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Abstract

In this thesis, Planck size black holes are discussed. Speci�cally, new families of black holes
are presented. Such black holes exhibit an improved short scale behaviour and can be used to
implement gravity self-complete paradigm. Such geometries are also studied within the ADD
large extra-dimensional scenario. This allows black hole remnant masses to reach the TeV scale.
It is shown that the evaporation endpoint for this class of black holes is a cold stable remnant.
One family of black holes considered in this thesis features a regular de Sitter core that counters
gravitational collapse with a quantum outward pressure. The other family of black holes turns
out to nicely �t into the holographic information bound on black holes, and lead to black hole
area quantization and applications in the gravitational entropic force. As a result, gravity can
be derived as emergent phenomenon from thermodynamics.

The thesis contains an overview about recent quantum gravity black hole approaches and
concludes with the derivation of nonlocal operators that modify the Einstein equations to ultra-
violet complete �eld equations.

About the front picture

This picture shows an embedding diagram for the self-
regular black hole in the outstanding case α → ∞.
By intention, there are no units as this is purely illustra-
tive. The 3d picture can be constructed by rotating the
graphs shown on the right around its y axis. The color
transition indicates the position of the black hole event
horizon.
For more information about the computation of embed-
ding diagrams, see appendix A.
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Chapter 1

Introduction

1.1 Motivation

This work is about the quest of contemporary physics on the smallest scales and biggest en-
ergies. By historical evolution, in the 20th century two opposing theories developed: For phe-
nomena on the smallest scales (e.g. the constituents of an atom), quantum physics evolved. On
the other hand, for phenomena on the biggest scales (e.g. the Universe), general relativity was
formulated.

Combining these two worlds is a big quest in physics. A theory which describes e�ects from
both the quantum and the gravitational world is a quantum gravity theory.

antum

Mechanics

Special

Relativity

antum

Field

eory

General

Relativity

?

antum

Gravity

Newtonian

Gravity

Galilean

Mechanics

Figure 1.1: The cube of physics, a popular il-
lustration about characteristic constants that
describe the regime for physical phenomena.
First appeared in a 1999 book from Roger
Penrose [65].
The whirly lines shall encode how hard the
author percieved the challenge to �nd or
handle the theories the arrows point to. Ap-
pearently, Penrose �nds a theory of quantum
gravity hard to �nd.

The combination of quantummechanics and special relativity leads to quantum �eld theory
(QFT) and the formulation of the standard model of particle physics which is exceptionally
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and unexpectedly successful. From the viewpoint of an high-energy physicist, three of the
four fundamental interactions, namely the electromagnetic, weak and strong interactions can
be joined into a uni�ed theory, while gravity is simply the weakest and last interaction left
as an “ordinary” classic �eld theory. A uni�cation of the three standard model interactions
is called grand uni�ed theory (GUT). On the other hand, from the viewpoint of a relativist,
general relativity taught us that there is no background space where physics “takes place”. This
new principle leads to a bunch of new physics, where the most remarkable fact is perhaps the
existence of black holes as regions of no escape in spacetime or even the existence of wormholes
(Einstein-Rosen bridge). Certainly, general relativity had the biggest impact on the science
�ction genre.

Physics beyond the StandardModel is an uncomfortable job, because it still lacks experimen-
tal accessibility. One thing theorists can do is quantum �eld theory in curved space (QFTCS),
the semiclassical approximation to quantum gravity where quantum �elds interact with a clas-
sical background spacetime. In the cube of physical theories, as shown in �gure 1.1, QFTCS is
“one step” from QFT to quantum gravity, because 1-loop graviton contributions are included in
the quantum energy momentum tensor at the right hand side of Einstein Field Equations.

Actually, QFTCS opened the door for the �rst quantum mechanical treatments of strong
gravity objects, namely black holes. In the 1970s, this led to the Hawking’s groundbreaking
prediction of thermal radiation of Schwarzschild black holes. In terms of “theories”, Hawking
radiation is really interdisciplinary:

TH =
~ c3

8π GMkB

There are “ingredients” from quantum mechanics (Planck constant ~), Special Relativity (speed
of light c), Gravitation (Newton’s constant G) and Thermodynamics (Boltzmann constant kB).

But Hawking’s temperature also spots one of the inconsistencies of general relativity: The
temperature increases with decreasing mass M . As radiating black holes lose mass, they get
hotter and hotter. At some point, the validity of QFTCS breaks down. The need for a better
theory arises.

1.2 The problems and the approach

The breakdown of QFTCS is one of the problems addressed in this thesis. Other problems are

• The curvature singularity in the center of the Schwarzschild black hole, discussed in sec-
tion 2.2.

• The hierarchy problem in the Standard model, discussed in section 2.3.

• The black hole–particle duality at high energies, where quantum mechanics and General
Realtivity predict di�erent length scales, discussed in section 3.1.

Black hole geometries with an improved short scale behaviour are proposed. They are based
on the self-complete paradigm of gravity. These modi�ed geometries engage all three problems
outlined above.
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1.3 Outline

Chapter 2 is an introductory section about general relativity. It will give an introduction to the
formalism and shortly derive the Einstein equation. Then the �rst solutions on GR are shown
and the di�erent types of singularities and their origins are discussed. The large spatial extra
dimension scenario is outlined.

Chapter 3 is devoted to the minimal length in physics. The particle–black hole duality is
discussed and nonlocal gravity formalism is proposed. The generalized uncertainty principle is
given as an example for minimal length physics.

In chapter 4, the formalism for a class of short-scale modi�ed static isotropic black holes
in higher dimensions is prepared. To do so, Einstein Equations are solved for an ideal static
isotropic “blurred” matter ball that shall describe a “quasi-classical” mass point. Thermodynam-
ical properties like temperature, heat capacity and entropy are derived and a nonlocal operator
is determined in terms of a Fourier transform.

Chapter 5 and 6 are devoted to two classes of black holes that are based on the more generic
class discussed in chapter 4. In these two chapters, physical properties and implications are
discussed based on the formalism introduced before.
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Chapter 2

Theoretical background

2.1 General Relativity

In this section, a short derivation of general relativity (GR) is given. It is the geometrical theory
of gravitational interaction from matter and the major framework used in this work. To do so,
some core concepts of di�erential geometry on manifolds are retraced brie�y in order to derive
the einstein �eld equations (EFE) by Hamiltonian’s principle of least action. Exact de�nitions
of the new vector concept are skipped in favour of condensing the ideas. In this text I follow
the notations of [18, 48, 51, 80, 81]. They prefer abstract index notation as a more fundamental
approach to introduce Riemannian geometry. In contrast, some tensors may also be derived by
“index constraints” as done in [30]. This is less elegant but more straightforward.

2.1.1 Di�erential Geometry

In curved space geometry, intuition about well-known mathematical symbols like vectors as
“position vectors” fails [81]. The mathematical approach is a di�erential description using the
fact that manifoldsM are locally �at (they look “nearly” �at). Thus the tangent vector V is in-
troduced as a directional derivative operator. The components of such a vector may be denoted
as

V (f) = V µ ∂f

∂xµ
. (2.1)

The vector V maps functions f ∈ C∞(M,R) to R. With a �xed point p ∈ M , it de�nes the
tangent vector space Vp. Introducing the dual space V ∗

p and the dual dual space V ∗∗
p

∼= Vp

yields to the de�nition of tensors as a multilinear mappings from vectors and dual vectors into
numbers [80].
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2.1.2 Covariant Derivation Operator

As for two points p, q ∈ M , the tangent spaces Vp and Vq can not directly be compared. For
example, de�ning for the vector V µ a traditional derivative (cf. [51, page 208])

∂V µ

∂xν
= lim

h→0

V µ(x1, . . . , xν + hν , . . . , xn)− V µ(x1, . . . , xν + hν , . . . , xn)

hν
(2.2)

fails as even x and x + h may not be compared directly. As a solution, a covariant derivation
operator ∇ by means of the parallel transport is derived. This operator will transform like a
tensor.

While Wald [80, page 31] designates requirements for the covariant derivation (linearity,
Leibnitz rule, index contraction commutativity, consistency with the index free notation and
vanishing torsion tensor/commutativity) and derives the existence of a connection coe�cient

Γa
bc, one can also introduce the connection coe�cient as the link in the parallel transport which

shall be the “correct” way to denote the derivative (2.2):

V µ(x → x+ h) := V µ(x)− V λ(x)Γµ
νλh

ν . (2.3)

By replacing the traditional di�erence V µ(x) − V µ(x + h) by V µ(x) − V µ(x → x + h) in
equation (2.2), one immediately ends up with the de�nition of the covariant derivative

∇µV
ν = ∂µV

ν + Γν
µσV

σ. (2.4)

The covariant derivative naturally extends when computing derivatives of tensors of arbitrary
rank. For a (k, l) tensor T the derivative is given (without proof) by

∇αT
λ1...λk
µ1...µl

= ∂αT
λ1...λk
µ1...µl

+
k∑

i=1

Γλi

αβT
λ1...β...λk
µ1...µl

−
l∑

j=1

Γβ
αµi

T λ1...λk

µ1...β...µl
. (2.5)

The indices λ1 . . . β . . . λk have to be read in a way that β replaces the index variable at that
place. For example, the covariant derivative of a (2, 2) tensor reads

∇αT
λδ
µν = ∂αT

λδ
µν + Γλ

αβT
βδ
µν + Γδ

αβT
λβ
µν − Γβ

αµT
λδ
βν − Γβ

ανT
λδ
µβ . (2.6)

2.1.3 The Metric

The connection symbol Γα
βγ introduced in equation (2.3) is still ambigous. As soon as one

equippes the manifold with a metric gµν , there is a special choice, constrained by the require-
ment that scalars shall be invariant under parallel transport (in colloquial terms, scalars are
required to be the same in any coordinate system). The inner product of two arbitrary vectors
v andw is a scalar and shall therefore also be invariant under any parallel transport tα∇α. This
leads to

0
!
= tα∇αgβγv

βwγ ⇒ 0 = ∇αgβγ . (2.7)
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A connection Γγ
αβ is called metric compatible if it ful�lls (2.7) and is torsion-free (Γγ

αβ = Γγ
(αβ),

withΓ(αβ) being the symmetric part ofΓ according to eq. (F.3). See e.g. [18, page 99] for torsion).
These uniquely determined connection symbols are called Christo�el symbols. They allow

for computing the parallel transport and the covariant derivative from the metric:

Γδ
αβ =

1

2
gδγ(∂αgβδ + ∂βgαδ + ∂γgαβ). (2.8)

2.1.4 Curvature

It is important to remember that for a manifold M there exist di�erent choices of coordinate
systems, and only if one founds �at space coordinates that are applicable everywhere (that is,
Γ = 0 for all p ∈ M ), the manifold is not curved. This reasoning does not work the other way,
as the example of choosing polar coordinates (t, r, φ, θ) in �at space shows: Some entries are
non-zero (e.g. Γφ

rφ = 1/r), but the space is still �at.
In favour to get a measure for spacetime curvature, one can analyse the “defects” of parallel

transport around a closed loop with in�nitesimal extend. It will be shown that the change is
described by a (1, 3)-curvature tensor called Riemann curvature tensor.

In the present setup (cf. �gure 2.1), the vector V µ is moved around the closed path a → b →
c → d with in�nitesimal spacings+∆µ

1 ,+∆µ
2 ,−∆µ

1 ,−∆µ
2 . One can determine the missing part

# when coming back to a by explicit computation of the vector V µ at the space time points:

V µ(a) = V µ(a) (2.9a)

V µ(b) = V µ(a → a+∆1) = V µ(a)− V α(a)Γµ
βα(a)∆

β
1 (2.9b)

V µ(c) = V µ(b → b+∆2) = V µ(b)− V γ(b)Γµ
δγ(b)∆

δ
2 (2.9c)

V µ(d) = V µ(c → c−∆1) = V µ(c)− V ǫ(c)Γµ
κǫ(c)(−∆κ

1) (2.9d)

#V µ(a) = V µ(d → d−∆2) = V µ(d)− V λ(d)Γµ
ωλ(d)(−∆ω

2 ) (2.9e)

Recursively inserting all equations into each other gives a long expression where all linear
terms O(∆ν

i ) vanish. All third powers O(∆ν
i∆

ξ
j∆

ρ
k) are ignored, so the result is proportional

a ∆1 b

∆2

c−∆1d

−∆2

Figure 2.1: Illustration of the closed loop parallel
transport on in�nitesimal linear displacements
∆µ

i . When performing the calculation in equa-
tion 2.9, on curved spacetimes one �nds a defect
which de�nes the Riemann tensor. This means
that the vector at the beginning (point a) does
not match the vector after the loop any more.
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to second order terms O(∆γ
1∆

δ
2) after appropriate index relabeling. Note that the Christo�el

symbols (also) depend on the point where they are evaluated at. They can be simply moved
e.g. at the �rst insertion step 2.9b into 2.9c by Γ(b) = Γ(a) + ∂ν∆

ν
1Γ(a). One ends up with the

de�nition of the Riemann tensor Rµ
αβγ as a piece of the missing part

#V µ(a) = V µ(a)
(

∂βΓ
µ
γα − ∂γΓ

µ
βα + Γδ

γαΓ
µ
βδ − Γδ

βαΓ
µ
γδ

︸ ︷︷ ︸

Rµ
αβγ

)

∆γ
1∆

δ
2. (2.10)

By tensor contraction, one can de�ne the Ricci tensor Rµν = Rλ
µλν and �nally the Ricci

scalar R = Rλ
λ. This quantity is also called scalar curvature and it is the simplest invariant that

gives information about �atness of space: As soon as R = 0 everywhere, the space is �at.
Most signi�cance for the next section has the Einstein curvature tensor G, de�ned by a

linear combination of the Ricci tensor and the curvature scalar as

Gµν = Rµν +
1

2
gµνR. (2.11)

2.1.5 Einstein �eld equations

Einstein �eld equations (or shorter: Einstein’s equations) can be derived from a variational
principle (Hamliton principle δS = 0 on the action S). They can also be derived by other means,
e.g. symmetry aspects leaving only one choice for combiningGµν and the energy density tensor
Tµν .

Here, the ansatz will be the action S, de�ned by the Lagrangian L = LG + LM , that is, the
gravitational part and thematter part. In terms of �eld theory, interactions are intermediated by
LG, while LM contains the source terms. Those two parts are guessed: Here we take basically
taking the curvature scalarR and the trace of the energy density tensorT = T λ

λ . The low energy
matching is traditionally accomplished by a prefactor κ, so one ends upwith the Einstein-Hilbert
action including matter,

S =

∫ √−g d4x

(
R

2κ
+ T

)

. (2.12)

Note that
√−g, with g the determinant of the metric gµν , is neccessary for the invariant volume

element.
By splitting up the integral into two parts SR and ST and calculating the variation individ-

ually, one �nds for SR,

δSR =
1

2κ
δ

∫ √−g d4x Rµνg
µν (2.13)

=
1

2κ

∫

d4x Rµνδ(
√−ggµν) +

1

2κ

∫

d4x
√−ggµν(δRµν). (2.14)

One can show that the integral over the variation of δRµν vanishes (surface integral) while the
variation δ

√−ggµν contributes.
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For a full discussion, one typically switches to tensor densities which are “salted” with
√−g

and written in German gothic letters [51],

T
...
... =

√−g A...
..., (2.15)

where A...
... represents a tensor in a local coordinate frame. By using the identity δ

√−g =
−1/2

√−ggµνδg
µν , one �nds

δSR =

∫

d4xRµν(δ
√−ggµν) =

∫

d4x
√−g

(

Rµν −
1

2
gµνR

)

δgµν . (2.16)

Secondly, the variation of ST reads

δST =

∫

d4x
√−g (κTµν) δg

µν . (2.17)

By requiring δS = δSR + δST = 0 and collecting the terms under the integrals, one has

Rµν −
1

2
gµνR = κTµν , (2.18)

known as the Einstein �eld equations (EFE). The low energy matching with the Newtonian
potential

Φ(r) = −GM

r
(2.19)

allows determining κ = −8πG. The dimensionful constant G is the Newton’s constant, not to
be confused with the rarely used trace of the Einstein tensor Gµ

µ. The choice of prefactors 8π
and the sign− (Misner, Thorne and Wheeler call it the “Einstein sign” [51]) in κ is convention.
This text follows the (minus) sign from Adler, Bazin, Schi�er.

An astonishing fact of the Einstein �eld equations is that they allow for deriving all clas-
sical predictions of mechanics. The energy conservation law ∇µT

µν = 0 is also intrinsically
contained in the Einstein �eld equations. One can show that in d = 3 + 1 space-time dimen-
sions, the EFE are 10 independent non-linear coupled equations which are only possible to solve
analytically for highly symmetric problems.

2.1.6 The Planck Scale

The Planck scale is the name of the energy and length scales that one inevitably connected with
the Einstein �eld equations (2.18). It can be found with the low energy limit, as from Newton’s
law (2.19) it follows for the unit of G that [G] = 1

Mass2
. It can also be found as follows:

• Recall that the metric is a dimensionless tensor.

• The curvature scalar R as second derivative of the metric must then have unit

[R] =
1

Length2
= Mass2.
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• The energy momentum tensor Tµν in 4 space-time dimensions has dimension

[T ] = Mass4.

As a result, the Einstein �eld equations look like

Rµν −
1

2
gµνR = −8π

1

M2
Pl

Tµν (2.20)

with a mass MPl =
√

1/G, the Planck mass. Reinserting units gives a numerical value of
MPl ∼ 1016 TeV. Numerical values are often given in multiples of Planck mass MPl, Planck
length LPl, Planck time TPl = LPl/c, etc. In SI units, the Planck units are given as

MPl = 2.1 · 10−8 kg, (2.21)

LPl = 1.6 · 10−35 m, (2.22)

TPl = 5.4 · 10−44 s. (2.23)

Compared to the mass scales of particle physics, the Planck mass is incredibly big, while the
time and length scales are incredibly small. For comparison, a typical scale in QCD isΛMS ∼ 220
MeV [67]. For the electroweak force, the scale is ∼ 100 GeV. The large ratio of Planck mass
over electroweak mass is called the weak hierarchy problem of the standard model of particle
physics.

As a consequence, gravity can be neglected in particle collision center of mass energies
accessible at ground based colliders like the Large Hadron Collider (LHC) at CERN (∼ 10 TeV).
As a thumb rule, gravity must be considered when the amount of energy of the order of Planck
mass is compressed in a cube with edge length of the order of the Planck length LPl = 1/MPl ∼
10−35 m [1].

In the next sections, a theory is proposed in order to avoid these circumstances, basically
by lowering the Planck mass to some accessible range with the LHC.

2.2 Vacuum solutions of General Relativity

This section proposes three exact solutions of general relativity which bother the issue of vac-
uum in general relativity. Loosely speaking, vacuum is when Tµν = 0. This is only globally
true for the Minkowski spacetime.

There are books collecting and classifying exact solutions (in contrast to numerical solu-
tions or expansions) of Einstein gravity like Gri�ths [35] and Stephani [75]. For an introduc-
tory overview about the spacetimes developed by Schwarzschild and DeSitter, see the book of
Gri�ths [35]. This section follows his reasoning.

2.2.1 Minkowski space-time

Minkowski spacetime is the Einstein solution of the empty and �at space Rµν = 0. Working in
Cartesian coordinates with a gµν = ηµν = diag(−1,+1,+1,+1) signature, the Minkowski line
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element can be given as

ds2 = gµνdx
µdxν = −dt2 + dx2 + dy2 + dz2, (2.24)

with the coordinates t, x, y, z ∈ (−∞,∞). It is convenient to switch to spherical coordinates
when a spherical symmetric problem is given (as it is in this thesis). Spherical coordinates
can be given by the transformation rules x = r sin θ, y = r sin θ sinφ and z = r cos θ, with
r ∈ [0,∞), θ ∈ [0, π] and φ ∈ [0, 2π). In these coordinates, the same line element reads

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) = −dt2 + dr2 + r2dΩ2
2. (2.25)

Considering spherical coordinates in �at Minkowski space is a good opportunity to learn about
coordinate singularities: Apparently, the spherical line element (2.25) exhibits singularities at
points where r = 0 or sin θ = 0. But the cartesian coordinate choice (2.24) tells that these
singularities are not “real”, because equation (2.24) shows coordinates without singularities,
so the apparent singularities are no true singularities. In contrast, a curvature singularity is
distinguished by a diverging curvature scalar R = Rµ

µ, and no choice of coordinates can avoid
a coordinate singularity at points where a curvature singularity occurs. In the next section, the
most simple space-time exposing a single curvature singularity point is encountered.

2.2.2 Schwarzschild metric

The Schwarzschild metric can be interpreted as the solution for the spherically symmetric static
point mass distribution

ρδ(r) :=
M

4πr2
δ(r), (2.26)

which is — having the Coulomb potential of electrostatics in mind — probably the most basic
non-emptymatter distribution one can imagine. The Schwarzschild solution is frequently called
a vacuum solution, because one excludes the region r = 0 in the derivation when solving the
Laplace equation ∆Φ(r) = 0 for Newton’s potential Φ(r) with boundary conditions [7]. As a
matter of fact, it is a nonempty space solution, as at the origin, the energy-momentum tensor
does not vanish (Tµν 6= 0). The Poisson equation∆Φ(r) = −ρδ(r) con�rms that fact. Properly
speaking, the only vacuum solution of EFEs is the Minkowski spacetime.

The problem of �nding a static, spherically symmetric solution, as can be found in text
books [51, 80], is typically divided into the outer Schwarzschild metric, which describes the
space outside a spherically symmetric static mass distribution, and the interior Schwarzschild
metric, which describes the space-time inside the source (a perfect �uid).

It is worth mentioning that the outer Schwarzschild metric is derived from ρδ(r), as given
in (2.26), but it will be assumed to be the solution outside of any spherical symmetric matter
distribution ρ(r). This even holds for non-static (i.e. time dependent) spherical symmetric
distributions, e.g. monopole gravitational waves. This is a consequence of the Birkho� theorem

which states that any spherically symmetric solution of the vacuum Einstein �eld equations
must be static and asymptotically �at (Minkowski for r → ∞). Note that the Birkho� theorem
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only holds in d = 4 space-time dimensions (c.f. the next section about higher dimensional
gravity).

The solution of (2.26) is given by the Schwarzschild metric

ds2 = −(1 + 2Φ(r))dt2 + (1 + 2Φ(r))−1dr2 + r2dθ2 + r2 sin2(θ)dφ2 (2.27)

with the gravitational potential (Newton’s potential) Φ(r) from eq. (2.19). Note that r is not
the distance from the origin r = 0, as space time is deformed and r actually gets timelike for
r < 2GM .

In contrast to (2.27), another form to display Schwarzschild metrics is conventionally used
in this thesis, using the gravitational function V (r) = −2Φ(r) and displaying the same metric
as

ds2 = −(1− V (r))dt2 + (1− V (r))−1dr2 + r2dθ2 + r2 sin2(θ)dφ2. (2.28)

The radius rH = 2GM has a special meaning. At rH , the metric (2.27) has a coordinate sin-
gularity which is not a curvature singularity, as one can see when switching e.g. to Eddington-
Finkelstein coordinates (Tortoise coordinates). What physically happens at rH is that light
from the space time region enclosed by the r = rH cannot escape that surface, i.e. it is literally
trapped (trapping surface). For this reason, one calls this a black hole with event horizon radius
rH , as no event that takes place inside the horizon can be seen by an outside observer.

Actually, the Schwarzschild space-time features a curvature singularity at r = 0, which was

already “announced” by the Dirac delta function, ρδ(r)
r→0−−→ ∞. The singularity is shielded by

the event horizon, so whatever happens near it cannot be observed outside. In 1969, Roger
Penrose formulated the cosmic censorship hypothesis which states that curvature singularities
are always “hidden” behind an event horizon, so there are no naked singularities. In fact, there
are solutions of the EFEs with naked singularities, like the hyper-extreme Reissner-Nordström
space-time, discussed in section 6.1.6.

Many modi�cations of the Schwarzschild line element have been investigated, e.g. g00 =
1 − 2GM/r → ǫ − 2GM/r, with ǫ ∈ R, or by describing an extended object with mass
distribution M(x), or by including new physics (like electrical charge). Such approaches have
been studied [35], and approximating the Dirac delta function δ(r) with a distribution h(r)
describes best the roadmap for this thesis. However, in any general relativity text book, the
Schwarzschild metric is alsmost always extended with angular momentum J and/or electric
charge Q, as there exist the old and well-known solutions of the Reissner-Nordström (RN)
metric (Q 6= 0, J = 0), the Kerr metric (Q = 0, J > 0) and the Kerr-Newman metric (Q 6=
0, J > 0). The no-hair theorem, formulated by John Wheeler, postulates that all black hole
solutions resulting from the Einstein equations (including electromagnetism, so strictly spoken
Einstein-Maxwell equations) are fully characterized by only mass M , electrical charge Q and
angular momentum J . Actually, this theorem has not been proven and is therefore only a
conjecture. The four black hole evaporation phases stated in section 2.4.2 are based on this
conjecture.

While angular momentum is probably the most relevant parameter for astronomical pur-
poses, in this thesis it turns out that the RN metric possesses analogies to the regular black hole
solutions that will be derived (section 6.1.6). Note that in this thesis, spinning black holes are
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not studied. This is not neccessarily bad, as here only the �nal evaporation phases of black
holes are concerned.

2.2.3 De Sitter space-time

Considering the vacuum issue, the DeSitter space time also turns out to be of interest, as it is
frequently discussed as vacuum solution of Einstein equations with cosmological constant.

The DeSitter space time can be found as one of the three unique solutions with constant cur-
vatureR. The other ones are �at Minkowski space time and anti-DeSitter space time. The class
of DeSitter space times can be derived by the 10 isometries of space-time in four dimensional
space-time by the local condition [35]

Rαβγδ =
R

12
(gαγgβδ − gαδgβγ). (2.29)

Using the Einstein equations with cosmological constant Λ,

Gµν + Λgµν = −8πGTµν , (2.30)

these two solutions can be seen as real vacuum solutions (Tµν = 0), and R = 4Λ, Rαβ = Λgαβ .
Space with R > 0 is called de Sitter space-time (dS) while space with R < 0 is called anti-de

Sitter space-time (AdS), after the Dutch physicist Willem de Sitter. The issue whether DeSitter
space is vaccuum or not is connected to the dual theory concept of EFE without cosmological
constant. This concept is discussed in the context of nonlocal gravity (section 3.3) and the
deSitter core of a black hole (section 6.1.4).

There is a set of spherical coordinates that do not cover the complete deSitter space time,
but is well enough for the considerations done in this thesis. Robert Mayers calls these the
“static patch” coordinates [55], and the gravitational function—constructing a metric according
to (2.28)—is given by

V (r) =
Λ

3
r2 :=

(r

ℓ

)2

. (2.31)

In de Sitter space, our coordinates g00 = 1 − r2/ℓ2 have a singularity at r = ℓ :=
√

3/Λ.
Of course, since R = 4Λ everywhere, this is not a curvature singularity. Anyway the surface
r = ℓ forms a horizon. One can show that this is a cosmological horizon [35] which reveals a
universe expansion speed higher than the speed of light: Events beyond r > ℓ cannot reach the
observer at r = 0 anymore. An exact discussion requires introduction of Friedmann-Lemaître-
Robertson-Walker-like (FLRW) coordinates and “struggling” with cosmology, which is beyond
the scope of this thesis.
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2.3 Extra Dimensions

From the mathematical/geometrical viewpoint, in terms of tensor calculus, the generalization
from 4 to d space-time dimensions is trivial: One can write the Einstein equations in d space-
time dimensions as

RAB − 1

2
gABR = −8πGTAB (2.32)

with capital latin indices (like A,B) running from 0, 1, . . . , d− 1while the lower Greek indices
(like α, β, µ, ν) refer to the 4d submanifold and run from 0 to 3. Lower Latin indices (like a, b)
indicate the 3d spatial submanifold as before. Without indices, bold vectors (like x, y) shall
indicate d-dimensional vectors, while vectors with arrow (like ~x, ~y ) indicate (d−1)-dimensional
vectors (just the spatial part in a given metric).

2.3.1 The ADD model of large extra dimensions

In 1998, Nima Arkani-Hamed, Savas Dimopoulos and Gia Dvali (ADD) proposed a model with
n large spatial extra dimensions (LXDs or LEDs). According to their proposal, the observable
four-dimensional universe, called the brane (the term comes from membrane) is embedded in
the higher-dimensional bulk. Together brane and bulk resemble the d = 4 + n dimensional
space-time.

The n extra dimensions are taken to be �at and compacti�ed e.g in a torodial way with a
large compacti�cation radiusRc compared to the Planck length. A typical value isRc ≈ 44µm.
This is small enough to agree with non-observed deviations from Newton’s law. The idea of
the ADD model is that all Standard Model �elds live on the brane, i.e. they do not notice the
existence of more than four dimensions. Only gravity [42] is allowed to propagate everywhere
(bulk and brane). See �gure 2.2a for a way to imagine brane and bulk space, while �gure 2.2b
displays a way to imagine compacti�ed extra dimensions.

The large extra dimension scenario can solve the weak hierarchy problem of the Standard
Model by imposing a new fundamental mass scale M∗ in the order of 1 TeV. The model states
that one can see on feasible scales only an “e�ective” weak coupling constant G = 1/M2

Pl,
because it is the result of the integrated out volume of the extra dimensions, where gravity also
propagates. This ratio is de�ned as

M2
Pl = CnVnM

n+2
∗ , (2.33)

with Vn the volume of the enrolled extra dimensions, with tori and compacti�cation radii Rc

e.g. Vn = (2πRc)
n and a dimensionless prefactor Cn = O(1).

Note that there are multiple conventions about the prefactor Cn in (2.33). Here it is chosen
most like the Han-Lykken-Zhang notation (HLZ), as proposed in the appendix of [21]:

Cn =

(
Ωn+2

Ω2

) 1

n+2

(2.34)
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The prefactor Cn is used to compensate higher dimensional numerical contributions from vol-
ume integrals, i.e. the surfaces Ωd−1 of d-spheres Sd. For details about d-spheres, see ap-
pendix D. Without extra dimensions, n = 0 and Cn = 1, and therefore MPl = M∗.

The new fundamental scaleM∗ reaches the TeV scale, if n andRc are big enough (c.f. �gure
2.3). This opens the door for experimental tests [13, 14, 49, 59], as the center of mass energy of
the Large Hadron Collider (LHC) at CERN is in the same order of magnitude (10 TeV).

(a) Brane world physics (b) Compacti�ed extra dimensions

p

p
b

2rH

(c) Hoop conjecture

Rc

rH

(d) Quantum Black Hole

Figure 2.2: Illustrations on how to imagine large extra dimensions and brane world physics.
(a) The (orange) 4d branes are displayed as 2d surfaces, while one extra dimension is displayed
horizontally. While the QED process takes place on the brane, and neither electron, positron
and photon can escape the brane, the graviton is allowed to freely traverse the whole space-
time.
(b) The compacti�cation picture shows where one faces extra dimensions even in real life:
When zooming in, the one dimensional horizontal line shows a vertical substructure. At big
distances, the extra dimensions are not visible.
(c) The hoop conjecture illustration shows how to imagine a particle collision with impact pa-
rameter b < 2rH = 2L∗ which produces a black hole with event horizon 2RH .
(d) A black hole with rH ≪ Rc, that is, the BH is much smaller than the compacti�cation radius
of the tori, does not notice the extra dimensional periodic boundary geometry.
Pictures taken and adapted from [21, 37, 49].
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Figure 2.3: The ADD fundamental mass lowering mechanism. The lines showM∗(Rc) from eq.
(2.33) on a GeV scale. For comparison, the LHC energy scale (10 TeV) is shown, as well as the
Planck scale (n = 0). Instead of including real world values for Rc or Cn, the plot illustrates
the mechanism: By gravitational experiments, one can make upper bound constraints on RC .
Small number of extra dimensions, like n = 1, are ruled out because they reach the TeV scale
only at very large distances.

2.3.2 The Schwarzschild-Tangherlini solution

Black holes in higher dimensions are more diverse than in 4d, sincemore topologies are possible
[28], for example ring solutions (“black rings”, like Doughnuts). The most simple generalization
of the Schwarzschild solution to d dimensions is the Schwarzschild-Tangherlini metric (STM). It
describes the spherical and static black hole produced by a point like matter source in higher
dimensions and was found in 1963 by Tangherlini. The metric is displaye by the line element

ds2 = −(1− V (r))dt2 + (1− V (r))−1dr2 + rd−2dΩ2
d−2. (2.35)

This line element is a straightforward extension of the 4d Schwarzschild line element (2.27).
The gravitational function is retrieved by replacing the 1/r Newtonian radial fallo� by 1/rd−3,
getting [28]

V (r) =
2

d− 1

MGd

rd−3
=

(rH
r

)d−3

, rd−3
H =

d− 1

2
MG∗ , (2.36)

with the d-dimensional coupling constant Gd and mass parameter M . The modi�cation of
the coupling constant is a crucial reason why extradimensional gravity is done and subject to
the following section. The d-dimensional coupling constant Gd will be refered to as G∗. The
number of dimensions arises from the context. Writing the gravitational potential in terms of
the horizon radius (2.36) uncovers the no more linear size-mass relation rH ∝ M , It is only
linear in 4 dimensions.
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2.4 Black Holes in Large Extra Dimensions

2.4.1 Production

There is no accelerator on Earth which can probe quantum gravity at the Planck scale ∼ 1016

TeV, as already mentioned in section 2.1.6. On the contrary, the ADD scenario allows black
holes production in particle accelerators.

Bymeans of the hoop conjecture (�gure 2.2c), black holes are produced as soon asMcenter of mass ∼
M∗. As L∗ ≪ Rc, no problems arise with the special enrolled nature of the spatial extra dimen-
sions (�gure 2.2d): The black hole is very small compared to the extra dimensional tori, so it
locally looks 3 + n-spherically symmetric [37].

The production rate is governed by a geometrical cross section approximation

σ(M) ∼ πr2H . (2.37)

This experimental signature is the main motivation for investigating black holes in large extra
dimensions [32, 33, 72].

2.4.2 Evaporation

Mini black holes produced in particle colliders evaporate by Hawking radiation, because their
lifetime is very short, compared to their astronomical counterparts. The evaporation process is
typically categorized in four phases [14, 37, 49]:

(a) Balding phase. In this phase the black hole
looses hair which consist of asymetries (multi-
pole moments and gauge �elds, if applicable). It
is expected that the BH goes throught the balding
phase very rapidly [82]. At the end of this phase,
the BH is axisymmetric and rotating. This kind
of BH is described by the Kerr-Newman metric.

(b) Spin down phase. The black hole radiates away
all of its angular momentum and some mass. The
evaporation is understood in terms of Hawking
and Unruh-Starobinsky radiation. At the end of
this phase, the BH is spherical symmetric and
nonrotating. This kind of BH is described by the
Schwarzschild metric.

Figure 2.4: Sketch of the phases,
modi�ed from [37]
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or final evaporation ?

Figure 2.5: Sketch of the evaporation phases, modi�ed from [37].

(c) Schwarzschild phase. The black hole is spherical and still radiates byHawking radiation
(monopole radiation).

At the end of this phase, the semiclassical thermodynamics, based on the Hawking tem-
perature

TH =
~

8πGM
, (2.38)

get more and more ill de�ned. The evaporating black hole gets hotter and hotter and
evventually emits particles with the same order of mass as the black hole mass. The
thermodynamical canonical ensemble gets wrong because the black hole cannot be in a
stable equilibrium with its surrounding heat bath any more [31].

(d) Planck phase. The black hole mass reaches the Planck mass and quantum gravity e�ects
get strong. In this phase, rH ∼ L∗ and the semiclassical picture breaks down. There are
two widely acknowledged opportunities: The black hole completely evaporates away to
particles of the Standard Model, or it gets a stable con�guration, the black hole remnant.
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Chapter 3

Minimal length in physics

This chapter is devoted to the minimal length issue in general relativity and quantum mechan-
ics. There are two short scale problems addressed on the next pages: The curvature singularity
at the origin of the Schwarzschild black hole which may be backtraced to the Dirac delta distri-
bution composing the matter source δ(x). The Dirac distribution is a good model (in the sense
of a matter pro�le) as seen from a far from the origin, while it fails at small distances from the
origin. As one of the tenets of physics is the association of the failure of a theory at scales where
the theory predicts divergences, the Schwarzschild metric must be replaced at short scales.

The second problem proposed on the next pages is a duality problem at scales where quan-
tum mechanics get important. Most quantum gravity approaches address these two short scale
problems by nonlocality. The nonlocality is typically intermediated by a minimal length scale
which corresponds to an energy scale when nonlocal e�ects become strong [1, 6, 20, 38]. It is
the aim of this chapter to show that it is su�cient to include nonlocal e�ects in general rela-
tivity instead of replacing it with another theory. The generalized uncertainty principle (GUP)
is given as an example theory supporting this line of reasoning. Other approaches producing
short-scale improved black holes are given in appendix B.2.

3.1 The black hole—particle duality

At Planck length and Planck mass scales there is a tangible particle-black hole duality, illus-
trated in �gure 3.1a. This duality is derived as follows: On the quantum mechanical side, it is
possible to assign each particle withmass (=energy)m a length λ, which is typically interpreted
as a wave length in the wave–particle duality. It is the de Broglie wavelength λB = h/p or in the
limit v → c the Compton wavelength λC = ~/mc. To approach the Planck length, consider the
Compton wavelength Lparticle ∼ 1/m. It is displayed by the red curve in �gure 3.1a. Note that
Feynman units with 2π ≈ 1 are used, i.e. numerical factors are suppressed in this picture [1].

On the other hand, the black hole picture in four space-time dimensions assigns to each
mass distribution a length by means of the Schwarzschild event horizon rH = 2GM/c2, so
Lblack hole ∼ m, as the blue curve indicates. These two curves cross at the Planck scale Lparticle ∼
Lblack hole ∼

√

~c/G := LPl.
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(a) BH–particle duality in 4 dimensions
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(b) BH–particle duality in n LXDs

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

M�MPl

L
�L

P
l

n=
0

n=1

n=2 ...

Figure 3.1: Length-vs-mass pictures for the Schwarzschild(-Tangherlini) space time (blue lines)
vs the quantum mechanical picture (red dashed line)

Trace as a gedankenexperiment a particle in an accelerator where its energy (velocity) is
increased, resulting in a better length scale resolution (particle compression, red arrow). At
the Planck scale Mpl, suddenly by the hoop conjecture (�gure 2.2c) one expects the particle
to become a black hole, and further energy (i.e. acceleration) increases the size of the object
(again). The resulting black hole is quite unstable and decays by Hawking evaporation (blue
arrow). As one does not expect a reversing mechanism of the hoop conjecture (which may be
called inverse hoop conjecture), nothing prevents the Schwarzschild black hole from evaporating
at scales below the Planck scale. One ends up with a situation where two theories predict two
di�erent sizes for the same energy scale: A particle in quantum mechanics and a black hole in
general relativity.

Note that in the extra dimensional scenario, the black hole mass–length ratio is no longer
proportional, but Lblack hole ∼ 2+n

√
m. The situation is displayed for di�erent choices of n in

�gure 3.1b. The modi�ed mass–length relation does not change the qualitative nature of the
black hole–particle duality, for each number of extra dimensions the above statement holds.

3.2 Self-Completeness

There are two ways out of the black hole–particle ambiguity: Either general relativity breaks
down and must be replaced by a completely di�erent theory, or it can be saved by some kind of
completeness. The completeness paradigm is sketched in �gure 3.2 and de�ned as follows: By
modifying the gravitational event horizon in a way that it smoothly merges into the particle
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picture, one gets a unique particle–black hole interpretation and a minimum length scale of
physics l0. In a theory implementing this completeness paradigm, there is literally no way to
probe distances below l0 as it is either circumvented by quantum mechanical uncertainity or
black hole production. The theory is called self -complete, if l0 is the fundamental mass scale
of the theory. For example, a (modi�ed) 4d Einstein-Hilbert action could be self-complete if
l0 = LPl.

Gravity is called self-complete if the validity of the Einstein �eld equations (EFE) is recog-
nized at any energy scale (i.e. mass scale M at �gure 3.1), but it is self protecting against short
length singularities [23]. This is imposed by completing the EFE by a nonlocal contribution.
This modi�cation is motivated by fundamental principles like the generalized uncertainty prin-
ciple, noncommuting geometry or theories like loop quantum gravity and string theory [73,74].
Appendix B.2 gives a short overview about these theories.
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Figure 3.2: Self-complete gravity: The red line
displays the unaltered length scale associated
with quantum particles, while the green line
is an exemplary placeholder for a quantum
gravity improved black hole horizon. The
picture suggests a “smooth” transition at the
Planck scale M = MPL, L = LPl. In this way,
the length scales L < LPl are no more physi-
cally accessible.
This picture shall be understood as the goal
of the short scale improved black hole metrics
which are subject of the following chapters.

3.3 Nonlocal gravity

The nonlocal contributions to the geometric part of the Einstein �eld equations are introduced
with a bilocal operator A2 which mediates nonlocal e�ects in space-time. A2 is a function of
the generally covariant D’Alambert operator � = gαβ∇α∇β associated with an energy scale
1/l0 which is generated by the physical length scale l0 at which short distance e�ects get im-
portant. A2(� l20) is a dimensionless and generally covariant operator. To shorten notation, it
will frequently be abbreviated as A2. It enters the Einstein �eld equations on the right hand
side of Einstein equations as the inverse A−2,

Gµν = −8πG A−2Tµν := −8πGTµν . (3.1)
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The non-classical matter distribution Tµν = A−2Tµν is described by the nonlocal operator. By
multiplying the inverse A2 of A−2 from the left hand side, the dual theory is found:

A2 Gµν := Gµν = −8πG Tµν . (3.2)

In the dual theory, the nonlocality is shifted to the geometrical part (the Einstein tensor) of the
�eld equations, while the matter part remains purely classical.

Note the di�erence between equation (3.1) and (3.2): While the �eld equations (3.1) rep-
resents classical gravity coupled to a non-local source term Tµν , the �eld equations (3.2) de-
scribe equations for a nonlocal Einstein tensor Gµν representing a modi�ed geometry coupled
to a classical source term Tµν . These two interpretations are (mathematically and physically)
equivalent [54, 58].

The action of the nonlocal �eld theory is obtained by inserting the modi�ed Ricci scalarR
in the Einstein-Hilbert action (2.12).

3.4 The generalized uncertainty principle

The generalized uncertainty principle (GUP) is oneway to �nd aminimal length scale in physics
[2, 19]. It proposes a modi�cation of the Heisenberg uncertainty principle

∆x∆p ≥ ~

2
. (3.3)

As the Heisenberg uncertainty principle is a consequence of the quantum mechanical commu-
tator relation [x,p] = i~, the GUP is usually introduced by complementing this commutator
relation for momentum and/or position dependent terms [44],

[x,p] = i~(1 + αx2 + βp2). (3.4)

This yields a modi�ed uncertainty relation of the form

∆x∆p ≥ ~

2

(
1 + αx2 + βp2 + α〈x〉2 + β〈p〉2

)
. (3.5)

0 1 2 3 4
0

1

2

3

4

M�M*

L
�L
*

physical acces-

sible range

Figure 3.3: The GUP predicts amin-
imal length (green dot). Here, β =
2 and ~ = 1.

Restricting to the case α = 0 allows to �nd a Hilbert
Space representation [44] in momentum space. Solving
relation (3.5) for exact equality for ∆p requires for exact
momentum measurement 〈p〉 = 0 a minimal position un-
certainty

∆x ≥ ~

√

β. (3.6)

It is possible to derive a black hole solution based on
this priniciple which implements a smearing of point-like
mass distributions [12, 39–41, 47]. The GUP can also be
expressed as a nonlocal �eld theory. For further details,
see appendix B.2.3, as a complete discussion is beyond the
scope of this work.
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Chapter 4

Quasi-classical black holes

In this chapter, a class of generic black hole solutions is introduced. This is done as a preparatory
e�ort to derive the mathematical equations used to discuss two physically motivated subclasses
of black holes in the next two chapters.

The class of black holes described in this chapter is constructed by a quasi-classical source
term which models a smeared Dirac delta distribution. This is one way to introduce nonlo-
cal gravity e�ects. Such e�ects turn out to be successful to encounter the problems of the
Schwarzschild black hole, discussed in the previous chapters. The modi�cations from the ordi-
nary Schwarzschild setup are supposed to be large only at short distances around the cen-
ter, while at large distance, all metrics in the currently discussed class of generic smeared

Schwarzschild black holes shall match the ordinary Schwarzschild black hole.
In the static radial symmetric setup, we can compute the modi�cations from the ordinary

Schwarzschild setup. In this chapter, a concrete choice for the smearing will not be made. It is
introduced only in a fashion Θ(r) → H(r) with Θ(r) the Heaviside step function andH(r) an
approximation function, characterized by a regulator r̃0 with dimension of length. As we will
derive a nonlocal operator for this class of black holes in the end of the chapter, 1/r̃0 turns out
to be the energy scale where modi�cations to general relativity apply. These modi�cations are
encoded in H(r). According to H(r), the modi�cations can improve the low distance regime
of general relativity.
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(a) Heaviside step function Θ(r)
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(b) Dirac delta function δ(r)
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(c) Heaviside-approximation H(r)

0 r
�

0

0.5

1

(d) Dirac-approximation H ′(r)

r
�

0

0.5

1

Figure 4.1: Illustrative plots to emphasize the impact of replacing δ(r) → H ′(r) or Θ(r) →
H(r), respectively, in the Schwarzschild matter distribution. The exact de�nition of the Heav-
iside step function 4.1a at the origin r = 0 is not important here. Note that the smearing is not
performed around the origin r = 0, but in a manner thatH(0) = 0 is ensured. Else, the physical
interpretation of H(r) as a matter distribution would be lost, as r < 0 is not a valid position
in spherical coordinates. The amount of delocalization is supplied by the length scale r̃0. For
illustration purpose, here H(r̃0) = H ′(r̃0) = 1/2. Note that for r̃0 → 0, the approximation
functions H(r) and H ′(r) match their ideal Θ(r) or δ(r), respectively.
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4.1 From a quasi-classical source term to the metric

In this section, the metric for any static spherical symmetric gravitational potential V (r) in
d space time dimensions will be derived. As the ADD model is used, the d dimensions are
spanned by 1 timelike and d− 1 = n+ 3 spacelike dimensions, where n indicates the number
of extradimensions.

The only further requirement is large distance matching of the Netwon’s potential (2.19).
This is equivalent to startingwith a static isotropicmatter density ρ(r) and requiring lim

r→∞
ρ(r) =

0.
The ansatz for the solution is the following d = n+4 dimensional spherical symmetric and

static metric, described by a line element

ds2 = −eν(r)dt2 + e−ν(r)dr2 + r2dΩ2
n+2 (4.1)

= − (1− V (r)) dt2 + (1− V (r))−1 dr2 + r2dΩ2
n+2 (4.2)

with Ωn+2 the surface line element of an (n + 3) sphere (for details about the sphere, see ap-
pendix D). The spherical coordinates are given by x = (x0, ~x) = (x0, r, φ, θ1, . . . , θn+2). To
improve readability, it is written i instead of θi (i = 1, . . . ,m and m := n + 2) when the an-
gular coordinates appear in the indices of tensors. The diagonal coe�cients in the metric are
therefore refered to as

gAB = diag
(
g00(r),−g−1

00 (r), gφφ(r, φ), g11(r, θ1), . . . , gmm(r, θm)
)
. (4.3)

This notation is the same as in [70].
The argumentation follows the derivation of the inner Schwarzschild solution, as can be

found in general relativity textbooks: The property −g00 = g−1
11 is required for �at space at

large distances.
Given the matter density and the metric ansatz, the stress tensor TAB can be determined.

Due to the symmetry of the problem, it can already be stated as

TAB = diag
(
T 00, T rr, T φφ, T 11, T 22, . . . , Tmm,

)
= diag (−ρ,−ρ, p, p, . . . , p) , (4.4)

following [60,70]. Now switching to a (1, 1) type tensor for T yields the conservation of energy
equation as ∇AT

A
B = 0 with

TA
B = gBCT

AC = gBBT
AB = diag(g00T

00, grrT
rr, . . . , gmmT

mm). (4.5)

The conservation equation ∇AT
A
B = 0 is now computed for all d possible values of the free

index B. Starting with the index B = r case gives the equation (no sum convention here)

0 = ∇0T
0
r +∇rT

r
r +

∑

i

∇iT
i
r . (4.6)
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The covariant derivative∇A and the Christo�el symbol ΓC
AB must be computed (see appendix F

for the de�nitions). The summands of (4.6) are given by

∇0T
0
r = ∂0T

0
r + Γ0

0DT
D
r − ΓD

0rT
0
D =

1

2
g00T r

r ∂rgtt +
1

2
g00T 0

0 ∂rgtt (4.7a)

∇rT
r
r = ∂rT

r
r + Γr

rDT
D
r − ΓD

rrT
r
D = ∂rT

r
r (4.7b)

∀i : ∇iT
i
r = ∂iT

i
r + Γi

iDT
D
r − ΓD

0rT
i
D =

1

2
giiT r

r ∂rgii +
1

2
giiT 0

0 ∂rgii (4.7c)

One ends up with the explicit equation

0 = ∂rT
r
r +

1

2
g00

(
T r
r − T 0

0

)
∂rg00 +

1

2

∑

i

gii
(
T r
r − T i

i

)
∂rgii (4.8)

By construction of TA
B , the term T r

r − T 0
0 ∼ ρ − ρ = 0 vanishes. The remaining contribution

from each angle i is

gii∂rgii =
1

r2 sini(θi)
∂r

(
r2 sini(θi)

)
=

2

r
, (4.9)

where sini(x) = (sin(x))i displays the ith power of sin(x). By summing up d− 2 equal terms
(4.9), all remaining energy momentum components are determined to

T i
i = T 0

0 +
r

n+ 2
∂rT

0
0 = ρ+

r

n+ 2
∂rρ. (4.10)

As a result, the indexB = r case of the energy conservation law∇AT
A
B = 0 already determined

the energy momentum tensor. It is not shown here that the other d − 1 energy conservation
equations do not contribute any further information.

In order to solve the Einstein equation, in addition to the energy momentum tensor one
needs the Ricci tensor as additional ingredient. It is given as the contraction of the Riemann
tensor

RAB = ∂CΓ
C
BA − ∂BΓ

C
CA + ΓC

ADΓ
D
BA − ΓC

BDΓ
D
CA (4.11)

see Appendix F.1 for the values of all Christo�el symbols. The Ricci tensor is again diagonal,
with the entries, as (1,1) type tensor,

R0
0 = Rr

r = −eν

2

(

∂2
rν + (∂rν)

2 + (n+ 2)
∂rν

r

)

=
1

2
V ′′(r)− n+ 2

2

V ′(r)

r
(4.12a)

∀i : Ri
i =

1 + n− eν (1 + n+ r∂rν)

r2
= (1 + n)

V (r)

r2
+

V ′(r)

r
. (4.12b)

The Ricci scalar is then given by

R = RA
A =

(n+ 2)V (r)

r2
+ V ′′(r). (4.13)

30



Now one can write out the Einstein equations in a trace reversed form, in (1, 1) tensor
notation for d dimensions:

RB
A =

1

Mn+2
∗

(

TB
A − δBA

TC
C

n+ 2

)

(4.14)

Since R,T , δ are diagonal, the Einstein equations reduce to d non-zero equations where only
two equations di�er from each other, identi�ed by their indices A,B = r, r and A,B = i, i.
The latter gives the following �rst order di�erential equation for V (r):

V ′(r) +
n+ 1

r
V (r) =

1

Mn+2
∗

rρ(r)

n+ 2
(4.15)

The general solution of the metric for any ρ(r) is given by the integral

V (r) =
1

rn+1




1

(n+ 2)Mn+2
∗

r∫

c1

xn+2ρ(x)dx+ c2



 with c1, c2 = const (4.16)

The boundary values V (0) and V ′(0) give rise to the two integration contants c1 and c2. Phys-
ically, they allow for the low-energy matching of the theory. In the context of this thesis, c1 is
important for discussion about minimal lengths.

4.2 A smeared point-like matter density

The matter density choice to be inserted into (4.16) is based on the Schwarzschild-Tangherlini
point-like static and spherically symmetric density

ρ(r) =
M

Ωn+2 rn+2
δ(r) =

M

Ωn+2 rn+2

dΘ(r)

dr
, (4.17)

with the Dirac delta distribution δ(r) and the Heaviside unit step function

Θ(r) =

{

0 when r < 0

1 r ≥ 0
. (4.18)

The occurence of theHeaviside function in the Schwarzschild source term (4.17) is now replaced
by a smeared version we refer to as H(r). By construction, the function H(r) encodes all
nonlocal e�ects of the theory. The generic Schwarzschild-like energy density is therefore

ρ(r) =
M

Ωn+2 rn+2

dH(r)

dr
. (4.19)

Inserting (4.19) into the integral 4.16 gives us the gravitational function V (r) with n large extra
dimensions as

V (r) =
1

2 + n

M

Mn+2
∗

H(r)

rn+1
. . (4.20)
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Here, M∗ is the fundamental Planck mass, and M is a constant that will be identi�ed as mass.
V (r) determines the metric according to

ds2 = − (1− V (r)) dt2 + (1− V (r))−1 dr2 + r2dΩ2
n+2. (4.1 revisited)

The gravitational function V (r) replaces the Newton’s potential (2.19) with a prefactor −2,
because plugging V (r) = −2Φ(r)withΦ(r) = −GM/r into (4.1) resembles the Schwarzschild
solution.

4.2.1 The Mass

The mass contained inside a (3 + n)-sphere (the object will be referred to as B(r)) with radius
r is given by the integral

m(r) =

∫

B(r)

ρ(x) dn+3x = M

r∫

0

dH

dr
(r′) dr′ = MH(r). (4.21)

From the mathematical viewpoint, the massM is just a constant that may be used to ful�ll
the horizon equation V (rH) = 1 at an arbitrary event horizon rH . Therefore I set

M := (n+ 2)Mn+2
∗

rn+1
H

H(rH)
, (4.22)

so when plugging into the metric

V (r) =
1

n+ 2

M

Mn+2
∗

H(r)

rn+1
=

(rH
r

)n+1

, (4.20 revisited)

the horizon equation V (r) = 1 is ful�lled at r = rH . The physical meaing of M is the mass of
a black hole of radius rH [62]. When substituting n+ 1 powers of M∗ by M∗ = 1/L∗, one can
easily relate

M = (n+ 2)

(
rH
L∗

)n+1
1

H(rH)
M∗ . (4.23)

4.2.2 The regulator

The “spread” of smearing accomplished by the functionH(r)must be encoded in a constant of
dimension length. For example, consider the Gaussian delta approximation

δσ(r) =
1√
2πσ

exp

(

− r2

2σ

)

, δ(r) = lim
σ→0

δσ(r). (4.24)

as a canidate for H ′(r) := δσ(r). The variance σ, also refered to as the width of the Gaussian,
is the regulator of the metric constructed when inserting the cumulative normal distribution
function H(r) :=∝

∫ r

−∞ e−x2/2σdx into (4.20).
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In the physical models in the next chapters, the width (from now on the symbol r̃0 will
be generally used) will be linked to a physical length scale by imposing principles like self-
encoding.

To take the limit H(r) → Θ(r), one has to examine the limit of the regulator r̃0 → 0. The
limit r̃0 → 0 is accomplished by the replacement rules

H(r) → 1, H ′(r) → 0, H ′′(r) → 0, . . . . (4.25)

Replacing occurences of H(r) and derivatives according to (4.25) only holds when evaluat-
ing expressions containing H(r) and derivatives for nonzero radius. This resembles the well-
known �nite values of Θ(r) = 1 for r > 0 and δ(r) = 0 for r > 0.

This of course also holds for products like H(r)H ′(r) → 0.

4.3 Geometry

The mass M and gravitational potential V (r) have been determined for arbitrary H(r). For

speci�c choices ofH(r), one is able to do a discussion about event horizons (g00 = 1−V (r)
!
= 0)

and evventually draw a conformal diagram. This is done for two models in sections 5.1 and 6.1.
Here, the discussion will be a general one about special features of any metric described by
H(r).

4.3.1 Remnants

Nonlocal matter distributions described byH(r) exhibit extremal con�gurations which can be
identi�ed with the two remnant equations, also known as degenerate horizon conditions:

{
g00(r0) = 0 (4.26a)

∂r|r=r0
g00(r) = 0 (4.26b)

The �rst equation (4.26a) ensures the metric has a horizon at r0. The second equation (4.26b)
requires the metric to have an extremal value at r0.

As will be shown in section 4.4.1, the second equation (4.26b) also states that the extremal
con�guration temperature, which is propertional to ∂rg00(r), shall vanish at r0. It will be shown
in section 4.4 that, if condition (4.26b) is met, the extremal con�guration is stable and decays
no more. The situation motivates the name black hole remnant for the black hole with horizon
radius rH = r0.

When inserting the generic potential (4.20), the remnant equations give

g00(r0) = 0 = 1− 1

2 + n

M

Mn+2
∗

H(r0)

rn+1
0

(4.27a)

∂r|r=r0
g00(r) = 0 = H ′(r0)− (n+ 1)

H(r0)

r0
. (4.27b)

The shape of H(r) determines if the second remnant equation (4.27b) is ful�lled, while the
�rst remnant equation (4.27a) will always be ful�lled for H(r) 6= Θ(r).
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4.3.2 Curvature �nitness

According to (4.12), the Ricci scalar is given by

R(r) = RN
N =

(n+ 2)V (r)

r2
+ V ′′(r) (4.28a)

=
2

2 + n

M

M2+n
∗

(2 + n)2H(r)− 2(1 + n)rH ′(r) + r2H ′′(r)

r3+n
. (4.28b)

A pro�leH(r) can produce a non-singular black hole origin if the nominator in (4.28b) has
a taylor expansion at least of order r3+n. When expanding H(r) and its derivatives in a series
expansion around r = 0 as

H(r) =
∞∑

n=0

H(n)(0)

n!
rn ≈ H(0) +H ′(0)r +

1

2
H ′′(0)r2, (4.29)

H ′(r) =
∞∑

n=0

H(n+1)(0)

n!
rn ≈ H ′(0) +H ′′(0)r (4.30)

H ′′(r) =
∞∑

n=0

H(n+2)(0)

n!
rn ≈ H ′′(0) (4.31)

one can determine the leading term (biggest power of r) from the nominator in (4.28b) as

(2 + n)2H(r)− 2(1 + n)rH ′(r) + r2H ′′(r)

∼ (2 + n)2H(0) + (3 + 2n+ n2)H ′(0)r + (1/4n2 − n)H ′′(0)r2

∝ H(0). (4.32)

A regular black hole therefore ful�lls the condition

H(r) = O(r3+n) at origin r = 0. (4.33)

4.3.3 Energy conditions

Energy conditions in general relativity are a tool to put constraints on matter distributions
(that is, energy-momentum tensors) in a way how some expects them to behave. They are
formulated from a classical viewpoint and not deduced from Einstein �eld equations or other
�rst principles. Roughly speaking, they generalize the statement that one does not observe
negative masses or regions of negative mass distribution [68].

Approaches to quantum gravity regularly violate energy conditions, and by examining how
and where they violate these conditions, one understands about the quantum nature in general
relativity. For example, one expects energy conditions violate around the black hole center,
e.g. violations occur in a region r . l0 while they hold for r & l0, with l0 a physical mass
scale associated with the theory under discussion. As Ansoldi notes, this is cannot be taken for
granted in a non linear theory as general relativity is [3].
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The following energy conditions (EC) are checked:

• Null EC, de�ned that for every (future) null vectors xµ the observed matter density

ρobs = TABx
AxB (4.34)

is non negative, ρobs ≥ 0. In words, this means a matter density ρobs observed by a light
ray must be positive. A null vector ful�lls xAx

A = −x2
0+x2

1+
∑3+n

i=2 x2
i = 0, and if it is a

future null vector, xA > 0 ∀ possible indices A. Since TAB ∼ diag(−ρ,−ρ, p, . . . , p) one
gets

ρobs ∼ −ρx2
1 +

3+n∑

i=2

px2
i = −ρx2

1 + p(x2
0 − x2

1) = −(ρ+ p)x2
1 + px2

0

!

≥ 0 (4.35)

The negative contribution is governed by

fweak(r) := ρ+ p = 2ρ+
r

n+ 2
∂rρ. (4.36a)

=
2M

Ωn+2

(
2H ′(r)

rn+2
+

1

n+ 2

H ′′(r)

rn+1

)

(4.36b)

In regions where fweak(r) > 0, it is violated. ForH → Θ, (4.36b) is exactly 0 except at the
origin. For any non-Dirac distribution, derivatives ofH are nonzero near the origin, and
therefore the null energy condition is violated. Anyway, due to the form of H(r) which
is constrained according to �gure 4.1, fweak(r) > 0 is only possible at regions around the
origin.

• Strong EC requires the same as the null EC for any (future) timelike vector xµ. We �nd
it violated when fstrong(r) > 0, with

fstrong(r) = ρ+ (3 + n)p (4.37a)

=
M

Ωn+2

(
(4 + n)H ′(r)

rn+2
+

3 + n

2 + n

H ′′(r)

rn+1

)

. (4.37b)

The same as for the null EC holds: As H ′(r) and therefore also H ′′(r) is equal to zero
beyond some characteristic length scale l0 according to the smearing principle displayed
in �gure 4.1, the strong EC is violated near the origin.

• Dominant EC requires for any (future pointing) timelike or null vectorxµ that−TA
B x

B =
−TA

A x
A = yA is a future timelike or null vector. It requires both ρ > 0 which is roughly

equivalent to H ′(r) > 0 and the condition 0 ≥ ρ − |p| that may be translated to the
violation function

fdominant(r) := ρ− |p| = 1

r2+n

(

H ′(r)−
∣
∣
∣
∣
H ′(r)− r H ′′(r)

2 + n

∣
∣
∣
∣

)

(4.38)

Even thought the magnitude term, it is clear that fdominant(r) > 0 is violated only in a
small area around the origin.

35



4.4 Thermodynamics

Law Thermodynamics black holes

0. T constant on a body in thermal equilibrium κ constant on horizon of (stationary) BH
1. dE = TdS − pdV + µdN dM = κ

8π
dA+ ΩHdJ + Φdq

2. δS ≥ 0 δA ≥ 0
3. T = 0 cannot be reached κ = 0 cannot be reached

Table 4.1: The laws of thermodynamics correspond with black hole thermodynamics

4.4.1 Hawking Temperature

For spherical symmetric problems, the Hawking temperature TH = κ/2π is de�ned by means
of the surface gravity κ = 1

2
∂rg00|r=rH

at the black hole horizon rH . One gets the temperature

TH =
1

4π

(
1 + n

rH
− H ′(rH)

H(rH)

)

. (4.39)

Taking the Schwarzschild limitH → ΘmeansH ′/H → 0, so one evventually gets the well
known Schwarzschild temperature T = 1/(4πrH). The H

′/H term is the quantum correction
which has to cure the diverging behaviour of the �rst addend ∼ 1/rH in the temperature if
the theory shall be a useful quantum gravity approach. In terms of the remnant which was
proposed in the previous section, a remnant at extremal radius rH = r0 is called cold if TH = 0.
Setting (4.39) to zero equals the remnant equation (4.27b).

4.4.2 Heat capacity

The heat capacity is an extensiv thermodynamical property, de�ned as a measure of the heat
∆E added to an object resulting from a temperature change ∆T , in terms

C =
∆E

∆T
. (4.40)

For black holes, the total black hole massM equates the heat E, so E = M . The heat capacity
can be computed by reusing T (rH) andM(rH). Inserting 1 = ∂rH/∂rH yields

C =
∂M

∂TH

=
∂M

∂rH

(
∂TH

∂rH

)−1

. (4.41)

Inserting temperature (4.39) and mass (4.23), one can do the elaborate computation and ends
up with the compact expression

C = −4πrn+2
H

Mn+2
∗

(n+ 1)H (rH)− rHH
′ (rH)

r2HH (rH)H ′′ (rH)− r2HH
′ (rH) 2 + (n+ 1)H (rH) 2

. (4.42)

36



By simply letting H,H ′, H ′′ → 0 according to section 4.2.2, one ends up with the heat
capacity of ordinary Schwarzschild black hole:

C −4(1 + n)πr2+n
H /M2+n

∗

−4πr2HG
H−rHH′

r2
H
HH′′−r2

H
H′2+H2 −4πr2HG

H → Θ

n → 0 n → 0

H → Θ

(4.43)

Depending on H(r), the heat capacity possibly undertakes changes of sign, where a phase
transition takes place (C → ±∞). Radii here C(r) → ±∞ are called critical radii and labeled
rC . At such a point, the black hole temperature TH(rC) (eq. 4.39) is maximal:

∂rHTH |rH=rC
= 0 ⇔ rC =

√

1 + n

H ′(rC)−H ′′(rC)H(rC)
H(rC). (4.44)

AsH(r) → Θ(r), the critical point goes to zero. This corresponds to the fact that the Schwarzschild
metric has no critical point.

4.4.3 Entropy

Entropy is a measure of information, and there aremany de�nitions for it. In statistical mechan-
ics, entropy is typically de�ned as the amount of ignorance of information of a physical state
of a thermodynamical system. It therefore counts all micro states which de�ne an emerging
macroscopic state.

In the context of black holes, entropy is maybe the most interesting quantity, since it deals
with the information paradox of black holes. It is the issue what happens with information (i.e.
physical states) that crosses the event horizon.

The Hawking-Bekenstein entropy is de�ned via the Hawking Temperature TH as

S =

∫
dM

TH

. (4.45)

The entropy de�ning integral can also be subsituted like in the heat capacity in the section
before, giving for generic H a compact expression:

S(r) =

∫
dM

T
=

∫

drH

(
1

T

dM

drH

)

=
π(n+ 2)

2
Mn+2

∗

∫

drH
r1+n
H

H(rH)
(4.46)

Approaching the limit H → Θ, one gets the Entropy of the Schwarzschild-Tangherlini black
hole,

π(n+ 2)

2
Mn+2

∗

∫

drH r1+n
H =

π(n+ 2)

2(n+ 1)
Mn+2

∗ r2+n
H . (4.47)
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Taking the limit n → 0, one gets the Hawking-Bekenstein entropy for the four dimensional
Schwarzschild black hole

πMn+2
∗ r2H =

Ω2r
2
H

4G
, with Ω2 = 4π (4.48)

4.5 Nonlocal operator

In this chapter, I want to derive a nonlocal operatorA−2(x) for the given smearingmodelsH(r).
In the long distance limit (where the fundamental length L∗ can be considered zero: L∗/r → 0),
this operator is supposed to vanish A−2 → 1. This section ties up with the introduction of
nonlocal operators given in the previous chapter according to [54, 58].

The operator is linked to H(r) with a Fourier transformation. It is important to remember
that Fourier transformations do not exist in curved space. In the present case, it is possible to de-
�ne the Fourier transformation in the coordinate frame of the freely falling observer. Therefore
it is possible to compute the inverse A2 of A−2 by working in momentum space.

LinkingH(r) to the nonlocal operator can be done with the two representations of T 0
0 that

were presented in the text. The smeared energy-momentum tensor of the point-mass reads

T 0
0 = MA−2(�)δ3+n(~x). (4.49)

It is supposed to produce the matter density given in (4.19),

T 0
0 =

M

Ωn+2 rn+2

dH(r)

dr
. (4.50)

Matching equations (4.49) and (4.50) means

A−2(�)δ3+n(~x) =
1

Ωn+2rn+2

dH(r)

dr
. (4.51a)

Writing theDirac delta by its planewavemomentum space representation δ(~x) =
∫
d3+np e+ipx

on the left hand side and inserting a 1 = F−1F by means of a double Fourier transformation
on the right hand side allows computing a solution for the operator in momentum space by
means of a Fourier transformation of the right hand side:

⇔
∫

dp3+n A−2(�) eipx =
1

Ωn+2rn+2

dH(x)

dx
(4.51b)

⇔
∫

d3+np A−2(p2) eipx =

∫

d3+np

T̃ 0
0 (p)

︷ ︸︸ ︷(
1

(2π)2+n

∫

d3+nz
1

Ωn+2‖z‖n+2

dH(‖z‖)
d‖z‖ e−ipz

)

eipx

(4.51c)

⇔ A−2(p2) =
1

(2π)2+nΩn+2

∫

d3+nz
1

zn+2

dH(z)

dz
e−ipz (4.51d)
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Note that, by concept, the operator A−2 is dimensionless. It is therefore valid to switch the
coordinate system (r, p) → (z, q)without prefactors, where z = r/L∗, q = pL∗ are dimension-
less coordinates with the fundamental length scale L∗.

4.5.1 Higher-dimensional Fourier Transformation

To solve (4.51d), one can integrate out all extra dimensional angles and e�ectively reduce the
higher-dimensional fourier transformation of the radial symmetric function to a one dimen-

sional one. Calling V (r) := H′(r)
rn+2 the higher dimensional Fourier kernel, an e�ective one-

dimensional Fourier transformation is be derived in this section. This is motivated by the well-
known three dimensional procedure which is easier to read and given in appendix E.1.

Start with the N = n + 3-dimensional fourier transformation and rewrite it into conven-
tional polar coordinates:

V̂ (p) =
1

(2π)3+n

∫

d3+nr e−i~r·~pV (r) (4.52a)

=
1

(2π)3+n

∫ ∞

0

dr r2+n

∫ 2π

0

dϕ
n+1∏

i=1

∫ π

0

dθi sin
i(θi) e

−i~r·~pV (r) (4.52b)

Now use the angle θ1 for identi�cation with the inner scalar product angle ~r · ~p := rp cos θ0.
Subsitute

∫ π

0
dθ1 sin(θ1) = −

∫ +1

−1
d cos θ :=

∫ 1

−1
dx. Integrating out all other n angles θi as well

as the angle ϕ gives a Ω2+n/2 contribution, as the n+ 3-sphere volume is given by
∫
d3+nr =

∫
drΩn+2r

n+2. Divide it by the missing factor
∫ π

0
dθ sin(θ) = 2, used for the scalar product

substitution. One ends up with

=
1

(2π)3+n

Ωn+2

2

∫ +1

−1

dx

∫ ∞

0

dr r2+nV (r) e−irpx (4.52c)

=
1

(2π)3+n

Ωn+2

2

∫ ∞

0

dr r2+nV (r)

[
1

−ipr
e−iprx

]+1

−1

(4.52d)

=
1

(2π)3+n

Ωn+2

2

i

p

(∫ ∞

0

dr r1+nV (r)e−ipr −
∫ ∞

0

dr r1+nV (r)e+ipr

)

(4.52e)

To write this line as an e�ective one dimensional Fourier transformation, transform the second
integral in line (4.52e), �rst by switching the integral borders,

∫∞
0

dr = −
∫ o

∞ dr, second by
variable substitution r := −r′. This inserts an alternating minus, depending on n, as r1+ndr =
(−1)1+n(r′)1+n(−1)dr′ = (−1)nr′dr′. Note the substitution also toggles the sign of the integral
borders, allowing to combine both integrals to

=
1

(2π)3+n

Ωn+2

2

i

p

∫ ∞

−∞
dr r1+n [V (r)Θ(r) + (−1)nV (−r)Θ(−r)] e−ipr (4.52f)

=
1

2π

∫ ∞

−∞
dr v(r) e−ipr. (4.52g)
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One derives an e�ective one dimensional Fourier transformation of the e�ective function

v(r) :=
1

(2π)2+n

Ω2+n

2

i

p
r1+n [V (r)Θ(r) + (−1)nV (−r)Θ(−r)] . (4.53)

Note that the Heaviside step function Θ(z), which was used to combine the integrals from line
(4.52e) to one in (4.52f) is understood on the complex plane as

Θ(z) = Θ(Re z). (4.54)

The requirement (4.54) must be only exactly ful�lled at the evaluation points of the integral,
that is, the poles of v(r). This is a weaker requirement for Θ(z) on the complex plane:

Θ(z) =

{

Θ(Re z) if z is a pole of v(r),

arbitrary �nite value else.
(4.55)

See appendix E for a proposed function ful�lling (4.55).
Issues may arise with holomorphy when Cauchy theorem is applied. This is also discussed

further in the appendix E, realizing that solving the integral on the complex planeworks in three
dimensions, so it shall work in any higher number of dimensions. Note that this approach was
also successfully applied to a GUP-inspired nonlocal operator in an onging work [41].

4.5.2 Inverting the bilocal smearing operator

It is possible to solve the A−2 integral (4.51d) by rewriting it to an one-dimensional one. By
inserting

V (r) =
1

Ωn+2rn+2

dH(r)

dr
(4.56)

into equation (4.52f), a compact integral can be derived:

A−2(p2) =
1

(2π)3+n

i

2p

∫ ∞

−∞
dr

H ′(|r|)
r

e−ipr. (4.57)

This equation can be solved with the residue theorem. Since in (4.57), r ≡ ‖~r‖ ≥ 0 and
p ≡ ‖~p‖ ≥ 0, there is only one integration contour for Jordan’s lemma. For the forward
Fourier transformation F1, as seen in (4.57), the contour is determined by requiring (for some
constant # > 0 representing the momentum)

lim
r→±i∞

e−ipr = 0 ⇒ e−i(+#)(±i∞) = e±∞# = 0 ⇒ r → −i∞, (4.58)

i.e. it is closed on the lower half complex plane (Im r < 0). For the inverse Fourier transforma-
tion F−1

1 , it is closed on the upper half complex plane (p → i∞ ⇔ Imp > 0).
Concluding, equation (4.57) allows deriving the inverse bilocal operator by inserting a spe-

ci�c choice of H(r).
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Chapter 5

The holographic black hole in higher

dimensions

In this chapter, a member of the black hole family discussed in the previous chapter is proposed.
It is based on a black hole proposed in [62]. It tackles the problems of the Schwarzschild black
hole presented in the previous chapters. It will be derived that the class of black holes proposed
in this chapter features:

1. A modi�ed short-distance behaviour which allows the physical system to arrive at a cold
evaporation endpoint (black hole remnant), supported by regular thermodynamics.

2. A classical low-energy limit, that is, Schwarzschild behaviour of the metric for big dis-
tances, in terms

g00(r) = 1− 2GM

r
for r & l0. (5.1)

3. Self-encoding of the characteristic minimal length scale l0 in the radius of the extremal

con�guration r0, that is,
l0 = r0. (5.2)

4. Logarithmic entropy corrections, like most theories of quantum gravity propose.

5. Compatibility with large extra dimensions: All previous points can be implemented in the
ADD scenario, and one may identify the length scale l0 with the fundamental length L∗.

It will be shown that this class of black holes still possesses a curvature singularity at the origin
(limr→0 R = ∞). Anyway the property of self-encoding is crucial: It enables l0 being the only
universal scale, as the theory requires no new length scale like

√
β from GUP, θ from NCG or

ℓ0 from String Theory.
This class of black holes is implemented by a special choice of H(r) that will be refered to

as h(r) for distinction. By inserting H(r) = h(r) in any equation of chapter 4, a number of
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physical properties will be derived in this chapter. h(r) de�nes the holographic black hole in n
large extra dimensions:

h(r) :=
r2+n

r2+n + r̃2+n
0

. (5.3)

r̃0 is a regulation constant of dimension length that is discussed in the next sections. For n → 0,
the pro�le (5.3) reduces to the four dimensional pro�le �rst studied by Nicolini and Spalluci
in [62].

Inserting h(r) into the generic gravitational potential (4.20) creates for a �xed n and r̃0 a
geometry, uniquly determined by its massM :

V (r) =
1

2 + n

M

Mn+2
∗

r

r2+n + r̃2+n
0

. (5.4)

The gravitational potential (5.4) spawns a class of black hole geometries which is subject of this
chapter.

Note that this pro�le is an ab-initio proposal, and especially the higher dimensional continu-
ation is “guessed”. The special feature is that there is no further ingredient than general relativity.
There is no need to stress a more advanced theory like String Theory or loop quantum theory
to generate the metric de�ned by (5.4).

Compared to [62], the holographic metric was extended to higher dimensions. The higher
dimensional modi�cation will be justi�ed by yielding logarithmic corrections to the black hole
entropy in any number of dimensions.

(a) Heaviside approximation h(r)
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(b) Dirac-delta approximation h′(r)
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Figure 5.1: The Heaviside (a) and Dirac delta (b) approximation pro�le h(r) against its built in
length scale r̃0 for a di�erent number of large extra dimensions n. One sees that r̃0 plays the
role of the width of the pro�le. By choice, it is a kind of “half-life scale”, as can be computed
when computing h(r̃0) = 1/2. Note also that increasing n create sharper distributions. For
n → ∞, the curve resembles a displaced step function hn→∞(r) = Θ(r − r̃0). This re�ects the
fact that all volume in a∞-sphere lives on the surface.
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5.1 Geometry

5.1.1 Horizons

The event horizon equation, considering rH being the event horizon, requires

0 = g00(rH) ⇒ 0 = z2+n − z mn + 1, with mn =
1

n+ 2

M

Mn+2
∗

(5.5)

and z = r/r̃0. The number of (physically meaningful) solutions depends onmn, that is, on the
black hole mass M . For any n, there are three possible solutions, plotted in �gure 5.2a. They
are distinguished by the value of the ratio M/M0, with the extremal mass M0 that is found to
be a special value:

M < M0 The mass is too small to create a black hole. The physical object is a vacuum, self-
gravitating particle-like structure which is stable.

M > M0 There are two horizons with radii r±. In �gure 5.2a, they are indicated by red dots.
Physically, one can argue that the outer horizon r+ is the more relevant one, since it
shields the black hole inner structure. Mathematically, r− is a Cauchy horizon, and in the
region r− < r < r+, where g00 > 0 and grr < 0, the coordinates r and t switch their
meaning (cf. section 6.1.6).

There are no meaningful compact analytic expressions for the values of r±, expcept for
the holographic metric and without extra dimensions (n = 0), as already given in [62]:

r± = GM ±
√
GM2 − 4. (5.6)

For n > 0 and especially for the self-regular metric, the roots of (??) can simply be
determined numerically.

Note that forM ≫ M0, r+ approaches the Schwarzschild-Tangherlini horizon.

M = M0 The two horizons merge to a single horizon which is called extremal or degenerate
horizon r± = r0 and identi�ed with the extremal massM = M0. In �gure 5.2a, the green
line displays the coe�cient g00 with extremal mass, showing a single horizon, indicated
by the green dot. Figure 5.2b displays the extremal con�guration in higher dimensions.
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(a) g00 in n = 0 for di�erent masses M .

0 1 2 3 4 5

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

r�r0

g
0
0

M=0.5M0

M=1.0M0

M=1.5M0

(b) g00 for M = M∗ in di�erent dimensions n.
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Figure 5.2: The holographic gravitational potential. The upper panel 5.2a shows di�erent ge-
ometries based on the black hole mass. The three curves represent a smaller than critical-mass
(blue), critical mass (green) and heaviest mass (red).
The lower panel 5.2b shows the higher dimensional extension for the self-encoding masses
M0 = M∗. All curves are scaled for the individual L∗ according to the numerical values given
in table 6.2.
Compared to the fourdimensional metric (�g. 5.2a), one can see that the picture basically stays

the same. In this �gure, the curves qualitatively get “sharper” with increasing n, which corre-
sponds to the increasing surface to volume ratio of n-spheres, which is a purely geometrical
e�ect.
In any case, the dashed lines correspond to the equivalent Schwarzschild metric.
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5.1.2 The self-encoding remnant

In the present class of black hole geometries, the extremal black hole con�guration parameter
M = M0 or r = r0 can be self-encoded with the built-in length scale r̃0. The relation is found
by inserting h(r) into the second remnant equation (4.27b):

r0 = r̃0

(
1

1 + n

) 1

2+n

(5.7)

Equation (5.7) allows to connect the length scale r̃0 introduced as “built in” length scale in the
holographic pro�le to a physical length scale r0. This equation can be used to eliminate r̃0 from
the holographic pro�le (5.3) in favour of the physical meaningful r0:

h(r) =
r2+n

r2+n + r̃2+n
0

=
r2+n

r2+n + (1 + n)r2+n
0

. (5.8)

Note that the self-encoding principle requires that the size of the remnant r0 should be iden-
tical to the fundamental length scale of the physical theory l0. For gravity in 4d space time, the
only fundamental length scale is given by the coupling constant (Newtons constant) G which
de�nes the Planck length LPl =

√
G ≈ 10−35 m. In 4d, (5.7) assures this is true, as already

stated in [62]:

r0
!
= l0 = LPl = r̃0. (5.9)

With extra dimensions, there is the reduced Planck length L∗ which is the actual fundamental
length scale l0, since the observable Planck length LPl is just a large-distance e�ective one. To

express h(r) only in terms of L∗, require r0
!
= l0 ≡ L∗ and �nd

r̃0 = (1 + n)
1

2+n L∗ . (5.10)

Implementing the self-encoding value for r̃0 into the holographic pro�le (5.8) gives a pro�le
which contains nothing more than the universal physical constant L∗:

h(r) =
r2+n

r2+n + (1 + n)L2+n
∗

(5.11)

When computing M0 = M(r0), the self-encoding of the fundamental mass scale M∗ is
expected, that is,M(r0) = M∗. It is h(L∗) = 1/(2 + n) and thus, by construction,

M(L∗) =
1

n+ 2

(
L∗
L∗

)1+n
1

h(L∗)
M∗ = M∗. (5.12)
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symbol meaning

r A placeholder for a radius.
rH The black hole horizon radius.
r+ The outer Cauchy horizon of the holographic black hole, this is (if applicable) al-

ways accessible.
r− The inner Cauchy horizon of the holographic black hole, it is not visible from out-

side.
r0 The extremal black hole horizon radius. When r+ = r−, the symbol r0 is used.
rC The critical radius, at this radius the temperatures are maximal.
L∗ The fundamental length in the ADD scenario. In this chapter it is the fundamental

physical length.
β The fundamental length in the GUP scenario.
θ The fundamental length in the NCBH scenario.
LPl The Planck length (fundamental length in classical GR).
l0 A placeholder for a fundamental physical length scale. Possible values are e.g. l0 ∈

{L∗, LPl, β, θ, . . . }.

Table 5.1: Variables representing lengths used in this chapter. According to Mass=1/Length,
each length scale represents also a mass scale.

(a) BH–particle duality in n LXDs
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(b) Holographic BH in n LXDs
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Figure 5.3: The holographic black hole (right panel) solves the BH–particle duality problem,
shown in the left panel (it is �gure 3.1 from section 3.1).
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5.1.3 Minimal length

Figure 5.3 shows how the holographic black hole prohibits physics below the Planck scale by
implementing the self-completeness principle. The quantum mechanics regime (M < M∗) and
the general relativity regime (M > M∗) are clearly separated, and the holographic black hole
never accesses the sub-Planckian regime but instead builds out a remnant (black dot).

Considering the right panel, the two horizons of the holographic black hole stand out as
the upper and lower branches of the blue curves. While the upper branches display r+ > L∗,
the “visible” event horizons, the lower branches display the cauchy horizons r− < L∗ that are
shielded by r+ for big masses M > M∗ and non-accessible by the remnant atM = M∗.

5.1.4 Curvature singularity

According to the curvature considerations for general pro�les H(r) in section 4.3.2, the holo-
graphic metric is still diverging. One can give an estimation for R(0) based on the taylor ex-
pansions of the holographic pro�le h(r) at r = 0:

h(r) = (r/L∗)
2+n +O

(

(r/L∗)
2(2+n)

)

, h′(r) ≈ (r/L∗)
1+n , h′′(r) ≈ (r/L∗)

n (5.13)

Inserting this into R(r) for H(r), equation (4.28b), gives H(0) ≈ L∗/r. The holographic
black hole has therefore still a curvature singularity at the origin.

n 0 1 2 3 4 5 6 7

r̃0 1.00 0.79 0.76 0.76 0.76 0.77 0.78 0.79
rC 2.06 1.60 1.48 1.41 1.36 1.33 1.30 1.28
T (rC) 0.024 0.07 0.12 0.18 0.25 0.31 0.38 0.44

Table 5.2: Numerical properties of the holographic black hole. All values are given in nd Planck
units (as multiples of L∗). r̃0 is the initial length scale of h(r) that was used to �x the self-
encoding of the theory, according to eq. (5.7). Going from eq. (5.3) to (5.11), r̃0 could be elimi-
nated in favour of the fundamental L∗.
rC is the critical radius according to eq. (5.16). T (rC) is the Hawking temperature for a black
hole with extend rC , it is the maximum temperature, also indicated in �gure 5.4.
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5.2 Thermodynamics

The thermodynamics of the holographic black hole arise from the equations given in section
4.4. By inserting the holographic pro�le h(r) in the equations derived for general H(r), the
quantities in this section are derived.

Note that in this section, rH always represents the outer horizon r+ > L∗ which is the
physical meaningful horizon for calculating thermodynamics of the holographic black hole.

5.2.1 Hawking Temperature

The Hawking Temperature of a holographic black hole with radius rH in n LXDs is determined
by (4.39) to

TH =
1

4πrH

(

1 + n− (2 + n)
(L∗/r)

(2+n)

1 + (L∗/r)(2+n)

)

. (5.14)

Figure 5.4 shows the temperature of the black holes. Comparing with the appropriate
Schwarzschild black hole in n dimensions, the �rst thing to be noticed is the di�erence of the
two curves which becomes large below r . 3L∗ or r . 3/2rC , with the critical temperature
rC as de�ned in the next section. There is a maximum temperature at the critical radius rC
(indicated by the dots in �g. 5.4, numerical values are given in table 6.2), and for smaller radius
the black hole cools down until it reaches zero temperature at r0. One therefore speaks of a cold
remnant.
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Figure 5.4: Temperature of the holographic black hole, compared to the dashed-line
Schwarzschild-Tangherlini black hole temperature, in a di�erent number of dimensions. The
circles indicate the critical radii (eq. 5.16) where maximal temperatures occur.
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The maximum temperature T (rC) is also the upper bound to argue about the validity of
the theory. As at any point r, TH(r)/M < TH(rC)/M∗ < 1, backreaction e�ects can be ne-
glected [62]. Considering the numerical values (c.f. table 6.2), the situation gets worse for higher
dimensions n, as backreaction e�ects compared to the fundamental Planck scale get more and
more important.

5.2.2 Heat capacity

The heat capacity of a holographic black hole with radius rH in n LXDs is determined by 4.42
to

C = −4πr2+n
H

Mn+2
∗

(
r−n
H + r2H

)2 (
(1 + n)r2H − r−n

H

)

(4 + 3n+ n2) rn−4
H + r2n−2

H − (1 + n)r6H
. (5.15)

The critical radius can be determined by evaluating the extremal temperature condition and
inserting the current black hole model into (4.44):

rC = 2
1

n+2

(

(2 + n)
√
n2 + 2n+ 5− n2 + 3n− 4

)− 1

n+2

L∗ (5.16)

5.2.3 A phase transition

Eventually, having computed g00, T and C , one is able to compare those quantities for black
hole stability discussion. Figure 5.6 illustrates the curves and di�erent phases, exemplary for
the holographic black hole. Considering the sign of the heat capacity, three phases can be
distinguished:

r > rC . The heat capacity is negative, the system is instable: Losing mass by radiation makes
it hotter and hotter. This behaviour is well described by the Schwarzschild metric.

When reaching r →+ rC , in the modi�ed metrics this process stagnates, the temperature
no longer rises. Now a phase transition takes place at rC , the system gets stable.

r0 < r < rC . The heat capacity is positive and the black hole system is stable. Losingmass now
results in losing temperature. The systemheavily deviates from the classical Schwarzschild
solution. The Temperature decreases until it evventually reaches zero.

r < r0 . This phase is physically never accessed, as the system got stable at r0. The self-
complete paradigm also ensures that no black holes cannot be generated at these dis-
tances, as smaller length scales then r0 are not accessible.

Thermodynamics in this area is not physically meaningful. Mathematically, there is a
negative temperature T < 0 and the system is basically instable again, since C < 0.
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(a) Heat capacity C for di�erent n, scaled against individual L∗
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(b) Heat capacity C for di�erent n, scaled against L∗ and shifted around rC
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Figure 5.5: The heat capacity of the holographic black hole for di�erent extra dimensions n, as
a function of the black hole size rH . The dashed line corresponds to the heat capacity of the
classical Hawking-Beckenstein black hole in n extra dimensions.
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Figure 5.6: Comparison of temperature (top panel), heat capacity (middle panel) and entropy
(bottom panel) on the same scale (Planck units everywhere). Here, n = 2, but the plot looks sys-
tematically the same in all dimensions. The dashed curves are the corresponding Schwarzschild
behaviour.
Regarding the sign of the heat capacity (SignC = ±1), there are three di�erent states, indicated
by colors and seperated by r0 (blue line) and rC (red line). Blue circles indicate the �nal, cold
and stable evaporation state. The red circle indicates the position of the critical radius. Note
that the shaded region rH < L∗ is physically not accessible and in the self-complete paradigm
of general relativity, thermodynamics are not de�ned there.
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5.2.4 Entropy

Inserting the holographic pro�le h(r) into the entropy integral (4.46) gives the entropy of the
holographic black hole,

Sh(rH) =
4π

Ln+2
∗

(
rn+2
H − Ln+2

∗
)
+ 4π(n+ 2) log

(
rH
L∗

)

(5.17)

Note the logarithmic quantum corrections. They motivate the label holographic for the metric.
The logarithmic term is in aggreement with most quantum gravity theories as string theory
and quantum loop gravity (c.f. appendix B.2).

Since log(1) = 0, the entropy goes to exactly to zero for rH → r0. The remnant therefore
has zero entropy. Physically, this means that there is only one possibilty to realize the remnant.
This motivates casting the remnant as a black hole ground state and imposing a quantization
law.

5.2.5 The black hole area quantization picture

The black hole area theorem dates back toWheeler 1973 and is a recasting of the Schwarzschild
black hole entropy in terms of the horizon area A = 4πr2H , and therewith

S =
A

4A0

with A0 = 4πL2
P . (5.18)

In the same spirit, the holographic metric black hole entropy (5.17) can be recasted as

Sh(A+) =
π

A0

(A+ − A0) + π log(A+/A0), with
A+ = Ωn+2r

2+n
+ ,

A0 = Ωn+2L
2+n
∗ .

(5.19)

Figure 5.7: An artistic interpretation of the
holographic principle, as it illustrated an sci-
ence magazine article by Jacob Bekenstein
[11]. The black hole entropy is quantizied in
terms of Planck units. A Planck area (blue)
has A/4 units of entropy (red).
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The remnant surface may serve as a ground state for a quantized area spectrum according to
the area quantization principles by Dvali [24, 25]. To do so, any black hole area A+ shall be an
integral multiple of A0, in terms

A+ := Ak−1 = kA0 = 4πkL2
∗, with k ∈ N. (5.20)

Speaking in the language of information theory, the minimal screenA0 may represent the basic
information building block, one byte [62]. The number k = 1, 2, 3, . . . counts the number of
bytes. One can also de�ne one bit as the areaL2

∗ which is the capacity of the smallest reasonable
holographic screen according to the completeness principle of GR. According to (5.18), four bits
make one byte (in computing, this is called a nibble). Figure 5.7 displays this principle.

According to this quantization rule, one can compute the discretized radii, masses and mass
gaps. One obtains in n LXDs by inserting (5.20) into (5.18) and (4.23):

rk−1 = k1/(2+n)L∗ (5.21)

Mk−1 =
1

n+ 2

k + 1

k
1

n+2

M∗ (5.22)

For n → 0, this gives the values found in [62]. For k ≫ 1 one �nds a continous spectrum of
radii and masses. This is supported by the quickly decreasing mass gap for higher states k,

∆Mk := Mk −Mk−1
k→∞−−−→ 1 + n

(2 + n)2
1

k1/(2+n)
. (5.23)

(a) physical abscissa
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Figure 5.8: Mass quantization for di�erent extra dimensions n: Figure 5.8a basically shows the
upper (outer) branch ofM(rH) that was already displayed in �gure 5.3b. The circles represent
the discrete masses allowed by quantization rule (5.22). The circles are �lled if rH < rC , i.e.
if the BH is in the regime of discrete mass spectra, while un�lled circles display the BH in the
more and more continous mass spectrum. Figure 5.8b shows the same curves with equidistant
discretized radius gap ∆rk = rk − rk−1.
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As the mass gap quickly decreases, there is a continous mass spectrum for big black holes
(big horizon radius rH ). In the regime of positive heat capacity C > 0, due to the big mass
gaps, the system can be refered to as a quantum mechanically decaying black hole, while in the
regime of negative heat capacity C < 0, it decays thermally. Therefore, the phase transition
from section 5.2.3 separates the semi-classical regime from the quantum system [62]. This
behaviour is independent of the number of dimensions n.

5.3 Modi�ed �eld equations

In the holographic model, insert h(r) to derive from (4.57) the expression (note there is no need
for powers of L when switching to dimensionless coordinates z = r/L∗, q = pL∗)

A−2(q2) =
2 + n

(2π)3+n

i

2q
︸ ︷︷ ︸

f0

∫ ∞

−∞
dz

[
zn

(1 + z2+n)2
︸ ︷︷ ︸

f+

Θ(z) +
(−1)(−z)n

(1 + (−z)2+n)2
︸ ︷︷ ︸

f−

Θ(−z)

]

e−iqz. (5.24)

The poles of f+ are the same as for f−, just mirrored at the imaginary axis Re(z) = 0, in
symbols f+(z) = −f−(−z). The poles of f+ are given by

(
1 + z2+n

)2
= 0 ⇔ z = (−1)

1

2+n = exp

{
iπ + 2πik

n+ 2

}

∀k ∈ N0. (5.25)

There are n+1 unique poles, each to be counted twice due to the power of 2 in the denominator
of f+. Due to the integration contour (4.58), only the

n+1
2

unique poles in the region Im(z0) ≤ 0
are taken into account. For f+, only the

n+1
4

poles in the regionRe(z0) ≥ 0 are visible. Identify
these poles by their set of angles in the complex phase,

Φn =
{
ϕ = arg(z) : 1 + zn+2 = 0 ∧ Im(z) ≤ 0 ∧Re(z) ≥ 0

}
(5.26)

=

{

ϕ = π
1− 2k

n+ 2
: k ∈ N0 ∧ k ≤ n

4

}

, (5.27)

and write eiΦn = {z = eiϕ : ϕ ∈ Φn} to denote the set of complex numbers associated with
Φn. Note the number of angles |Φn| = ⌊n+1

4
⌋ is a step function, so it is unlikely that a more

compact expression than the subsequent one can be derived for general n.
All poles z0 ∈ eiΦn are of 2nd order, the residues are therefore given by

Res
z→z0

f+(z)e
iqz = lim

z→z0

d

dz
(z − z0)

2f+(z)e
iqz =

sign(z0)z̄0
(n+ 2)

eiz0q(1− iz0q) (5.28)

and enter the holographic A−2 integral from (5.24) in a way that
∫

dz (f+(z)Θ(z) + f−(z)Θ(−z)) eiqz = (2πi)(−1)·

·



2
∑

z0∈eiΦn

Res
z→z0

f+(z) + 2
∑

z0∈eΦn

Res
z→z0

f−(z)



 .

(5.29)
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Note that due to symmetry of the poles, there are either poles z0 (produced by f+) and −z0
(produced by f−) which residues sum to the expression

Res
z0

f+e
izq + Res

−z0
f−e

izq = Res
z0

f+e
izq − Res

z0
f+e

−izq =
2iz̄0

(2 + n)2
sin(z0q), (5.30)

or the f+ and f− share a common pole at z0 = −i, then

Res
−i

f+e
izq =

i

n+ 2
e+q(1− q). (5.31)

Note that poles at z0 = −i only occur at integer n/4, that is n = 0, 4, 8, . . . . In favour to give a
closed form result, one therefore cannot always apply the simpli�cation rules (5.30) and (5.31).
The overall result is given by

A−2 =
(2π)2+n

q

∑

ϕ∈Φn

sign(z0)z̄0e
iz0q(1− iz0q) (5.32)

with z0 = eiϕ. Without extra dimensions (n = 0) is the only case where a purely real result can
be given, for n > 0 complex phases always survive in (5.32). For n = 0 we get

A−2 =
e−pLPl

pLPl

+ e−pLPl . (5.33)

Sending LPl → 0 (or actually the product pLPl → 0) gives A−2 → 1.
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Chapter 6

The self-regular black hole in higher

dimensions

This chapter is devoted to another member of the black hole family discussed in chapter 4.
It was �rst proposed in four dimensions in [61]. It engages the problems of the Schwarzschild
black hole, presented in chapters 2 and 3. It will be proven that the class of black holes proposed
in this chapter features:

1. A regular black hole center that has no more curvature (Ricci scalar) singularity at the
origin, in terms

R(0) < ∞. (6.1)

2. A modi�ed short-distance behaviour which allows the physical system to arrive at a cold
evaporation endpoint (black hole remnant), supported by regular thermodynamics.

3. A classical low-energy limit, that is, Schwarzschild behaviour of the metric for big dis-
tances, in terms

g00(r) = 1− 2GM

r
for r & l0. (6.2)

4. Self-encoding of the characteristic minimal length scale l0 in the radius of the extremal

con�guration r0, that is,
l0 = r0. (6.3)

5. Compatibility with large extra dimensions: All previous points can be implemented in the
ADD scenario, and one may identify the length scale l0 with the fundamental length L∗.

The self-regular black hole shares some features with the holographic black hole (sect. 5).
Therefore, the discussion will always make a comparison with the holographic black hole.

Again, the property of self-encoding is crucial: It enables l0 being the only universal scale,
as the theory requires no new length scale like

√
β from GUP, θ from NCG or ℓ0 from String

Theory. To implement both self-encoding and regularity (therefore the name self-regular), the
theory is equipped with an additional degree of freedom α ∈ R. To distinct the special choice
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of H(r) for the self-regular black hole, it will be refered to as hα(r). By inserting H(r) = h(r)
in any equation of chapter 4, a number of physical properties will be derived in this chapter.
hα(r) de�nes the self-regular black hole in n large extra dimensions:

hα(r) :=
r3+n

(rα + r̃α0 /2)
3+n
α

. (6.4)

r̃0 is a regulation constant of dimension length and plays the same role as for the holographic
model. The dimensionless α couples, as it turns out, together the two fundamental theories
encoded in this black hole model. n counts the number of extra dimensions, and for n → 0, the
pro�le (6.4) reduces to the four dimensional pro�le �rst studied by Nicolini and Spalluci in [61].

Note that also the self-regular pro�le, as the holographic pro�le, is an ab-initio proposal,
and especially the higher dimensional continuation is “guessed”. It is a special feature that
there is no further ingredient than general relativity. There is no need to stress a more advanced
theory like string theory or loop quantum theory to generate the self-regular metric, given by
plugging (6.4) into (4.20),

V (r) =
1

2 + n

M

Mn+2
∗

r2

(rα + r̃α0 /2)
3+n
α

. (6.5)

The class of black holes spanned by (6.5) is a quite big one, as it turns out that e.g. the Bardeen
black hole [8] is a part of the class, with a special choice of α.

(a) Heaviside approximation hα(r)
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(b) Dirac-delta approximation h′α(r)
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Figure 6.1: The Heaviside (a) and Dirac delta (b) approximation pro�le hα(r) against it’s built in
length scale r̃0 for di�erent choices of α and �xed n. Red color saturation indicates increasing
α, while the thick blue curve represents α = ∞. See appendix C for details of the graph.
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6.1 Geometry

Compared to the holographic black hole, the self-regular black hole excells in its outstanding
geometric features, while it does not possess the thermodynamic features one expects from a
quantum gravity.
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Figure 6.2: g00 for the self-regular, self-encoding (α = α0) black hole in 4d (n = 0). The three
curves represent a smaller than critical-mass (blue), critical mass (green) and a too heavy mass
(red). In any case the dashed line corresponds to the equivalent Schwarzschild metric. Note the
di�erent behaviour as z = r/r0 → 0 compared to the holographic �gure 5.2a.

6.1.1 Horizons

The event horizon equation, considering rH being the event horizon, requires 0 = g00(rH). For
the self-regular black hole, the horizons rH are given by the root of the polynomial

0 = z2(zα + 1/2)(3+n)/α −mn, with mn =
1

n+ 2

M

Mn+2
∗

(6.6)

and z = r/r̃0. The number of (physically meaningful) solutions depends onmn, that is, on the
black hole massM . For any n, there are three possible solutions, plotted in �gure 6.2. They can
be distinguished by the extremal massM0:

M < M0 The mass is too small to create a black hole. The physical object is called a G-lump af-
ter Dymnikova [26] and represents a vacuum, self-gravitating, regular, particle-like struc-
ture [3].

58



n 0 1 2 3 4 5 6 7

α0 1.76 4.29 7.08 9.33 10.64 11.13 11.09 10.80

r̃0/L∗ 1. 0.85 0.85 0.86 0.86 0.85 0.84 0.83

Table 6.1: Numerical results for the self-encoding choice of α, given from eq. (6.7), as well as
the ratio r̃0/L∗ that was found in eq. (6.9) to make the currently discussed class of black holes
self-encoding. This replacement allows to remove the nonphysical parameter r̃0 from the initial
pro�le (6.4) to a pro�le containing only the fundamental length scale L∗, displayed in (6.10).

M > M0 There are two horizons with radii r±. In �gure 6.2, they are indicated by red dots.
Physically, one can argue that the outer horizon r+ is the more relevant one, since it
shields the black hole inner structure. Mathematically, r− is a Cauchy horizon, and in the
region r− < r < r+, where g00 > 0 and grr < 0, the coordinates r and t switch their
meaning (cf. section 6.1.6).

There are no meaningful compact analytic expressions for the values of r±, but the roots
of (6.6) can simply be determined numerically.

Note that forM ≫ M0, r+ approaches the Schwarzschild-Tangherlini horizon.

M = M0 The two horizons merge to a single horizon which are called r± = r0. This is the
extremal radius, identi�ed with the extremal mass M0. In �gure 6.2, the green line dis-
plays the gravitational potential with extremal mass, showing a single horizon, indicated
by the green dot.

6.1.2 The self-regular self-encoding remnant

As the holographic model, the self-regular black hole exhibits an extremal con�guration M =
M0. Using the remnant equation (4.27b), one can relate the extremal radius r0 to the self-regular
“width” paramter r0:

r0,α = r̃0

(
1

1 + n

) 1

α

. (6.7)

Equation (6.7) allows to connect the length scale r̃0 introduced for self-regular model to a phys-
ical length scale r0. Note that the self-encoding principle requires that the size of the remnant
r0 should be identical to the fundamental length scale of the physical theory l0. For gravity in
4d space time, the only fundamental length scale is given by the coupling constant (Newtons
constant) G which de�nes the Planck length LPl =

√
G ≈ 10−35 m. In 4d, (??) assures this is

true, as already stated in [62]:

r0
!
= l0 = LPl = r̃0. (6.8)

With extra dimensions, there is the reduced Planck lengthL∗ which is the actual fundamen-
tal length scale l0, since the observable Planck length LPl is just an e�ective one. To express the
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pro�le hα(r) only in terms of L∗, one requires r0
!
= l0 = L∗ and �nds

r̃0 = (1 + n)
1

α L∗ . (6.9)

Implementing the self-encoding value for r̃0 into the self-regular pro�le (6.4) gives a pro�le
which contains only the universal physical constant L∗:

hα(r) =
r3+n

(
rα + 1+n

2
Lα
∗
) 3+n

α

(6.10)

When computing M0 = M(r0), the self-encoding of the fundamental mass scale M∗ is
expected, that is,M(r0) = M∗. This allows �xing α. Using the mass (4.23), it reads

M(r0) =
1

n+ 2

(
3 + n

2

) 3+n
α

︸ ︷︷ ︸

!
=1

(
r0
L∗

)n+1

M∗ = M∗ with α = α0 (6.11)

This gives the self-encoding value for the α parameter:

α0 =
3 + n

ln(2 + n)
ln

3 + n

2
. (6.12)

Henceforward, the self-regular black hole with α = α0 will be refered to as the self-encoding
and self-regular black hole.

6.1.3 Minimal length
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Figure 6.3: The self-regular black hole in n = 0
with di�erent choices of α.

The self-regular black hole solves the BH–
particle duality problem, proposed in sec-
tion 3.1. While there is qualitatively no
di�erence for �xed α in di�erent numbers
of dimensions n to the holographic mass-
length �gure 5.3, one can display the e�ects
of the choice of α. Figure 6.3 shows this ex-
emplary in four dimensions. For increasing
α, the outer horizon approaches the blue
Schwarzschild radius ML̃. Again, the in-
ner cauchy horizon r− < L∗ is physically
not relevant. Self-completeness of gravity
is ful�lled.
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6.1.4 The regular core

According to the curvature considerations for general pro�les H(r) in section 4.3.2, the self-
regular metric o�ers a non-diverging curvature at the origin. One can give an estimation for
R(0) based on the taylor expansions of the self-regular pro�le hα(r) at r = 0:

hα(r) = (r/L∗)
3+n +O

(

(r/L∗)
2(3+n)

)

, h′
α(r) ≈ (r/L∗)

2+n , h′′
α(r) ≈ (r/L∗)

1+n (6.13)

Inserting this into R(r) for H(r), equation (4.28b) gives a �nite value for R(0) as soon as
α > 0, c.f. �gure 6.4. This is the reason for the name of the “self-regular metric”. In general,
black holes with no curvature singularity at the origin are called “regular” [?, 3].

Holographic
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Schwarzschild
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Figure 6.4: The curvature scalar
R with n = 0 and GM = 1
for the holographic (red) and self-
regular model (blue and black).
While the curvature diverges for
the holographic black hole, any
value of the self-regular black
hole archieves a �nite valueR(0).

To learn more about the origin of the regularity, one can investigate the limit α → ∞,
plotted in �gure 6.5. At α → ∞, the two constituent metrics of the black hole clearly stand out.
For simplicity, one should discuss the case in n = 0 andM = M∗. It is

lim
α→∞

g00 =

{

1− 2GMr2 , r < L

1− 2GM
r

, r > L.
(6.14)

Recognize the de Sitter space gravitational potential from section 2.2.3,

g00 = 1− Λ

3
r2, (2.31 revisited)

with positive cosmological constant Λ = 2/3GM and positive constant curvature R = 4 (cf.
�gure 6.4). This is called the de Sitter core since for physical meaningful theories, r < ∞.

What is the meaning of the cosmological vacuum solution like de Sitter in the context of
quantum black holes? EFE relate the space-time encoding Einstein tensorGµν to the matter en-
coding Stress-energy tensor Tµν . In this thesis, the term dual theory is frequently encountered,
which means shifting contributions betweenGµν and Tµν . In this context, the dual theory to de
Sitter space-time as a solution of EFEs with cosmological constant and zero energy momentum
tensor Tµν is EFE without cosmological constant but shifted contributions inside the energy
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Figure 6.5: g00 forM = 1 and dif-
ferent choices ofα ∈ {0, 20}. The
blue curve shows the limit α →
∞. Color saturation encodes the
α scale. The special self-encoding
choice α = α0 is highlighted as
green line (as in �g. 6.2). For de-
tails of the α choice, see Apx. C.

momentum tensor. This idea goes back to Dymnikova [26], but is also already discussed in
text books as vacuum polarisation [51, p. 411]. In the quantum picture, this is interpreted as
the quantum vacuum and is characterized by its outward pressure we were encountered with
already at the time of the derivation of the black hole, equation (4.10) that de�nes the tangential
pressure as

p = ρ+
r

n+ 2
∂rρ > 0. (6.15)

One can imagine this type of pressure as the one driving a Fermi gas and refer to it as de-
generacy pressure. This kind of pressure also prevents the G-lump from collapsing in its own
gravitational inward pressure. For a review about regular interiors of Schwarzschild-like black
holes with T 0

0 = T 1
1 , see also [27].
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6.1.5 The Bardeen black hole

The Bardeen black hole (reviewed e.g. in [3]) was one of the �rst regular black hole solutions
examined in literature. It is described by the gravitational potential

V (r) =
2Mr2

(r2 + e2)3/2
= 2

M

e

1

(1 + e2/r2)3/2
. (6.16)

The Bardeen metric is a special case of the self-regular black hole with parameters

n = 0, α = 2 and r̃0 = 21/αe, (6.17)

where e is an electric charge (with the Coulomb constant (4πǫ0)
−1 ≡ 1). Apparently, the

Bardeen black hole is not self-encoding, as α0 6= 2.
The Bardeen black hole was found to cure the nacked singularities of the Reissner Nord-

ström (RN) black hole. While this thesis does not cover charged black holes, the geometry of
the RN black hole is tightly connected to the self-regular black hole. The RN metric describes
a static nonrotating black hole with electrical charge e in d = 4 (with G = 4πǫ0 = c = 1) and
its gravitational potential is given by

V (r) =
2M

r
− e2

r2
= 2

M

e

z − 1

z2
with z = r/e. (6.18)

Figure 6.6 compares the RN black hole with the Bardeen black hole. In this �gure, one sees
that the hyper-extreme case M < e is replaced by G-lumps, giving �at space for M/e → 0.
Therefore, the Bardeen black hole cures both the naked singularity as well as the repulsive
gravity regime (g00 > 1).
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Figure 6.6: The Reissner-Nordström
gravitational potential for di�erent
mass-charge ratios M/e, compared
with the Bardeen solution for the same
mass-charge ratios (dashed lines).

Further details and analogies are discussed in the next section about the conformal structure
of the self-regular black hole.
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6.1.6 Conformal Structure

It is often helpful to transform coordinates in a way that the global structure of space-time
is mapped on a �nite diagram. If this mapping is conformal (preserving angles locally) and
two-dimensional, such diagrams are called (Carter-)Penrose diagrams [35, 51, 80].

The three Penrose diagrams that represent the three possible space-times presented in sec-
tion 6.1.1 are displayed in �gure 6.7. It is the diagram of a regular black hole which resembles
the structure of the Reissner Nordström (RN) black hole.

One can discuss the Penrose diagrams shortly without going into detail how to �nd the
maximally extended space-time that describes space-time everywhere, taking up the distinction
of cases in section 6.1.1. Figure 6.7 contains three panels:

(a) The G-lump is probabily the biggest archievement for the description of a charged black
hole (RN), as it cures the naked singularity. In the context of phyics at the Planck scale,
the G-lump is the candidate for representing particles that only interact gravitationally.

(b) The conformal diagram for the maximally extended black hole is periodic on the verti-
cal axis on in�nite extend (“isometric” regions). There are three classes of regions: the
untrapped and asymptotically �at space time region I. The timelike region of trapped sur-
faces II, characterized by r− < r < r+, connects outer I and core III regions. The again
space-like and untrapped region III is hyperbolic, as dominated by de Sitter behaviour.
Note that in this space-time, it is possible to wrap around the universe by starting from I,
travelling II and III and leaving the black hole near zone again over II to I, all inside a
causal light-cone with 45◦ angles.

(c) The extremal situation also made the singularity accessible from outside by travelling
from region I to III. This is cured with a regular origin.
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(b) non-extremal black holeM > M∗
(a) G-lumpM < M∗

(c) Extremal black hole M = M∗

Figure 6.7: The penrose diagrams of the regular black holes, after [3,36,54]. x is a dimensionless
coordinate x = r/r̃0 and x2 = r+/r̃0 is the outer horizon, while x1 = r−/r̃0 is the inner horizon.
x0 = r0/r̃0 is the extremal horizon. 65



6.2 Thermodynamics

The thermodynamics of the self-regular black hole arise from the equations given in section 4.4.
All quantities are derived by inserting the self-regular pro�le hα(r) in the equations derived in
section 4.4 for general H(r). As in the sections before, a close comparison to the holographic
black hole thermodynamics from section 5.2 will be made.

Note that in this section, rH always represents the outer horizon r+ > L∗ which is the
physical meaningful horizon for calculating thermodynamics of the self-regular black hole.

n 0 1 2 3 4 5 6 7

rC 1.97 1.46 1.34 1.29 1.26 1.25 1.23 1.22
T (rC) 0.024 0.07 0.13 0.19 0.25 0.32 0.39 0.45

Table 6.2: Numerical values for the critical radii rC and maximum temperature T (rC) for di�er-
ent extra dimensions n, according to eq. (6.21) and (6.19). Values are given for the self-encoding
(α = α0) self-regular black hole in nd Planck units (as multiples L∗).

6.2.1 Hawking Temperature

The Hawking Temperature of a self-regular black hole with radius rH in n LXDs is determined
by (4.39) to

TH =
1

4πrH

(

1 + n− (L∗/r)
4+n

1 + 1
α
(L∗/r)3+n

)

. (6.19)

Below r . 3L∗, the temperature di�ers signi�cantly from the Schwarzschild temperature.
There is a maximum temperature at a critical radius rC (indicated by the dots in �g. 6.8, nu-
merical values are given in table 6.2), and for smaller radius the black hole cools down until it
reaches zero temperature at r0. The self-holographic metric produces therefore cold remnants.

6.2.2 Heat capacity

The heat capacity of a self-regular black hole with radius rH in n LXDs is determined by 4.42
to

C = −4πr2+n
H

Mn+2
∗

2−
3+n
α (2 + r−α)

3+n
α

+1
(r−α − (1 + n))

r−2α − 2(1 + n) + r−α(1 + 3α + nα− 1)
. (6.20)

The critical radius can be determined by evaluating the extremal temperature condition
(4.44):

rC = 2
1

α

(√

(3 + n)(3 + n+ α(2 + 3α + (α− 2)n)) + (n− 1)− α(3 + n)
)− 1

α

L∗ . (6.21)

The critical radius was used to rescale the abscissa in �gure 6.9, so (rH − rC)r0 is displayed.
Thus it is easier to compare C for a di�erent number of dimensions. Numerical values for rC
are given in table 6.2.
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Figure 6.8: Temperature of the self-encoding self-regular black hole for di�erent extra dimen-
sions n (solid curves) in comparison to the holographic black hole temperatures (dot-dashed
curve).
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compared with the holographic black holes (dot dashed lines), in di�erent extra dimensions n.
For each curve, the x-axis is shifted to the corresponding critical radius rC (given by eq. 6.21)
and scaled by the horizon length r0 (given by eq. 6.7).

67



6.2.3 Entropy

The self-regular metric also does not possess a logarithmic entropy correction like the holo-
graphic metric (section 5.2.4), but a hypergeometrical one,

S = 4πMn+2
∗

(

r2 + 2F1

(

−2 + n

α
,−3 + n

α
, 1− 2 + n

α
;− 1

2rα

))

. (6.22)

This entropy modi�cation is incompatible with most quantum gravity approaches, which
predict logarithmic entropy corrections [61].

6.3 Modi�ed �eld equations

The nonlocal operator can be derived for the self-regular model by inserting hα(r) into the
integral for A−2 as given in (4.57). For convenience, switch to a new dimensionless notation,
L′ := L∗/2

1/α and z = r/L′, q = pL′. With that notation, all poles will have radius 1 on the
complex plane. The integral reads:

A−2(q2) =
3 + n

(2π)3+n

i

2q
︸ ︷︷ ︸

f0

∫ ∞

−∞
dz

[
z1+n

(1 + zα)
3+n
α

+1

︸ ︷︷ ︸

f+

Θ(z) +
(−1)(−z)1+n

(1 + (−z)α)
3+n
α

+1

︸ ︷︷ ︸

f−

Θ(−z)

]

e−iqz.

(6.23)
As with the holographic model, choose f+(z) = −f−(−z), so there is only need to discuss f+.
Its poles are given by

(1 + zα)
3+n
α

+1 = 0 ⇔ z = (−1)1/α = exp

{
iπ + 2πik

α

}

∀k ∈ N0. (6.24)

For arbitrary choices of α ∈ R≥0, the poles multiplicity in (6.24) is not an integral number. For
the poles determination, this is not a problem, but for calculating residues it is, as themth order
singularity of a function g(z) is given by

Res
z→a

g(z) =
1

(m+ 1)!
lim
z→a

∂m−1

∂zm−1
((z − a)mg(z)) . (6.25)

This equation cannot be easily solved for m := 3+n
α

∈ R, as it would need fractional calculus
to compute non-integer derivatives. This is an open research question not solved in this thesis.
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Chapter 7

Discussion and Conclusion

In this thesis, two self-encoding black hole geometries with their extra dimensional general-
ization are presented. The discussion was preceded by an introducion about several topics, i.e.
general relativity, exact solutions, higher dimensional gravity scenarios and nonlocal gravity.

Considering the geometry of the two self-encoding black holes, the concept of the black
hole remnant is introduced and the parallelism to the charged Reissner-Nordström black hole
is showed. The de Sitter core as quantum vacuum source of outward pressure, stemming against
the gravitational collapse, is introduced. For the self-encoding non-regular black hole, in this
work refered to as the holographic black hole, the curvature singularity is hidden behind a
horizon. This provides a fundamental minimal length in the sense that distances smaller than
the remnant size L∗ at energies bigger than the reduced Planck mass M∗ can not be probed.
As a result, the black hole center as well as sub-Planckian lenghts turn out to be permanently
un-accessible. In addition, the trans-Planckian regime is dominated by neo-classical physics,
described in terms of GR and/or QFTCS.

Regarding the thermodynamics of the self-encoding black holes, the remnants are found to
be cold and stable in terms of a vanishing temperature and non-negative heat capacity. One
�nds logarithmic quantum corrections for the self-encoding holographic black hole in agree-
ment with loop quantum gravity and string theory. The holographic picture leads to area quan-
tization and �nally gives rise to an emergent gravity interpretation that explains the gravity as
an entropic force.

As a last step, the dual theory to the self-encoding black holes is constructed. By means
of �nding the nonlocal operator that, applied on a Dirac delta distribution, produces just the
desired smeared distribution. This is a doorway of bringing the theory on a more fundamental
level.

An appealing property of the geometries in this work is that one can do “paper and pen
physics” without relying on numerical computations from the beginning. With the distinct
feature of extra dimensions, this work pushes our tryings forward on the “route to testable
predictions” [62].
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Appendix A

Embedding diagrams

An embedding diagram displays a 4d spacetime as a three-dimensional diagram. For a spherical
symmetric metric like the Schwarzschild metric, this is straightforward and the result is the
well-known funnel-shaped surface. This surface is not gained by plotting the gravitational
potential, but solving by the following steps.

The starting point is a (modi�ed) Schwarzschild metric,

ds2 = −(1− V (r))dt2 + (1− V (r))−1dr2 + r2dθ2 + r2 sin2(θ)dφ2 (2.28 revisited)

with gravitational function V (r). Now setting the constraints dt = dθ = 0 and θ = π/2 yields
the two dimensional metric

ds2 =
(

1− V (r)
)−1

dr2 + r2dφ2 (A.1)

In order to display a plot in �at 3d cylindrical coordinates (r, φ, z), the metric (A.1) shall match

ds2�at = dz2 + dr2 + r2dφ2. (A.2)

The transformation function z(r) is gained by requiring ds
!
= ds�at. One gets

dz2 =

(
1

1− V (r)
− 1

)

dr2. (A.3)

Now assuming that z(r) is at least a C2 function allows to compute dz
dr

=
√

dz2

dr2
and therefore

∫ z

0

dz′ =

∫ r

0

dr′

√

1

1− V (r′)
− 1 (A.4a)

⇔ z(r) =

∫ r

0

dr′

√

V (r′)

1− V (r′)
(A.4b)
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The �nal integration (A.4b) determines the function z(r) up to an integration constant. For
example, for Newton’s gravitational function V (r) = 2GM/r, the embedding diagram ordinate
z(r) is given by

z(r) = 2
√
2GM

√
r − 2GM. (A.5)

It can therefore be plotted in the range r ∈ (rH ,∞). Below the Schwarzschild horizon rH =
2GM , the ordinate z gets complex. Therefore the choice of coordinates (A.2) does not cover
the complete space. In contrast, for the short scale modi�ed black holes from chapters 5 and 6,
z(r) can be computed for R.
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Appendix B

Adjacent physical theories

This annexed chapter contains brief section about theories which did not make it in the main
text.

B.1 Alternative extradimensional gravity approaches

In section 2.3, the large extra dimension scenario was proposed. While this term is usually used
synonymously for the ADDmodel, anothermodel with a large extra dimensionwas proposed at
the same time, the Randall-Sundrummodel. The historical predecessor for the extradimensional
idea was Kaluza Klein theory, which proposes extra dimensions at the Planck scale (thus not
large). A brief overview about these two theories is given at this point for completeness.

B.1.1 Kaluza Klein theory

Extending gravity to higher dimensions has a long history. First suggestions go back to Nord-
ström and Kaluza [34] that proposed extra dimensions to unify gravity and electromagnetism.
In 1921, they published a formulation today known as Kaluza Klein theory (KK theory), where
Kaluza introduced one space-like extradimension and a scalar �eld φ (corresponding to a new
particle). KK theory is capable of be producing both Einstein �eld equations and Maxwell equa-
tions at once. This works with any four dimensional metric gµν which is put in the �ve dimen-
sional extension according to

gMN =

[
gµνe

φ/
√
3 + e−φ2

AµAν e−φ2

Aν

e−φ2

Aµ e−φ2

]

. (B.1)

To clarify the notation: In equation (B.1), a block matrix notation was used to build up the
5×5 “matrix” gMN by means of the 4×4matrix gµν . The �fth colum is spanned by four entries
e−φ2

A0, . . . , e
−φ2

A3 and e
−φ2

, while the �fth row is spanned by four entries e−φ2

A0, . . . , e
−φ2

A3

and e−φ2

.
The Einstein �eld equations (2.32) for d = 5 are a system of 25 equations that decouple to

three independent �eld equations: The ordinary 4d Einstein equations with a modi�ed (e�ec-
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tive) 4d energy momentum tensor T̃µν ,

Rµν −
1

2
gµνR = −8πGT̃µν , with T̃µν =

1

4
e−

√
3φFµσF

σ
ν +

∂µφ∂νφ

2
. (B.2)

The Maxwell’s equations for the �eld Aµ, which read

∂µ∂
νAµ − ∂µ∂

µAν = 0. (B.3)

And a relativistic equation for the scalar �eld φ:

∂µ∂
µφ =

−
√
3

4
e−

√
φFµνF

µν . (B.4)

Note that in this theory, the gravitational coupling constantG remained untouched (Gd := G4).
The �fth dimension is supposed to be compacti�ed on microscopic scales (cf. �gure 2.2).

B.1.2 Randall-Sundrum scenario

The Randall-Sundrum (RS) model was proposed in 1999 and also implies the existence of one
large spatial extra dimension. In contrast to KK, the �fth dimension has constant negative
curvature (AdS). The �ve dimensional line element is given by [43]

ds2 = e−2krc|y|gµνdx
µdxν + r2cdy (B.5)

with gµν the 4d space time, k ∼ 1/L2
∗ a parameter of the order of the fundamental Planck scale

L∗, y the extra coordinate and rc the compacti�cation radius of the extra dimension. The RS
metric can be derived like KK from the 5d EFEs with negative cosmological constant.

The RS (and KK) scenario are mentioned only for the sake of completeness and to show
alternatives to the following ADD model which is the �rst one proposing large extra dimen-
sions. Historically, the RS model is one year younger than the ADD model and also addresses
the Hierarchy Problem by giving rise to an e�ective 4d Planck mass

M2
Pl = (1− e−2krc)M3

∗/k. (B.6)

A review of the RS model in the context of micro black holes is given in [43].
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B.2 Quantum Gravity black holes

This section gives a two-page overview about black holes in di�erent quantum gravity ap-
proaches and their relationship to this work. It primarily follows the “six families of black
holes” proposed in [63] and closes with String theory, which is certainly the most popular can-
didate for QG.

B.2.1 Non-local gravity black holes

These approaches are based on a nonlocal �eld theory by means of a nonlocal contribution to
the geometric part of the Einstein �eld equations. In [54, 57], this is done with a derivation
operator F−2(�) acting on the Einstein tensor in a way that

F−2(�
x
/Λ2

G)

(

Rµν −
1

2
gµνR

)

= −8πGNTµν , (B.7)

with a function F−2 of the generally covariant D’Alambert operator �
x
acting on space-time

vectors x which is scaled by the energy scale ΛG of that theory, resulting in a dimensionless
operator �

x
/Λ2

G.
This goes back to nonlocal action modi�cations in gravity proposed by Barvinsky [9, 10].

Actually, such an approach is also used for curing divergences and formulating a pertubative
super-renormalizable theory of quantum gravity [53].

Section 3.3 discusses nonlocal gravity in detail.

B.2.2 Noncommutative black holes

Noncommutative geometry (NCG) suggests a “fuzzy” spacetime by imposing a commutation
relation on the quantum-mechanical position operator xµ. In terms, this reads

[xµ,xν ] = iθµν (B.8)

with the matrix θµν > 0 imposing the “discretization” of space-time. This idea leads to a space-
time uncertainty and �nally to a gaussian energy density approach as dirac replacement in the
noncommutative inspired Schwarzschild solution,

ρθ(r) =
M

(4πθ)3/2
e−r2/4θ. (B.9)

From this equation one can read that r ∼
√
θ corresponds to the length scale where noncom-

mutative e�ects get strong. Funny enough, the metric produced by (B.9) possesses a regular
core [60] like the one contrieved in chapter 6.

A in-depth review about Noncommutative black holes is [56]. The �rst extradimensional
extension from Rizzo 2005 [70] actually determines the syntax and conventions in this thesis,
considering extra dimensions.
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B.2.3 Generalized Uncertainty Principle black holes

The generalized uncertainty principle (GUP) is perhaps the closest approach to create a “match-
ing” picture 3.2. It can be formulated by suggesting as well a modi�ed Compton scale as a
generalized event horizon [5, 16, 17] and states, in the simplest form

∆x∆p ≥ ~

2

(
1 + αx2 + βp2

)
. (B.10)

Note that for α = β = 0, this is the Heisenberg uncertainty principle. By means of a Hilbert
space representation [44], for α = 0 on can deduce a modi�ed momentum integration measure
where p ∼

√
β plays the role of a high energy regulator, it is [44]

1 =

∫ +∞

−∞

dp

1 + βp2
|p〉〈p| . (B.11)

This enables computing the Schwarzschild black hole in the GUP scenario. To do so, the GUP
must be stated for vector operators. It follows that (B.11) basically holds for any numberm ∈ N

of spatial dimensions [39, 44]

1 =

∫ +∞

−∞

dmp

1 + βp2
|p〉〈p| with p = ‖p‖ . (B.12)

The modi�ed position space integration measure de�nes the nonlocal operator A−2 for the
(quantum-modi�ed) matter part of the GUP Schwarzschild black hole. It is introduced by
means of the momentum representation of the Dirac delta distribution which constructs the
Schwarzschild black hole:

Tµν = −MA−2(�)δ3(~r)
!
= − M

(2π)3

∫
d3p

1 + βp2
ei~x·~p (B.13)

The nonlocal GUP operator in 4d spacetime therefore reads

A(�) = (1−�)1/2 (B.14)

and ful�llsA → 1when� → 0. The GUP e�ect (B.13) on a point-like mass distribution creates
smeared energy densities [39, 40]

ρβ(r) =
M

(2π)3

∫
d3p

1 + βp2
eix·p. (B.15)

Suprisingly, there also is a link to this thesis: Densities like (B.15) have been extended to higher
dimensions [12,22,41], and the integration technique to solve nonlocal operators introduced in
chapter 4.5 turned out to be successful to compute fourier transformations of GUP operators.
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B.2.4 Loop Quantum black holes

Loop Quantum Gravity (LQG) is the competitor for String Theory that has the major advantage
of preserving background-independence, as this is a major pillar of general relativity. Therefore,
LQG cannot be a pertubative expansion of Quantum GR by means of g̃µν = gµν + hµν , since
this would distinguish a special �xed classical background metric gµν . The main principle in
LQG is general covariance paired with quantum principles. Contemporary formulations use a
graph as basic principe, a network (the “foam”) with spacetime points as vertices and a discrete
minimal length distance as edges and therefore re�ned the building word loop QG. According
to Asthekar, “loops play no essential role in the theory now, for historical reasons, this name is
widely used”; there lies the close relationship to lattice gauge theories, as closed loops resemble
Wilson plaquettes [71, 79].

It is a long way from Loop Quantum Gravity to Loop Quantum black holes (LQBHs), and
contemporary research about LQBHs is fairly less “descriptive” than the black holes modi�ed
by the principled mentioned before. See e.g. Modesto [52] who, amongst other things, �nds
out after a lengthy calculation that the Schwarzschild curvature singularity is no more present
in LQBH.

Note that a particularly signi�cant result is a fundamental explanation of the black hole log-
arithmic entropy correction that was predicted by Wilson. The logarithmic black hole entropy
term is discussed section 5.2.4.

See the texts of Thiemann [77, 78] and Ashtekar [4] for an pedagogical review about LQG.
For a pedagocigal introduction with focus on spin foams, see [66].

B.2.5 Asymptotically safe gravity black holes

Asymptotically safe gravity is built on a running coupling G(k) which is the result of renor-
malization group treatments; general covariance is maintained with this approach. The basic
idea is to make gravity an e�ective theory at momentum scale k and therefore be safely able to
do physics with momenta k′ ≫ k.

Applied to black holes,G(r) takes the place of Newton’s contant in the Schwarzschildmetric
[29]. Thus it is possible to get black hole remnants that resemble the holographic pro�le we
encounter in the next sections.

For introductory papers, see e.g. Reuter [15, 69] and the review [64] by the same author.

B.2.6 Black holes in String Theory

String Theory is the theory of quantum-mechanical relativistic one-dimensional “vibring strings”
(like waves), and according to the popular picture, di�erent excitation energies correspond to
di�erent point-like particles postulated by the standard model of particle physics. The term
“String Theory” is usually used similary to superString Theory, that is, String Theory including
supersymmetry (SUSY, a symmetry that relates each boson to its superpartner, the fermion, and
vice versa). The existence of extra dimensions, as introduced in section ??, is actually predicted
by String Theory. String Theory is most criticised because its large number of solutions and
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especially because the dependence on a background spacetime which explicitly breaks general
covariance. On the other hand, String Theory only needs one fundamental minimal length scale
ℓ0 and may be treated pertubatively.

Considering black holes, String Theory is especially able to make statements about extremal
black hole situations, as we will encounter in the next chapter. The enticing recast of an ex-
tremal black hole as a particle is unique to String Theory. String Theory also predicts a loga-
rithmic entropy correction as LQG does [76].

String Theory is handled e.g. in the book of Kiefer [46], black holes in String Theory are
discussed in [50]. Probably a good closing overview over all approaches gives the review arti-
cle [45].
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Appendix C

Distribution pro�les at a glance

The choice H(r) = h(r) is called holographic model and the choice H(r) = hα(r) is called
self-encoding model in this thesis. They are distinguished by the index α on the h. Of course,
one could also introduce a symbol like hn(r) to account the fact that the models scale with n,
so eventually the symbol is arbitrary.

In this appendix, the full forms in the dimensionless notation z = r/L are given. Since
the models H(r) represent a smeared Theta function, they are dimensionless, and the identity
H(r) = H(r/L) shall represent the fact that H(r) is actually a function of r/L and can be
expressed in the dimensionless coordinate H(z):

h(r) =
r2+n

r2+n + L2+n
h(z) =

1

1 +
(
1
z

)2+n =
z2+n

z2+n + 1
(C.1)

hα(r) =
r3+n

(rα + Lα/2)
3+n
α

hα(z) =
1

(
1 +

(
1
z

)α
/2
) 3+n

α

(C.2)

The derivatives appear in many places and are therefore denoted here. Since df
dr

= df
dz

dz
dr

= 1
L

df
dz
,

one can always substitute H ′(r) = H ′(z)/L. It is important to remember this fact: H ′(r) 6=
H ′(z). In the end, this is because the Lagrange di�erential operation notationH ′ is not unique.

h′(r) =
(2 + n) r1+nL2+n

(r2+n + L2+n)2
h′(z) =

(2 + n)
(
1
z

)3+n

(

1 +
(
1
z

)2+n
)2 = (2 + n)

h2(z)

z3+n
(C.3)

h′
α(r) =

(3 + n)Lαrn+2
(
Lα

2
+ rα

)−n+3

α

Lα + 2rα
h′
α(z) =

3+n
2

(
1
z

)α+1

(
1 +

(
1
z

)α
/2
) 3+n

α
+1

(C.4)

The dimensional analysis allows to resemble the powers of L in any expression written in
terms of z. For example, the quantity H ′(z)/z has the unit 1/L2 and therefore H ′(z)/(zL2) =
H ′(r)/(rL).
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Figure C.1: Plots of the pro�les h(r) and hα(r) as well as their derivatives. The panels C.1e
and C.1f show the choices of α that result in uniformly spaced curves when choosing a set of
α values for plotting hα(r̃0) in �gure 6.1 or g00(r0) in �gure 6.5.
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Appendix D

n-spheres

n-sphere is the common name for spheres in higher dimensions. To avoid confusion with the
rest of the thesis, in this appendix instead of n, the letter d will be used to indicate the number
of dimensions under discussion.

To point the emergence of d-spheres in this thesis, the d-dimensional volume integral in
eucledian space is evaluated in spherical coordinates ki = (r, φ, θ1, . . . , θd−2), following Wag-
ner [79]:

∫

ddr =

∫ ∞

0

dr rd−1

∫ 2π

0

dφ
d−2∏

j=1

∫ π

0

dθj sinj(θj)

︸ ︷︷ ︸

=an−2, since (n−2)−Surface

=
2πd/2

Γ
(
d
2

)

∫ r

0

dr rd−1 := Ωd−1r
d := Vd

(D.1)
where Γ(x) is the Euler Gamma function, either given by the integral

Γ(x) =

∫ ∞

0

dt tx−1e−t ; incomplete version: γ(s, x) =

∫ x

0

ts−1etdt. (D.2)

or as the extension of the factorial function x! to C, using the recursion relations

Γ(x) = (x− 1)!

Γ(x+ 1) = xΓ(x).
(D.3)

A notable special value of the Gamma function is Γ(1/2) =
√
π. The integration of the d − 2

angles is done with the help of the identities

B(x, y) =

∫ 1

0

dt tx−1(1− t)y−1 =
Γ(x)Γ(y)

Γ(x+ y)
(D.4)

∫ π

0

θj sinj(θj) =

√
π Γ

(
j+1
2

)

Γ
(
j+2
2

) . (D.5)

The d-sphere Sd with radius r is de�ned in an d-dimensional manifold (in this work always
the eucledian space) by the set

Sd = { ‖x‖ = r | x ∈ R } (D.6)
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d 0 1 2 3 4 5 6

Vd 0 2 π 4
3
π 1

2
π2 8

15
π2 1

6
π3

Ωd 0 2 2π 4π 2π2 8
3
π2 π3

Table D.1: Volume and surface area prefactors of d-Spheres. The numerical factors can be
computed by evaluating eq. (D.7).

The d-sphere is important for integration in spherical coordinates without angular depen-
dence (isotropy or spherical symmetry). Integrating out the angles in a d-dimensional volume
integration results in the surface area of the (d − 1)-sphere, embedded in the d-dimensional
space. The value of the d-ball and its corresponding (d − 1)-sphere can be given as a closed
formm expression

Vd = rd
πn/2

Γ
(
d
2
+ 1

) and A(d−1) =
dVd

dr
=

πd/2

Γ
(
d
2
+ 1

)d rd−1 = 2
πd/2

Γ
(
d
2

)rd−1 (D.7)

There also exists recursion relations for determining Vd and Ad by their lower dimensional
values:

Prefactors:
Vd = vdr

n

Ad = adr
n Recursion:

v0 = 1, vd+1 = ad/(d+ 1)

a0 = 2, ad+1 = 2πvd
(D.8)

In the main text, the r-dependence of the spheres is typically split up in favour to dimen-
sionless constants Ω· by

Ad := Ωdr
d and Vd = Vdr

d. (D.9)

For numerical values of Ωd and Vd, see table D.1.
As an example, consider the three dimensional space d = 3. Integrations in 3 dimensions

can be performed in spherical coordinates, making use of a 3 ball with radius r. Acccording to
(D.9), the surface element of the 2-sphere then is 2πr2.
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Appendix E

Details of the spherical symmetric

d-dimensional FT

This appendix ties up with section 4.5.1, where the d-dimensional Fourier Transformation is
reduced to a one dimensional one for functions V (~x) which ful�ll V (~x) = V (|~x|).

The 3d case is actually well known in literature and is given here just for completeness
and simpler readability in section E.1. In section E.2, we discuss about entire function aspects
of Θ(z).

E.1 Review of the 3d Fourier transformation

We start the derivation in d = 3 total spatial dimensions (~r ∈ R
3). Let V = V (r) with r = |~r|

be a radially symmetric potential. Then it’s fourier transformation is given by:

V̂ (p) =
1

(2π)3

∫

d3r e−i~r·~p V (r) (E.1a)

=
1

(2π)3

∫ ∞

0

dr

∫ π

0

r2 sin θ dθ

∫ 2π

0

dϕ V (r) e−ipr cos θ2 (E.1b)

In line (E.1b) we already wrote the scalar product with an inner angle θ2. We now substitute the
radial angle θ (the θ which is part of ~r = (r, θ, ϕ)) integration with a cos θ integration. This can

be done because d cos θ
dθ

= − sin θ and so
∫ π

0
sin θdθ = −

∫ 1

−1
d cos θ :=

∫ 1

−1
dx. We now identify

cos θ := x with cos θ1 because they share the same domain, actually θ, θ1 ∈ {0, π} (this is a
standard procedure, one can also argue with rotating the coordinate systems). Integrating out
∫ 2π

0
dϕ = 2π in mind, we continue with:

=
2π

(2π)3

∫ +1

−1

dx

∫ ∞

0

dr r2 e−irpxV (r) (E.1c)

=
1

(2π)2

∫ ∞

0

r2 dr V (r)

[
1

−ipr
e−iprx

]+1

−1

(E.1d)
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=
1

(2π)2
i

p

∫ ∞

0

r dr V (r)
{
e−ipr − e+ipr

}
(E.1e)

=
1

(2π)2
i

p

{∫ ∞

0

r dr V (r)e−ipr −
∫ ∞

0

r dr V (r)e+ipr

}

(E.1f)

In line (E.1f), we splitted the integral, and we now make two recastings: At �rst, switching the

integral borders, which inserts one minus:
∫ b

a
= −

∫ a

b
in (E.1g). Second, another substitution

of the integration parameter r := −r′ and therefore dr = −dr′. The two minus signs kill each
other in (E.1h), so rdr = r′dr′. After substitution, we will call r′ again r, which is totally valid.

=
1

(2π)2
i

p

{∫ ∞

0

r dr V (r)e−ipr +

∫ 0

∞
r dr V (r)e+ipr

}

(E.1g)

=
1

(2π)2
i

p

{∫ ∞

0

r dr V (r)e−ipr +

∫ 0

−∞
r′ dr′ V (−r′)e−ipr′

}

(E.1h)

=
1

(2π)2
i

p

∫ ∞

−∞
r dr e−ipr {V (r)Θ(r) + V (−r)Θ(−r)} (E.1i)

=
1

(2π)2
i

p

∫ ∞

−∞
dr {rV (|r|)} e−ipr (E.1j)

=
1

2π

∫ ∞

−∞
dr v(r) e−ipr (E.1k)

We derived an e�ective one dimensional fourier transformation of the new function (“kernel”)

v(r) :=
i

2π

r

p
V (|r|) (E.2)

For shortness, my usual de�nition of v(r) di�ers from the one given in (E.2) in terms of non-
complex prefactors. For the discussion, equation (E.1i) is the best starting point, as it contains
the Heaviside step functions Θ(±r).

The most important issue with this calculation is the question of holomorphy. In these lines,
Θ(z) must be understood as

Θ(z) = Θ(Re z). (E.3)

This de�nition is intrinsically nonholomorphic. On the other hand, as soon asΘ is implemented
as a smeared distribution, like continuing the integral of a Dirac delta approximation like the
Cauchy distribution, this might be cured. Anyway, there is no ordering relation ≤C in the
complex numbers, so the theta is likely to behave di�erently on the complex plane. In three
dimensions this approach is well known and works.

Whats about the real and complex parts of this fourier transformation? By construction,
V (|r|) is an even function (de�nition: f(x) = f(−x) is even,−f(x) = f(−x) is odd). Therefore
r V (|r|) is an odd function. By Eulers formula eiϕ = cosϕ+ i sinϕ, one quickly �nds that the
Fourier Transform of an even function includes only (also even) cos terms and the complex part
vanishes, while the FT of an odd function only contains sin terms and the real part vanishes.
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The integral in (E.1j) is therefore ony complex,
∫
dr rV (|r|)e−ipr ∈ C \ R. But the prefactor

makes the �nal result in (E.1j) completely real again. This can help as a quick check wether the
computed result of the integral is correct.

E.2 Analytic continuation of the Heaviside step function

The step function Θ : R → R, as given in

Θ(x) =

{

0 when x < 0

1 x ≥ 0
, (4.18 revisited)

obvously cannot be simply extended on the complex plane. Anyway, in section 4.5.1, we already
formulated weaker constraints instead of Θ(z) = Θ(Re z), namely

• Step function behaviour only on the poles which are laid on the unit ring |z| = 1

• Approximate step function behaviour.

• Freedom of poles for Θ(z), so it does not contribute with poles to v(z).

Freedom of poles means, we cannot have a rational function, so all theta approximations intro-
duced in this thesis leave the stage. Such a theta approximation may be given by

Θk(z) =
ϑ0

1 + exp(−2kz)
, and Θ(x) = lim

k→∞
Θk(x) for x ∈ R (E.4)

The normalization constant ϑ0 shall ensure the condition |z| = 1. For �nite k 6∈ N, approxima-
tion (E.4) is free of poles. The constant ϑ0 may be choosed to ensure |z| = 1 at the pole closest
to the imaginary axis Re z = 0. Due to the exponential decay, the approximation gets good for
big k.
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Appendix F

General Relativity formulary

In this section, I use greek lowercase letters (αβ . . . µν . . . ) for all indices which may in general
be running in 4 or 4+n dimensions. Einstein sum convention is used, but summation symbols
are given when special emphazise on the summation is intended.

1. Christo�els for Tensor

Γk
ij =

gkl

2
(∂igjl + ∂jgil − ∂lgij) (F.1)

2. Christo�el symmetry:
Γα
βγ = Γα

γβ (F.2)

3. Symmetric and antisymmetric part of tensors, exemplary for a (0, 2) tensor:

symmetric part T(ab) =
1

2
(Tab + Tba) (F.3)

antisymmetric part T[ab] =
1

2
(Tab − Tba) (F.4)

The general de�nition for the (anti)symmetric part of a tensor is the sum over all permu-
tations, e.g. using the Levi-Civita symbol, see e.g. [80].

4. Covariant derivative for covariant vector t:

∇at
ν = ∂at

ν + Γν
act

c (F.5)

5. Covariant derivative for a (2, 0) tensor A:

∇λA
µν =

∑

δ

∂λA
µν + Γµ

δλA
δµ + Γν

δλA
µδ (F.6)

6. Covariant derivative for a (1, 1) tensor A:

∇aT
b
c = ∂aT

b
c + Γb

adT
d
c − Γd

acT
a
d (F.7)
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7. Energy conservation equation with sums

∑

µ

∇µT
µν =

∑

µ,ρ

∂µT
µν + Γµ

ρµT
ρµ + Γν

ρµT
µρ (F.8)

8. Lowering and raising indices
gβγA

αγ = Aα
β (F.9)

9. Metric identity
gαβgβγ = gγβg

βα = δαγ (F.10)

10. Riemann Tensor
Rδ

σµν = ∂µΓ
δ
νσ − ∂νΓ

δ
µσ + Γδ

µγΓ
γ
νσ − Γδ

νγΓ
γ
µσ (F.11)

11. Ricci tensor (sign is convention)

Rµν = ±Rγ
µγν (F.12)

12. (1, 1)-form of Ricci tensor
Ra

b = gcaRcb (F.13)

F.1 Christo�el symbols for spherical symmetric spacetimes

The Christo�el symbols for a general d-dimensional spherical symmetric static metric, the
parametrization gtt = −(1 − A(r)), grr = 1/(1 − A(r)) and the alternative parametrization
gtt = −eν(r), grr = g−ν(r). The index naming convention follows section 3. f ′ indicates the
derivation ∂rf(r).

Γt
tr = Γt

rt =
1

2
gtt∂rgtt =

1

2

A′

A− 1
=

ν ′

2
(F.14)

Γr
tt =

1

2
grr∂rgtt =

1

2
(A− 1)A′ =

1

2
e2νν ′ (F.15)

Γr
rr =

1

2
grr∂rgrr =

1

2

A′

1− A
= −1

2
ν ′ (F.16)

Γi
ri = Γi

ir =
1

2
gii∂rgii =

1

r
(F.17)

Γi
φφ =

1

2
gii∂igii = − cos(θi) sin(θi) (F.18)

Γφ
rφ = Γφ

φr =
1

2
gφφ∂rgφφ =

1

r
(F.19)

Γφ
φi = Γφ

iφ =
1

2
gφφ∂igφφ =

1

tan(θi)
(F.20)
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