.[5.1} For negative values, direct-Urca
processes are allowed (gray-shaded area).

various EOSs, all of which can sustain a 2 M, neutron star [66, [14]. Whereas
APR [5] is a cold EOS and is included here for comparison, for all the others a
“hot” EOSs calculated using a model of nuclei and interacting nucleons in statis-
tical equilibrium [[113] is used. In addition to the L.S220 [140], used for the sim-
ulations below, these EOSs range from the moderately soft SHFo [249]] through
the increasingly stiff DD2 [249]184] and TMA [113], to the extremely stiff NL3.

Next consider the temperature 7, at which bulk viscosity reaches its reso-
nant maximum. For small-amplitude oscillations [10]

Temax = (27 f/(TB))Y/?, (5.16)

where I is the prefactor in the equilibration rate, I' = 7% 1. For modified-Urca
processes, 0 =6, so 1/ is small, making Trmax Insensitive to details of the EOS.
As a result, over the entire relevant frequency range, i.e., from a few tenths to
several kHz, a flavor equilibration via nuclear modified-Urca "nmU” processes is
observed with temperatures

iV 4 —7MeV &~ 5 —8x 101°K, (5.17)

(max
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which are well within the range of temperatures expected for dense matter in the
post-merger (23,168, [110].

It is also possible that flavor re-equilibration might occur via direct-Urca reac-
tions instead. These reactions are orders of magnitude faster than modified-Urca
processes, yielding much lower bulk viscosities at 7' ~ 5 MeV, since the reso-
nant maximum of bulk viscosity would have moved to lower temperatures (Fig. 7
in [[10]). In neutrino-transparent matter at 7'= 0, direct-Urca processes are allowed
when App=prn,—prp—pr. <0. InFig.[5.2]the kinematic constraint as a function
of density for the same EOSs in Fig.[5.1]is plotted. For softer EOSs (e.g., SFHo,
DD?2) direct-Urca processes are never possible at 7' = 0; however, for APR the
direct-Urca channel opens at n > 5ng. For even stiffer EOSs (LS220, NL3,
TMA) it already opens around twice saturation density, yet these EOSs have been
challenged by nuclear physics constraints [261]. These considerations suggest
that the amount of bulk-viscous damping will be a sensitive indicator of whether
the EOS allows direct Urca processes at the densities and temperatures prevalent
in neutron star mergers. A more precise connection with the EOS will require cal-
culations of the beta equilibration rate that incorporate the effects of temperature,
strong interactions, and the gradual opening of phase space above the direct Urca
threshold.

The next step is to estimate the dissipation time for compression oscillations.
It can be shown that the energy density for a baryon number-density oscillation
of amplitude An around average density 7 i8S Ecomp ~ Kn(An/n)?/18 [132],
where K is the nuclear compressibility at that density. If the compression varies
on a timescale tqens, then, in a material with bulk viscosity ¢, the dissipated power
per unit volume is [223]] (d€/dt), . ~ 27°C (An/7)* /t3.,.. Hence, the time
required for bulk viscosity to have a significant impact on the oscillations of the
system is

e = Ecomp/ (AE/dt), e = Kiitiens/ (367 C) . (5.18)

Expecting bulk viscosity to reach its maximum value (.. Eq. (5.15)) at typ-
ical neutron-star merger temperatures Eq. (5.17), Eq. (5.15) and Eq. (5.18)) yield
that when the direct-Urca channel is not open, the minimum timescale for bulk
viscosity to impact the oscillations is

i tdens K 025 MeV
min . 5.1
¢ A 3ms (1ms) <250 MeV) ( Y, > (5.19)

Stated differently, under conditions of maximum bulk viscosity, the damping timescale
is a few times larger than the typical timescale 4.5 Of density variations.

This timescale is well within the initial postmerger phase and potentially will
have observational effects. This is because during the first few milliseconds of the
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o

Figure 5.3: The flow timescale tq,,, Obtained from a numerical-relativity simu-
lation of two 1.35 M, neutron stars [110]. The red (4 MeV) and gray (7 MeV)
contours show the boundaries of the temperature range in which the bulk viscosity
roughly takes its maximum value, while the green contour shows the inner region
where the rest-mass density exceeds nuclear saturation density.
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merger, there is a strong emission of gravitational waves coming from the high-
density material, see also the discussion in Chapter 4] During this initial post-
merger phase characteristic frequencies f; and f3 appear in the gravitational-wave
spectrum [254} 256, 212], and if bulk viscous damping is present, i.e., there are
high density oscillations occurring on millisecond timescales with temperatures of
a few MeV, these frequencies would differ from the perfect fluid approximation
and thus have observable consequences.

In order to test whether such conditions are met in actual simulations, Figs.
and [5.4] show the results a BNS simulation of a symmetric merger of M = 2 x
1.35 M, using the L.S220 EOS [140]], where ¢ = 0 is the time of merger [256]].

In order to determine the density oscillations, a simple measurement is used
through the Lagrangian derivative. The timescale of the flow is thus defined as

_ /P 1
tow = {5) ~ T 7 (5.20)

where ( ) represents a time average over a 2 ms time window and where D is the
Lagrangian time derivative in Newtonian hydrodynamics [213]. In the Newtonian
limit, the relativistic continuity equation simplifies to

%f +p(V-7) =0, (5.21)
and immediately leads to the above timescale. The result of this function is shown
in Figure [5.3] which uses a colorcode to show the expansion flow timescale. Fig-
ure [5.3]reports ¢,y 2.4 ms after the merger, where the post-merger object is in its
violent and shock-dominated transient phase. Inside the green contour, the rest-
mass density is above nuclear saturation. The red and gray lines are temperature
contours at 4 MeV and 7 MeV, respectively. Overall, Fig.[5.3| shows that there are
significant regions where Eq. (5.19) is a valid estimate of the dissipation time be-
cause the density is high and the temperature is in the range that maximizes bulk
viscosity [Eq. (5.17)].

This conclusion can also be justified because for a harmonic density oscilla-
tion, tq.y is related to Egs. (5.18)) and (5.19) by

A
Ldens ~ _n Low- (5.22)
n

In the considered regions tgoy, ~ 0.1 — 1ms and An/n ~ 1, thus tgens ~ taow, 1S
indeed in the millisecond range.

To further confirm this conclusion an additional measurement is displayed in
Fig. which shows the evolution of various local properties of representative
tracer particles along the zy-plane in the inner region of the merger product as



CHAPTER 5. POST-MERGER DISSIPATION 117

defined in Chapter 3| The top panel reports the evolution of the temperature and
demonstrates that all tracers pass through the temperature range of large bulk vis-
cosity (dark and light-gray shaded areas, showing the regions of maximum and
up to an order of magnitude smaller dissipation) during the first few milliseconds.
The top middle panel reports the evolution of the normalized rest-mass density
and shows that at early times (¢t < 5ms) there are variations of order 100% in the
rest-mass density on a timescale of milliseconds, confirming that f4.ps 1S in that
range. The bottom middle panel shows the average of ¢g., for the tracers, which
is in the 0.1 — 1 ms range, as expected from Fig.[5.3] Finally, the bottom panel of
Fig.[5.4]is a spectrogram averaging the power spectral densities of the normalized
rest-mass densities in the second panel and showing how, throughout the first 20
ms, the merger product has oscillation with a significant power at frequencies in
the kHz range.

Combing Eq. (5.19) with the results shown in Figs. [5.3 and Fig. [5.4] suggest
that if direct Urca processes remain suppressed, then significant bulk viscous dis-
sipation may occur on timescales of a few milliseconds, which is fast enough
to affect the flow of nuclear material, and hence the emitted gravitational signal.
Note a caveat here, which is that the given simulations do not include the effects
of bulk viscosity and are only a perfect fluid, so the results simply suggest that the
effects may be important and full simulations with a proper viscous treatment are
required to accurately quantify the amount of dissipation that would actually be
present and its potential impact on the gravitational-wave signal.

5.5 Conclusions

The exact properties of the material that a neutron star are composed of can play
a significant role in the post-merger evolution of a neutron star. Here, it was
shown that using simple timescale arguments, combined with tracer analysis from
a numerical relativity simulation, that effects beyond the perfect approximation
are likely important and can, in principle, imprint themselves on the gravitational
wave signal through the f; and f; peaks [33 251), 254, 212| [157]. An exact un-
derstanding of how these effects change the signal is particularly important since
from these peaks, information about the EOS can be inferred [60, 43]].

Given that additional effects beyond the perfect fluid approximation are re-
quired, the question is how to incorporate these effects into numerical simulations
in a consistent manner. Unfortunately, this is a technically difficult question and
many short comings exist in previous formulations that move beyond a perfect
fluid, such as faster-than-light sound speed. Additionally, to be amenable to nu-
merical methods used in numerical relativity, the formulation must be hyperbolic
and remains a challenge. Some preliminary discussion of these possible ways
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Figure 5.4: Co-moving time variation of physical properties of post-merger mate-
rial from selected tracers in the same merger as shown in Fig.[5.3] Top panel: tem-
perature [the shaded regions are where bulk viscosity is maximal, see Eq. (5.17)].
Second panel: rest-mass density. Third panel: flow timescale ¢q.,,. Bottom panel:
spectrogram averaging the rest-mass density evolutions in the second panel.
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forward can be found in [213]].



Chapter 6

On r-process nucleosynthesis from
matter ejected in binary neutron
star mergers

In this chapter, the tracer method of Chapter [3]is used in the context of unbound
material in the post-merger phase. Here, the tracers are used to study the origin
of the heavy elements from the merger of merging neutron stars and the resulting
kilonova that arises from the radioactive decay of these elementsT]

6.1 Introduction

The detections of gravitational waves from binary neutron stars [263] (BNS) and
binary black hole mergers [262, 2, 266] by the LIGO/Virgo Scientific Collabo-
ration has signals the beginning of the era of gravitational-wave astronomy and
multi-messenger astronomy. In the coming years, additional detectors such as
KAGRA and the Einstein Telescope (ET) [4, 136, 199]] are coming online or pro-
jected for operation and will allow for a new observational window on the Uni-
verse, complementary to the electromagnetic one.

Equally exciting as the detection of gravitational waves, in addition there was
a simultaneous detection of an electromagnetic counterpart [264, [148]] alongside
GW170817. This detection has provided a wealth of activity and provides com-
pelling evidence to many long-standing puzzles such as short gamma-ray bursts
(SGRBs) being produced from the merging of neutron stars[[78} 184,210,136, 263,

'This chapter is based on the work of [44] where I was the first author. All figures in this
chapter have been reproduced from [44]. My contribution to the work of [44]] was to run all the
simulations, analyse the data, generate all the figures, and write the text of the paper.
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264]]. Despite only a single neutron star merger being observed so far, more BNS
mergers are expected to be observed in the coming years.

One type of electromagnetic counterpart from a merger that has recently re-
ceived significant attention is that of a kilonova [146, 222, 196, 107, 194, 272,
123} 228, 201, 124, 229, 174, 258, 26, 219, 275]]. Simply, a kilonova is an in-
frared/optical signal powered by the decay of a variety of heavy elements, with
dominant contributions coming from the elements near the second r-process peak
(i.e., 1331, 32Te and '*3*Xe), and subdominant ones from the third 7-process peak
and unstable transuranian elements. Prior to GW170817, it was conjectured that
kilonovas would be powered by ejecta from binary neutron star mergers, however
evidence was scant with only GRB 130603B [37, 260], GRB 060614 [277, [122]
and GRB 050709 [121]], being thought to be connected to kilonovae, but even
then, there are very large uncertainties in these measurement which had prevented
an unambiguous identification. The detection of GW170817 definitively confirms
that kilonova can arise from neutron star mergers, although the case of black hole
- neutron star mergers remains unobserved, but still another possibility and source
of kilonova.

As mentioned, the kilonova is powered by the heavy elements which are
formed through a nucleosynthesis process known as r-process. The fundamen-
tal concept of r-process has been known for decades [52]] but the precise role
in astrophysics remained a mystery for quite some time. The problem is is that
for matter to undergo r-process nucleosynthesis a very neutron-rich and explosive
environment is required which severely restricts and constraints the potential as-
trophysical sites where the reactions could take place. The two most commonly
suggested astrophysical sites core-collapse supernovae and BNS mergers. How-
ever, recent simulations of core-collapse supernovae (CCSN) have shown that the
environment in the outer layers of the explosion is not neutron-rich enough and
have been unable to reproduce the observed solar system abundances of heavy
elements [117, 116} 83, 273]], although rare forms of CCSN driven by magnetic
fields are also a possibility [274, (179, [185]], although this scenario requires fine-
tuning. In contrast, neutron star mergers are considered an increasingly likely
source of heavy elements. In addition to the direct evidence from the detection of
a kilonova from GW 170817, other recent evidence, such as observations ultrafaint
dwarf galaxies [[120], have strongly pointed towards BN'S mergers being the main
site of production of r-process elements.

Furthermore, increasingly sophisticated numerical-relativity simulations with
neutrino transport have shown that not only significant amounts of material are
ejected (due to a variety of physical processes) in BNS mergers, but the environ-
ment in the ejecta provides the necessary conditions to trigger and sustain robust
r-process nucleosynthesis. Numerous simulations ranging from Newtonian to full
relativistic, with a variety of microphysical treatments, have shown four broad
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ejection mechanisms. These are: dynamical ejecta [221} 209, 214, 137, 216, 31,
87, 1114} 272, 228, 229, 201, 142, 168]], neutrino-driven winds [67, 194} [123, 164,
163, 1124, 181, 93], magnetically driven winds [237, 131}, 245 211}, 59], and vis-
cous evolution of the accretion disk [35} (172} 103} [82]]. Their typical time scales
are approximately ~ 10 ms for dynamical ejecta, ~ 100 ms for magnetically
driven or neutrino-driven winds, and ~ 1 s for viscous evolution. Due to the high
computational cost of performing long-term fully relativistic simulations, mostly
dynamical ejecta have been studied in full relativity, while other mechanisms have
been the subject of mostly Newtonian simulations.

In this chapter, the investigation of dynamical ejecta from neutron star merg-
ers is undertaken. This is done through a number of high-resolution numerical-
relativity simulations of BNS mergers which investigate the effects of the neutron-
star initial masses, mass ratios and most importantly the microphysical equation
of state (EOS) on the resulting r-process nucleosynthesis. To this end, three fully
temperature-dependent EOSs spanning a wide range of stiffness as measured from
the stellar compactness, i.e., the ratio of the mass and radius of the corresponding
nonrotating models are considered. For each EOS, three equal-mass initial se-
tups covering a realistic range of initial BNS masses is evaluated with additional
unequal mass cases.

To follow the evolution of the fluid, a combination of techniques are used,
namely outflow detectors and passively advected fluid tracers, which were intro-
duced in Chapter This data is then used as input for the nuclear networks,
which is done in a post-processing step using a complete nuclear reaction net-
work [274}|133]] to obtain the final r-process abundances. Additionally kilonova
light curves are also computed using the model outlined in Ref. [107]].

This chapter is structured as follows: in Sec. [6.2] the mathematical and nu-
merical methods employed are introduced, together with the initial BNS config-
urations that are evolved. Section instead, summarizes the main properties
of the physical models and numerical techniques that are employed to study the
BNS evolution as well as to recover the heavy-element abundances. Sections
[0.4H6.5.4] present the results and findings of the simulations in terms of the mass
ejected, the electron fraction, the specific entropy, and the ejecta velocity. Simi-
larly, Secs. reports the estimates of the kilonova light curves and their
detectability, together with the constraints on the merger rates of BNSs.

6.2 Physical setup and initial data
In this chapter, unlike in previous chapters, both equal and unequal-mass mergers

with quasi-circular orbits are considered. The initial data is constructed from three
different initial EOSs, spanning a wide range in stiffness. These are, respectively,
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EOS ¢ M, M, Ry Ry M

ADM

Model [Mo] [Mo] [km] [km] [Mo]
DD2-M1 .25 DD2 10 125 125 1320 1320 248
DD2-M1 .35 DD2 1.0 1.35 1.35 1323 1323 268
DD2-M1 .45 DD2 1.0 145 145 1325 1325 287
DD2-g09 DD2 09 1.22 135 1319 1323 255

LS220-M1.25 | LS220 1.0 1.25 1.25 1280 12.80 248
LS220-M1.35 || LS220 1.0 1.35 1.35 12,75 1275 2.67
LS220-M1.45 || LS220 1.0 1.45 1.45 12.67 12.67 2.87
L5220-9g09 LS220 09 1.21 1.35 1281 1275 261
SFHO-M1.25 SFHO 1.0 1.25 1.25 11.97 11.97 248
SFHO-M1.35 SFHO 1.0 135 1.35 1192 1192 2.68
SFHO-M1.45 SFHO 10 145 145 11.87 11.87 287

SFHO-g09 SFHO 0.9 1.22 135 11.97 11.92 2.5
Mb71 Mb’Q MTOV RTOV Cl CQ J
Model [Mo] [Mo] [Mo] [km] - - [M7]

DD2-M1.25 1.35 1.35 242 11.90 0.140 0.140 6.40
DD2-M1.35 1.47 147 242 11.90 0.151 0.151 7.31
DD2-M1.45 1.59 1.9 242 11.90 0.161 0.161 8.19
DD2-g09 1.31 147 242 11.90 0.136 0.151 6.68
LS220-M1.25 | 1.36 1.36 2.04 10.65 0.144 0.144 6.42
LS220-M1.35 || 1.47 147 2.04 10.65 0.156 0.156 7.26
LS220-M1.45 || 1.60 1.60 2.04 10.65 0.169 0.169 8.20
L5220-909 1.32 147 2.04 10.65 0.140 0.156 6.98
SFHO-M1.25 1.36  1.36  2.06 10.31 0.155 0.155 6.40
SFHO-M1.35 1.48 148 2.06 1031 0.167 0.167 7.28
SFHO-M1.45 1.61 1.61 2.06 1031 0.181 0.181 8&.20
SFHO-g09 1.32 148 2.06 10.31 0.150 0.167 6.67

Table 6.1: Summary of the properties of the systems under consideration. The
columns denote, respectively: the EOS; the gravitational mass ratio ¢ := M; /M;
at infinite separation; the gravitational masses M, o of the two stars at infinite
separation; the stars’ radii I?; » at infinite separation; the ADM mass M, of the
system; the baryon masses My, ; 2; the maximum mass of a non-rotating model
of the given EOS M, ; the radius of the maximum mass non-rotating model
of the given EOS R, ; the compactnesses C; o := M 2/ Ry o; the total angular
momentum J at the initial separation.
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from stiffest to softest: : (i) DD2 [269]; (i1) LS220 [140] with compressibility
parameter X' = MeV; SFHO [249]. Note that recent calculations in Ref. [261]
have shown that the LS220 EOS does not satisfy constraints stemming from a
lower bound on the energy per nucleon provided by the unitary-gas approxima-
tion. This result disfavours the L.S220 as a viable model for the microphysics of
neutron stars, but since this EOS is also one of the most well-studied in numerical
applications — as it was used as the prototypical EOS in the previous chapters — it
is included in this study since it provides a useful comparison with the literature.
Additionally, the DD2 and SFHO EOSs include additional light nuclei that are
not included in the L.S220 and these change the neutrino interactions [250] and
the effects of which will be seen later.

For each EOS, there are three different equal-mass setups, with neutron-star
gravitational masses of 1.25,1.35 and 1.45 M, respectively; and one unequal-
mass system, with star masses of 1.2 and 1.35 M, resulting in a mass ratio
g = 0.9 and a total ADM mass of the system which is intermediate between
the two lightest equal-mass configurations for the same EOS. The stars’ initial
separation is chosen to be 45 km, resulting in an inspiral phase of approximately
~ 3 orbits. Table summarizes the properties of each system. The stars initial
states are computed at neutrinoless beta equilibrium, i.e., at zero neutrino chem-
ical potential, thus setting the initial values of the electron fraction. The initial
data for every binary was constructed using the LORENE pseudo-spectral elliptic
solver [103] and refers to irrotational binaries in quasi-circular orbit.

6.3 Methods

Here, the methods used to evolve the simulations are briefly discussed. In terms of
the evolution code, the same set-up described in Chapter [3]is used here. However,
there are some additional technical details that must be discussed.

6.3.1 Tracer particles and outflow detectors

To follow the flow of ejected material two different techniques are used. The first
technique is the use of tracer particles [272, 127, [175, 45], i.e., massless parti-
cles passively advected with the fluid as introduced in Chapter [3] Here a total
of 2 - 10° tracers are placed with a uniform distribution in the density interval
107g/ cm’® < p < 10Pg/ cm® at the time of merger. Fluid properties are inter-
polated at the tracers location, providing a detailed account of the evolution of
the associated fluid element. From here, a “tracer mass” can be associated to the
otherwise massless tracers by locally integrating a mass flux through a sphere of
given radius. Combining this mass with the history of the evolution of the tracer
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particle provides the initial input for the nuclear-reaction network discussed in
Sec.

The second technique employed to follow the ejected material is the use of
so-called outflow detectors, i.e., spherical surfaces placed at a fixed coordinate ra-
dius around the center of the computational domain. These detectors are able to
measure the flux of the fluid through their surface and record the various hydrody-
namical and thermodynamical quantities as a function of time. In the simulations
here, a total of nine detectors set at radii between 100 and 500 M, with a separa-
tion of 50 M, were used. Each detector has a resolution of 55 points in the polar
and 96 points in the azimuthal direction, and the detector located at a radius of
200Ms =~ 300 km is the fiducial one. As the fluid passes through a detector spher-
ical surface, hydrodynamical and thermodynamical variables are interpolated onto
it, allowing the measurement of the entire evolution of the fluid in all angular di-
rections. Note that the total ejected mass is calculated by integrating the unbound
mass flux over the surface of the detector, in contrast to, e.g., Ref. [114], where
the rest-mass density of all unbound fluid elements is integrated over the whole
computational domain (see Sec. for further details).

6.3.2 Selection of unbound material

Although initially discussed in Chapter [3] the selection criteria will be repeated
here for brevity. Regardless of whether tracer particles or outflow detectors are
used, it is necessary to define a criterion to identify gravitationally unbound mate-
rial, which will not accrete back onto the merger remnant and can be considered
ejected from the system.

The difficulty in determining gravitationally unbound material arises mostly
due to the finite size of the grid and ejecta can only be followed to the edge of
the computational domain, which is still relatively close to the BNS merger prod-
uct, and can still be influenced by its gravitational potential. In the context of
r-process, this is a setback because the evolution of the nuclear network can be
on the order of simulated years which is significantly larger than a domain in a
numerical relativity can allow. Part of this problem could be alleviated by using
a larger grid, but this comes at greater computational cost and a few numerical
drawbacks ,e.g., poor resolution in an AMR grid, so a smaller grid spacing is
used.

As introduced in Chapter [3] a criteria is needed to determine when material
is unbound. The criteria most commonly used is that of the geodesic criterion
[128, 228], 1.e., if u; < —1, where u; is the covariant time component of the
fluid element 4-velocity. In short, the criterion amounts therefore to imposing
that the fluid element should have non-zero velocity at infinity. However, this
isn’t the only criterion that can be used to select whether or not material becomes
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unbound. An alternative criterion that has been used is the Bernoulli criterion
[128]]. Here, fluid element is defined to be unbound if hu; < —1, where h is
the fluid specific enthalpy. A reason for considering this criterion that is the en-
thalpy encodes some information about the thermodynamics of the fluid element,
through the enthalpy, while the geodesic does not. In the case of the dynamical
ejecta, the thermodynamical properties are important and hence using a criteria
that takes these variables into account is desirable. A more thorough discussion
of the influence of changing criteria will be done in Section [6.6]

6.3.3 Nuclear network overview

In order for the r-process to be calculated, the numerous reactions of the chemical
elements must be calculated. A detailed introduction to this type of calculate can
be found in [150]. The calculations here are done with the complete WinNet
nuclear reaction network [274, [133]]. In this network, over 5800 nuclei between
the valley of stability and the neutron-drip line are taken into account. The re-
action rates are taken from the compilation of Ref. [205] for the Finite Range
Droplet Model (FRDM [177]]) and weak-interaction rates including neutrino ab-
sorption on nucleons [178, 92] are also considered. Neutron-capture rates for
nuclei with atomic number Z 2 80 and neutron-induced fission rates are taken
from Ref. [189]. Additionally, beta-delayed fission probabilities from Ref. [[188]]
are also included. The WinNet network has a long history and has successfully
been used in the generation the abundance curves of heavy elements and agrees
with other nuclear-reaction networks [[150].

The motivating factor for the introducing the tracers into unbound material is
that they record the thermodynamical properties of the fluid element cf. Chapter[3]
It is in this nuclear network that these tracers are post-processed. In order to do
the nuclear network evolution, every tracer records a time series of the rest-mass
density, temperature, specific entropy, and electron fraction are used as initial data
for the network. For each of these tracers, the calculations begin when the temper-
ature drops below T' = 10'° K = 10 GK. Due to the high temperatures, the initial
composition is given by nuclear statistical equilibrium (NSE), and is dominated
by nucleons and alpha particles and it is assumed that NSE holds for 7" > 8 GK.
When the temperature drops below the NSE threshold, the composition is evolved
with the full reaction network. As discussed numerous times, the limitations of nu-
merical relativity require that the tracers be extrapolated forward in time to larger
scales than can be currently simulated. This is done by following prescriptions for
the position, density and temperature evolution given in [94, [133]. Specifically,
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these extrapolations take the form

r(t) = ro + vot, 6.1)
p(t) = po (%) : (6.2)
T(t)=T1Is,p(t), Ye(t)] . (6.3)

where p is the total rest-mass density, r the coordinate radius, v the 3-velocity,
s the specific entropy, and Y, := n./ny, the electron fraction. The subscript “0”
indicates the last available values from the hydrodynamical simulations, and the
temperature is computed from the Helmholtz EOS [267, [268]. As discussed in
Chapter 3] this extrapolation is well supported by the tracers.

6.4 Overview of simulations

In the following sections, the main results from the simulation that will be anal-
ysed and compared are the following major outflow properties: the mass ejected
M.;, the electron fraction Y., the specific entropy s, and the ejecta velocity v,;.

The variability of these quantities across different EOSs, and thus the r-process,
is done through 12 simulations which span a wide range of masses and equations
of state. For a given EOS, four different masses parameters were run with 3 equal-
mass and 1 unequal-mass case. For each simulation, at least 10 ms after merger
was simulated to ensure a sufficient time for the dynamical ejecta to reach 300 km,
which is where the properties of the dynamical ejecta are measured.

Prior to the merger of each BNS, at least ~ 3 orbits are completed before
merger and after these orbits, the merger time is defined to the time at which
the gravitational-wave amplitude reaches its first peak [22], i.e., ¢ = 0. For all
mergers that do not immediately collapse to a black hole, a hypermassive neutron
star (HMNS) is formed and exists in a metastable state, supported by differential
rotation, as discussed in Chapter [}

There are only three binaries which collapse to a black hole: SFHO-M1 . 35,
SFHO-M1.45,and LS220-M1. 45 with the latter two being a prompt collapse.
More specifically, for SFHO-M1 .45 the collapse is right at merger and results
in very little material being ejected (see discussion in Sec. [6.5.1)), while for
1L.5220-M1.45 the collapse takes place about ~ 0.5 ms after merger, which is
sufficient to allow for material to be ejected. Finally for SFHO-M1 . 35, the col-
lapses to a black hole takes place at ~ 10 ms after the merger, when the HMNS
has lost sufficient angular momentum.

The first result from the simulations is the spatial distributions for the three
different equations of state for two quantities, the electron fraction (left panels)
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Figure 6.1: Evolution of the electron fraction (left parts of panels) and of the
temperature (right parts of panels) on the (x, z) plane (top panels) and on the
(x,y) plane (bottom panels), for the different EOSs, namely: DD2, LS220, SFHO,
from left to right. All panels refer to binaries with masses of 2 x 1.35M, and at
the same representative times: 5 ms (top row), 10 ms (middle row), and 15 ms
(bottom row) after the merger.



CHAPTER 6. NUCLEOSYNTHESIS IN BNS MERGERS 129

and temperature (right panels), illustrated in Fig From top to bottom, the
times correspond to 5, 10, 15 ms after merger, while the top panels refer to the
(x, z)-planes and (x, y)-planes in the bottom panels.

As expected, the figure illustrates the two different sources of dynamical ejecta:
tidal forces and shock heating. Tidal forces arise from tidal interactions during
merging and eject material primarily along the orbital plane and are a manifesta-
tion of gravitational interactions. In comparison, shock heating, is approximately
spherically symmetric [228] and depends on the thermal properties of the fluid.
These two distinct mechanisms are illustrated in Fig. where the planar re-
gion shows lower Y, and denser material, while the polar regions have higher Y,
and less dense material.

Consider first the tidal ejecta. Tidal ejecta tends to have very low electron
fraction, i.e., it is very neutron rich. This material becomes unbound immedi-
ately during and after the merger and originates from near the surfaces of the
star. These tidal tails are visible in the (z,y)-plane at 5 ms (top row) panels of
Fig. where the they have reached the outer regions of the simulation domain
beyond 300 km. Additionally, this ejected material also tends to be cooler, with a
temperature of around 1 MeV. This can be contrasted with the (z, z)-plane where
the Y, reaches much higher values, approximately 0.3, that are do not occur in the
(x,y)-plane. The reason for these highers value is due to shock heating, hence this
material comes from the other sources of dynamical ejecta. In the polar regions
right above the HMNS, no material is ejected tidally —due to the lack of torques
along this axis — and thus alllows neutrinos to become free streaming very close
to the merger product due to a lack of material that could potentially trap them,
cf. the orbital plane. As a result, weak interactions play a more important role
here and free neutrons are converted into protons, hence the material becomes
less neutron-rich. However, as the angle from the pole decreases, the material
becomes more optically thick and more neutron-rich as the neutrino interactions
become less strong. This angular dependence is also seen in the temperature pro-
files as there are higher temperatures near the polar axis when compared with the
orbital plane. It is important to note here that although neutrinos are only treated
simplistically [95] this broad-brush description is qualitatively similar to more
sophisticated approaches such as those using an M1-scheme which lead to an in-
crease in the amount of ejected material in the polar regions [88, 186} 189, 228 229]
and higher Y..

Examining now the effects of the EOS, it is clear that there is an overall trend
present in Fig. Effectively, the “softer” an EOS is, the hotter the matter
tends to be. This is because the softer an EOS is and hence the more compact the
object is, a deeper gravitational well forms, which, in turn, allows for the material
to become hotter as there more energy available. This dependence is clearest when
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Mg (Ye) (s) (V) (veo)

Model 103 My] - [kg/baryon] [107'c¢] [107'¢]
DD2-M1.25 0.96 0.13 13.9 2.3 1.7
DD2-M1.35 0.58 0.14 16.5 24 1.8
DD2-M1.45 0.50 0.17 19.2 2.7 2.1
DD2-g09 0.46 0.14 18.5 2.3 1.7
LS220-M1.25 0.61 0.08 10.3 2.2 1.6
LS220-M1.35 0.82 0.10 12.7 2.2 1.5
LsS220-M1.45 1.09 0.11 10.5 2.6 2.1
L5220-9g09 0.90 0.09 11.9 2.2 1.5
SFHO-M1.25 0.55 0.14 15.6 2.5 2.0
SFHO-M1.35 3.53 0.16 12.7 2.7 2.2
SFHO-M1.45 0.01 0.24 35.9 3.1 2.6
SFHO-g09 0.76 0.16 18.8 2.4 1.8

tH,peak Lpeak M Jjpeak T H,peak TIVK peak
Model [days] [10%%erg/s] [AB] [AB] [AB]
DD2-M1.25 0.50 2.24 —-126 —125 —124
DD2-M1.35 0.50 2.44 —-12.7 =127  —12.5
DD2-M1.45 0.50 2.89 -129 -129 —-12.5
DD2-q09 0.53 2.34 -12.7 —-126 —124
Ls220-M1.25 0.53 2.24 -126 —-126 —124
LS220-M1.35 0.51 2.00 —-12.5  —-124  —-12.2
LS220-M1.45 0.48 2.62 —-12.8 =127 —12.5
L5220-9g09 0.50 1.94 -124 -123 —12.1
SFHO-M1.25 0.47 2.54 —-12.8 —12.7 —12.5
SFHO-M1.35 0.53 3.36 -13.2 =132 —-13.0
SFHO-M1.45 0.16 0.86 -11.1 —-109 —-10.5
SFHO-g09 0.60 2.92 -12.0 -13.0 —12.9

Table 6.2: Summary of the mass-averaged quantities of Sec.[6.5and kilonova ob-
servational quantities of Sec. computed from the simulations. The columns
are, respectively: M,; the dynamical mass ejecta measured at 300 km, (Y;) the
mass-averaged electron fraction, (s) the mass-averaged entropy, v.; the mass-
averaged velocity of the ejecta, (v..) the velocity of the ejecta at infinity us-
ing Eq. (6.6), tx peax the peak time in the H-band of the kilonova signal, Lpeax
the peak luminosity of the kilonova, mx peax the peak absolute magnitude in the
X = J, H, K bands respectively.
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comparing the softer SFHO and the stiffer LS220 EOSs (left and right columns
where the temperature in the (x,y)-plane is much hotter for the SFHO than the
LS220, as expected. As a result, because neutrino interactions depend on the
temperature, the electron fraction is also higher the softer an EOS is. Again this is
most clear when examining the fluid properties on the (x, y)-plane of the SFHO
and LS220 simulations, where the data referring to the LS220 EOS is much more
neutron-rich when compared with the SFHO.

6.5 Matter-outflow properties

6.5.1 Ejected-mass

An important quantity needed in all the following analysis is that of the total
amount of ejected material originating from dynamical ejecta. This total mass
has implications for the amount of r-process created, the type of signal a kilonova
would produce, and constraints on the rates of neutron star mergers. In Sec. [6.3.1]
the total ejected mass is defined as using outflow detectors which measure the
flux of unbound material at a given radius. To do this measurement, the detec-
tor chosen will be placed at a radius of M =~ 300km and will be used as the
fiducial detector to do the measurements. To compute the total mass ejected, the
flux of the rest-mass density through the detector’s spherical surface is computed
and then integrated over the whole sphere. This gives the total mass-flux which
can be integrated over time to provide a measurement of the total dynamically
ejected material M. In this calculation, only the flux associated to unbound fluid
elements contributes to the integral. Explicitly, for a detector at a given radial
distance, the total ejected mass is given by

¢
M;(t) ::/O /Qp*W(osz — ")/ d0dt, (6.4)

where ﬁﬂ is the surface element on the detector (i.e., the square root of the 2-
metric induced on the detector by the spacetime 4-metric); the term p, W (av” —
B") is the flux of mass through the sphere, expressed in terms of the 3+1 quantities:
the lapse function «, the shift vector 3¢, and the fluid 3-velocity v*, the Lorentz
factor W := (1—v'v;)~!/2 and the fraction of the rest-mass density that is unbound
Px» 1.€., of fluid elements that do satisfy the geodesic criterion. The integral of the
mass flux can then be integrated in time beginning at merger, i.e., t = 0 and ending
at 7', the time at the end of the simulation.

2As discussed in Sec. the inclusion of light nuclei changes the composition, but not the
temperature.
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Figure 6.2: Evolution of the dynamically ejected unbound mass M,; as measured
through a detector at radius 300 km when using the geodesic criterion and for the
various binaries considered. The star denotes the time of black-hole formation
for model SFHO-M1 . 35. Binaries LS220-M1 .45 and SFHO-M1 . 35 collapse
shortly after merger and are not visible in the plot.

The results of this calculation are reported in Figure[6.2]for the different EOSs.
Here, the colour coding scheme is L.S220 (blue), DD2 (green), and SFHO (red)
for the EOSs and the different lines styles correspond to different masses and mass
ratiosﬂ The results of Fig.|6.2|are also summarised in Table where M,; refers
to the mass ejected ¢ = 10 ms after merger.

The results of the different EOSs and masses demonstrates that there is a very
similar universal behaviour independent of the simulation set-up. Initially, there
is a large ejection of material, due to tidal interactions and shock heating, and this
ejecta reaches the detector approximately 1 ms after merger and continues for
about 4 — 5 ms. After this point, the apparent amount of material that becomes

3Unless specified otherwise, hereafter the same colour scheme to refer to the various EOSs will
used throughout: simulations with the LS220 EOS are shown in blue, DD2 in green, and SFHO
in red. Furthermore, the different masses are defined as follows, 1.25M, is dashed, 1.35M, is
solid, 1.45M, is dotted, and ¢ = 0.9 is dash-dotted.
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Figure 6.3: Distributions of the ejected mass fraction as function of the electron
fraction Y, as measured by a detector at radius 300 km. The range of Y, is divided
into bins of width 0.01. The histograms are normalized over the total ejected
mass M. The left panel refers to the DD2 EOS simulations, the middle one to
the L.S220 EOS and the right one to the SFHO EOS; different line types mark
binaries with different masses and mass ratios.

approaches zero. However, this is simply a consequence of the criteria used to se-
lect the unbound material and will be shown in Section[6.6|that when considering
another criteria more ejecta becomes unbound at later times.

A number that is almost independent for the simulations is the total amount
of ejecta. As can be seen in Figure [6.2] the total amount of ejecta ranges be-
tween 0.5 — 1 x 1073M,, with two table exceptions. The first is the binary
SFHO-M1 .45, which collapses immediately to a black hole and results in very
little material ejected (almost an order of magnitude less), as most is accreted onto
the black hole. Conversely, the binary SFHO-M1 . 35 model ejects a significant
amount of material when compared with the other models. Also this binary col-
lapses to a black hole around 9 ms (see star symbol in Fig.[6.2)). The reason for this
increase in the amount of ejected material is due to the SFHO being a rather soft
EOS, in relation to DD2 and LS220. A softer EOS creates more compact stars —
the material is “softer” and can be compressed into a smaller area — which means
high temperatures can be reached due to a stronger gravitational well, which in
turn can cause higher temperatures and shock heating leading to a more forceful
dynamical mass ejection.

The measurement given here is simply one method to measure the total amount
of ejected material. However, it is not the only method of doing this measurement.
For example it is possible to evaluate an integral of the rest-mass density over the
entire computational domain, with a threshold on only unbound material [114),
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228,142, 169]]. Mathematically, this is defined as i.e.,

My(t) = /,@Wﬁd%. (6.5)

To check the veracity of the masses measured in this study, Eq. [6.5|was computed
for the LS220-M1.35 model. Evaluating this integral yields a M,;(t) that is
highly time dependent and is no longer a monotonically increasing function of
time, which is the only possibility for the Eq. as it is a cumulative integral.
Instead, this integral reaches a maximum of M = 0.80 X 1073 M, which is sim-
ilar to the outflow detector measurement. Qualitatively, this measurement differs
only by 4 % with that obtained via Eq. (6.4)), demonstrating the robustness of the
mass ejection method and that the 300 km measurement radius is the most robust
choice. Although it appears that Eq. [6.5] would be a better measurement, it has
some major downsides. Due to the finite size of the domain, material that reaches
the outer boundaries, and hence “removed” from the simulation due to bound-
ary conditions, will no longer be countered, which explains the non-monotonic
behaviour. Furthermore, there is a question of when to evaluate Eq. [6.5]to get a
proper measurement of the total mass of the system. Here, this was chosen as
~ 3 ms after merger where it reaches a maximum and this is well before the ma-
terial has had a chance to reach the outer domain of the simulation. With this
choice, however, there is some level of arbitrariness in the evaluation of the in-
tegral as to what time is the most appropriate to report. Although the maximum
appears to be the most natural, in cases where there is more ejecta at later times,
earlier ejecta will not be counted in this summation as it has left the domain. This
arbitrariness does not arise with the flux-integral method (6.4)), which is integrated
over all time, but instead the arbitrariness is selected in the radius chosen to mea-
sure. Using detectors further out finds that the difference between the sphere at
300 km and a sphere at 740 km is about 30% irrespective of EOS. Although the
sphere further away has a slightly higher ejected mass, the properties of the fluid
are very close to atmosphere at these radii and should be avoided so 300 km is a
good compromise.

It is important to note that the measured values of the ejected masses are sys-
tematically smaller than those reported in Ref. [228] for the same masses and
EOS. While this discrepancy appears troubling, it is most likely due to the neutrino
treatment employed here. In Refs. [228, [229], a more-sophisticated M1-scheme
with heating is implemented which can allow for material to be more energetic
and hence to become more easily unbound [88]. On the other hand, the measure-
ments here agree with those of Ref. [142], where a similar leakage approach was
employed. The MO-scheme of Ref. [201] is insufficient t explain this difference in
the ejected mass which suggests that a detailed study of the influence of neutrino
schemes is required.
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Figure 6.4: Distributions of the ejected mass fraction as function of the electron
fraction Y., as measured by a detector at radius 300 km. This is the same as
Fig.[6.3] except that the curves are here grouped by mass configuration rather than
EOS so as to highlight the dependence on the latter. For clarity, unequal-mass
binaries are not shown.

6.5.2 Electron-fraction distributions

To begin looking at the distributions, the first quantity is that of the electron frac-
tion. This is a very important ingredient in determining the r-process nucleosyn-
thesis yields since Y, is effectively a measure of how many free neutrons are
available. Typically, low-Y, environments, i.e., with more free neutrons, favour
a robust r-process and yield a higher fraction of heavier elements while in high-Y,
regimes, i.e., with less free neutrons, the production of very heavy elements tends
to be suppressed. Differences in Y, also correspond to potential differences in
the properties of the resulting kilonova signal, due to the efficient production (or
lack thereof) of high-opacity elements such as lanthanides. In particular, the so-
called “blue” kilonovae (i.e., peaking at higher frequencies, in the optical band)
are possible in environments with Y, 2> 0.25 and “red” kilonovae (peaking in the
infrared) in environments with Y, < 0.25 [[174,[168]. The effect on the kilonova
light curve will be discussed in Section

Figure plots the histograms of the mass distribution of the ejected matter
over the electron fraction for all 12 simulations, as computed from the data relative
to the fiducial detector at radius 300 km. Here, different panels refer to different
EOSs, while the various lines refer to the different binaries evolved with the same
colour and ordering scheme introduced above. To calculate the above histogram,
each patch on the outflow detector sphere measures the local electron fraction
value is and the mass flux, from which the ejected mass is determined. These
values are then integrated over time up to 7% to produce the mass ejected along
with the corresponding Y.; the resulting Y, range is divided into bins of width 0.01
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and the unbound mass of each patch at each time is assigned to a bin according to
its corresponding value of Y, thereby generating the histograms shown in Fig.

Irrespective of the EOS and mass configuration of the runs, common qualita-
tive features emerge. For all EOSs, the ejected mass is distributed in a range of
Y, varying from approximately 0.04 up to 0.4, peaking at Y, < 0.2. The only
exception is the SFHO-M1 . 45 model, which ejects little material due to black
hole formation and whose distribution peaks at higher values of Y,. This spread
of the electron fraction over a wide range is due to the inclusion of a neutrino
treatment, which causes the number of electrons to change due to weak interac-
tions. Failure to take such interaction into account would result in a very different
distribution, sharply peaked at very low values of Y, i.e., pure neutron matter (see,
e.g., Ref. [201]]).

More in detail, the LS220 runs (left panel) exhibit very similar distributions
for all mass configurations, peaking at approximately Y, = 0.05 with a sec-
ondary peak at Y, ~ 0.2 before sharply dropping off at electron fraction values of
Y. 2 0.3. The distributions of the DD2 (middle panel) also all exhibit a similar be-
haviour, with a sharp increasing at Y, ~ 0.05 before broadening out with a sharp
drop around Y, ~ 0.3. Finally, the distributions of the SFHO runs (right panel)
exhibit a somewhat different behaviour, although spanning a similarly broad range
in Y.. The main differences in this case are the tail of the distribution at higher
values of the electron fraction. In all cases, most of the ejected matter is found at
low values of the electron fraction, i.e., it is very neutron-rich, which suggests a
robust r-process in all of the cases considered here.

This conclusion is also supported by Table where the average values (Y)
of the electron fraction are reported for all 12 runs. The averages are computed
over the mass/electron fraction histograms of Fig.[6.3] As can be seen in all sim-
ulations, the average value of the electron fraction in the ejecta is approximately
0.15 or lower, indicating on average a very neutron-rich environment. The only
exception is model SFHO-M1 . 45 where (Y;) = 0.24.

In Fig.[6.4] to help the comparison of the results across different EOSs the dis-
tributions are arranged according to the total mass of the BNS (the unequal-mass
cases are excluded) instead of EOS in Fig.[6.3] In all panels, there is a noticeable
trend in the distributions of Y,, which is most evident in the 1.25M-case (left
panel), where (Y.) = 0.08, 0.13, and 0.14 for LS220, DD2, and SFHO EOSs,
respectively. This increase in Y, is expected when considering that neutrino inter-
actions depend strongly on the temperature. The average entropy (see Sec.[6.5.3)
of these simulations is 10.3, 13.9, and 15.6 kg /baryon respectively. Entropy is
related to temperature and the higher the entropy, the higher the average tem-
perature, cf. Fig. and hence more free neutrons are converted into neutrinos
through positron capture, increasing Y.

This effect is also related to the compactness of the object, albeit this relation
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Figure 6.5: The same as in Fig. but for the specific entropy s. The range of s
is divided into bins of width 2 kg /baryon and the histograms are normalized over
the total ejected mass.

should be treated carefully. SFHO is the softest EOS, which leads to the most
compact objects. This results in higher temperatures during the merger, which
causes an increase in the neutrino reactions, which decreases the number of neu-
trons and as expected has the highest average Y.. In contrast, from Table [6.1 one
would expect that because L.S220 is more compact than DD2, L.S220 should have
a higher average Y, and entropy when the opposite is this the case. This differ-
ence is due to compactness being a property calculated for cold beta-equilibrium
where the effects of composition are minimal. As discussed in Sec.[6.2] the LS220
does not include light nuclei which can change the composition and the neutrino
interactions so this seemingly non-monotonic relation between compactness and
average Y, arises from different constructions of the EOS. When comparing DD2
and SFHO and excluding L.S220, there is a clear monotonic relationship between
CandY..

When comparing the results of the above simulations with that of simulations
with similar initial data, there is a disagreement with computed values of the elec-
tron fraction. For example, for the DD2-M1 . 35 model with the measured value of
(Y.) = 0.14, the authors of Ref. [228] report (Y,) = 0.29 with an M1-scheme in-
dependent of resolution and (Y,) = 0.26 with a leakage scheme with a resolution
of 200 m. However, a similar distribution in Y, is observed in Refs. [[187, [142],
which use a similar leakage scheme to the one used here.

6.5.3 Specific-entropy distributions

The next thermodynamic quantity to be considered is the distribution of the ejected
material over the entropy per baryon s. The specific entropy is important in
r-process nucleosynthesis as it impacts the neutron-to-seed ratio, with high ini-
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tial neutron-to-seed ratios favouring the production of heavy nuclei during the
r-process nucleosynthesis even at relatively high electron fractions. In particular,
in radiative environments such as those accompanying the ejected matter, the spe-
cific entropy will scale with the temperature as s oc T, so that the shock-heated
(and hotter) part of the dynamical ejecta will exhibit higher entropies. In turn,
because the seed nuclei will be photodissociated at high temperatures, a higher
specific entropy will increase the neutron-to-seed ratio and thus r-process nucle-
osynthesis. In contrast, the cold, tidal dynamic ejecta, and which dominates the
unbound matter in Newtonian simulations, (see, e.g., Refs. [91},221],218]]) usually
exhibit low entropy, but extremely neutron-rich material [133]. The distributions
of the specific entropy computed with the same procedure as the electron fraction
distribution in the previous section, is shown in Fig.[6.5] while the average values
(s) are reported in Table

Again, many EOS-independent qualitative features are observed. First, for all
EOSs, the mass distribution peaks at s ~ 2 kg /baryon, while a fast decay is visi-
ble towards higher entropies. In the case of the binaries with the DD2 EOS (mid-
dle panel), the qualitative behaviour of different mass configurations is similar up
to approximately s ~ 100 kg /baryon. At larger entropies, the DD2-M1 .25 bi-
nary has a more rapid drop-off and there is very little material that reaches higher
entropies. In comparison, the remaining models exhibit similar behaviour with
a flattening of the curve at higher entropies. The average entropy value is in all
four cases (s) &~ 15 kg /baryon. Second, all of binaries with the LS220 EOS (left
panel), show a very similar qualitative behaviour among themselves and strong
analogies with the DD2 binaries. In particular, the distributions show a rapid in-
crease in entropy at around 2 kg /baryon (for the 1.45M, binary this peak is at
around 8 kg /baryon and is 4 times smaller), with an additional second peak at
20 kg /baryon for the 1.35M, case that is not present in the other masses. For
all masses, there is a rapid decrease in specific entropy, with average entropies
that are slightly lower than the DD2 and SFHO binaries and with a smaller spread
between the values, being approximately s ~ 11 kg /baryon.

Finally, the simulations with binaries having the SFHO EOS (right panel)
show a similar qualitative behaviour with the other runs, at least at low entropies.
The distributions peak at about 5 kg /baryon and a rapid drop follows, although
different binaries show different fall-offs at around 50 kg /baryon. Inthe SFHO-M1 .25
case, the distribution begins to decrease less rapidly at higher entropies while
the SFHO-M1 . 35 model shows the fastest decrease. This is in contrast to the
DD?2 and LS220 simulations (where the specific entropies correlate with the ini-
tial masses of the stars) and is reflected in the average values of the specific
entropy, with the SFHO-M1.25 model having (s) = 15.6 kg/baryon, while
SFHO-M1. 35 a smaller value of (s) = 12.7 kg/baryon. Lastly, The average
specific entropy of the SFHO-M1 . 35 binary is almost twice as large, likely due
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Figure 6.6: The same as in Fig. [6.3]but for the ejecta velocity v.;. The range of v,;
is divided into bins of width 0.05 and the histograms are normalized over the total
ejected mass.

to the fact that the small amount of ejected matter has been efficiently heated
on account of its rarefaction. While somewhat puzzling, this non-monotonic be-
haviour of the specific entropy with the SFHO binaries is likely due to the com-
parative softness of this EOS, which enhances the nonlinearity associated with
shock-heating effects.

Indeed, as with the electron-fraction distributions, the average entropy tends
to increases with the softness of the EOSE], being the highest for the softest EOS,
i.e., SFHO. For example, concentrating on the 1.25M, binaries, (s) = 10.3, 13.9,
15.6 kg/baryon, for the LS220, DD2, SFHO EOSs, respectively. This depen-
dence is not particularly surprising as softer EOSs produce a higher temperature
and the temperature is directly related to the specific entropy. This relation holds
for almost all cases, even when including the low-mass ejecta of SFHO-M1.45;
the only exception is offered by the SFHO-M1 . 35 binary, where this discrepancy
is likely due to there being at least 5 times as much ejecta as the other binaries.

6.5.4 Ejection-velocity distributions

Figure[6.6 reports the velocity distributions of the ejecta computed in full analogy
with the electron-fraction or specific-entropy distributions presented in the previ-
ous two sections. Note that unlike, e.g., Ref. [201], here the velocity of the ejected
material v,; as measured in the simulation and that of the ejecta at spatial infin-
ity viye are distinguished. In particular, ve; is computed directly from the Lorentz
factor W, i.e., vg; = [(W? — 1)/ W2]1/ ? where it is assumed that the detectors are
are sufficiently far away from the merger product so that the Minkowski metric

4Taking into consideration the caveats at the end of Sectionm
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holds. As discussed in Chapter [3] this is a rather good approximation since it was
shown there that the ejected matter moves essentially radially and there is only a
subdominant velocity component in the angular directions, hence v? & v2, which
enables the computation of v,; ~ v" from W. An obvious consequence of dis-
tinguishing between v.; and viy is that the values of the ejecta velocities here are
systematically higher than in Ref. [201]].

Again, Fig. [6.6] reveals that every simulation exhibits similar qualitative be-
haviour. The ejecta velocity is never lower than 0.15 ¢; the bulk of the matter has
velocities of ve; ~ 0.25 ¢, and at higher velocities of ve; 2 0.6 ¢ the mass distri-
bution quickly drops to zero. Table reports the average velocity (ve;) for all
the runs. A trend clearly emerges from the data, with the higher-mass configura-
tions systematically producing higher-ejecta velocities. More precisely, the ejecta
velocity appears to be tightly correlated with the compactness of the neutron stars
involved in the merger (cf. Table [6.1)). Also in this case, this trend is not partic-
ularly surprising since higher-mass configurations result in more compact starts,
which in turn experience stronger torques and more efficient shock heating.

In Table the column denoted by (v.,) shows estimates of the ejecta ve-
locity at infinity, which is achieved in the homologous expansion phase. This
velocity is used in the approximate model of kilonova emission (see Sec. |6.7.4)
and is computed assuming a ballistic radial motion from r» = 300 km to infinity
in the spherically symmetric gravitational field of an object with the same ADM
mass of the BNS system under consideration, i.e.,

| _2M,, 1 1

N N = E
In the Newtonian limit, M, = M and expression (6.6) simply reduces to the

familiar energy conservation equation: (vej)? — GM /R = 1(v.)?.

(6.6)

6.6 Comparison of criteria for unbound material

As discussed in Sec. the main criteria used here is that of the geodesic
criteria and hence in sections only geodesically unbound material is
considered. The reason for using such a criteria is that it is simple and doesn’t
assume anything about the EOS or the material, just that it if it has v, < —1it1is
unbound. Additionally, it is useful as it sets a lower bound for the total amount of
ejecta when considering other more generic criteria. As will be seen below, when
considering the Bernoulli criteria, which has the additional benefit of, through
the enthalpy h, taking into account things like shock cheating. However, because
the enthalpy is always i > 1 this means that material with the same rest-mass
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Figure 6.7: Mass ejection according to different unboundness criteria for the
1L5220-M1.35 model. In green is the geodesic criterion, blue is the original
Bernoulli one, and red is the modified Bernoulli thresholded on the atmosphere
value. All values have been measured through a detector at 300 km.

density, temperature, and electron fraction, can be unbound or bound depending

on the EOS through the Bernoulli criterion while being unbound according to the

geodesic criteria, independent of the EOS. This is a relatively minor trade-off since

through the introduction of the enthalpy, the effects of pressure and temperature

are taken into account which, intuitively, can make material more unbound.
More explicitly, it follows that

and thus the Bernoulli criterion will always result in more material becoming un-
bound. However, a slight modification of this formula is required. In the above
simulations, there is an atmosphere — see discussion in Chapter 2] — which sets a
lower bound for the hydrodynamical quantities. As discussed in Sec. [6.5.1] the
dynamical ejecta is evaluated at a distance of 300 km away from the merger rem-
nant to avoid atmospheric effects. But due to the introduction of the enthalpy, it
needs to be ensured that the fluid is sufficiently above the atmosphere to avoid
unphysical atmosphere values entering the calculations. To achieve this, instead
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Figure 6.8: Comparison of the mass distribution of electron fraction, specific
entropy and ejecta velocity in the ejected matter of the representative model
LS220-M1. 35 for the three unboundedness criteria.

of defining unbound elements as satisfying the relation hu; < —1, the following
modified criterion is considered

hut S (h ut)|atrn0> (68)

where atmo refers to values set by the atmosphere, which is EOS-dependent. For
example, for the LS220 EOS this takes the value[:

hu, < —1.000163, (6.9)

instead of —1. Even though this difference is small, the modified constraint does
exclude some material from being considered as ejected.

To evaluate the change in quantities that a change in criterion brings, the com-
parison will be done with the fiducial case of the L.S220-M1 .35 model. This
compraison is illustrated In Fig. where the differences between the three
selection criteria in the mass ejection curve are plotted. Overall, the general be-
haviour for the different criteria is similar, with an ejection phase beginning ap-
proximately 2 ms after merger followed by a decrease in the amount of ejected
mass. While the geodesic-selected material approaches a constant value, both
Bernoulli criteria show a slightly longer increasing phase before settling to a con-
stant. In Table the comparison of the ejected material for the three criteria
is shown and it is found that by selecting one of the Bernoulli criteria, approx-
imately 2.5 times as much ejected material when compared to the geodesic one
is obtained. This increase in the amount of ejecta is similar across all simula-
tions performed: the ejected mass is larger by a factor 1.5 to 4 with the Bernoulli
criterion as compared with the geodesic one.

In Fig. [6.8] the mass distribution in the ejecta of the various quantities relevant
for r-process nucleosynthesis, again for the representative LS220-M1 . 35 model
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P A R P R
Criterion || [107®* My] - [kg/baryon] [107'¢]

geodesic 0.82 0.10 12.3 2.2

Bernoulli 2.09 0.11 13.8 1.5

modified Bernoulli 2.07 0.11 13.1 1.5

Table 6.3: Average values of the ejected mass, electron fraction, specific en-
tropy and ejecta velocity for different unboundedness criteria in the representative
LS220-M1. 35 model.

is plotted. Additionally, the average values are summarized in Table [6.3] For the
electron fraction and entropy, there is not so much a drastic change in compari-
son with the geodesic critera and the overall structure of the distribution between
different criteria is similar. In both cases however, there is a slight increase in en-
tropy and Y, which is to be expected. This is because there is more overall ejecta
with which to bin and becaues this material tends to be shock heated, i.e., with
higher enthalpies, it shifts these averages to higher values. However, even with
this change, the effects are minimal and the overall nucleosynthesis process will
be essentially unaffected.

Finally, the most striking difference is in the v.; quantity. In the geodesic crite-
ria, interpreted in its Newtonian limit, a fluid element has to have non-zero veloc-
ity at infinity to be considered unbound. This implies a lower cutoff in the velocity
distribution, as slowly moving elements, even though able to cross a given detec-
tor surface, would not be considered unbound. For both Bernoulli criteria this
strict requirement is relaxed by the presence of the enthalpy, which acts as a mul-
tiplicative factor larger than one. This means that even slowly moving elements,
provided they have sufficiently high enthalpy, would be counted as unbound, and
so the velocity distribution acquires a lower end tail and its mean is shifted towards
lower values.

6.7 r-process nucleosynthesis

6.7.1 Tracer-input comparison

In Chapter [3| the concept of assigning a “mass” to the tracers was introduced.
Here, two new additional tracer-selection criteria (together with the unboundness
criterion already discussed and which is always enforced) and the corresponding
procedures to associate a mass to the tracers are introduced and evaluated based
on the final nucleosynthesis yields.
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The first criterion, introduced in Sec. consists of considering all un-
bound tracers and assigning a mass to each of them following the procedure in
Chapter 3| Then, each tracer is put through the nuclear network and a abundance
curve is produced. Then when all the tracers have been evaluated in this way,
each curve is weighted based on the “mass” that has been assigned to it produc-
ing a weighted average of the final abundance. This curve represents the total
tracer abundance and to obtain observed values, simply multiplied by the total
ejected mass measured by the detectors. For example, in the cases considered
here, roughly 40, 000 tracers are unbound and each is put through the nuclear net-
work. The advantage of this method is that every single unbound tracer is used
producing very robust statistics, however the trade-off is that it is computation-
ally very expensive. To get around this computational trade-off two alternative
weighting schemes are proposed.

The first alternative weighing scheme is to selected the tracers based on the
Y. histograms discussed in Sec. @ That is, one tracer from each Y, bin of
width AY, = 0.01, is selected, resulting in about 40 tracers for each simulation,
a reduction of a factor of a thousand compared with the previous method. The
reason for selecting tracers this way is that the electron fraction plays an important
role in creating different types of elements, with, for example, higher electron
fractions creating lower mass-number elements and thus similarly valued electron
fractions will created similar abundance curves. In this approach a mass is then
associated to each tracer by assigning to it the mass of the bin it was drawn from
taken directly from the outflow detector. This procedure is referred to as the “1D”
criterion, since the tracers are drawn from a 1D distribution.

The other criterion to consider is essentially a better improved version of the
1D criterion, except it also smaples in the entropy bins. Thus tracers are selected
from every entropy and electron fraction bin, and the associated mass in that bin
from the outflow detector is used to assign masses. In this case, this results in
roughly 1000 tracers being selected. This criterion is called the “2D” criterion.

The comparison of these three methods of selection are illustrated in Fig. [6.9]
which displays the resulting nucleosynthesis yields. Again, the fiducial binary
1L.5220-M1. 35 is used. Additionally, the abundance pattern of the solar system
is also plotted (filled circles) . As can be seen, the original approach of considering
all unbound tracers reproduces quite well the solar abundances over the whole
range of mass numbers considered, as does the 2D criterion. The 1D criterion
instead shows significant deviations, especially around the third peak (i.e., A ~
195) and around the rare-earth peak (i.e., A ~ 165). A posteriori, this is due to
the fact that the 1D criterion is systematically biased towards low-entropy tracers,
which has a significant impact over the final abundances.

Thus, the 2D criterion is computationally much less expensive than consider-
ing all unbound tracers as it allows for a simple and unambiguous definition of the
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Figure 6.9: Comparison of the relative abundances Y; of the r-process as function
of the mass number A for the three tracer selection criteria. In blue, the abun-
dances produced by the “1D” criterion; in orange the ones produced by the “2D”
criterion; in green the abundances obtained considering all unbound tracers. The
black filled circles indicate the solar abundances.
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entropies s < 70 kg /baryon, and orange lines mark single tracers with high en-
tropies s > 70 kg /baryon. The mass-integrated nucleosynthesis yields are shown
with a blue line, and the black filled circles show the solar abundances.
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Figure 6.11: Final relative heavy-elements abundances for all the 12 BN'S models
as a function of mass number A. The abundances are normalized so that the total
mass fraction is unity, while the different panels and lines refer to the various
EOSs, masses and mass ratios, respectively (see legends). The black filled circles
report instead the observed solar abundances, while the vertical lines mark a few
representative r-process elements: 23Cs, 38 Ba, 13%La, %*Eu, %°Ho, T Au.



CHAPTER 6. NUCLEOSYNTHESIS IN BNS MERGERS 147

tracer mass, and yet it leads to an almost unbiased abundance calculation. In the
following, the 2D criterion presented here for tracer selection is adopted and all
following results are computed with it, unless otherwise stated.

6.7.2 Heavy-element nucleosynthesis

To illustrate how the different entropies contribute to the overall abundance pat-
tern, Figure illustrates the nucleosynthesis results for all ~ 40,000 unbound
tracers of the representative simulation of the LS220-M. 1. 35 binary. In par-
ticular, the individual tracers with s < 70 kg/baryon are plotted in gray or if
s > 70 kg /baryon, then in orange, respectively, alongside the mass-integrated
abundances (blue line). As a consequence of the relatively low electron fractions
for most of the ejecta (i.e., with Y, ~ 0.1; see Fig. and Table , for each
tracer, the strong r-process component (from the second to the third r-process
peak) is well reproduced.

The entropy distribution also gives rise to specific features in the abundance
pattern. For example, the low-entropy component, i.e., s < 70 kg /baryon, leads
to the pattern that are observed in neutron-rich ejecta of Newtonian simulations.
In contrast, the high-entropy (i.e., s > 70 kg /baryon) part of the ejecta, which
carries only about 6 % of the total ejected mass, has a nucleosynthesis pattern
with a shifted second and third peaks. This exhibits diminished abundances in the
rare-earth region, and effectively fills the gap between third r-process peak and
elements in the lead region. This ejecta is similar to the “fast” ejecta found in
Ref. [167]. However in contrast to this work, the ejecta here do not move as fast
and their unusual abundance distribution is due to extremely high initial neutron-
to-seed ratio with the value of Y}/ Yseea = 1,000. This low seed ratio, combined
with comparably low initial densities p < 10? g/cm? requires substantially more
time to incorporate the neutrons, delaying the freeze-out time (i.e., the time when
Y./ Yieea = 1). In fact, the time window for the r-process to occur in this minority
of ejected material is = 100 s instead of < 1s. Moreover, the r-process runs along
a path much closer to the valley of stability for these tracers, such that the magic
neutron numbers are reached at higher mass numbers, and the abundances settle
down for a pattern in between s-process and r-process.

Switching to the general comparison, Figure reports the final heavy-
elements relative abundances for all of the 12 BNS models outlined in Table
and shows them as a function of the mass number A. As in previous figures, the
different panels refer to the different EOSs considered and the various binaries
are represented with lines of different types. Furthermore, The results are normal-
ized to have a total mass fraction of 1 and shown with filled circles are the scaled
solar system r-process abundances. Clearly, in all cases, a successful r-process
is obtained, leading to the production of the r-process pattern from the second
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Figure 6.12: Angular distribution of the ejected mass at the final time for the var-
ious binaries, with the different rows referring to the different EOSs considered.
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(i.e., A ~ 130) to the third (i.e., A ~ 195) peak.

Although it appears that all practically the same, there are some small differ-
ences due to different admixtures arising from different electron fraction distri-
butions discussed in Sec. [6.5.2] For the equal-mass binaries, in particular there
is a tendency to slightly enhance the abundances below the second r-process peak
with this trend increasing mass of the neutron stars. This is simply due to the more
massive BNS systems have a higher electron fraction on average. Furthermore,
the contributions from tracers with high initial neutron-to-seed ratios enhance both
the second r-process peak and the region with A ~ 200 in all cases. This is il-
lustrated most clearly in the SFHO-M1 . 45 binary, which immediately collapses
to a black hole after merger, and thus ejects very little mass and with a compar-
atively high electron fraction. As a result, the part of ejected material with low
specific entropy leads to nuclei that mainly have mass numbers with A < 130,
while the material with high specific entropy — and thus high neutron-to-seed ra-
tios - dominates the final abundances beyond the third r-process peak, leading to
an enhanced abundance for A 2 200. The distinctive features observed in the final
abundances in the case of the SFHO-M1 . 45 binary opens therefore the prospect
of using the chemical yields either as a confirmation of the prompt production of a
black hole after the merger, or as an indication of this process in the case in which
the post-merger gravitational-wave signal is not available.

Perhaps the most evident feature of Fig. [6.11]is the very good and “robust”
agreement of the various abundance patterns, where by ‘“robust” means a be-
haviour that is only very weakly dependent on the EOS or the initial neutron-star
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masses. For example, when considering the second peak at A ~ 130, all four
different types of initial data predict a similar abundance of *3Cs. Although the
lanthanides show a slight disagreement with the solar abundances around the mass
number A ~ 145 (which may be explained by other forms of ejecta, for example
from accretion disks [246]]), from *3Eu up " Au in the third r-process peak, there
is no disagreement in the final abundances for different initial data and EOSs.

While this agreement might be partly due to the simplified neutrino treatment,
this result confirms the robustness of the r-process yields from BNS mergers al-
ready noted in the literature. Additionally, it also shows how the uncertainties
associated in modelling the microphysics and initial data of BNS mergers have
a very limited impact on the nucleosynthesis produced from the merger. How-
ever, even though the abundance curves produced are similar, when considering
the kilonova, as will be done in Section there is a large dependence of the
kilonova light curves produced from the decaying elements on the parameters and
thus allow for a way to distinguish between the different scenarios.

In fact, the spread in the r-process patterns is much less than the one asso-
ciated to uncertainties in the nuclear-physics modelling of nuclei involved in the
r-process, e.g., the choice of the fission fragment distribution [79] or the nuclear-
mass model (see, e.g., Refs. [180, [162]) where variations can change the abun-
dance of a given element by an order of magnitude.

6.7.3 Angular distributions of ejected matter

Although tracers are useful for providing detailed calculations of the outflow, di-
rectly having outflow detectors allow the detailed study of additional properties of
the outflow that do not depend on having a time series. For example, the angular
distribution is a quantity which can be evaluated at a given sphere since, roughly,
the outflowing material is moving radially cf. Chapter[3] The distribution in itself
is interesting, but the exact angular distribution of the ejected matter will have im-
portant consequences for the kilonova signal and the exact angular distributions
remain well unstudied.

To proceed, the angular distribution of ejected mass is defined in Eq. (6.4)),
where in, contrast to other spherical integrals, the integration is defined only over
the angular patches and not the entire 2-sphere. Thus similarly to Eq. (6.4), the
angular averages are defined as

(x) :=/0Tf /Aﬂxp*W(owr — BN)SdQdt |

Ty
/ / pW (" — 57)S dQ2dt (6.10)
o Jao
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Figure 6.13: The same as in Fig. [6.12] but for the electron fraction.

where x is any one of Y, s or v; and the A} corresponds to small coordinate
patches with approximately 60 points in the f-direction and 70 points in the ¢-
direction.

This quantity is computed and displayed in Fig. [6.12]for a detector located at
~ 300 km for the ejected mass. Immediately, a dependence on equation of state
and initial mass can be seen, although general features exist. One example that
1s immediate note is the binary SFHO-M1 . 45, which immediately collapses to a
black hole after the merger and hence has very little ejected material. Even con-
sidering this case, the most robust feature that is featured in every EOS and mass
is that most mass is ejected along the orbital plane where higher masses corre-
spond to yellower colours and less mass are bluer. This result is consistent with
the interpretation that dynamical ejecta can originate from the tidal interactions at
merger and as a result, these torques fling material outwards along the plane. In
contrast, other sources of ejecta exhibit a somewhat more isotropic structure [23]].
Even within this observation, there is still some variation on the exact angular dis-
tribution of the mass in the plane and it is not uniform, but exhibits anisotropies
due to the disruption flows produced by the tidal torques and this concentrates
the emission of matter into rather small regions on the detector surface. The only
binary that appears to evade this trend is SFHO-M1 . 35, which has ejected also at
latitudes as high as ~ 45° and seems to peak around ~ 30°.

Similarly, when comparing with the distribution of the electron fraction Y,
plotted in Fig.[6.13] the anticorrelation between of Y, and the mass is evident. As
discussed in Sec. values along the polar axis have higher electron fractions
due to more interactions with neutrinos as in this region, there is little mass, and
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the neutrinos are free streaming. In contrast, along the plane where there is more
mass, the electron fraction is lower due to the planar region having “trapped” neu-
trinos and hence less efficient production of neutrino interactions. This difference
also suggests that matter ejected around the poles is less neutron rich (i.e., with
Y. 2 0.25) and this material may undergo a less robust r-process leading to a
suppressed production of lanthanides and thus to a lower opacity. An exact under-
standing of this angular dependence is important in the context of determining line
of site to a merger because a “blue” kilonova, i.e., a signal with a strong optical
component, will form along the poles while a “red” kilonova, i.e., a signal with
a strong infrared component, will form along the plane [168, 258]]. Observations
of GW170817 [64] suggest that a more “blue” kilonova was produced and hence
suggesting that the system line of sight was closer to the poles than the plane.

To test this hypothesis, the explicit angular distribution of lanthanide mass
fraction was computed in the LS220-M1 .35 model. This was done by com-
puting the lanthanide mass fraction for every unbound tracer in the simulation
and plotting their location on the 2-sphere, as illustrated in Fig. [6.14 Here the
lanthanide mass fraction values have been averaged over patches of angular size
10° x 10°. It is clear that near the poles, the lanthanides mass fraction is rather
high, i.e., X1, ~ 1072 which is bluer in the colour scheme. This value is some-
what larger as one would expect of X1, ~ 107° for a blue kilonova to be observed
[[168]]. Similar results are obtained in all the other BNS models. Based on this, and
in contrast to the results observed in GW 170817 [64, 1169] where a blue-kilonova
scenario is favoured, the kilonova observed is unlikely to have come from dynam-
ical ejecta. However, some care must be taken as despite despite the three orders
of magnitude difference between the expected value and the one computed here,
there is a bias due to an oversimplified neutrino treatment. More sophisticated
treatments, such as in Ref. [89], results in higher values of the electron fraction
around the polar regions which will change the fraction of lanthanides produced.

The next quantity to consider is the specific entropy, and similar to the Y, there
is an anticorrelation with the ejected matter. Higher entropy material is related to
higher temperature material, which as illustrated in Fig. occurs at higher angles.
One simple way to interpret this is that in higher density regions, shock heating
is less effective in comparison to lower density regions. This also explains why
the SFHO-M1 . 45 model has rather higher specific entropies as little material is
ejected and hence is at lower densities where shock heating is more effective at
heating up the material.

The final quantity considered is that of the velocity distribution shown in
Fig. Unlike the other quantities, there is no generic features present in all the
models and is highly model dependent. For the low masses and unequal masses,
there is an almost isotropic distribution in the velocity. In contrast, the higher
masses models, there is an overall higher velocity likely due to a stronger gravita-
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Figure 6.14: Angular distribution of the mass fraction of lanthanides in the repre-
sentative case of the binary LS220-M1 . 35; the data refers to the final simulation
time.
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Figure 6.15: The same as in Fig. [6.12] but for the specific entropy averaged over
the ejected mass.

tional potential able to ejecta material at a faster velocity outwards.

As discussed in Section[6.6] changing the criteria of the unbound material can
produce differences in the average quantities of the different measurable quanti-
ties. However, when considering the spatial angular dependence, there is little
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change in the qualitative picture with the results presented above remaining rel-
atively unchanged for the entropy, ejected mass, and the electron fraction. How-
ever, one difference is in the ejected mass where, simply by manner of there being
more overall mass, there is more mass at higher altitudes as the Bernoulli criteria
takes into account thermodynamical quantities such as entropy, which tends to be
higher at higher angles. The biggest change is in the ejected velocities because,
as is clearly displayed in Fig. [6.8] there is a significantly lower velocity that is
reached by the material. When considering the angular distribution of the veloc-
ity, the isotropy of the geodesic case vanishes and becomes more anisotropic.

6.7.4 Kilonova

To access the observability of infrared transients associated with the decay of r-
process elements, a simple gray-opacity model of kilonovae is used [107]. A
setback of this model is that there is only a small amount of measured dynamical
ejecta from the simulations which means that more sophisticated radiative transfer
treatments. In the case of more ejecta, they can potentially form a “lanthanides
curtain” and typically occur in magnetically and viscously driven wind from
an accretion disk, or neutrino-driven wind from the hypermassive neutron star
[194]]. In contrast, in the model of Ref. [107], the dynamical ejecta is approxi-
mated by a homologously expanding spherically symmetric solution [275]]))

p(r,t) = polto/t)*(1 — v*/v2,.)°, (6.11)
where V0 = 2(vs) is taken from Table
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Figure 6.17: Synthetic light curves in the infrared 2MASS J, H and K-bands for
all of the binaries considered.

To compute the luminosity, the nuclear heating rate is integrated directly from
the nuclear network over a layer of matter from which photons can diffuse out.
This is a common technique and has been used in similar models [[194, 164, 219].
For the opacities, an effective gray model, i.e., x = 10 cm? g, is used. Although
simple, it has been shown to reproduce reasonably well the infrared luminosity
of lanthanide- and actinide-contaminated ejecta [275]. However, there are some
drawbacks, specifically how flux in the optical bands is strongly suppressed when
detailed opacities of lanthanides are used. Thus, only the infrared magnitudes J,
H and K'-bands in the Two Micron All Sky Survey (2MASS) [247/]] are calculated.

The nuclear heating which powers the kilonova for each model is calculated
with the nuclear network code WinNet [274, [133]], cf. Section using the
average electron fraction (Y.), specific entropy (s) and expansion velocity (vs.)
as given in Table The nucleosynthesis yields are computed with reaction rates
based on the finite-range droplet model (FRDM) [[176] only. This is motivated by
the fact that nuclear mass models show little discrepancy in the heating rates at
epochs around ¢ ~ 1 day [219], where the peak magnitudes for the models is
expected.

The resulting peak bolometric luminosities, peak magnitudes in the infrared
bands, and the peak epochs in the H-band are presented in Table [6.2] while
the light curves in the three infrared bands (different line colors) are shown in
Fig. with different line types referring to the different binaries.

It is clear that all of the models exhibit similar behaviour, specifically with
peaks around half a day in the H-band and a rapidly decreasing in luminosity
after one day, reaching a maximum magnitude of —13. Note that these these
luminosities are smaller than those normally expected (see, e.g., [258]] for a recent
review), which peak around magnitude of ~ —15. This is not unexpected as,
previously mentioned, the amount of ejecta used in these simulations is rather
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small while in other simulations the amount of ejecta is normally assumed to be
~ 1072 M, which is an order of magnitude then the results observed here. With
3-minute J-band exposure on the VISTA telescope [80]], these magnitudes result
in a detection horizon of ~ 100 Mpc, which, in combination with a very short
time around the peak, makes these light curves extremely difficult to detect in
a follow-up survey. As observed in the follow-ups to GW170817, light curves
were observed that originate from a kilonova [263, 164, [169] which suggests that
a significant amount of material, on the order of 10~2M,, became unbound. This
suggests that the source of the radioactive decay powering the kilonova is not in
the dynamical ejecta, but in other sources such as neutrino drive winds or viscous
ejecta [[169].

6.8 Constraints on BNS merger rates

Another interesting way to test the amount of ejected material is compare the
amount of ejected material with that of the amount of heavy elements observable
in the Milky Way galaxy. As the total amount of heavy elements in the Milky
Way is known and from the simulations above, the lower bound on the amount of
ejected material is given, the required rate to explain the amount of ejected mate-
rial is easily calculated which in turn gives a predicted neutron star merger rate that
can be compared with experimental bounds. Following Ref. [219], Fig.[6.18]plots
the constraints on the rate of BNS mergers and the required amount of ejected
material needed per merger. More specifically, assuming the total amount of r-
process material in the Galaxy is M, 4.1 ~ 19,000 M, and given a certain merger
rate — either per year and galaxy equivalent (yr—! gal ™!, bottom horizontal axis) or
per year and cubic Gigaparsec (yr—' Gpc™', top horizontal axis) — the black line
shows the amount of ejected material per merger required to explain the observed
abundances. Similarly, the red line has the same meaning, but only takes into ac-
count elements with A 2 130, with a total galactic mass of M, z. ~ 2,530M
[166,219]. The blue-shaded horizontal region indicates the range of dynamically
ejected material from BNS mergers in quasi-circular (QC) orbits and covered by
the simulations as reported in Table ; the other two shaded horizontal regions
report instead the typical abundances coming from the secular ejecta (pink-shaded
region) or from the dynamic ejecta relative to mergers of BNSs in eccentric orbits
(green-shaded region).

These constraints should be compared with actual measurements of the merger
rates as deduced from different experiments and indicated as vertical lines. In
particular, shown as the dot-dashed black line is the predicted merger rate of

>The SFHO-M1 . 45 model has been omitted because it is not representative.
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Figure 6.18: Ejected material per merger for a given BNS merger rate required to
reproduce the observed mass of all (black) and A > 130 (red) r-process elements
in the Milky Way. The dark blue-shaded regions correspond to the range of val-
ues of ejected mass reported in Table [6.2] The red-shaded region corresponds to
ejected masses from other sources of ejecta. The dashed vertical gray lines re-
port the observed, O1, and predicted, O2 and O3, upper bounds on BNS mergers
from LIGO. The dot-dashed black line is predicted merger rate from GW170817.
The orange, light blue, and yellow shaded regions correspond to observational
constraints from galactic chemical evolution (GCE), supernova (SN), and short
gamma-ray bursts (SGRBs) population synthesis models as defined in the text.
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GW170817 [263]], which is computed by simply dividing the number of detected
mergers, which till now is only one, by the observing area of the LIGO tele-
scope and the observing run time. This simple calculate yields the vertical line of
1530yr~" Gpc 2. In addition to this line, the observed upper bound on BNS merg-
ers observed in the first LIGO operating run O1, and the predicted upper bounds
for the planned future runs O2 and O3 [3] are also plotted. Additionally, different
population-synthesis models are also displayed corresponding to galactic chem-
ical evolution (GCE) [63], supernova (SN) [S7], and SGRBS [195], which are
different methods of obtaining an estimation on the rate of neutron star mergers
through different channels.

The red line, horizontal-blue shaded region, and GW170817 overlap in Fig.
which indicates that the measured amount of dynamical ejecta, ~ 1072 M,
from the presented simulations is sufficient to reproduce the observed r-process
mass abundances with A > 130 in the Milky Way. Associated with GW170817
was a SGRB [264, 148] and provides strong evidence that SGRBs and neutron
star mergers are related. Thus the rate constraint predicted by SGRBS [[193] is
likely indicative of BNS merger rates and their agreement here provides more
evidence on the relationship between the two. This also implies that although there
is a lower amount of dynamical ejecta then reported in Newtonian simulations,
cf. Sec. [6.5] the frequency of BNSs merger is likely to be sufficiently high to
compensate for this. Furthermore, the geodesic criterion that has been employed
here is a conservative one and only provides a lower bound on the amount of
material ejected; by adopting a different criterion, e.g., the Bernoulli one (see
discussion in Section [6.6), the amount of ejected material can increase up to a
factor of 4 for the same simulation.

Although it is expected that orbiting neutron star mergers are the dominant
source of the neutron star mergers in the universe, there is another more exotic
scenario of the source r-process, specifically that of dynamical ejecta from eccen-
tric BNSs mergers. When simulations with this initial data is run, measured ejecta
masses from these configurations is in fact much larger [201, [190] by about an
order of magnitude or more, and would be sufficient to explain the observed mass
values; however these events are likely very rare and current constraints are not
well understood [141] so it is difficult to justify these mergers contributing more
than a little amount to the total r-process ejecta.

Finally, it is important to take into consideration that the above figure was
made with only one channel of unbound material, namely that of dynamical ejecta.
There are other channels, such as neutrino driven wind or BH-torus system, where
in the latter the mass ejecta can be as high as 0.1 M, as estimated semi-analytically
in Ref. [97]. This suggests that even if the mass ejected from a single channel is
alone insufficient to explain the observed r-process masses, the combination of all
ejected material from a BNS merger is likely to so. It is for this reason that the
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blue-shaded horizontal region only represents a lower bound on the total ejected
material and the true value is likely to be higher.

6.9 Conclusions

The simultaneous detection of an electromagnetic counterpart with a gravitational
wave from a binary neutron star mergers heralds the beginning of the era of multi-
messenger astronomy. Observations now support the picture that material is dy-
namically ejected from the merger of neutron stars binaries and that such material
is neutron-rich and its nucleosynthesis can provide the astrophysical site for the
production of heavy elements in the Universe. Furthermore, this simultaneous de-
tection provides confirmation of the long-standing conjecture that the merger of
neutron stars is behind the origin of SGRBs [78, 1184, 1210, 36].

In this chapter, fully general-relativistic simulations of the inspiral and the
merger of neutron star was done using a variety of equations of state, initial
masses, and mass ratios. For each of these, the r-process nucleosynthesis taking
place in the dynamical ejecta was calculated. This calculation was seeded with
tracer data introduced in Chapter [6] These tracer particles allow for the following
of the fluid and that can be used to extrapolate the fluid properties to the late times
needed to run nuclear networks codes. These simulations yield the following three
broad conclusions.

First, it was shown that in the cases considered, the r-process nucleosynthesis
from BNS mergers is very robust in that it depends only very weakly on the prop-
erties of the binary system, such as the EOS, the total mass or the mass. However,
one caveat is that a parameter space exploration depending on the EOS is still
rather limited, due to the lack of publicly available fully temperature dependent
tables and in future work intend to explore it more fully with a larger set of EOSs.
Overall, while similar conclusions have been reported before, the confirmation
coming from the above study strengthens the evidence that BNS mergers are the
site of production of the r-process elements in the galaxy.

Second, two separate methods have been employed to measure the amount of
matter ejected dynamically and they both consistently found that itis < 1073 M,
which is smaller than what usually assumed from other simulations. Importantly,
there are a number of factors that need to be considered when measuring the
amount of ejected material from merger simulations. For example, the type of
neutrino treatment is essential as changes to this treatment changes the way the
neutrinos interact with the simulation and thus directly change the amount of
ejected material. Other criteria that need to be accounted for include the EOS,
the criterion for unboundness, the resolution, and the numerical methods used.
Even with all these large sources of error, which is an order of magnitude, dy-
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namical ejecta is still not sufficient to reproduce the amount of ejecta required to
explain GW 170817, which is on the order of 1072 — 10~ M. It is clear, how-
ever, that a more detailed and comprehensive study is needed to understand the
uncertainties behind the amount of mass lost by these systems.

Third, to calculate the kilonova, a simplified and gray-opacity model was used.
It predicts that the observability of the infrared transients associated to the decay
of r-process elements, i.e., of the kilonova emission, to be similar independent of
EOS, with emission peaking around ~ 1/2 day in the H-band and rapidly decreas-
ing in luminosity after one day, reaching a maximum magnitude of —13. When
comparing these predictions with the observations of the kilonova associated with
GW170817, there is a clear difference in peak emissions and the amount of ejected
material [265] due to a lower amount of dynamical ejecta. This result points to the
more likely scenario that there are other sources of ejecta, such as neutrino driven
winds or disk ejecta that also contribute to both observations. Thus detailed com-
parison with the new observations will require more sophisticated calculations
with improved neutrino treatments to truly disentangle all the sources of ejecta.

Finally, despite the r-process abundance curves not yielding a way to constrain
for example, the equation of state or other BNS parameters, there are features in
the kilonova that are related to different parts of the ejecta morphology and can
be used to constraint physics this way. In particular, softer EOSs produce higher
average electron fractions which has direct observable properties in the type of
kilonova produced. And for each of these types of kilonova, there is a strong
angular dependence with higher electron fractions around the polar regions and
lower along the orbital plane. This is despite that there being less ejecta along
the polar axis and more in the plane. This points to a simple homogeneously
expanding group of material, often assumed in kilonova modelling, needs to be
adjusted to account for this anisotropic distribution.



Chapter 7

Conclusions

The detection of gravitational waves from inspiralling and merging neutron stars
heralds a new era of multi-messenger astronomy and numerical relativity. It sig-
nals the maturation of the field of numerical relativity from an area of computer
experiments to essential aspect of modern relativistic astrophysics. In the coming
years, more detections of neutron stars will allow neutron star mergers to be re-
alised as an astrophysics laboratory to explore gravity and nuclear physics at the
extremes. In order to study these exciting areas of physics, in this thesis I have in-
troduced the treatment of tracers, massless particles that are passively advected by
the fluid, into general relativity and applied it to the macroscopic and microscopic
post-merger dynamics of neutron stars.

In particular, in Chapter [3] I developed and implemented the use of tracers
in general relativity grid-based codes. Through this method we investigated that
the optimal initial placement of tracer should be spread uniformly through the
density, which counters initial guesses. Furthermore, using these tracers, a method
to assign a “mass” to a tracer was developed. This method of assigning mass is
essential in reproducing the abundances of the heavy elements undergoing the r-
process as it provides a weight to the contribution of fluid elements to the total
abundance curve. Furthermore, tracers allow one to follow the thermodynamical
trajectories of the dynamical ejecta, i.e., unbound material, in the merger of binary
neutron stars. In contrast, for matter within the core of the neutron star, i.e., bound
material, the use of tracers allow a unique representation of the fluid flow that
would otherwise be inaccessible.

In Chapter |4| this tracer method was applied to determining the rotation law
of the remanent of the merging process. This merger product can have a mass
larger than the maximum mass of a non-rotating neutron star because the rotation
provides a form of pressure support against collapse. However, the exact form of
the rotation of the merger product is still not well understood and is essential in
understanding what happens in the post-merger dynamics of a merger. We have
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shown that the merger product is undergoing differential rotation, i.e., different
radii are rotating at different rates. Furthermore, using tracers, we have shown
for the first time, that the reason for the bar-mode to be out-of-phase with the
rotational profile can be understood as a simple consequence of a Bernoulli-like
conservation law.

In Chapter [5] the inclusion of dissipative-like effects in the post-merger dy-
namics of the neutron star merger was considered. Although neutron stars can be
well modelled by a perfect fluid, this assumption depends on effects of the micro-
physics, for example neutrino transport, being relatively negligible. However, we
have shown with the use of tracers that the timescale of neutrino transport effects
may be shorter than previous thought and may have an impact on the dynamics
of the post-merger remanent as modifications to the perfect fluid assumption must
be made.

Finally, in Chapter [6] the tracers were applied to the r-process nucleosynthe-
sis of the heavy elements. The associated kilonova from GW 170817 and evidence
from dwarf galaxies has suggested that the source of the heavy elements in the uni-
verse are produced in the outflow from the merger of neutron stars. This outflow
is especially neutron rich and provides an environment for r-process nucleosyn-
thesis to occur. Using the tracers, we were able to follow the thermodynamical
histories of the outflow which provide input for a nuclear-network to evolve the
trajectories for long periods of time and calculate the abundance of the different
elements that would be produced in a merger. It was shown that the abundance
curve produced from a merger is in good agreement with the observed solar abun-
dance. Furthermore, using this data, light curves were produced for the signal of
a kilonova, which suggests that the dynamical ejecta are dimmer than previously
thought. Additionally, it was found that the abundance pattern is essentially inde-
pendent of the input parameters such as equation of state or initial mass. Related
to both of these areas of improvement, is more accurate calculations of the kilo-
nova lightcurves. GW170817 has provided a wealth of observed data must be now
understood in the context of numerical relativity and more accurate calculations
of lightcurves from ejecta from the mergers is required to explain the observation.

These results set the stage for the future direction of research into numerical
relativity. Simulations performed here and observations from GW 170817 confirm
the need for increasingly sophisticated treatments of microphysics in neutron star
mergers, such as in neutrino transport. Such an advancement can come in the
form of an updated scheme such as M1 or in advances in computational resources
which allow for different solving techniques, such as Monte Carlo, to be used.
Another future direction is the improvement of the treatment of the fluid used in
simulations. It is clear that although the perfect fluid approximation is good, it is
not sufficient to model all the complicated microphysical interactions that occur
due to effects such as dissipation or viscosity.
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In conclusion, the work described in this thesis, [[110, 45, 44, 8] represents my
genuine contribution as an author and researcher. I hope that it provides a basic
technique that can be used in gaining a clearer understanding of the physics inside
and outside of a binary neutron star merger.
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Zusammenfassung

Die Ara der Gravitationswellenastronomie hat begonnen. Sie wurde eingeliutet
durch die gleichzeitige Detektion von Gravitationswellen und elektromagnetis-
chen Wellen, ausgesandt bei der Verschmelzung zweier Neutronensterne und gemessen
durch die LIGO Scientific Collaboration im August 2017 [263} 264, 148]]. Die gle-
ichzeitige Messung bestitigt die seit langem bestehende Vermutung, dass Neutro-
nensternverschmelzungen der Ursprung von kurzen Gammablitzen (engl. short
gamma-ray bursts, SGRBs) [[184, 78, 210} 27, 136]] sowie der Ursprung von schw-
eren Elementen im Universum sind [[139, [138|, [78]].

Es sind aber ebenso aufregende Zeiten fiir das Gebiet der numerischen Rel-
ativititstheorie. Durch die komplizierte nichtlineare Natur der Einsteingleichun-
gen konnen Doppelneutronensterne nur numerisch modelliert werden und die Nu-
merische Relativititstheorie spielt eine zentrale Rolle in der Erkldrung dessen,
was gemessen wurde, von der Berechnung des Gravitationswellensignals iiber die
Modellierung des Verschmelzungsproduktes bis hin zur Entstehung eines elektro-
magnetischen Gegenstiicks. In den ndchsten Jahren wird die numerische Relavitétstheorie
im gerade entstehenden Feld der Gravitationswellenanalyse eine essentielle Rolle
spielen. In der Erwartung, Gravitationswellen messen zu konnen, wurde in den
letzten zehn Jahren intensiv an der Modellierung von Neutronensternen geforscht.
Erhebliche Fortschritte konnten dabei in der Beschreibung der Orbitaldynamik,
der Verschmelzung und des Endproduktes gemacht werden[23, [192]]. Fortschritte
im Bereich der enthaltenen Mikrophysik, wie etwa Neutrinotransport und Mag-
netfelder, haben zunehmend realistischere Simulationen und eine Fiille an neuer
Physik sowohl im gravitativen als auch elektromagnetischen Spektrum hervorge-
bracht.

Wie GW170817 zeigt, ist das elektromagnetische Spektrum von zwei ver-
schmelzenden Neutronensternen umfangreich. Insbesondere ein elektromagnetis-
ches Gegenstiick hat vor Kurzem grosse Aufmerksamkeit auf sich gezogen: die
Kilonova [146] 222, 196, 107, 194} 272, 123| 228, 201, [124, 229, 174, 258| 26|
219, 275, 1168]]. Eine Kilonova ist ein Signal im infraroten/optischen Spektrum,
das von dem Zerfall einer Vielzahl von schweren Elementen erzeugt wird, daran
beteiligt sind in erster Linie Elemente nahe dem zweiten r-Prozess-Peak (also
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1331 132Te und !33Xe), weiterhin Elemente von dem dritten r-Prozess-Peak sowie
ferner instabile transuranische Elemente. Diese Elemente konnen nach einer BNS-
Verschmelzung durch das Einsetzen schnellen Neutroneneinfangs entstehen. Eine
Kilonova wurde nach GW 170817 beobachtet[263]], allerdings wurden vorher bere-
its potentielle Kilonova-Kandidaten in GRB 130603B [37, 260], GRB 060614
[277, 1122]] und GRB 050709 [[121] beobachtet. Die sehr grossen Messunge-
nauigkeiten haben bis dato allerdings eine eindeutige Identifikation verhindert.

Die Energiequelle einer Kilonova ist der Zerfall von Elementen die wéhrend
dem r-Prozess erzeugt werden. In der Geschichte unseres Universums ist dieser
Prozess fiir die Erzeugung der Hilfte der Elemente verantwortlich, die schwerer
sind als Eisen. Wihrend das zugrundeliegende Konzept seit Jahrzehnten bekannt
ist [52]], wurde der astrophysikalische Ursprung bislang noch nicht zweifelsfrei
festgestellt. Damit Materie r-Prozess-Nukleosynthese unterlduft, wird eine hochex-
plosive, sehr neutronenreiche Umgebung benétigt. Diese stellt an potentielle as-
trophysikalische Orte, in denen dieser Prozess ablaufen konnte, enge Grenzen.
Zwei mogliche Urspriinge sind dabei in der wissenschaftlichen Community am
populirsten: Kernkollaps-Supernovae (engl. core-collapse supernovae, CCSN)
sowie BNS-Verschmelzungen. Aktuelle Simulationen von CCSN haben gezeigt,
dass die Umgebung in den dusseren Schichten der Explosion nicht ausreichend
neutronenreich und damit nicht in der Lage ist, die beobachtete Verteilung der
schweren Elemente im Sonnensystem zu erkldren [117, (116, 83 273]], auch wenn
seltene Formen von CCSN, welche von Magnetfelder dominiert werden, moglich
sind [274, (179, [185]. Im Gegensatz dazu werden Neutronensternverschmelzun-
gen als immer wahrscheinlicherer Ursprung von schweren Elementen angesehen.
Aktuelle Prizisionsmessungen von Zwerggalaxien [120] weisen stark darauf hin,
dass BNS die Hauptproduktionsstitte von r-Prozess-Elementen sind.

Des Weiteren haben anspruchsvolle Neutrinotransportsimulationen kombiniert
mit numerischer Relativititstheorie gezeigt, dass nicht nur signifikante Masse-
nauswiirfe (auf Grund verschiedenster physikalischer Prozesse) in BNS-Verschmelzungen
vorhanden sind, sondern auch, dass in diesem Szenario eine Umgebung erzeugt
wird, in dem stabile r-Prozess Nukleosynthese stattfinden kann. Zahlreiche Sim-
ulationen, angefangen von Newtonscher Mechanik bis hin zu voll-relativistisch
haben mittels einer Vielzahl von mikrophysikalischen Beschreibungen vier wesentliche
Massenauswurfsmechanismen gefunden: Dynamischer Massenauswurf [221,209,
2141 137, 216, 311 187, 114, 272, 228, 229, 201, 142, 68], Neutrino-dominierte
Winde [67, (194, 123], [164, [163), (124, 181, 93], magnetisch dominierte Winde
[237, 1131, 245, 211} 159], und viskosititsabhidngige Entwicklung von Akkretion-
sscheiben [35, [172, 103} 82]. Die typischen Zeitskalen hierbei sind ~ 10 ms
fiir dynamischen Massenauswurf , ~ 100 ms fiir Neutrino- oder magnetisch do-
minierten Winde, und ~ 1 s fiir Viskosititseffekte. Auf Grund des relativ ho-
hen Rechenzeitaufwands von Langzeitsimulationen haben sich die meisten voll-
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relativistischen Simulationen auf dynamischen Massenauswurf beschrankt, wihrend
die anderen Mechanismen im wesentlichen nur mittels Newtonscher Mechanik
untersucht worden sind.

In dieser Arbeit habe ich eine neue Methode entwickelt, die Testteilchen fiir
die Untersuchung von Problemen mikro- und makrophysikalischer Natur der Dy-
namiken nach einer BNS-Verschmelzung benutzt, um speziell dynamischen Masse-
nauswurf und r-Prozess-Nukleosynthese zu untersuchen. Obwohl prinzipiell ein-
fach zu beschreiben, hat der Testteilchenansatz subtile technische Probleme die
zuerst gelost werden miissen, bevor man sie in numerischen Simulationen einset-
zen kann. Der Einsatz von Testteilchen (engl. Tracers) hat eine lange Geschichte
im Bereich der Hydrodynamik, sowohl in der Theorie als auch im Experiment,
weil man sie dazu benutzen kann, die Entwicklung einer Fliissigkeit zu verfolgen,
die sonst im Experiment schwer zuginglich ist. Ein Beispiel hierfiir ist die En-
twicklung einer Fliissigkeit in einem Behilter zu der Farbe hinzugegeben wird,
die dann als Testteilchen modelliert wird. Damit ist es moglich, Wirbelbildung
in geschichteten Fliissigkeiten sichtbar zu machen [46l]. Insbesondere bei git-
terbasierten Codes ist es schwierig, die Entwicklung einer Fliissigkeit nachzuvol-
lziehen, da das Gitter raumlich fest ist und einem Fliissigkeitselement nicht folgen
kann. Die geglittete Teilchen-Hydrodynamik (engl. smoothed-particle hydrody-
namics) ist hingegen nicht von diesem Problem betroffen, da hier Fliissigkeitsteilchen
direkt entwickelt werden und somit die lokalen Eigenschaften der Fliissigkeit triv-
1al zur Verfiigung stehen.

Obwohl die Entwicklung von Testteilchen an sich einfach ist, da sie nur pas-
siv advektiert werden, stehen einer direkten Umsetzung einige Schwierigkeiten
im Weg, so zum Beispiel die Tatsache, dass Testteilchen masselos sein miissen,
da sie sonst mit der Fliissigkeit wechselwirken wiirden und somit im Energie-
Impuls-Tensor beriicksichtigt werden miissten, wodurch sie nicht mehr passiv
wiren. Es kann in manchen Situationen, wie bei Kilonova Leuchtkurven, den-
noch niitzlich sein einem Testteilchen eine Masse zuzuweisen. In dieser Arbeit
wird daher eine Methode entwickelt einem Testteilchen eine Masse zuzuweisen
und damit r-Prozess Nukleosynthese sowie Kilonovaleutchkurven zu berechnen.
Hierbei gilt es zu beachten, dass wir diese physikalischen Grossen aus den Eigen-
schaften des Fluids berechnen wollen und die Testteilchen diese somit hinre-
ichend genau abbilden miissen. Daher muss ein besonderes Augenmerk darauf
gelegt werden, die Testteilchen zum Startzeitpunkt korrekt zu platzieren, damit sie
auch zu einem spiteren Zeitpunkt den Zustand des Fluids noch hinreichend genau
reprasentieren. Ich habe herausgefunden, dass der effektivste Weg dazu eine gle-
ichmissige Verteilung in der Dichte darstellt. Wenngleich dieser Ansatz zuerst der
Intuition zu widersprechen scheint, da man Material niedriger Dichte, das spiter
ungebunden wird, mit mehr Testteilchen abbilden muss, stellt sich jedoch heraus,
dass man dadurch diese Dichte zu hoch gewichtet, wihrend man Material, das aus
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tieferen Regionen des Gravitationspotentials kommt vernachlissigt.

Ich wende diese neue Testteilchenmethode auf zwei verschiedene Bereiche
eines verschmolzenen Doppelneutronensternsystems an: Auf gravitativ gebun-
dene Masse [[110, 8] sowie ungebundene Masse [44]. Nach der Verschmelzung
zweier Neutronensterne entsteht ein metastabiles Objekt, welches wir einen hy-
permassiven Neutronenstern nennen — falls kein prompter Kollaps zu einem schwarzen
Loch stattfindet. Auf Grund von differentieller Rotation wird der hypermassive
Neutronenstern an einem prompten Kollaps zu einem schwarzen Loch gehindert
[110]. Physikalisch bedeutet das, dass verschiedene Bereiche des Neutronensterns
mit unterschiedlichen Geschwindigkeiten rotieren und dadurch den Neutronen-
stern stabilisieren. Die Art der differentiellen Rotation von hypermassiven Neu-
tronensternen ist eine noch immer nicht endgiiltig geklérte Frage, aber aktuelle
Simulationen haben gezeigt, dass das einfache Modell eines konstanten Rota-
tionsprofils in numerischen Simulationen nicht anzutreffen ist und eine Modifika-
tion des Rotationsprofils notig ist. Eine weitere interessante Eigenschaft des Ver-
schmelzungsprodukts ist die Phasendifferenz zwischen der m = 2, [ = 2-Mode
(in der Literatur der Form wegen auch Balkenmode, engl. bar mode, genannt)
und dem Rotationsgesetz. Es zeigt sich, dass Bereiche hoherer Dichte langsamer
rotieren und Bereiche niedrigerer Dichte schneller rotieren. In [110] haben wir
eine Erkldarung fiir dieses Verhalten gegeben, in dem wir mittels Testteilchen die
Entwicklung des inneren Bereichs des Kollisonsproduktes verfolgt haben, in welchem
die Masse gebunden bleibt. Da die Testteilchen es ermdglichen Fliissigkeitstrajektorien
zu identifizieren, konnten wir zeigen, dass ein Bernoulli-artiges Erhaltungsgesetz
gilt, insbesondere ist ein reziproker Zusammenhang eine natiirliche Konsequenz
der Erhaltungsgrosse. Testteilchen weisen explizit auf diesen Zusammenhang hin,
da sie — unserer Ansicht nach zum ersten mal — die Entwicklung von Grossen
anhand Fluidtrajektorien in gitterbasierten Simulationen der numerischen Rela-
tivitdtstheorie ermoglichen.

Als weitere Anwendung der Testteilchen in gravitativ gebundener Masse nutzen
wir sie in [8] um den Einfluss von dissipativen Effekten auf das Kollisionsprodukt
zu untersuchen. Die verbreiteten Modelle von Neutronensternen nutzen ein per-
fektes Fluid mit einem isotropischen Druck, welches keinen Warmetransport oder
Dissipationseffekte erlaubt. Auch wenn diese Annahmen in der Regel gerechtfer-
tigt sind, sorgt die Beriicksichtigung von Neutrinos dafiir, dass die Zeitskalen, die
mit diesen Effekten assoziiert werden, sich signifikant verringern und moglicherweise
die gleiche Grossenordnung aufweisen wie die Lebenszeit eines hypermassiven
Neutronensterns.

Zu guter Letzt wurde die Testteilchenmethode angewandt, um die Entstehung
von schweren Elementen in den dynamischen Massenauswiirfen zu untersuchen.
Um die Nukleosynthese mit einem nukelaren Netzwerk zu berechnen, wird der
Zustand eines Fluidelements iiber die Zeit benotigt. Dieser ist insbesondere fiir
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die Anfangsreaktionen im Netzwerk wichtig. Eine bislang verbreitete Methode
[201] hat eine adiabatische Extrapolation von einer Kugeloberfliche durchgefiihrt.
Auch wenn diese Methode einfach zu implementieren ist, ist sie dennoch nur eine
Néherung, da die Ausdehung des Fluids fast, aber nicht exakt adiabatisch verldauft
[45]]. Mittels des Testteilchenansatzes waren wir in der Lage, die Geschichte eines
Fluidelements nachzuvollziehen — eine Beobachtungsgrosse, die in einem gitter-
basierten Code normalerweise nicht zugénglich ist. Da die Testteilchen masselos
sind, muss eine Methode entwickelt werden, die den Teilchen eine physikalis-
che Masse assoziiert, sodass die letztlich berechneten Isotopenhiufigkeiten kor-
rekt gewichtet werden konnen. Unter Beriicksichtigung einer Vielzahl von Zu-
standsgleichungen und Massen konnte eine systematische Untersuchung der dy-
namischen Massenauswiirfen mit Neutrinotransport durchgefiihrt werden, bei der
die Testteilchenmethode eine zentrale Rolle einnahm, um den entstehenden r-
Prozess zu untersuchen. Wir haben herausgefunden, dass der Wert des dynamis-
chen Massenauswurfs empfindlich von verschiedenen Parametern abhéngt, ins-
besondere haben wir signifikante systematische Fehler im Hinblick auf die Auflosung
identifiziert. Dennoch konnen wir die Menge des dynamischen Massenauswurfs
auf ungefihr ~ 10° M, bestimmen, was im Einklang mit den Beobachtungen von
GW170817 steht [263]].

Die vorliegende Arbeit gliedert sich wie folgt: Kapitel [2] fiihrt den notwendi-
gen mathematischen, physikalischen und numerischen Formalismus ein, der notig
ist um Neutronensternverschmelzungen auf Supercomputern zu berechnen; Kapi-
tel |3 fiihrt die Testteilchenmethode auf gridbasierten Codes ein und diskutiert
die optimale Platzierung im Vergleich mit dem zugrundeliegenden Fluid; Kapi-
tel 4 wendet die Testteilchenmethode auf gebundene Masse an und erklirt die
beobachtete Phasendifferenz zwischen einer Neutronensternverschmelzung und
seiner differentiellen Rotation; KapitelE]wendet die Testteilchmethode dariiberhinaus
auf gebundene Massen an, um den Einfluss von Dissipation auf die Modellierung
von Neutronensternverschmelzungen zu untersuchen; Kapitel [6| wendet die Test-
teilchenmethode zur Untersuchung von ungebundener Masse an, es liefert ins-
besondere eine umfassende Untersuchung der dynamischen Auswiirfe von Neu-
tronensternverschmelzungen, r-Prozess-Isotopenhaufigkeiten und Kilonovalichtkur-
ven; und letztlich Kapitel [/ es beinhaltet einige Zusammenfassungen, Schluss-
worte und zukiinftige Forschungsrichtungen.
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