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Chapter 1

Introduction

The results of this thesis lie at the intersection of real algebraic geometry, convex

geometry, and optimization, thus in the area of convex algebraic geometry.

Deciding nonnegativity of real polynomials is a key problem in real algebraic

geometry and polynomial optimization. The question is:

Given a polynomial f P Rrxs � Rrx1, . . . , xns does it hold fpxq ¥ 0 for all x P Rn?

The objective of global polynomial optimization is to minimize a real multivariate

polynomial f over Rn, i.e., to �nd the optimal value f� � inftfpxq : x P Rnu. It

is easy to see that searching for a global lower bound of the polynomial f is equivalent

to �nding the largest real number γ such that f � γ is nonnegative. This equivalence

suggests considering the alternative optimization problem

f� � suptγ P R : fpxq � γ ¥ 0 for all x P Rnu.

Thereby, a polynomial optimization problem can be reduced to the question of deciding

nonnegativity of a polynomial.

Both the decision and the optimization version of this problem have countless ap-

plications for example in dynamical systems, robotics, control theory, computer vision,

signal processing, and economics, for an overview see, e.g., [BPT13] and [Las10].

Since deciding nonnegativity of a polynomial f is co-NP-hard if f is multivariate

and of degree at least four [MK87], one is interested in �nding su�cient conditions to

certify nonnegativity of polynomials, which are easier to check. Such a certi�cate is

given by sums of squares (SOS), which are obviously nonnegative. Thus, if we can

write a polynomial f as a sum of squares of polynomials, then it is apparent from this

representation that f is nonnegative. The relation between nonnegative polynomials

and sums of squares is a classical question in real algebraic geometry and has its origin
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1 Introduction

in Hilbert's work at the end of the nineteenth century. He intensively studied Pn,2d, the

cone of nonnegative polynomials in n variables of degree at most 2d and Σn,2d, the cone

of sums of squares respectively. This study led to his seminal result [Hil88], stating

that the two cones coincide in the univariate case, in the quadratic case, and for binary

quartics. In all other cases Hilbert showed the existence of nonnegative polynomials

which are not sums of squares. His proof was nonconstructive and the �rst explicit

example for such a polynomial was given only seventy years later by Motzkin [Mot67].

His observations led Hilbert to his famous question, known as Hilbert's 17th problem,

whether every nonnegative polynomial has a representation as a sum of squares of

rational functions. This was solved in the a�rmative, in 1927, by Emil Artin [Art27].

See [Rez00] for a historical overview.

The bene�t of using SOS certi�cates is apparent from the practical viewpoint,

because checking if a polynomial is a sum of squares can be formulated as a semide�-

nite programming problem (SDP), a speci�c subclass of convex optimization problems

[BV04, VB96], which can be seen as a generalization of linear programming. There exist

good numerical algorithms for solving SDPs (to any arbitrary precision) in polynomial

time, see [BPT13, page 41]. Thus, one can relax the nonnegativity condition in poly-

nomial optimization problems both in the unconstrained case and in the constrained

case to an SOS condition, which can be computed e�ciently by semide�nite program-

ming. This SOS/SDP approach for polynomial optimization problems goes back to Shor

[Sho87b] in 1987 and was further developed by Nesterov [Nes00], Parrilo [Par00, Par03],

and Lasserre [Las01]. Starting with these works a variety of relaxation methods have

been proposed in the literature, which are studied intensively by means of aspects like

exactness and quality of the relaxations [dKL10, Nie13a, Nie13b, Nie14], the speed of

the computations [Las10, PS03], and geometrical aspects of the underlying structures

[Ble06, Ble12]. A great majority of these results are based on Lasserre's relaxation

[Las01], which relies on the SOS/SDP method and yields a hierarchy of lower bounds

converging to the optimal value of the constrained optimization problem; see, e.g.,

[Las10], [Las15].

A well known issue of the SOS/SDP approach is that the size of the corresponding

semide�nite programs grows rapidly with the number of variables or degree of the poly-

nomials, which makes them challenging to compute. Hence, for many applications, the

problems are too large or numerical issues are too severe to �nd a (proper) solution.

Furthermore, Blekherman [Ble06] proved that for �xed degree 2d ¥ 4, there are signif-

icantly more nonnegative polynomials than sums of squares as the number of variables

tends to in�nity.
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Attacking these issues is an active area of research. The aim of this thesis is to

contribute to this area both from the theoretical and practical point of view.

To address the above mentioned issues current research creates better solvers and

exploits additional structure like symmetry, see, e.g., [dKS10, GP04, RTAL13, Val09],

or sparsity, e.g., [Las06a], [WKKM06]. Lasserre et al. [LTY17] propose to use bounded

degree SOS hierarchies and recently, Papp and Y�ld�z [PY17] study an approach to poly-

nomial optimization problems which circumvents the usage of semide�nite programs.

Moreover, Ahmadi and Majumdar [AM17] introduce two subcones of the SOS cone that

one can optimize over using linear and second order cone programming.

In contrast, in this thesis we pursue a di�erent approach, namely to use other

nonnegativity certi�cates independent of SOS certi�cates.

Recently, Iliman and de Wol� [IdW16a] established a new certi�cate for nonnega-

tivity of real polynomials via sums of nonnegative circuit polynomials (SONC). These

polynomials are sums of certain sparse polynomials having a special structure in terms

of their support. More precisely, the Newton polytope of a circuit polynomial f forms

a simplex with even vertices, the coe�cients of the terms of f corresponding to the

vertices of this simplex are strictly positive, and there is one additional point in the

support of f which is located in the interior of the Newton polytope. For every

circuit polynomial we can de�ne the corresponding circuit number as a speci�c product

which can be derived by the initial circuit polynomial immediately. The crucial fact is

that nonnegativity of circuit polynomials can be decided easily by means of its circuit

number alone. This naturally leads to de�ning the set of sums of nonnegative circuit

polynomials, which is denoted by Cn,2d for n-variate polynomials of degree at most

2d. Furthermore, Cn,2d forms a convex cone which intersects with the cone of sums of

squares Σn,2d, but they do not contain each other. Hence, sums of nonnegative circuit

polynomials are indeed a new nonnegativity certi�cate for real polynomials, which is

independent of sums of squares.

In this thesis we focus on sums of nonnegative circuit polynomials and their related

cone Cn,2d and study these geometrically as well as in applications to polynomial opti-

mization, which leads to new results in the area of both pure and applied real and convex

algebraic geometry. The thesis can be divided into two parts, namely the theoretical

analysis of the SONC cone and the practical in application to polynomial optimization.

In the subsequent paragraphs, we outline the investigated problems and provide an

overview of the results and contributions of this thesis.
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1 Introduction

The SONC Cone revisited. As sums of nonnegative circuit polynomials are a

rather new concept to certify nonnegativity of real polynomials, these polynomials and

their related cone are to a large extent unexplored but their study entails high potential

for further research. From the theoretical point of view, being a convex cone comprised

of polynomials with a certain structure, the SONC cone itself is interesting and o�ers

many open questions to address. But even more, since Cn,2d approximates the nonneg-

ativity cone Pn,2d, gaining a deeper understanding of the SONC cone is highly desirable

from the perspective of both pure and applied real and convex algebraic geometry. Its

analysis �ts therefore naturally in the long and rich theory of nonnegative polynomials

and sums of squares. Hence, exploring the structure and (convex) properties of Cn,2d
as well as its relation to Pn,2d and Σn,2d is important.

With this in mind we �rst study some convex geometric aspects of the SONC cone.

We show in Proposition 3.1.1 that Cn,2d is a proper cone. In [IdW16a] the authors char-

acterized the cases pn, 2dq, where the two cones Cn,2d and Σn,2d contain respectively not

contain each other, see Theorem 2.4.8. Two cases are not covered in Theorem 2.4.8 (3),

namely pn, 2q for all n ¥ 2 and the case pn, 4q for all n. We close this gap in Theo-

rem 3.1.2 and provide a proof for the missing cases.

So far, we limited our analysis to polynomials. A related construct are homogeneous

polynomials, also called forms, which are ubiquitous in mathematics. Homogeneous

polynomials are polynomials whose non-zero terms all have the same degree. In alge-

braic geometry forms are a fundamental object of study and often results in conjunction

to nonnegative polynomials and sums of squares are stated homogeneously. Thus we

also want to consider SONC forms. As a �rst result in this context we prove the

fundamental fact that the property to be SONC is preserved under homogenization.

An interesting research subject for polynomials and forms is the study of their real

zeros. There exist a large number of works studying the real zeros of nonnegative poly-

nomials and sums of squares, which is often used to explore the di�erence between

both cones and to get an insight into the facial structure of Pn,2d and Σn,2d, see, e.g.,

[BHO�12, Ble12, CL77, CLR80, KS18, Rez78, Rez00]. Motivated by these ideas, we

investigate the real zeros of SONC polynomials and forms. Our main contribution to

this topic is a complete and explicit characterization of the real zeros of SONC poly-

nomials and forms in Section 3.2. These results yield interesting further observations.

For instance we show that the analog of Hilbert's 17th problem for SONC polynomials

cannot hold in the general case. Based upon the study of real zeros we provide a �rst

approach to the exposed faces of the SONC cone. Particularly, we derive estimates for
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the dimensions of the exposed faces of Cn,2d and study the univariate and bivariate case

in more detail together with some explicit examples.

A basic property of SOS is that the set of sums of squares is multiplicatively closed.

This property is essential in the application of SOS to polynomial optimization, in

particular for certain Positivstellensätze, see Section 2.3.4. We show in Lemma 3.4.1

that the set of SONC polynomials is not closed under multiplication, which therefore

stands in strong contrast to the set of sums of squares. Another main contribution to

the analysis of the SONC cone is the result that Cn,2d is full-dimensional in the convex

cone of nonnegative polynomials Pn,2d. This result is a necessary condition to establish

SONC polynomials as a certi�cate useful in practice. Hence, both observations likewise

have a direct impact on the application of SONC polynomials to polynomial optimiza-

tion problems. This applied perspective will be discussed in the next paragraphs.

An Approach to Polynomial Optimization via SONC and GP. As already

mentioned, getting a broader insight into the SONC cone and the SONC polynomials

is also of crucial importance from the practical point of view. Since SONC polynomials

serve as a certi�cate of nonnegativity they can be applied to polynomial optimization

problems. The second part of this thesis is devoted to these applications.

Besides the SDP-based approach to polynomial optimization problems Ghasemi

and Marshall [GM12, GM13] recently proposed using geometric programming to �nd

lower bounds for polynomials both in the unconstrained and in the constrained case.

Geometric programs (GP) are a special type of convex optimization problems that can

be solved in polynomial time (up to an ε-error) via interior point methods [NN94]; see

also [BKVH07, page 118]. Experimental results show that compared to semide�nite

programs in practice the corresponding geometric programs can be solved signi�cantly

faster, see, e.g., [BKVH07, GM12, GM13, GLM14]. A disadvantage of the method of

Ghasemi and Marshall is that the lower bounds obtained by geometric programming

are, however, by construction not as good as the lower bounds obtained via semide�nite

programming, and that it is restricted to very special cases.

The idea of using a GP-based approach for unconstrained optimization can be

further generalized via SONC certi�cates for certain polynomials, as shown by Iliman

and de Wol� [IdW16b]. To be more precise, deciding whether an ST-polynomial has

a SONC decomposition can be checked e�ciently with GP. ST-polynomials are poly-

nomials having a Newton polytope that is a simplex and satisfying further conditions;

see De�nition 4.1.1. Thus, the connection of SONC and GP is in direct analogy to

the relation between SOS and SDP. One crucial di�erence to Ghasemi and Marshall's
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approach is that there exist various classes of polynomials for which the SONC/GP-

based approach is not only faster but, it also yields better bounds than the SOS/SDP

approach; see [IdW16b, Corollary 3.6]. The reason is that all certi�cates used by

Ghasemi and Marshall are always SOS, while SONC polynomials are not SOS in

general; see Theorem 2.4.8.

Motivated by these recent developments we focus in the second part of this thesis

on tackling constrained optimization problems with SONC polynomials, i.e., problems

of the form f�K � inftfpxq : x P Ku � suptγ P R : fpxq � γ ¥ 0 for all x P Ku, with
feasible set K � Rn given as the basic closed semialgebraic set K de�ned by polynomi-

als g1, . . . , gs P Rrxs. Essentially, we follow this aim via two di�erent approaches. In a

�rst step, as a generalization of the above mentioned SONC/GP approach, this means

deriving a lower bound for the optimal value f�K of the constrained optimization prob-

lem by using a single convex optimization program, which is a GP under certain extra

assumptions. In a second step, an extended approach is analyzed yielding a hierarchy

of lower bounds which converge to f�K . The hierarchical approach will be discussed in

the subsequent paragraph.

The �rst contribution of this part in this context is an extension of the results

in [IdW16b] to constrained polynomial optimization problems for the class of ST-

polynomials. The starting point is a general optimization problem from [IdW16b, Sec-

tion 5], see program (4.1.5), which provides a lower bound for the constrained problem

but which is not a GP. Using results from [GM13], we relax the program (4.1.5) into

a geometric optimization problem; see program (4.2.2) and Theorem 4.2.1. Addition-

ally, we show in Theorem 4.2.4 that (4.1.5) can always at least be transformed into a

signomial program; see Section 4.1.2 for background information. Moreover, we prove

that the new, relaxed geometric program (4.2.2) yields bounds as good as the initial

program (4.1.5) for certain special cases, see Theorem 4.2.5.

In Section 4.3 we provide examples comparing our new program (4.2.2) with semidef-

inite programming in practice. In all these examples our program is much faster than

semide�nite programming. Particularly, we demonstrate that, in sharp contrast to

SDPs, increasing the degree of a given problem has almost no e�ect on the runtime

of our program (4.2.2). Hence the GP-based approach is particularly useful for high-

degree problems, where SDPs have serious issues.

Furthermore, a bound obtained by Ghasemi and Marshall in [GM13] can never be

better than the bound given by the d-th Lasserre relaxation for some speci�c d

determined by the degrees of the involved polynomials. Section 4.3 contains exam-
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ples showing that our program (4.2.2) can provide bounds which are better than the

particular d-th Lasserre relaxation.

The second contribution is to apply polynomial optimization methods based on

SONC polynomials and GPs e�ciently beyond the class of ST-polynomials. In Sec-

tion 4.4, we develop an initial approach based on triangulations of the support sets of

the involved polynomials. It yields bounds for nonnegativity based on SONC/GP for

arbitrary polynomials both in the unconstrained and in the constrained case. We pro-

vide several examples and compare the new bounds to the ones obtained by SDP-based

methods. In all examples, particularly those with high degree, our GP-based method

is (signi�cantly) faster than SDP.

We point out that in both approaches we make no assumptions about the feasible

set K. Especially, it is not required to be compact as it is in the classical setting with

Lasserre's relaxation.

Hierarchical Approach to Constrained Optimization Problems via SONC

and REP. Directly picking up on the idea to tackle constrained optimization problems

with SONC polynomials we want to extend the studied SONC/GP-based approach.

Since this method only yields a single lower bound we provide a new approach leading

to a hierarchy of lower bounds converging to the optimal value f�K of the constrained

optimization problem. The main di�erence between the two approaches is that the latter

is based on a Positivstellensatz. Positivstellensätze play a key role in the development

of constrained polynomial optimization problems and have an even longer theoretical

history. Roughly speaking, a Positivstellensatz guarantees that a polynomial, which is

strictly positive on a semialgebraic set, can be represented algebraically in a speci�c

way. There exist various Positivstellensätze typically relying on sums of squares, see

Section 2.3.3. For instance, Lasserre's relaxation is based on Putinar's Positivstellensatz

[Put93].

Recently, Chandrasekaran and Shah [CS16] introduced sums of nonnegative

arithmetic geometric exponentials (SAGE) as nonnegativity certi�cate for signomials,

which are weighted sums of exponentials. Hence this concept addresses the problem

of deciding nonnegativity of polynomials on the positive orthant. Checking whether

an AM/GM-exponential is nonnegative can be done by relative entropy programming

(REP). An REP is a convex optimization program, which is more general than a geomet-

ric program, but still e�ciently solvable via interior point methods; see [CS17, NN94].

The foundation of the hierarchical approach is provided by a Positivstellensatz for
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SONC polynomials, see Theorem 5.3.5, which is basically a consequence of Krivine's

Positivstellensatz [Kri64a, Kri64b]. It roughly states that a polynomial f being strictly

positive on a compact setK can be represented via the constrained polynomials weighted

by SONC polynomials. Due to the Positivstellensatz we can de�ne the parameter f pd,qqsonc

as the largest real number γ such that fpxq � γ has a SONC representation as given in

the Positivstellensatz. Clearly, this parameter is a lower bound for f�K , which is based

on the maximal allowed degree of the representing polynomials in the Positivstellen-

satz. Moreover the lower bound grows monotonically in d and q, see Lemma 5.4.1, and

thus yields a hierarchy of lower bounds for f�K . The main contribution to the area of

polynomial optimization is the key result that on the one hand the provided hierar-

chy is complete, this means the lower bounds f pd,qqsonc converge to f�K for d, q Ñ 8, see

Theorem 5.4.2 and that on the other hand the bounds f pd,qqsonc are e�ciently computable.

More precisely, we provide in (5.4.3) an optimization program for the computation

of f pd,qqsonc and prove in Theorem 5.4.3 that this program (5.4.3) is a relative entropy

program. This connection was inspired by the above mentioned new concept of the

SAGE cone, which is related to the SONC cone. Therefore, we additionally provide a

�rst comparison of these two cones, see Section 5.2.

In Section 5.4.3 we illustrate the new method with an example.

1.1 Structure of the Thesis

In Chapter 2 we provide a broad overview of the theory and results needed for this

thesis. After introducing notation and recalling basic concepts from the theory of

convexity and about polynomials we focus in Section 2.2 on the cones of nonnegative

polynomials and sums of squares. We discuss the connection of sums of squares to

semide�nite programming, the quantitative relationship between the two cones, and

provide some facts about their dual cones as well as their boundaries and facial struc-

ture. Hereafter we study the background of polynomial optimization problems and real

algebraic geometry like SOS relaxations, Positivstellensätze, and the famous Lasserre

relaxation for constrained optimization problems, see Section 2.3. In Section 2.4 we

�nally present the key object of study of this thesis, sums of nonnegative circuit poly-

nomials, and state the theory required for our further study.

Chapter 3 is dedicated to the convex geometric study of the SONC cone. First,

we present some properties and general results concerning the structure of the SONC

cone and its relation to the SOS cone. In Section 3.2 we focus on the real zeros of

8



1.1 Structure of the Thesis

SONC polynomials and forms resulting in a complete and explicit characterization

of these zeros. Afterwards, we discuss some interesting consequences of the previous

observations on the real zeros of SONCs. Based on this new knowledge we provide a

�rst approach to the exposed faces of the SONC cone, see Section 3.3. We give a deeper

analysis of the univariate and bivariate case and establish estimates for the dimensions

of the exposed faces of the SONC cone. In contrast to SOS we show in Section 3.4

that the set of SONC polynomials is not closed under multiplication. Furthermore,

we present the important result that the SONC cone is full-dimensional in the cone of

nonnegative polynomials.

The next two chapters are devoted to the practical study of the SONC cone in appli-

cation to constrained polynomial optimization problems. In Chapter 4 we investigate

this problem by deriving a single lower bound for the optimal value computable by a

geometric program. First, we introduce ST-polynomials, the polynomials considered

in the next sections, and geometric programs. Then we review the SONC/GP-based

approach for the unconstrained case and an initial approach to the constrained case,

which is based on the idea of tracing back the constrained problem to the unconstrained

one. Unfortunately, this approach yields a lower bound for the optimal value, which

is not given by a GP. In Section 4.2 we extend the result for the constrained case

and provide relaxations which are computable via geometric programming. In addi-

tion, we discuss some examples comparing our new approach with SDP in practice, see

Section 4.3. Finally, we generalize the SONC/GP approach in Section 4.4 both in the

unconstrained and in the constrained case to non-ST-polynomials.

Chapter 5 studies an extended approach to constrained polynomial optimization

problems yielding a hierarchy of lower bounds which converge to the optimal value.

We begin by introducing the cone of sums of nonnegative AM/GM-exponentials and

relative entropy programs. After a comparison of the SONC and the SAGE cone in

Section 5.2 we state the Positivstellensatz for SONC polynomials which provides the

basis for the following approach, see Section 5.3. Based on the representation given in

the Positivstellensatz we establish in Section 5.4 a hierarchy of lower bounds for the

optimal value of the constrained polynomial optimization problem on a basic closed

semialgebraic set, and we formulate an optimization problem for the computation of

these bounds. We derive the important result that for a compact constrained set the

provided hierarchy is complete and e�ciently solvable via relative entropy program-

ming. Conclusively, we consider an example which provides a decomposition of a given

polynomial in the form described in the Positivstellensatz for SONC polynomials.

We conclude this thesis in Chapter 6 with �nal remarks and a discussion of open

problems.

9



1 Introduction

1.2 Published Contents in Advance

Parts of this thesis are already published or submitted for publication and are based

on works with co-authors. The content of Chapter 4 is based on joint work with Sadik

Iliman and Timo de Wol� and is contained in [DIdW18]. Section 3.4 and Chapter 5 is

based on [DIdW17], which is also a joint work with Sadik Iliman and Timo de Wol�.

In the main parts of these chapters, as well as in some parts of this introduction and

Chapter 6, the phrasing is a verbatim adoption from the mentioned papers with minor

changes throughout for consistency with other chapters and additional comments.

10



Chapter 2

Preliminaries

In this chapter our aim is to discuss the motivation, the background, the main problem,

and the key object of study of this thesis. We try to give a preferably broad outline of

the theory required for the understanding of the following chapters and also mention

suitable references to the addressed topics for a deeper study. Most proofs of the

statements are omitted in favor of a more holistic exposure.

In the �rst section we �x terminology and recall basic concepts from convex geometry

and about polynomials.

Motivated by our main problem of deciding polynomial nonnegativity, we introduce

in the second section nonnegative polynomials and an important nonnegativity certi�-

cate, namely sums of squares. After providing the most important bases and a short

historical classi�cation the reader will be familiarized with an important subclass of

convex optimization problems, a semide�nite programming problem. The reason for

considering these problems is that checking if a polynomial is a sum of squares can

be formulated as a semide�nite feasibility problem. This connection will be discussed

afterwards. Then we report on the quantitative relationship between the cones of

nonnegative polynomials and sums of squares as well as some convexity properties of

these cones, like the dual cones, the boundaries, and their facial structure.

In the third section we study polynomial optimization, one of the most important

application of nonnegative polynomials and sums of squares. We start by discussing the

special case of global optimization and recall the basic idea of sums of squares relaxations

for this problem. We then give a short overview of the related �eld of moments and

derive the important result that the moment sequences yield the dual viewpoint of the

study of nonnegative polynomials and sums of squares. Next we present the relationship

between classical algebraic geometry and real algebraic geometry. Along the way, we

11



2 Preliminaries

state important results concerning the representation of a polynomial and the required

algebraic geometric background to understand their importance. Subsequently, we dis-

cuss the constrained optimization problem and establish a common approach via sums

of squares for tackling those problems. We conclude this section by giving a motivation

to study the key objects of the thesis, sums of nonnegative circuit polynomials.

The last section is devoted to the introduction of the rather new concept of circuit

polynomials, which provide the theoretical basis to our subsequent research. After

presenting these polynomials and stating some theory, including the main outcome that

these polynomials are a new nonnegativity certi�cate independent of sums of squares,

we develop their relation to sums of squares. Finally, we give a short overview of further

results about nonnegative circuit polynomials.

2.1 Notation, Convexity, and Polynomials

In this section we introduce some basic notation and preliminaries about the theory

of convexity and about polynomials. For more details see, e.g., [Bar02], [BCR98], and

[Zie95].

We always denote by N � t0, 1, 2, . . .u the set of nonnegative integers, by Z the ring

of integers, by R the �eld of real numbers, and by C the algebraically closed �eld of

complex numbers. R¥0 and R¡0 indicate the nonnegative and positive elements of R,
respectively. We also introduce the notation N� � Nzt0u, and similarly R� � Rzt0u.

Throughout the thesis bold letters denote n-dimensional vectors unless noted other-

wise. Let δij be the ij-Kronecker symbol and ei � pδi1, . . . , δinq be the i-th standard

vector. For a �nite set A � Nn we denote by convpAq the convex hull of A, and by V pAq
the set of all the vertices of convpAq. Analogously, we identify by V pP q the vertex set

of any given polytope P .

We call a lattice point α P Zn resp. Nn even if every entry αi is even, i.e., α P p2Zqn
resp. p2Nqn. Furthermore, we denote by ∆n,2d the standard simplex in n variables of

edge length 2d, i.e., the simplex satisfying V p∆n,2dq � t0, 2d � e1, . . . , 2d � enu and we

de�ne Ln,2d � ∆n,2d X Zn as the set of all integer points in ∆n,2d.

Given a convex set S � Rn, a face of S is a subset F � S such that for any point p P F ,
whenever p can be written as a convex combination of elements in S, these elements

must belong to F . A face F such that H � F � S is called proper. The dimension of

a face F is de�ned as the dimension of its a�ne hull, i.e., dimpF q :� dimpaffpF qq. An

12



2.1 Notation, Convexity, and Polynomials

element p P S is called extremal in S if Sztpu is still convex. It is fairly obvious that

the extremal points are exactly the zero-dimensional faces of S. The set of all extremal

elements of S is given by ES. Moreover, we say that a face F is an exposed face of S if

there exists a nontrivial supporting hyperplane H to S such that F � S XH.

We denote by intpSq the interior and by BS the boundary of S.

Furthermore, we let VolS be the volume of a convex body S � Rn. Observe that, if we

expand S by a constant factor α, the volume satis�es VolpαSq � αn VolS.

An important object in convexity theory is the convex cone C � Rn. A convex cone C

is a convex set such that for any p P C and λ P R¥0 it holds λp P C. We say that p is

an extreme ray of C if the following holds:

If p � p1 � p2, p1, p2 P C, then pi � λip, i P t1, 2u, for some λi ¥ 0.

The set of all extreme rays of C is also denoted by EC. EC plays a major role in

determining the structure and the behavior of the cone C, since C � convpECq. For

every cone C � V in a �nite-dimensional vector space V over an ordered �eld K we

can de�ne its dual cone by C_ � tl P V _ : lpxq ¥ 0 for all x P Cu, with the dual space

V _ � HompV,Kq of all linear functionals on V . For closed convex cones the biduality

theorem states that pC_q_ � C, see [Bar02].

Finally we recall Carathéodory's Theorem, which provides an upper bound on the

number of points in a set S needed to express a point in the convex hull of S.

Theorem 2.1.1. Let S � Rn. Then any point p P convpSq can be written as a convex

combination of at most n� 1 points in S.

Let Rrxs � Rrx1, . . . , xns be the ring of real n-variate polynomials. We usually

consider polynomials f P Rrxs supported on a �nite set A � Nn. Thus, f is of the form

fpxq � °
αPA fαx

α with fα P R and the monomial xα � xα1
1 � � � xαnn whose degree is

|α| � °n
i�1 αi. The degree of the polynomial f is given by the maximum degree over

all appearing monomials, i.e., degpfq � maxt|α| : fα � 0u. We call a polynomial a sum

of monomial squares if all terms fαxα satisfy fα ¡ 0 and α is even.

The set of all polynomials of degree less than or equal to 2d is denoted by Rrxs2d and
if we want to emphasize the number n of variables we refer to it by Rrxsn,2d. Often

polynomials in Rrxsn,2d are termed �n-ary 2d-ics�. By identifying a polynomial with

its Npn, 2dq :� �
n�2d

2d

�
coe�cients it follows that dimpRrxsn,2dq �

�
n�2d

2d

� � Npn, 2dq.
Therefore the real vector space Rrxsn,2d is �nite-dimensional, and in fact is isomorphic

to RNpn,2dq, i.e., Rrxsn,2d � RNpn,2dq.

13



2 Preliminaries

For better understanding the behavior of polynomials there is a useful tool which trans-

lates a polynomial into a geometric object, the Newton polytope. The Newton polytope

of a polynomial f is de�ned as Newpfq � convtα P A : fα � 0u.
A polynomial in which all terms are of the same degree is called a homogeneous

polynomial or a form. If f P Rrxsn,2d is any polynomial, then

fpx0, . . . , xnq � x2d
0 f

�
x1

x0

, . . . ,
xn
x0




is the homogenization of f, which is a form of degree 2d in the n�1 variables x0, x1, . . . , xn.

Given a form f we can dehomogenize it by setting x0 � 1. In this thesis we will mostly

work with polynomials, except when analyzing the SONC cone in Chapter 3 where

we use both viewpoints. To distinguish we �x the above notation and always write

polynomials as f P Rrxsn,2d and forms as f P Rrx0,xsn�1,2d.

Observe that by homogeneity we have

fpλx0, . . . , λxnq � λ2d fpx0, . . . , xnq, λ P R,

for any form f P Rrx0,xsn�1,2d. In particular it follows

fpλx0, . . . , λxnq � 0 ðñ fpx0, . . . , xnq � 0,

i.e., we can consider f as a function on the real projective n-space Pn. Finally, we de�ne
the zero-set of a polynomial f respectively of a form f by

Vpfq :� tpa1, . . . , anq P Rn : fpa1, . . . , anq � 0u,
Vpfq :�  ra0 : � � � : ans P Pn : fpa0, . . . , anq � 0

(
.

In the algebraic context this set is often referred to as the real (a�ne) variety resp.

real projective variety. We denote by |Vp�q| the number of distinct elements in the

zero-set. The zero-set of a form may be viewed as the set

Vpfq � tpa0, . . . , anq P Rn�1zt0,0u : fpa0, . . . , anq � 0u,

where |Vpfq| will be interpreted as the number of lines in Vpfq and we only count one

representative of each line.

In a natural way, there may occur zeros of f at in�nity via homogenization. This is the

case if a0 � 0 for pa0,aq P Vpfq. If a0 � 0, then pa0,aq corresponds to a unique zero of f .

14



2.2 The Cone of Nonnegative Polynomials and Sums of Squares

2.2 The Cone of Nonnegative Polynomials and Sums

of Squares

In this section we establish the basis of the underlying main problem considered in this

thesis, namely deciding and certifying nonnegativity of polynomials. This problem is a

key challenge in real algebraic geometry and polynomial optimization. Here we give the

theoretical background and examine the relationship between nonnegative polynomials

and sums of squares, and in Section 2.3 we turn towards the optimization viewpoint of

the problem. We refer to Reznick [Rez00] for a historical overview of this topic, and to

[BPT13, Lau09, Mar08, Par00, PD01, Sch09] for a detailed discussion and background.

In real algebraic geometry nonnegative polynomials are a central object of study.

De�nition 2.2.1. A multivariate real polynomial f P Rrxs is nonnegative if it takes

only nonnegative values, i.e.,

fpxq ¥ 0 for all x P Rn.

If the inequality is strict we call f strictly positive or simply positive. 7

Immediate questions that arise concern the decision of nonnegativity for arbitrary

polynomials and the certi�cation, i.e., the possibility to certify nonnegativity e�ciently.

Such problems have countless applications for example in polynomial optimization,

dynamical systems, control theory, robotics, computer vision, signal processing, and

economics, e.g., [BPT13], [Las10].

Obviously, a necessary condition for a polynomial to be nonnegative is that its degree

is even. Moreover, we can formulate nonnegativity conditions regarding the support of

a polynomial. More precisely, a polynomial is nonnegative on the entire Rn only if the

following necessary conditions are satis�ed; see, e.g., [Rez78].

Proposition 2.2.2. Let A � Nn be a �nite set and f P Rrxs be supported on A such

that Newpfq � convpAq. Then f is nonnegative on Rn only if the following hold:

(1) All elements of V pAq are even.

(2) If α P V pAq, then the corresponding coe�cient fα is strictly positive.

In other words, if α P V pAq, then the term fαx
α has to be a monomial square.
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2 Preliminaries

The statement remains true for real Laurent polynomials g P Rrx�1s � Rrx�1
1 , . . . , x

�1
n s,

since we can consider g as a polynomial f divided by a monomial square xα for an even

α; this is of relevance in Section 4.4.

Furthermore in some simple cases we can give direct nonnegativity characterizations

and for univariate polynomials there exist several explicit algorithms to tackle the non-

negativity decision question, like via Sturm sequences or the Hermite form method; see,

e.g., [BCR98]. But unfortunately, in the general multivariate case deciding polynomial

nonnegativity is co-NP-hard whenever the degree is greater than or equal to four

[BCSS98, MK87]. Therefore, one is interested in �nding su�cient conditions to certify

nonnegativity of polynomials, which can be checked e�ciently. Clearly, a nonnegativity

certi�cate is given by sums of squares, i.e., if we can write a polynomial as a sum of

squares of polynomials, then it is apparent from this representation that it is nonnegative.

De�nition 2.2.3. A polynomial f P Rrxs2d is a sum of squares (SOS) if there exist

polynomials f1, . . . , fk P Rrxsd such that

fpxq �
ķ

i�1

f 2
i pxq.

7

The property to be nonnegative respectively SOS is preserved under homogenization

and dehomogenization. Note that this does not hold for the property of being positive,

because it is possible for a strictly positive f to have zeros at in�nity. Consider for

example the strictly positive polynomial fpx1, x2q � x2
1 � px1x2 � 1q2. Then r0 : 1 : 0s

and r0 : 0 : 1s are zeros of the homogenization fpx0, x1, x2q � x2
1x

2
0 � px1x2 � x2

0q2.
De�nition 2.2.4. We de�ne the set of n-variate nonnegative polynomials and sums of

squares with degree at most 2d as follows:

Pn,2d � tf P Rrxsn,2d : fpxq ¥ 0 for all x P Rnu ,

Σn,2d �
#
f P Pn,2d : fpxq �

¸
i

f 2
i pxq for some fi P Rrxsn,d

+
.

7

We omit the index 2d if there is no bound on the degree, i.e., Σn,2d � Σn X Rrxs2d,
similarly Pn,2d � Pn X Rrxs2d.
One can show, see, e.g., [Rez92]:

Proposition 2.2.5. Pn,2d and Σn,2d are proper cones (i.e., closed, convex, pointed, and

solid) in Rrxsn,2d � RNpn,2dq.
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2.2 The Cone of Nonnegative Polynomials and Sums of Squares

The question of the relationship between the two cones Pn,2d and Σn,2d arises in a

natural way and goes back to work of Hilbert at the end of the 19th century. Motivated

by Minkowski's claim that there exist nonnegative polynomials that are not sums of

squares, Hilbert intensively studied Pn,2d and Σn,2d. In his seminal paper [Hil88] he

�nally classi�ed all cases in which the two cones coincide:

Theorem 2.2.6 (Hilbert, 1888). Let Pn,2d and Σn,2d be as explained, then

Pn,2d � Σn,2d if and only if n � 1 or d � 2 or pn, 2dq � p2, 4q.

Proof. We only give a proof outline here. The �rst case, that every univariate

nonnegative polynomial is a sum of squares, follows from the factorization theory. In

fact, thereby it can be shown that every univariate nonnegative polynomial is a sum

of two squares. For quadratic polynomials the argument follows easily from the diag-

onalization theorem. The third statement P2,4 � Σ2,4 is non-trivial. Hilbert originally

proved this statement for the homogeneous case of ternary quartics. Moreover, he

showed that every nonnegative ternary quartic is a sum of three squares. His proof is

based on the theory of algebraic curves.

For the �only if� part Hilbert described (homogeneously) a construction of forms which

are nonnegative and not SOS for the two smallest cases where the two cones di�er,

namely for pn� 1, 2dq � p3, 6q and pn� 1, 2dq � p4, 4q. From these two crucial cases all

remaining cases can be easily deduced. For the construction, he used the fact that forms

of degree d satisfy linear relations, known as the Cayley-Bacharach relations, which are

not satis�ed by forms of full degree 2d.

Hilbert's proof was nonconstructive and the �rst explicit example to verify Minkowski's

claim was given by Motzkin in 1967 [Mot67] :

mpx1, x2q � 1� x4
1x

2
2 � x2

1x
4
2 � 3x2

1x
2
2.(2.2.1)

This binary sextic is nonnegative, which follows from the arithmetic-geometric mean

inequality applied to the monomials p1, x4
1x

2
2, x

2
1x

4
2q, but not a sum of squares. The

non-existence of an SOS decomposition can be shown by assuming mpxq � °
i f

2
i pxq,

degpfiq ¤ 3. Now by inspecting monomials and comparing coe�cients, we reach a

contradiction. Thus, the Motzkin polynomial shows that Σ2,6 � P2,6. With exactly the

same argument one can even show that λ�mpxq, for any real constant λ, is not a sum

of squares in Rrx1, x2s.
After that, many other examples have been considered. For instance, for the case
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2 Preliminaries

pn, 2dq � p3, 4q Choi and Lam provided the following polynomial:

qpx1, x2, x3q � 1� x2
1x

2
2 � x2

2x
2
3 � x2

1x
2
3 � 4x1x2x3 P P3,4zΣ3,4.

Theorem 2.2.6 led Hilbert to asking the famous question, whether every nonnegative

polynomial is a sum of squares of rational functions. This question is known as Hilbert's

17th problem and can be equivalently stated as whether there always exists a suitable

multiplier for a nonnegative polynomial to be a �nite sum of squares. Hilbert himself

gave in 1893 [Hil93] an a�rmative answer for the special case n � 2, and Artin provided

in 1927 a solution to this problem in the general case, see [Art27].

Theorem 2.2.7 (Artin, 1927). Let f P Pn,2d. Then there is a sum of squares multiplier

h P Σn,2d1, h � 0, such that h � f is a sum of squares.

Example 2.2.8. For instance, multiplying the Motzkin polynomial with the square

factor hpx1, x2q � px2
1 � x2

2q yields the following SOS decomposition

px2
1 � x2

2q �mpx1, x2q � x2
2p1� x2

1q2 � x2
1p1� x2

2q2 � x2
1x

2
2px2

1 � x2
2 � 2q2.

7

Artin's proof used the Artin-Schreier theory of ordered �elds and was again noncon-

structive. However, a constructive method for strictly positive polynomials was given

by Habicht [Hab40] and is based on the following theorem by Pólya about forms:

Theorem 2.2.9. Let fpx0, . . . , xnq be a strictly positive form on Rn�1
¥0 zt0,0u, then f

can be represented as h � f � g, where h and g are forms with positive coe�cients. In

particular, we can choose

h � px0 � x1 � � � � � xnqN ,

for a suitable N P N.

Note that by homogeneity, the condition of strict positivity on Rn�1
¥0 zt0,0u is equiva-

lent to strict positivity on the unit simplex ∆1
n�1 � tpx0, . . . , xnq : xi ¥ 0,

°n
i�0 xi � 1u.

Reznick [Rez95] generalized this statement by showing that for any strictly positive

form f there exists a uniform denominator h � px2
0 � x2

1 � � � � � x2
nqN such that h � f

is a sum of squares for N large enough. A lower estimate for N is provided by Powers

and Reznick in [PR01].
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2.2.1 Semide�nite Programming and Detecting Sums of Squares

In this section we address the main reason why sums of squares are not only an

important nonnegativity certi�cate from theoretical point of view but also in practical

applications. Namely, membership in Σn,2d can be checked e�ciently by semide�nite

programming. Therefore, we �rst provide an overview of semide�nite programming,

where we also introduce positive semide�nite matrices, and then we study the relation

between sums of squares and semide�nite programming. For more details the reader

may consult [Las10], [LV12], and [VB96].

We denote by Sn the set of real symmetric n� n matrices,

Sn �  
A P Rn�n : A � AT

(
,

which is a vector space with dimension npn � 1q{2. A real symmetric matrix A is

positive semide�nite (psd), if the quadratic form xTAx ¥ 0 for all x P Rn and similarly,

A is positive de�nite (pd) if xTAx ¡ 0 for all x P Rnzt0u. We use the shorthands A © 0

resp. A ¡ 0. The set of positive semide�nite matrices is denoted as Sn�, and its interior,

the set of positive de�nite matrices, as Sn��.

The psd property has some equivalent conditions:

Proposition 2.2.10. For A P Sn, the following statements are equivalent:

(1) The matrix A is positive semide�nite, i.e., A © 0.

(2) Each eigenvalue of A is nonnegative.

(3) All 2n � 1 principal minors of A are nonnegative.

(4) There exists a factorization A � LLT , where L P Rn�r and r � rankpAq (Cholesky
decomposition).

For the pd property there are similar characterizations:

Proposition 2.2.11. For A P Sn, the following statements are equivalent:

(1) The matrix A is positive de�nite, i.e., A ¡ 0.

(2) Each eigenvalue of A is strictly positive.

(3) All n leading principal minors of A are strictly positive.

(4) There exists a factorization A � LLT , with L P Rn�n nonsingular.
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2 Preliminaries

The set Sn� forms a convex cone in Sn, with intpSn�q � Sn��. In fact, one can show

that Sn� is a proper cone and it is full-dimensional in Sn.
The standard scalar product on the algebra of all n� n matrices Rn�n is de�ned by

xA,By :� TrpATBq �
ņ

i,j�1

AijBij,

where TrpAq denotes the trace of A. Obviously, if A,B P Sn, then xA,By � TrpABq.
Under this inner product, the cone Sn� is self-dual, i.e., pSn�q_ � Sn�:

Proposition 2.2.12. A matrix A P Sn is positive semide�nite if and only if xA,By ¥ 0

holds for all B P Sn�.

A semide�nite program (SDP) is the problem of maximizing a linear function over

the intersection of the cone of positive semide�nite matrices with an a�ne space. When

restricting Sn� to diagonal matrices in Sn we get Rn
¥0. Thus, semide�nite programming

generalizes linear programming, which is the problem of maximizing a linear function

over an a�ne slice of the nonnegative orthant.

The (standard) primal form of a semide�nite program is

p� � sup
XPSn

txC,Xy : xAi, Xy � bi for i � 1, . . . ,m, X © 0u ,(2.2.2)

where C,Ai P Sn and b P Rm are monomial functions. The feasible set of an SDP is

called a spectrahedron and is always a convex set. Hence, SDPs are convex optimization

programs. In the special case where C � 0, the problem reduces to a feasibility problem.

Note that the optimal value p� might not be attained in the program (2.2.2). In general,

p� P RYt�8u, with p� � �8 if problem (2.2.2) is infeasible and p� � �8 might occur

in which case we say the problem is unbounded. A very important feature of SDP

problems is the associated duality theory. The dual semide�nite program reads:

d� � inf
yPRm

#
bTy :

m̧

i�1

yiAi � C © 0

+
,(2.2.3)

where the positive semide�nite constraint �C� y1A1�� � �� ymAm © 0 is also named a

linear matrix inequality (LMI). The spectrahedron can be parametrized by the LMI to

S � ty P Rm : �C � y1A1 � � � � � ymAm © 0u,

with C,Ai P Sn.
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2.2 The Cone of Nonnegative Polynomials and Sums of Squares

Obviously, for a primal/dual pair of feasible solutions pX,yq it holds xC,Xy ¤ bTy,

therefore p� ¤ d�, which is known as weak duality. The quantity d� � p� is called the

duality gap, and in contrast to linear programming there might be a positive duality

gap. One crucial issue in duality theory is to identify su�cient conditions that ensure

p� � d�, i.e., a zero duality gap, in which case one speaks of strong duality. Under

speci�c constraint quali�cations, SDP problems have strong duality, and thus zero

duality gap. We say that the program (2.2.2) is strictly feasible if there exists a feasible

X P Sn with X ¡ 0, analogously is (2.2.3) strictly feasible, if a feasible y P Rm ful�lls°m
i�1 yiAi � C ¡ 0.

Theorem 2.2.13 (Strong duality). If the primal program (2.2.2) is strictly feasible and

its dual (2.2.3) is feasible, then p� � d� and (2.2.3) attains its in�mum.

Analogously, if (2.2.3) is strictly feasible and (2.2.2) is feasible, then p� � d� and

(2.2.2) attains its supremum.

Even though the duality results for semide�nite programming are weaker than for

linear programming, the key strength of SDP relies on the fact that one can also use

interior point methods to �nd an approximate solution (to any given precision) in poly-

nomially many iterations and their running time is e�cient in practice for medium sized

problems; see, e.g., [dK02]. There are many good software packages for semide�nite

programming, see [BPT13] for an overview and the references therein for an in-depth

treatment. Moreover, semide�nite programs provide a powerful tool for constructing

convex relaxations for problems coming from combinatorial or polynomial optimiza-

tion. Well known examples for applications in combinatorial optimization are the SDP

approximation of the max-cut of a graph given by Goemans and Williamson [GW95]

and Lovász's SDP relaxation on the Shannon capacity of a graph, see [Lov79]. For more

general surveys we recommend [Lau08] and [Lov03]. SDP relaxations for polynomial

optimization will be discussed in Section 2.3.

Now, we address the remarkable connection between semide�nite programs and sums

of squares. This is given by the fact, that the problem of deciding whether a polynomial

is a sum of squares can be reduced to a semide�nite feasibility problem. To be more

speci�c, consider fpxq � °
αPA fαx

α P Rrxsn,2d and let zd denote the vector of all

monomials xi with degree at most d, i.e., zd � p1, x1, x2, . . . , xn, x1x2, . . . , x
d
nq. Those

monomials form the canonical basis of Rrxsn,d. Notice that the length of the vector zd
is
�
n�d
d

� � Npn, dq. Then we have the following relationship:
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Theorem 2.2.14. Let f P Rrxsn,2d. Then f is a sum of squares if and only if there

exists a symmetric matrix Q P SNpn,dq such that

fpxq � zTdQzd, Q © 0.(2.2.4)

Proof. Suppose f is a sum of squares fpxq � °k
i�1 f

2
i pxq. Denoting the vector of

coe�cients of fi by fi yields

fpxq �
ķ

i�1

zTd fif
T
i zd � zTd

�
ķ

i�1

fif
T
i

�
zd � zTdLL

Tzd,

where L is the matrix with i-th column containing the coe�cients fi. Having a Cholesky

decomposition, the matrix Q � LLT is positive semide�nite and is of size
�
n�d
d

�
.

Conversely, if (2.2.4) holds, then we can factorize the matrix Q � LLT with L of size�
n�d
d

�� rankpQq and obtain an SOS decomposition as given above.

The matrix Q is often called the Gram matrix. By comparing the coe�cients of the

equation fpxq � zTdQzd, we obtain

fα �
¸

β�γ�α
Qβ,γ ,(2.2.5)

where |β|, |γ| ¤ d. Obviously, this is a system of
�
n�2d

2d

�
linear equations. Thus,

the feasible set of (2.2.4) is the intersection of an a�ne subspace, given by the linear

constraints, with the cone of psd matrices, which is a SDP problem. Hence, membership

in Σn,2d can be decided with semide�nite programming. Notice that (2.2.5) also yields:

Corollary 2.2.15. The SOS cone Σn,2d is a projected spectrahedron of dimension�
n�2d

2d

�
.

The Gram matrix Q is of size
�
n�d
d

� � �
n�d
d

�
, which grows rapidly as the number of

variables and the degree grow. However, the size for �xed d is polynomial in n and for

�xed n polynomial in d. Sometimes, one can restrict to a smaller sized Gram matrix Q

or monomial vector z depending on certain structures of f , like sparsity or symmetry.

For example one can use a result by Reznick [Rez78, Theorem 1], which relates Newton

polytopes to sums of squares:

Theorem 2.2.16. If fpxq � °
i f

2
i pxq, then Newpfiq � 1

2
Newpfq.
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2.2 The Cone of Nonnegative Polynomials and Sums of Squares

Hence, it su�ces in (2.2.5) to consider monomials in 1
2

Newpfq, which reduces the

size of the Gram matrix Q.

2.2.2 Quantitative Relationship between Σ and P

Having seen in Hilbert's Theorem 2.2.6 all cases where Pn,2d and Σn,2d coincide, entails

the question about the size of the gap between the two cones, i.e., the set theoretic

di�erence Pn,2dzΣn,2d. Actually, the answer depends on whether we �x the number of

variables and the degree or not. In what follows, we provide results and their conclusions

for di�erent assumptions.

We �rst give a result of Blekherman [Ble06] which is rather negative as it shows

that if the degree is �xed and the number of variables grows, then the gap between

nonnegative polynomials and sums of squares is unbounded. Namely, let P n�1,2d resp.

Σn�1,2d denote the cone of nonnegative forms resp. the cone of sums of squares of forms

in Rrx0,xsn�1,2d. In order to compare both cones, Blekherman's idea is to de�ne subsets

of �nite volume by intersecting the cones with the following hyperplane H consisting

of all forms with integral average one on the unit sphere Sn in Rn�1:

H :�
"
f P Rrx0,xsn�1,2d :

»
Sn
fdσ � 1

*
,

where σ is the rotation invariant probability measure on Sn. Now de�ne the compact

sections of P n�1,2d and Σn�1,2d with H as

P̂n�1,2d :� P n�1,2d XH and Σ̂n�1,2d :� Σn�1,2d XH.

The dimension of the ambient space of these sections is
�
n�2d

2d

�� 1 �: D.

Theorem 2.2.17 ([Ble06]). There exist constants c1pdq and c2pdq both depending only

on d such that for n� 1 large enough

c1pdqpn� 1qpd�1q{2 ¤
�

Vol P̂n�1,2d

Vol Σ̂n�1,2d

� 1
D

¤ c2pdqpn� 1qpd�1q{2.

Thus, if the degree is �xed and at least 4 and the number of variables grows, then

there are signi�cantly more nonnegative polynomials than sums of squares. We point

out that for a small number of variables the distinction between the two cones is quite

delicate, and it is not known at what point Pn,2d becomes much larger than Σn,2d.
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2 Preliminaries

However, there are also positive results showing that we can perturb every nonnegative

polynomial f to make it a sum of squares. First, Berg [Ber87] showed existentially that

for a �xed number of variables and variable degrees the cone Σn,2d is dense in Pn,2d on

r�1, 1sn with respect to the l1-norm ||f ||1 �
°
αPNn |fα|. We state the result by Lasserre

and Netzer [LN07] which provides an explicit SOS approximation:

Theorem 2.2.18. Let f P Rrxs be a polynomial nonnegative on r�1, 1sn. For any

ε ¡ 0, there exists a nonnegative integer t0 P N such that the polynomial

f � ε

�
1�

ņ

i�1

x2t
i

�
,

is a sum of squares for all t ¥ t0.

Previously, Lasserre [Las06b] had given an analogous result for polynomials nonneg-

ative on the whole space Rn.

Theorem 2.2.19. Let f P Rrxs be a polynomial nonnegative on Rn.

(1) There exist some r0 P N, λ0 ¥ 0 such that for all r ¥ r0 and λ ¥ λ0 the polynomial

f � λ
ŗ

k�0

ņ

i�1

x2k
i

k!

is a sum of squares.

(2) For every ε ¡ 0, there exists some rε P N such that

fε :� f � ε
rε̧

k�0

ņ

i�1

x2k
i

k!

is a sum of squares. Hence, ||f � fε||1 Ñ 0 as ε Ó 0.

Notice that statement (2) of the above Theorem 2.2.19 provides an explicit converging

sequence tfεu. However, �nding explicit bounds for r0, λ0, and rε is still an open

problem.

2.2.3 Dual Cones, Boundary, and Facial Structure of Σ and P

Studying convex geometric structures such as the boundary, the facial structure, and

the dual cones of Pn,2d and Σn,2d is an active area of research in convex algebraic
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2.2 The Cone of Nonnegative Polynomials and Sums of Squares

geometry with many pending issues. In this section we give a brief overview of basic

results of those properties, see [BPT13] and the references stated in this section. As

most of the results are given for forms, we will consider the cones P n�1,2d and Σn�1,2d

in this section.

We begin with describing the conceptually simple dual cone P
_
n�1,2d. Consider the

dual space Rrx0,xs_n�1,2d of linear functionals on Rrx0,xsn�1,2d. For pv0,vq P Rn�1,

let lpv0,vq P Rrx0,xs_n�1,2d be the linear functional given by evaluation at pv0,vq, i.e.,
lpv0,vqpfq � fpv0,vq, for f P Rrx0,xsn�1,2d. Note that a form is globally nonnegative on

Rn�1 if and only if it is nonnegative on the unit sphere Sn. Thus, it follows easily:

Proposition 2.2.20. The dual cone P
_
n�1,2d is the conical hull of functionals lpv0,vq with

pv0,vq P Sn :

P
_
n�1,2d � cone

�
lpv0,vq : pv0,vq P Sn

�
.

In fact, the cone P
_
n�1,2d is the conical hull of the 2d-th Veronese variety. Moreover,

one can show that the functional lpv0,vq spans an extreme ray of P
_
n�1,2d for all pv0,vq P Sn,

and those functionals even form the complete set of extreme rays of P
_
n�1,2d.

In contrast to P
_
n�1,2d, describing the extreme rays of Σ

_
n�1,2d is signi�cantly more

complicated. Therefore we restrict ourselves to giving only the description of the dual

cone of Σn�1,2d here. We associate to every linear functional l P Rrx0,xs_2d a quadratic

form Ql de�ned on Rrx0,xsd by Qlpfq � lpf 2q for all f P Rrx0,xsd. Then we can view

Rrx0,xs_2d as a subspace of Sn�1,d, the vector space of real quadratic forms on Rrx0,xsd,
by identifying l with Ql. Hence, the cone of positive semide�nite forms in Sn�1,d is

de�ned as

Sn�1,d
� :�  

Q P Sn�1,d : Qpfq ¥ 0 for all f P Rrx0,xsd
(
.

Proposition 2.2.21. The dual cone Σ
_
n�1,2d is given by the intersection of the cone of

psd matrices Sn�1,d
� with the subspace Rrx0,xs_2d, i.e.,

Σ
_
n�1,2d � Sn�1,d

� X Rrx0,xs_2d.

Observe that on the basis of the above description the cone Σ
_
n�1,2d is a spectrahe-

dron. Recall that Σn�1,2d is only a projected spectrahedron. By explicitly choosing the

monomial basis of Rrx0,xsn�1,2d, we get the viewpoint of Section 2.2.1. An important

interpretation of the dual cones in terms of moment sequences of probability measures

will be discussed in Section 2.3.2.
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The boundaries of P n�1,2d and Σn�1,2d are hypersurfaces in Rrx0,xs2d. First of all

note that the interior of P n�1,2d consists of all strictly positive forms and the boundary

of P n�1,2d consists of forms with a nontrivial zero. Now, we are interested in the

algebraic boundary of the cones P n�1,2d and Σn�1,2d, i.e., the Zariski closure of the

boundary hypersurfaces. The algebraic boundary of P n�1,2d is extensively studied in

[Nie12]. Nie shows therein that the algebraic boundary of P n�1,2d lies on the irreducible

hypersurface de�ned by the discriminant. Again the algebraic boundary of Σn�1,2d is

signi�cantly more complicated. So far, there exist only partial results. For instance, it

is known that the algebraic boundary of P n�1,2d is contained in the algebraic boundary

of Σn�1,2d, as the discriminant is a component of the algebraic boundary of Σn�1,2d.

Furthermore, in [BHO�12] it is shown that the algebraic boundary of Σ3,6 respectively

Σ4,4 has a unique non-discriminant component. It has degree 83200 resp. 38475 and it

is the Zariski closure of the sextics that are sums of three squares of cubics, resp. the

quartics that are sums of four squares of quadrics.

Another open problem is to analyze the facial structures of P n�1,2d and Σn�1,2d as well

as the possible dimensions of their faces. In the cases n� 1 � 2, 2d � 2, and, to some

extent, the case pn � 1, 2dq � p3, 4q, thus, the Hilbert cases where P n�1,2d � Σn�1,2d,

this problem is relatively well understood, see [Bar02]. But generally, only partial

results are known. In particular, the facial analysis in the case where the two cones

di�er is important for a better understanding of the gap between P n�1,2d and Σn�1,2d.

Recently, Blekherman [Ble12] provided a geometric construction for the faces of the

SOS cone that are not faces of P n�1,2d, and in [BIK15] especially the dimensions of

the exposed faces are investigated, this will be further discussed in Section 3.3. Since

every form in P n�1,2d is a �nite sum of extremal forms, the cone P n�1,2d is completely

determined when all its extremal forms are known. Therefore, the study of EP n�1,2d

and EΣn�1,2d is extremely important and a wealth of research is dedicated to it, see,

e.g., [CL78], [CKLR82], and [Rez78]. For Σn�1,2d there exists the necessary condition

that all extremal forms are perfect squares. But not every perfect square is extremal:

px2
1 � x2

2q2 � px2
1 � x2

2q2 � p2x1x2q2. We point out that the product of two extremal

forms need not be extremal, see [CL77]. In [CKLR82] the authors give a complete

classi�cation of the cases when the inclusion EΣn�1,2d � EP n�1,2d holds:

Theorem 2.2.22. The inclusion EΣn�1,2d � EP n�1,2d holds precisely in the following

cases:

(1) n� 1 � 2,
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2.2 The Cone of Nonnegative Polynomials and Sums of Squares

(2) 2d ¤ 6,

(3) pn� 1, 2dq � p3, 8q,

(4) pn� 1, 2dq � p3, 10q.
Exposed extreme rays of P n�1,2d are conceptually simple, since a nonnegative form

f P P n�1,2d is an exposed extreme ray if and only if the variety given by f is maximal

among all varieties de�ned by nonnegative forms:

Proposition 2.2.23. A form f P P n�1,2d is an exposed extreme ray of P n�1,2d if and

only if for all p P P n�1,2d with Vpfq � Vppq it follows that p � λf for some λ P R.

In light of Proposition 2.2.23 and the fact that the boundary P n�1,2d consists of forms

with a nontrivial zero, the study of the facial structure is closely related to the study

of the real zeros of the cones. See also the following result by Harris [Har99] in this

context:

Lemma 2.2.24. If f P P n�1,2d is extremal, then Vpfq � H.

Hence, the investigation of the real zeros of P n�1,2d and Σn�1,2d enqueues the active

research in convex algebraic geometry, see, e.g., [CL77, CKLR82, Qua15, Rez00, XY17],

and also Section 3.2. In [CLR80] the authors investigate the real zeros of nonnegative

forms and provide various consequential results. The main result concerns the set

theoretic di�erence between P n�1,2d and Σn�1,2d in the minimal cases:

Theorem 2.2.25.

(1) If f P P 3,6 and |Vpfq| ¡ 10, then f P Σ3,6. In fact, f is a sum of three squares of

cubics.

(2) If f P P 4,4 and |Vpfq| ¡ 11, then f P Σ4,4. In fact, f is a sum of six squares of

quadratics.

Both cases require |Vpfq| � 8.

Statement (2) has been slightly improved in [BHO�12] to forms f with |Vpfq| ¡ 10.

We close this section by de�ning certain numbers given by the maximal number of real

zeros of forms in the SOS and the nonnegativity cone, which were as well studied by

Choi, Lam, and Reznick in [CKLR82]. Let

Bn�1,2d :� sup
fPPn�1,2d

|Vpfq| 8

|Vpfq| and B1
n�1,2d :� sup

fPΣn�1,2d

|Vpfq| 8

|Vpfq|.
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To determine these numbers exactly is a rather di�cult task. In what follows, we list

some known results in few special cases.

Theorem 2.2.26 ([BHO�12, CLR80, Sha77]). Let Bn�1,2d and B1
n�1,2d be as de�ned

above, then:

(1) B2,2d � B1
2,2d � d and Bn�1,2 � B1

n�1,2 � 1.

(2) B3,4 � 4 and B3,6 � B4,4 � 10.

(3) d2 ¤ B3,2d ¤ 3dpd�1q
2

� 1 for 2d ¥ 6, and

(4) B3,6k ¥ 10k2 , B3,6k�2 ¥ 10k2 � 1 , B3,6k�4 ¥ 10k2 � 4.

(5) Let βp2dq � B3,2d

4d2
. Then β � lim2dÑ8 βp2dq exists. Moreover, βp2dq ¤ β for all

5
18
¤ β ¤ 1

2
.

(6) B1
n�1,2d ¥ dn.

(7) B1
3,2d � p2dq2

4
� d2.

Theorem 2.2.26 shows that B3,2d is always �nite. But already for Bn�1,4 with

n� 1 ¥ 5, we do not know if the number needs to be �nite in general.

2.3 Polynomial Optimization and Real Algebraic

Geometry

Building upon Section 2.2, we now discuss one of the most important applications

of nonnegative polynomials and sums of squares, namely its application to polynomial

optimization. The objective of polynomial optimization is to minimize a real polynomial

f over some set K,

f�K � inftfpxq : x P Ku.

In the case of global respectively unconstrained optimization, we have K � Rn, and for

constrained optimization K is the semialgebraic set de�ned by a �nite number of real

polynomials. The special case that all involved polynomials in this problem have degree

one boils down to a linear program. Obviously, the general problem is equivalent to

�nding the largest real number γ such that f � γ is nonnegative on K:

f�K � suptγ P R : fpxq � γ ¥ 0 for all x P Ku.
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By means of this observation we may see the relation between nonnegative polynomials

and polynomial optimization. Thus, a polynomial optimization problem can be reduced

to our main problem of deciding nonnegativity of polynomials. Since this is co-NP-hard

in general, see Section 2.2, a natural idea is to replace the hard nonnegativity condition

with a more tractable condition, i.e., to relax the problem. This section is dedicated to

giving relaxation methods for this problem based on relaxing nonnegativity over K by

sums of squares decompositions, and the dual theory of moments. Since SOS decompo-

sitions can be formulated as a semide�nite programming problem, the approach via SOS

relaxations leads to e�ciently computable approximations for the initial problem. There

is a vast literature devoted to this topic, see [Las01], [Las08], [Par00], [Par03], [PS03],

and [Sho87a]. In what follows, we �rst discuss the relaxation idea in the particular

case of global optimization. Then we study nonnegative polynomials from the dual

perspective, namely with the theory of moments, which allows us also to formulate a

dual polynomial optimization problem, the moment problem. As a �rst step towards

constrained optimization, we provide several results from real algebraic geometry

concerning representation theorems of polynomials which are nonnegative respectively

positive on a given set. Finally, we analyze the general constrained optimization

problem and its common approach via Lasserre's relaxation.

2.3.1 Global Optimization and Sums of Squares Relaxations

Given a real polynomial f P Rrxs, the global polynomial optimization problem (POP)

for f is the problem of minimizing f over the full space Rn:

f� � inftfpxq : x P Rnu.

The optimal value of this program will be denoted by f�. Clearly, this problem is

equivalent to determining the real number

f� � suptγ P R : fpxq � γ ¥ 0 for all x P Rnu.

Since this problem is hard in general, one can �nd a lower bound for f� by relaxing

the nonnegativity condition in the above problem to �nding the real number

fsos � sup

#
γ P R : f � γ �

ķ

i�1

q2
i for some qi P Rrxs

+
.(2.3.1)
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The bound fsos for the optimal SOS decomposition of f can be determined by semidef-

inite programming, see Section 2.2.1. Since every sum of squares is nonnegative, the

SOS relaxation yields a lower bound for the optimal value of (POP), i.e., fsos ¤ f�. The

subsequent question is when the SOS relaxation provides the exact number, in which

this case the relaxation is said to be exact. This can be answered as follows, see [Las01]:

Theorem 2.3.1. For f P Rrxs it holds fsos � f� if and only if the polynomial fpxq�f�
is a sum of squares.

Remember the Motzkin polynomial mpxq � 1 � x4
1x

2
2 � x2

1x
4
2 � 3x2

1x
2
2, cf. (2.2.1). It

holds m� � 0 with zeros attained at p�1,�1q. But we noted that m� λ for any real λ

is not a sum of squares, leading to msos � �8.

2.3.2 Duality and the Moment Problem

A �eld closely interlinked with the theory of nonnegative polynomials and sums of

squares decompositions is the problem of moments. In this section we provide a brief

overview of the theory of moments, the moment problem, the relation to polynomial

optimization, and the connection to the duals of Pn,2d and Σn,2d.

Let µ be a measure on Rn. For α P Nn, the quantity yα :� ³
xαdµ is called the

moment of order α of the measure µ. Then, the sequence y � pyαqαPNn is the sequence

of moments, and for a given t P N, the truncated sequence pyαqαPNnt is the sequence of

moments up to order t, where Nn
t :� tα P Nn : |α| ¤ tu. When y is the sequence of

moments of a measure, we refer to µ as a representing measure for the sequence y.

A basic problem in the theory of moments concerns the characterization of (in�nite or

truncated) moment sequences, i.e., the characterization of those sequences y � pyαqα
that are the sequences of moments of some measure µ. Given a sequence y, the

K-moment problem asks for the existence of a representing (Borel) measure µ sup-

ported on K � Rn, i.e., a measure µ with yα :� ³
K
xαdµ. The case K � Rn yields the

basic moment problem. Solving this problem is in general a hard task and is related to

polynomial optimization.

Given a sequence pyαqαPNn , its moment matrix is de�ned by the (in�nite) matrix

Mpyq :� pyα�βqα,β, for α,β P Nn. Similarly, for t ¥ 1 and pyαqαPNn2t the truncated

moment matrix is given by Mtpyq :� pyα�βqα,β, for α,β P Nn
t . Moreover, shifting

a sequence pyαqαPNn by a polynomial g P Rrxs leads to a new sequence de�ned as

g � y :� Mpyqg, with α-th entry pg � yqα � °
β gβyα�β for all α P Nn. The moment
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matrices of pg � yq are often called localizing matrices.

To a sequence y corresponds a linear functional l P Rrxs_, de�ned as

l : Rrxs Ñ R

xα ÞÑ yα

f �
¸
α

fαx
α ÞÑ lpfq �

¸
α

fαyα.

Observe that in the case of y being a sequence of vectors v P Rn, the linear functional

l is the evaluation at v (denoted by lv), i.e., lvpfq � fpvq, see Section 2.2.3.

Before proceeding, we give a fundamental result from Haviland [Hav36], which shows

the relation of the moment problem and our main problem of deciding nonnegativity.

Theorem 2.3.2 (Haviland). Let y � pyαqαPNn be a sequence and l P Rrxs_ be the

corresponding linear functional. Then the following statements are equivalent:

(1) There exists a Borel measure µ on Rn such that yα �
³
xαdµ for all α P Nn.

(2) lpfq ¥ 0 for all nonnegative polynomials f on Rn.

Next, given a linear form l to a sequence y we consider its associate bilinear form L
by

L : Rrxs � Rrxs Ñ R

pf, gq ÞÑ lpf � gq � fTMpyqg,

where f denotes the coe�cient vector of f , similarly g. Obviously, the moment

matrix Mpyq is the representation matrix of L. Observe that the related quadratic

form Lpf, fq � lpf 2q � fTMpyqf is psd for all f P Rrxs, i.e., lpf 2q ¥ 0 if and only if the

moment matrix Mpyq is psd, i.e., Mpyq © 0. Hence, we can deduce an easy necessary

condition for moment sequences, namely if y is a truncated sequence of moments up to

order 2t of a measure µ, then Mtpyq © 0. This observation results from the following

calculation for f P Rrxs: Lpf, fq � lpf 2q � ³
fpxq2dµ ¥ 0, since every fpxq2 ¥ 0 for all

x P Rn.

Based on this fundamental knowledge, we study the moment relations for polynomial

optimization problems. Here, we restrict to the unconstrained case, but note that

the provided approach can be generalized to the constrained case, as we will see for
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Lasserre's relaxation in Section 2.3.4. For (POP) it is

f� � inf
xPRn

fpxq � inf
µ

»
Rn
fpxqdµ,

where the second in�mum is taken over all probability measures µ on Rn supported on

Rn. Recall that for a given polynomial f � °
α fαx

α P Rrxsn,2d the SOS relaxation is

fsos � sup tγ P R : f � γ P Σn,2du .

The moment relaxation is given by

fmom � inf
y

#¸
α

fαyα : y0 � 1,Mdpyq © 0

+

� inf
l

 
lpfq : lp1q � 1, lpg2q ¥ 0 for all g P Rrxsn,d

(
.

Using the truncated moment matrix in this relaxation has its reason in the computa-

tion. Involving only the in�nite moment matrix, it would be unclear how to compute

fmom. However, due to the degree bound we obtain a (�nite-dimensional) semide�nite

program. The SDPs for fsos and fmom can be viewed as dual programs, and actually

there is no duality gap:

Theorem 2.3.3. Given f P Rrxs2d, we have fsos � fmom. Additionally, if fmom ¡ �8
then the SOS relaxation fsos has an optimal solution.

Moreover, if f � f� is a sum of squares, then the subsequent theorem explains how

to extract a minimizer for (POP).

Theorem 2.3.4. Let f P Rrxs2d with global minimum f�. If the nonnegative polynomial

f � f� is SOS, then f� � fsos � fmom, and if x� is a minimizer for f on Rn, then the

moment vector y� � px�αqαPNn2d is a minimizer of the moment relaxation.

We now return to the question of exactness of a relaxation already mentioned in

Section 2.3.1. Using duality theory there are some important results which tackle this

question. We present one based on the so called �at extension of moment matrices:

Theorem 2.3.5. Let f P Rrxs2d, and suppose that the optimal value fmom of the

moment relaxation is attained at some optimal solution y�. If it holds that

rankpMd�1py�qq � rankpMdpy�qq, then f� � fmom and there are at least rankpMdpy�qq
global minimizers.
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We conclude this section by sketching the duality between the cone P of nonnegative

polynomials respectively the cone Σ of sums of squares and moment sequences. For

this, consider the cones M :� ty � pyαqαPNn : y has a representing measureu and

M� :� ty � pyαqαPNn : Mpyq © 0u. It holds:

Theorem 2.3.6. The cones P andM respectively Σ andM� are duals of each other.

2.3.3 Positivstellensätze

We begin this section by establishing the relationship between classical algebraic

geometry and real algebraic geometry as well as certain basic results from the latter.

Then we introduce several Positivstellensätze, which provide the essential tool to attack

constrained optimization problems. We refer to [Las07], [Lau09], and [Mar08] for an

overview including di�erent representation theorems.

While classical algebraic geometry deals with zeros of polynomial equations as subsets

of algebraically closed �elds, like Cn, real algebraic geometry deals with subsets of Rn

de�ned by polynomial (in-)equalities. These subsets are called semialgebraic sets, which

are �nite unions of basic sets. Given a semialgebraic set, a fundamental problem in this

context is to decide whether it is empty or not. In real algebraic geometry one often

considers a basic closed semialgebraic set K � Rn, which can be described as the set of

solutions of the form

K � tx P Rn : g1pxq ¥ 0, . . . , gspxq ¥ 0u,(2.3.2)

where g1, . . . , gs P Rrxs.

In both classical and real algebraic geometry one deals with �Stellensätzen�. In the

classical setting, these are the so called Nullstellensätze. The �rst one goes back to

Hilbert:

Theorem 2.3.7 (Hilbert's Nullstellensatz). Given polynomials f, g1, . . . , gs P Rrxs.
Denote by I � xg1, . . . , gsy the ideal generated by gi, then we have that

f � 0 on VCpIq if and only if fN �
ş

i�1

pigi,

for some pi P Rrxs, N P N�, and VCpIq � tx P Cn : g1pxq � 0, . . . , gspxq � 0u.
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This theorem is often referred to as the strong Nullstellensatz and has a useful

corollary, which is called Hilbert's weak Nullstellensatz.

Corollary 2.3.8. Let I � xg1, . . . , gsy, with g1, . . . , gs P Rrxs. Then we have the

following equivalence:

(1) VCpIq � H.

(2) 1 P I, i.e., 1 � °s
i�1 pigi for some pi P Rrxs.

Thus, the weak Nullstellensatz gives an explicit algebraic certi�cate of the emptiness

of any algebraic set.

The analog of a Nullstellensatz in real algebraic geometry is a Positivstellensatz.

A Positivstellensatz is a representation theorem for a polynomial f which is strictly

positive on a semialgebraic set K. The representation yields an algebraic evidence of

the positivity of f on K. In the literature there is a huge amount of such representation

theorems, dealing with di�erent sets and having di�erent focus and versions.

In fact, we already came across a Positivstellensatz that provides a certi�cate of positiv-

ity for a homogeneous polynomial on the unit simplex, namely Pólya's Thereom 2.2.9.

The �rst who characterized positive (and nonnegative) polynomials on basic closed

semialgebraic sets was Krivine [Kri64a] in 1964. His result was rediscovered by Stengle

[Ste74] in 1973. But with a view to optimization this result does not help us to tackle

constrained polynomial optimization problems over a semialgebraic set K, because

the reformulation using the Positivstellensatz by Krivine/Stengle cannot be computed

e�ciently. Therefore, we have to use other Positivstellensätze which add further

assumptions on K.

Before stating two prominent representatives of such results, we introduce the necessary

terminology.

De�nition 2.3.9.

(i) A subset T � Rrxs is called a preorder if it contains all squares in Rrxs and is

closed under addition and multiplication, i.e.,

f 2 P T for all f P Rrxs, T � T � T, and T � T � T.

(ii) A subset M � Rrxs is called a quadratic module if it contains 1, is closed under

addition and under multiplication by squares, i.e.,

1 PM, M �M �M, and f 2M �M for all f P Rrxs. 7
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Observe that every preorder is a quadratic module. The preorder respectively the

quadratic module generated by polynomials g1, . . . , gs P Rrxs is given by

T pg1, . . . , gsq �
$&
%

¸
J�t1,...,su

σJ
¹
jPJ

gj : σJ P Σn

,.
- �

$&
%

¸
ePt0,1us

σeg
e1
1 � � � gess : σe P Σn

,.
- ,

Mpg1, . . . , gsq �
#
σ0 �

ş

i�1

σigi : σ0, σi P Σn

+
.

Obviously, every polynomial f contained in T pg1, . . . , gsq or Mpg1, . . . , gsq has a

sum of square decomposition and thus, is nonnegative. We now discuss two theorems

showing that the converse holds under certain extra assumptions. In what follows,

we consider basic closed semialgebraic sets K given by the polynomials g1, . . . , gs, as

de�ned in (2.3.2). In 1991, Schmüdgen [Sch91] proved the subsequent Positivstellensatz

for the additional assumption that K is compact:

Theorem 2.3.10 (Schmüdgen's Positivstellensatz). Assume the set K is compact.

Given a polynomial f P Rrxs which is positive on K, i.e., fpxq ¡ 0 for all x P K,

then f P T pg1, . . . , gsq.

Although this result naturally leads to a hierarchy of semide�nite relaxations for the

constrained polynomial optimization problem, one drawback is that the representation°
J σJgJ P T pg1, . . . , gsq involves 2s sums of squares σJ . Hence, the representation is

exponential in the number s of the constraints de�ning K. Next we will present a

Positivstellensatz �rst proven in 1993 by Putinar [Put93], which only involves a linear

number of terms for the representation, and thus is more suitable for optimization

purposes.

Roughly speaking, Putinar showed the analog of Schmüdgens Positivstellensatz, where

the preorder is replaced by the quadratic module, but with the additional assumption

that the quadratic module has to be Archimedean. To clarify, a quadratic module

Mpg1, . . . , gsq is called Archimedean, if for all f P Rrxs there exists an integer N ¥ 1

such that N � f PMpg1, . . . , gsq. This de�nition has several equivalent conditions:

(1) There exists a polynomial ppxq P Mpg1, . . . , gsq such that the level set

tx P Rn : ppxq ¥ 0u is compact.

(2) N �°n
i�1 x

2
i PMpg1, . . . , gsq for some integer N ¥ 1.

(3) N � xi PMpg1, . . . , gsq for i � 1, . . . , n and some integer N ¥ 1.
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Clearly, condition (1) implies that the set K is compact. On the other hand, if K

is compact, then it is contained in a ball of radius R for some R P N. By de�nition of

boundedness, one can always force Mpg1, . . . , gsq to be Archimedean simply by adding

the (redundant) inequality R2 �°n
i�1 x

2
i ¥ 0 to the description of K. However, in the

general situation, the radius is not known a priori. An explicit example for a compact

set K without Mpg1, . . . , gsq being Archimedean is the Jacobi-Prestel counterexample,

see [PD01]. With this in mind, we state

Theorem 2.3.11 (Putinar's Positivstellensatz). Assume that the quadratic module

Mpg1, . . . , gsq is Archimedean. For f P Rrxs, if fpxq ¡ 0 for all x P K, then

f PMpg1, . . . , gsq.

Note that in both given Positivstellensätzen the strict positivity of f is necessary.

Putinar's Positivstellensatz provides the basis for the SOS relaxation established by

Lasserre, this relaxation is subject of the next section.

2.3.4 Constrained Optimization and Lasserre's Relaxation

In this section the di�erent strands o�ered above will be woven together. We use the

knowledge of the last sections to tackle constrained optimization problems. In this

context we establish the well-known Lasserre relaxation which yields a hierarchy of

lower bounds converging to the optimal value.

We begin by stating the underlying problem. We consider the constrained polynomial

optimization problem (CPOP)

f�K � inftfpxq : x P Ku � suptγ P R : fpxq � γ ¥ 0 for all x P Ku,

with feasible set K � Rn given as the basic closed semialgebraic set K de�ned by

polynomials g1, . . . , gs as in (2.3.2). The optimal value of (CPOP) is denoted by f�K .

By means of Putinar's Positivstellensatz we consider following SOS relaxation for

(CPOP):

fsos � suptγ P R : f � γ P QMpg1, . . . , gsqu

� sup

#
γ : f � γ � σ0 �

ş

i�1

σigi, σ0, σi P Σn for all i � 1, . . . , s

+
.
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As already stated, this relaxation can be reformulated using positive semide�nite

matrices with in�nite dimension. In order to get an SDP involving �nite-dimensional

matrices, the key idea is to add degree bounds. Following Lasserre [Las01] we now

construct such a relaxation. Let 2d ¥ maxtdegpfq, degpg1q, . . . , degpgsqu then the

d-th Lasserre relaxation is given by the parameter

f pdqsos � sup

#
γ : f � γ � σ0 �

ş

i�1

σigi,
σ0, σi P Σn for all i � 1, . . . , s,

with degpσ0q, degpσigiq ¤ 2d

+
.(2.3.3)

The relaxation based on moments is given by

f pdqmom � inf
y

#̧
α

fαyα : y0 � 1, Mdpyq © 0, Md�tgi pgi � yq © 0 pi � 1, . . . , sq
+
,(2.3.4)

with sequence y � pyαqαPNn2d , tgi :� rdegpgiq{2s, and the truncated localizing matrices

Md�tgi pgi�yq. Both programs are semide�nite programs involving matrices of size
�
n�d
d

�
.

Thus, for �xed d both parameters f pdqsos and f pdqmom can be computed in polynomial time

(up to an ε-error).

Actually, the programs are dual semide�nite programs, i.e., it holds f pdqsos ¤ f
pdq
mom ¤ f�K .

Under some conditions on K one can show that the bounds coincide, see [Las01] and

[Sch05]. Again, an important question concerns the exactness of the bounds. Analo-

gously to the moment relaxation in the unconstrained case, a �at extension condition

provides a su�cient condition such that the bound f pdqmom is exact. Moreover, Lasserre

[Las01] showed that by Putinar's Positivstellensatz the bounds converge asymptotically

if the quadratic module is Archimedean:

Theorem 2.3.12. If the quadratic module Mpg1, . . . , gsq is Archimedean, then it holds

limdÑ8 f
pdq
sos � limdÑ8 f

pdq
mom � f�K.

Hence, the Lasserre relaxation yields a hierarchy of lower bounds which converge

monotonously to the optimal value. A crucial subsequent question concerns the �nite

convergence of the hierarchy, i.e., the convergence after �nitely many steps. In general,

only in some situations �nite convergence can be guaranteed. For example, if the

description of K additionally involves equality constraints hjpxq � 0, j � 1, . . . ,m,

Laurent [Lau09, Theorem 6.15] showed:
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Theorem 2.3.13. Consider the optimization problem of minimizing f P Rrxs over the
set K � tx P Rn : h1pxq � 0, . . . , hmpxq � 0, g1pxq ¥ 0, . . . , gspxq ¥ 0u. De�ne the ideal
I � xh1, . . . , hmy.
(1) |VCpIq|   8, then f pdqsos � f

pdq
mom � f�K, for d large enough.

(2) |VRpIq|   8, then f pdqmom � f�K, for d large enough.

Recently, Nie [Nie13a] proposed a new condition called �at truncation for the

purpose of certifying exactness and �niteness.

For the problems of �nding an SOS decomposition as well as the computation of

the SOS respectively the moment relaxation for both (POP) and (CPOP), there exist

several software packages, see [Lau09] for a short overview.

We conclude this section by mentioning some well known issues of the relaxations

based on sums of squares. There are minor issues like there being cases with

non-�nite convergence or that no e�cient bounds for �nite convergence are known

in the generic case. But the most crucial one is due to the usage of SDP to compute

these relaxations, because these have long running times for a large number of variables

or high-degree polynomials, which makes this approach challenging to use for problems

arising in practice. Attacking these issues is an active area of research, and motivates

the search for other nonnegativity certi�cates independent of sums of squares. In light

of this, we discover a new cone, which approximates the nonnegativity cone independent

of the SOS cone. Such a cone will be introduced in the next section.

2.4 The Cone of Sums of Nonnegative Circuit

Polynomials

In this section we introduce sums of nonnegative circuit polynomials, the key object

of this thesis. Circuit polynomials are certain sparse polynomials having a special

structure in terms of their Newton polytopes and supports. The key property that

makes the study of these polynomials attractive is that nonnegativity of circuit

polynomials can be checked easily by a certain number which can be derived from

the initial circuit polynomial immediately. Thereby, we have a new nonnegativity

certi�cate, which even appears to be independent of SOS certi�cates. In what follows,

we introduce these polynomials and discuss some important results, see also [IdW16a]

and [dW15] for an overview.
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We start by de�ning the class of circuit polynomials :

De�nition 2.4.1. Let f P Rrxs be supported on A � Nn such that all elements of

V pAq are even. Then f is called a circuit polynomial if it is of the form

fpxq �
ŗ

j�0

fαpjqxαpjq � fβx
β,(2.4.1)

with r ¤ n, exponents αpjq, β P A, and coe�cients fαpjq P R¡0, fβ P R, such that the

following conditions hold:

(C1) The points αp0q,αp1q, . . . ,αprq are a�nely independent and equal V pAq.

(C2) The exponent β can be written uniquely as

β �
ŗ

j�0

λjαpjq with λj ¡ 0 and
ŗ

j�0

λj � 1

in barycentric coordinates λj relative to the vertices αpjq with j � 0, . . . , r.

We call the terms fαp0qxαp0q, . . . , fαprqxαprq the outer terms and fβx
β the inner term

of f . For their corresponding exponents we refer to outer exponents respectively inner

exponent. We denote the set of all circuit polynomials with support A by CircA.

For every circuit polynomial we de�ne the corresponding circuit number as

Θf �
r¹
j�0

�
fαpjq
λj


λj

.(2.4.2)

7

Observe that by condition (C1) the set V pAq � tαp0q, . . . ,αprqu is the vertex

set of an r-dimensional even simplex, i.e., each αpjq P p2Nqn, which coincides with

Newpfq � convpAq. In such a case we say that Newpfq is a simplex Newton polytope.

Moreover, since the barycentric coordinates are strictly positive, we assume that

β P intpNewpfqq, which is justi�ed by Lemma 2.4.3. To clarify, if β was located on

the boundary of Newpfq, then f could be written as a sum of two circuit polynomials,

namely the face containing β and a monomial square, see Example 2.4.2 (ii).

The terms �circuit polynomial� and �circuit number� are chosen since the support

A � tβ,αp0q, . . . ,αprqu forms a circuit ; this is a minimally a�ne dependent set. This

terminology comes from matroid theory; see, e.g., [Oxl11, page 9].

There is a well-known representative in the class of circuit polynomials:
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Figure 2.1: The support sets of the Motzkin polynomial mpx1, x2q and the polynomial
ppx1, x2q in Example 2.4.2.

Example 2.4.2.

(i) Consider the Motzkin polynomial mpx1, x2q � 1 � x4
1x

2
2 � x2

1x
4
2 � 3x2

1x
2
2. See

Figure 2.1 for the support of m. Obviously, m is a circuit polynomial since the

Newton polytope Newpmq � conv tp0,0q, p4,2q, p2,4qu is a simplex andm has one

additional support point coming from the inner term �3x2
1x

2
2, which is located

strictly in the interior of this simplex, namely p2,2q P intpNewpmqq.

(ii) Now consider ppx1, x2q � 1 � x4
1x

2
2 � x2

1x
4
2 � 3x2

1x2. This polynomial arises from

the Motzkin polynomial by shifting the inner exponent p2, 2q to the boundary of

Newpmq � Newppq onto p2, 1q, see also Figure 2.1. We can write p as the sum

p � p1�p2 � p1�x4
1x

2
2�3x2

1x2q�px2
1x

4
2q, with a circuit polynomial p1 in the sense

of De�nition 2.4.1 and p2 being a monomial square, which can be interpreted as

a degenerated circuit polynomial. 7

In what follows, we characterize nonnegativity for circuit polynomials. But at

�rst, we provide the observation allowing us to assume that β P intpNewpfqq, see
[IdW16a, Lemma 3.7].

Lemma 2.4.3. Let fpxq � °r
j�0 fαpjqx

αpjq � fβx
β be such that Newpfq is a simplex

and β P BNewpfq. Furthermore, let F be the face of Newpfq containing β. Then, f is

nonnegative if and only if the restriction to the face F is nonnegative.

We now state the fundamental fact that nonnegativity of a circuit polynomial f can

be decided easily via its circuit number Θf alone:

40



2.4 The Cone of Sums of Nonnegative Circuit Polynomials

Theorem 2.4.4 ([IdW16a], Theorem 3.8). Let f be a circuit polynomial with inner

term fβx
β and let Θf be the corresponding circuit number, as de�ned in (2.4.2). Then

the following statements are equivalent:

(1) f is nonnegative.

(2) |fβ| ¤ Θf and β R p2Nqn or fβ ¥ �Θf and β P p2Nqn.

Note that statement (2) is equivalent to: |fβ| ¤ Θf or f is a sum of monomial squares.

Thus, Theorem 2.4.4 shows that we only have to solve a system of linear equations to

check nonnegativity of a circuit polynomial. The proof of the above theorem is based

on the norm relaxation method. We denote by x�, �y the standard inner product. A

key observation for circuit polynomials fpxq is that nonnegativity of fpxq is equivalent
to nonnegativity of fpexq � °r

j�0 fαpjqe
xx,αpjqy � fβe

xx,βy for all x P Rn, where without

loss of generality fβ is assumed to be strictly negative after a possible transformation

of variables xj ÞÑ �xj. Then one can show that fpexq with fβ � �Θf has a unique

global minimizer and one can even compute this root in special cases, see Section 3.2.

The knowledge about the minimum �nally leads to the statements of Theorem 2.4.4.

We remark that for special instances the result of Theorem 2.4.4 was known before. In

[Rez89] Reznick showed this for f being an agiform, that is a special case of a circuit

polynomial when choosing fαpjq � λj and fβ � �1. The term agiform is implied by the

fact that its nonnegativity follows by the arithmetic-geometric mean inequality. And

Fidalgo and Kovacec proved the result for circuit polynomials with standard simplex

Newton polytope, i.e., Newpfq � ∆n,2d, see [FK11].

An immediate consequence of the above theorem is an upper bound for the number

of zeros of circuit polynomials, but we will postpone this discussion to Section 3.2.

Furthermore, a direct corollary can be drawn from the observations above:

Corollary 2.4.5. A circuit polynomial f with constant term is located on the boundary

of the cone of nonnegative polynomials, i.e., f P BPn,2d, if and only if fβ P t�Θfu and
β R p2Nqn or fβ � �Θf and β P p2Nqn.

Another equivalent condition for f P BPn,2d is that the A-discriminant vanishes at f ,
for more information we refer to [IdW16a, Section 4.3].

The example hereinafter demonstrates the result of Theorem 2.4.4.
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Example 2.4.6. Again we consider the Motzkin polynomialm � 1�x4
1x

2
2�x2

1x
4
2�3x2

1x
2
2.

To test nonnegativity of m, we have to compare its circuit number Θm with the

coe�cient mβ � �3. Since β � p2, 2q P p2Nq2, m is nonnegative if and only if

mβ � �3 ¥ �Θm. The barycentric coordinates of the inner exponent p2, 2q are given
by λj � 1

3
for j P t0, 1, 2u. This yields the circuit number

Θm �
2¹
j�0

�
mαpjq
λj


λj

�
�

1

1{3

1{3

�
�

1

1{3

1{3

�
�

1

1{3

1{3

� 3.

Thus, mβ � �3 � �Θm and we can conclude that the Motzkin polynomial is nonnega-

tive, hence it is a nonnegative circuit polynomial, and by Corollary 2.4.5 it is contained

in the boundary of the cone of nonnegative polynomials. 7

On the basis of the provided results, we deduce that writing a polynomial as a sum

of nonnegative circuit polynomials is a certi�cate of nonnegativity. More formally we

de�ne the set of such polynomials as follows:

De�nition 2.4.7. We de�ne for every n, d P N� the set of sums of nonnegative circuit

polynomials (SONC) in n variables of degree 2d as

Cn,2d �
#
p P Rrxsn,2d : p �

ķ

i�1

µifi, µi ¥ 0, fi P CircAXPn,2d, A � Ln,2d, k P N�
+
.

7

We denote by SONC both the class of polynomials that are sums of nonnegative

circuit polynomials and the property of a polynomial to be in this class. Indeed, SONC

polynomials form a convex cone independent of the SOS cone.

Theorem 2.4.8 ([IdW16a], Proposition 7.2). Cn,2d is a convex cone satisfying:

(1) Cn,2d � Pn,2d for all n, d P N�,

(2) Cn,2d � Σn,2d if and only if pn, 2dq P tp1, 2dq, pn, 2q, p2, 4qu,

(3) Σn,2d � Cn,2d for all pn, 2dq with 2d ¥ 6.

Obviously, Cn,2d is a convex cone as for α, β P R¡0 and p, q P Cn,2d it holds that

αp � βq P Cn,2d. The �rst statement of Theorem 2.4.8 is trivial. The �if� part of

the second statement follows from Hilbert's Theorem 2.2.6 and for the �only if� part
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one can explicitly obtain polynomials in Cn,2dzΣn,2d. Note in this context, that the

Motzkin polynomial is a SONC polynomial, which is not SOS. The last statement is a

consequence of a zero argument. The only case where this argument fails is the case

pn, 2dq � pn, 4q. One contribution of this thesis is to complete the cone containment

statement, see Theorem 3.1.2. In sum, Theorem 2.4.8 yields that sums of nonnegative

circuit polynomials are a new type of nonnegativity certi�cates, which are independent

of sums of squares.

The obvious follow-up question is how to detect a SONC decomposition of a given

polynomial, or in other words how to check membership in the cone Cn,2d. It turns out

that in many cases this can be done by geometric programming (GP). A GP is a special

type of convex optimization problem, which can be solved in polynomial time using

interior point methods; see [DPZ67] and [NN94]. To be more precise, a polynomial

with simplex Newton polytope is SONC if and only if a GP is feasible. This is in

direct analogy to the relation between SOS and SDP. A detailed discussion in context

of polynomial optimization is given in Chapter 4.

Note that just like the SOS condition, the condition to be a sum of nonnegative

circuit polynomials is only su�cient for nonnegativity of a polynomial. However, for

special cases it is indeed necessary, see [IdW16a, Corollary 7.5]:

Proposition 2.4.9. Let f � °r
j�0 fαpjqx

αpjq � °k
i�1 fβpiqx

βpiq be nonnegative with

fαpjq P R¡0 and fβpiq P R� such that Newpfq � convtαp0q,αp1q, . . . ,αprqu is an even

simplex and all βpiq P pintpNewpfqq X Nnq. If there exists a vector y P pR�qn such that

fβpiqyβpiq   0 for all i � 1, . . . , k, then f is SONC.

2.4.1 Sums of Squares supported on a Circuit

In this section we provide a short overview of the results concerning the question in

which cases a circuit polynomial f is a sum of squares. Remarkably, this question

depends only on the lattice point con�guration of the Newton polytope of f and the

location of the interior point, see Theorem 2.4.14. The given results generalize results

by Reznick [Rez89] for agiforms. Thus, we �rst provide the needed background and

mention some of Reznick's results on agiforms, and then we consider general circuit

polynomials.
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2 Preliminaries

Recall that a circuit polynomial with fαpjq � λj and fβ � �1 with simplex Newton

polytope Newpfq �: ∆ is called an agiform:

fp∆,λ,βqpxq �
ŗ

j�0

λjx
αpjq � xβ.

De�nition 2.4.10. Let ∆̂ :� tαp0q,αp1q, . . . ,αprqu � p2Nqn be such that convp∆̂q is
a simplex and let B � convp∆̂q X Zn.

(i) De�ne by ApBq :�  
1
2
ps� tq P Zn : s, t P B X p2Zqn( and ApBq :� t1

2
ps�tq P Zn :

s � t, s, t P BXp2Zqnu the set of averages of even resp. distinct even points in B.

(ii) We say that B is ∆̂-mediated, if

∆̂ � B � pApBq Y ∆̂q,

i.e., every b P Bz∆̂ is an average of two distinct even points in B. 7

The following result shows the existence of a maximal mediated set, and the proof

actually gives a brute force algorithm for constructing such a set, see [Rez89, Theo-

rem 2.2].

Theorem 2.4.11. There is a ∆̂-mediated set ∆� satisfying Ap∆̂q � ∆� � p∆ X Znq,
which contains every ∆̂-mediated set.

If Ap∆̂q � ∆� resp. ∆� � p∆XZnq, we call ∆ anM-simplex resp. H-simplex. These

terms are chosen due to the following well-known representatives:

Example 2.4.12.

(i) The standard simplex ∆n,2d � convt0, 2d � e1, . . . , 2d � enu � Rn for d P N� is an

H-simplex. Sometimes ∆n,2d is called the Hurwitz simplex, since by Hurwitz' The-

orem, see [Hur91], it follows that for β P Ap∆̂n,2dq � tβ : 0 ¤ βi P Z and |β| � 2du
the agiform 2d � fp∆n,2d,

1
2d
β,βq is a sum of squares.

(ii) The Newton polytope convtp0, 0q, p2, 4q, p4, 2qu � R2 of the Motzkin polynomial

mpxq � 1� x4
1x

2
2 � x2

1x
4
2 � 3x2

1x
2
2 is an M -simplex.

7

Now we are able to state Reznick's result [Rez89, Corollary 4.9] concerning the

question when agiforms are sums of squares:
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2.4 The Cone of Sums of Nonnegative Circuit Polynomials

Proposition 2.4.13. Let fp∆,λ,βqpxq be an agiform. Then it holds that f P Σn,2d if

and only if β P ∆�.

This generalizes as follows to arbitrary circuit polynomials, see [IdW16a, Theorem 5.2]:

Theorem 2.4.14. Let f P Cn,2d be a nonnegative circuit polynomial with Newpfq � ∆.

Then,

f P Σn,2d if and only if β P ∆� or fβ ¡ 0 and β P p2Nqn.

Note again that fβ ¡ 0 and β P p2Nqn holds if and only if f is a sum of monomial

squares, and hence the statement obviously holds.

We conclude this section by providing two immediate corollaries of Theorem 2.4.14.

Corollary 2.4.15. Let f be a circuit polynomial such that Newpfq is an H-simplex.

Then, f P Cn,2d if and only if f P Σn,2d.

The second result concerns the polynomial optimization for circuit polynomials,

namely

Corollary 2.4.16. Let f P Cn,2d be a circuit polynomial with Newpfq � ∆. Then,

fsos � f� if and only if β P ∆�.

Most of the results above can be extended to the case of polynomials having a

simplex Newton polytope with various interior points, see again [IdW16a] for a careful

treatment.

2.4.2 Further Results

In this section we brie�y outline further results from [IdW16a, Section 4] for SONC

polynomials.

A question directly following by the discussions in Section 2.4.1 is whether the

results can be extended to polynomials with non-simplex Newton polytopes P . In this

case it can be shown that the lattice point criterion given by the maximal

mediated set from the simplex case does not su�ce to characterize sums of squares.

But on the positive side there exists a necessary and su�cient criterion based on the

set of possible triangulations of P combined with maximal mediated sets.
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2 Preliminaries

Another interesting class of polynomials is the set of convex polynomials. A poly-

nomial f P Rrxs is convex if its Hessian Hf is positive semide�nite for all x P Rn. We

denote the cone of all n-variate degree 2d convex polynomials by Kn,2d. As it is the

case for nonnegativity, deciding convexity of a polynomial is co-NP-hard in general, see

[AOPT13]. A fundamental fact is that the convexity property is not preserved under

homogenization, which stands in contrast to nonnegative polynomials, sums of squares,

and also SONC polynomials as we will see in Proposition 3.1.5. Interestingly, every

convex form is nonnegative, thus this cone relates to the study of the considered three

cones (Pn,2d, Σn,2d, and Cn,2d). Despite the fact that the relation between convex forms

and sums of squares are not well understood except that their cones are not contained

in each other, convex forms supported on a circuit are easier to understand. In fact,

one can completely characterize convex polynomials supported on a circuit and get the

following interesting result:

Theorem 2.4.17. Let f P Cn,2d be a nonnegative circuit polynomial and n ¥ 2. Then

f is not convex, i.e., f R Kn,2d.

Hence, Cn,2d XKn,2d � H for n ¥ 2.

Finally, circuit polynomials have a nice connection to the theory of amoebas.
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Chapter 3

The SONC Cone revisited

In this chapter we take a deeper look at the SONC cone Cn,2d introduced in Section 2.4.

To understand this cone in more detail is motivated in several ways. On the one hand

Cn,2d is a new cone approximating the nonnegativity cone Pn,2d. Therefore, the study

of the SONC cone is naturally embedded in the rich theory of nonnegative polynomials

and sums of squares. Thus it is important to explore the structure and properties of

this cone as well as to make general observations concerning Cn,2d. On the other hand

a deeper knowledge of the cone Cn,2d is also desirable from the practical viewpoint.

Since SONC polynomials serve as a certi�cate of nonnegativity, they can be used in

applications to polynomial optimization problems, as we will see in Chapters 4 and 5.

In consequence, a better understanding of this cone hopefully yields an improvement

of these methods.

Hence, in this chapter we dive into the theoretical study of the SONC cone. We start

with presenting some general results concerning the structure and properties of Cn,2d
and dedicate the second section to the analysis of the real zeros of SONC polynomials

and forms. Here, the main contribution is a complete and explicit characterization of

the real zeros of SONC polynomials and forms. We add some interesting observations

as a result of the new knowledge about the real zeros. In the third section we provide,

based on the preceding sections, an approach to the exposed faces of Cn,2d. Finally,

in the fourth section, we show that the set of SONC polynomials is not closed under

multiplication, which stands in strong contrast to the set of sums of squares. Moreover,

we derive the important result, that the SONC cone is always full-dimensional in the

cone of nonnegative polynomials. Both results of Section 3.4 can be seen as contextual

transition to the aim of the subsequent chapters, namely the application of SONC

polynomials to polynomial optimization problems.
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3 The SONC Cone revisited

3.1 Deeper Analysis of the SONC Cone

In what follows, we present some important, interesting properties and observations of

the SONC cone itself. First we prove that this cone is proper, then we give the missing

piece of the statement about the (non-)containment of the SONC cone and the SOS

cone. After that we look at the realizability of nonnegative circuit polynomials with a

certain degree. We conclude this section by taking a �rst step towards the analysis of

SONC forms.

Proposition 3.1.1. The SONC cone Cn,2d is a proper cone in Rrxsn,2d � RNpn,2dq.

Proof. For Cn,2d to be a proper cone, it has to be convex, solid, closed, and pointed.

Clearly, the cone is convex.

To prove that Cn,2d is solid, we have to show that the interior of the cone is nonempty.

This follows immediately from the fact that the SONC cone is full-dimensional in

Rrxsn,2d, which will be proven in Theorem 3.4.3.

To evidence the closedness of Cn,2d suppose pjpxq � °kj
i�1 f

pjq
i pxq P Cn,2d and

pjpxq Ñ ppxq, for j Ñ 8, with respect to some norm. As pj P Cn,2d and each

f
pjq
i is a nonnegative circuit polynomial, it holds degpf pjqi q ¤ 2d for all i � 1, . . . , kj.

Because pj is a convex combination of polynomials of a �nite-dimensional vector space,

Carathéodory's Theorem, see Theorem 2.1.1, implies that the number kj of summands

of pj is bounded by
�
n�2d

2d

� � 1, thus, independent of j. Since the norm of each f
pjq
i

is bounded by pj, each f
pjq
i lies in a compact set, due to the compactness of any

bounded set in a �nite-dimensional vector space. Consequently, the coe�cients of

the polynomials f pjqi are uniformly bounded and we can choose a convergent sub-

sequence f
pjlq
i pxq Ñ fipxq, for l Ñ 8. Hence, there is a convergent subsequence

p
plq
j pxq Ñ spxq P Cn,2d, for l Ñ 8, thus we can conclude ppxq P Cn,2d.
It remains to show that Cn,2d is pointed, i.e., the cone contains no line. For closed, solid

cones this geometric property is equivalent to Cn,2d X �Cn,2d � t0u. This condition is

apparent as Cn,2d � Pn,2d and �Cn,2d � �Pn,2d, and clearly Pn,2d X�Pn,2d � t0u.

We now give the missing cases of Theorem 2.4.8 statement (3), where the noncon-

tainment of the SOS cone in the SONC cone was only shown for degree 2d ¥ 6. Thus,

we get the following result, whereby we actually prove the full statement rather than

only the missing cases.

Theorem 3.1.2. Σ1,2 � C1,2, Σn,2 � Cn,2 for all n ¥ 2, and Σn,2d � Cn,2d for all

pn, 2dq with 2d ¥ 4.
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3.1 Deeper Analysis of the SONC Cone

Figure 3.1: The support sets of qpx1, x2q and of rpxq. The even points are the red ones.

Proof. The �rst statement was already observed in [IdW16a], but not proven as it is

rather obvious. For the sake of completeness we give a short argument here. Consider

an arbitrary polynomial p P Rrxs1,2, i.e., ppxq � ax2 � bx � c, with a, b, c P R. Note

that the support of p forms a circuit. Obviously, p is nonnegative if and only if p is

a nonnegative circuit polynomial. Hence, C1,2 � P1,2 � Σ1,2, where the last equality

follows by Hilbert's Theorem 2.2.6.

For proving the second assertion, we explicitly construct a polynomial which is SOS

but not SONC. First we explain the bivariate case in detail, then we generalize this

idea to an arbitrary number of variables. Consider the following bivariate polynomial

of degree 2

qpx1, x2q � 1� x2
1 � x2

2 � 2x1x2 � 2x1 � 2x2 � p1� x1 � x2q2,

which is clearly SOS. The Newton polytope of q is the standard simplex ∆2,2. Addition-

ally to the even vertices we have odd support points on every edge of ∆2,2, see Figure 3.1.

Therefore, there is only one possibility to write q as a sum of circuit polynomials:

q � f1 � f2 � f3 �
�

1

2
� 1

2
x2

1 � 2x1



�
�

1

2
� 1

2
x2

2 � 2x2



�
�

1

2
x2

1 �
1

2
x2

2 � 2x1x2



.

Clearly, all circuit polynomials fi are not nonnegative, because 2 ¡ Θfi � 1 for all

i P t1, 2, 3u. Thus, q is not a SONC polynomial. For n ¥ 2 we generalize this idea

by constructing a polynomial whose support consists of the vertices of the standard

simplex ∆n,2 and, in addition, the midpoints of each of the
�
n
2

�
edges:

q̂pxq � p1� x1 � x2 � � � � � xnq2.

Showing that this polynomial is not a SONC polynomial is analogous to the bivariate

case.
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3 The SONC Cone revisited

To proof the third statement, we again explicitly construct polynomials with the

desired property. We start with n � 1, i.e., the univariate case and with the following

polynomial of degree 4:

rpxq � 1� 4x� 6x2 � 4x3 � x4 � p1� 2x� x2q2.

Figure 3.1 shows the support of r. The only meaningful option to split the polynomial

into circuit polynomials which potentially are nonnegative is to divide it into the two

symmetric circuit polynomials:

r � f1 � f2 � p1� 4x� 3x2q � p3x2 � 4x3 � x4q.

By computing the circuit number Θfi � p12q 1
2 � 3.4641   4, we can easily see that

both fi are not nonnegative. To get a univariate polynomial with an arbitrary degree

2d which is SOS but not SONC, we only need to shift the above polynomial:

r1pxq � x2d�4 � 4x2d�3 � 6x2d�2 � 4x2d�1 � x2d � pxd�2 � 2xd�1 � xdq2,

with d ¥ 2, which means 2d ¥ 4.

By transferring this construction to further variables, we can prove the general

multivariate case for 2d ¥ 4:

r̂pxq � pxd�2
1 � 2xd�1

1 � xd1q2 � � � � � pxd�2
n � 2xd�1

n � xdnq2 P Σn,2dzCn,2d.(3.1.1)

Remark 3.1.3. Choosing 2d � 4 in (3.1.1) yields a polynomial in Σn,4zCn,4, which
explicitly witnesses the missing case of Theorem 2.4.8 (3).

Note that the degree of each variable part in the sum of the above polynomial (3.1.1)

need not to be the same, i.e., a more general polynomial in Σn,2dzCn,2d is

r̂pxq � pxd1�2
1 � 2xd1�1

1 � xd11 q2 � � � � � pxdn�2
n � 2xdn�1

n � xdnn q2,

where d :� maxi�1,...,ntd1, . . . , dnu and di ¥ 2 for all i � 1, . . . , n.

50



3.1 Deeper Analysis of the SONC Cone

Figure 3.2: The support set of spx1, x2q.

Another reasonable approach to construct a polynomial showing Σn,2d � Cn,2d for all

pn, 2dq with n ¥ 2 and 2d ¥ 4 is by making use of the idea in the proof of the second

assertion of Theorem 3.1.2. Namely, to construct a polynomial whose support contains

points on the boundary of the Newton polytope. More precisely, we can re�ect the

standard simplex ∆2,2 with additional boundary points on each edge with respect to

the hypotenuse, see Figure 3.2, to get the following bivariate polynomial of degree 4:

spx1, x2q � px1 � x2 � x1x2q2 � x2
1x

2
2 � x2

1 � x2
2 � 2x1x2 � 2x2

1x2 � 2x1x
2
2.

This polynomial is SOS but not SONC. By adding additional variables of certain degree,

we get a polynomial in Σn,2dzCn,2d:

ŝpxq � px1 � x2 � x1x2q2 �
ņ

i�3

x2di
i ,

with d :� maxi�1,...,ntd1, . . . , dnu.

A natural question arising due to the special structure of a circuit polynomial is

from which degree on is it possible for an n-variate polynomial f to be a proper circuit

polynomial. By proper we mean that f is not a sum of monomial squares. Indeed, the

answer to that question depends on the exponent of the inner term.

Lemma 3.1.4. Let f be an n-variate circuit polynomial of degree 2d with inner term

fβx
β. Then f can be a proper circuit polynomial if and only if

(1) 2d ¥ n� 1, for β R p2Nqn.

(2) d ¥ n� 1, for β P p2Nqn.
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3 The SONC Cone revisited

Proof. Consider a circuit polynomial f as in (2.4.1)

fpx1, . . . , xnq �
ŗ

j�0

fαpjqxαpjq � fβx
β.

Recall that we assume β P intpNewpfqq. Thus, it follows that the smallest possible

inner exponent β such that f may be a circuit polynomial is βi � 1, i � 1, . . . , n for

an odd inner exponent and respectively βi � 2, i � 1, . . . , n if the inner exponent is

even. Hence, it is easy to see that if the number of variables is strictly smaller than the

degree, i.e., n   2d, a circuit polynomial with odd inner exponent is realizable. And

a circuit polynomial with β P p2Nqn is only realizable if 2n   2d. The result follows

directly from these considerations.

The observation in Lemma 3.1.4 holds of course as well for nonnegative circuit poly-

nomials. The above statement is in particular useful for the study of the real zeros of

SONCs.

So far we only studied SONC polynomials. In the literature often results on nonneg-

ative polynomials and SOS are stated homogeneously, i.e., for forms. For better com-

parability, in what follows we also consider SONC forms and investigate their behavior.

A �rst important observation is to show that the property to be SONC is inherited

under homogenization and, conversely, is preserved when a form is dehomogenized into

a polynomial.

Proposition 3.1.5. If a polynomial p P Rrx1, . . . , xns is a SONC polynomial of degree

2d, then its homogenization ppx0, . . . , xnq � x2d
0 p

�
x1
x0
, . . . , xn

x0

	
is also SONC; and vice

versa.

Proof. Since a SONC polynomial p is sum of nonnegative circuit polynomials fi, i.e.,

p � °k
i�1 µifi, µi ¥ 0, it su�ces to prove the statement for circuit polynomials. So let

f be a circuit polynomial and f its homogenization:

fpxq � fpx1, . . . , xnq �
ŗ

j�0

fαpjqxαpjq � fβx
β,

fpx0,xq � x2d
0 f

�
x1

x0

, . . . ,
xn
x0



�

ŗ

j�0

fαpjqxαpjqx
2d�°ni�1 αipjq
0 � fβx

βx
2d�°ni�1 βi
0 ,

where 2d � degpfq. The nonnegativity of f and f depends only on the corresponding
circuit numbers Θf and Θf , see Theorem 2.4.4. Due to equality of the coe�cients of
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3.2 Real Zeros of SONCs

the outer terms of f and f , the circuit numbers may only di�er by the barycentric
coordinates λj and λj, see (2.4.2). Recall that the barycentric coordinates are given by
the convex combination of the interior point in terms of the vertices, thus by a system
of n resp. n� 1 linear equations in r unknowns:

β � pβ1, . . . , βnq �
ŗ

j�0

λjαpjq � λ0pα1p0q, . . . , αnp0qq � � � � � λrpα1prq, . . . , αnprqq ,

�
2d�

ņ

i�1

βi,β

�
� λ0

�
2d�

ņ

i�1

αip0q, α1p0q, . . . , αnp0q

�
� � � � � λr

�
2d�

ņ

i�1

αiprq, α1prq, . . . , αnprq

�
.

Obviously, the row given by the homogenization is linearly dependent on the other

rows, thereby we get λj � λj for all j � 0, . . . , r, and on account of this Θf � Θf . So

we conclude that f is a nonnegative circuit polynomial if and only if f is a nonnegative

circuit form.

3.2 Real Zeros of SONCs

In this section we present a complete classi�cation of the real zeros of SONC polynomi-

als as well as SONC forms. To study real zeros of polynomials is an interesting research

subject itself with a long and rich history and is especially helpful for polynomials with

certain properties like nonnegativity. Recall that the real zeros of nonnegative polyno-

mials and SOS are in particular used to study the set theoretic di�erence Pn,2dzΣn,2d

and to construct explicit examples of nonnegative non-SOS forms. This started with

Hilbert's seminal paper, see [Hil88], which in�uenced many works on this subject, e.g.,

[CL77, Rez00, KS18, XY17]. In [CKLR82] relations between elements of EΣn,2d and

EPn,2d are studied and by means of the presence of certain zeros (so called �transversal

zeros�) all pairs pn, 2dq are determined such that the former set is contained in the

latter, see Section 2.2.3. Real zeros of nonnegative biquadratic forms are analyzed in

particular in [Qua15, B�16]. Finally, we want to mention [CLR80], where Choi, Lam,

and Reznick discuss nonnegative forms and properties of their real zeros, including their

number. Motivated by this, we take a closer look on the number of real zeros of SONC

polynomials and forms.

A �rst result for an upper bound of a�ne real zeros for a nonnegative circuit poly-

nomial having a constant term is given by Iliman and de Wol� [IdW16a, Corollary 3.9]

as a corollary of Theorem 2.4.4. In this thesis, we study a more general case of circuit

polynomials, which do not need to have a constant term. If we want to emphasize
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3 The SONC Cone revisited

that a circuit polynomial does not have a constant term, we refer to a non-constant

term circuit polynomial. For such a polynomial certainly there appears one more zero,

namely the origin, and in some cases, i.e., if every outer term of the polynomial con-

tains the variable xi, there are in�nitely many zeros in addition. But those additional

zeros are zeros on the coordinate hyperplanes, being special in the sense that they are

not invariant with respect to shifting the polynomial. Loosely speaking, we can shift

every Newton polytope such that one vertex is located at the origin and thus a general

circuit polynomial can be transformed into a circuit polynomial with constant term by

shifting. To be more speci�c, we consider Laurent polynomials. Then we can write a

non-constant term circuit polynomial f as an irreducible product

f � x�αpjq � f c,

with some exponent αpjq and f c being a constant term circuit polynomial. Hence,

the original upper bound is valid on the real locus of the one nontrivial irreducible

component, if we omit the obvious redundant part of the circuit polynomial. Thus, we

often reduce ourselves to observe the zeros on pR�qn, if we are only interested in a �nite

zero set. For convenience we de�ne

V�pfq � tpa1, . . . , anq P pR�qn : fpa1, . . . , anq � 0u.

Now we state a slightly modi�ed version of the upper bound of a�ne real zeros for

a nonnegative circuit polynomial due to the above consideration.

Corollary 3.2.1. A nonnegative circuit polynomial f P BCn,2d has at most 2n a�ne

real zeros v in pR�qn all of which only di�er in the signs of their entries. Therefore,

every entry of v has the same norm, i.e., the zeros are of the form p�v1,�v2, . . . ,�vnq.

Moreover the boundary condition of Corollary 2.4.5 can be generalized to:

Corollary 3.2.2. A proper circuit polynomial f is located on the boundary of the cone

of nonnegative polynomials, i.e., f P BPn,2d, if and only if fβ P t�Θfu and β R p2Nqn
or fβ � �Θf and β P p2Nqn.

In fact, by combinatorial arguments we can re�ne the observation of an upper bound

for the number of zeros and state the exact number of zeros in dependence of the

exponent of the inner term. Recall that we always count distinct zeros.
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3.2 Real Zeros of SONCs

Theorem 3.2.3. The number of a�ne real zeros v in pR�qn of a proper nonnegative

circuit polynomial f P BCn,2d is 2n if β P p2Nqn and 2n�1 if β R p2Nqn.

Proof. First note that f P BCn,2d if and only if the coe�cient of the inner term equals

the circuit number, see Corollary 3.2.2. More speci�cally, if and only if |fβ| � Θf for

β R p2Nqn and fβ � �Θf for β P p2Nqn. For β R p2Nqn we can assume without loss of

generality that fβ � �Θf after a possible transformation of variables xi ÞÑ �xi. Thus,
we consider a nonnegative circuit polynomial f of the subsequent form:

fpxq �
ŗ

j�0

fαpjqxαpjq �Θfx
β.

Observe that the special structure of the circuit polynomial gives rise to zeros whose

entries are of the same norm, see also Corollary 3.2.1. Therefore the number of zeros

only depends on the exponent of the inner term. In what follows, we denote the zeros

of f by v � pv1, . . . , vnq. Clearly, if β P p2Nqn, then all components vi of zeros of f can

have both negative and positive sign. Hence, f has the maximal number of a�ne real

zeros, namely 2n. It remains to investigate the case β R p2Nqn. In this case a necessary

condition for f to have zeros at all is sgnpxβq � 1. Thus, only an even number of entries

βi may be odd. Since every xβii corresponds to an entry vi, this yields that the number

of negative components of v has to be even. As a �rst step we assume that all βi are

odd, i.e., βi R 2N for all i � 1, . . . , n. Hence the number of a�ne real zeros is given

by the number of possibilities such that for the zero v an even number of entries vi is

negative. Let k be the number of negative vi, then the number of a�ne real zeros is

given by the following basic calculation:

ņ

k�0
k even

�
n

k



� 2n�1.

As a second step we suppose that exactly one βi is odd, without loss of generality let

β1 be odd and βi be even for i � 2, . . . , n. Obviously, v1 has to be positive and all other

entries vi may be both positive and negative. Thus, this case is equivalent to the case

of n� 1 variables with β P p2Nqn�1. As seen above, in this case we have 2n�1 zeros.

Now we look at the general case of β R p2Nqn. We may assume after a possible renum-

bering of variables that β1, . . . , βs R 2N and βs�1, . . . , βn P 2N. As seen in the second

step the signs of vs�1, . . . , vn can be chosen positive as well as negative. Consequently,

there are 2n�s possibilities to choose their sign. However, for the entries v1, . . . , vs
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3 The SONC Cone revisited

only an odd number of entries is allowed to be negative. According to the �rst step,

there are 2s�1 such possibilities. Taking together these two numbers we get in total

2s�1 � 2n�s � 2n�1 numbers of a�ne real zeros for the case β R p2Nqn.

This speci�c number of zeros for nonnegative circuit polynomials yields the following

number of zeros for SONC polynomials.

Corollary 3.2.4. Let p P BCn,2d X BPn,2d and p � °k
i�1 fi, where fi are proper non-

negative circuit polynomials for all i with corresponding inner exponent βpiq. Then

|V�ppq| � 2n if βpiq P p2Nqn for all i � 1, . . . , k and 1 ¤ |V�ppq| ¤ 2n�1, with

|V�ppq| �� 2n�1 otherwise. In particular, if every j-th entry, j � 1, . . . , n, of each βpiq

coincides in whether βpiqj is even or odd, then |V�ppq| � 2n�1.

Proof. The statement follows by the fact that a SONC polynomial p is a sum of non-

negative circuit polynomials fi. Hence, p is zero if and only if every summand fi is zero.

Therefore, the assertion follows by counting the common zeros of the fi. Due to the

special structure of the zeros of a circuit polynomial it holds that if two nonnegative

circuit polynomials fi and fl, i � l, have more than one zero in common, they have an

even number of zeros in common. If both circuit polynomials fi and fl have an even

inner exponent and one zero in common, then they have all their 2n zeros in common.

Analogously, if both circuit polynomials have an odd inner exponent where each entry

β
piq
j and βplqj coincide whether it is odd or even, then the zero set of fi and fl is identical,

i.e., both polynomials have all their 2n�1 zeros in common.

The subsequent example illustrates the last case of the above Corollary 3.2.4.

Example 3.2.5. Consider the bivariate SONC polynomial p � f1�f2 with the following

two nonnegative circuit polynomials

f1 � 3{8� 3{8 � x4
1 � 1{4 � x2

1x
4
2 � x2

1x2,

f2 � 1{8� 1{2 � x4
1 � 3{8 � x8

2 � x2
1x

3
2.

Obviously, both βp1q1 � 2 and βp2q1 � 2 are even and both βp1q2 � 1 and βp2q2 � 3 are odd.

Therefore, we have Vpf1q � Vpf2q � Vppq � tp1, 1q, p�1, 1qu and hence the number of

zeros is |Vppq| � 22�1 � 2. 7

If we take also in�nitely many zeros and sums of monomial squares into account we

get the following result, which is a direct conclusion of the observations at the beginning

of this section and Corollary 3.2.4.
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Corollary 3.2.6. Let p P BCn,2d X BPn,2d be given as in Corollary 3.2.4. Generally, it

is possible to have |Vppq| � 8. If Vppq is �nite, then |Vppq| � 2n or |Vppq| � 2n � 1 if

βpiq P p2Nqn for all i � 1, . . . , k, and otherwise 1 ¤ |Vppq| ¤ 2n�1 � 1.

At this point we insert a brief discussion on the determination of the zeros.

In [IdW16a] it is shown that the zeros v P Rn of the nonnegative circuit polynomial

f P Cn,2d with αp0q � 0 and f0 � λ0, i.e., f � λ0 �
°n
j�1 fjx

αpjq � Θfx
β, satisfy

|vj| � es
�
j for all j � 1, . . . , n, where s� P Rn is the unique vector satisfying exs

�,αpjqy � λj
fj

for all j. Thus, s� is given by a linear system of equations.

In the speci�c case that Newpfq � ∆n,2d, it is even possible to exactly specify the zeros

of f . To be more precise, consider the nonnegative circuit polynomial f P Cn,2d with
f � λ0�

°n
j�1 fjx

2d
j �Θfx

β. Then every entry vj of every zero v P Rn of this polynomial

is given by |vj| � pλj{fjq1{p2dq, see also Lemma 3.4.1.

An interesting question is, whether it is possible to determine the zeros of nonnegative

circuit polynomials in the general case.

We now continue the study of the numbers of zeros and analyze the homogeneous

case. Recall that depending on the polynomial p, the zero set Vppq may have no,

�nitely many, or in�nitely many additional zeros at in�nity. Therefore, we now address

ourselves to the task of determining the number of real zeros additionally appearing

due to homogenizing SONC polynomials.

In the a�ne case we were mainly interested in �nitely many zeros, i.e., zeros in pR�qn,
which corresponds to the investigation of constant term circuit polynomials. In what

follows, we distinguish between SONC forms which arise out of homogenization of a

constant term SONC polynomial and those arising from homogenizing a non-constant

term SONC polynomial.

To begin with, we consider nonnegative circuit polynomials and their homogenizations.

The following result on the additional zeros in the homogeneous case will be explained in

great detail and clearly described including speci�c representatives in which the speci�c

number of zeros arises. Note that by properness, see Lemma 3.1.4, not all possibilities

of numbers of zeros are realizable for every degree, see also the comments in the proof

below. Let Cn�1,2d denote the cone of SONC forms in Rrx0,xsn�1,2d.

Theorem 3.2.7. Let f P BCn,2d be a nonnegative circuit polynomial and f P BCn�1,2d

be its homogenization.

p1q For n � 2, we have:
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3 The SONC Cone revisited

(i) If f has a constant term, then f has at most 4 zeros in R2 and f has at most

6 zeros in P2.

(ii) If f does not have a constant term, then f has at most 5 zeros in R2 or

in�nitely many and f has at most 7 zeros or in�nitely many in P2.

Consequently, if Vpfq is �nite, then in both cases f has at most 2 zeros at in�nity

in addition.

p2q In the general case n ¡ 2 by homogenizing a constant term resp. a non-constant

term circuit polynomial f P BCn,2d, f has either up to 3 resp. 2 additional zeros at

in�nity, or else in�nitely many. Whereby we stress the fact that in contrast to the

bivariate case, in�nitely many additional zeros are also possible in the constant

term case. That means if Vpfq is �nite, the homogenization f may have in�nitely

many zeros.

Proof. Without loss of generality we assume Newpfq is n-dimensional for f P BCn,2d. We

point out that circuit polynomials with one-dimensional Newton polytope are always

homogeneous.

(1) (i) The fact that f has at most 4 zeros follows directly from Corollary 3.2.1 and

the assumption that we consider constant term circuit polynomials. Next

we show that f has at most 6 zeros. For this, consider �rst a nonnegative

circuit polynomial f P BC2,2d with β P p2Nq2 and its homogenization. Note

that hence f has exactly 22 � 4 zeros. Therefore, f and f have the following

shape:

fpx1, x2q � f0 � fαp1qx
α1p1q
1 x

α2p1q
2 � fαp2qx

α1p2q
1 x

α2p2q
2 �Θfx

β1
1 x

β2
2 ,

fpx0,xq � f0x
2d
0 � fαp1qxαp1qx

2d�|αp1q|
0 � fαp2qxαp2qx

2d�|αp2q|
0 �Θfx

βx
2d�|β|
0 .

Recall that we assume β P intpNewpfqq, where we know that both β1 and

β2 are non-zero as well as 2d � |β| � 0. The zeros of f are of the form

p�v1,�v2q, see Corollary 3.2.1. Thus, in the considered case f has at least

4 zeros corresponding to the zeros of the a�ne circuit polynomial f , which

precisely are r1 : �v1 : �v2s. The number of additional zeros of f depends

on the exponents of the monomials of f corresponding to the vertices of

Newpfq, i.e., the outer exponents of f . In what follows, we analyze this

exponent structure in detail and point out which cases may occur. Observe
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that the origin is always a vertex of Newpfq corresponding to the constant

term. Consequently, it su�ces to study the exponent structure of the other

two vertices αp1q and αp2q of Newpfq. Also note that at least one of the

vertices αp1q and αp2q has to be of full degree, i.e., |αpiq| � 2d for at least

one i P t1, 2u and that there are exactly three cases.

Case 1: |Vpfq| � 4, i.e., f has no additional zeros. This occurs only in the

case that one vertex of Newpfq has full degree of the variable x1 and the

other full degree of x2. Without loss of generality we assume α1p1q � 2d and

α2p2q � 2d. Then:

f � f0 � fαp1qx2d
1 � fαp2qx2d

2 �Θfx
β1
1 x

β2
2 ,

f � f0x
2d
0 � fαp1qx2d

1 � fαp2qx2d
2 �Θfx

β1
1 x

β2
2 x

2d�|β|
0 .

Obviously, f only has the zeros coming from f .

Case 2: |Vpfq| � 5. This may happen in three di�erent exponent structures

of the outer terms of f , which we discuss subsequently. If one of the vertices

is of full degree in exactly one variable, we may assume α1p1q � 2d, and the

second vertex is of one of the following forms:

(a) only the other variable x2 occurs, but not of full degree, i.e., α1p2q � 0

and α2p2q   2d,

(b) both variables occur but the vertex is not of full degree, hence α1p2q � 0,

α2p2q � 0, and |αp2q|   2d, or

(c) both variables occur and the vertex is of full degree, thus α1p2q � 0,

α2p2q � 0, and |αp2q| � 2d.

For case (a) observe that

f � f0 � fαp1qx2d
1 � fαp2qx

α2p2q
2 �Θfx

β1
1 x

β2
2 ,

f � f0x
2d
0 � fαp1qx2d

1 � fαp2qx
α2p2q
2 x

2d�α2p2q
0 �Θfx

β1
1 x

β2
2 x

2d�|β|
0 ,

with α2p2q   2d. It is easy to see that the additional zero is r0 : 0 : 1s. The
other cases follow analogously.

Case 3: |Vpfq| � 6, i.e., f has two additional zeros. This case arises from

the exponent structure that one of the vertices is full-dimensional and of full

degree, without loss of generality |αp1q| � 2d, and the other vertex exhibits

one of the following structures:
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(a) only one variable x1 or x2 occurs, but not of full degree, hence for

example α1p2q � 0 and α2p2q   2d,

(b) both variables occur but the vertex is not of full degree, thus α1p2q � 0,

α2p2q � 0, and |αp2q|   2d, or

(c) both variables occur and this vertex is also of full degree, i.e., α1p2q � 0,

α2p2q � 0, and |αp2q| � 2d.

Similarly as in case 2, we consider only case (c), the cases (a) and (b) follow

analogously. For (c) the circuit polynomial and corresponding circuit form

have the following shape:

f � f0 � fαp1qxαp1q � fαp2qxαp2q �Θfx
β,

f � f0x
2d
0 � fαp1qxαp1q � fαp2qxαp2q �Θfx

βx
2d�|β|
0 .

It is easily traceable that the additional zeros are r0 : 0 : 1s and r0 : 1 : 0s.
To �nish the proof of (1)(i), it remains to consider a nonnegative circuit

polynomial f P BC2,2d with β R p2Nq2 and to show that f has at most 4

zeros. However, in this case the reasoning is as for β P p2Nq2 except that

now the number of zeros starts with |Vpfq| � 2, as |Vpfq| � 2 in this case. We

point out one small di�erence for degree 4. Despite the general existence of a

proper bivariate circuit polynomial of degree 4 with an odd inner exponent,

there does not occur one with the exponent structure of case 3, i.e., for two

additional zeros. Because such a circuit polynomial would be only a sum of

monomial squares, since there is no inner term. Whereas there is no proper

bivariate circuit polynomial with even inner exponent for degree 4. Thus,

by homogenizing a circuit polynomial f P C2,4 we get at most one zero at

in�nity.

(ii) We now have to take also the third vertex of Newpfq into account and again

there are exactly three cases.

Case 1: |Vpfq| � |Vpfq|. Analogous to (i) this case only appears if two

vertices are of full degree in exactly one variable each. The last vertex must

be of degree   2d but it is irrelevant if it is comprised of both or only one

variable.

For both other cases we have to consider that not two vertices of Newpfq
can be bivariate, as otherwise f would have in�nitely many zeros, since the

third vertex is non-constant.
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Case 2: |Vpfq| � |Vpfq|�1, i.e., f has one zero at in�nity. Here the situation

is relatively similar to the constant term case. One vertex has to be of full

degree in one variable and we assume α1p0q � 2d. The remaining two vertices

have various possibilities. If in the second vertex only the other variable x2

occurs not of full degree, than the third vertex can have all compositions also

possible in (i) for case 2, namely:

(a) only the variable x2 occurs, but not of full degree, i.e., α1p2q � 0 and

α2p2q   2d,

(b) both variables occur but the vertex is not of full degree, hence α1p2q � 0,

α2p2q � 0, and |αp2q|   2d, or

(c) both variables occur and the vertex is of full degree, thus α1p2q � 0,

α2p2q � 0, and |αp2q| � 2d.

If the second vertex also consists of the variable x1 with degree   2d, then

the third vertex has to be comprised of x2 with degree   2d. In those cases

we get the additional zero r0 : 0 : 1s.
Case 3: |Vpfq| � |Vpfq| � 2. Finally, this case is only possible if f has the

following vertex constellation:

f � fαp0qx
α1p0q
1 x

2d�α1p0q
2 � fαp1qx 2d

1 � fαp2qx 2d
2 �Θfx

β,

with 0   α1p0q   2d and where the monomial x 2d
i abbreviates xαipiqi with

αipiq   2d.

Like in the constant term case (i), there is one exception for degree 4 due

to the existence of a proper circuit polynomial with odd inner exponent.

The only proper bivariate circuit polynomial with degree 4 after possible

renumbering of variables is f � fαp0qx2
1 � fαp1qx4

1 � fαp2qx4
2 � Θfx

2
1x2. It is

easy to see that |Vpfq| � |Vpfq| � 3.

Independent of whether f has a constant term or not, it is evident that if Vpfq
is �nite there are not more than two zeros at in�nity. Namely, the additional

zeros are of the form r0 : a1 : a2s, with a1, a2 P R, not both zero. However, we

can also exclude the case a1, a2 ¡ 0. Indeed, as already mentioned, one vertex of

Newpfq has to be of full degree, whereby the corresponding outer term need not

be homogenized. As a necessary condition for the circuit form f to vanish at a

point r0 : a1 : a2s, all outer terms have to vanish, because of the homogenization

the inner term is zero at this point. This, however, cannot happen if a1 and a2
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both are strictly greater than zero. Hence, in the projective space there are only

two opportunities for zeros if one of the ai has to be zero, namely r0 : 0 : 1s and
r0 : 1 : 0s.

(2) First of all we show that even a homogenized constant term nonnegative circuit

polynomial f P BCn�1,2d with n ¥ 3 possibly has in�nitely many zeros at in�nity.

Strictly speaking this ensues from the last considerations of part (1), namely that

in the bivariate case it is not possible that f may have more than two additional

zeros. To clarify, for some f P BCn�1,2d the additional zeros are of the form

r0 : 0 : a2 : a3 : � � � : ans, where we assumed without loss of generality that a1 � 0.

The existence of such a case can easily be seen by the following examples. Let

f P BCn,2d be of the form

f � f0 � fαp1qx2d
1 � fαp2qx

α1p2q
1 x

2d�α1p2q
2 � � � � � fαpnqx

α1pnq
1 x2d�α1pnq

n �Θfx
β,

with α1piq P 2N� and α1piq   2d for i � 2, . . . , n. Or

f � f0 � fαp1qx2d
1 � fαp2qx 2d

2 � � � � � fαpnqx 2d
n �Θfx

β.

Obviously, in both examples the zeros of f are r0 : 0 : a2 : a3 : � � � : ans, with
pa2, . . . , anq P Rn�1zt0u, and consequently |Vpfq| � 8.

We now discuss once again the additional zeros of f P BCn�1,2d compared to

the zeros of f P BCn,2d. In what follows, we limit the detailed discussion to the

constant term case. We only show that by homogenizing a non-constant term

circuit polynomial f , the form f cannot have three zeros at in�nity, the other

cases follow analogously to the constant term case. We proceed as in (1) by

studying the structures of the exponents of f , or rather the vertex constellations

of Newpfq, where we exclude the origin from consideration by assumption. Here,

there are four cases.

Case 1: |Vpfq| � |Vpfq|. Like in the bivariate case we have no zeros at in�nity

only for f P BCn,2d, where all vertices of Newpfq are of full degree in one variable

each. Hence,

f � f0 � fαp1qx2d
1 � fαp2qx2d

2 � � � � � fαpnqx2d
n �Θfx

β.

In what follows, we con�ne ourselves to presenting one possible representative for

each occurring case.
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Case 2: |Vpfq| � |Vpfq| � 1. One additional zero at in�nity appears if all but

one vertex of Newpfq is of full degree of one di�erent variable and the last vertex

consists either of the not yet appearing variable but not of full degree or of various

variables optional if of full degree or not. For instance, consider f P BCn,2d with

f � f0 � fαp1qx2d
1 � fαp2qx2d

2 � � � � � fαpnqx 2d
n �Θfx

β.

By homogenizing f , we get the additional zero r0 : 0 : � � � : 0 : ans, an P R�.

Case 3: |Vpfq| � |Vpfq|�2. For two zeros at in�nity, n�1 of the non-origin vertices

of Newpfq have to be of full degree in one variable, whereas for the remaining two

vertices there are di�erent exponent structures possible. Representatively, we look

at the following possibility

f � f0 � fαp1qx2d
1 � � � � � fαpn�2qx2d

n�2 � fαpn�1qx 2d
n�1 � fαpnqxαn�1x

2d�α
n �Θfx

β,

where α P 2N� and α   2d. The homogenization f has the two supplementary

zeros r0 : 0 : � � � : 0 : an�1 : 0s and r0 : 0 : � � � : 0 : ans with an�1, an P R�.

Case 4: |Vpfq| � |Vpfq|�3. This case arises if three vertices of Newpfq are of full
degree of two variables, which use three variables circulant. All other vertices are

of full degree of one di�erent variable each:

f � f0 � fαp1qx2d
1 � � � � � fαpn�3qx2d

n�3

�fαpn�2qxαn�2x
2d�α
n�1 � fαpn�1qxδn�1x

2d�δ
n � fαpnqxγnx

2d�γ
n�2 �Θfx

β,

where α, δ, γ P 2N� and each is strictly smaller than 2d. The three additional

zeros of f are r0 : 0 : � � � : 0 : an�2 : 0 : 0s, r0 : 0 : � � � : 0 : an�1 : 0s, and
r0 : 0 : � � � : 0 : ans, with an�2, an�1, an P R�.

From the constellation just given, it is apparent that case 4 cannot occur if f does

not have a constant term, since in this case f already has in�nitely many (a�ne)

zeros.

It remains to show that, if Vpfq is �nite, the number of additional zeros is bounded
by 3, i.e., |Vpfq| ¥ |Vpfq| � 4 is not possible. We proceed by contradiction to

prove that we may exclude the case of 4 additional zeros. All other cases follow

analogously. First note that 4 additional zeros are only possible from (a�ne)

dimension 4 on. Thus, to show the general n-variate case, it su�ces to prove that

the homogenization f never gets 4 additional zeros for f P C4,2d. We suppose there
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exists a nonnegative circuit polynomial f P C4,2d such that |Vpfq| � |Vpfq| � 4.

The additional zeros have to be r0 : 1 : 0 : 0 : 0s, r0 : 0 : 1 : 0 : 0s, r0 : 0 : 0 : 1 : 0s,
and r0 : 0 : 0 : 0 : 1s. In order for such a zero set to exist, f has to be a sum of

monomials, such that every term consists of a product of two variables each xixj,

i � j and all pairings have to appear. Each summand has to be of full degree.

To receive a circuit polynomial, the mentioned terms of variable pairings together

with the origin form the outer terms and xβ11 � � � xβ44 forms the inner term. Hence,

there are
�

4
2

� � 1 � 7 outer terms, which is a contradiction to f being a circuit

polynomial, because f may only have up to 5 outer terms. This completes the

proof.

Remark 3.2.8. The considerations of the �nal step of the last proof are in line of the

possibility to receive 3 additional zeros in the constant term case. Following the train

of thought beginning with f P C3,2d, we get
�

3
2

�� 1 � 4 outer terms. This is consonant

to the number of vertices of a simplex.

A direct corollary for SONC forms can be drawn from the above arguments.

Corollary 3.2.9. Let p P BCn,2d X BPn,2d be a SONC polynomial with p � °k
i�1 fi,

where fi are proper nonnegative circuit polynomials for all i with corresponding inner

exponent βpiq. Consider the homogenization p P BCn�1,2d X BP n�1,2d.

p1q For n� 1 � 3 :

(i) If p has a constant term, then |Vppq| ¤ |Vppq| ¤ |Vppq| � 2. More precisely,

if βpiq P p2Nq2 for all i � 1, . . . , k, then 4 ¤ |Vppq| ¤ 6, if every j-th entry of

each βpiq coincides in whether βpiqj is even or odd, then 2 ¤ |Vppq| ¤ 4, and

otherwise 1 ¤ |Vppq| ¤ 4. In all three cases the given bounds are sharp and

the intermediate case occurs, with the exception of degree 2d � 4, where the

upper bound for the second and the third case is 3.

(ii) If p does not have a constant term, then each fi is a non-constant term

circuit polynomial and it holds that either |Vppq| ¤ |Vppq| ¤ |Vppq| � 2 or

|Vppq| � 8. More precisely, if Vppq is �nite then we have the following

three cases: If βpiq P p2Nq2 for all i � 1, . . . , k, then 5 ¤ |Vppq| ¤ 7, if

every j-th entry of each βpiq coincides in whether βpiqj is even or odd, then

3 ¤ |Vppq| ¤ 5, and otherwise 1 ¤ |Vppq| ¤ 5.

Here again, in all three cases the bounds are sharp and the intermediate case

occurs. The only exception is for degree 4, where the number of zeros is

either 2 or 3.
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3.2 Real Zeros of SONCs

p2q If n� 1 ¥ 4 either

(a) |Vppq| ¤ |Vppq| ¤ |Vppq| � 3.

In particular: 2n ¤ |Vppq| ¤ 2n � 3 if βpiq P p2Nqn for all i � 1, . . . , k and

2n�1 ¤ |Vppq| ¤ 2n�1�3 if every j-th entry of each βpiq coincides in whether

β
piq
j is even or odd, or

(b) |Vppq| � 8.

The bounds of paq are sharp as well and all intermediate cases can occur.

Remark 3.2.10. In particular, we point out that in contrast to a SONC polynomial

with a constant term its homogenization may have in�nitely many zeros (at in�nity)

even in the case n� 1 � 3. Furthermore, the properness condition in Corollary 3.2.9 is

necessary since we also take lower bounds on the zeros into account.

Before we proceed, we provide some explicit examples demonstrating the considered

cases in the proof of Theorem 3.2.7.

Example 3.2.11.

(i) First we give an example for |Vpfq| � |Vpfq|. Let f P C2,4 be the following

nonnegative circuit polynomial

f � 1

2
� x4

1 � x4
2 � 2x1x2.

The zeros of f are v1 �
�

1?
2
, 1?

2

	
and v2 �

�
� 1?

2
,� 1?

2

	
. Homogenizing f yields

f � 1
2
x4

0 � x4
1 � x4

2 � 2x1x2x
2
0 and Vpfq �

!�
1 : 1?

2
: 1?

2

�
,
�
1 : � 1?

2
: � 1?

2

�)
.

(ii) For |Vpfq| � |Vpfq| � 1 consider

f � 1

3
� 1

6
x6

1 �
1

2
x2

1x
4
2 � x2

1x
2
2,

its 4 zeros are p�1,�1q. Then f � 1
3
x6

0 � 1
6
x6

1 � 1
2
x2

1x
4
2 � x2

1x
2
2x

2
0, which has the

additional zero at in�nity r0 : 0 : 1s.

(iii) An example for the case |Vpfq| � |Vpfq| � 2 is the Motzkin polynomial

f � 1� x4
1x

2
2 � x2

1x
4
2 � 3x2

1x
2
2,
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3 The SONC Cone revisited

with zeros p�1,�1q. The Motzkin form f � x6
0�x4

1x
2
2�x2

1x
4
2�3x2

1x
2
2x

2
0 additionally

has the zeros r0 : 1 : 0s and r0 : 0 : 1s.

(iv) The subsequent polynomial f P C3,8 serves as an example for |Vpfq| � |Vpfq| � 3:

f � 5� x4
1x

4
2 � x4

2x
4
3 � x4

1x
4
3 � 8x1x2x3.

The zero set is Vpfq � tp1, 1, 1q, p1,�1,�1q, p�1, 1,�1q, p�1,�1, 1qu. The ho-

mogenization f � 5x8
0 � x4

1x
4
2 � x4

2x
4
3 � x4

1x
4
3 � 8x1x2x3x

5
0 has the following zeros

in addition r0 : 1 : 0 : 0s, r0 : 0 : 1 : 0s, and r0 : 0 : 0 : 1s.

(v) Finally, we give an example for |Vpfq| � 8 in the case that Vpfq is �nite. Via

homogenizing

f � 1� x4
1x

2
2x

2
3 � x2

1x
4
2x

2
3 � x2

1x
2
2x

4
3 � 4x2

1x
2
2x

2
3,

the form f has the zeros hereinafter in addition r0 : 0 : a2 : a3s, r0 : a1 : 0 : a3s,
and r0 : a1 : a2 : 0s with pai, ajq P R2zt0u, i � j. Thus, f has in�nitely many

zeros.
7

3.2.1 Consequences of the Zero Statements

In this section we discuss resulting properties which can be deduced from the preceding

section on real zeros of SONCs.

An important question for SONC polynomials (resp. forms) is whether the analog to

Hilbert's 17th problem is true, see Section 2.2. That is, if every nonnegative polynomial

is representable as a �nite sum of nonnegative circuit polynomials of rational functions,

i.e., a sum of quotients of nonnegative circuit polynomials. By means of a zero argument

we are able to answer this analog question of Hilbert for SONC polynomials in the

negative.

Corollary 3.2.12. Let f P Pn,2d. Then, in general, there are no nonnegative circuit

polynomials g1, . . . , gr, h1, . . . , hr P Cn,2d, and hj � 0 for j � 1, . . . , r, such that

f �
ŗ

j�1

�
gj
hj



.
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Proof. We prove the assertion by inspecting the zero set of the left hand side and the

right hand side of the equation. By Corollary 3.2.4 it holds |V�p°j gjq| ¤ 2n, thus

|V�p°jp gjhj qq| ¤ 2n.

For all n and d there exist polynomials f P Pn,2d such that |V�pfq| ¥ dn, see [CLR80,

Proposition 4.1]. Hence, we have |V�pfq| ¥ dn ¡ 2n, for d ¥ 3.

Note that by Corollary 3.2.9 and the subsequent Theorem 3.2.14, the analog of

Hilbert's 17th problem cannot be true in general in the homogeneous case as well.

As we will see in Lemma 3.4.1 the set of SONC polynomials is not closed under

multiplication. Therefore, the question, if there always exists a suitable multiplier for a

nonnegative polynomial to be a sum of nonnegative circuit polynomials is not equivalent

to Corollary 3.2.12. However, with similar arguments as above one can show, that the

multiplier question can also be answered in the negative.

In [CLR80] Choi, Lam, and Reznick considered the numbers Bn�1,2d and B1
n�1,2d,

where Bn�1,2d (resp. B1
n�1,2d) is de�ned as sup |Vppq|, where p ranges over all forms in

P n�1,2d (resp. in Σn�1,2d) with sup |Vppq|   8, see also Section 2.2.3. They noticed

that the determination of these numbers is quite challenging and presented some partial

results. Moreover, they observed that for general n and d it is unclear if Bn�1,2d always

needs to be �nite. See also Theorem 2.2.26 for results in special cases.

Inspired by this, we de�ne an analog number for SONC forms.

De�nition 3.2.13.

B2
n�1,2d :� sup

pPCn�1,2d

|Vppq| 8

|Vppq|.

7

A crucial di�erence to the numbers Bn�1,2d and B1
n�1,2d is that in our case such a

number B2
n�1,2d is always �nite and actually can be given explicitly.

Theorem 3.2.14. Let B2
n�1,2d be de�ned as above, then:

(1) Special case d � 1 : B2
2,2 � 1.

(2) B2
2,4 � 2, B2

2,6 � 3, and if 2d ¥ 8 we have B2
2,2d � 4.

(3) B2
3,4 � 3 and B2

3,2d � 7 for 2d ¥ 6.

(4) For all n � 1 ¥ 4 : B2
n�1,2d � 22d�2 � 3 for 2d   n � 1, B2

n�1,2d � 2n�1 � 3 if

n� 1 ¤ 2d   2pn� 1q, and B2
n�1,2d � 2n � 3 for 2pn� 1q ¤ 2d.
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3 The SONC Cone revisited

Proof.

(1) For d � 1 we have a special case, since the only possibility for a proper SONC

form of degree 2 is the circuit form f � fαp0qx2
0 � fαp1qx2

1 � Θfx0x1, which has

only one zero r1 : 1s. Even if we consider a sum of monomial squares, the only

zero in the case of degree 2 would be r0 : 0s R P2.

(2) First, note that the maximum number of zeros of a sum of monomial squares

in the case n � 1 � 2 is 2, namely the single monomial square x2
0x

2
1 has the

zeros r0 : 1s and r1 : 0s. If we consider proper SONC forms, then the number

of zeros depends on the degree, because certain vertex constellations are only

possible from a certain degree on. For 2d � 4 we have, up to renumbering of

the variables, only two possible circuit forms f 1 � fαp0qx4
0 � fαp1qx4

1 � Θf1x
2
0x

2
1

with zeros r1 : 1s, r1 : �1s and f 2 � fαp0qx2
0x

2
1 � fαp1qx4

0 � Θf2x
3
0x1 with zeros

r1 : 1s, r0 : 1s. Therefore, the �rst assertion in (2) holds. The second follows

by the observation that for 2d � 6 there exists a circuit form the �rst time, for

which one outer term consists of both variables and the inner term has an even

exponent: f � fαp0qx2
0x

4
1 � fαp1qx6

0 �Θfx
4
0x

2
1. This gives the zeros r1 : 1s, r1 : �1s,

and r0 : 1s. Lastly, if the degree is greater or equal than 8, a circuit form with

even inner exponent exists, for which both outer terms consist of both variables:

f � fαp0qx2
0x

6
1 � fαp1qx6

0x
2
1 � Θfx

4
0x

4
1. It has the four zeros r1 : 1s, r1 : �1s, r0 : 1s,

and r1 : 0s. Obviously, a bivariate SONC form cannot have more than 4 zeros.

(3) Observe that in the case of n � 1 � 3 the maximum number of zeros by a sum

of monomial squares is 3. More precisely consider the following sum of monomial

squares without loss of generality in degree 4: m � x2
0x

2
1�x2

1x
2
2�x2

0x
2
2. Obviously,

r1 : 0 : 0s, r0 : 1 : 0s, and r0 : 0 : 1s are the zeros of m.

For reasons of realizability, see Lemma 3.1.4, a proper circuit form of degree 4 has

an odd inner exponent, and for 2d ¥ 6, also a proper circuit form with even inner

exponent is possible. Thus, the statements follow immediately by Corollary 3.2.9

(1) and the preliminary consideration.

(4) The last two assertions are a direct result of Lemma 3.1.4 and Corollary 3.2.9 (2).

Note that as for n� 1 � 3, the maximum number of zeros by a sum of monomial

squares is 3. In the case 2d   n � 1 there exists no proper circuit form. Though

there are SONC forms p, which consist of a sum of a proper circuit form f and

a sum of monomial squares. We know that a proper circuit form with odd inner

exponent exists if the number of variables is equal to 2d. Hence, if 2d   n� 1 we
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3.2 Real Zeros of SONCs

have the following SONC form:

p � f � x2d
2d�1 � � � � � x2d

n ,

where f is a 2d-variate proper circuit form. Thus, |Vppq| � |Vpfq|, which leads to

the equality B2
n�1,2d � B2

2d,2d. By Corollary 3.2.9 (2), with n � 1 � 2d, it follows

B2
2d,2d � 2p2d�1q�1 � 3.

The following example serves to illustrate the considerations of the case (4) for

2d   n� 1 in the proof above.

Example 3.2.15. We want to verify the calculation B2
7,4 � 24�2� 3 � 7. Let p P BP 7,4

be a SONC polynomial. Obviously 4   7, therefore we search a proper 4-variate circuit

form. Consider for instance

f � 1

4
x2

0x
2
1 �

1

4
x2

1x
2
2 �

1

4
x2

2x
2
0 �

1

4
x4

3 � x0x1x2x3.

The zero set of this form is

Vpfq � tr1 : 1 : 1 : 1s, r1 : 1 : �1 : �1s, r1 : �1 : 1 : �1s, r�1 : 1 : 1 : �1s,
r1 : 0 : 0 : 0s, r0 : 1 : 0 : 0s, r0 : 0 : 1 : 0su .

Hence, |Vpfq| � 7. Thus, the SONC form p,

p � 1

4
x2

0x
2
1 �

1

4
x2

1x
2
2 �

1

4
x2

2x
2
0 �

1

4
x4

3 � x0x1x2x3 � x4
4 � x4

5 � x4
6,

has the same number of zeros as f , namely 7. 7

We conclude this section with a short comparison of the “B-numbers� of the di�erent

cones P n�1,2d,Σn�1,2d, and Cn�1,2d.

Remark 3.2.16.

(i) First note that B2,2 � B1
2,2 � B2

2,2 � 1, which is in line with the fact, that for

pn� 1, 2dq � p2, 2q the three cones coincide, see Theorem 3.1.2.

(ii) In the bivariate case one has B2,2d � B1
2,2d � d, which equals B2

2,2d for 2d ¤ 8.

Therefore, we have a �rst di�erence in the number of real zeros for degree 10.
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(iii) In the case n� 1 � 3 we have the following observations, B3,4 � B1
3,4 � B2

3,4 � 4.

But from degree 6 on, there are di�erences in the numbers of zeros: B3,6 � 10,

B1
3,6 � 9, and B2

3,6 � 7.

(iv) Finally, we take a look at n�1 � 4. Here, we already have di�erences for quartics:

B4,4 � 10, B1
4,4 � 8, and B2

4,4 � 7.

3.3 Exposed Faces of the SONC Cone in Small

Dimension and Dimension Bounds

The aim of this section is to provide a �rst approach to the study of the exposed faces

of Cn,2d. Understanding the facial structure of the cone as well as the relationship

between Pn,2d and Cn,2d is interesting from many perspectives in both pure and applied

real algebraic geometry. Unfortunately, even for the cones Pn,2d and Σn,2d this is still

an active area of research, which is not yet well understood, see Section 2.2.3. Building

upon the results of the real zeros of Section 3.2 we analyze the dimensions of the exposed

faces of the SONC cone and compare those with the exposed faces of the nonnegativity

cone.

First we provide a brief theoretical overview of exposed faces, where we also recall

results for the exposed faces of Pn,2d and Σn,2d. Afterwards, we derive estimates for

the dimensions of the exposed faces of Cn,2d and study some �rst special cases in small

dimension, leading to interesting directions for further research.

In what follows, we restrict ourselves to the a�ne case again.

Recall from Section 2.1 that given a convex set S � Rn, a face F of S is exposed if

there exists a nontrivial supporting hyperplane H with F � SXH. Let Γ be a �nite set

of points in Rn. The polynomials in Cn,2d vanishing at all points of Γ form an exposed

face of Cn,2d, which we de�ne as Cn,2dpΓq:

Cn,2dpΓq � tp P Cn,2d : ppsq � 0 for all s P Γu.

Analogously, let Pn,2dpΓq and Σn,2dpΓq denote the exposed faces of Pn,2d and Σn,2d re-

spectively, i.e., Pn,2dpΓq and Σn,2dpΓq are the sets of all polynomials in Pn,2d and Σn,2d,

resp., that vanish at all points of Γ. In fact, any exposed face of Pn,2d has this descrip-

tion, see [BPT13]. We start with collecting some observations for Pn,2dpΓq and Σn,2dpΓq.
For this, following [Rez07], we denote by IpΓqr,2d the vector space of those polynomials
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p P Rrxsn,2d, which have an r-th order zero at each s P Γ. Then,

IpΓq1,d � tp P Rrxsn,d : ppsq � 0 for all s P Γu,
IpΓq2,2d � tp P Rrxsn,2d : ∇ppsq � 0 for all s P Γu.

Without degree bounds IpΓq1 is the vanishing ideal of Γ, and IpΓq2 the second symbolic

power of IpΓq1.
Clearly, Pn,2dpΓq � IpΓq2,2d, since for nonnegative polynomials p zeros are local

minima, which implies that the gradient of p at the zeros must vanish as well. Whereas

for the set of exposed faces of the SOS cone we have Σn,2dpΓq � IpΓq21,d, where

IpΓq21,d � t°i αifigi : fi, gi P IpΓq1,d, αi P Ru � t°i αih
2
i : hi P IpΓq1,d, αi P Ru. Actually,

one can show that this inclusion is full-dimensional, i.e., dimpΣn,2dpΓqq � dimpIpΓq21,dq.
Obviously it holds IpΓq21,d � IpΓq2,2d. Therefore subsequent questions concern the

full-dimensionality of Pn,2dpΓq in IpΓq2,2d and then, the equality of IpΓq2,2d and IpΓq21,d.
These questions were discussed in [BIK15], where the authors showed that

dimpPn,2dpΓqq � dimpIpΓq2,2dq under some assumptions on the set Γ, namely, if Γ is

�d-independent�. Moreover, they provided an answer for the second question again un-

der some assumptions on the set Γ and characterized those cases, where dimpIpΓq2,2dq
is strictly greater than dimpIpΓq21,dq.
In what follows, we use the subsequent observation for the computation of dimpPn,2dpΓqq.
Since in n variables a second order zero imposes n � 1 linear conditions which not

necessarily are all independent, it holds

dimpIpΓq2,2dq ¥ dimpRrxsn,2dq � |Γ| � pn� 1q �
�
n� 2d

2d



� |Γ| � pn� 1q.

By the Alexander-Hirschowitz-Theorem [Mir99] it follows that generically, with

exception of 2d � 2, we have equality in the above inequality.

We now analyze Cn,2dpΓq. Clearly, we have Cn,2dpΓq � Pn,2dpΓq. Immediate

subsequent questions are: What is the dimension of Cn,2dpΓq? Are there cases where

Cn,2dpΓq is full-dimensional in Pn,2dpΓq, i.e., dimpCn,2dpΓqq � dimpPn,2dpΓqq?
In what follows, we consider |Γ| � 2n and |Γ| � 2n�1.

To begin with, we state an important observation regarding the dimension of Cn,2dpΓq.
Obviously, dimpCn,2dpΓqq equals the number of linear independent SONC polynomials

in Cn,2d vanishing at all points of Γ. Hence, it su�ces to study nonnegative circuit
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polynomials or, in fact, agiforms f , where all entries of all zeros v of f have norm one,

i.e., |vi| � 1 for all i � 1, . . . , n. We therefore limit our subsequent analysis to agiforms.

As a �rst result in this context we give an upper bound on the dimension of Cn,2dpΓq.

Proposition 3.3.1.

p1q Let |Γ| � 2n. Then dimpCn,2dpΓqq ¤
�
n�d
d

�
.

p2q Let |Γ| � 2n�1. Then dimpCn,2dpΓqq ¤
�
n�2d

2d

�
.

Proof.

(1) Let |Γ| � 2n and let f be an agiform in Cn,2dpΓq. By Theorem 3.2.3 we know that

f must have an even inner exponent, so the complete support of f is even. As

already noted above, the dimension of Cn,2dpΓq is equal to the number of linear

independent agiforms in Cn,2d vanishing at all points of Γ. Thus, dimpCn,2dpΓqq
is equivalent to the rank of the matrix A P Rm�Npn,dq, where m is the num-

ber of all agiforms in Cn,2d vanishing at all points of Γ and Npn, dq � �
n�d
d

�
is the number of all monomials xα P Rrxs2d with even exponents α. Since

rankpAq ¤ mintm,Npn, dqu and m ¥ Npn, dq for 2d ¥ 6 we can conclude that

the rank of A is at most
�
n�d
d

�
.

(2) Now let |Γ| � 2n�1. Observe that the inner exponent of an agiform f vanishing at

all points of Γ may be both even and odd. Therefore we have to take all monomials

up to degree 2d into account, whereby the matrix A above is in Rm�Npn,2dq. The

result now follows by similar arguments as for statement (1).

Note that the dimension bound for |Γ| � 2n�1 is very naive and by comparison

with Pn,2dpΓq also not likely to be sharp at all. At the end of this section we give an

improvement of this bound.

3.3.1 The univariate Case

In this section we study the univariate case. Since we actually may count the dimension

by hand in this case, we initially compute dimpC1,2dpΓqq for some small degree. Then,

we fully determine the dimension of Cn,2dpΓq in the univariate case.

First, let Γ � t1,�1u, hence |Γ| � 2. There is no agiform of degree 2 vanishing at

both s P Γ, since the inner exponent cannot be even. In what follows, we determine the
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number of univariate linear independent agiforms vanishing at 1 and �1 for the degree

4 ¤ 2d ¤ 14. We also compute dimpP1,2dpΓqq for these cases:

2d 4 6 8 10 12 14

dimpC1,2dpΓqq 1 2 3 4 5 6

dimpP1,2dpΓqq 2 5 7 9 11

For the degree 2d � 4 the dimension of P1,4pΓq is omitted since it is unclear if

dimpP1,4pΓqq � dimpIpΓq2,4q holds in this case. Furthermore, it can be seen that the

�rst di�erence between the dimensions of the exposed faces of C1,2d and P1,2d is in

degree 8.

We now look at |Γ| � 1, i.e., Γ � t1u. Recall that we reduce our study to the case of

agiforms, for which �1 is not a zero. This leads to the following dimensions:

2d 2 4 6 8 10 12

dimpC1,2dpΓqq 1 3 5 7 9 11

dimpP1,2dpΓqq 3 5 7 9 11

Obviously, there is no dimensional gap between the dimensions of the exposed faces

of C1,2d and P1,2d for the considered degrees. Recall that 2d � 2 is one exception in the

Alexander-Hirschowitz Theorem.

With these calculations in mind, we provide the result for determining the dimension

of C1,2dpΓq in the general case of degree 2d:

Lemma 3.3.2.

p1q For |Γ| � 2, it holds dimpC1,2dpΓqq � d� 1, if d ¥ 2.

p2q For |Γ| � 1, we have dimpC1,2dpΓqq � 2d� 1.

Proof.

(1) Let |Γ| � 2. It is easy to see that in this case the number of linear independent

agiforms with even inner exponent equals the number of even lattice points in

∆1,2d without the vertices, which is equivalent to the number of all monomials xα

in Rrxs2d with even degree 0   α   2d. Hence, dimpC1,2dpΓqq �
�
n�d
d

��2 � d�1.

In this case we have d ¥ 2, because, as already noted, in dimension 2d � 2 there

exists no agiform with even inner exponent.

73



3 The SONC Cone revisited

(2) Now let |Γ| � 1. Analogously to case (1) the sought number equals the number

of all monomials xα in Rrxs2d with 0   α   2d. Thus, it follows immediately

dimpC1,2dpΓqq �
�
n�2d

2d

�� 2 � 2d� 1� 2 � 2d� 1.

The analysis of dimpP1,2dpΓqq for both �nite sets Γ yields:

(1) For |Γ| � 2, it holds dimpP1,2dpΓqq � 2d� 3, if d ¥ 3.

(2) For |Γ| � 1, we have dimpP1,2dpΓqq � 2d� 1, if d ¥ 2.

Observe that, if |Γ| � 1 we have dimpP1,2dpΓqq � dimpC1,2dpΓqq, and on the contrary

for |Γ| � 2 the dimension of the exposed face P1,2dpΓq is nearly twice as large as

dimpC1,2dpΓqq.

3.3.2 The bivariate Case

Now we turn towards the bivariate case. Again we calculate the dimensions of the

exposed faces C2,2dpΓq for some degrees. Already in this case we have to limit the

determination of explicit cases to the two smallest degrees because of the amount of

agiforms in C2,2d even for low degrees.

For |Γ| � 4, namely Γ � tp1, 1q, p�1,�1q, p1,�1q, p�1, 1qu, we have:

2d 4 6

dimpC2,2dpΓqq 3 8

dimpP2,2dpΓqq 16

Already in degree 2d � 6 there is a noticeable dimensional di�erence between the

exposed face of C2,6 and P2,6. Moreover, observe that the exposed face C2,6pΓq contains
the agiform

fpx1, x2q � 1

3
� 1

3
x4

1x
2
2 �

1

3
x2

1x
4
2 � x2

1x
2
2.

This polynomial can easily be detected to be one third of the Motzkin polynomial m,

i.e., 1
3
� m � f . Thus, we can conclude C2,6pΓq � Σ2,6pΓq which is in line with our

knowledge regarding the cone containment of Cn,2d and Σn,2d.

In the case of |Γ| � 2, i.e., Γ � tp1, 1q, p�1,�1qu, we compute the following

dimensions:
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2d 2 4

dimpC2,2dpΓqq 1 6

dimpP2,2dpΓqq 9

Also for |Γ| � 2 we may already detect in the �rst calculable case dimensional

di�erences of the exposed faces of the analyzed cones.

During counting the agiforms f which vanish on Γ in this case, we observe that not all�
2�2d

2d

�
possible monomials xα P Rrxs2d appear in the support of f . Since f has to vanish

on both s P Γ the inner exponent must have a special structure. To be more precise,

the degree of the inner monomial xβ of an agiform vanishing on Γ � tp1, 1q, p�1,�1qu
has to be even, i.e., |β| P 2N, but not necessarily each component of β has to be even,

that is, it may hold that β R p2Nqn.
Due to this observation, we can give a re�ned dimension bound of the exposed face

C2,2dpΓq in the case |Γ| � 2 compared to Proposition 3.3.1 (2).

Lemma 3.3.3. For |Γ| � 2 it holds dimpC2,2dpΓqq ¤ d2 � 2d� 1.

Proof. This bound follows by counting the involved monomials in the support of the

agiforms vanishing on Γ � tp1, 1q, p�1,�1qu, which are all monomials xα P Rrxs2d with
|α| even.

3.3.3 Improved Dimension Bound

In case of n even we can be even more precise, which yields the following improved

bound for dimpCn,2dpΓqq if |Γ| � 2n�1:

Proposition 3.3.4. Let the number of variables n be even and |Γ| � 2n�1. Then it

holds dimpCn,2dpΓqq ¤
°d
i�0

�
n�2i�1

2i

�
.

Proof. The dimension of Cn,2dpΓq is bounded by the number of all monomials of degree

¤ 2d with even degree. The number of monomials xα P Rrxs2d which have exactly even

degree 2i, i.e., |α| � 2i, is given by
�
n�2i�1

2i

�
. Hence, the summation over all i � 0, . . . , d

leads to the right number.

This argumentation does not hold for n odd, since the inner monomial xβ of an agi-

form vanishing on all s P Γ with |Γ| � 2n�1 may also have an odd degree. For instance,

consider the 3-variate case and Γ � tp1, 1, 1q, p1,�1,�1q, p�1, 1,�1q, p�1,�1, 1qu. The
agiform f � 1

4
� 1

4
x4

1 � 1
4
x4

2 � 1
4
x4

3 � x1x2x3 vanishes on every s P Γ, but |β| � 3.
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3 The SONC Cone revisited

Furthermore, observe that for n ¥ 4 the dimension bound of Proposition 3.3.4 can

be further re�ned. In the above sum we count monomials xα with αi � 0 for some i

as well. For example in the 4-variate case we also take the monomials x3
1x2, x2x3, or

x2x3x
2
4 into account. But clearly, these monomials cannot be inner monomials of an

agiform vanishing at all s P Γ, with |Γ| � 8.

It would be an interesting task to further improve the dimension bounds (also in the

case of an odd number of variables) or actually to exactly determine the dimension of

the exposed faces of Cn,2d. Moreover, the gaps between the dimensions of the exposed

faces of Cn,2d and Pn,2d need to be explored in more detail.

3.4 Multiplicative Closedness and Full-Dimensionality

In this section we establish results on the SONC cone, which are not only of importance

for themselves, but also in the context of polynomial optimization, the content of the

next two chapters.

First we analyze if the set of SONC polynomials is closed under multiplication.

Multiplicative closedness is a basic property of sums of squares, which especially takes

e�ect in the application to polynomial optimization, namely for certain Positivstellen-

sätze, see Section 2.3.4. Then, we prove that Cn,2d is full-dimensional in the nonneg-

ativity cone Pn,2d for every n and d; see Theorem 3.4.3. This is a necessary condition

to establish SONC polynomials as a certi�cate, which is useful in practice and hence

of crucial importance for the subsequent chapters.

The following property of SONC polynomials stands in strong contrast to SOS

polynomials.

Lemma 3.4.1. For every n, d P N� there exist f, g P Cn,2d such that f � g R Cn,4d.
Proof. A circuit polynomial in Cn,2d has at most 2n a�ne real zeros in pR�qn, which
is a sharp bound for every d P N�; see Corollary 3.2.1 and Theorem 3.2.3. Thus, the

same holds for a SONC polynomial since it is a sum of nonnegative circuit polynomials.

More precisely, if we choose a circuit polynomial fpxq � λ0�
°n
j�1 fjx

2d
j �fβxβ P BCn,2d

such that Newpfq � ∆n,2d, then every entry vj of every zero v P Rn of f satis�es

|vj| � pλj{fjq1{p2dq. Then fpxq is nonnegative and has exactly 2n a�ne zeros in pR�qn
if fβ � �Θf and β P p2Nqn. Therefore, for such a given fpxq we can construct a new

nonnegative circuit polynomial gpxq with 2n di�erent a�ne zeros in pR�qn by changing

every fj by a small εj P R and adjusting fβ to the new circuit number �Θg; see (2.4.2).
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The product fpxq � gpxq, a product of two SONC polynomials, is a polynomial with

2n � 2n � 2n�1 a�ne real zeros in pR�qn and of degree at most 4d. Consequently, this

product cannot be a SONC polynomial in Cn,4d.

An immediate consequence of the proof of this lemma is the following statement:

Corollary 3.4.2. Not every square of a polynomial is a SONC polynomial.

These results will be of relevance in Chapter 5, where we study the application of

SONC polynomials to constrained optimization problems based on a Positivstellen-

satz involving SONC polynomials. Namely, the observations above imply that SONC

polynomials form neither a preorder nor a quadratic module; see Section 2.3.3 for

the formal de�nitions. Hence, we cannot expect to exploit several of the classical

techniques from real algebraic geometry to derive a Putinar-like Positivstellensatz, since

these techniques rely heavily on the fact that sums of squares form both a preorder and

a quadratic module. However, this does not contradict the possibility of deriving a

similar result or even the exact equivalent of Putinar's Positivstellensatz for SONC

polynomials. We address this topic again in Chapter 6.

We now show, that the convex cone of SONC polynomials is always full-dimensional

in the convex cone of nonnegative polynomials.

Theorem 3.4.3. Let n, d P N�. Then the SONC cone Cn,2d is full-dimensional in the

cone of nonnegative polynomials Pn,2d.

Proof. To prove the theorem it is su�cient to provide a single polynomial f P Cn,2d
such that for every g P Pn,2d there exists a su�ciently small ε ¡ 0 such that we have

f � εg P Cn,2d. We choose f as follows: Let Newpfq � ∆n,2d be the standard simplex

with edge length 2d, i.e., V pNewpfqq � t0, 2d � e1, . . . , 2d � enu. Moreover, assume that

f has full support, i.e., supppfq � Ln,2d. Since f is a SONC polynomial, we can write f

as a sum of nonnegative circuit polynomials f1, . . . , fs such that for every j � 1, . . . , s

it holds that

fjpxq � fj,0 �
rj¸
i�1

fj,ix
2d
i � fβpjqxβpjq,

rj ¤ n. Furthermore, we assume that every fj is in the interior of Cn,2d, that is,

|fβpjq|   Θfj . Thus, f is in the interior of Cn,2d, too. Let

δ � min
1¤j¤s

 
Θfj � |fβpjq|

( ¡ 0.(3.4.1)
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Let gpxq � °
αPLn,2d gαx

α P Pn,2d be arbitrary. By Proposition 2.2.2 we have g0 ¥ 0

and g2d�ei ¥ 0 for i � 1, . . . , n. For a given δ we choose

ε � min
αPLn,2dzV pNewpfqq,

gα�0

"
δ

2 � |gα|
*

¡ 0.(3.4.2)

Since f has full support and every nonnegative circuit polynomial fj has exactly

one inner term and satis�es V pNewpfjqq � V pNewpfqq � V p∆n,2dq, the exponent

α P Ln,2dzt0, 2d � e1, . . . , 2d � enu of a term in g equals the exponent βpjq of an inner

term of exactly one nonnegative circuit polynomial fj. Therefore, it holds that

fpxq � ε � gpxq �
ş

j�1

�
fjpxq � ε � gβpjqxβpjq

�� ε �
�
g0 �

ņ

i�1

g2d�ei � x2d
i

�
(3.4.3)

for a suitable matching of the gα's of gpxq and the gβpjq's. For every j � 1, . . . , s we

have

fjpxq � ε � gβpjqxβpjq � ε

s
�
�
g0 �

ņ

i�1

g2d�ei � x2d
i

�

� fj,0 � ε

s
� g0 �

rj¸
i�1

fj,ix
2d
i �

ņ

i�1

ε

s
� g2d�eix

2d
i � pfβpjq � ε � gβpjqqxβpjq

¥ fj,0 �
rj¸
i�1

fj,ix
2d
i � pfβpjq � ε � gβpjqqxβpjq.

Every polynomial fj,0 �
°rj
i�1 fj,ix

2d
i � pfβpjq � ε � gβpjqqxβpjq is a circuit polynomial.

Hence, we can conclude that it is nonnegative if we show that the norm of the coe�cient

of its inner term is bounded by the corresponding circuit number. This is the case since

|fβpjq � ε � gβpjq|
(3.4.2)¤ ��fβpjq��� min

αPLn,2dzV pNewpfqq,

gα�0

"
δ

2 � |gα|
*
� |gβpjq|

¤ ��fβpjq��� δ

2

(3.4.1)  Θfj .

Thus, for every j � 1, . . . , s we conclude that fjpxq�εgβpjqxβpjq� ε
s
��g0 �°n

i�1 g2d�eix
2d
i

�
is a nonnegative circuit polynomial. Hence, by (3.4.3), it follows that f � ε � g P Cn,2d.
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3.5 Conclusion

In this chapter we have given new theoretical insights about the SONC cone. Besides

showing that Cn,2d is a proper cone, we provided the missing piece about the cone

containment of the SONC and the SOS cone, and we proved the important fact that

the property to be SONC is preserved under homogenization. Moreover, we gave a

complete classi�cation of the real zeros of SONC forms and polynomials yielding some

interesting additional results. Using the observations of the real zeros, we took a �rst

step towards the analysis of the exposed faces Cn,2dpΓq. Finally, we observed that the set
of SONC polynomials is not closed under multiplication and we provided the important

result that the cone of SONC polynomials is full-dimensional in the cone of nonnegative

polynomials.

The study of theoretical aspects of Cn,2d and the relationship between the SONC cone

and the cones Pn,2d and Σn,2d is far from being complete. In addition to the mentioned

questions in the chapter, there are many future questions and open problems concerning

this topic. We address these further in Chapter 6.
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Chapter 4

An Approach to Polynomial

Optimization via SONC and GP

In this and the next chapter we apply SONC polynomials to constrained polynomial

optimization problems. A common approach to tackle these problems is Lasserre's

relaxation which is based on sums of squares using semide�nite programming. In spite

of the fact, that SDPs can be solved in polynomial time (up to an ε-error), e.g., [BPT13,

page 41] and references therein, these programs quickly get very large in size, which

often is an issue for problems with high degrees or many variables. Hence, this approach

is challenging to use in practice.

Recently, Ghasemi and Marshall suggested a promising alternative approach both

for (POPs) and (CPOPs) based on geometric programming (GP) [GM12, GM13]. GPs

can be solved in polynomial time (up to an ε-error) as well [NN94]; see also [BKVH07,

page 118], but, by experimental results, e.g., [BKVH07, GM12, GM13, GLM14], in

practice the corresponding geometric programs can be solved signi�cantly faster than

their counterparts in semide�nite programming. The lower bounds obtained by Ghasemi

and Marshall are, however, by construction worse than lower bounds obtained via

semide�nite programming, and they can only be applied in very special cases.

In [IdW16b] Iliman and de Wol� showed that the GP-based approach for uncon-

strained optimization by Ghasemi and Marshall can be generalized crucially via SONC

certi�cates. In consequence, the presented geometric programs are linked to sums of

nonnegative circuit polynomials similarly as semide�nite programming relaxations are

linked to sums of squares. Particularly, there exist various classes of polynomials for

which the SONC/GP-based approach is not only faster but, it also yields better bounds

than the SOS/SDP approach. The reason is that all certi�cates used by Ghasemi and
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4 An Approach to Polynomial Optimization via SONC and GP

Marshall are always SOS, while SONCs are not SOS in general; see Theorem 2.4.8.

Motivated by these recent developments, we provide an extension for the SONC/GP

method which yields a new approach to solve a huge class of (CPOPs), particularly for

high-degree polynomials. Experimentally, the resulting method is signi�cantly faster

than semide�nite programming as we demonstrate in various examples.

First we introduce ST-polynomials, the considered polynomials in the predominant

part of this chapter, and geometric programs, the underlying optimization problems.

Afterwards we recall the SONC/GP approach for unconstrained polynomial optimiza-

tion problems as well as an initial approach to the constrained case yielding a program

which leads to a lower bound for the optimal value but which is not computable via

geometric programming. The aim of the third section is to provide relaxations for this

program such that we can use geometric programming. Moreover, we show that for

certain cases the new, relaxed GP yields bounds as good as the initial non-GP pro-

gram. In the fourth section we provide several examples comparing our new approach

to Lasserre's relaxation. Concerning the speed of the computation we demonstrate that

in all examples our program is signi�cantly faster than semide�nite programming. The

main observation is, that in sharp antagonism to SDPs, increasing the degree of a given

problem does not entail signi�cant amendments in the runtime of our program, which

�ts into the previously mentioned narrative that a GP-based approach is especially

useful for high-degree problems, where SDP methods break down. Furthermore, the

examples demonstrate that in contrast to the bounds obtained by Ghasemi and Mar-

shall, our program can provide bounds which are better than the bounds given by the

d-th Lasserre relaxation for some speci�c d determined by the degrees of the involved

polynomials. Finally, we generalize the SONC/GP approach in the �fth section to

non-ST-polynomials both in the unconstrained and in the constrained case. Again we

provide some examples including a comparison of the new bounds to the ones obtained

by semide�nite programming methods. Repeatedly we observe that in all examples our

GP-based approach is much faster.

4.1 Preliminaries

In this section we introduce the considered ST-polynomials and geometric programming,

a special type of convex optimization problems. Then we review key results on the

SONC/GP-based approach to the unconstrained case.
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4.1 Preliminaries

4.1.1 ST-Polynomials

Let fpxq � °
αPA fαx

α be a polynomial as de�ned in Section 2.1. For a given set

A � Nn we de�ne ∆pAq � AzV pAq and we denote by ∆pfq the elements of ∆pAq which
appear as exponents of non-zero terms, that are no monomial squares. I.e., we have

∆pfq � tα P ∆pAq : |fα| � 0 and pfα   0 or α R p2Nqnqu.

For the remainder of this chapter, we assume that the necessary conditions in Propo-

sition 2.2.2 are satis�ed including Newpfq � convpAq. For simplicity, we denote this

assumption by the symbol p♣q from now on.

In what follows, we consider the class of ST-polynomials, which can be seen as a

certain generalization of circuit polynomials to polynomials supported on a simplex

Newton polytope with various interior points, for further details see [IdW16b]. This

class generalizes a class of polynomials considered by Fidalgo and Kovacec in [FK11]

and by Ghasemi and Marshall in [GM12, GM13].

De�nition 4.1.1. Let f P Rrxs be supported on A � Nn such that p♣q holds. Then f
is called an ST-polynomial if it is of the form

fpxq �
ŗ

j�0

fαpjqxαpjq �
¸

βP∆pAq
fβx

β,(4.1.1)

with r ¤ n, exponents αpjq and β, and coe�cients fαpjq, fβ, for which the following

conditions hold:

(ST1) V pAq � tαp0q, . . . ,αprqu is the vertex set of an r-dimensional even simplex,

coinciding with Newpfq � convpAq.

(ST2) Every exponent β P ∆pAq can be written uniquely as

β �
ŗ

j�0

λ
pβq
j αpjq with λ

pβq
j ¥ 0 and

ŗ

j�0

λ
pβq
j � 1,

where the λpβqj denote the barycentric coordinates of β relative to the vertices

αpjq with j � 0, . . . , r.
7

The �ST� in �ST-polynomial� stands for �simplex tail�. The tail part is given by the

sum
°
βP∆pAq fβx

β, while the other terms de�ne the simplex part. Note that here we
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allow the barycentric coordinates λpβqj to be nonnegative instead of strictly positive as

in the circuit polynomial de�nition, see De�nition 2.4.1. Thus in this chapter, the non

vertex points β P ∆pAq may be located on the boundary of the simplex. Despite this

di�erence, we call an ST-polynomial, which has a tail part consisting of at most one

term, a circuit polynomial.

However, nonnegativity of ST-polynomials is as well closely related to the circuit

number. This invariant is adapted in the following way in this chapter:

De�nition 4.1.2. Let f be an ST-polynomial with support set A. For every β P ∆pAq
we de�ne the corresponding circuit number as

Θf pβq �
¹

jPnzpβq

�
fαpjq

λ
pβq
j

�λ
pβq
j

with nzpβq :� tj P t0, . . . , ru : λ
pβq
j � 0u, fαpjq, and λpβqj as before. 7

4.1.2 Geometric Programming

Geometric programming was introduced in [DPZ67]. It is a convex optimization

problem and has applications for example in nonlinear network �ow problems, optimal

control, optimal location problems, chemical equilibrium problems and particularly in

circuit design problems.

De�nition 4.1.3. A function p : Rn
¡0 Ñ R of the form ppzq� ppz1, . . . , znq� czα1

1 � � � zαnn
with c ¡ 0 and αi P R is called a monomial (function). A sum

°k
i�0 ciz

α1piq
1 � � � zαnpiqn of

monomials with ci ¡ 0 is called a posynomial (function).

A geometric program (GP) has the following form:

$'''&
'''%
minimize p0pzq,

subject to:
p1q pipzq ¤ 1 for all i � 1, . . . ,m,

p2q qjpzq � 1 for all j � 1, . . . , l,

(4.1.2)

where p0, . . . , pm are posynomials and q1, . . . , ql are monomial functions. 7

Geometric programs can be solved with interior point methods. In [NN94], the

authors prove worst-case polynomial time complexity of this method; see also [BKVH07,

page 118]. A signomial program is given like a geometric program except that the

coe�cients ci of the involved posynomials can be arbitrary real numbers.
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For an introduction to geometric programming, signomial programming, and an

overview about applications see [BKVH07, BV04].

4.1.3 SONC Certi�cates via Geometric Programming in the

Unconstrained Case

In this section we recall the main results from [IdW16b] about SONC certi�cates

obtained via geometric programming for unconstrained polynomial optimization

problems. These results always require that the polynomial in the optimization problem

is an ST-polynomial in the sense of Section 4.1.1.

Theorem 4.1.4. ([IdW16b, Theorems 3.4 and 3.5]) Assume that f is an ST-polynomial

as in (4.1.1) and let k P R. Suppose that for every pβ, jq P ∆pfq�t1, . . . , ru there exists
an aβ,j ¥ 0, such that:

(1) aβ,j ¡ 0 if and only if λpβqj ¡ 0,

(2) |fβ| ¤
±

jPnzpβq

�
aβ,j

λ
pβq
j


λ
pβq
j

for every β P ∆pfq with λpβq0 � 0,

(3) fαpjq ¥
°

βP∆pfq
aβ,j for all j � 1, . . . , r,

(4) pfαp0q � kqxαp0q ¥ °
βP∆pfq
λ
pβq
0 �0

λ
pβq
0 |fβ|1{λpβq0

±
jPnzpβq
j¥1

�
λ
pβq
j

aβ,j


λ
pβq
j {λpβq0

.

Then f � kxαp0q is a sum of nonnegative circuit polynomials g1, . . . , gs such that

s :� |∆pfq|, and for every gi the Newton polytope Newpgiq is a face of Newpfq.
Let fsonc be the supremum of all k P R such that for every β P ∆pfq there exist

nonnegative reals aβ,1, . . . , aβ,r such that the conditions (1) to (4) are satis�ed. Then

fsonc coincides with the supremum of all k P R such that there exist nonnegative circuit

polynomials g1, g2, . . . , gs whose Newton polytopes are faces of Newpfq and which satisfy
f � kxαp0q � °s

i�1 gi.

For the special case of scaled standard simplices the theorem was shown earlier

by Ghasemi and Marshall [GM12, Theorem 3.1]. In this special case every sum of

nonnegative circuit polynomials is also a sum of binomial squares which is not true in

general. For example, the Motzkin polynomial is an ST-polynomial with one interior

term, which is not even a SOS.
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Theorem 4.1.4 states

fsonc � suptk P R : f � kxαp0q is a SONC u.

The bound fsonc is given by a geometric program [IdW16b, Corollary 4.2]:

Corollary 4.1.5. Let f P Rrxs be an ST-polynomial. Let R be the subset of an

r|∆pfq|-dimensional real space given by

R � tpaβ,jq : aβ,j P R¡0 for every β P ∆pfq and j P nzpβqu.

Then fsonc � fαp0q � m�, where m� is given as the output of the following geometric

program:

$'''''''''''''&
'''''''''''''%

minimize
°

βP∆pfq
λ
pβq
0 �0

λ
pβq
0 |fβ|1{λpβq0

±
jPnzpβq
j¥1

�
λ
pβq
j

aβ,j


λ
pβq
j {λpβq0

over the subset R1 of R

de�ned by:

p1q °
βP∆pfq

paβ,j{fαpjqq ¤ 1 for every j � 1, . . . , r,

p2q |fβ|
±

jPnzpβq

�
λ
pβq
j

aβ,j


λ
pβq
j

¤ 1 for every β P ∆pfq with λpβq0 � 0.

Hence, the optimal bound to �nd a SONC decomposition of an ST-polynomial is

provided by geometric programming. Since a polynomial with a SONC decomposition

is nonnegative, geometric programming can be used to �nd certi�cates of nonnegativity.

A key observation is that the bounds obtained by the new SONC approach can

be better than the ones obtained by SOS as the following result shows; see [IdW16b,

Corollary 3.6]. For this, remember from Section 2.3.1 that f� � inftfpxq : x P Rnu and
fsos � sup tγ P R : f � γ is SOSu.

Corollary 4.1.6. Let f be an ST-polynomial with ∆pAq � ∆pfq such that ∆pfq is
contained in the interior of Newpfq. Let αp0q be the origin and suppose that there

exists a vector v P pR�qn such that fα � vα   0 for all α P ∆pfq. Then

fsonc � f� ¥ fsos.
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4.1.4 SONC Certi�cates for the Constrained Case

Based on the results of the previous subsection, Iliman and de Wol� [IdW16b, Sec-

tion 5] derive some initial applications for constrained polynomial optimization prob-

lems, which were restated in a more careful way in [DIdW18]. Before deepening these

results and describing our contributions in Section 4.2, we recall the re�ned version of

these initial results.

Let f, g1, . . . , gs be elements of the polynomial ring Rrxs and let

K � tx P Rn : gipxq ¥ 0 for all i � 1, . . . , su

be the basic closed semialgebraic set de�ned by g1, . . . , gs. We consider the constrained

polynomial optimization problem (CPOP)

f�K � inf
xPK

fpxq � suptγ P R : fpxq � γ ¥ 0 for all x P Ku,

as de�ned in Section 2.3.4. If s � 0, then we have no polynomial constraints gi
and therefore K � Rn, which leads to the global optimization problem explained in

Section 4.1.3.

To obtain a general lower bound for f on K which is computable by geometric

programming we replace the considered polynomials by a new function. Let

Gpµqpxq � fpxq �
ş

i�1

µigipxq � �
ş

i�0

µigipxq(4.1.3)

for µ � pµ1, . . . , µsq P Rs
¥0, g0 � �f and µ0 � 1. For every �xed µ� P Rs

¥0 the function

Gpxq � Gpµ�qpxq is a polynomial in Rrxs. Following an argument in [GM13] we can

assume that all monomial squares of �gi are vertices of NewpGpµqq: One can reduce to

this case by neglecting all monomial squares not corresponding to such a vertex. That

is, for all i � 0, . . . , s one can replace gi by g̃i, which resemble gi without monomial

squares of �gi in the interior of NewpGpµqq. Then �g̃i ¤ �gi on Rn for i � 0, . . . , s,

thus, K � K̃, where K̃ � tx P Rn : g̃ipxq ¥ 0, i � 1, . . . , su, as well as f�
K̃
¤ f�K .

Let Ai � Nn be the support of the polynomial gi for i � 0, . . . , s and let A � �s
i�0Ai

be the union of all supports of polynomials gi. We remark that while considering a

�xed support, the Newton polytope of Gpµq is not invariant in general since certain µi
might vanish or term cancellation might occur. If for some µ P Rs

¥0 the polynomial
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Gpµq is an ST-polynomial, then we assume that NewpGpµqq � convpAq and

V pAq � tαp0q, . . . ,αprqu � p2Nqn and we denote Gpµqsonc as the optimal value of

the GP from Corollary 4.1.5. Theorem 4.1.4 implies that Gpµq � Gpµqsoncx
αp0q ¥ 0

and Gpµqsonc P R is the maximal possible choice for nonnegativity. Hence, we obtain a

bound for the coe�cient of the term xαp0q depending on the other coe�cients of Gpµq
certifying nonnegativity of Gpµq. If Gpµq is not an ST-polynomial for some µ P Rs

¥0,

then we set Gpµqsonc � �8, since the corresponding geometric program is infeasible.

Thus, by (4.1.3), if µ is �xed, then Gpµqsonc is a lower bound for f on the semialgebraic

set K regarding the coe�cient of xαp0q. Let g � pg1, . . . , gsq. We de�ne

spf,gq � suptGpµqsonc : µ P Rs
¥0u.

Thus, we have particularly for αp0q � 0:

spf,gq ¤ f�K .(4.1.4)

For every �xed µ the bound Gpµqsonc is computable by a geometric program. Unfor-

tunately, this does not imply that the supremum is computable by a geometric program

as well. However, following ideas by Ghasemi and Marshall [GM12] we present a general

optimization program for a lower bound of spf,gq, which is a geometric program under

special conditions. Therefore, we need to �x some notation.

In the sense of Section 4.1.1 let ∆pAq be the set of exponents of the tail terms of

Gpµq and ∆pGpµqq � ∆pAq be the set of exponents which have a non-zero coe�cient

and are not a monomial square. Moreover, we de�ne ∆pGq � �
µPRs¥0

∆pGpµqq. Note
that ∆pGpµqq � ∆pGq � ∆pAq for all µ. We have by Section 4.1.1, De�nition 4.1.1

Gpµqpxq � �
ş

i�0

µigipxq �
ŗ

j�0

Gpµqαpjqxαpjq �
¸

βP∆pGq
Gpµqβxβ

with coe�cients Gpµqαpjq, Gpµqβ P R depending on µ. Here we set the coe�cients

Gpµqβ � 0 for all β P ∆pGqz∆pGpµqq.

As before, we denote by tλpβq0 , . . . , λ
pβq
r u the barycentric coordinates of the lattice

point β P ∆pAq with respect to the vertices of the simplex NewpGpµqq � convpAq. We

de�ne for every β P ∆pGq a set
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4.1 Preliminaries

Rβ � taβ : aβ � paβ,1, . . . , aβ,rq P Rr
¡0u.

Furthermore, we construct the nonnegative real set R as

R � r0,8qs �
¡
βP∆pGq

pRβ � R¥0q.

Hence, R is the Cartesian product of r0,8qs and |∆pGq| many copies Rr
¡0 � R¥0; each

given by one Rβ with β P ∆pGq and one R¥0. We de�ne the function p from R to R¥0

as

ppµ, tpaβ, bβq : β P ∆pGquq �
ş

i�1

µigi,αp0q �
¸

βP∆pGq
λ
pβq
0 �0

λ
pβq
0 � b

1

λ
pβq
0
β �

¹
jPnzpβq
j¥1

�
λ
pβq
j

aβ,j

�λ
pβq
j

λ
pβq
0

where, as before, αp0q is a vertex of NewpGpµqq and gi,αp0q is the coe�cient of the

monomial xαp0q in the polynomial gi.

For the coe�cient Gpµqβ corresponding to the term with exponent β in Gpµq we
use the notation Gpµqβ � �°s

i�0 µi � gi,β. In other words, Gpµqβ is a linear form in the

µi's given by the coe�cients of the polynomials gi; analogously for Gpµqαpjq.
We consider the following optimization problem:

$''''''''''''&
''''''''''''%

minimize ppµ, tpaβ, bβq : β P ∆pGquq over the subset of R

de�ned by:

p1q °
βP∆pGq

aβ,j ¤ Gpµqαpjq for all j � 1, . . . , r,

p2q ±
jPnzpβq

�
aβ,j

λ
pβq
j


λ
pβq
j

¥ bβ for every β P ∆pGq with λpβq0 � 0, and

p3q |Gpµqβ| ¤ bβ for every β P ∆pGq with λpβq0 � 0.

(4.1.5)

The optimal value of (4.1.5) yields a lower bound for spf,gq. In general, this program
is neither a signomial program nor a geometric program. Though, the program can be

relaxed to a signomial program and with further, stronger assumptions to a geometric

program, see [IdW16b, Theorems 5.1 and 5.2].
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4 An Approach to Polynomial Optimization via SONC and GP

Theorem 4.1.7. Let γ be the optimal value of the optimization problem (4.1.5). Then

we have fαp0q � γ ¤ spf,gq. The optimization problem (4.1.5) restricted to µ P p0,8qs
is a signomial program if for every β P ∆pGq it holds that Gpµqβ has the same sign for

every choice of µ.

Assume additionally that every linear form Gpµqαpjq � �°s
i�0 µi � gi,αpjq correspond-

ing to a vertex αpjq of NewpGpµqq has only one summand and is strictly positive.

Assume moreover that for all β P ∆pGq the linear form Gpµqβ � �°s
i�0 µi � gi,β has

only positive terms. If furthermore all gi,αp0q for i � 1, . . . , s are greater than or equal

to zero, then (4.1.5) is a geometric program.

4.2 Constrained Polynomial Optimization via

Signomial and Geometric Programming

In this section, we provide relaxations of the program (4.1.5) following the ideas of

Ghasemi and Marshall in [GM13]. The goal is to weaken the assumptions which are

needed to obtain a geometric program or at least a signomial program. We provide such

relaxations in the programs (4.2.2) and (4.2.3) and provide the desired properties in

the Theorems 4.2.1 and 4.2.4. Moreover, we show that under certain extra assumptions

the bound obtained by the new program (4.2.2) equals the optimal bound spf,gq from
the previous section; see Theorem 4.2.5. Furthermore, we demonstrate in the following

Sections 4.3 and 4.4 that the resulting programs can be an alternative for SDP in cases

where Lasserre's relaxation has issues.

Let all notation regarding Gpµq be given as in Section 4.1.4. Assume that we have

for each i � 0, . . . , s

gi �
¸
βPAi

gi,β � xβ

with gi,β P R. We have ∆pAiq � ∆pAq and hence write

gi �
ŗ

j�0

gi,αpjqxαpjq �
¸

βP∆pAq
gi,βx

β

and set gi,αpjq � 0 for all αpjq P V pAqzAi and gi,β � 0 for all β P ∆pAqzAi. We remark

that three cases can occur for β P ∆pAq X Ai:
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4.2 Constrained Polynomial Optimization via Signomial and Geometric Programming

(1) �gi,βxβ is not a monomial square. Then we have β P ∆pGq.

(2) �gi,βxβ is a monomial square, but there exists another gl such that �gl,βxβ is

not a monomial square. Then we have β P ∆pGq.

(3) �gi,βxβ is a monomial square, and there exists no other gl such that �gl,βxβ is

not a monomial square. Then we have β R ∆pGq.

Sums of monomial squares as described in case (3) are ignored in our program (4.1.5).

Thus, we can also ignore this case here. We now investigate the other two cases in detail.

As already mentioned in Section 4.1.4 we can interpret the coe�cients Gpµqαpjq and
Gpµqβ as linear forms in µ since we have for all j � 0, . . . , r

Gpµqαpjq � �
ş

i�0

µi � gi,αpjq and Gpµqβ � �
ş

i�0

µi � gi,β.

We decompose every coe�cient Gpµqβ into a positive and a negative part such that

Gpµqβ � Gpµq�β �Gpµq�β , where

Gpµq�β �
¸

gi,β¡0

µi � gi,β and Gpµq�β � �
¸

gi,β 0

µi � gi,β.(4.2.1)

This decomposition is independent of the choice of µ in the sense that no gi,β can

be a summand of both Gpµq�β and Gpµq�β for di�erent choices of µ since µ P Rs
¥0.

The key idea is to rede�ne the constraint bβ ¥ |Gpµqβ| of the program (4.1.5) by a

new constraint bβ ¥ maxtGpµq�β , Gpµq�βu. Let R be de�ned as in Section 4.1.4 and let

g�i,αp0q � maxtgi,αp0q, 0u, i.e., we only consider the terms with exponents αp0q which are

positive in the gi and hence negative in Gpµq. We rede�ne p as

ppµ, tpaβ, bβq : β P ∆pGquq �
ş

i�1

µig
�
i,αp0q �

¸
βP∆pGq
λ
pβq
0 �0

λ
pβq
0 � b

1

λ
pβq
0
β �

¹
jPnzpβq
j¥1

�
λ
pβq
j

aβ,j

�λ
pβq
j

λ
pβq
0

.

We consider the following optimization problem in the variables µ1, . . . , µs and

aβ,1, . . . , aβ,r, bβ for every β P ∆pGq:
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4 An Approach to Polynomial Optimization via SONC and GP

$'''''''''''''''&
'''''''''''''''%

minimize ppµ, tpaβ, bβq : β P ∆pGquq over the subset of R

de�ned by:

p1q °
βP∆pGq

aβ,j ¤ Gpµqαpjq for all j � 1, . . . , r,

p2q ±
jPnzpβq

�
aβ,j

λ
pβq
j


λ
pβq
j

¥ bβ, for all β P ∆pGq with λpβq0 � 0,

p3q Gpµq�β ¤ bβ for all β P ∆pGq, and

p4q Gpµq�β ¤ bβ for all β P ∆pGq.

(4.2.2)

By condition (1), this problem is feasible only for choices of µ such that Gpµqαpjq ¡ 0

for all αpjq since all aβ,j are strictly positive. We set the output as �8 in all other

cases. Indeed, with some additional assumptions the program (4.2.2) is a geometric

program. Moreover, it is a relaxation of the program (4.1.5).

Theorem 4.2.1. Assume that for all j�1, . . . , r the form Gpµqαpjq��
°s
i�0 µi � gi,αpjq

has exactly one strictly positive term, i.e., there exists exactly one strictly negative

gi,αpjq. Then the optimization problem (4.2.2) restricted to µ P p0,8qs is a geometric

program. Assume that γsonc denotes the optimal value of (4.2.2) and γ denotes the

optimal value of (4.1.5). Then we have

fαp0q � γsonc ¤ fαp0q � γ ¤ spf,gq.

The typical choice for αp0q is the origin which yields a lower bound for f to be

nonnegative on K with the inequality (4.1.4):

Corollary 4.2.2. Let all assumptions be as in Theorem 4.2.1. If αp0q is the origin,

then we have

f0 � γsonc ¤ f0 � γ ¤ spf,gq ¤ f�K .

Proof. (Theorem 4.2.1) If we restrict ourselves to µ P p0,8qs, then all functions involved
in (4.2.2) depend on variables in R¡0. By assumption every Gpµqαpjq has exactly one

strictly positive term. Thus, we can express constraint (1) in (4.2.2) as

°
βP∆pGq

aβ,j �Gpµq�αpjq
Gpµq�αpjq

¤ 1,
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4.2 Constrained Polynomial Optimization via Signomial and Geometric Programming

with Gpµq�αpjq and Gpµq�αpjq de�ned analogously as in (4.2.1). Since Gpµq�αpjq is a

monomial the left hand side is a posynomial in µ and x. The constraints (2) � (4) are

posynomial constraints in the sense of De�nition 4.1.3 of a geometric program. The

function p is also a posynomial since all terms are nonnegative by construction and all

exponents are rational. Moreover, every bβ in (4.2.2) has to be greater or equal than the

corresponding bβ in (4.1.5) because maxta, bu ¥ |a�b| for all a, b P Rzt0u. Furthermore,

since g�i,αp0q ¥ gi,αp0q holds, the inequality γsonc ¤ γ follows by the de�nitions of (4.2.2)

and (4.1.5). The last inequality follows from Theorem 4.1.7.

One expects the programs (4.1.5) and (4.2.2) to have a similar optimal value if, for

example, gi,αp0q ¥ 0 for most i � 1, . . . , s and if either Gpµq�β or Gpµq�β is identi-

cally zero for most β P ∆pGq. Note that one of Gpµq�β , Gpµq�β is zero if and only if

maxtGpµq�β , Gpµq�βu � |Gpµq�β �Gpµq�β | � |Gpµqβ| and the latter holds if and only if

gi,β ¥ 0 or gi,β ¤ 0 for i � 0, . . . , s.

We give an example to demonstrate how a given constrained polynomial optimization

problem can be translated into the geometric program (4.2.2). In Section 4.3, we provide

several further examples including actual computations of in�ma using the GP-solver

CVX.

Example 4.2.3. Let f � 1 � 2x2y4 � 1
2
x3y2 and g1 � 1

3
� x6y2. From these two

polynomials we obtain a function

Gpµq �
�

1� 1

3
µ



� 2x2y4 � µx6y2 � 1

2
x3y2.

For Gpµq to be an ST-polynomial, we have to choose µ P p0, 3q. Here, the vertices

of NewpGpµqq are αp0q � p0, 0q, αp1q � p2, 4q, and αp2q � p6, 2q, and we have

∆pGq � tβu � tp3, 2qu. Thus, we introduce 4 variables paβ,1, aβ,2, bβ, µq. First, we

compute the barycentric coordinates of β and get

λ
pβq
0 � 3

10
, λ

pβq
1 � 3

10
, λ

pβq
2 � 2

5
.

We match the coe�cients of Gpµq with the vertices αpjq:
• g�1,αp0q � maxt1

3
, 0u � 1

3
,

• Gpµqαp1q � 2, Gpµqαp2q � µ,

• Gpµq�β � 1
2
, Gpµq�β does not exist.
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4 An Approach to Polynomial Optimization via SONC and GP

Hence, program (4.2.2) is of the form:

inf

#
1

3
µ� 3

10
� b

10
3
β �

�
3

10


1

�
�

2

5


 4
3

� paβ,1q�1 � paβ,2q� 4
3

+

such that:

(1) aβ,1 ¤ 2, aβ,2 ¤ µ.

(2) The second constraint does not appear, because we do not have λpβq0 � 0.

(3) 1
2
¤ bβ.

(4) The fourth constraint does not appear, because we do not have a Gpµq�β .
7

In what follows, we extend Theorem 4.1.7 by reformulating the program (4.2.2) such

that it is always applicable. On the one hand, the new program is only a signomial

program instead of a geometric program in general. On the other hand, the reformulated

program covers the missing cases of Theorem 4.2.1 and also yields better bounds than

the corresponding geometric program (4.2.2) in general. We de�ne

qpµ, tpaβ, cβq : β P ∆pGquq �
ş

i�1

µigi,αp0q �
¸

βP∆pGq
λ
pβq
0 �0

λ
pβq
0 � c

1

λ
pβq
0
β �

¹
jPnzpβq
j¥1

�
λ
pβq
j

aβ,j

�λ
pβq
j

λ
pβq
0

and consider the subsequent program:

$'''''''''''''''&
'''''''''''''''%

minimize qpµ, tpaβ, cβq : β P ∆pGquq over the subset of R

de�ned by:

p1q °
βP∆pGq

aβ,j ¤ Gpµqαpjq for all j � 1, . . . , r,

p2q ±
jPnzpβq

�
aβ,j

λ
pβq
j


λ
pβq
j

¥ cβ for all β P ∆pGq with λpβq0 � 0,

p3q Gpµq�β �Gpµq�β ¤ cβ for all β P ∆pGq, and

p4q Gpµq�β �Gpµq�β ¤ cβ for all β P ∆pGq.

(4.2.3)

The key di�erence between this program and (4.2.2) is that

cβ ¥ maxtGpµq�β �Gpµq�β , Gpµq�β �Gpµq�βu � |Gpµqβ|.
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4.2 Constrained Polynomial Optimization via Signomial and Geometric Programming

We obtain the following statement.

Theorem 4.2.4. The optimization problem (4.2.3) restricted to µ P p0,8qs is a signo-

mial program. Assume that γsnp denotes the optimal value of (4.2.3) and γsonc, γ denote

the optimal values of (4.2.2) and (4.1.5) as before. Then we have

fαp0q � γsonc ¤ fαp0q � γsnp ¤ fαp0q � γ ¤ spf,gq.

Particularly, we have γsnp � γ if the program (4.1.5) attains its optimal value for

µ P p0,8qs.

Proof. The proof is analogous to the proof of Theorem 4.2.1. The only di�erence is

that now certain terms can have a negative sign and hence posynomials then become

signomials. The statement follows with the de�nition of a signomial program; see

Section 4.1.2.

Finally, we show that if we strengthen the assumptions in Theorem 4.2.1, then, the

output fαp0q � γsonc of the program (4.2.2) equals the output fαp0q � γ of the program

(4.1.5) and particularly equals the bound spf,gq.

Theorem 4.2.5. Assume that for every 1 ¤ j ¤ r the form Gpµqαpjq � �°s
i�0 µi�gi,αpjq

has exactly one strictly positive term. Furthermore, assume that gi,αp0q ¥ 0 for all

i � 1, . . . , s, and that ∆pAq X Ai X Al � H for all 0 ¤ i   l ¤ s. Let γ be the optimal

value of the program (4.1.5). If the optimal value spf,gq � suptGpµqsonc : µ P Rs
¥0u is

attained for some µ P p0,8qs, then fαp0q� γsonc � fαp0q� γ � spf,gq, where, as before,
γsonc denotes the optimal value of (4.2.2).

Note that the condition ∆pAq XAi XAl � H is satis�ed if the supports of gi and gl
di�er in all elements that are not vertices of NewpGpµqq.

Proof. The assumption ∆pAq X Ai X Al � H for all 0 ¤ i   l ¤ s implies for every

β P ∆pGq that Gpµqβ � �°s
i�0 µi � gi,β � �µk � gk,β, for some k � 0, . . . , s. Therefore,

we have for every β P ∆pGq that

maxtGpµq�β , Gpµq�βu � |µk � gk,β| � |Gpµqβ|.

Moreover, we have gi,αp0q ¥ 0 for all i � 1, . . . , s by assumption and thus we obtain°s
i�1 µigi,αp0q �

°s
i�1 µig

�
i,αp0q. Hence, the two programs (4.1.5) and (4.2.2) coincide.
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4 An Approach to Polynomial Optimization via SONC and GP

By assumption, every Gpµqαpjq consists of exactly one positive term. Therefore,

(4.2.2) is a GP by Theorem 4.2.1. Considering Theorem 4.2.1 it su�ces to show that

the inequality fαp0q � γsonc ¥ spf,gq holds, such that fαp0q � γsonc � fαp0q � γ � spf,gq
is ful�lled. Let µ� P p0,8qs be such that Gpµ�qsonc � spf,gq. By Corollary 4.1.5

Gpµ�qsonc is given by a feasible point paβ,1, . . . , aβ,rq of the program

$''''''''''''''&
''''''''''''''%

minimize
°

βP∆pGq
λ
pβq
0 �0

λ
pβq
0 � |µ�k � gk,β|

1

λ
pβq
0 � ±

jPnzpβq
j¥1

�
λ
pβq
j

aβ,j


λ
pβq
j

λ
pβq
0 over the subset R1 of R

de�ned by:

p1q °
βP∆pGq

aβ,j ¤ Gpµ�qαpjq for all j � 1, . . . , r, and

p2q ±
jPnzpβq

�
aβ,j

λ
pβq
j


λ
pβq
j

¥ |µ�k � gk,β| for all β P ∆pGq with λpβq0 � 0.

Then every paβ,1, . . . , aβ,r, bβ,µ�q with bβ ¥ |µ�k � gk,β| for all β P ∆pGq is a feasible

point of (4.2.2). Furthermore,

fαp0q �
ş

i�1

µ�i g
�
i,αp0q �

¸
βP∆pGq
λ
pβq
0 �0

λ
pβq
0 � b

1

λ
pβq
0
β �

¹
jPnzpβq
j¥1

�
λ
pβq
j

aβ,j

�λ
pβq
j

λ
pβq
0

� Gpµ�qp0q �
¸

βP∆pGq
λ
pβq
0 �0

λ
pβq
0 � b

1

λ
pβq
0
β �

¹
jPnzpβq
j¥1

�
λ
pβq
j

aβ,j

�λ
pβq
j

λ
pβq
0

¥ Gpµ�qp0q �
¸

βP∆pGq
λ
pβq
0 �0

λ
pβq
0 � |µ�k � gk,β|

1

λ
pβq
0 �

¹
jPnzpβq
j¥1

�
λ
pβq
j

aβ,j

�λ
pβq
j

λ
pβq
0

.

Hence, fαp0q � γsonc ¥ Gpµ�qsonc � spf,gq.
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4.3 Examples for Constrained Optimization via

Geometric Programming and a Comparison

to Lasserre Relaxations

We consider constrained polynomial optimization problems of the form

f�K � inf
xPK

fpxq,

where K is a basic closed semialgebraic set de�ned by g1, . . . , gs ¥ 0. One of the

main results in [IdW16b] is the observation that lower bounds for global optimization

problems arising from SONCs via GP can not only be computed faster, but also provide

better bounds than those obtained by SOS via SDP. Here, we show that competitive

bounds arising from SONC via GP can also be obtained for constrained problems.

Particularly, if 2d is the maximal total degree of f and g1, . . . , gs, then the bound given

by the d-th Lasserre relaxation is not necessarily as good as our optimal solution, which

is in contrast to the bounds obtained by Ghasemi and Marshall; see Example 4.3.5 for

further details. Moreover, we provide examples demonstrating that the runtime of the

GP approach is not sensitive to increasing the degree of a given problem, which is in

sharp contrast to the runtime of SDPs.

Recall that the d-th Lasserre relaxation, see (2.3.3), is given by the parameter

f pdqsos � sup

#
γ : f � γ � σ0 �

ş

i�1

σigi, σ0, σi P Σn,with degpσ0q, degpσigiq ¤ 2d

+
,

where d ¥ max trdegpfq{2s,max1¤i¤strdegpgiq{2suu. In what follows, we provide

several examples comparing the Lasserre relaxation using the Matlab SDP solver

Gloptipoly [HLL09] to our approach given in program (4.2.2) using theMatlab GP

solver CVX [BG08, GBY06]. In every example in this section we optimize with respect

to the constant term when applying program (4.2.2).

Example 4.3.1. Let f � 1 � x4y2 � x2y4 � 3x2y2 be the Motzkin polynomial and

g1 � x3y2. Then the corresponding feasible set is

K � tpx, yq P R2 : x ¥ 0 or y � 0u.

Since f is globally nonnegative and has two zeros p1, 1q, p1,�1q on K, e.g., [Rez00], we

97



4 An Approach to Polynomial Optimization via SONC and GP

Figure 4.1: The feasible set for the constrained optimization problem in Example 4.3.2
is the unbounded green area.

have f�K � 0. We consider the third Lasserre relaxation and obtain

f p3qsos � sup tγ : f � γ � σ0 � σ1 � g1, σ0, σ1 P Σ2, degpσ0q ¤ 6, degpσ1g1q ¤ 6u � �8,

since the problem is infeasible. Note that K is unbounded. Hence, it is not neces-

sarily the case that f pdqsos ¡ �8 for su�ciently high relaxation order d. Here, using

Gloptipoly, one can �nd that f p7qsos � 0 � f�K .

Now, we consider spf, g1q � suptGpµqsonc : µ P R¥0u ¤ f�K where Gpµq � f � µg1

with µ ¥ 0. Note that NewpGpµqq is a simplex for every choice of µ. In particular,

for µ � 0 we have that Gpµqsonc � fsonc � 0, since the Motzkin polynomial is a SONC

polynomial; see Example 2.4.6. It follows that

�8 � f p3qsos   spf, g1q � 0 � f�K .

Thus, spf, g1q yields the exact solution compared to the Lasserre relaxation. This is

in sharp contrast to the geometric programming approach proposed in [GM13] where

f
pdq
sos ¥ spf,gq holds in general. 7

Example 4.3.2. Let f � 1� x4y2 � xy and g1 � 1
2
� x2y4 � x2y6. The feasible set K

is a non-compact set depicted in Figure 4.1. Using Gloptipoly, one can check that

�8 � f
p4q
sos and the optimal solution is given for d � 8 with f p8qsos � 0.4474. In this case

one can extract the minimizers p�0.557, 1.2715q and p0.557,�1.2715q.
We compare these results to our approach via geometric programming instead of

Lasserre's relaxation. From f and g1 we get Gpµq � p1� 1
2
µq�x4y2�µx2y6�xy�µx2y4.

Note that NewpGpµqq is a two-dimensional simplex if µ R t0, 2u. Then, we have
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∆pGq � tβ, β̃u � tp1, 1q, p2, 4qu. Therefore, we introduce the seven variables
paβ,1, aβ,2, aβ̃,1, aβ̃,2, bβ, bβ̃, µq. Hence, the geometric program (4.2.2) reads as follows:

inf

"
1
2µ� 7

10 � b
10
7
β �

�
1
5

� 2
7 �
�

1
10

� 1
7 � paβ,1q

� 2
7 � paβ,2q

� 1
7 � 1

5 � b5
β̃
�
�

1
5

�1
�
�

3
5

�3
� paβ̃,1q

�1 � paβ̃,2q
�3

*

such that the variables satisfy

aβ,1 � aβ̃,1 ¤ 1, aβ,2 � aβ̃,2 ¤ µ, and 1 ¤ bβ, µ ¤ bβ̃ .

We use the Matlab solver CVX to solve this program. The optimal solution is

given by

paβ,1, aβ,2, aβ̃,1, aβ̃,2, bβ, bβ̃, µq � p0.9105, 0.0540, 0.0895, 0.0319, 1.0000, 0.0859, 0.0859q

and leads to

γsonc � 0.5526,

which yields fαp0q � γsonc � 0.4474. Thus, we have

f p8qsos � fαp0q � γsonc � spf, g1q.

The equality fαp0q � γsonc � spf, g1q is not surprising, since the assumptions of The-

orem 4.2.5 are satis�ed. Observe that we get the optimal solution immediately via

geometric programming whereas one needs 5 relaxation steps via Lasserre's relaxation.

In this example both geometric programing and the Lasserre approach have a runtime

below 1 second. However, if we multiply all exponents in f and g1 by 10, then the

approaches di�er signi�cantly. By multiplying the exponents by 10 we have made a

severe change to the problem since the term x10y10 is now a monomial square such that

the exponent is a lattice point in the interior of the Newton polytope of the adjusted

Gpµq. Hence, we have to ignore this term when running the constrained optimization

program (4.2.2). The adjusted program yields with CVX an output �NaN� in below one

second. However, the reason is that it computes µ � 0, which is the correct answer.

Namely, after multiplying the exponents by 10, the only non-monomial square terms

are given by g1. Thus, the optimal choice is µ � 0, and we can see that the minimal

value is attained at p0, 0q and f�K � 1 is given by the constant term of f .

In comparison, we have a runtime of approximately 1110 seconds, i.e., approximately

18.5 minutes with Gloptipoly. After this time Gloptipoly provides an output �Run
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into numerical problems.�. It claims, however, to have solved the problem and

provides the correct minimum f�K � 1 at a minimizer 10�7 � p�0.1057, 0.1711q, which,
of course, is the origin up to a numerical error. 7

Example 4.3.3. Let f � 1� x2z2� y2z2� x2y2� 8xyz and g1 � x2yz� xy2z� x2y2�
2� xyz. Using Gloptipoly, we get the following sequence of lower bounds:

f p2qsos � f p3qsos � f p4qsos � �8   f p5qsos � �14.999.

However, one cannot certify the optimality via Gloptipoly in this case. Addition-

ally, the sequence f pdqsos is not guaranteed to converge to f�K , since K is unbounded.

Symbolically, we were able to prove a global minimum of f�K � �15 with four global

minimizers p2, 2, 2q, p�2,�2, 2q, p�2, 2,�2q, p2,�2,�2q using the quanti�er elimination

software Synrac, see [AY03]. Now, we consider the approach via geometric program-

ming instead of Lasserre relaxations. We have

Gpµq � p1� 2µq � x2z2 � y2z2 � p1� µqx2y2 � p�8� µqxyz � µx2yz � µxy2z.

Obviously, Gpµq is an ST-polynomial for µ P r0, 1q, and we have ∆pGq � tβ,β, β̂u �
tp1, 1, 1q, p2, 1, 1q, p1, 2, 1qu. Thus, our geometric program has the following 13 variables

paβ,1, aβ,2, aβ,3, aβ,1, aβ,2, aβ,3, aβ̂,1, aβ̂,2, aβ̂,3, bβ, bβ, bβ̂, µq.

Hence, program (4.2.2) is of the form

inf

"
0 � µ� 1

4
� b4
β �

�
1

4



�
�

1

4



�
�

1

4



� paβ,1q�1 � paβ,2q�1 � paβ,3q�1

*

such that

p1q aβ,1 � aβ,1 � aβ̂,1 ¤ 1, aβ,2 � aβ,2 � aβ̂,2 ¤ 1, aβ,3 � aβ,3 � aβ̂,3 � µ ¤ 1,

p2q 1
2
� bβ �

�
aβ,1

�� 1
2 � �aβ,3�� 1

2 ¤ 1,

1
2
� bβ̂ �

�
aβ̂,2

	� 1
2 �

�
aβ̂,3

	� 1
2 ¤ 1,

p3q 8 � b�1
β ¤ 1, µ � b�1

β ¤ 1, µ � b�1

β
¤ 1, µ � b�1

β̂
¤ 1 .

This leads to γsonc � 1
256

� 84 � 16 and so fαp0q � γsonc � �15. The runtime for this

example is below 1 second. Multiplying the exponents of f and g1 by 10 yields the same

results; the runtime for the geometric program remains below 1 second. In comparison,
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Gloptipoly yields

f pdqsos � �8 for d ¤ 19,

and provides a bound

f p20q
sos � �14.999

in the 20th relaxation after 36563 seconds, i.e., approximately 10.16 hours. Moreover,

although this bound is numerically equal to f�K , Gloptipoly was not able to certify

that the correct bound was found. 7

Example 4.3.4. Let f � z6 � x4y2 � x2y4 � 3x2y2z2 and g1 � x2 � y2 � z2 � 1. We

obtain Gpµq � f � µg1. This problem is infeasible in the sense of program (4.2.2).

Namely, condition p♣q is never satis�ed since for any µ ¡ 0 we have a vertex p2, 0, 0q
or p0, 2, 0q of NewpGpµqq with a negative coe�cient. Therefore, one can immediately

conclude that spf, g1q has to be obtained for µ � 0. Thus, we have spf, g1q � fsonc.

Since f is the homogenized Motzkin polynomial we obtain immediately fsonc � f�K � 0.

An analogous argumentation holds for the variation G̃pµq � f � µg1.

It is well-known that SDP solvers have serious issues with optimizing f for g1 ¥ 0

or g1 ¤ 0. For further information see [Nie13b, Examples 5.3 and 5.4]. 7

It is an obvious question for which classes of polynomial optimization problems the

geometric programming bound developed here is better than the one given by Lasserre's

relaxation. One can answer this question combinatorially. A nonnegative circuit poly-

nomial f is a sum of squares if and only if Newpfq has a special lattice point structure,
see Section 2.4.1, especially Theorem 2.4.14. In particular, a nonnegative circuit poly-

nomial f cannot be a SOS if Newpfq is an M -simplex. Though, f is always a sum of

squares if it is supported on an H-simplex. Hence, if NewpGpµqq is an M -simplex (and

in more cases), then our geometric programming bounds will be better than the ones

obtained by Lasserre's relaxation. However, whether a simplex is an M -simplex, an

H-simplex, or something in between, is not easy to decide, see [IdW16a]. Therefore,

the quality of geometric programming bounds compared to semide�nite programming

bounds is very closely related to understanding these combinatorial aspects of lattice

point structures in Newton polytopes.

In the last example in this section we show that for special simplices our geometric

programming approach coincides with the one in [GM13].
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Example 4.3.5. Suppose that NewpGpµqq � convt0, 2d e1, . . . , 2d enu. Hence, the

Newton polytope is a 2d-scaled standard simplex in Rn, which is the case if the pure

powers x2d
j for j � 1, . . . , n are present in the polynomial f or in the constrained poly-

nomials gi. The corresponding polynomial Gpµq is an ST-polynomial; see Section 4.1.1.

Indeed, all examples in [GM13, Example 4.8] are of that form and thus all of them are

ST-polynomials.

In this case the program (4.1.5) coincides with the program (3) in [GM13]. One

drawback of this setting is that the GP bounds obtained from (4.1.5) are at most as

good as the bound f pdqsos itself. Namely, if the Newton polytope of a circuit polynomial is

a scaled standard simplex, then it is an H-simplex. Consequently by Corollary 2.4.15

the circuit polynomial is nonnegative if and only if it is a sum of squares. Thus, if we

are in the setting of Ghasemi and Marshall and Gpµq is nonnegative, then it is a sum

of squares of degree at most 2d which guarantees the existence of a decomposition in

the sense of f pdqsos ; see (2.3.3).

However, as we have shown in the previous examples, in the case of our program

(4.1.5) there exist also cases where the geometric programming bounds are better than

f
pdq
sos , since our approach is more general than in [GM13]. The reason is that the cones

of sums of nonnegative circuit polynomials and sums of squares do not contain each

other (but both of them are contained in the cone of nonnegative polynomials), see

Theorem 2.4.8 and Theorem 3.1.2. 7

We point out that we make no assumption about the feasible set K. In particular,

it is not assumed to be compact as it is in the classical setting via Lasserre relaxations

in order to guarantee convergence of the relaxations. However, the crucial point in our

setting so far is that Gpµq has to be an ST-polynomial. In the following Section 4.4

we lay the foundation for the usage of our geometric programming approach also for

non-ST-polynomials.

But even if Gpµq is not an ST-polynomial, then we can enforce it to be an ST-

polynomial in the case of a compact K. This can be achieved by adding a redundant

constraint gs�1 � x2d
1 � . . . � x2d

n � c for c P R to the feasible set K. In consequence

NewpGpµqq is a 2d-scaled standard simplex and by the previous example our approach

coincides with the one in [GM13]. Hence, the Lasserre relaxation cannot be outper-

formed in quality anymore. However, our approach can and will still have the better

runtime. It would be interesting to add other redundant inequalities to K such that

the corresponding bounds are better than the ones obtained via Lasserre relaxations.

Unfortunately, no systematic way is known so far.
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4.4 Optimization for Non-ST-Polynomials

The goal of this section is to provide a �rst approach to tackle optimization

problems (both unconstrained and constrained) which cannot be expressed as a single

ST-polynomial using the methods developed in the previous sections of this chapter.

We also provide examples illustrating our method.

We start with the case of global nonnegativity for arbitrary polynomials via SONC

certi�cates. Recall the following statement, which immediately follows from Section 2.4

by De�nition 2.4.7 and Theorem 2.4.8.

Fact 4.4.1. Let f P Rrxs and assume that there exist SONC polynomials g1, . . . , gk and

positive real numbers µ1, . . . , µk such that f � °k
i�1 µigi. Then f is nonnegative.

Of course, if a SONC decomposition exists, then it is not obvious how to �nd it in

general. For ST-polynomials we know that we can �nd a SONC decomposition via the

geometric optimization problem described in Theorem 4.1.4. Thus, we investigate a

general polynomial f P Rrxs supported on a set A � Nn satisfying p♣q. We denote

f �
ḑ

j�0

fαpjqxαpjq �
¸

βP∆pfq
fβx

β

such that fαpjqxαpjq are monomial squares. By p♣q, V pAq is the set of all vertices

of Newpfq and we have V pAq � tαp0q, . . . ,αpdqu; equality, however, is not required
here: that is, the set tαp0q, . . . ,αpdqu can also contain exponents of monomial squares

in ∆pAqz∆pfq which are not vertices of convpAq. For simplicity we assume in what

follows that the a�ne span of A is n-dimensional. We proceed as follows:

(1) Choose a triangulation T1, . . . , Tk of exponents αp0q, . . . ,αpdq P A corresponding

to the monomial squares.

(2) Compute the induced covering A1, . . . , Ak of A given by Ai � AXTi for 1 ¤ i ¤ k.

(3) Assume that β P ∆pfq � A is contained in more than one of the Ai's. Let without

loss of generality β P A1, . . . , Al with 1   l ¤ k. Then we choose fβ,1, . . . , fβ,l P R
such that

°l
i�1 fβ,i � fβ and signpfβ,iq � signpfβq for all 1 ¤ i ¤ l. We proceed

analogously for αp0q, . . . ,αpdq.
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(4) De�ne new polynomials g1, . . . , gk such that

gi �
¸
βPAi

fβ,ix
β.

Note that by (1) and (2) the covering Ai is a set of integer tuples such that convpAiq is
a simplex with even vertices and Ai contains no even points corresponding to monomial

squares except for the vertices of convpAiq. Thus, by (2) � (4) we see that all gi are ST-
polynomials, since the signs of the fβ,i are identical with the signs of the coe�cients of

f . Therefore, monomial squares fαpjqxαpjq of f get decomposed into a sum of monomial

squares
°k
i�1 fαpjq,ix

αpjq such that each individual monomial square fαpjq,ixαpjq is a

term of exactly one gi. We proceed analogously for the terms fβxβ. Additionally, it

follows by construction that f � °k
i�1 gi. We apply the GP proposed in Corollary 4.1.5

on each of the gi with respect to a monomial square fαpjq,ixαpjq, which is a vertex

of Newpgiq � convpAiq (not necessarily the same αpjq for every gi); we denote the

minimizer by m�
i . We make the following observation about these minimizers which

was similarly already pointed out in [IdW16a, Section 3]:

Lemma 4.4.2. Let f P Rrxs be a nonnegative circuit polynomial. Let bαxα be a

monomial square. Then bαxα � f is also a nonnegative circuit polynomial.

Note particularly that if v P pR�qn satis�es fpvq � 0, then pbαxα � fqpvq � 0.

Proof. It is easy to see that all conditions for p♣q as well as the conditions (ST1) and
(ST2) remain valid for bαxα � f . Thus, bαxα � f still is a circuit polynomial and since

bαx
α ¥ 0 it is also nonnegative.

Proposition 4.4.3. Let f , g1, . . . , gk, and m�
i be as explained above. Assume for

i � 1, . . . , k that the minimizer m�
i corresponds to the monomial square fαpjq,ixαpjiq

with αpjiq P tαp1q, . . . ,αpdqu X V pAiq. Then f �
°k
i�1m

�
i x
αpjiq is a SONC and hence

nonnegative. Thus, the m�
i provide bounds for the coe�cients fαpjq,i for f to be non-

negative. Particularly, if for i � 1, . . . , l with l ¤ k the exponents αpjiq are the origin,

then fαp0q �
°l
i�1m

�
i is a lower bound for f� � suptγ P R : f � γ ¥ 0u.

Proof. By construction, we know that gi �m�
i x
αpjiq is a SONC. Thus, the polynomial

f �°k
i�1m

�
i x
αpjiq � °k

i�1 gi �m�
i x
αpjiq is a SONC, too. The last part follows by the

de�nitions of the m�
i 's and f

�.
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Note that the decomposition of f into the gi's is not unique. First, the triangulation

in (1) is not unique in general. And, second, the decomposition of the terms in (3) is

arbitrary. Note also that there exist several monomial squares which appear in more

than one gi, since membership in Ai is given by the chosen triangulation and every

simplex T1 intersects at least one other simplex T2 in an n� 1-dimensional face, which

means that A1 X A2 contains at least n even elements.

It would be interesting to study the problem of identifying an optimal triangulation

and an optimal decomposition of coe�cients, which would certainly enhance the pro-

posed method.

We provide some examples to show how this generalized approach can be used in

practice.

Example 4.4.4. Let f � 6 � x2
1x

6
2 � 2x4

1x
6
2 � x8

1x
2
2 � 1.2x2

1x
3
2 � 0.85x3

1x
5
2 � 0.9x4

1x
3
2 �

0.73x5
1x

2
2 � 1.14x7

1x
2
2. We choose a triangulation

tp0,0q, p2,6q, p4,6q, p2, 3q, p3, 5qu, tp0,0q, p4,6q, p8,2q, p2, 3q, p4, 3q, p5, 2q, p7, 2qu.

Here and in what follows the vertices of each simplex are printed in red. For the

corresponding Newton polytope see Figure 4.2. We split the coe�cients equally among

the two triangulations and obtain two ST-polynomials

g1 � 3� x2
1x

6
2 � x4

1x
6
2 � 0.6x2

1x
3
2 � 0.85x3

1x
5
2, and

g2 � 3� x4
1x

6
2 � x8

1x
2
2 � 0.6x2

1x
3
2 � 0.9x4

1x
3
2 � 0.73x5

1x
2
2 � 1.14x7

1x
2
2.

Using CVX, we apply the GP from Corollary 4.1.5 and obtain optimal values
m�

1 � 0.2121, m�
2 � 2.5193, and a SONC decomposition

0.173 � εx2
1x

6
2 � 0.522x4

1x
6
2 � 0.6x2

1x
3
2 � 0.04 � x2

1x
6
2 � 0.478x4

1x
6
2 � 0.85x3

1x
5
2 �

0.427 � 0.211x4
1x

6
2 � εx8

1x
2
2 � 0.6x2

1x
3
2 � 0.663 � 0.436x4

1x
6
2 � 0.085x8

1x
2
2 � 0.9x4

1x
3
2 �

0.753 � 0.186x4
1x

6
2 � 0.177x8

1x
2
2 � 0.73x5

1x
2
2 � 0.676 � 0.167x4

1x
6
2 � 0.738x8

1x
2
2 � 1.14x7

1x
2
2,

with ε   10�10, i.e., ε is numerically zero. Namely, p2, 3q is located on the segment

given by p0,0q and p4,6q and thus p2,6q and p8,2q have coe�cients zero in the convex

combinations of the point p2, 3q.
Thus, the optimal value fsonc, which provides us a lower bound for f�, is

fsonc � 6 � 2.731 � 3.269. In comparison, via Lasserre's relaxation one obtains an

only slightly better optimal value f� � 3.8673.
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Figure 4.2: The Newton polytopes of the polynomials in the Examples 4.4.4 and 4.4.5
and their triangulations.

Our GP-based bound can be improved signi�cantly via making small changes in the

distribution of the coe�cients. For example, if one decides not to split the coe�cient of

the term x2
1x

3
2 among g1 and g2 equally, but to put the entire weight of the coe�cient

into g1, i.e.,

g̃1 � 3� x2
1x

6
2 � x4

1x
6
2 � 1.2x2

1x
3
2 � 0.85x3

1x
5
2, and

g̃2 � 3� x4
1x

6
2 � x8

1x
2
2 � 0.9x4

1x
3
2 � 0.73x5

1x
2
2 � 1.14x7

1x
2
2,

then this yields an improved bound f̃sonc � 3.572. 7

The next example shows that we can use the approach of this section to take

monomial squares into account, which are not vertices of the Newton polytope of the

polynomial which we intend to minimize.

Example 4.4.5. Let f � 1�3x2
1x

6
2�2x6

1x
2
2�6x2

1x
2
2�x1x

2
2�2x2

1x2�3x3
1x

3
2. We choose

a triangulation

tp0,0q, p2,2q, p2,6q, p1, 2qu, tp0,0q, p2,2q, p6,2q, p2, 1qu, tp2,2q, p2,6q, p6,2q, p3, 3qu.

For the corresponding Newton polytope see Figure 4.2. First, we split the coe�cients
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equally among the three triangulations such that we obtain

g1 � 0.5� 1.5x2
1x

6
2 � 2x2

1x
2
2 � x1x

2
2,

g2 � 0.5� x6
1x

2
2 � 2x2

1x
2
2 � 2x2

1x2,

g3 � 1.5x2
1x

6
2 � x6

1x
2
2 � 2x2

1x
2
2 � 3x3

1x
3
2.

All three polynomials gi have a joint monomial x2
1x

2
2. For all i P t1, 2, 3u we compute the

maximal bi ¡ 0 such that gi � bix
2
1x

2
2 is a nonnegative circuit polynomial. This yields

a bound for the coe�cient of x2
1x

2
2 certifying that f is a SONC and hence nonnegative.

We could apply the GP from Corollary 4.1.5, but since all gi are circuit polynomi-
als we can compute the corresponding circuit numbers symbolically. We obtain with
Theorem 2.4.4:

Θg1p1, 2q �

�
1{2

1{2


 1
2

�

�
3{2

1{4


 1
4

�

�
2 � b1

1{4


 1
4

� 4
a

4 � 4 � 3{2 � p2 � b1q � 2 4
a

3{2 � p2 � b1q,

Θg2p2, 1q �

�
1{4

1{2


 1
2

�

�
1{2

1{4


 1
4

�

�
1 � 1{2 � b2

1{4


 1
4

� 4
a

1{4 � 2 � 4p1 � 1{2 � b2q � 4
a

2 � b2, and

Θg3p3, 3q �

�
1{2

1{4


 1
4

�

�
1{3

1{4


 1
4

�

�
1{3p2 � b3q

1{2


 1
2

� 4
a

2 � 4{3 �
a

2{3 � p2 � b3q � 2 4
a

2{27
a

2 � b3.

This provides solutions:

2 4
a

3{2 � p2� b1q ¥ 1 ô 3{2 � p2� b1q ¥ 1{16 ô b1 ¤ 47{24,

4
a

2� b2 ¥ 1 ô b2 ¤ 1,

2 4
a

2{27
a

2� b3 ¥ 1 ô
a

2{27 � p2� b3q ¥ 1{4 ô b3 ¤ 2�
?

27{p2
?

2q.

Hence, we obtain the following bound for the coe�cient of x2
1x

2
2:

6� p47{24� 1� 2�
?

27{p4
?

2qq � 6� 4.03977468 � 1.96.

A double check with the CVX solver for GPs yields the same value in approximately

0.753 seconds.

We want to compute a bound for f�. We choose the same triangulation and the

same split of coe�cients as before, but now we optimize the constant term in g1 and g2,

and we optimize the coe�cient of x2
1x

6
2 in g3. After a runtime of approximately 0.6657

seconds we obtain optimal values 0.0722, 0.3536, and 0.3164. Thus, we found a lower

bound for the constant term given by

m�
1 �m�

2 � 0.0722� 0.3536 � 0.4268.
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The corresponding optimal SONC decomposition is given by

0.0722� 1.5x2
1x

6
2 � 2x2

1x
2
2 � x1x

2
2 � 0.3536� x6

1x
2
2 � 2x2

1x
2
2 � x2

1x2 �
0.3164x2

1x
6
2 � x6

1x
2
2 � 2x2

1x
2
2 � 3x3

1x
3
2.

Hence, we obtain a bound for f� given by

fsonc � 1� 0.4268 � 0.5732.

We make a comparison and optimize f with Lasserre's relaxation. This yields an

optimal value

fsos � f� � 0.8383.

Therefore, we want to improve our bound. We keep the triangulation, but we use

another distribution of the coe�cients among the polynomials g1, g2, and g3 and de�ne

instead

g̃1 � 0.25� 2x2
1x

6
2 � 1.217x2

1x
2
2 � 2x1x

2
2,

g̃2 � 0.75� x6
1x

2
2 � 3.652x2

1x
2
2 � x2

1x2,

g̃3 � x2
1x

6
2 � x6

1x
2
2 � 1.13x2

1x
2
2 � 3x3

1x
3
2.

Again, we optimize g̃1 and g̃2 with respect to the constant term and g̃3 with respect

to x2
1x

6
2. We obtain optimal values 0.0801, 0.2616, and 0.9912. Thus, we are able to

improve our bound for f� to

f̃sonc � 1� p0.0801� 0.2616q � 0.6583.

The corresponding optimal SONC decomposition is given by

0.0801� 2x2
1x

6
2 � 1.205x2

1x
2
2 � 2x1x

2
2 � 0.2616� x6

1x
2
2 � 3.615x2

1x
2
2 � x2

1x2 �
0.991x2

1x
6
2 � x6

1x
2
2 � 2x2

1x
2
2 � 3x3

1x
3
2.

7

We discuss a third example which shows that, in the case of global optimization, for

the SONC/GP approach it is not necessary to optimize the constant term to obtain a

bound for nonnegativity on the coe�cients, but that in some cases it can be informative

to focus on other vertices of the Newton polytope or on other monomial squares instead.
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Figure 4.3: The Newton polytopes of the polynomials in the Examples 4.4.6 and 4.4.7
and their triangulations.

Example 4.4.6. Let f � 1 � x4
1 � x2

2 � x2
1x

4
2 � x4

1x
4
2 � x1x2 � x1x

2
2 � x2

1x
3
2 � x3

1x
3
2.

We choose a triangulation

tp0,0q, p0,2q, p4,0q, p1, 1qu,tp0,2q, p2,4q, p4,0q, p1, 2q, p2, 3qu,tp2,4q, p4,0q, p4,4q, p3, 3qu,

and again, we choose a decomposition of coe�cients such that their values split equally.

We obtain the following ST-polynomials

g1 � 1� 1{3 � x4
1 � 1{2 � x2

2 � x1x2,

g2 � 1{3 � x4
1 � 1{2 � x2

1x
4
2 � 1{2 � x2

2 � x1x
2
2 � x2

1x
3
2,

g3 � 1{3 � x4
1 � 1{2 � x2

1x
4
2 � x4

1x
4
2 � x3

1x
3
2.

Actually g1 and g3 are circuit polynomials while g2 contains two negative terms. For

the corresponding Newton polytope see Figure 4.3. Note that p4,0q is the only expo-

nent contained in the support of all three ST-polynomials. Since p4,0q is a monomial

square which is a vertex of the convex hull of the three support sets, we optimize the

corresponding coe�cient in g1, g2, and g3. Applying the GP from Corollary 4.1.5 yields

optimal values

m�
1 � 0.0625, m�

2 � 4.2867, and m�
3 � 0.0625.

Since m�
2 � 4.2867 ¡ 1{3 we found no certi�cate of nonnegativity for f . However, we
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can identify a SONC decomposition for f provided that the coe�cient bp4,0q of x4
1 is at

least m�
1 �m�

2 �m�
3 � 4.412. For this minimal choice of bp4,0q a SONC decomposition

is given by

0.063x4
1 � 1� 0.5x2

2 � x1x2 � 2.143x4
1 � 0.4x2

2 � 0.1x2
1x

4
2 � x1x

2
2 �

2.143x4
1 � 0.1x2

2 � 0.4x2
1x

4
2 � x2

1x
3
2 � 0.063x4

1 � 0.5x2
1x

4
2 � x4

1x
4
2 � x3

1x
3
2.

7

Finally, we apply the new method to a constrained optimization problem using the

methods developed in Section 4.2.

Example 4.4.7. Let f � 1 � x4 � x2y4 and g � 1
2
� x2y � x6y4 � x3y3. Hence, we

obtain Gpµq � p1� 1
2
µq�x4�x2y4�µx6y4�µx2y�µx3y3. Choosing the triangulation

tp0,0q, p4,0q, p6,4q, p2, 1qu, tp0,0q, p6,4q, p2,4q, p3, 3qu,

we split the coe�cients again, such that their values are equal. For the corresponding

Newton polytope see Figure 4.3. We obtain the ST-polynomials

G1pµq �
�

1

2
� 1

4
µ



� x4 � 1

2
µx6y4 � µx2y,

G2pµq �
�

1

2
� 1

4
µ



� x2y4 � 1

2
µx6y4 � µx3y3.

Therefore, we see that the possible µ values to obtain ST-polynomials are µ P r0, 2q. We

optimize both polynomials with respect to the constant term and obtain m�
1 � m�

2 � 0.

The CVX solver yields �NaN� as an optimal value, since 0 is not positive. However,

it solves the problem and computes values 0 or ε   10�200 for all variables, such that

m�
1 � m�

2 � 0 follows. Hence, fαp0q�m� � 1�0 � 1 and because all of the assumptions

in Theorem 4.2.5 are satis�ed we know that spf, gq � 1 holds.

Checking this optimization problem with Lasserre's relaxation, we get fsos � f�K � 1,

which approves the optimal value. Both, for the SDP and the GP we have runtimes

below 1 second.

Now, we tackle the same problem, but we multiply every exponent by 10, and we

compare the runtimes again. For the GP we obtain the same result and the runtime

remains below 1 second. For the SDP we obtain with Gloptipoly fsos � f�K � 1 in

approximately 5034.5 seconds, i.e., approximately 1.4 hours.
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4.5 Conclusion

In a third approach we tackle the same problem, but we multiply the originally given

exponents by 20. In this case Gloptipoly is not able to handle the given matrices

anymore. In comparison, we still have a runtime below 1 second for our GP providing

the same bound as before. 7

4.5 Conclusion

In this chapter we have focused on tackling polynomial optimization problems via

the SONC/GP method, which was introduced for the unconstrained case for ST-

polynomials. Particularly, we extended this method for those polynomials to (CPOPs)

where we traced back the constrained problem to the unconstrained ones by de�ning

a new polynomial, which incorporates both the objective function and the constrained

polynomials.

Furthermore, we were able to apply both unconstrained and constrained polynomial

optimization methods based on SONC and GPs e�ciently beyond the class of ST-

polynomials. In this case we found GP-based lower bounds via triangulations of the

support sets of the involved polynomials. These general types of nonnegativity problems

have to be investigated more carefully.

In sum, the current status of the question, whether a given a polynomial f P Rrxs is
a SONC polynomial, can be decided as follows:

• If f is an ST-polynomial this is a geometric program.

• For an arbitrary f by triangulation of Newpfq the GP-based method provides a

�rst approach to answer this question. To decide the problem properly it is not

su�cient to study only one triangulation but we have to take all possible even

simplices into account which cover Newpfq.

Moreover, we provided a comparison of our SONC/GP method to Lasserre's relaxation.

We observed that the new approach comes with the bene�t that GPs can be solved

much faster than SDPs, especially for high-degree polynomials. Since the SOS and the

SONC cone are not contained in each other, both approaches handle di�erent types of

polynomials di�erently well.

However, the key strength of Lasserre's relaxation is that it yields a converging

hierarchy of lower bounds which allows to approximate the optimal value arbitrarily

close, whereas the methods for SONC only use a single geometric optimization program

to derive a lower bound for f�K . In the next chapter we close this gap.
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Chapter 5

Hierarchical Approach to Constrained

Optimization Problems via SONC and

REP

Motivated by the results of the preceding chapter we now provide an hierarchical

approach to constrained polynomial optimization problems on a compact set K. Based

on a Positivstellensatz involving SONC polynomials we establish a hierarchy of lower

bounds converging to the minimum of a polynomial on K. Positivstellensätze are an

essential tool from real algebraic geometry to tackle (CPOPs), for an introduction to

this topic see Section 2.3.3. Moreover, we show that these bounds can be computed

e�ciently via relative entropy programming (REP). Particularly, all results are inde-

pendent of sums of squares and semide�nite programming.

We begin with studying the cone of sums of nonnegative arithmetic geometric

exponentials (SAGE), an interesting cone related to the SONC cone introduced by

Chandrasekaran and Shah [CS16] as well as relative entropy programming. This is a

convex optimization program, which is more general than a geometric program, but

still e�ciently solvable via interior point methods; see [CS17, NN94]. Afterwards

we discuss the relation between the SAGE and the SONC cone in more detail, see

Section 5.2. In the subsequent Section 5.3 we formulate the Positivstellensatz using

SONC polynomials; see Theorem 5.3.5. The following statement is a rough version.

Theorem 5.0.1 (Positivstellensatz for SONC; rough version). Let f P Rrxs be a real

polynomial which is strictly positive on a given compact, basic closed semialgebraic set

K de�ned by polynomials g1, . . . , gs P Rrxs. Then there exists an explicit representation

of f as a sum of products of the gi's and SONC polynomials.
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The Positivstellensatz yields a hierarchy of lower bounds f pd,qqsonc for f�K based on the

maximal allowed degree of the representing polynomials in the Positivstellensatz. We

show in Theorem 5.4.2 that the bounds f pd,qqsonc converge to f�K for d, q Ñ 8.

Finally, we provide in (5.4.3) an optimization program for the computation of f pd,qqsonc .

We prove in Theorem 5.4.3 that our program (5.4.3) is a relative entropy program, and

hence is e�ciently solvable. Concluding we discuss an example, see Section 5.4.3.

5.1 Preliminaries

In this section we recall key results about sums of nonnegative arithmetic geometric

exponentials (SAGE), and relative entropy programing (REP), which are used in this

chapter.

5.1.1 Relative Entropy and the SAGE Cone

There exists an important concept related to the SONC cone, which was introduced by

Chandrasekaran and Shah in [CS16], namely the cone of sums of nonnegative arithmetic

geometric exponentials. In what follows, we introduce relative entropy programs and

the SAGE cone. Later, in Section 5.2, we discuss its relationship to SONC polynomials

and how we can use relative entropy programming for our results.

Recall that we denote by x�, �y the standard inner product. Following [CS16], a

signomial is a sum of exponentials

fpxq �
ļ

j�0

fαpjqexαpjq,xy

with fαpjq P R,x P Rn, and real vectors αp0q, . . . ,αplq P Rn. A signomial with at

most one negative coe�cient is called an AM/GM-exponential. Thus, an AM/GM-

exponential has the following form

fpxq �
ļ

j�0

fαpjqexαpjq,xy � fβ � exβ,xy,

where fβ P R, fαpjq P R¡0, and β,αpjq P Rn for j � 0, . . . , l. Note that l ¡ n is possible.

As shown in [CS16], testing whether an AM/GM-exponential is nonnegative is

possible via the relative entropy function. This function is de�ned as follows for

114



5.1 Preliminaries

ν � pν0, . . . , νlq and ζ � pζ0, . . . , ζlq in the nonnegative orthant Rl�1
¥0 :

Dpν, ζq �
ļ

j�0

νj log

�
νj
ζj



.

By convention, we de�ne 0 log 0
ζj
� 0 for any ζj P R¥0, and νj log

νj
0
� 0 if νj � 0

and νj log
νj
0
� 8 if νj ¡ 0. Furthermore, let fα � pfαp0q, . . . , fαplqq P Rl�1

¡0 . Then the

following lemma holds.

Lemma 5.1.1 ([CS16], Lemma 2.2). Let fpxq be an AM/GM-exponential. Then fpxq is
nonnegative for all x P Rn if and only if there exists a ν P Rl�1

¥0 satisfying the conditions

Dpν, efαq � fβ ¤ 0 , Qν � x1,νyβ with Q � pαp0q � � �αplqq P Rn�pl�1q.(5.1.1)

Checking whether such a vector ν P Rl�1
¥0 exists is a convex optimization problem by

means of the joint convexity of the relative entropy function Dpν, ζq. More speci�cally,

the corresponding problem is a relative entropy program; see [CS17].

De�nition 5.1.2. Let ν, ζ P Rl�1
¥0 and δ P Rl�1. A relative entropy program (REP) is

of the form:$'''&
'''%
minimize p0pν, ζ, δq,

subject to:
p1q pipν, ζ, δq ¤ 1 for all i � 1, . . . ,m,

p2q νj log
�
νj
ζj

	
¤ δj for all j � 0, . . . , l,

(5.1.2)

where p0, . . . , pm are linear functionals and the constraints (2) are jointly convex

functions in ν, ζ, and δ de�ning the relative entropy cone. 7

Relative entropy programs are convex and can be solved e�ciently via interior

point methods [NN94]. Geometric programs, a prominent class of convex optimization

programs [BKVH07, BV04, DPZ67] which were discussed in Chapter 4, comprise a

subclass of REPs; see [CS17] for further information.

If a signomial consists of more than one negative term, then a natural and su�cient

condition for certifying nonnegativity is to express the signomial as a sum of nonnegative
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AM/GM-exponentials. For a �nite set of exponents M � Rn, one denotes by

SAGEpMq �
#
f �

m̧

i�1

fi :
every fi is a nonnegative AM/GM-exponential

with exponents in M

+

the set of sums of nonnegative AM/GM-exponentials (SAGE) with respect to M ;

see [CS16].

5.1.2 Signomials and Polynomials

The connection between signomials and polynomials is given by the bijective

componentwise exponential function

exp : Rn Ñ Rn
¡0, px1, . . . , xnq ÞÑ pex1 , . . . , exnq.

Via this mapping a signomial

fpxq �
ļ

j�0

fαpjqexαpjq,xy

is transformed into

fpxq �
ļ

j�0

fαpjqxαpjq,

which is a polynomial if αp0q, . . . ,αplq P Nn. Hence, checking nonnegativity of such sig-

nomials corresponds to checking nonnegativity of a polynomial on the positive orthant.

Note that it is su�cient to consider the positive orthant to certify nonnegativity, since

the positive orthant is dense in the nonnegative orthant. We call such a polynomial

fpxq � °l
j�0 fαpjqx

αpjq a SAGE polynomial, and we call it an AM/GM-polynomial if it

has at most one negative coe�cient.

5.2 A Comparison of SAGE and SONC

The concept of SAGE polynomials explicitly addresses the question of nonnegativity of

polynomials on Rn
¡0. However, Iliman and de Wol� showed already before the devel-

opment of the SAGE class that for circuit polynomials global nonnegativity coincides

with nonnegativity on Rn
¡0 assuming that its inner term is negative; see [IdW16a, par-

ticularly Section 3.1] and also Section 2.4. This fact was, next to the circuit number,
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the key motivation to consider the class of circuit polynomials. Hence, in what follows

we can use results from the analysis of the SAGE cone applied to circuit polynomials

as a certi�cate for global nonnegativity rather than just nonnegativity on Rn
¡0.

Let fpxq � °r
j�0 fαpjqx

αpjq � fβx
β be a proper circuit polynomial, i.e., f is not a

sum of monomial squares. We can assume without loss of generality that fβ   0 after

a possible transformation of variables xj ÞÑ �xj. In this case, we have

fpxq ¥ 0 for all x P Rn ðñ fpxq ¥ 0 for all x P Rn
¡0;(5.2.1)

see [IdW16a, Section 3.1]. Using this fact, we can characterize the corresponding

AM/GM-exponential coming from a circuit polynomial under the exp-map. We call

this a simplicial AM/GM-exponential.

Proposition 5.2.1. Let f be a nonnegative simplicial AM/GM-exponential with

interior point β. Then (5.1.1) is always satis�ed for the probability measure νj � λj for

j � 0, . . . , r where λj is the j-th coe�cient in the convex combination of the interior

point β P Nn with respect to the vertices αp0q, . . . ,αprq P p2Nqn.

Proof. By (5.2.1) it is su�cient to investigate circuit polynomials. The proof follows

from Theorem 2.4.4 where nonnegativity of circuit polynomials is explicitly character-

ized via the circuit number and hence by the convex combination of the interior point

β in terms of the vertices αp0q, . . . ,αprq. The coe�cients λ0, . . . , λr in the convex

combination form a probability measure by de�nition.

The circuit number is de�ned via barycentric coordinates; see Section 2.4. This

parametrization for nonnegativity corresponds to the geometric programming literature;

see [CS16, (2.2), page 1151] and also [DPZ67]:

(5.2.2) Dpν,fαq � logp�fβq ¤ 0, ν P Rl�1
¥0 , Qν � β, x1,νy � 1.

Note that we assume fβ   0 here. Chandrasekaran and Shah showed that the

conditions (5.1.1) and (5.2.2) are equivalent (this is non-obvious); see [CS16]. However,

they also point out therein that restricting ν to a probability measure as in (5.2.2)

comes with the drawback that the parametrization in (5.2.2) is not jointly convex in

ν,fα, and fβ. This is in sharp contrast to the parametrization (5.1.1), which is jointly

convex in ν,fα, and fβ and yields a convex relative entropy program, which can be
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solved e�ciently. Thus, the chosen parametrization has a signi�cant impact from the

perspective of optimization.

However, while this fact is a serious problem for arbitrary AM/GM-exponentials, it

turns out that this problem is much simpler for circuit polynomials and the correspond-

ing simplicial AM/GM-exponentials as we show in what follows.

For a simplicial AM/GM-exponential we have that l � r in (5.1.1). Moreover, since

the support is a circuit, Q is a full-rank matrix. Therefore, ν is unique up to a scalar

multiple. By the de�nition of circuit polynomials, De�nition 2.4.1, we know that the

barycentric coordinates pλ0, . . . , λrq of β with respect to the vertices αp0q, . . . ,αprq of
Newpfq are the unique solution of (5.2.2). It follows that the barycentric coordinates

pλ0, . . . , λrq are also a solution of (5.1.1). Hence, we obtain for every solution ν that

ν � d � pλ0, . . . , λrq for some d P R�. We can now conclude the following theorem.

Theorem 5.2.2. Let fpxq � °r
j�0 fαpjqx

αpjq � fβx
β be a proper circuit polynomial.

Then fpxq is nonnegative on Rn if and only if a particular relative entropy program is

feasible, which is jointly convex in ν, the fαpjq, |fβ|, and an additional vector δ P Rr�1.

Note that the question of whether a given fpxq is a sum of monomial squares is

computationally trivial such that these circuit polynomials can safely be excluded.

Proof. By Theorem 2.4.4 we know that the circuit polynomial fpxq is nonnegative if

and only if |fβ| ¤ Θf .

|fβ| ¤ Θf ô |fβ| �
r¹
j�0

�
λj
fαpjq


λj

¤ 1 ô
r¹
j�0

� |fβ| � λj
fαpjq


λj

¤ 1

ô
r¹
j�0

� |fβ| � λj
fαpjq


|fβ|�λj
¤ 1|fβ| � 1

ô
ŗ

j�0

|fβ| � λj � log

� |fβ| � λj
fαpjq



¤ 0

ô

$''''''&
''''''%

minimize 1

subject to:

p1q νj � |fβ| � λj for all j � 0, . . . , r,

p2q νj � log
�

νj
fαpjq

	
¤ δj for all j � 0, . . . , r,

p3q °r
j�0 δj ¤ 0.
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Observe that |fβ| is redundant in the REP given in the proof of Theorem 5.2.2 since

one can leave out the constraint (1) e.g., for j � 0 and replace |fβ| by ν0{λ0.

There exists another important di�erence between SAGE and SONC next to the

characterization of nonnegativity on Rn
¡0 (SAGE) and nonnegativity on Rn (SONC). In

the SONC cone we decompose a polynomial f in a sum of nonnegative circuit polynomi-

als fi with simplex Newton polytopes. However, in SAGE we decompose a polynomial

f in a sum of nonnegative AM/GM-polynomials fi such that the Newton polytopes of

the fi are not simplices in general and the supports of the fi have several points in the

interior of Newpfiq in general. If a polynomial f can be decomposed in SAGE, then this

certi�es nonnegativity of f on Rn
¡0, but not globally on Rn. However, as we showed,

circuit polynomials are special since they are nonnegative on Rn if and only if they are

nonnegative on Rn
¡0.

In the following example, which was discussed by Chandrasekaran and Shah, we

demonstrate how our explicit characterization of circuit polynomials yields an

explicit convex, semialgebraic description for special nonnegativity sets compared to

SDP methods.

Example 5.2.3 ([CS16], page 1167). Let

Sd � tpa, bq P R2 : x2d � ax2 � b ¥ 0u.

The set Sd is a convex, semialgebraic set for each d P N�. Since a univariate polynomial

is nonnegative if and only if it is a sum of squares, Sd is also SDP representable, i.e., a

projection of a slice of the cone of quadratic, positive semide�nite matrices of some size

wd P N�. As noted in [CS16], the algebraic degree of the boundary of Sd grows with

d, and hence the size wd of the smallest SDP description of Sd must also grow with d.

In [CS16], the authors use the corresponding relative entropy description (5.1.1) of Sd
(note that here nonnegativity on R is the same as nonnegativity on R¡0):

Sd � tpa, bq P R� R¥0 : Dν P R2
¥0 such that Dpν, e � p1, bqT q ¤ a, pd� 1qν1 � ν2u.

A major advantage of this description compared to the SDP method is that the size of

Sd does not grow with d. However, we can do even better and use circuit polynomials
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Figure 5.1: The set S4 is shown in the green area.

and our Theorem 2.4.4 to describe the convex, semialgebraic set Sd directly:

Sd �
#
pa, bq P R� R¥0 : a� pdq 1

d �
�
d � b
d� 1


 d�1
d

¥ 0

+
.

For d � 4 the set S4 is given as the green area in Figure 5.1. 7

5.3 The Positivstellensatz using SONC Polynomials

In this section we formulate and prove the Positivstellensatz for sums of nonnegative

circuit polynomials; see Theorem 5.3.5.

First, we give some basic de�nitions and recall a representation theorem from real

algebraic geometry, which we consult to prove the Positivstellensatz for SONC polyno-

mials. We use Marshall's book [Mar08] as a general source, making some very minor

adjustments.

De�nition 5.3.1. A preprime P is a subset of Rrxs that contains R¥0, and that is

closed under addition and multiplication. A preprime P is called Archimedean if for

every f P Rrxs there exists an integer N ¥ 1 such that N � f P P . 7

Let P be a preprime. We de�ne the corresponding ring of P -bounded elements of

Rrxs as follows:

HP � tf P Rrxs : there exists an integer N ¥ 1 such that N � f P P u.

The set HP is an indicator of how close a given preprime P is to being Archimedean.
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5.3 The Positivstellensatz using SONC Polynomials

In particular, a preprime P is Archimedean if and only if HP � Rrxs.

Note that HP is actually a ring [Mar08, Proposition 5.1.3 (1), page 72], which

immediately implies the following lemma; see, e.g., [Sch09].

Lemma 5.3.2. Let P � Rrxs be a preprime. Then the following are equivalent:

(1) P is Archimedean.

(2) There exists an integer N ¥ 1 such that N � xi P P for all i � 1, . . . , n.

For convenience of the reader, we give a proof here.

Proof. Implication (1) ñ (2) is clear. Let f, g P Rrxs with

N � f P P and M � g P P

for some N,M P N�, so f and g are P -bounded elements. Since P is closed under

addition and multiplication we have

pN � fq � pM � gq � pN �Mq � pf � gq P P,

and
1

2
ppN � fq � pM � gq � pN � fq � pM � gqq � N �M � f � g P P.

This means, products and sums of P -bounded elements are P -bounded; in fact HP is

a subring of Rrxs. By assumption (2) the variables xi are P -bounded elements and

therefore every polynomial expression in the variables xi is also P -bounded. Thus, P

is Archimedean.

Given f1, . . . , fs P Rrxs, we denote by Preppf1, . . . , fsq the preprime generated by

the f1, . . . , fs, i.e., the set of �nite sums of elements in Rrxs of the form aif
i1
1 � � � f iss ,

where i � pi1, . . . , isq P Ns and ai P R¥0:

Preppf1, . . . , fsq �
#¸

finite

aif
i1
1 � � � f iss : i P Ns, ai P R¥0

+
.

The �nal algebraic structure, which we need to formulate the statements in this

section, is a module over a preprime:
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De�nition 5.3.3. Let P � Rrxs be a preprime. Then M � Rrxs is a P -module if it is

closed under addition, if it is closed under multiplication by an element of P , and if it

contains 1. Analogous to preprimes, a P -moduleM is Archimedean if for each f P Rrxs
there exists an integer N ¥ 1 such that N � f PM . 7

Note that 1 P M for a P -module M implies that P � M . Obviously, P itself is a

P -module.

Now, we state the theorem, which provides the foundation for the proof of the

Positivstellensatz including SONC polynomials. There exist various di�erent variations

of this statement. For example, one prominent special case is by Krivine [Kri64a,

Kri64b]. In fact, the Positivstellensatz for SONC polynomials is basically an implication

of this special case, see Remark 5.3.6. Since his statement and proof is rather abstract

and for the sake of clearness, we provide a proof of the SONC Positivstellensatz based

on the classical subsequent representation theorem.

We follow Marshall's book where the reader can �nd an overview of the di�erent

versions; see [Mar08, page 79].

Theorem 5.3.4 ([Mar08], Theorem 5.4.4). Let P � Rrxs be an Archimedean preprime

and let M be an Archimedean P -module. Let KM denote the semialgebraic set of points

in Rn on which every element of M is nonnegative:

KM � tx P Rn : gpxq ¥ 0 for all g PMu.

Let f P Rrxs. If fpxq ¡ 0 for all x P KM , then f PM .

Observe that if a preprime P is Archimedean, then every P -module M is also

Archimedean since P �M .

We consider the constrained polynomial optimization problem f�K � infxPK fpxq,
where K � tx P Rn : gipxq ¥ 0, i � 1, . . . , su.

In what follows we have to assume that K is compact. Namely, in order to use

Theorem 5.3.4, we need the involved preprime to be Archimedean. We ensure this

by enlarging the de�nition of K by the 2n many redundant constraints N � xi ¥ 0

with N P N su�ciently large. We denote these constraints by ljpxq for j � 1, . . . , 2n.

Geometrically speaking, we know that if K is a compact set, then it is contained in

some cube r�N,N sn. Hence, if we know the edge length N of such a cube, then we can
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add the redundant cube constraints lj to the description of K. We obtain:

K � tx P Rn : gipxq ¥ 0 for i � 1, . . . , s and ljpxq ¥ 0 for j � 1, . . . , 2nu.(5.3.1)

Furthermore, we consider for the given compact K the set of polynomials de�ned as

products of the enlarged set of constraints

RqpKq �
#

q¹
k�1

hk : hk P t1, g1, . . . , gs, l1, . . . , l2nu
+
.(5.3.2)

Moreover, we de�ne ρq � |RqpKq| and τq � max
i�1,...,s

tdegpgiq, 1u � q.

Now we state the Positivstellensatz for sums of nonnegative circuit polynomials.

Theorem 5.3.5 (Positivstellensatz for SONC). Let f, g1, . . . , gs P Rrxs, let K be a

compact, basic closed semialgebraic set as in (5.3.1), and let RqpKq be de�ned as in

(5.3.2). If fpxq is strictly positive for all x P K, then there exist d, q P N�, SONC

polynomials sjpxq P Cn,2d, and polynomials Hjpxq P RqpKq indexed by j � 1, . . . , ρq

such that

fpxq �
ρq¸
j�1

sjpxqHjpxq.

Note that the sum
°ρq
j�1 sjpxqHjpxq is of degree at most 2d� τq, and that it contains

a summand s0 � 1 P Cn,2d, which is analogous to the structure of various SOS-based

Positivstellensätze.

Proof. Let f, g1, . . . , gs P Rrxs and P � Rrxs be the preprime generated by all polyno-

mials g1, . . . , gs and the redundant linear constraints l1, . . . , l2n, which we were allowed

to add since K is compact, i.e.,

P � Preppg1, . . . , gs, l1, . . . , l2nq.

The preprime P is Archimedean since it contains the cube inequalities; see Lemma 5.3.2.

In what follows we consider the set

(5.3.3) M �
#¸

�nite

spxqHpxq : D d, q P N� such that spxq P Cn,2d, Hpxq P RqpKq
+
.
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Claim 1: M is an Archimedean P -module.

This follows immediately from (5.3.3), De�nition 5.3.3, and the fact that P is

Archimedean.

Claim 2: The nonnegativity set KM � tx P Rn : gpxq ¥ 0 for all g PMu equals K.

On the one hand, we have that KM � K since M is a P -module. Thus, the

polynomials de�ning K are contained inM . On the other hand, a polynomial inM has

the form
°

�nite spxqHpxq, such that every spxq P Cn,2d. So, every spxq is nonnegative
on Rn. Thereby, the nonnegativity of polynomials in M depends only on the polyno-

mials Hpxq P RqpKq. But these polynomials are exactly products of the constraint

polynomials in K. Thus, we can conclude that K � KM and hence K � KM .

With Claims 1 and 2 satis�ed, we can apply Theorem 5.3.4 to conclude that f PM .

By (5.3.3) the expression of the Positivstellensatz is of the desired form.

For a �xed q, the number of elements in the set RqpKq is at most
�
s�2n�q

q

�
; thus, its

cardinality is exponential in q. One may ask whether it is possible to formulate a Posi-

tivstellensatz involving only a linear number of terms, like Putinar's Positivstellensatz,

Theorem 2.3.11, based on sums of squares decompositions for polynomial optimiza-

tion problems. It would be desirable to de�ne an object like a quadratic module of

the constraint polynomials. The main di�culty in carrying out such a construction is

that the product of two SONC polynomials is not a SONC polynomial in general, in

contrast to the product of two SOS, which is an SOS; see Lemma 3.4.1, and also

Chapter 6.

Remark 5.3.6. Schweighofer pointed out that since P � Preppg1, . . . , gs, l1, . . . , l2nq is
an Archimedean preprime we can apply Theorem 5.3.4 with choosing M � P , which

corresponds to Krivine's special case. Hence, if fpxq ¡ 0 for all x P KP , then f is in

the preprime P . Therefore f can be represented as

fpxq �
ρq¸
j�1

ajHjpxq,

where aj P R¥0, and Hjpxq, ρq as given in Theorem 5.3.5, see also [Sch02] for this

representation. Since SONC polynomials are nonnegative, we can replace the aj with

SONC polynomials and the representation of f in Theorem 5.3.5 follows immediately.
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5.4 Application of the SONC Positivstellensatz to

Constrained Polynomial Optimization Problems

In this section we establish a hierarchy of lower bounds f pd,qqsonc given by the SONC

Positivstellensatz, Theorem 5.3.5, for the solution f�K of a (CPOP) on a compact,

semialgebraic set, and we formulate an optimization problem to compute these bounds.

As main results we show �rst that the bounds f pd,qqsonc converge to f�K for d, q Ñ 8,

Theorem 5.4.2, and second we show that the corresponding optimization problem is

a relative entropy program and hence e�ciently solvable with interior point methods,

Theorem 5.4.3. We also discuss an example in Section 5.4.3.

5.4.1 A Converging Hierarchy for Constrained Polynomial

Optimization

Recall that minimizing a polynomial fpxq P Rrxs on a semialgebraic set K � Rn is

equivalent to maximizing a lower bound of this polynomial. Thus, we have:

f�K � inf
xPK

fpxq � suptγ P R : fpxq � γ ¥ 0 for all x P Ku.

To obtain a general lower bound for f�K , which is e�ciently computable, we relax the

nonnegativity condition to �nd the real number:

f pd,qqsonc � sup

#
γ P R : fpxq � γ �

ρq¸
j�1

sjpxqHjpxq
+
,

where sjpxq P Cn,2d are SONC polynomials and Hjpxq P RqpKq with RqpKq being

de�ned as in (5.3.2). Indeed, the number f pd,qqsonc is a lower bound for f�K and grows

monotonically in d and q as the following lemma shows.

Lemma 5.4.1. Let f, g1, . . . , gs P Rrxs, and let K be a semialgebraic set. Then we

have the following:

(1) f pd,qqsonc ¤ f�K for all d, q P N�.

(2) f pd,qqsonc ¤ f
pd̃,q̃q
sonc for all d ¤ d̃, q ¤ q̃ with d, d̃, q, q̃ P N�.

Lemma 5.4.1 yields a sequence
!
f
pd,qq
sonc

)
d,qPN�

of lower bounds of f�K which is increasing

both in d and q.
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Proof.

(1) For every sjpxq P Cn,2d and every Hjpxq P RqpKq the polynomial sjpxqHjpxq is
nonnegative on K. Thus, the sum

°ρq
j�1 sjpxqHjpxq is nonnegative on K and we

have for every γ P R and every x P K that

fpxq � γ �
ρq¸
j�1

sjpxqHjpxq ñ fpxq � γ ¥ 0.

Hence, we have f pd,qqsonc ¤ f�K for every d, q P N�.

(2) We have Cn,2d � Cn,2d̃ and RqpKq � Rq̃pKq for all d ¤ d̃, q ¤ q̃ with d, d̃, q, q̃ P N�.

Therefore, the hierarchy of the bounds follows.

Observe that Lemma 5.4.1 does not require K to be compact. An analogous state-

ment and proof can be given literally without involving the redundant cube constraints

l1, . . . , l2n in the de�nition of RqpKq.
For a compact constraint set K, however, we have an asymptotic convergence to the

optimum f�K of the sequence
!
f
pd,qq
sonc

)
d,qPN�

. Thus, for compact K the provided hierarchy

is complete.

Theorem 5.4.2. Let everything be de�ned as in Lemma 5.4.1. In addition, let K be

compact. Then

f pd,qqsonc Ò f�K for d, q Ñ 8.

Note that q is bounded from above by the chosen d. Therefore, it is su�cient to

investigate dÑ 8 and choose for every d the corresponding maximal q.

Proof. Let ε ¡ 0 be arbitrary. Then fpxq � pf�K � εq is strictly positive on K for all

x P Rn. According to Theorem 5.3.5, there exist su�ciently large d, q P N� such that

fpxq � f�K � ε � °ρq
j�1 sjpxqHjpxq. Thus,

f�K � ε ¤ f pd,qqsonc ,(5.4.1)

by de�nition of f pd,qqsonc . Since d, q Ñ 8, (5.4.1) holds for all ε Ó 0 for su�ciently large

d, q. By Lemma 5.4.1 (2) the values f pd,qqsonc are monotonically increasing in d, q, and the

result follows.
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5.4.2 Computation of the new Hierarchy via Relative Entropy

Programming

Let n, 2d, q be �xed. We intend to compute f pd,qqsonc via a suitable optimization program.

This means for f P Rrxs and a compact set K we are looking for the maximal γ P R
such that

fpxq � γ �
¸

finite

H`pxqs`pxq,(5.4.2)

where H`pxq P RqpKq and s`pxq P Cn,2d. We formulate such a program in (5.4.3)

and show in Theorem 5.4.3 that this program is a relative entropy program and hence

e�ciently solvable.

In what follows it is su�cient to consider nonnegative circuit polynomials instead of

general SONC polynomials. Namely, since every s`pxq P Cn,2d in (5.4.2) is of the form°
finite pi,`pxq where every pi,`pxq is a nonnegative circuit polynomial, we can split every

term H`pxqs`pxq into
°

finite H`pxqpi,`pxq by distribution law.

Recall from Sections 2.1 and 2.4 that CircA denotes the set of all circuit polynomials

with support A � Zn, that ∆n,2d describes the standard simplex in n variables of

edge length 2d, and that we de�ne Ln,2d � ∆n,2d X Zn. The support of every circuit

polynomial is contained in a su�ciently large scaled standard simplex ∆n,2d. We de�ne

Circn,2d � tp P CircA : A � Ln,2du,

that is the set of all circuit polynomials with a support A which is contained in ∆n,2d.

Let fpxq � f0�
°
ηPLn,2d�τq zt0u fηx

η P Rrxs. Note that we allow fη � 0. Furthermore,

let K be a compact, semialgebraic set given by a list of constraints g1, . . . , gs. Here, we

simplify the notation by assuming that the gi's already contain the linear constraints

l1, . . . , l2n, which we added in Section 5.3. Let

Circn,2d � CircAp1q\ � � � \ CircAptq,

where Ap1q, . . . , Aptq � Ln,2d is the �nite list of possible support sets of circuit polyno-
mials in ∆n,2d. We use the notation

CircApiq �
#

ri̧

j�0

cαpj,iqxαpj,iq � ε � cβpiqxβpiq :
cαpj,iq, cβpiq P R¥0,

and ε P t1,�1u

+
.
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We denote by λ0,i, . . . , λri,i the barycentric coordinates satisfying
°ri
j�0 λj,iαpj, iq �

βpiq. Let RqpKq � tH1, . . . , Hρqu such that H`pxq �
°k`
�1Hγp,`qx

γp,`q with Hγp,`q P R.
Moreover, we de�ne the following support vectors

supppCircn,2dq � rαpj, iq,βpiq : i � 1, . . . , t, j � 0, . . . , ris,
supppRqpKqq � rγp, `q : ` � 1, . . . , ρq,  � 0, . . . , k`s.

This means that supppCircn,2dq is the vector which contains all exponents contained in

Ap1q, . . . , Aptq with repetition. Similarly, supppRqpKqq is the vector which contains all

exponents contained in the supports of H1, . . . , Hρq with repetition. By construction,

we have that supppCircn,2dq is contained in Ln,2d, and every entry of supppRqpKqq is
contained in Ln,τq .

By (5.4.2) we have to construct an optimization program which guarantees that for

every exponent η P Ln,2d�τq , we have that the term fηx
η of the given polynomial f ,

which has to be minimized, equals the sums of a term with exponent η in
°

finite H`s`

with H` P RqpKq and s` P Cn,2d. Thus, we have to (1) guarantee that the involved

functions are indeed SONC polynomials and (2) add a linear constraint for every

η P Ln,2d�τq to match the coe�cients of the terms with exponent η in f with the

coe�cients of the terms with exponent η in
°

finite H`s`; see (5.4.2).

Let R be the subset of a real space given by

R �
#
c
p`,εq
αpj,iq, c

p`,εq
βpiq , ν

p`,εq
j,i P R¥0, δ

p`,εq
j,i P R :

for every ` � 1, . . . , ρq, ε P t1,�1u,
and αpj, iq,βpiq P supppCircn,2dq

+
.

Note that we are constructing a relative entropy program. The νp`,εqj,i P R¥0, and

δ
p`,εq
j,i P R in R form the vectors ν and δ of variables in the general form of an REP as

de�ned in De�nition 5.1.2.

In order to match the coe�cients of f with a representing polynomial coming from

the SONC Positivstellensatz, we de�ne for every η P Ln,2d�τqzt0u the following linear

functions from R to R:

Γ1pηq �
¸

βpiq�γp,`q�η
βpiqPsupppCircn,2dq
γp,`qPsupppRqpKqq

εPt1,�1u

ε � cp`,εqβpiq �Hγp,`q, Γ2pηq �
¸

αpj,iq�γp,`q�η
αpj,iqPsupppCircn,2dq
γp,`qPsupppRqpKqq

εPt1,�1u

c
p`,εq
αpj,iq �Hγp,`q,

where the Hγp,`q are constants given by the coe�cients of the functions H1, . . . , Hρq .
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We de�ne an optimization program to compute f pd,qqsonc . In what follows, the variables

ν
p`,εq
j,i and δp`,εqj,i are completely redundant for the actual optimization process; see (1a),

(1b), and (1c). We only have to introduce them to guarantee that the program (5.4.3)

has the form of a relative entropy program.

$'''''''''''''''''''''''''''&
'''''''''''''''''''''''''''%

minimize
°

αpj,iq�γp,`q�0
αpj,iqPsupppCircn,2dq
γp,`qPsupppRqpKqq

εPt1,�1u

c
p`,εq
αpj,iq �Hγp,`q

over the subset R1 of R de�ned by:

p1aq ν
p`,εq
j,i � c

p`,εq
βpiq � λj,i

for all ` � 1, . . . , ρq, ε P t1,�1u,
j � 0, . . . , ri, i � 1, . . . , t ,

p1bq ν
p`,εq
j,i � log

�
ν
p`,εq
j,i

c
p`,εq
αpj,iq



¤ δ

p`,εq
j,i

for all ` � 1, . . . , ρq, ε P t1,�1u,
j � 0, . . . , ri, i � 1, . . . , t ,

p1cq °ri
j�0 δ

p`,εq
j,i ¤ 0 for all ` � 1, . . . , ρq, ε P t1,�1u, i � 1, . . . , t ,

p2q Γ1pηq � Γ2pηq � fη for every η P Ln,2d�τqzt0u .

(5.4.3)

Theorem 5.4.3. The program (5.4.3) is a relative entropy program and hence e�ciently

solvable, and its output coincides with f0 � f
pd,qq
sonc .

Proof. First, we show that (5.4.3) is indeed an REP, i.e., we need to show that it is

of the form (5.1.2) in De�nition 5.1.2. Constraint (1b) in (5.4.3) is a constraint of the

form (2) in (5.1.2) satisfying νp`,εqj,i , c
p`,εq
αpj,iq ¥ 0 and δp`,εqj,i P R as required. The constraints

(1a),(1c), and (2) in (5.4.3) are linear constraints since all λj,i, Hγp,`q, and ε are con-

stants; note that linear equalities can be represented by two linear inequalities. Thus,

these constraints are of the form (1) in (5.1.2). Finally, the objective function is also

linear as required by (5.1.2). Hence, (5.4.3) is an REP by De�nition 5.1.2.

Second, we need to show that the program provides the correct output. Note that

the program is infeasible if there exist i, j, ` such that cp`,εqαpj,iq � 0 and c
p`,εq
βpiq � λj,i ¡ 0.

Hence, we can omit this case. By Theorem 5.2.2 the union of the constraints (1a),(1b),

and (1c) is equivalent to a constraint

p3q c
p`,εq
βpiq

ri±
j�0

�
λj,i

c
p`,εq
αpj,iq


λj,i

¤ 1 for every i � 1, . . . , t, ε P t1,�1u.

129



5 Hierarchical Approach to Constrained Optimization Problems via SONC and REP

Figure 5.2: ∆2,4 with the lattice points L2,4. The even points are the green ones.

The variables cp`,εqαpj,iq and c
p`,εq
βpiq in the program (5.4.3) are by construction the coe�-

cients of circuit polynomials. For the purpose of the program, these circuit polynomials

need to be nonnegative; see (5.4.2). This is guaranteed by constraint (3).

For every η P Ln,2d�τqzt0u, constraint (2) guarantees that every coe�cient fη equals

Γ1pηq � Γ2pηq, which are exactly all polynomials of the form
°

finite H`s`, where

H` P RqpKq and s` P Cn,2d. Particularly, it is su�cient to consider (nonnegative) circuit

polynomials in Γ1pηq and Γ2pηq instead of SONC polynomials. Namely, for every term

H`s` with s` P Cn,2d we can write s` �
°

finite pi,`, where pi,` are nonnegative circuit

polynomials. Thus, on the one hand, we obtain an expression H`s` �
°

finite H`pi,`

which depends only on circuit polynomials. On the other hand, we can guarantee that

the representation (5.4.2) is satis�ed, which we need to show. Finally, the program

minimizes the constant term of the function
°

finite H`s`, where H` P RqpKq, which is

equivalent to maximizing γ.

5.4.3 An Example

We consider the polynomial f � x3
1 � x3

2 � x1x2 � 4 and a semialgebraic set K given

by constraints g1 � �x1 � 1, g2 � x1 � 1, g3 � �x2 � 1, and g4 � x2 � 1. It is easy to

see that f is positive on K. We want to represent f with the SONC Positivstellensatz,

Theorem 5.3.5. We consider C2,4; see Figure 5.2 for ∆2,4 and the lattice points L2,4.

Circ2,4 is a union of 28 di�erent support sets. There exist:

• six even lattice points in L2,4 and thus six zero-dimensional circuit polynomials,

•
�

6
2

� � 15 circuit polynomials with one-dimensional Newton polytope, and
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•
�

6
3

�
even 2-simplices, which are contained in ∆2,4. One simplex contains three

lattice points in the interior, four contain one lattice point in the interior, and

the remaining ones contain no lattice point in the interior. Thus, we need only to

consider seven circuit polynomials with two-dimensional Newton polytope.

The number of elements in RqpKq is ρq �
�

4�q
q

�
; see Section 5.3. That is, we have in

this example ρ1 � 5, ρ2 � 15, ρ3 � 35.

Let us assume that we want to compute f p2,1qsonc . We are looking for the maximal

γ such that fpxq � γ can be represented as a sum sjpxqHjpxq with sjpxq P C2,4 and

Hjpxq P R1pKq. We would not, however, consider all these polynomials in practice.

First, the circuit polynomials with one-dimensional Newton polytope are su�cient to

construct every lattice point in L2,4 and thus it makes sense to disregard all 2-simplices.

Second, f does not contain every lattice point in L2,4 as an exponent, and hence it is

not surprising that several further circuit polynomials can be omitted. Indeed, we �nd

a decomposition according to the Positivstellensatz, Theorem 5.3.5, of the form

fpxq � px1 � 1q � px2
1 � 2x1 � 1q � px2 � 1q � px2

2 � 2x2 � 1q � 1 �
�

1

2
x2

1 � x1x2 � 1

2
x2

2




� 1 �
�

1

2
x2

1 � x1 � 1

2



� 1 �

�
1

2
x2

2 � x2 � 1

2



� 1,

which involves only 3 of the 15 one-dimensional circuit polynomials, one zero-dimensional

circuit polynomial, and no two-dimensional one.

5.5 Conclusion

In this chapter we have shown that the SONC cone yields a new way to attack (CPOPs),

independent of the SOS/SDP approach. Namely, we provided a converging hierarchy

of lower bounds, which can be computed e�ciently via relative entropy programming.

Hence, the new results establish SONC polynomials as a promising alternative or rather

extension to SOS certi�cates. SONC certi�cates are an alternative for SOS certi�cates

particularly for those problems, where the SOS approach has its di�culties. The new

results of the hierarchical approach lead to many future tasks and open problems, which

will be addressed in aggregated form in the subsequent Chapter 6.

Moreover, we compared in this chapter the related concepts of SAGE and SONC for

the �rst time yielding some interesting observations regarding their relation.
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Chapter 6

Final Remarks and Open Problems

We conclude this thesis with �nal remarks, open problems, and some future tasks

arising from the observations of our work.

In this thesis we studied sums of nonnegative circuit polynomials and their related

cone Cn,2d. We investigated our key objects geometrically as well as in application to

polynomial optimization problems. The results and observations of this thesis provide

important new advancements in the area of both pure and applied real and convex

algebraic geometry.

Geometric Analysis of the SONC Cone. The �rst part of this work discussed

SONC polynomials and the SONC cone from the theoretical point of view. We observed

general properties of the SONC cone and provided an explicit and complete character-

ization of the number of zeros of SONCs. Based upon these observations, we provided

a �rst approach to the exposed faces of the SONC cone, which have to be analyzed in

more detail. Finally, we showed that Cn,2d is full-dimensional in Pn,2d.

However, there are many more open problems regarding the SONC cone itself which

need to be addressed, e.g., convex geometric structures of Cn,2d such as its boundary

and its extreme rays as well as its dual cone. The understanding of these structures is

crucial for the study of the relation between Cn,2d and Pn,2d and the knowledge of its

dual cone is highly desirable for the application of SONC certi�cates.

Moreover, the connection of the SONC and the SAGE cone need to be analyzed

more carefully. An interesting question is whether there is some kind of primal/dual

relation between these cones.

Another important problem concerns the relation between the cones Cn,2d, Σn,2d, and
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6 Final Remarks and Open Problems

Pn,2d. First, it would be interesting to discuss the set theoretic di�erence Pn,2dzCn,2d, i.e.,
to investigate the quantitative relationship between the SONC and the nonnegativity

cone. Note that in this context also the quantitative relationship between Σn,2d and

Pn,2d is not completely understood. For instance, the exact quantitative relationship

between these cones in small dimension is still an open problem, see Section 2.2.3.

Second, the relation between the SOS and the SONC cone need to be explored in

more detail. Third and maybe the most important task is to study the convex hull of

the SONC and the SOS cone. Many counterexamples for polynomials being nonnega-

tive but not SOS are in fact SONC polynomials, see for example the famous Motzkin

polynomial. Therefore, it would be interesting to know the approximation quality

of convpCn,2d,Σn,2dq in Pn,2d. This analysis would also have an immense impact in

applications, among others to polynomial optimization problems.

SONC Polynomials in Application to Optimization. The second part of this

thesis focused on applying SONC polynomials to polynomial optimization problems,

mostly in the constrained case. Initially, we derived a single lower bound for the optimal

value f�K of (CPOP) for the class of ST-polynomials based on the SONC/GP approach.

This approach has the signi�cant advantage over the SOS/SDP-based approach that

the runtime is much shorter and not sensitive to increasing the degree. Moreover, we

extended the SONC/GP approach both in the unconstrained and the constrained case

to non-ST-polynomials. This general case needs to be studied in more detail. Then, we

established a hierarchy of lower bounds converging to f�K of a (CPOP) on a compact

set K which is e�ciently computable by an REP.

Particularly resulting from the hierarchical approach for (CPOP) there are many

obvious tasks and questions, whose answers would be very useful for practical

applications.

First, it is important to implement the program (5.4.3), test it for various instances of

constrained polynomial optimization problems, and compare the runtime and optimal

values with the counterparts from SDP results using Lasserre's relaxation. Given the

runtime comparison of the SONC and the SOS approach in [DIdW18, GM12, IdW16a]

using geometric programming, there is reasonable hope that our relative entropy

programs are faster than semide�nite programming in several cases.

Second, we have seen in Section 5.4.3 that it can (and likely will often) happen that

many of the circuit polynomials in supppCircn,2dq are redundant for �nding a representa-
tion of a given polynomial with respect to the SONC Positivstellensatz, Theorem 5.3.5.
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Hence, the corresponding optimization problem (5.4.3) can be reduced in these cases.

For practical applications, we have to develop strategies to restrict ourselves to useful

subsets of circuit polynomials to reduce the runtime of our programs via reducing the

number of variables.

Third, an important problem is to study the convergence given by our provided

hierarchy in more detail. Since the optimal value f�K is typically unknown, two practical

questions are raised immediately:

(a) How do we check exactness of our relaxations?

(b) How do we certify �nite convergence of our hierarchy?

Unfortunately, there is no obvious way to attack this problem, since similar statements

for the Lasserre relaxation (see, e.g., [Las10, Lau09]) cannot be proved with analogous

methods for the SONC Positivstellensatz straightforwardly. Namely, the existing theory

for Lasserre's relaxation is based on the dual optimization problem whose description

uses localizing matrices and the theory of moments, see Section 2.3. Therefore, once

more it would be interesting to study the dual perspective of the SONC theory.

Fourth, in the SONC Positivstellensatz, Theorem 5.3.5, the representation of f is

exponential in the number of polynomial constraints. Hence, a delicate open problem

is to analyze whether there always exists a decomposition which is linear in the con-

straints, i.e., a representation with q � 1, which corresponds to a Putinar-equivalent

Positivstellensatz for SONC polynomials. If such a representation does not exist in gen-

eral, then it would also be interesting to investigate modi�ed or stronger assumptions

or to search for certain instances of polynomials for which there exist such a minimal

representation. Note that proofs of the analogous statement for SOS polynomials,

Putinar's Positivstellensatz, are based on classical ideas from real algebraic geometry

and often make use of some properties of quadratic modules. In contrast to SOS polyno-

mials the set of SONC polynomials does not form a quadratic module, see Section 3.4.

Thus, again we have to use other techniques to address this question.

Beyond the questions arising from the hierarchical approach for (CPOPs) it would

be very interesting to investigate the application of SONC certi�cates to optimization

over the (constrained) hypercube. A special case of (CPOPs), which is particularly

relevant to applications in combinatorial optimization, concerns optimization over the

Boolean hypercube H, mostly H � t0, 1un or H � t�1un. Hence, one often speaks

of 0{1-optimization or binary (CPOPs) in this case. For instance, one can use those
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6 Final Remarks and Open Problems

binary (CPOPs) to attack the maximum cut problem [GW95], the maximum stable set

problems [Her95], and maximum weighted independent set problems [HLZ13]. Those

problems are well studied using the SOS/SDP-based approach, see also Section 2.2.1.

Therefore, it would be interesting to study Boolean (CPOPs) by means of SONC

polynomials and their (computational) complexity.

Finally, we hope to �nd a way to combine SOS and SONC certi�cates in theory and

in practice. We already outlined the theoretical motivation for this endeavor, applied to

optimization problems such a combined certi�cate is expected to be extremely powerful.

Since the SONC and the SOS cone intersect but not contain each other, the Lasserre

relaxation applies to cases where the SONC approach may not work (properly) and

vice versa. Moreover, one should take advantage of the di�erent runtimes of SDPs and

GPs/REPs for various problems. Therefore a joint method taking all this into account

should be highly promising and rewarding.
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Deutsche Zusammenfassung

Die Forschungsergebnisse der Dissertation liegen im Schnitt der reellen algebraischen

Geometrie, Konvexgeometrie und Optimierung, das heiÿt im Gebiet der konvexen

algebraischen Geometrie.

Ein zentrales Problem der reellen algebraischen Geometrie und der polynomiellen

Optimierung ist es, die Nichtnegativität eines reellen Polynoms zu entscheiden. Wir

stellen uns daher folgende Frage:

Sei f P Rrxs � Rrx1, . . . , xns. Gilt fpxq ¥ 0 für alle x P Rn?

Das Ziel globaler polynomieller Optimierung ist es, ein reelles multivariates Polynom f

über Rn zu minimieren, das heiÿt den Optimalwert f� � inftfpxq : x P Rnu zu bestim-

men. Wie man leicht sehen kann, ist die Suche nach einer globalen unteren Schranke

eines Polynoms f äquivalent dazu, die gröÿte reelle Zahl γ zu �nden, sodass f � γ

nichtnegativ ist, also

f� � suptγ P R : fpxq � γ ¥ 0 für alle x P Rnu.

Das polynomielle Optimierungsproblem kann daher auf die Frage der Nichtnegativität

eines Polynoms reduziert werden.

Das Problem �ndet in der Entscheidungs- sowie Optimierungsversion zahlreiche

Anwendungen, wie zum Beispiel in dynamischen Systemen, in der Robotertechnik,

Steuerungstheorie, Computervision, Signalverarbeitung und in der Ökonomie. Für einen

Überblick siehe z.B. [BPT13] und [Las10].

Die Nichtnegativität eines Polynoms zu entscheiden ist im Allgemeinen co-NP-schwer,

siehe [MK87]. Folglich ist es von Interesse hinreichende Bedingungen zu �nden, die die

Nichtnegativität eines Polynoms zerti�zieren und leichter überprüfbar sind. Solch ein

Zerti�kat ist durch Summen von Quadraten (sums of squares, kurz: SOS) gegeben,

die o�ensichtlich nichtnegativ sind. Falls ein Polynom f demnach als Quadratsumme

geschrieben werden kann, ist es allein aus der Darstellung ersichtlich, dass f nichtnegativ

ist. Der Zusammenhang zwischen nichtnegativen Polynomen und Quadratsummen ist
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eine klassische Frage in der reellen algebraischen Geometrie, die ihre Anfänge Ende

des neunzehnten Jahrhunderts in Hilberts Arbeiten hat. Dieser studierte intensiv die

konvexen Kegel Pn,2d der nichtnegativen Polynome und Σn,2d der Quadratsummen in

n Variablen vom Grad höchstens 2d. Seine Untersuchungen führten schlieÿlich zu dem

wegweisenden Resultat, dass die beiden Kegel genau in drei Fällen übereinstimmen, im

univariaten Fall, im quadratischen Fall und für binäre Quartiken. In allen anderen Fällen

konnte Hilbert nachweisen, dass nichtnegative Polynome existieren, die keine Summen

von Quadraten sind. Dieser Beweis war jedoch nicht konstruktiv und das erste Beispiel

für ein solches Polynom wurde erst siebzig Jahre später von Motzkin [Mot67] angege-

ben. Die Tatsache, dass nicht jedes nichtnegative Polynom als SOS geschrieben werden

kann, motivierte Hilbert zu der berühmten Frage: �Besitzt jedes nichtnegative Polynom

eine Darstellung als Quadratsumme rationaler Funktionen?� Diese Frage ist als Hilberts

17. Problem bekannt, welche 1927 von Emil Artin [Art27] positiv beantwortet wurde.

Für einen historischen Überblick siehe [Rez00].

Der Vorteil SOS Zerti�kate zu nutzen ist, dass die Frage, ob ein Polynom als SOS

darstellbar ist, mittels eines semide�niten Optimierungsproblems (SDP) gelöst werden

kann. SDPs gehören zur Klasse konvexer Optimierungsprobleme [BV04, VB96] und

können als Verallgemeinerung der linearen Optimierung gesehen werden. Überdies exis-

tieren gute numerische Algorithmen mit denen sich SDPs (mit beliebiger Genauigkeit)

in Polynomialzeit lösen lassen, siehe [BPT13, Seite 41]. Somit kann man die Nichtnega-

tivitätsbedingung in polynomiellen Optimierungsproblemen im globalen sowie restrin-

gierten Fall zu einer Quadratsummenbedingung relaxieren. Diese Relaxierung lässt sich

nun e�zient durch semide�nite Optimierung berechnen. Der SOS/SDP Ansatz der po-

lynomiellen Optimierung geht auf Shor im Jahre 1987 zurück und wurde von Nesterov

[Nes00], Parrilo [Par00, Par03] und Lasserre [Las01] weiterentwickelt. Seitdem hat diese

Forschungsrichtung eine beachtliche Entwicklung erfahren und es wurden zahlreiche Re-

laxierungsmethoden vorgeschlagen, welche hinsichtlich verschiedener Aspekte (Laufzeit

der Berechnungen, Exaktheit und Qualität der Relaxierung und Geometrie der zugrunde

liegenden Strukturen) intensiv untersucht wurden. Die meisten dieser Resultate basie-

ren auf der Lasserre-Relaxierung [Las01], die auf der SOS/SDP Methode beruht und

eine Hierarchie konvergierender unterer Schranken an den Optimalwert restringierter

Optimierungsprobleme liefert, siehe z.B. [Las10], [Las15].

Ein bekanntes Problem des SOS/SDP Ansatzes ist, dass die Gröÿe des korrespon-

dierenden semide�niten Programms mit wachsender Variablenanzahl oder wachsendem

Grad des Polynoms rapide zunimmt. Für viele Anwendungen lässt sich daher mit diesem

Ansatz nur schwer eine (geeignete) Lösung �nden. Weiterhin hat Blekherman [Ble06]
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gezeigt, dass es für einen festen Grad 2d ¥ 4 und wachsender Variablenanzahl signi�-

kant mehr nichtnegative Polynome als Quadratsummen gibt. Sich diesen Problemen zu

widmen ist ein aktives Forschungsgebiet, zu dem diese Dissertation von theoretischer

und praktischer Seite beiträgt.

Ein Schwerpunkt der momentanen Forschung liegt darauf, die �solver� zu verbessern

und zusätzliche Strukturen wie Symmetrien und Dünnbesetztheit auszunutzen, siehe

z.B. [Val09] und [Las06a].

Im Gegensatz dazu verfolgt diese Arbeit den Ansatz andere Nichtnegativitätszerti�-

kate, unabhängig der SOS Zerti�kate, zu verwenden.

Kürzlich führten Iliman und de Wol� [IdW16a] Summen von nichtnegativen

Kreispolynomen (sums of nonnegative circuit polynomials, kurz: SONC) als neues

Nichtnegativitätszerti�kat für reelle Polynome ein. Kreispolynome f haben folgende

spezielle Struktur bezüglich ihrer Trägermenge: das Newtonpolytop von f formt einen

Simplex mit geraden Ecken, die Koe�zienten der zu den Ecken korrespondierenden

Terme sind strikt positiv und es gibt einen zusätzlichen Trägerpunkt, der im Inneren

des Simplex liegt. Für jedes Kreispolynom kann man die zugehörige Kreiszahl de�-

nieren, die sich sofort aus dem gegebenen Polynom ergibt. Der entscheidende Faktor

ist, dass die Nichtnegativität von Kreispolynomen mittels dieser Kreiszahl einfach

getestet werden kann. Die Menge der Summen von nichtnegativen Kreispolynomen in n

Variablen vom Grad höchstens 2d wird mit Cn,2d bezeichnet und ist sogar ein konvexer

Kegel, der zwar den SOS Kegel Σn,2d schneidet, jedoch sind beide Kegel nicht inein-

ander enthalten. Somit stellen Summen von nichtnegativen Kreispolynomen in der Tat

ein neues Nichtnegativitätszerti�kat, unabhängig von SOS Zerti�katen, dar.

In dieser Dissertation untersuchen wir Summen von nichtnegativen Kreispolynomen

sowie den zugehörigen Kegel Cn,2d und studieren diese geometrisch und betrachten ihre

Anwendung in der polynomiellen Optimierung. Dies führt zu neuen Resultaten in den

Gebieten der reinen und angewandten reellen algebraischen und konvexen algebraischen

Geometrie. Diese Arbeit gliedert sich in zwei Teile, das theoretische Studium des SONC

Kegels und das praktische Studium der Anwendung in der polynomiellen Optimierung.

Die nachstehenden Abschnitte skizzieren die untersuchten Probleme und geben einen

Überblick über die Resultate und Beiträge dieser Arbeit.

Der SONC Kegel genauer betrachtet. SONC Polynome und deren Kegel sind

noch zu einem groÿen Teil unerforscht, bringen aber ein hohes Forschungspotential

mit sich. Vom theoretischen Standpunkt aus ist der SONC Kegel, als konvexer
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Kegel von Polynomen mit spezieller Struktur, an sich bereits interessant. Vor allem

aber unter dem Aspekt, dass Cn,2d den Nichtnegativitätskegel Pn,2d approximiert, ist ein

tieferes Verständnis des SONC Kegels aus theoretischer sowie praktischer Sicht äuÿerst

wünschenswert. Dessen Studium reiht sich somit in die klassische Theorie der nicht-

negativen Polynome und Quadratsummen ein. Daher ist es wichtig, die Struktur und

die (konvexen) Eigenschaften von Cn,2d sowie dessen Beziehung zu Pn,2d und Σn,2d zu

erforschen.

Dadurch motiviert werden zunächst einige konvexgeometrische Aspekte des SONC

Kegels studiert. Als Erstes zeigen wir in Proposition 3.1.1, dass Cn,2d ein echter Kegel

ist. In [IdW16a] werden die Fälle pn, 2dq charakterisiert, in denen die Kegel Cn,2d und

Σn,2d sich enthalten, beziehungsweise nicht enthalten, siehe Theorem 2.4.8. Zwei Fälle

sind darin nicht abgedeckt: pn, 2q für alle n ¥ 2 und der Fall pn, 4q für alle n. Wir

schlieÿen diese Lücke in Theorem 3.1.2.

In der Literatur sind Resultate für nichtnegative Polynome und SOS häu�g homogen

formuliert. Homogene Polynome sind allgegenwärtig in der Mathematik und ein zentra-

les Studienobjekt der algebraischen Geometrie. Daher wollen wir ebenfalls homogene

SONC Polynome studieren. Hierfür zeigen wir zunächt die fundamentale Tatsache, dass

die SONC Eigenschaft unter Homogenisierung erhalten bleibt.

Ein interessantes Forschungsobjekt für (homogene) Polynome sind deren reelle

Nullstellen. Es gibt eine Vielzahl von Arbeiten, welche die reellen Nullstellen von nicht-

negativen Polynomen und Quadratsummen studieren. In diesem Zusammenhang wer-

den die Nullstellen häu�g dazu genutzt die mengentheoretische Di�erenz der beiden

Kegel zu untersuchen und einen Einblick in die Seitenstruktur von Pn,2d und Σn,2d zu

gewinnen. Hierfür siehe z.B. [BHO�12, Ble12, CL77, CLR80, KS18, Rez78, Rez00].

Durch diese Ideen motiviert, untersuchen wir die reellen Nullstellen von (homogenen)

SONC Polynomen. Der Hauptbeitrag der Dissertation zu diesem Thema ist eine voll-

ständige und explizite Charakterisierung der reellen Nullstellen von SONC Polynomen

sowie homogenen SONC Polynomen, siehe Abschnitt 3.2. Die Nullstellenresultate

führen zu weiteren interessanten Beobachtungen. Zum Beispiel folgt, dass das Ana-

logon zu Hilberts 17. Problem für SONC Polynome allgemein nicht gelten kann. Auf

dem Studium der Nullstellen aufbauend wird eine erste Betrachtung der exponierten

Seiten des SONC Kegels dargelegt. Insbesondere erhalten wir hierbei Schranken für

die Dimensionen der exponierten Seiten von Cn,2d und studieren den univariaten und

bivariaten Fall mitsamt expliziten Beispielen genauer.

Eine grundlegende Eigenschaft von SOS ist, dass die Menge der Quadratsummen
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multiplikativ abgeschlossen ist. Diese Eigenschaft ist essentiell für Anwendungen der

Quadratsummen in der polynomiellen Optimierung, im Speziellen für bestimme

Positivstellensätze, siehe Abschnitt 2.3.4. In Lemma 3.4.1 wird gezeigt, dass die Menge

der SONC Polynome hingegen nicht multiplikativ abgeschlossen ist. Ein weiterer Haupt-

beitrag zur Analyse des SONC Kegels ist das Resultat, dass Cn,2d volldimensional

in dem konvexen Kegel der nichtnegativen Polynome Pn,2d ist. Dieses Resultat ist eine

notwendige Bedingung dafür, SONC Polynome als in der Praxis nützliche Zerti�kate

zu etablieren. Daher haben beide Beobachtungen einen direkten Ein�uss auf die

Anwendung von SONC Polynomen in polynomiellen Optimierungsproblemen. Diese

angewandte Perspektive wird in den kommenden Abschnitten diskutiert.

Polynomielle Optimierung mittels SONC und GP. Wie bereits erwähnt, ist

auch aus praktischer Sicht ein tieferes Verständnis des SONC Kegels und der SONC

Polynome von groÿem Nutzen. Der zweite Teil dieser Arbeit widmet sich der Anwendung

von SONC Polynomen in der Optimierung.

Neben dem SDP-basierten Ansatz für polynomielle Optimierungsprobleme haben

Ghasemi und Marshall [GM12, GM13] kürzlich vorgeschlagen geometrische Programme

für globale und restringierte Optimierungsprobleme zu nutzen. Ein geometrisches

Optimierungsproblem (GP) ist konvex und kann (bis auf einen ε-Fehler) mittels Innere-

Punkte-Verfahren in Polynomialzeit gelöst werden [NN94], siehe auch [BKVH07, S. 118].

Wie experimentelle Resultate zeigen, können GPs in der Praxis wesentlich schneller als

SDPs berechnet werden, siehe z.B. [BKVH07, GM12, GM13, GLM14]. Ein Nachteil der

Methode von Ghasemi und Marshall ist jedoch, dass die unteren Schranken, die man

mittels GP erhält, nicht so gut sind wie die SDP-basierten Schranken und der Ansatz

nur auf sehr spezielle Fälle anwendbar ist.

Iliman und de Wol� [IdW16b] zeigten, dass der GP-basierte Ansatz für globale

Optimierung durch SONC Zerti�kate für bestimmte Polynome verallgemeinert werden

kann. Genauer gesagt kann mittels GP e�zient entschieden werden, ob ST-Polynome

eine SONC Zerlegung besitzen. Kreispolynome gehören zur Klasse der ST-Polynome,

deren Newtonpolytop ein Simplex ist und die weitere Bedingungen erfüllen, siehe De�ni-

tion 4.1.1. Somit ist der Zusammenhang zwischen SONC und GP analog dem zwischen

SOS und SDP. Ein wesentlicher Unterschied zum Ansatz von Ghasemi und Marshall

ist, dass diverse Polynomklassen existieren, für die die SONC/GP-basierte Methode

nicht nur schneller ist, sondern auch bessere Schranken als der SOS/SDP Ansatz lie-

fert, siehe hierzu [IdW16b, Korollar 3.6]. Das ist darauf zurückzuführen, dass die von

Ghasemi und Marshall genutzten Zerti�kate immer SOS sind, was für SONC Zerti�kate
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im Allgemeinen nicht zutri�t, siehe Theorem 2.4.8.

Durch diese jüngsten Entwicklungen motiviert liegt der Fokus des zweiten Teils

dieser Arbeit darauf, restringierte Optimierungsprobleme mit SONC Polynomen zu stu-

dieren. Restringierte Optimierungsprobleme haben die Form: f�K � inftfpxq : x P Ku �
suptγ P R : fpxq � γ ¥ 0 für alle x P Ku, wobei K � Rn die basisch abgeschlossene

semialgebraische Menge der Polynome g1, . . . , gs P Rrxs ist.
Im Wesentlichen verfolgen wir unser Ziel auf zwei verschiedene Weisen. Zunächst als

Verallgemeinerung des beschriebenen SONC/GP Ansatzes. Das heiÿt, wir erhalten eine

untere Schranke an f�K , indem wir ein einziges konvexes Optimierungsproblem lösen,

welches unter gewissen Annahmen ein GP ist. Danach wird ein erweiterter Ansatz

analysiert, welcher eine Hierarchie unterer Schranken liefert, die gegen f�K konvergiert.

Dieser hierarchische Ansatz wird im nächsten Abschnitt diskutiert.

Der erste Beitrag dieser Dissertation im Kontext polynomieller Optimierung ist eine

Erweiterung der Resultate in [IdW16b] auf restringierte polynomielle Optimierungs-

probleme für die Klasse der ST-Polynome. Der Ansatzpunkt hierfür ist ein allgemeines

Optimierungsproblem von [IdW16b, Abschnitt 5], siehe Programm (4.1.5), welches eine

untere Schranke für das restringierte Problem liefert, aber nicht durch ein GP berechnet

werden kann. Das Programm (4.1.5) kann mittels Resultaten aus [GM13] zu einem GP

relaxiert werden, siehe Programm (4.2.2) und Theorem 4.2.1. Überdies wird gezeigt,

dass das neue relaxierte GP (4.2.2) für bestimmte Spezialfälle genauso gute Schranken

wie das ursprüngliche Programm (4.1.5) liefert.

Abschnitt 4.3 enthält Beispiele, in denen das neue Programm (4.2.2) in der Praxis

mit SDP verglichen wird. In den Beispielen ist deutlich zu sehen, dass unser Programm

viel schneller als SDP ist. Im Gegensatz zu SDP ist unser GP unemp�ndlich gegenüber

Erhöhung des Grades. Dadurch ist der GP-basierte Ansatz vor allem in hochgradigen

Beispielen nützlich, in denen SDPs ernsthafte Probleme aufweisen.

Weiterhin kann eine von Ghasemi und Marshall in [GM13] erhaltene Schranke nie besser

sein als die Schranke der d-ten Lasserre-Relaxierung für ein spezi�sches d, welches von

den Graden der involvierten Polynome bestimmt ist. Abschnitt 4.3 enthält Beispiele,

die zeigen, dass das neue Programm (4.2.2) in der Tat Schranken liefert, die besser sind

als die spezielle d-te Lasserre-Relaxierung.

Der zweite Beitrag in diesem Kontext ist die Anwendung des SONC/GP Ansatzes für

polynomielle Optimierung über die Klasse der ST-Polynome hinaus. In Abschnitt 4.4

wird ein erster Ansatz vorgestellt, der auf einer Triangulierung der Trägermenge der

beteiligten Polynome beruht. Dieser liefert, basierend auf der SONC/GP Methode,
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Nichtnegativitätsschranken für beliebige Polynome im globalen und restringierten Fall.

Wieder werden einige Beispiele bereitgestellt, die diesen Ansatz mit dem SDP-basierten

vergleichen. Erneut ist das Ergebnis, dass in allen Beispielen, speziell in hochgradigen

Fällen, die GP-basierte Methode deutlich schneller ist.

In beiden Ansätzen werden keine Annahmen an den ZulässigkeitsbereichK getro�en.

Insbesondere wird keine Kompaktheit verlangt, wie im klassischen Fall der Lasserre-

Relaxierung.

Hierarchischer Ansatz in der restringierten Optimierung mittels SONC

und REP. Da der SONC/GP-basierte Ansatz für restringierte Optimierungsprobleme

nur eine einzige untere Schranke an den Optimalwert f�K liefert, wird im Folgenden

ein erweiterter Ansatz untersucht, der zu einer konvergierenden Hierarchie von unte-

ren Schranken an f�K führt. Der Hauptunterschied beider Ansätze ist, dass letzterer auf

einem Positivstellensatz beruht. Positivstellensätze spielen in der Entwicklung der

restringierten Optimierung eine zentrale Rolle und haben eine lange Geschichte. Ein

Positivstellensatz liefert für ein Polynom, welches auf einer semialgebraischen

Menge K strikt positiv ist, eine bestimmte algebraische Darstellung. Es gibt eine Viel-

zahl von Positivstellensätzen, die typischerweise auf Quadratsummen beruhen, siehe

Abschnitt 2.3.3. Beispielsweise basiert die Lasserre-Relaxierung auf Putinars Positiv-

stellensatz [Put93].

Vor Kurzem haben Chandrasekaran und Shah [CS16] Summen von nichtnegativen

arithmetisch geometrischen Exponentialen (sums of nonnegative AM/GM-exponentials,

kurz: SAGE) als Nichtnegativitätszerti�kat für Signome eingeführt. Signome sind

gewichtete Summen von Exponentialen, wodurch dieses Konzept das Problem anspricht,

die Nichtnegativität eines Polynoms auf dem positiven Orthanten zu entscheiden. Ob ein

AM/GM-Exponential nichtnegativ ist, kann mit Hilfe relativer Entropieprogrammie-

rung (REP) getestet werden. Ein REP ist ein konvexes Optimierungsproblem, welches

allgemeiner als ein GP ist, jedoch immer noch e�zient mittels Innere-Punkte-Verfahren

lösbar ist, siehe [CS17, NN94].

Die Grundlage für den hierarchischen Ansatz stellt ein Positivstellensatz für SONC

Polynome dar, siehe Theorem 5.3.5, der sich als Konsequenz aus Krivines Positivstellen-

satz [Kri64a, Kri64b] ergibt. Der SONC Positivstellensatz sagt aus, dass ein Polynom

f , wenn es strikt positiv auf der kompakten Menge K ist, durch die restringierenden

Polynome gewichtet mit SONC Polynomen dargestellt werden kann.

Durch diesen Positivstellensatz können wir den Parameter f pd,qqsonc de�nieren, der durch
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die gröÿte reelle Zahl γ gegeben ist, sodass fpxq � γ eine SONC Darstellung besitzt.

Dieser Parameter ist o�ensichtlich eine untere Schranke an f�K , die auf dem maximal

erlaubten Grad der darstellenden Polynome des Positivstellensatzes basiert. Deswei-

teren ist die untere Schranke monoton wachsend in d und q, siehe Lemma 5.4.1 und

liefert daher eine Hierarchie unterer Schranken für f�K . Der Hauptbeitrag zum Gebiet der

polynomiellen Optimierung ist das Resultat, dass einerseits diese Hierarchie vollständig

ist, das heiÿt, die unteren Schanken f
pd,qq
sonc konvergieren für d, q Ñ 8 gegen f�K , siehe

Theorem 5.4.2, und andererseits, dass die Schranken f
pd,qq
sonc e�zient berechenbar sind.

Genauer gesagt stellen wir ein Optimierungsprogramm (5.4.3) zur Berechnung von f pd,qqsonc

zur Verfügung und zeigen in Theorem 5.4.3, dass dieses Programm (5.4.3) ein REP

ist. Diese Verbindung wurde durch das oben angesprochene neue Konzept des SAGE

Kegels inspiriert, der einen Zusammenhang zum SONC Kegel aufweist. Daher bieten

wir überdies erstmalig einen Vergleich dieser beiden Kegel an, siehe Abschnitt 5.2.

Im Abschnitt 5.4.3 illustrieren wir die neue Methode an einem Beispiel.

Gliederung der Dissertation. In Kapitel 2 geben wir einen umfangreichen Über-

blick über die grundlegende Theorie und die relevanten Resultate. Zunächst führen wir

einige Notationen ein und wiederholen die wesentlichen Konzepte der Konvexitätstheo-

rie und von Polynomen. Anschlieÿend werden im Abschnitt 2.2 intensiv die Kegel der

nichtnegativen Polynome und Summen von Quadraten studiert. Die angesprochenen

Themen umfassen die Verbindung der Quadratsummen zur semide�niten Optimierung,

das quantitative Verhältnis der beiden Kegel und Fakten über deren duale Kegel, deren

Rand sowie deren Seitenstruktur. Danach werden der Hintergrund polynomieller

Optimierungsprobleme und reeller algebraischer Geometrie, wie die SOS Relaxie-

rungen, Positivstellensätze und die berühmte Lasserre-Relaxierung für restringierte

Optimierungsprobleme, vorgestellt, siehe Abschnitt 2.3. Abschlieÿend führen wir in

Abschnitt 2.4 Summen von nichtnegativen Kreispolynomen ein, das Hauptstudienobjekt

der vorliegenden Dissertation, und führen die zugehörige Theorie ein.

Kapitel 3 ist dem konvexgeometrischen Studium des SONC Kegels gewidmet. Zu

Beginn präsentieren wir einige Eigenschaften und allgemeine Resultate über die Struk-

tur des SONC Kegels und seiner Beziehung zu dem SOS Kegel. In Abschnitt 3.2 legen

wir unseren Fokus auf die reellen Nullstellen der (homogenen) SONC Polynome. Das

führt zu einer vollständigen und expliziten Charakterisierung dieser Nullstellen, woraus

sich interessante Konsequenzen ergeben. Auf dem Nullstellenwissen aufbauend, geben

wir einen ersten Ansatz zum Verständnis der exponierten Seiten des SONC Kegels, siehe

Abschnitt 3.3, bei dem wir den univariaten und bivariaten Fall tiefergehend analysieren

154



und Schranken an die Dimension der exponierten Seiten angeben. Im Abschnitt 3.4

wird gezeigt, dass, im Gegensatz zu SOS, die Menge der SONC Polynome nicht unter

Multiplikation abgeschlossen ist. Weiterhin wird das wichtige Resultat präsentiert, dass

der SONC Kegel volldimensional im Kegel der nichtnegativen Polynome ist.

In den folgenden beiden Kapiteln wenden wir uns dem praktischen Studium des

SONC Kegels in der Anwendung auf restringierte polynomielle Optimierung zu.

Kapitel 4 diskutiert dieses Problem durch Erlangen einer einzigen unteren Schranke

an den Optimalwert, die durch geometrische Programmierung berechnet werden kann.

Dazu führen wir erst die untersuchten ST-Polynome und geometrische Optimierung

ein. Anschlieÿend rekapitulieren wir den SONC/GP-basierten Ansatz für den globalen

Fall und einen initialen Ansatz zum restringierten Fall. Dieser Ansatz liefert allerdings

eine untere Schranke, die nicht durch ein GP ermittelt werden kann. Wir erweitern das

Resultat für den restringierten Fall in Abschnitt 4.2 und formulieren Relaxierungen, die

mittels GPs berechnet werden können. Zusätzlich werden Beispiele aufgezeigt, die den

neuen Ansatz in der Praxis mit SDP vergleichen, siehe Abschnitt 4.3. Schlieÿlich verall-

gemeinern wir den SONC/GP Ansatz in Abschnitt 4.4 im globalen sowie restringierten

Fall für Polynome, die nicht ST-Polynome sind.

Kapitel 5 beschreibt einen erweiterten Ansatz für die restringierte Optimierung, die

eine Hierarchie von an den Optimalwert konvergierenden unteren Schranken liefert. Zu-

nächst studieren wir den Kegel der Summen von nichtnegativen AM/GM-Exponentialen

und führen relative Entropieoptimierung ein. Nach einem Vergleich des SONC und des

SAGE Kegels in Abschnitt 5.2 formulieren wir den Positivstellensatz für SONC Polyno-

me, siehe Abschnitt 5.3. Auf diesem Satz aufbauend etablieren wir in Abschnitt 5.4 eine

Hierarchie von unteren Schranken an den Optimalwert restringierter Optimierungspro-

bleme und formulieren ein Optimierungsprogramm zur Berechnung dieser Schranken.

Anschlieÿend zeigen wir, dass die bereitgestellte Hierarchie auf einer kompakten Menge

vollständig und durch relative Entropieprogramme e�zient lösbar ist. Zum Abschluss

wird die Zerlegung eines gegebenen Polynoms in die durch den SONC Positivstellensatz

gegebene Form an einem Beispiel demonstriert.

Im letzten Kapitel 6 der vorliegenden Dissertation �nden sich abschlieÿende Bemer-

kungen und eine Diskussion o�ener Fragen.
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