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Supplementary Figure 1 ⎜ No apparent differences between the zebrafish 
pronephros at one and two days post fertilization. The pronephric tubules were 
morphologically similar in one-day- (a) and two-day- (b) old zebrafish embryos. Antibody 
staining for components of the extracellular matrix (laminin), tight junction complex 
(ZO-1), cilia (acetylated tubulin), and aPKC did not reveal morphological differences 
(Scale bars, 10 µm). 
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Supplementary Figure 2 ⎜ Cilia and fluid flow are not required 
for pronephros repair 
(a) Homozygous ift88(-/-) (ovl) zebrafish embryos were injured 3 
days after fertilization, and fixed 2 and 6 hours after wounding. In situ 
hybridization was performed with the pronephros-specific marker 
cadherin17 (cdh17). At this stage, the embryos displayed prominent 
cysts and duct dilatations due to ciliary defects. The gap, clearly 
visible at 2 hours, was repaired 6 hours after injury. The results were 
confirmed in three independent experiments with at least 3 control 
and 3 mutant embryos (Scale bar, 100 µm). (b) Frames from a time-
lapse movie following the recovery in ift88(-/-) (ovl) embryo. The 
laser-induced injury was completely repaired over an 8-hour time 
course (Scale bar, 10 µm).  



Supplementary Figure 3 ⎜ Pronephros repair is independent of EMT. 
In situ hybridization for genes characteristic for epithelial-to-mesenchymal transition (EMT) 
or de-differentiation. Two-day-old embryos were injured, fixed 4 hours after wounding, and 
stained for EMT-typical genes (N-myc, vimentin, snail, netrin and mmp9), or for genes 
characteristic for non-differentiated pronephric cells (pax2.1 and tbx2b). None of the 
markers showed up-regulation in the repair region, outlined by a black bracket. The 
staining for mmp9 and snail was performed in combination with staining for cdh17 labeling 
the pronephric cells in red (Scale bar, 100 µm).  
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Supplementary Figure 4 ⎜ Pronephros repair is independent of Wnt, 
Celsr1 and Par6 signaling.  
(a) In situ hybridization with the pronephros specific marker atp1a1a.4, 
staining injured zebrafish embryo over-expressing the Wnt inhibitor dkk1. The 
pronephros was injured 2 days after fertilization and fixed 16 hours later. The 
injured proximal side (arrow) appears dilated, but recovery was not affected by 
dkk1 over-expression (Scale bar, 100 µm). (b) Frames from a time-lapse 
movie of injured transgenic embryo carrying a TCF response element, driving 
the expression of Red Fluorescence Protein (RFP). Laser ablation caused 
some background fluorescence (red channel) in the injured cells, but no 
specific RFP expression was detectable in neighboring cells displaying a 
migratory response (Scale bar, 10 µm). (c) Quantification of the repair process 
in HSP:dkk1, celsr1 morpholino oligonucleotide (MO) and par6 MO injected 
embryos that were injured 2 days after fertilization and fixed 16 hours post 
wounding. While MO-injected embryos displayed duct abnormalities, repair of 
the pronephros injury was not affected. (d) Injuries ≤ 50 µm in length were 
repaired in 100%, injuries ≤ 100 µm, corresponding to 10-12 cell diameters, 
were repaired in 80%, while no injuries ≤ 150 µm were repaired. 
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Supplementary Figure 5 ⎜ Transcriptional profiles of one- and two-day-old 
zebrafish pronephric tubules.   
(a) Fluorescently labeled pronephric tubules, isolated from cadh17:gfp transgenic 
zebrafish embryos. (b) 3D representation of the changes in the total transcript levels 
between samples from one- (red) and two-day-old zebrafish embryos (blue). Due to 
technical problems, one of the samples from the first group failed to cluster with the 
others probes, and was excluded from further analysis. (c) Density histogram 
representing the distribution of the log2-fold change of all transcripts. The horizontal red 
lines mark the two-fold change limit. (d) Biological process Gene Ontology (GO) terms 
enrichment analysis of the transcripts that were up-regulated more than two-fold in the 
pronephros on the second day of development. Semantically similar categories are 
represented with similar colors. The size of each box reflects the significance of 
enrichment (-log10 p-value). The GO analysis was performed with AmiGO and the GO 
enrichment was graphically represented with REViGO. (e) Comparison with the ZFIN 
Database and expression profiles, focusing on genes that are specifically expressed in 
the zebrafish pronephros at 42-60 hours post fertilization, revealed cxcl12a, myca and 
mafba as potential candidates involved in pronephros repair.   
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Supplementary Figure 6 ⎜ Low-level expression of cxcr4b in pronephric duct cells 
during normal collective cell migration.  
(a-c) Using the cxcr4b:cxcr4b-TFT (GFP = short life-time, RFP = long life-time) zebrafish 
line,  lifetime Cxcr4b was only detectable in the corpuscle of Stannius (outlined) at 48 
hpf, but not in the pronephros. (d-f) The membrane-resident version cxcr4b:mem-TFT, 
which does not respond to Cxcl12a signaling and therefore accumulates at the plasma 
membrane, was detectable in the pronephros (y, yolk) (Scale bars, 10 µm). (g) In situ 
hybridization depicts expression of cxcl12a in the posterior lateral line (white 
arrowheads) and in the pronephros (black arrowheads) in zebrafish embryos at 2 dpf 
(Scale bar, 800 µm). A magnification of the posterior pronephric duct is shown in (h) (c, 
cloaca). (i) Ectopic expression of Cxcl12a, triggered by heat-shock in the double 
transgenic cdh17:GFP; hsp-70:cxcl12a zebrafish line, significantly reduces the ability to 
repair a pronephros injury (means ± SEM; ***, p < 0.001; t-test) .  
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Supplementary Figure 7 ⎜ myca expression in zebrafish 
embryos at 1-3 dpf, and up-regulation of myca in response to 
injury.  
(a) myca was detected by in situ hybridization at 24 hpf in the 
zebrafish pronephros. Insert shows the posterior pronephros region 
close to the cloaca (c, cloaca). myca was strongly expressed in the 
head, the myotomes (arrow) and in the cloaca (magnification, c) at 
this stage. (b) Expression of myca was restricted to the head, the 
somatic furrow (arrow) and the pronephros (arrowheads) at 48 hpf. 
(c) Expression of myca in the somitic furrows declined at 72 hpf, but 
remained stable in the head, pronephros (arrowheads) and in the 
cloaca (c). (d) myca was up-regulated in the pronephric duct cells 
adjacent to a laser-induced wound at 48 hpf (magnification; c, 
cloaca) (Scale bars, 50 µm).  
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Supplementary Figure 8 ⎜ Splice-blocking morpholino oligonucleotide (SBM) 
directed against myca results in intron inclusion.  
(a) The splice-blocking morpholino oligonucleotide (SBM) directed against myca targets 
the intron1-exon 2 junction and results in intron inclusion (myca+in1), and leads to a 
STOP codon shortly after. (b) The intron inclusion event is detectable by PCR in myca 
SBM injected embryos as a higher molecular weight band (myca+in1) compared to control 
MO injected embryos. (c) While myca mRNA partially rescued the repair defect caused by 
myca SBM MO, an inactive GFP mRNA (200 ng/µL) did not significantly reduce the repair 
defect. (d) Mutant *myca mRNA (150 ng/µL), containing four nucleotide substitutions to 
prevent binding of the translation-blocking morpholino oligonucleotide (TBM), did not 
significantly rescue the repair defect caused by the myca translation-blocking MO (TBM) 
(mean ± SEM;  **, p < 0.01; ***, p < 0.001; n.s., not significant; t-test).  
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Supplementary Figure 9 ⎜ Zebrafish myca depletion causes a repair 
defect characterized by abnormal migratory behavior.  
(a) Single frames taken from the Supplementary Movie 8. Depletion of myca 
prevented the reversal of the posterior-to-anterior cell migration at the 
proximal side of the injury, resulting in a failure to repair the injury. (b) Single 
frames taken from the Supplementary Movie 9. Depletion of myca prevented 
the repair within 8 hours after a laser-induced injury. Instead of rapidly 
repairing the injury by a migratory response, the myca-deficient pronephric 
duct cells remained stationary. 
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Supplementary Figure 10 ⎜ A zebrafish myca mutant displays a repair defect.  
(a) The depicted myca-ex2 gRNA (NGG, canonical protospacer adjacent motif (PAM) 
sequence) was used to induce a 20-bp deletion in the second exon of myca. F0 
founders were crossed with wt1b:GFP; cdh17:GFP transgenic zebrafish. F1 
heterozygous fish, which carried the 20-bp deletion, were outcrossed to establish a 
heterozygous line. The F2 heterozygous animals were in-crossed to generate 
homozygous myca Δ20 zebrafish embryos. (b) Alignment between wild-type and 
mutant myca depicts the 20-bp deletion within the second exon. (c) Sequencing 
results of wild-type and the myca Δ20mutant zebrafish line. (d) Heterozygous myca+/- 
zebrafish were crossed, and injured two days post fertilization. A total of 51 embryos 
from three independent experiments were genotyped. While 25% of mutant myca-/- 
zebrafish embryos did not repair, none of the heterozygous myca+/- or wild-type 
myca+/+ (ctl, controls) revealed a repair defect  (Fischer’s exact test, two-tailed p 
value).  



Supplementary Figure 11 ⎜ Kidney-specific elimination of Cxcl12 
does not impair renal function at baseline.  
(a) Male mice at the age between 10-12 weeks with the genotype Cxcl12fl/

fl*Pax8rtTA*TetOCre (n=5) and control mice (n=5) with the genotype 
Cxcl12fl/fl*Pax8rtTA were treated with doxycycline (2 mg/mL for 2 weeks) 
to induce the renal tubule-specific excision of Cxcl12, followed by a 
doxycycline wash-out period of one week. There was no difference in urea 
levels immediately before the ischemia/reperfusion injury (mean ± SEM; t-
test). (b) and (c) Comparison of tissue sections from control and Cxcl12fl/

fl*Pax8rtTA*TetOCre kidneys showed a normal nephron architecture (1, 
magnification of the square in the cortical region, 2, magnification of the 
square in the medullary region)  (Scale bars, 1 mm and 100 µm).  
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Supplementary Figure 12 ⎜ Kidney-specific elimination of Cxcl12 impairs the 
recovery 12 hours after ischemia/reperfusion injury.  
High-resolution micrographs are depicted that correspond to Figure 6d (1-4). 
Arrowheads and stars highlight intraluminal debris and casts, respectively (Scale 
bars, 100 µm).  
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Supplementary Figure 13 ⎜ Kidney-specific elimination of Myc 
does not impair renal function at baseline.  
(a) Male mice at the age between 10-12 weeks with the genotype 
Mycfl/fl*Pax8rtTA*TetOCre (n=6) and control mice (n=4) with the 
genotype Mycfl/fl*Pax8rtTA were treated with doxycycline (2 mg/mL 
for 2 weeks) to induce the renal tubule-specific excision of Cxcl12, 
followed by a doxycycline wash-out period of one week. There was 
no difference in urea levels immediately before the ischemia/
reperfusion injury (mean ± SEM; t-test). (b) and (c) Comparison of 
tissue sections from control and Mycfl/fl*Pax8rtTA*TetOCre kidneys 
showed a normal nephron architecture (1, magnification of the 
square in the cortical region, 2, magnification of the square in the 
medullary region)  (Scale bars, 1 mm and 100 µm).  
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Supplementary Figure 14 ⎜ Kidney-specific elimination of Myc impairs the 
recovery 12 hours after ischemia/reperfusion injury.  
High-resolution micrographs are depicted that correspond to Figure 6h (1-4). 
Arrowheads and stars highlight intraluminal debris and casts, respectively (Scale bars, 
100 µm).  
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Supplementary Figure 15 ⎜ Differential gene 
expression between control and Cxcl12 KO or Myc 
KO mice.  
Principal component analysis (PCA) segregates control 
mice and mice with (a) kidney tubule-specific excision of 
Cxcl12 (Cxcl12fl/fl*Pax8rtTA*TetOCre) (Cxcl12 KO), or (b) 
kidney tubule-specif ic excision of Myc (Mycfl/

fl*Pax8rtTA*TetOCre) (Myc KO).  
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Supplementary Figure 16 ⎜ Down-regulation of GO terms involved in mitochondrial- 
and metabolism-associated processes in Cxcl12 KO mice. Comparison of control and 
KO mice exposed to ischemia/reperfusion injury reveals significantly down-regulation of GO 
terms involved in mitochondrial- and metabolism-associated processes in both KO mice. 
 

-log10(q-value) 



mitochondrial inner membrane
mitochondrial large ribosomal subunit
mitochondrial small ribosomal subunit

mitochondrial ribosome
mitochondrial translation

mitochondrial respiratory chain complex I
mitochondrial matrix

mitochondrial nucleoid
mitochondrial intermembrane space

metabolic process
mitochondrial respiratory chain complex I assembly

mitochondrial proton−transporting ATP synthase complex
glutathione metabolic process

mitochondrial respiratory chain complex IV assembly
protein import into mitochondrial matrix

mitochondrion organization
mitochondrial proton−transporting ATP synthase complex, coupling factor F(o)

mitochondrial outer membrane
mitochondrial outer membrane translocase complex

mitochondrial respiratory chain complex III
mitochondrial inner membrane presequence translocase complex

transcription from mitochondrial promoter
protein targeting to mitochondrion

mitochondrial fusion
release of cytochrome c from mitochondria

mitochondrial acetyl−CoA biosynthetic process from pyruvate
integral component of mitochondrial inner membrane

ATP metabolic process
nucleotide metabolic process

fatty acid metabolic process
mitochondrial electron transport, NADH to ubiquinone

positive regulation of release of cytochrome c from mitochondria
NADH metabolic process

integral component of mitochondrial outer membrane
mitochondrial fission

cellular protein metabolic process
negative regulation of release of cytochrome c from mitochondria

glutamine metabolic process
mitochondrial respiratory chain complex III assembly

nucleobase−containing compound metabolic process
mitochondrion morphogenesis

retinol metabolic process
mitochondrial calcium ion transport

mitochondrial envelope
lipid metabolic process

mitochondrial electron transport, ubiquinol to cytochrome c
acyl−CoA metabolic process

positive regulation of mitochondrial calcium ion concentration
carbohydrate metabolic process
phospholipid metabolic process

mitochondrial DNA replication
mitochondrial membrane

positive regulation of protein targeting to mitochondrion

−log10(q−value)

0 10 20 30 40 50 60 70

Myc KO 	

Supplementary Figure 17 ⎜ Down-regulation of GO terms involved in mitochondrial- 
and metabolism-associated processes in Myc KO mice. Comparison of control and KO 
mice exposed to ischemia/reperfusion injury reveals significantly down-regulation of GO 
terms involved in mitochondrial- and metabolism-associated processes in both KO mice. 
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Supplementary Figure 18 ⎜ Heat-maps depicting the abnormalities in 
mitochondrial functions in Cxcl12 and Myc-deficient mice. Mice were grouped 
according to their genotype (Cxcl12_WT, Myc_WT, Cxcl12_KO, Myc_KO). Up- and 
down-regulation of genes are color-coded with red depicting up-regulated genes, and 
blue representing down-regulated genes.  
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Cxcl12 KO: Top 25 down-regulated GO terms 

Myc KO: Top 25 down-regulated GO terms 

Supplementary Figure 19 ⎜ Top 25 down-regulated GO terms in Cxcl12 and Myc KO mice.  
GESA of GO term analysis was performed comparing gene expression profiles of control and 
KO mice exposed to ischemia/reperfusion injury.  
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Supplementary Figure 20 ⎜ CXCR4 is 
induced by tretinoin in Jurkat cells.   
(a) Jurkat cells were stimulated with tretinoin 
(RA) in concentrations between 0.1 and 10 µM 
for 24 hours. Western blot analysis was 
performed for CXCR4 and γ-tubulin. (b) 
CXCR4 levels were normalized for γ-tubulin 
levels, demonstrating an increase in CXCR4. 
Representative images from 3 independent  
experiments.  
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Supplementary Figure 21 ⎜ Urinary metabolites suggest abnormal glucose 
metabolism in Cxcl12- and Myc-deficient mice.  
Score plot from PLS-DA applied to 1H-NMR spectra of (a) control versus Cxcl12 KO  (2A, 
R²=0,927, Q²=0,343) and (b) control versus Myc KO (2B, R²=0,878, Q²=0,265) mouse urine 
following I/R injury. The principal component analysis (PCA) identified two outliers in the Myc 
condition (one wild-type and one Myc KO urine) that were excluded from further analysis. (c) 
Representative 1H-NMR and (d) Heteronuclear Single-Quantum Correlation (HSQC) 
spectra of Cxcl12 KO mouse urine. Relevant metabolites are numbered (1: α-hydroxy-
isovalerate,  2,3: leucine, isoleucine, 4: lactate, 5: citrate, 6: glucose). Identification (via 
Metabolite Set Enrichment Analysis) of pathways affected by (e) Cxcl12 KO, or (f) Myc KO. 
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Supplementary Figure 22 ⎜ Defective glycolytic capacity in Myc-
deficient tubular epithelial cells.  
(a) Tubular epithelial cells were isolated from wild-type and Mycfl/
fl*Pax8rtTA*TetOCre mice. After incubation with doxycycline (1.0 µg/ml) for 
24 hours, MYC was almost completely depleted. Representative images 
from 3 independent experiments. (b) For ECAR measurements, wild-type 
and Mycfl/fl*Pax8rtTA*TetOCre renal epithelial cells were treated with 
doxycycline (0.5 µg/ml) for 24 hours, followed by a 24-hour incubation period 
without doxycycline to avoid doxycycline-dependent metabolic effects. Cells 
were then exposed to glucose-free XF24 Seahorse medium for one hour, 
followed by sequential addition of glucose (10 mM), oligomycin (Oligo) (4 
µM) and 2-deoxy-D-glucose (2-DG) (50 mM). ECAR was normalized to the 
protein concentration in each well, revealing a decreased maximal glycolytic 
capacity in Myc-deficient tubular epithelial cells. Measurements were 
performed in triplicates, and depicted as means ± SD.  
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Supplementary Figure 23 ⎜ Uncropped Western blots.  
(a) Western blot depicted in Supplementary Figure 20.  
(b) Western blot depicted in Supplementary Figure 22a.  




