Supplementary Information

Supplementary Figure 1. Quantile-quantile plots showing the distribution of observed *P* values (x-axis) and expected *P* values (y-axis) for the GWAS performed on any food allergy and on food-specific allergies against peanut, hen's egg, and cow's milk, respectively. For each phenotype under study, the genomic inflation factor lambda is indicated.

Supplementary Figure 2. Regional association plots for the filaggrin gene (FLG) locus at 1q21.3 before (a) and after (b) adjusting the results for the two most common loss-of-function mutations FLG c.2282del4 (tagged by rs12123821) and p.R501X (rs61816761). A 2-Mb window around the lead SNP rs12123821 (purple) is shown. Genomic positions (x-axis) including the annotated genes and P values (y-axis) of the SNPs under study (dots) for the discovery set are indicated. Dots are coloured according to the extent of LD (measured by r²) between the respective SNP and the lead SNP in the region. Blue peaks (y-axis) represent recombination Regional association with LocusZoom rates. plots were generated (http://csg.sph.umich.edu/locuszoom/).¹

Supplementary Figure 3. Regional association plots for the cytokine gene cluster at 5q31.1 before (**a**) and after (**b**) adjusting the results for rs11949166. A 1-Mb window around the lead SNP rs11949166 (purple) is shown. Genomic positions (x-axis) including the annotated genes and *P* values (y-axis) of the SNPs under study (dots) for the discovery set are indicated. Dots are colored according to the extent of LD (measured by r^2) between the respective SNP and the lead SNP in the region. Blue peaks (y-axis) represent recombination rates.¹

Supplementary Figure 4. Regional association plots for the cytokine gene cluster at 5q31.1 before (**a**) and after (**b**) adjusting the results for rs2074369. A 1-Mb window around the second lead SNP rs2074369 (purple) is shown. Genomic positions (x-axis) including the annotated genes and *P* values (y-axis) of the SNPs under study (dots) for the discovery set are indicated. Dots are colored according to the extent of LD (measured by r^2) between the respective SNP and the lead SNP in the region. Blue peaks (y-axis) represent recombination rates.¹

Supplementary Figure 5. Regional association plots for the food allergy locus on chromosome 11q13.5 before (**a**) and after (**b**) adjusting the results for rs2212434. A 1-Mb window around the lead SNP rs2212434 (purple) is shown. Genomic positions (x-axis) including the annotated genes and *P* values (y-axis) of the SNPs under study (dots) for the discovery set are indicated. Dots are colored according to the extent of LD (measured by r^2) between the respective SNP and the lead SNP in the region. Blue peaks (y-axis) represent recombination rates.¹

Supplementary Figure 6. Regional association plots of the *SERPINB* gene cluster at 18q21.3 before (**a**) and after (**b**) adjusting the results for rs12964116. A 1-Mb window around the lead SNP rs12964116 (purple) is shown. Genomic positions (x-axis) including the annotated genes and *P* values (y-axis) of the SNPs under study (dots) for the discovery set are indicated. Dots are coloured according to the extent of LD (measured by r^2) between the respective SNP and the lead SNP in the region. Blue peaks (y-axis) represent recombination rates.¹

Supplementary Figure 7. Regional association plots of the *SERPINB* gene cluster at 18q21.3 before (**a**) and after (**b**) adjusting the results for rs1243064. A 1-Mb window around the second lead SNP rs1243064 (purple) is shown. Genomic positions (x-axis) including the annotated genes and *P* values (y-axis) of the SNPs under study (dots) for the discovery set are indicated. Dots are coloured according to the extent of LD (measured by r^2) between the respective SNP and the lead SNP in the region. Blue peaks (y-axis) represent recombination rates.¹

Supplementary Figure 8. Regional association plot of the HLA locus at 6p21 before (**a**) and after (**b**) adjusting for rs9273440. A 1-Mb window around the lead SNP rs9273440 (purple) is shown. Genomic positions (x-axis) including the annotated genes and *P* values (y-axis) of the SNPs under study (dots) for the discovery set are indicated. Dots are coloured according to the extent of LD (measured by r^2) between the respective SNP and the lead SNP in the region. Blue peaks (y-axis) represent recombination rates.¹

Supplementary	Table 1	SNPs analyzed	in the Chica	ago Food Al	lergy Study
---------------	---------	---------------	--------------	-------------	-------------

SNP ID	Chr	Position ^a	EA	AA	GOFA discovery set <i>P</i> value	GOFA replication set <i>P</i> value	Chicago Food Allergy Study <i>P</i> value (proxy SNP)	Direction of effect	Meta analysis <i>P</i> value ^b
Food alleray									
rs2212434	11	76281593	т	С	3.4E-04	8.2E-05	1.4E-04	+++	9.2E-11
rs12964116	18	61442619	G	А	5.7E-06	9.4E-03	0.010	+++	1.8E-08
rs521267	20	934133	С	Т	4.6E-04	1.5E-04	n.a.		3.4E-07
Hen's egg allergy									
rs17023017	4	96025094	G	Т	6.4E-04	2.2E-04	0.37 (rs1073308. r ² = 0.98)	+++	6.8E-07
rs1243064	18	61513975	А	Т	1.6E-07	0.028	0.15	+++	8.0E-08
Peanut allergy									
rs72783152	2	36952332	т	С	5.7E-05	2.6E-03	n.a.	++	5.0E-07
rs17664036	20	21220212	С	Т	4.5E-05	3.4E-04	0.24	+++	1.6E-06
Cow's milk allergy									
rs73908987	2	2595633	Α	G	5.9E-05	3.0E-03	n.a.	++	6.0E-07

EA, effect allele; AA, alternative allele; n.a., no SNP data or proxy SNPs (r²>0.8) available in the Chicago Food Allergy Study.

^aGenomic positions were based on human genome reference assembly GRCh37.p13.

^bMeta-analyses included all study populations with data available for the respective SNP.

Supplementary Table 2 Filaggrin mutations account for the main association signals within the epidermal differentiation complex on chromosome 1

				Conditional analysis ^b						
SNP ID	Chr	Position ^a	EA	AA	AF	OR	P value	OR	P value	Gene region
rs77426698	1	151908055	А	G	0.052	2.28	2.7 x 10 ⁻⁷	0.94	0.7	THEM4/S100A10
rs115288876	1	152000117	А	G	0.055	2.13	4.3 x 10 ⁻⁷	0.62	0.23	S100A10/S100A11
rs12122629	1	152074116	С	А	0.058	2.09	4.5 x 10 ⁻⁷	0.63	0.18	TCHHL1/TCHH
rs1496044	1	152144275	А	G	0.140	0.60	9.1 x 10 ⁻⁶	0.68	0.0011	RPTN/HRNR
rs34372395	1	152167407	G	А	0.216	0.65	9.5 x 10 ⁻⁶	0.73	0.0027	RPTN/HRNR
rs1552994	1	152171461	G	А	0.216	0.65	9.5 x 10 ⁻⁶	0.73	0.0027	RPTN/HRNR
rs12733173	1	152173972	Т	С	0.216	0.65	9.7 x 10 ⁻⁶	0.73	0.0027	RPTN/HRNR
rs10443207	1	152182760	С	А	0.216	0.65	9.9 x 10⁻ ⁶	0.73	0.0028	RPTN/HRNR
rs34428306	1	152184316	С	G	0.216	0.65	9.8 x 10 ⁻⁶	0.73	0.0028	RPTN/HRNR
rs12731336	1	152448098	G	А	0.942	0.45	1.2 x 10 ⁻⁷	1.10	0.58	CRNN/LCE5A
rs72702813	1	152600854	т	G	0.051	2.08	9.9 x 10 ⁻⁷	1.03	0.76	LCE3A/LCE2D

EA, effect allele; AA, alternative allele; AF, effect allele frequency; OR, odds ratio.

^aGenomic positions were based on human genome reference assembly GRCh37.p13.

^bAssociation results with food allergy conditional on rs12123821 (tagging SNP for *FLG* c.2282del4) and on rs61816761 (*FLG* p.R501X).

Supplementary Table 3 Conditional analysis for the lead SNPs in the cytokine gene cluster on chromosome 5

									P values a	djusted for	
SNP ID	LD (r ²) ^a	Chr	Position ^b	EA	AA	AF	OR	P value	rs2074369	rs11949166	Gene
rs2074369	0.04	5	131973663	С	Т	0.258	1.57	1.8 x 10 ⁻¹⁰	n.a.	2.5 x 10 ⁻⁵	RAD50 (intron variant)
rs11949166	0.04	5	132027681	т	А	0.719	0.60	1.2 x 10 ⁻¹³	4.4 x 10 ⁻⁹	n.a.	IL4/KIF3A (intergenic variant)

EA, effect allele; AA, alternative allele; AF, effect allele frequency; OR, odds ratio; n.a., not available.

^aLD, linkage disequilibrium between the SNPs estimated by r^2 .

^bGenomic positions were based on human genome reference assembly GRCh37.p13.

Supplementary Table 4 Allele frequencies for rs2212434, rs12964116 and rs1243064 in the different control groups of the Chicago Food Allergy Study

				MAF in controls						
SNP ID	Minor allele	Trait	MAF cases	Non-allergic (n=144)	Unknown (n=1382)	Combined				
rs2212434	т	FA	0.512	0.428	0.473	0.469				
		HE	0.492	0.428	0.475	0.471				
		PN	0.497	0.428	0.475	0.471				
		CM	0.514	0.428	0.473	0.469				
rs12964116	G	FA	0.061	0.038	0.050	0.049				
		HE	0.065	0.038	0.052	0.051				
		PN	0.084	0.038	0.050	0.049				
		CM	0.041	0.038	0.051	0.050				
rs1243064	А	FA	0.265	0.271	0.264	0.265				
		HE	0.288	0.271	0.262	0.263				
		PN	0.279	0.271	0.264	0.265				
		CM	0.244	0.271	0.261	0.262				

MAF, minor allele frequency; FA, food allergy; PN, peanut allergy; HE, hen's egg allergy; CM, cow's milk allergy.

									P values ac	justed for	
SNP ID	LD (r ²) ^a	Chr	Position ^b	EA	AA	AF	OR	P value	rs12964116	rs1243064	Gene
rs12964116	0.06	18	61442619	G	A	0.050	1.90	5.7 x 10 ⁻⁶	n.a.	1.6 x 10 ⁻³	SERPINB7 (intron variant)
rs1243064	0.00	18	61513975	A	т	0.259	1.48	4.3 x 10 ⁻⁷	1.1 x 10 ⁻⁴	n.a.	SERPINB7/B2 (intergenic_variant)

Supplementary Table 5 Conditional analysis for the lead SNPs in the serpin clade B gene cluster on chromosome 18

EA, effect allele; AA, alternative allele; AF, effect allele frequency; OR, odds ratio; n.a., not available.

^aLD, linkage disequilibrium between the SNPs estimated by r².

^bGenomic positions were based on human genome reference assembly GRCh37.p13.

SNP ID	MAF	Position	LD (r ² ,D') ^a	Gene	Functional annotation ^b	Binding proteins ^c	eQTLs ^d	Tissue (P value)
Chr. 5q31.1 rs11949166	0.27	132,027,681	-	IL4/KIF3A	Intergenic	-	-	-
rs2074369	0.20	131,973,663	-	RAD50	Intron	-	-	-
Chr. 6p21								
rs9273440	0.23	32,627,561	-	HLA-DQB1	3-Prime UTR	-	-	-
rs1049133	0.21	32,629,847	0.83,0.97	HLA-DQB1	Missense variant	-	-	-
Chr. 11a13.5								
rs2212434	0.44	76,281,593	-	C11orf30/LRRC32	Intergenic	-	-	-
rs61893460	0.45	76,291,154	0.96,1	C11orf30/LRRC32	Intergenic	CTCF (H1ESC,K562,HUVEC), Rad21 (K562),Cjun,Max,PolII(HUVEC)	-	-
rs7126418	0.45	76,292,573	0.97,1	C11orf30/LRRC32	Intergenic	-	-	-
rs7114362	0,49	76,293,070	0.82,1	C11orf30/LRRC32	Intergenic	-	-	-
rs7110818	0,45	76,292,575	0.96,1	C11orf30/LRRC32	Intergenic	-	-	-
rs7936070	0,47	76,293,527	0.90,1	C11orf30/LRRC32	Intergenic	-	-	-
rs7936312	0,47	76,293,726	0.90,1	C11orf30/LRRC32	Intergenic	-	-	-
rs7936323	0,47	76,293,758	0.90,1	C11orf30/LRRC32	Intergenic	-	-	-
rs7936434	0,47	76,293,805	0.89,1	C11orf30/LRRC32	Intergenic	-	-	-
rs4494327	0,49	76,294,836	0.82,1	C11orf30/LRRC32	Intergenic	-	-	-
rs11236791	0,45	76,295,598	0.96,1	C11orf30/LRRC32	Intergenic	-	-	-
rs10160518	0,49	76,296,671	0.82,1	C11orf30/LRRC32	Intergenic	-	-	-
rs2155219	0,49	76,299,194	0.82,1	C11orf30/LRRC32	Regulatory	PollI ,Cjun,Max,Cmyc (HUVEC)	-	-
rs11236797	0,45	76,299,649	0.96,1	C11orf30/LRRC32	Regulatory	Cjun,Max,PolII,Cmyc (HUVEC)	-	-
rs7931483	0,47	76,302,067	0.87,0.99	C11orf30/LRRC32	Intergenic	-	-	-

Supplementary Table 6 Functional annotations and eQTLs for the SNPs associated with food allergy

SNP ID	MAF	Position	LD (r ² ,D') ^a	Gene	Functional annotation ^b	Binding proteins ^c	eQTLs ^d	Tissue (P value)
Chr. 18g21.3								
rs12964116	0,04	61,442,619	-	SERPINB7	TF binding site	CEBPB (HeLa-S3), CJUN (HeLa-S3), JUND (HeLa-S3), P300 (HeLa-S3), STAT3 (MCF10A-Er-Src), POL2B (NHEK)	-	-
rs71353401	0,04	61,412,756	0.82,1	SERPINB11/SERPINB7	Intergenic	-	-	-
rs1243064	0,26	61,513,975	-	SERPINB7/SERPINB2	Intergenic	-	SERPINB10	Monocytes (2.0×10 ⁻²⁸) ²
							SERPINB10	Blood (2.9×10 ⁻¹³) ³
							SERPINB10	Blood (1.3×10 ⁻¹⁴) ⁴
rs1243063	0,26	61,513,490	0.98,1.0	SERPINB7/SERPINB2	Intergenic	-	-	-
rs986982	0,27	61,497,804	0.94,0.84	SERPINB7/SERPINB2	Intergenic	-	SERPINB10	Blood (4.6×10 ⁻⁹) ⁵
rs1243039	0,27	61,498,396	0.94,0.84	SERPINB7/SERPINB2	Intergenic	-	-	-
rs1720910	0,27	61,491,321	0.94,0.83	SERPINB7/SERPINB2	Intergenic	CTCF(NHEK,GM12878,Monocytes,H eLa-S3,HMEC,K562,H1ESC,HUVEC), RAD21 (H1ESC,GM12878)	-	-

Supplementary Table 6 (continued)

MAF, minor allele frequency; LD, linkage disequilibrium. Lead SNPs are indicated in bold.

^a SNPs in LD were identified with LDlink3.0⁶ which uses phase 3 data of the 1000 Genomes Project to calculate population-specific measures of linkage disequilibrium.

^b Functional annotations according to Ensembl Variant Effect Predictor GRCh37, release 88.⁷

^c Binding proteins were identified in ChIP-Seq experiments in the indicated cell lines.⁸

^d eQTL data were derived from the Zeller *et al.*², Grundberg *et al.*³, Westra *et al.*⁴ and GTEx⁵ studies accessed through the SNIPA webpage at http://www.snipa.org (SNIPAv3.2, accessed 04/2017).⁹

Supplementary Table 7 SNP-based heritability for food allergy estimated with LD score regression

Prevalence LD-score re	e used in egression	Heritabilit (A, all	y estimate SNPs)	Heritability (B, without	y estimate lead SNPs)	h ² explained by the identified lead SNPs				
Population	Sample	h²	SE	h²	SE	Absolute (A – B)	Relative to overall SNP heritability (A – B) / A			
0.05	0.26	0.244	0.146	0.219	0.132	0.025	0.102			

h², heritability on the liability-scale; SE, standard error.

Gene	400 100	401, 81, 81, 0		\$ 6 9	روب روب	No of the second	EBL of the	10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	Hose noon	lie les cos more	in in the second	° jun	Che Soliton	Pur eland	Contraction of the second seco	Ser elon		Snall nus	Solo and a still a sti	, w,	Subch	Post of Contract o	an an the	Le. el	> 55 Jas
SERPINB5	0.1			2	0.1		0.1	68			0.1	6	0.1	0.1	2	0.1		4	0.1	0.1	17	1	0.1	0.1	34
SERPINB12								1													2	0.2			3
SERPINB13								82				0.1			0.1						6				69
SERPINB4								2				0.1			0.1						0.2	0.2			33
SERPINB3								131				0.2			0.3						3	0.7			129
SERPINB11								4				0.1			3							0.1			3
SERPINB7						0.1		0.5				0.1			0.1						48	0.1			0.7
SERPINB2		0.1	1	0.1			0.1	42			0.2	0.5		0.1					0.1		18				9
SERPINB10			1				3	0.2			0.1								0.2		0.2				0.1
HMSD ^b		0.1			0.3		6	0.1		0.1	0.4				0.1	0.1		0.1	0.2		0.1	0.2	0.1		0.1
SERPINB8	3	4	3	3	0.6	1	4	7	0.6	1	4	3	2	0.9	2	1	0.5	3	3	2	11	0.8	2	1	4

Supplementary Table 8 Tissue-specific gene expression within the serpin clade B gene cluster at 18q21.3

^a Expression data are from the latest release of the GTEx project (V6p)⁵ and were accessed through the Expression Atlas webpage.¹⁰ Expression values are shown in RPKM (Reads Per Kilobase of transcript per Million mapped reads), calculated from a gene model with isoforms collapsed to a single gene.⁵ A representative selection of human tissues is shown.

^b Histocompatibility minor serpin domain containing gene.

Supplementary Table 9 Genotyping and imputation platforms used in this study

	GOFA discovery set	GOFA replication set	Chicago Food Allergy Study
Genotyping array (no. of markers)	Illumina HumanOmniExpress Exome-8 v1.2 (980,000)	Illumina HumanOmniExpress Exome-8 v1.2 (980,000)	Illumina HumanOmni1 Quad (1.1 M)
	Illumina HumanOmniExpress 12 v1.0 (730,000)	Illumina HumanOmni2.5 Quad (2.3 M)	
	Illumina HumanOmni1 Quad v1.0 (1.1 M)		
Genotyped markers after QC	606,699 (autosomal)	625,579 (autosomal)	789,677
Imputation / phasing	SHAPEITv2 / minimac3	SHAPEITv2 / minimac3	SHAPEIT / IMPUTE2
Reference panel	Haplotype Reference Consortium (version1.1)	Haplotype Reference Consortium (version1.1)	1000 Genomes (phase I, release_v3)
Imputed markers after QC	5,405,832	5,412,934	6,459,842

QC, quality control.

Supplementary Note 1 Age of eczema onset in children with food allergy

Age of eczema onset was assessed in the GOFA study sets. The mean age at food allergy diagnosis was 2.1 and 2.8 years in the GOFA discovery and GOFA replication sets. However, follow-up data was available in a large number of cases, the mean age at last follow-up was 69 months. Of 717 GOFA cases <u>with</u> eczema, 590 (82.3 %) had age of eczema onset available, including 381 children aged 0-5 years, 140 children aged 6-10 years and 69 children >10 years. The mean age of eczema onset was 4.5 months (95% CI, 3.9-4.6 months) among 0-5 year olds, 4.6 months (95% CI, 4.0-5.3 months) among 5-10 year olds, and 7.2 months (95% CI, 4.1-10.2 months) among >10 year olds. The maximum age of onset observed in children >10 years was 48 months.

Although eczema may develop in later childhood or adulthood, this seems to be a rare event in children with food allergy. Of 69 children with follow-up >10 years of age (mean 13.1 years, 95% Cl, 12.6-13.7 years), 92.7% manifested eczema within the first year of life, and 95.7% within the first 2 years of life. New onset eczema was not observed after the age of 48 months. The mean age at last follow-up in GOFA children <u>without</u> eczema was 81 months. It is therefore unlikely that the proportion of eczema among food allergic children was underestimated.

Supplementary References

- 1. Pruim RJ, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336-2337 (2010).
- 2. Zeller T, *et al.* Genetics and beyond--the transcriptome of human monocytes and disease susceptibility. *PLoSONE* **5**, e10693 (2010).
- 3. Grundberg E, et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. NatGenet 44, 1084-1089 (2012).
- 4. Westra HJ, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. *NatGenet* **45**, 1238-1243 (2013).
- 5. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. *Science* **348**, 648-660 (2015).
- Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. *Bioinformatics* 31, 3555-3557 (2015).
- 7. McLaren W, et al. The Ensembl Variant Effect Predictor. Genome Biol **17**, 122 (2016).
- 8. Goi C, Little P, Xie C. Cell-type and transcription factor specific enrichment of transcriptional cofactor motifs in ENCODE ChIP-seq data. *BMCGenomics* **14 Suppl 5**, S2 (2013).
- 9. Arnold M, Raffler J, Pfeufer A, Suhre K, Kastenmuller G. SNiPA: an interactive, genetic variantcentered annotation browser. *Bioinformatics* **31**, 1334-1336 (2015).
- 10. Petryszak R, et al. Expression Atlas update--an integrated database of gene and protein expression in humans, animals and plants. *Nucleic Acids Res* **44**, D746-D752 (2016).