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1 Introduction  

1.1 Oxidized phospholipids in cardiovascular diseases 

1.1.1 Membrane lipids give rise to a variety of oxidation products 

A healthy endothelium maintains the vascular homeostasis and limits the development of 

atherosclerosis (Gimbrone & García-Cardeña, 2016). Activation and subsequent dysfunction 

of the endothelium leads to a vicious cycle of reactive oxygen species formation, 

inflammation and recruitment of monocytes. Reactive oxygen species (ROS) generated by 

inflammatory cells and the endothelium promote the oxidation of phospholipids contained in 

cellular membranes and lipoproteins (Nègre-Salvayre et al, 2017). Such oxidized 

phospholipids further promote endothelial cell activation during the development of 

atherosclerosis. The process of lipid oxidation is well studied for polyunsaturated fatty acid 

(PUFA) side chains of phospholipids in cellular membranes and lipoproteins (Bochkov et al, 

2010). Non-enzymatic ROS-induced lipid peroxidation yields a diverse array of oxidized 

phospholipid (oxPL) species. OxPLs contain phosphatidylcholine, phosphatidylserine or 

phosphatidylethanolamine as headgroup, a saturated fatty acid of variable length at the sn-1 

position and the polyunsaturated fatty acid chain at sn-2 position (Lee et al, 2012b). Oxidized 

1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (oxPAPC) is a mixture of oxPLs 

which contains an arachidonate in the sn-2 position (Figure 1).  

1.1.2 Oxidized phospholipids are associated with atherosclerosis 

These oxPLs accumulate in atherosclerotic lesions and sites of chronic inflammation 

(Tsimikas et al, 2010). Furthermore, higher levels of oxPLs were oberserved in plasma from 

hyperlipidemic animals and levels of oxPLs in human plasma were found to be associated 

with increased risk for coronary artery disease (CAD) (Tsimikas et al, 2010; Bochkov et al, 

2010; Podrez et al, 2007). Additionally, oxPLs can be enzymatically produced by 

myeloperoxidase and 12/15 lipoxygenase and expression of these enzymes is associated 

with atherosclerosis in mice (Nicholls & Hazen, 2009; Cyrus et al, 2001). Increased levels of 

oxPLs were also observed in patients with inflammatory diseases which possess impact on 

cardiovascular health as systemic lupus erythematosus and rheumatoid arthritis (Hahn & 

McMahon, 2008). Furthermore, particles in air pollutants react with oxPAPC which results in 

activation of pro-atherogenic pathways in endothelial cells (Gong et al, 2007).  
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Figure 1: Chemical structure of oxPAPC and effects of oxPLs. 

A: 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) is an arachidonic acid 
containing phospholipid.  Only the sn-2 fatty acid is depicted and R represents the head group 
PAPC. B: Well characterized oxidized products of PAPC (oxPAPC). 1-palmitoyl-2-(5-
oxovaleroyl)-sn-glycero-3-phospho-choline (POVPC), 1-palmitoyl-2-glutaryl-sn-glycero-3-
phosphocholine (PGPC) and 1-palmitoyl-2-(5-keto-6-octene-dioyl)-sn-glycero-3-
phosphocholine (KOdiAPC) are truncated oxPLs generated by the fragmentation of the 
arachidonic acid side chain. 1-palmitoyl-2-(5,6-epoxyisoprostanoyl)-sn-glycero-3-
phosphocholine (PEIPC), 1-palmitoyl-2-(5,6-epoxyisoprostane A2)-sn-glycero-3-
phosphocholine (PECPC) and epoxycyclopentenones (cyclo-EC) emerge from cyclization, 
rearrangement and oxidation of PAPC. Modified from (Freigang, 2016). C: The oxPLs oxidized 
phosphatidylcholine (OxPC), oxidized phosphatidylethanolamine (OxPE), oxidized cholesteryl 
ester (OxCE), malondialdehyde (MDA) and 2-(ω-car-boxyethyl)-pyrrole (CEP) exert adverse and 
protective effects as antagonizing Lipopolysaccharide (LPS) activity (Miller & Shyy, 2017). 

Although oxPLs can activate anti-oxidant and anti-apoptotic pathways, the net effect of 

oxPLs on vascular cells is pro-atherogenic. OxPLs disturb endothelial cells by activating both 

pro- and anti-inflammatory pathways. A typical example for the latter is the oxPAPC-

mediated induction of the protective stress responsive gene  heme oxygenase 1 (HO1) 

(Furnkranz et al, 2005; Gargalovic et al, 2006b). A variety of receptors including CD36, 

scavenger receptor B1, Toll-like receptor 2, Toll-like receptor 4, E-type prostaglandin 

receptor, PAF receptor and TMEM30a are activated by oxPAPC (Lee et al, 2012b; 

Weismann & Binder, 2012). Besides receptor activation, oxPLs incorporate into the plasma 

membrane and change the lipid composition by depleting cholesterol from caveolin-rich 
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membrane fractions, which results in activation of sterol regulatory element-binding protein 

and induction of IL-8 (Yeh et al, 2004; Li et al, 2006; Levitan & Shentu, 2011). OxPAPC 

derivatives are common in oxidized low density lipoproteins (oxLDL). OxLDL derived 

oxPAPC binds to the CD36 scavenger receptor and is readily taken up by macrophage foam 

cells (Berliner et al, 2009; Capoulade et al, 2015; Miller & Shyy, 2017). Thus, oxPAPC is the 

most important mediator of the negative effects of oxLDL. 

Summarizing the studies on oxPAPC, it is suggested that oxPAPC activates stress-protective 

pathways, increases anti-oxidant genes and decreases DNA replication. The long-term 

impact of oxPAPC is pro-inflammatory and angiogenic which contributes to plaque 

destabilization (Lee et al, 2012b). In the development of atherosclerosis, exposure to 

oxPAPC heavily alters the endothelial transcriptome with PEIPC as its most potent effector 

(Romanoski et al, 2011). The response of the endothelium to oxPAPC is overwhelmingly 

complex. To address the complexity of the oxPAPC response in endothelial cells, systems-

based approaches were applied. 

1.2 Network modeling of human aortic endothelial cells 

1.2.1 Integrative network modeling approach 

In the past decades life sciences focused on low-dimensional bi-molecular relationships. To 

understand biology, the system has often been reduced to elementary properties of 

individual components. The emergence and rapidly growing usage of high throughput 

techniques is changing the understanding of biology as a high dimensional complex system 

(Berger et al, 2013). The network modeling approach tries to reflect this complexity and 

simultaneously tries to highlight important traits underlying such a high-dimensional system 

(Civelek & Lusis, 2013). Networks can help to reveal relationships inside omics-data as well 

as to structure omics-data to understand interdependencies between molecular traits, 

biological process, cellular functions and physiology and pathophysiology (Figure 2). 
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Figure 2: Network approach to link high-throughput data to physiology and pathophysiology. 

Information about DNA, RNA, protein and metabolite variation can be modeled into networks of 
interacting molecular entities. In contrast, to directly associate changes in a given gene with 
changes in a disease state, the network defines physiological and disease states and links 
molecular biology to clinical medicine (Schadt, 2009). 

Several explanatory and predictive mathematical models are being used for network 

modeling of biological data. These range from plain interaction networks with nodes 

representing proteins and edges representing physical interaction to complex networks 

representing directed, sequential or mechanistic relationships (Stelzl et al, 2005; Le Novère, 

2015). Commonly used biological networks include co-expression networks, protein-protein 

interaction networks, gene regulatory networks, metabolic networks and signaling networks. 

Predominantly used network inference approaches are based on correlation, information 

theory, Bayesian inference and differential equations. Boolean networks provide state 

information by modeling nodes as binary variables and assigning them to active or inactive 

states (Albert & Thakar, 2014). This parameter-free model enables examining dynamic 

systems, but with fewer mechanistic insights than kinetic models. The appropriate model for 

a biological system depends on scale and dimensionality of the incorporated data as well as 

requirement of prior knowledge. Combination of several of these approaches can increase 

the accuracy of the network. However, data noise, limited sample size and squeezing 

complex biological systems and processes into simplified statistical models can lead to false 

positive results (Marbach et al, 2010). Therefore, experimental validation is necessary to 

support findings derived from systems integrative analysis. 

1.2.2 Co-expression networks define connections between transcriptional 

entities 

Co-expression networks represent a gene regulatory network model, which is based on RNA 

expression derived from, e.g. microarray or RNA sequencing. This model shows putative co-

expression if the abundance of one RNA affects the abundance of another RNA. Nodes 

embody RNAs and edges between nodes embody undirected relationships between RNAs. 

Weighted gene co-expression network analysis (WGCNA) is a widely used approach for 

such co-expression modeling and applies a threshold for correlations between RNAs when 

defining edges between nodes (Zhang & Horvath, 2005). This model, which can be 
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constructed using the R package WGCNA (Langfelder & Horvath, 2008), organizes genes 

which correlate more with each other than other genes into a module and can offer data-

defined groups for new biological interpretations (Chen et al, 2008; Emilsson et al, 2008). 

When two weighted gene co-expression networks from different conditions are compared 

and altered correlations between the two groups are analyzed, differential connectivity 

between the two states can be revealed. Such differentially connected gene networks have 

been used to characterize neurodegenerative diseases as late-onset Alzheimer’s disease 

and Huntington’s disease (Zhang et al, 2013; Narayanan et al, 2014). The advantage of 

weighted co-expression networks is that no pre-selected cutoff for connection is required. 

This network modeling approach provides information about genes which are consistently 

transcriptionally regulated and therefore increase the probability to find genes which share 

regulatory features or belong to the same biological process. However, this method does not 

provide information about causality and does not offer mechanistic explanations. 

1.2.3 Bayesian modeling infers statistical causality between molecular entities 

Probabilistic causal network models can give rise to potential mechanistic insights and 

among them Bayesian networks are established as the state of the art approach (Chang et 

al, 2015). Bayesian network modeling is a flexible way to model biological systems which are 

high-dimensional and scale free. This model improves the probability of identifying causal 

genes and pathways in omics-data. It presents a way to identify genes which are higher in 

the hierarchy and thereby suggested being vitally important for the system reflected by the 

network. In this model, causality, represented by directed edges between nodes, refers to 

statistical directional dependency between two entities, e.g. genes (Sieberts & Schadt, 

2007). This statistical causality suggests a putative regulatory relationship between two 

genes rather than physical interaction. Bayesian inference represents a top-down data-driven 

and structure-based classical machine learning approach which can be applied by using 

packages as RimbaNET (Zhu et al, 2008, 2012) or Inferelator (Bonneau et al, 2006). Given 

that the applied omics-data sets are large enough, first, many candidate network models that 

fit the underlying data well are learned using a Monte Carlo Markov Chain (MCMC) 

simulation approach, and then a consensus network model is generated based on the 

candidate networks. Although prior knowledge is not required, known inter-relationships 

among genomics, transcriptomics, proteomics, metabolomics and epigenomics data can be 

used as prior to improve fidelity (Zhu et al, 2012, 2007, 2008). Such prior can also be derived 

protein-protein interactions, transcription factor binding sites or literature based knowledge. 
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Figure 3: Infering relationships between molecular entities. 

A: Undirected co-expression network. Nodes represent RNA entities and edges represent 
correlation between two RNAs. B: Directed Bayesian network. Nodes represent molecular 
entities such as genes and edges represent hierarchical relationships between genes. C: Given 
that the expression of a gene (R) and a complex trait (C), e.g. a disease, are influenced by a 
common QTL (L), the following simplified relationships are possible: the QTL affects the 
disease through a RNA transcript (causal model, M1); the RNA transcript is affected by the 
disease (reactive model, M2); the QTL affects the RNA transcript and the disease 
independently (independent model, M3). In slightly more complex scenarios, the QTL affects 
expression of several transcripts which in turn act on the disease (M4) or several QTLs affect a 
single transcript which affects the disease. D: QTL (L) and environmental factors (E) constitute 
drivers of a disease state (C) by influencing transcription (Rc). Variations in the disease state in 
turn influence transcription (Rr) which causes positive or negative feedback loops and 
comorbidities of the disease. Modified from (Schadt et al, 2005; Zhang et al, 2013). 

To infer causal relationships between genes, genetic variation e.g. expression quantitative 

trait loci (eQTL) can be integrated with expression data to tease out causal, reactive or 

independent relationships between mRNA expression levels in a system, e.g. a disease 

state. Here, an eQTL describes a variation at a certain genetic locus which leads to a change 

in a quantitative trait such as mRNA expression. The relationship between genetic variations 

and transcriptomics is not directed, meaning that information can only flow from a change at 

a genetic locus to a change in gene expression or clinical traits but not the other way around 

(Figure 3). Causal relationships between entities can be inferred as the following (Figure 3):  
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(1) ���, �, �� = �������|�����|�� 
(2) ���, �, �� = �������|�����|�� 
(3) ���, �, �� = �������|�����|�, �� 
If the transcript R and a complex trait C, e.g. a physiological or pathophysiologcal state, are 

linked to the genetic locus L, the probability P describes the possibility that a variation in L 

leads to changes in R  which in turn leads to changes in C (1). Variation in L can also lead to 

changes in C which in turn affects R (2). Furthermore, variation in L can independently affect 

R and C (3) (Schadt et al, 2005; Zhu et al, 2008). More complex models are possible, where 

one locus affects several transcript or several loci affect one transcript (Figure 3). 

1.2.4 Expression trait based Bayesian networks can be solved to Non-Markov 

equivalent structures by incorporating genetic traits as structure prior 

Since microarray and RNAseq technologies are the most common applied omics-

approaches, most biological Bayesian networks are based on expression traits and use 

genetic information as prior.  

For Bayesian networks, meaning directed cyclic graphs, conditional probabilities define the 

edges within the network and the probability distribution of states of a node depends on the 

states of its parent nodes. Each node represents the transcriptional expression of a gene. 

The conditional probabilities reflect the relationships between genes, stochastic nature of 

these relationships and data noise. The joint probability distribution 
��� for the set of nodes 

�� is determined by the network topology and depends on the product ∏� over the probability 

for �� given the parent nodes ������: 
(4) 
��� = ∏ 
� ����������� 

Bayes formula gives the posterior probability of that the network model � is the true 

underlying model given the observed data �: 

(5) ���|��~���|�� ∗ ���� 
In this approach, the number of possible network models grows super-exponentially with the 

number of nodes. Exhaustively searching through all possible network models to find the 

network model which fits the observed data best constitutes a nondeterministic polynomial 

(NP) hard problem and is, therefore, not practicable. NP-hard problems describe problems 

which cannot be determined in a feasible time (a polynomial time with regard to size). 

As a solution, a heuristic method based on Markov chain Monte Carlo (MCMC) (Madigan et 

al, 1995) methods can be applied to locally search for optimal structures. For this, a null 

network serves as the starting point for small random changes which include flipping, adding 

and deleting edges. Random changes which improve the fit of the network model to the 

observed data are accepted. Whether such a change fits more or less to the observed data, 
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can be determined by the Bayesian Information Criterion (BIC), also called Schwarz criterion 

(SBC, SBIC) (Schwarz, 1978). Increasing the likelihood to fit the network model to the 

observed data can be achieved by adding parameters which, however, often result in 

overfitting. This phenomenon occurs in excessively complex systems with too many 

parameters relative to the number of observations and therefore finally describes random 

errors or noise, but not underlying relationships. The BIC inserts a penalty for the addition of 

new parameters which results in a lower probability for models with a high number of 

parameters. 

Even through a Bayesian network is a directed graph, multiple structures are Markov 

equivalent, which means they fit data equally well mathematically. For example, the two 

nodes �� and �� have the following two relationships in a network model �  

(6) �� → �� 

(7) �� → ��. 

The probability distributions describing the two relationships are the same 

(8) 
���, ��� = ���|���
���� = 
���|���
����. 
Thus, it is not possible to infer causal relationships from the network structure itself, as it 

cannot be distinguished if �� is causal to �� or �� is causal to ��. Similarly, a Bayesian 

network which comprises three nodes ��, �� and ��, can have the following Markov 

equivalent models (Figure 4): 

(9) �1:	�� → ��, �� → �� 

(10) �2:	�� → ��, �� → �� 

(11) �3:	�� → ��, �� → �� 

These three models possess the same conditional independent relationships since �� and 

�� are independent conditioning on �� : 

(12) 
1 3 2|X X X⊥ , 

and are mathematically equal 

(13) 
��� 				= 
��1� = 
���|���
����
���|��� 
   = 
��2|�� = 
���|���
����
���|��� 
  = 
��3|�� = 
���|���
����
���|���. 
In contrast, causal relationships can be inferred from V-shape structures which have no 

Markov equivalent structure: 

(14) �!:	�� → ��, �� → �� 

However, estimating the model �" requires more parameters than estimating the models 

�1, �2 or �3 which leads to a higher BIC penalty score for the �" model. To lower the 

potential impact of penalty for the number of parameters, a large sample size is necessary. 
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Therefore, Bayesian networks need a high number of biological experiments to be able to 

differentiate �" from	�1, �2 or �3 models. 

 

Figure 4: Different network models to fit underlying data. 

M1, M2 and M3 are Markov equivalents and cannot be used to infer causal relationships. Mv 
represents a V-shape and Non-Markov equivalent structure, which can be used to determine a 
causal direction. 

To break Markov equivalent structures in order to solve Bayesian networks to biological 

causal networks, genetic causality as structure prior can be incorporated (Zhu et al, 2004): a 

gene which has a cis-eSNP can have the cis-eSNP as one of its parent nodes (Schadt et al, 

2008). Incorporating cis-acting eSNPs or eQTLs has been shown to improve the network 

reconstruction (Zhu et al, 2007).  

The control and oxPAPC Bayesian networks (Hitzel et al, 2018), which were analyzed in this 

study, were constructed as described above. In brief, 1000 different network models were 

created by starting the stochastic reconstruction process from different randomly selected 

seeds. To decide for a consensus network from these 1000 models, edges that appeared in 

more than 30% of the models were defined as consensus. This process of defining a 

consensus network from a large number of models is called network averaging. The decision 

for the applied cutoff theshold of 30% for edge inclusion in this averaging process is based 

on former simulation studies (Zhu et al, 2007). Since the resulting consensus network is not 

necessary a directed acyclic graph, the most weakly supported edge in a loop was removed 

after the averaging process. 

1.2.5 Network approach to complex diseases 

Comprehensive multiscale network models aim to understand complex phenotypes and 

diseases from a systems-based perspective. Such networks can be derived from multiple 

omics-data and serve as a framework onto which disease signatures such as differentially 

expressed genes from a disease state can be projected. This approach allows extracting and 

defining disease specific subnetworks (Figure 5). Identification of molecular key drivers of 

these disease related subnetworks can help identifying causal genes for diseases. 
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Figure 5: Network analysis of complex diseases by an integrative multiscale omics-approach. 

A: Large scale de novo generation or public database usage of high troughput data of multiple 
omics-classes from human samples or model organisms can be used to construct a predictive 
reference or frame network. B: Generation of high-throughput data from disease samples can 
yield differentially expressed genes associated with the disease. The predictive frame network 
can be probed with the disease signature to extract disease associated subnetworks. Central  
hub proteins are identified and predicted as key drivers of the disease. C: The network-based 
understanding of the disease allows for the identification of novel targets and information on 
disease modifying genes. Modified from (Argmann et al, 2016). 

It is important to differentiate and distinguish between causal and correlative relationships in 

diseases. Targeting a causal network which reflects a disease state in a way to change the 

network structure back into a healthy state can improve the effectiveness of disease 

treatment (Davis et al, 2009). An effective target for disrupting disease-related networks 

should be central and highly connected as well as in a higher order in the network hierarchy 

(Kidd et al, 2014). Due to the complexity of diseases tissue-to-tissue connections and 

regulations should be considered to be able to target the key tissue for the disease (Dobrin et 

al, 2009). E.g. cell type specific transcription factor regulatory networks show a similar 

architecture, but they are highly cell selective and shape cellular identity and function (Neph 

et al, 2012). An example of using network modeling for drug discovery is the drug topiramate, 

which was identified as a candidate to treat the inflammatory bowel disease (Dudley et al, 

2011). As the expenses for genome and expression sequencing will further decrease, 

network modeling can be an approach for personalized medicine as it helps to tailor the drug 

combination for an individual. 

1.2.6 Integrative network modeling in cardiovascular disease 

Network modeling has identified key drivers and pathways in different physiological and 

disease related conditions. In mouse studies, PPARγ2 was identified as a determinant for 

longevity in a Bayesian subnetwork of longevity related genes in mouse adipose tissue 
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(Argmann et al, 2009). In another study, eight key drivers were identified to be causal for 

abdominal obesity and their association with obesity-related traits were confirmed by 

transgenic mouse models (Yang et al, 2009). In inflammatory diseases, systems genetics 

and co-expression modeling identified key drivers of host-microbe interactions in 

inflammatory bowel disease (Jostins et al, 2012). Additionally a recent multiscale genomics 

network model revealed and validated 12 key drivers of inflammatory bowel disease (Peters 

et al, 2017). Furthermore, Bayesian network modeling in eleven rodent disease models 

revealed an inflammatory signature and associated key drivers (Wang et al, 2014).  

Systems genetics and network models have been also used for the identification of genes 

and gene clusters causal to cardiovascular pathology. Integrative co-expression and 

Bayesian network modeling of blood pressure associated GWAS and blood mRNA 

expression profiles revealed SH2B3 as a key driver for blood pressure regulation (Huan et al, 

2015). In coronary artery disease (CAD) studies which exploits network modeling 

approaches integration of genome wide SNPs and blood metabolites identified SERPINA1 

and AQP9 as candidate genes for atherosclerosis (Inouye et al, 2012). An integrative study 

using genomics and transcriptomics data related to CAD identified GLO1 as a key driver in a 

CAD associated Antigen-processing network (Mäkinen et al, 2014). In another study, 

integration of genetic and gene expression data from seven coronary artery disease (CAD)-

relevant tissues from CAD patients showed 30 causal cross-tissue regulatory gene networks 

(RGNs) (Talukdar et al, 2016). Proposed key drivers were part of different pathways linked to 

CAD like inflammation, cholesterol and glucose metabolism which were shown to be 

regulated in tissue-specific and cross-tissue networks. One of the identified regulatory gene 

networks was enriched in RNA processing genes and silencing of the newly identified key 

drivers AIP, DRAP1, POLR2l and PQBP1, which were previously not linked to CAD, reduced 

cholesterol-ester accumulation in THP-1 foam cells. A super-network containing all CAD-

causal cross-tissue regulatory gene networks was identified and shows that these networks 

are not isolated. Counteracting CAD therefore requires a comprehensive understanding of 

the concert of different tissues to understand how to treat CAD by targeting different causers 

rather than focusing on single targets.  

Network modeling has also been attempted for endothelial cells. Integration of genome-wide 

methylation and gene expression in lung tissue of chronic obstructive pulmonary disease 

(COPD) revealed EPAS1 as a key driver regulating a hypoxia response which was validated 

in endothelial cells (Yoo et al, 2015). EQTL mapping in human aortic endothelial cells 

(HAEC) of 147 heart transplant donors revealed PPAP2B, GALNT4, MAPKAP5, TCTN1, 

SRR, SNF8 and ICAM1 as causal for susceptibility to atherosclerosis (Erbilgin et al, 2013). 

Co-expression network modeling of expression profiles of the same cohort revealed CHAC1, 

OKL38 and HO1 as hub-proteins in the endothelial response to oxPAPC (Romanoski et al, 
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2011). In another study, endothelial cell specific regulatory networks based on siRNA and 

TNFα signatures in HUVEC were constructed to compare five different software tools to infer 

directed networks (Hurley et al, 2012). This study demonstrated that these predictive network 

models recovered more experimentally verified relationships than by chance. However, a 

comprehensive data driven directed network model for endothelial cells is lacking. In this 

study, such comprehensive Bayesian network models, based on Bayesian inference (Zhu et 

al, 2008), for human aortic endothelial cells (HAEC) were analyzed to identify novel key 

drivers in endothelial cells under pro-atherogenic conditions. In a second step, these 

networks were used to analyze endothelial specific perturbation signatures. 

1.3 Mitochondrial one-carbon metabolism 

1.3.1 Compartmentalization of one-carbon metabolism 

The Bayesian network modeling approach highlighted mitochondrial one-carbon metabolism 

as a potentially deregulated pathway in endothelial cells in an atherosclerotic context.  

One-carbon metabolism constitutes a universal metabolic pathway which results in the 

activation and transfer of one-carbon units. Folate derivatives serve as carriers for these one-

carbon units. The cycle of activated folates exists in cytosol and mitochondria and despite its 

apparent redundancy the flow is normally driven from mitochondria to cytosol (Figure 6) 

(Tibbetts & Appling, 2010).  

The first active one-carbon carrier is 5,10-methylene-tetrahydrofolate (5,10-meTHF) which is 

synthesized by serine hydroxymethyltransferases (SHMT1/2) from tetrahydrofolate (THF). 

The one-carbon unit is derived from serine, which is converted into glycine. This reaction is 

reversible. Depending on the availability and demand of one-carbon units, serine can fuel 

one-carbon synthesis or serine can be produced out of one-carbon units. The activated 5,10-

meTHF constitutes a cofactor for thymidine synthesis. Cytosolic 5,10-meTHF can be 

converted into 5-methyl-THF by methylenetetrahydrofolate reductase (MTHFR). 5-methyl-

THF remethylates homocysteine to methionine in the cytosol. Methionine is the substrate for 

S-denosyl methionine (SAM) synthesis, which is an important cofactor for many epigenetic 

modifiers as well as membrane lipid synthesis. 

In further steps 5,10-meTHF can be interconverted into 10-formyl-THF and subsequently 

hydrolyzed into formate. These reversible interconversions are carried out in the cytosol by 

the trifunctional enzyme methylenetetrahydrofolate dehydrogenase, cyclohydrolase and 

formyltetrahydrofolate synthetase 1 (MTHFD1). In the mitochondria these interconversions 

are split and carried out by two enzymes: bifunctional methylenetetrahydrofolate 

dehydrogenase / cyclohydrolase (MTHFD2/2L) and MTHFD1L. In these reactions NADPH 

and NADP are simultaneously interconverted. MTHFD2 is thought to be expressed 
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predominantly in undifferentiated cells and it was proposed that its function is taken over by 

MTHFD2L in adult tissue (Shin et al, 2014a). In that study it was shown that MTHFD2 had a 

50-fold higher Kcat/KM ratio than MTHFD2L. 10-formylTHF represents the most oxidized 

activated folate and is incorporated into the purine backbone. The synthesis of the purine 

backbone comprises eleven cytosolic reactions and is carried out by the enzyme-complex 

purinosome on the outside of mitochondria (French et al, 2016). Inside mitochondria 10-

formylTHF is needed for the formylated inititator methionine-tRNA (Tucker et al, 2011). 10-

formylTHF can also be oxidized into CO2 by aldehyde dehydrogenase 1 family member L1/2 

(ALDH1L1/2) (Krupenko et al, 2010). This irreversible reaction generates NADPH and might 

substantially contribute to mitochondrial redox homeostasis (Fan et al, 2014). 

 

Figure 6: Compartmentalization of cytosolic and mitochondrial one-carbon metabolism. 

Depicted is the flow of tetrahydrofolate (THF) and formate and its activated forms 5,10-meTHF, 
5-meTHF and 10-formyl-THF. The cycle starts with mitochondrial serine hydroxymethyl 
transferase (SHMT2) which transfers one carbon unit from serine to THF. Activated folates are 
interconverted by mitochondrial bifunctional MTHFD2/MTHFD2L and MTHFD1L and cytosolic 
trifunctional MTHFD1. The activated one-carbons are consumed by the following pathways: 
purine synthesis (phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide 
synthetase, phosphoribosylaminoimidazole synthetase (GART)/ 5-aminoimidazole-4-
carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC)); remethylation of 
homocysteine to methionine (methylenetetrahydrofolate reductase (MTHFR), 5-
methyltetrahydrofolate-homocysteine methyltransferase (MTR)); thymidine synthesis 
(thymidylate synthetase (TYMS)) and coupled recycling of dihydrofolate (DHF) (dihydrofolate 
reductase (DHFR); N-formylmethionine synthesis (f-MET) (mitochondrial methionyl-tRNA 
formyltransferase (MTFMT)); or full oxidation into CO2 (aldehyde dehydrogenase 1 family 
member L1/2 (ALDH1L1/2)). Modified from (Ducker & Rabinowitz, 2016).  

THF and formate are transfered between cytosol and mitochondria, beacuse one-carbon 

loaded folates cannot cross membranes. Although no nuclear isoforms of activated folate 

interconverting enzmes exists, partial localization of MTHFD2 and SHMT2 in the nucleus has 
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been reported (Gustafsson Sheppard et al, 2015; Anderson & Stover, 2009). The difference 

in mitochondrial NADH/NADPH and cytosolic NADPH drives the cycle towards the cytosol. 

Serine is catabolized in the mitochondria to produce formate which is then transferred to the 

cytosol where it is used for purine synthesis and where the cycle synthesizes serine. 

Because of this direction, one-carbon units by default originate within mitochondria. This 

direction also results in predominantly mitochondrial produced NADPH by folate metabolism. 

In case of dysfunctional mitochondrial one-carbon metabolism it was shown that the cycle 

can switch and produce one-carbon units in the cytosol (Ducker et al, 2016). The 

mitochondrial demand for one-carbon units is low. The rationale for compartmentalization 

and predominant production of activated folates in the mitochondria is currently argued as 

uncoupling of one-carbon metabolism and glycolysis from a redox perspective since 

NAD+/NADH ratio is an important regulator for glycolytic activity. Cytosolic oxidation of 5,10-

meTHF to 10-formyl-THF and concomitant NADPH/NADH production could disturb this ratio 

and dampen cellular robustness. 

1.3.2 One-carbon metabolism in physiology and pathophysiology 

One-carbon metabolism directly controls the three amino acids glycine, serine and 

methionine and indirectly cysteine. Among these, glycine is the most important side product 

during the one-carbon cycle and is consumed for purine, glutathione, creatine and heme 

synthesis. Furthermore, glycine constitutes one third of collagen. Besides synthesis from 

serine, glycine can be retrieved by cellular uptake or catabolism of choline. The mitochondrial 

glycine cleavage system, which consists of four enzymes, oxidizes glycine into CO2 and 

deaminates it to form 5,10-meTHF which in turn can enter and feed the one-carbon cycle. In 

quiescent adult tissues the glycine cleavage system is believed to be the predominant one-

carbon source. In contrast, serine constitutes the main source of one-carbon units in stem 

cells, during embryogenesis and in proliferating cells in cell culture models. The one-carbon 

source serine is synthesized from the glycolysis intermediate 3-phospho-D-glycerate by 

phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase (PSAT1) and 

phosphoserine phosphatase (PSPH). 

One-carbon metabolism is indispensable for purine and thymidine synthesis. Two 10-meTHF 

units and one glycine are incorporated into the purine backbone (Figure 7). Purine synthesis 

represents the largest demand for one-carbon units in proliferating cells. Targeting one-

carbon metabolism therefore blocks cell proliferation and is used for antibiotics and 

chemotherapeutics (Chattopadhyay et al, 2007). Since glycine and serine show a universally 

high net consumption in cancer cells, serine synthesis and mitochondrial one-carbon 

metabolism are overexpressed in cancers (Mehrmohamadi et al, 2014). In particular, 

MTHFD2 was identified as the most consistently overexpressed enzyme across cancers and 
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represents a highly sought cancer drug target and a target for selective antifolates (Nilsson et 

al, 2014; Pikman et al, 2016; Amelio et al, 2014).  

 

Figure 7: Composition of the purine backbone. 

A: The purine backbone consists of one glycine molecule (Gly), two carbon units from 10-
formylTHF (Formyl), one CO2 molecule and nitrogen units derived from aspartate (Asp) and 
glutamine (Gln) (Ben-Sahra et al, 2016). B: The carbons of the purine backbone originate from 
serine and can be traced by heavy carbon labeling (Ron-Harel et al, 2016). Two carbon units 
from serine become glycine and are incorporated into the backbone. The third carbon unit from 
serine becomes the activated carbon on the THF carrier and is incorporated into the purine 
backbone as 10-formyl-THF. 

The importance of folate coupled one-carbon metabolism in adult tissue is not well studied. 

The demand of one-carbon units in adult non-proliferative tissue is thought to be modest and 

could potentially be satisfied with formate. The function of de novo serine and mitochondrial 

one-carbon synthesis is, therefore, not clear in these tissues. Hematopoiesis and immune 

response are the most highly proliferative processes. Liver supported hematopoiesis was 

shown to be dependent on MTHFD2 (Di Pietro et al, 2002). Furthermore, activated and 

highly proliferative T-cells mobilize one-carbon metabolism and increase expression of the 

SHTM2-MTHFD2 axis (Ron-Harel et al, 2016). Serine and glycine are also important 

neurotransmitters and MTHFD1L contains an Alzheimer’s disease associated polymorphism 

(Naj et al, 2010). Although one-carbon metabolism seems to play a role in adult tissue, the 

benefit of folate food intake for adult diseases as atherosclerosis or Alzheimer’s disease 

could not be proven in clinical trials (Smith & Refsum, 2016). 

Since homocysteine levels are thought to be potentially associated with atherosclerosis, 

folate coupled enzymes involved in methione and homocysteine interconversion have been 

heavily studied. However, a potential role of mitochondrial one carbon-metabolism in 

cardiovascular disease is not known. In this study, an unexpected association between 

MTHFD2 and pro-atherogenic lipids has been identified. 

1.4 Bayesian network modeling of PHF histone demethylase signatures 

In this study, the endothelial specific Bayesian networks were exploited to analyze signatures 

from PHD-finger domain containing histone demethylases in endothelial cells. 
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1.4.1 Transcriptional regulation by epigenetic modifiers 

Epigenetics describe the influence of the chromatin structure and organization of the DNA. 

One major mechanism includes covalent modification of DNA and histones, which has a 

substantial impact on gene expression and chromosome stability, imprinting and inactivation  

(Dawson & Kouzarides, 2012). The most prevalent histone modifications methylation, 

acetylation, phosphorylation and ubiquitination constitute a histone code, which is reversibly 

and dynamically regulated (Bannister et al, 2002; Ng et al, 2009; Walport et al, 2012; Klose & 

Zhang, 2007; Jenuwein, 2001). The most prevalent histone methylation marks are mono-, di- 

and trimethylated lysine marks on histones 3 and 4: H3K4, H3K27, H3K36, H4K20 (Shi & 

Whetstine, 2007). Some histone marks predominantly encode a certain transcriptional 

outcome, e.g. H3K4me3 is considered an active or permissive mark found around 

transcriptional active genes whereas H3K9me3 and H3K9me2 often represent repressive 

marks found in transcriptional inactive regions of the genome. The combination of different 

histone marks at different genomic sites nearby a gene locus can fine-tune gene transcription 

(Kooistra & Helin, 2012). Histone methyltransferases as well as demethylases are often 

deregulated during cancer progression and inhibitors of these enzymes are, therefore, 

developed for cancer therapy (Morera et al, 2016). Epigenetic modifiers, and among them 

histone demethylases, are also important regulators of cardiovascular physiology and 

pathophysiology (Yan et al, 2010; Zhang & Liu, 2015). 

1.4.2 JmjC domain containing histone demethylases 

There are two classes of oxidative histone demethylases. The flavine adenenine dinocluotide 

dependent amine-oxidase enzyme family consists of the two histone demethylases LSD1 

and LSD2 (Shi et al, 2004). The other family comprise the Jumonji (JmjC) domain containing 

histone demethylases which belong to the 2-oxoglutarate oxygenase enzyme superfamily 

(Figure 8) (Klose et al, 2006, 2007; Lee et al, 2007b; Tsukada et al, 2006; Cloos et al, 2006; 

Hong et al, 2007; Iwase et al, 2007; Lee et al, 2007a). 

This family consists of more than 20 members and controls gene expression by modulating 

the epigenetic methylation code. JmjC histone demethylases are diverse and can also 

influence cellular signaling by demethylating and hydroxylating non-histone proteins, DNA, 

RNA and other metabolites (Nowak et al, 2016; Shen et al, 2014). JmjC histone 

demethylases demethylate their target by hydroxylating the Nε-methyl group followed by 

elimination of formaldehyde and producing CO2 and succinate. This reaction requires α-

ketoglutarate, molecular oxygen and iron(II) as cofactors and vitamin C to keep the iron in its 

reduced state. These cofactors link Jmjc histone demethylase activity and its associated 

chromatin remodeling to metabolism and potentially enable them as metabolic sensors 

(McDonough et al, 2010; Katada et al, 2012).  
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The state of the histone code is vitally important and the large size of the JmjC enzyme 

family potentially gives rise to compensation ability. However, the expression of certain JmjC 

family members is tissue, time and disease specific. Some JmjC enzymes have been shown 

to be important in the vasculature: Endothelial cells are characterized by their potential for 

angiogenesis. Hypoxic environments elicit endothelial angiogenesis and the hypoxia 

activated transcription factor HIF1α has been shown to induce expression of KDM3A, 

KDM4B, KDM4C and KDM4D (Beyer et al, 2008; Hancock et al, 2015). KDM2B contributes 

to FGF-2 controlled angiogenesis (Kottakis et al, 2011), JMJD6 regulates angiogenic 

sprouting and splicing of the vascular endothelial growth factor receptor 1 (Boeckel et al, 

2011) and KDM5B controls angiogenesis by repressing pro-angiogenic HOXA5 and CCL14 

(Fork et al, 2015; Li et al, 2011). Furthermore, JMJD8 interacts with pyruvate kinase M2 in 

the cytoplasm thereby promoting angiogenic sprouting of endothelial cells (Boeckel et al, 

2016). JmjC histone demethylases therefore regulate characteristic endothelial functions. 

One of the JmjC subfamilies is, however, not yet well described: the KDM7 histone 

demethylases. 

Figure 8: Family of 2-oxoglutarate oxygenases.  

More than 20 histone demethylases of the KDM 2-7 subfamilies comprise  a family of JmjC 
domain containing enzymes. Some of the enzymes of the JMJD hydroxylase family also 
demethylate histones. Other subfamilies of the 2-oxoglutarate oxygenase family hydroxylate 
prolin residues of collagen and cellular proteins (Nowak et al, 2016). 

  



Introduction 

18 

1.4.3 KDM7/PHD subfamily of Jmjc histone demethylases 

JmjC histone demethylases are large proteins with often several domains. Among these 

domains the JmjC domain constitutes the eraser. Additional reader domains which can 

recognize other histone marks enable cross-talk between histone modifications. The 

complexity of these enzymes makes them therefore suitable for printing, reading and erasing 

the histone code as part of chromatin modifying complexes together with other histone 

modifiers, transcription factors and polymerases. 

Among the JmjC histone demethylase family KDM7A, PHF8 and PHF2 constitute a 

subfamily based on the characteristic of an N-terminal plant-homeodomain (PHD) finger 

(Fortschegger & Shiekhattar, 2011). The PHD domain recognizes H3K4me3 and is followed 

by a linker and the catalytic JmjC domain (Figure 9 A).  

Among the KDM7 family members, PHF8 is the so far most detailed described demethylase. 

PHF8 was identified as a histone demethylase which regulates neuronal development (Qi et 

al, 2010). PHF8 also acts together with Myc to influence gene expression of cytoskeletal 

proteins and thereby influences neurite outgrowth (Asensio-Juan et al, 2012). Furthermore, 

PHF8 is an important regulator of cell cycle progression, especially by demethylating 

H4K20me1 of targets of the E2F transcription factor family  (Liu et al, 2010; Lim et al, 2013; 

Sun et al, 2015). PHF8 is associated with cancer progression and in the cardiovascular 

system PHF8 has been implicated in cardiac differentiation (Tang et al, 2016; Wang et al, 

2016a). 

In contrast to PHF8, KDM7A represents the most sparsely described KDM7 subfamily 

member and its function in the cardiovascular system is unclear. KDM7A has been shown to 

demethylate the repressive marks H3K9me2 and H3K27me2 (Yokoyama et al, 2010; 

Tsukada et al, 2010) and H3K9me1 and H3K27me1 (Tsukada et al, 2010). Whereas the 

linker of PHF8 shows flexibility, the linker between the H3K4me3 binding PHD and the JmjC 

domain is rigid in KDM7A (Figure 9 B,C). Due to this spatial restriction, the JmjC domain can 

only demethylate H3K27me2 in a cis mode, i.e. on the same histone, in the presence of 

H3K4me3 (Horton et al, 2010). In the absence of H3K4me3 the JmjC domain preferentially 

demethylates H3K9me2 in cis. These features lead to the dual-specificity towards H3K9me2 

and H3K27me2 and suggests that KDM7A reads activated states which are marked by 

H3K4me3 and further promotes activation through the demethylation of the repressive marks 

H3K9me2 and H3K27me2 thereby promoting transcription.  
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Figure 9: The jmjC histone demethylases of the KDM7/PHD subfamily. 

A: PHF8, KDM7A and PHF2 constitute the KDM7 subfamily of JmjC histone demethylases. All 
three enzymes contain about 1000 amino acids and an N-terminal plant homeodomain (PHD) 
followed by a linker and the Jumonji C-domain (JmjC). The PHD and JmjC domain of KDM7A 
possess higher homology (indicated in percentage) to PHF8 than those domains of PHF2 
compared to PHF8. Modified from (Qi et al, 2010). B: The JmjC domain of KDM7A binds to 
dimethylated histone 3 lysine 27 (H3K27me2) if the plant homeo domain (PHD) detects 
trimethylated lysine 4 on the same histone. Due to a rigid linker (red line) the JmjC domain 
cannot bind to dimethylated lysine 9 (H3K9me2) on the same histone. C: The flexible linker 
(dotted line) of PHF8 allows for the binding of the JmjC domain to H3K9me2 on the same 
histone. Modified from (Horton et al, 2010). 

KDM7A promotes the formation of the neural plate in early chick embryos and neuronal 

differentiation in mouse embryonic stem cells by regulation of FGF4 expression (Huang et al, 

2010a, 2010b) Furthermore, it was shown that KDM7A acts together in a complex with 

JMJD3 during HL-60 differentiation towards a macrophage-like state to promote 

transcriptional elongation (Chen et al, 2012). KDM7A negatively regulated angiogenesis in a 

tumor-xenograft model with KDM7A-expressing B16 and HeLa cells suggesting KDM7A 

being a tumor-suppressive gene (Osawa et al, 2011). Furthermore, long-term nutrient 

starvation increased expression level of KDM7A in cancer cells in this study. The function of 

KDM7A in the vascular system is, however, not clear. 

1.5 Aim of the study 

Oxidized phospholipids are associated with atherosclerosis. Despite the observation that the 

impact of these atherogenic lipids on endothelial cells is tremendous, the response of the 

endothelial cell to these lipids is overwhelmingly complex and not well understood. The aim 

of this work was to integrate computational analyses with experimental wet-laboratory 

research to increase the understanding of endothelial pathology in response to oxidized 

phospholipids.  
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The specific aims of this study were: 

1. Identifying patterns in endothelial cells which are deregulated upon oxPAPC 

exposure by means of computational analysis of a large cohort of expression profiles 

2. Detecting key drivers of deregulated patterns upon oxPAPC exposure by means of 

Bayesian network analysis 

3. Analysing key driver associated subnetworks regarding their biological meaning by 

means of gene set enrichment analysis (GSEA) 

4. Prioritizing of one deregulated pattern and its associated key driver upon oxPAPC 

exposure  

5. Experimental validation of prioritized key driver in human aortic endothelial cells 

(HAEC) by knockdown of the key driver and oxPAPC treatment, identification of the 

relationship between key driver and its associated subnetwork and systematic 

validation of the key driver subnetwork by RNA sequencing 

6. Characterization of the impact of the prioritized key driver on endothelial function as 

assessed by angiogenesis and migration 

7. Experimental identification of the biological meaning of the deregulated subnetwork 

8. Estimation of the potential disease impact of the key driver and its associated 

subnetwork 

9. Exploiting the HAEC Bayesian networks with perturbation signatures from the KDM7 

family to gain epigenetic associated endothelial cell (EC) networks 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Chemicals 

13C5-adenosine Alsachim, Graffenstaden (France) 
13C5-guanosine Alsachim, Graffenstaden (France) 
13C5-uridine Alsachim, Graffenstaden (France) 

2-Acrylamido-2-methylpropane sulfonic acid (AMPS) AppliChem, Darmstadt 

Adenosine Sigma-Aldrich, Taufkirchen 

Agar AppliChem, Darmstadt 

Agarose Bio&Sell, Feucht bei Nürnberg 

Ampicillin sodium salt Sigma-Aldrich, Taufkirchen 

Antimycin A Sigma-Aldrich, Taufkirchen 

Asparaginase Sigma Aldrich, Taufkirchen 

Asparagine Sigma-Aldrich, Taufkirchen 

bFGF, recombinant human PeproTech, Hamburg 

Bisindolmaleimide I (BIM-I) Merck, Darmstadt 

Bromophenol blue Applichem, Darmstadt 

Casyton Roche, Bremen 

Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) Sigma-Aldrich, Taufkirchen 

Citric acid Roth, Karlsruhe 

Collagen Type I Rat Tail Corning, Tewksbury, MA (USA) 

Cytidine Sigma-Aldrich, Taufkirchen 

D(+)-Sucrose AppliChem, Darmstadt 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, Taufkirchen 

Dithiothreitol (DTT) Invitrogen, Burlington (Canada) 

DNase I RNase free Promega, Mannheim 

dNTPs Bioline, London (UK) 

Dulbecco`s Phosphate Buffered Saline (DPBS) ThermoFisher, Darmstadt 

ECGS-H Promocell, Heidelberg 

EGF, human recombinant PeproTech, Hamburg 

Ethidium bromide Roth, Karlsruhe 

Ethylene glycol tetraacetic acid (EGTA) Applichem, Darmstadt 

Ethylenediaminetetraacetic acid (EDTA) Applichem, Darmstadt 

EtOH absolut Sigma-Aldrich, Taufkirchen 
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Fetal calf serum (FCS) ThermoFisher, Darmstadt 

Fibronectin, human BD Biosciences, Heidelberg 

Flufenamic acid Sigma-Aldrich, Taufkirchen 

Gelatine Sigma-Aldrich, Taufkirchen 

Glacial acetic acid Roth, Karlsruhe 

Glycerin 86 % Roth, Karlsruhe 

Glycine VWR, Kelsterbach 

Guanosine Sigma-Aldrich, Taufkirchen 

N-Acetyl-L-Cysteine (NAC) Sigma-Aldrich, Taufkirchen 

N-2-Hydroxyethylpiperazin-N'-2-ethansulfonsäure (HEPES) Roth, Karlsruhe 

Hydrochloric acid (HCl) Roth, Karlsruhe 

IL-1 beta, recombinant human Peprotech, Hamburg 

Isopropyl alcohol Sigma-Aldrich, Taufkirchen 

Kaliumchlorid (KCl) Roth, Karlsruhe 

L-Glutamin ThermoFisher, Darmstadt 

Lipofectamin 2000 ThermoFisher, Darmstadt 

L-Histidinol Sigma-Aldrich, Taufkirchen 

Lipofectamin RNAiMax ThermoFisher, Darmstadt 

Loading Dye ThermoFisher, Darmstadt 

Methanol Sigma-Aldrich, Taufkirchen 

Methanol, Ultra LC-MS grade Roth, Karlsruhe 

My-Budget 5x EvaGreen QPCR Mix II (ROX) Bio&Sell, Feucht bei Nürnberg 

Okadaic acid (OA) Applichem, Darmstadt 

Oligo(dT)23 Anchored Sigma‐Aldrich, Taufkirchen 

Oligomycin A Sigma-Aldrich, Taufkirchen 

Orthovanadate (OV) Applichem, Darmstadt 

oxPAPC AvantiPolarLipids (USA) 

1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) Avanti Polar Lipids 

Penicillin ThermoFisher, Darmstadt 

Penicillin/Streptomycin Corning, Manassas (USA) 

Pepton from casein (pancreatic digest) AppliChem, Darmstadt 

Phenylmethanesulfonylfluoride (PMSF) Sigma-Aldrich, Taufkirchen 

PMA EnzoLifeSciences, Lörrach 

Precision Plus Protein Standard Dual Color Bio-Rad, Munich 

Random Primers Promega, Madison (USA) 

Rapamycin Sigma-Aldrich, Taufkirchen 

Reverse Transkriptase Superscript III Life technologies, Carlsbad (USA) 
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Rotenone Sigma-Aldrich, Taufkirchen 

Roti-Block Roth, Karlsruhe 

Rotiphorese Gel 30 Roth, Karlsruhe 

Roti-Quant Roth, Karlsruhe 

Serine Sigma-Aldrich, Taufkirchen 

Sodium chloride Sigma-Aldrich, Taufkirchen 

Sodium dodecyl sulfate (SDS) Roth, Karlsruhe 

Streptomycin ThermoFisher, Darmstadt 

Tetramethylethylenediamine (TEMED) AppliChem, Darmstadt 

TRIS Roth, Karlsruhe 

Triton X-100 Roth, Karlsruhe 

Trypsin-EDTA Sigma-Aldrich, Taufkirchen 

Tween-20 Sigma-Aldrich, Taufkirchen 

Uridine Sigma-Aldrich, Taufkirchen 

VEGF (165), recombinant human R&D, Minneapolis, MN (USA) 

2.1.2 Equipment 

Agilent 1260 Series binary pump  Agilent Technologies, Waldbronn 

Agilent 1290 Infinity LC system Agilent Technologies, Waldbronn 

Autoclave Tuttnauer, Beit Shemesh, (Israel) 

Axiovert135 microscope  Zeiss, Oberkochen 

Binocular Motic, Wetzlar 

Cell Counter Case Schärfe System, Reutlingen 

Centrifuge (rotor) Eppendorf, Hamburg 

Freezer HERAfreeze basic (-80 °C) Heraeus Instruments, Hanau 

Gel documentation system, Intas Gel-Stick Imager Royal Biotech, Frankfurt am Main 

Heating block Thermomixer compact Eppendorf, Hamburg 

Heraeus Megafuge 16  ThermoFisher, Darmstadt 

Herasafe HS 12 Heraeus Instruments, Hanau 

Incubator Hera Cell 150i CO2 Incubator ThermoFisher, Darmstadt  

Infrared scanner, Odyssey LI-COR, Bad Homburg 

Magnetic stirrers Heidolph MR Hei-Mix L NeoLab, Heidelberg 

Micro Star 17R  VWR, Darmstadt 

Microscope Axiovert 40 ETL Zeiss, Oberkochen 

Microwave 900 & Grill Severin, Sundern 

PCR device Eppendorf Mastercycler Gradient Eppendorf AG, Hamburg 

pH meter PP-50 Sartorius, Göttingen 
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Pipettensatz Eppendorf, Hamburg 

Power supply CS - 300V Roth, Karlsruhe 

PowerPac HC Bio-Rad, Munich 

200Pro plate reader Tecan, Crailsheim 

qPCR device PIKOREAL 96 ThermoFisher, Darmstadt  

QTrap 5500 mass spectrometer  Sciex, Darmstadt 

Rotor Stuart SB3 Stuart, Staffordshire (UK) 

Scale Analytical Balance Sartorius, Göttingen 

Seahorse 96 extracellular flux analyzer Agilent Technologies, Waldbronn 

Shaker GFL-3013 ThermoFisher, Darmstadt 

MaxQ 4000 Benchtop Orbital ThermoFisher, Darmstadt 

Spectrophotometer NanoDrop® ND-1000 Nanodrop, Rockland (USA) 

Sorvall RC 6+  ThermoFisher, Darmstadt 

Sterile bench Laminarflow HB 2448 Heraeus Instruments, Hanau 

Supercomputer Minerva MountSinai, New York (USA) 

TIRF System LASOS77 Zeiss, Oberkochen 

Transfection system Neon Life technologies, Carlsbad (USA) 

Vortex mixer Vortex Genie 2  ScientificIndustries, NY (USA) 

Water purification system Milli-Q Q-POD Millipore, Billerica (USA) 

Western Blot Kammern und Zubehör Biorad, München 

2.1.3 Buffers and solutions 

Triton lysis buffer 

20 mM Tris/HCl pH 7,5; 150 mM NaCl; 10 mM NaPPi; 20 mM NaF; 1% Triton X-100; 2 mM 

sodium orthovanadate (OV); 10 nM okadaic acid (OA); protein inhibitor mix (PIM) containing 

Antipain, Aprotinin, Chymostatin, Leupeptin, Pepstatin and Trypsin-Inhibitor (10 nM each); 40 

µg/mL phenylmethylsulfonyl fluoride (PMSF) 

10x wash buffer (WB) 

0.3 % tween-20; 50 mM tris/ HCl pH 7.5; 150 mM NaCl 

10x transfer buffer 

25 mM tris; 190 mM glycin; 20 % methanol 

10x running buffer 

25 mM tris; 190 mM glycine; 0.1 % SDS 

50x modified TAE 

242 g mM tris; 57.1 mL glacial acetic acid; 10 mL EDTA (0.5 M); pH to 8.0; to 1L ddH2O 

Methocel     
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6 g methocel (autoclave powder); add 250 mL endothelial basal medium (EBM) and mix at 

60 °C for 20 min add 250 mL EBM and mix overnight 4 °C; centrifuge 4000 rpm, 4 °C and for 

2 h 

Nuclear lysis buffer C 

20 mM hepes pH 7.9; 0.4 mM NaCl; 1 mM EDTA; 1 mM EGTA; 4 % triton X-100; to 10 mL 

ddH2O; fresh: 10 µL 0.1 M DTT; 8.7 µL PMSF, 12 µL PIM 

Cytosol lysis buffer A 

10 mM hepes pH 7.9; 10 mM KCl; 0.1 mM EDTA; 0.1 mM EGTA; to 10 mL ddH2O 

3x Laemmli buffer 

125.3 mM tris/ HCl pH 6.8; 17 % glycerol; 4 % SDS; 40 mM DTT; 0.004 % bromphenol blue 

6x DNA loading dye 

30 % v/v glycerol; 0.25 % w/v bromphenol blue; 0.25 % w/v xylene cyanol; to 10 mL ddH2O 

2.1.4 Cell culture media 

Endothelial basal medium (EBM) (Pelo Biotech, Planegg) 

supplemented with kit supplements: glutamine 

Enhanced Endothelial Cell Growth Medium (Pelo Biotech, Planegg) 

supplemented with kit supplements: glutamine, bFGF, hEGF, VEGF, 8% fetal calf serum, 

0.5% penicillin, streptomycin 

RPMI-1640 Media without glucose, glycine and serine (Teknova, Berlin) 

supplemented with 1g/L glucose, 30 µM glycine, 300 µM serine 

Smooth muscle cell growth medium classic (Pelo Biotech, Planegg) 

supplemented with kit supplements: glutamine, insulin, EGF, FGF, 8% FCS, 0.5% penicillin, 

streptomycin  

Minimum Essential Medium (MEM) (ThermoFisher, Darmstadt) 

Supplemented with 8 % FCS, 0.1% Gentamycine, 1% Sodium pyruvate, 1% Non-essential 

amino acids 

Trypsin solution (10×) (Sigma Aldrich, Taufkirchen) 

2.1.5 Human eukaryotic cells 

Human Aortic Endothelial Cells (HAEC) (PeloBiotech, Planegg) primary cells 

Human Umbilical Vein Endothelial Cells (HUVEC) (Lonza, Basel) primary cells 

Human Aortic Smooth Muscle Cells (HASMC) (PeloBiotech, Planegg) primary cells 

HEK293T (ATCC, Manassas (USA)) cell line 
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2.1.6 Synthetic oligonucleotides 

Gene Forward Primer (5‘-3‘) Reverse Primer (5‘-3‘) 

ASNS GGAAGACAGCCCCGATTTACT AGCACGAACTGTTGTAATGTCA 

ATF4 CTGCCCGTCCCAAACCTTAC TGCTCCGCCCTCTTCTTCTG 

β-Actin AAAGACCTGTACGCCAACAC GTCATACTCCTGCTTGCTGAT 

CARS GGTGACGTGGTATTGCTGTG CTCTTCTCCCGATACTGCTCG 

CBS GGCCAAGTGTGAGTTCTTCAA GGCTCGATAATCGTGTCCCC 

CEBPB ACAAGCACAGCGACGAGTACAAGA TGCTTGAACAAGTTCCGCAGGGT 

CTH GGCCTGGTGTCTGTTAATTGT GCCATTCCGTTTTTGAAATGCT 

DDIT3 AGCTGGAAGCCTGGTATGAG AGTCAGCCAAGCCAGAGAAG 

EBNA1BP2 CTCTCGGATTCGGAGTCGGA GCCCCTCTAGCACGACATTG 

EGR1 ACCCAGCAGCCTTCGCTAAC AGAAGCGGCGATCACAGGAC 

EHHADH AAACTCAGACCCGGTTGAAGA TTGCAGAGTCTACGGGATTCT 

F3 GGAACCCAAACCCGTCAATC GCCAAGTACGTCTGCTTCAC 

G6PD CGAGGCCGTCACCAAGAAC GTAGTGGTCGATGCGGTAGA 

GARS ATGGAGGTGTTAGTGGTCTGT CTGTTCCTCTTGGATAAAGTGCT 

GCLM CATTTACAGCCTTACTGGGAGG ATGCAGTCAAATCTGGTGGCA 

GINS1 ACGAGGATGGACTCAGACAAG TGCAGCGTCGATTTCTTAACA 

GSS GGGAGCCTCTTGCAGGATAAA GAATGGGGCATAGCTCACCAC 

IFIT1 TTGATGACGATGAAATGCCTGA CAGGTCACCAGACTCCTCAC 

IFIT3 GATTGGGTGCTGCTACAAG ATTCCGTCTCCAGGAACTC 

IFNβ AGTGTCAGAAGCTCCTGTGGC TGAGGCAGTATTCAAGCCTCC 

IL1β CTGTACGATCACTGAACTGC CACCACTTGTTGCTCCATATC 

JHDM1D-AS1 GTTGGAGTCTGGCTAAAGAG CTGGGCTTCCTTCTTCATAC 

KDM7A ACCTGAATGGAGAGCGAAAG TCATGTTCCACTCCCTCTAC 

KDM7A-TSS AGCGCCGGAAGCAGCCGAGTCTGG CTACTCCGCTCGCCGACTGG 

KDM7A-1KB CCCTCCCTCCCTTTCCTTTC GCAATGAGCCGAGATCACAG 

LDLR GAATGGTGTGGACATCTACTCGCTCAGCCAACAAGTTGACATCGGAAC 

MTHFD1L CTGCCTTCAAGCCGGTTCTT TTTCCTGCATCAAGTTGTCGT 

MTHFD2 GATCCTGGTTGGCGAGAATCC TCTGGAAGAGGCAACTGAACA 

PCK2 GCCATCATGCCGTAGCATC AGCCTCAGTTCCATCACAGAT 

PFKFB3 GGGCCAAAGCTGACCAACTC CCCTTCTTTCGCCAGGTAGC 

PHF8 TGCTGACATTGACCTCTACC TTCCAGTGGGCTTCAGAATC 

PHGDH CTGCGGAAAGTGCTCATCAGT TGGCAGAGCGAACAATAAGGC 

PSAT1 TGCCGCACTCAGTGTTGTTAG GCAATTCCCGCACAAGATTCT 

SHMT2 CCCTTCTGCAACCTCACGAC TGAGCTTATAGGGCATAGACTCG 

SLC7A1 GTCCTGCTCAACATTGGGCA CAGGGCCTGCATTCTCACG 
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SLC7A5 CCGTGAACTGCTACAGCGT CTTCCCGATCTGGACGAAGC 

sXBP1 CCGCAGCAGGTGCAGG GAGTCAATACCGCCAGAATCCA 

TCF7L2 AGAAACGAATCAAAACAGCTCCT CGGGATTTGTCTCGGAAACTT 

TIPIN AGAATGGCGTGATTGACCTACC CCAGTGCTCCATGTGTCTGATTA 

ZWILCH AAGAAAGGAATCCGTAAAGACCC GGTCCAACATTTTCGCCAGTAG 

2.1.7 Small interfering RNAs 

siRNA Sequence (5‘-3‘) 

ATF4 GCCUUCUCCGGGACAGAUU 

EGR1 UCUCCCAGGACAAUUGAAAUUUGCU 

MTHFD2 # 1 GAAGAGCGAGAAGUGCUGAAGUCUA 

MTHFD2 # 2 UAUUCCAAAUCUGAUCACAGCAGAU 

MTHFD2 # 3 AGGAUGUUGAUGGCUUUCAUGUAAU 

PHF8 GCCUGCUGGCCAGUUGAGCUAUAAU 

PSAT1 GAUGUCAAGGGAGCAGUACUGGUUU 

2.1.8 Plasmids 

FUGW empty vector (Huang et al, 2010b) 

FUGW-KDM7A-Flag-IRES-GFP (Huang et al, 2010b) 

pcDNA3.1 Christoph Schürmann 

pGL3 basic Promega, Wisconsin (USA) 

pCMV6_EGR1 Origene, Herford 

pCMV6_BRCA1 Olesya Kuchyrivska 

pCMV6_YY1 Origene, Herford 

pGL3_KDM7A_323bp Olesya Kuchyrivska 

2.1.9 Antibodies 

EGR1 (rabbit, Santa Cruz, Heidelberg, primary antibody) 

KDM7A (rabbit, Abcam, Cambridge (USA), primary antibody) 

Topoisomerase I (goat, Santa Cruz, Heidelberg, primary antibody) 

IRDye680 (donkey, LI-COR Biosciences, Bad Homburg, secondary antibody) 

IRDye800 (donkey, LI-COR Biosciences, Bad Homburg, secondary antibody) 

2.1.10 Reaction systems 

CellTiter-Glo Luminescent Cell Viability Assay Promega, Madison (USA) 

Gel purification kit QIAGEN, Hilden 
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LC-MS free amino acid analysis kit Phenomenex, Aschaffenburg 

Luciferase Assay System Promega, Wisconsin (USA) 

PeqGOLD XChange Plasmid Maxi-EF Kit Peqlab, Erlangen 

RNA Mini Kit Bio&Sell, Feucht bei Nürnberg 

truChIP Chromatin Shearing KIT Covaris, Massachusetts (USA) 

2.1.11 Software 

Analyst 1.6.2 Sciex, Darmstadt 

AxioVision SE64 Rel. 4.9 Zeiss, Oberkochen 

Clone Manager 9 Scientific and Educational Sofware, Cary (USA) 

Cytoscape Cytoscape Consortium, http://cytoscape.org/ 

Gel documentation sofware Herolab, Wiesloch 

GraphPadPrism 5 GraphPad Software, San Diego (USA) 

Image studio lite 5.0 LI-COR, Bad Homburg 

MultiQuant 3.0 Sciex, Darmstadt 

Nanodrop, Version 3.5.1 Coleman Tech., Orlando, FL (USA) 

PikoReal Software 2.1 ThermoFisher, Darmstadt 

Python https://www.python.org/ 

R https://www.r-project.org/ 

R Studio RStudio Inc., Boston, (USA) 

2.1.12 Packages 

Biobase R, biocLite (Bioconductor) 

BioNet R, biocLite (Bioconductor) 

BSDA R, CRAN 

EdgeR R, biocLite (Bioconductor) 

Gplots R, CRAN 

GSEABase R, biocLite (Bioconductor) 

HTSeq Python 

Igraph R, biocLite (Bioconductor) 

Multicon R, CRAN 

Reactome FI Cytoscape 

TopHat https://ccb.jhu.edu/software/tophat/index.shtml 

2.1.13 Databases 

MSigDB http://software.broadinstitute.org/gsea/msigdb/index.jsp 
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HPRD http://www.hprd.org/ 

STRING https://string-db.org/ 

2.1.14 Geo datasets used for analysis 

GSE43292 Human carotid atheroma, microarray, 64 samples 

GSE21545 Biobank of human carotid plaques, microarray, 223 samples 

GSE27869 HUVEC, 400 siRNAs, microarray, 400 samples 

GSE72509  SLE lupus, whole blood, RNAseq, 117 samples 
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2.2 Methods 

2.2.1 Wet-laboratory methods 

2.2.1.1 Eukaryotic cell culture conditions 

Human Aortic Endothelial Cells (HAEC) and pooled Human Umbilical Vein Endothelial Cells 

(HUVEC) were cultured in a humidified atmosphere of 5% CO2 at 37°C on gelatin coated 

dishes. HAEC and HUVEC were grown in enhanced Endothelial Cell Growth Medium. 

Human aortic smooth muscle cells (HASMCs) were cultured on collagen in Smooth Muscle 

Cell Growth Medium. HEK293 cells were grown in MEM (minimal essential medium) 

containing 8% FCS, Gentamycin, non-essential amino acids and sodium pyruvate. HUVEC 

were used at passages 3-5, HAEC at passages 3-10 and HASMC at passages 6-12.  

2.2.1.2 Passaging and cell counting 

Dishes were pre-coated with gelatin or collagen respectively for one hour. Cells were washed 

with 1xDPBS once and detached with Trypsin-EDTA. Digestion of surface receptors and cell 

junction proteins was stopped with cell growth medium. Cells were pelleted with 1200 rpm for 

4 min and the cell pellet was resuspended in growth medium. A small fraction of the cell 

suspension was mixed with an isotonic saline solution (Casyton) and counted (Casy Cell 

Counter). Cells were seeded on pre-coated dishes. Collagen coated dishes were washed 

twice with 1xDPBS beforehand.  

2.2.1.3 Cell stimulation 

Stimulation experiments were performed in basal medium lacking growth factors and 

supplemented with 1 %FCS. Control cells were treated with the solvent of the stimulus. For 

oxPAPC exposure, oxPAPC was either used from Invivogen, Avanti Polar Lipids or produced 

from PAPC as previously described (Watson et al, 1997) as the following. PAPC, which was 

kept in chloroform in glass tubes under nitrogen gas at -80°C, was prepared and used freshly 

for each experiment: PAPC was evaporated under vortexing and nitrogen flow to achieve an 

even lipid film on the glass wall. The lipid film was then exposed to air oxidation for 24-72 

hours. For cell treatment, oxidized PAPC was dissolved in the stimulation medium by 

warming up to 31°C and thorough vortexing. Since the activity of oxidized PAPC varies, 

concentrations in the range of 40-65 µg/ml were used. After stimulus exposure, cells were 

washed twice with DPBS and the stimulation was stopped with lysis buffer.  
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2.2.1.4 siRNA knockdown 

For siRNA treatment, cells were seeded out to 70-80% confluence. The siRNA as well as 

Lipofectamine RNAiMAX were pre-incubated with basal medium for 5 minutes, mixed 

together and incubated for 10 minutes. Transfection mix was added to cells in basal medium 

with 2% FCS for at least 8 hours. Afterwards, cells were cultured in growth medium and 

harvested 48-72 hours after transfection. 

2.2.1.5 Electroporation-mediated overexpression 

Transient overexpression was conducted by electroporation. Cells were trypsinized, washed 

twice with 1x DPBS. 700.000 cells were mixed with 110 µL resuspension buffer (Neon, 

Invitrogen) and 7µg plasmid. Electroporation was carried out with two pulses of 1150 V. Cells 

were seeded out on precoated dishes in medium without antibiotics. Cells were cultured in 

full growth medium 6 h after electroporation and harvested after 24 h. 

2.2.1.6 Spheroid outgrowth assay 

HUVEC were trypsinated and pelleted cells were mixed with EGM containing 20 % methocel. 

EGM-methocel drops were pipetted on a sterile dish and cells were incubated as hanging 

drops overnight. Drops were collected by rinsing off and pelleted with 1000 rpm for 3 min and 

incorporated with 600 µl methocel in 12 %FCS. Cells in methocel were mixed with collagen 

and pipetted into a 48-well plate. Angiogenesis of the spheroids were induced with 30 ng/ml 

VEGF-A165 over night at 37°C. Spheroid outgrowth was stopped by paraformaldehyde.  

Images were acquired with an Axiovert135 microscope. For quantification of the cumulative 

sprout length and sprout number, ten spheroids per condition were analyzed with the help of 

the AxioVision software (Zeiss). Treatments with VEGF-A 165 were performed for 16 hours 

with a concentration of 10 ng/ml. 

2.2.1.7 Cell migration 

HUVEC were cultured in a 24-well plate. After applying a vertical scratch to the confluent cell 

layer, cells were kept in basal medium supplemented with 1% FCS. Endothelial cell migration 

close to the scratch area was monitored by live cell imaging (Zeiss TIRF System LASOS77). 

The migration distance was calculated using AxioVision software (Zeiss). 

2.2.1.8 RNA isolation, reverse transcription and quantitative real-time PCR 

Total RNA isolation was performed with an RNA Mini Kit (Bio&Sell). Concentration of RNA 

was determined by NanoDrop1000 and quantified by Nanodrop 3.5.1. In order to quantify the 

expression of mRNAs reverse transcription polymerase chain reaction (qRT-PCR) of total 

cellular RNA was performed. Complementary DNA (cDNA) was synthesized with SuperScript 
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III Reverse Transcriptase with oligo(dT) and random hexamer primers. After annealing of 

primers at 65°C for 5 minutes, reverse transcription was performed at 50°C for 1 hour. To 

quantify cDNA PCR was performed (Sambrook et al. 1989). PCR reaction was carried out 

using SYBR Green Master Mix and ROX as reference dye (BioRad) in a PikoReal cycler 

(ThermoFisher). Relative expression of target genes was normalized to ß-Actin and analyzed 

by the delta-delta Ct method with the PikoReal software (ThermoFisher).  

2.2.1.9 Nuclear and cytosol extraction 

Cells were washed twice with ice-cold DPBS and scraped off the dish. Cells were pelleted for 

1 min at 17.000 g, resuspended in hypotonic buffer and incubated for 15 min. 1 % Nonidet 

was added and after 1 min vortexing nuclei were pelleted at 17.000 g for 3 minutes. Nuclear 

pellets were washed once. The supernatant was defined as the cytosolic fraction and protein 

content was assessed by Bradford assay. Bradford reagent (Roti-Quant) was added to 1:100 

diluted lysate and absorbance was measured. Cytosolic fraction and nuclear pellet were 

boiled at 95°C for 5 minutes with Laemmli buffer.  

2.2.1.10 SDS-PAGE and Western blotting 

Proteins were separated by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-

PAGE). First, 40 µg total protein was concentrated in a 25 mM TRIS/HCl buffered 

polyacrylamide gel (5% polyacrylamide, pH 6.8) containing 190 mM glycine using 10 mA / 

gel. Second, total protein was separated in a TRIS/HCL buffered polyacrylamide gel (8% 

polyacrylamide, pH 8.8) using 20 mA / gel. Separated proteins were blotted onto a methanol 

activated nitrocellulose membrane (NeoLab) at 250 mA in a cooled transfer buffer system. 

Membranes were washed with washing buffer without detergents, blocked for 1 h with 1x 

Rotiblock and incubated with the primary antibody. After washing with washing buffer 

containing 0.3 % Tween the secondary antibody was incubated for 1 h. After washing off the 

secondary antibody, membranes were scanned with the odyssey imaging system (LI-COR).  

2.2.1.11 Amino acid profiling 

For amino acid profiling, HAEC were lysed in 85% Ultra LC-MS methanol and 15% LC-MS 

water. Lysates were centrifuged for 10 minutes at 17,000 g and 50 µl of supernatants were 

processed using the EZ:faast LC-MS free amino acid analysis kit according to the 

manufacturer’s instructions with minor modifications: An internal standard (10 µl) was applied 

to all samples and to the standard curve. The internal standards included homoarginine, 

methionine-D3 and homophenylalanine. Analysis of metabolites was performed by LC-

MS/MS using an Agilent 1290 Infinity LC system coupled to a QTrap 5500 mass 

spectrometer. The intensity of the measured metabolite was normalized to internal standards 
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and protein content of cell lysate pellets as measured by Bradford assay. Analyst 1.6.2 and 

MultiQuant 3.0 were used for data acquisition and analysis.  

2.2.1.12 Nucleoside measurement 

HAEC were lysed and centrifuged as for amino acid profiling. Additionally to cell lysate, cell 

culture supernatant was collected and centrifuged for 10 minutes at 17,000 g. 200 µl of 

samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

as described previously (Thomas et al, 2015). The LC-MS/MS system consisted of an Agilent 

1260 Series binary pump and a triple quadrupole mass spectrometer 5500 QTRAP. The 

internal standards included adenosine, guanosine, cytidine, uridine, 13C5 adenosine, 13C5 

guanosine and 13C5-uridine. The intensity of measured nucleosides was normalized to 

internal standards and protein content of cell lysate pellets for intracellular nucleoside 

measurement and to intracellular RNA content for extracellular nucleoside measurement. 

Analyst Software 1.6 was used for analysis.   

2.2.1.13 ATP measurement 

Extracellular ATP was measured in cell supernatants centrifuged for 3 minutes at 5000 g and 

then 10 minutes at 17,000 g using CellTiter-Glo Luminescent Cell Viability Assay (Promega). 

Equal amounts of cell supernatant and luciferase lysis-buffer were mixed and incubated for 

10 minutes while shaking. Luminescence was detected using an Infinite 200Pro plate reader 

(Tecan) and normalized to intracellular RNA concentration. 

2.2.1.14 Oxygen consumption rate 

The cellular oxygen consumption rate (OCR) was analyzed using a Seahorse 96 

extracellular flux analyzer. HAEC were plated in Seahorse 96-well cell culture plates 

1 × 104 cells/well one day before the assay and equilibrated for 1 h in Krebs Henseleit buffer 

(111 mM NaCl, 4.7 mM KCl, 1.25 mM CaCl2, 2 mM MgSO4, 1.2 mM NaH2PO4 supplemented 

with 11 mM L-Glucose and 2 mM L-Glutamine. Cells were treated with 2.5 µM oligomycin A, 

1 µM carbonyl cyanide-3-chlorophenylhydrazone (CCCP), 1 µg/ml antimycin A and 1 µM 

rotenone as indicated. OCR was normalized to protein content of the wells. 

2.2.1.15 Luciferase Assay 

HEK were transiently transfected with pGL3 basic or pGL3_KDM7A_323bp and 

overexpression plasmids with Lipofectamine 3000 (Thermo Fisher) according to 

manufacturers protocol.  Luciferase activity was determined with the assay kit from Promega 

in a TECAN infinite M200OPro plate reader and normalized to the empty pGL3 control 

vector. 
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2.2.1.16 Chromatin immunoprecipitation 

Preparation of cell extracts, crosslinking and isolation of nuclei was performed with the 

truCHIP™ Chromatin Shearing Kit (Covaris) according to the manufacturers instructions. 

After sonification of the lysates with the Bioruptur Plus (10 cycles, 30 sec on, 90 sec off, 4°C; 

Diagenode, Seraing, Belgium), cell debris was removed by centrifugation and the lysates 

were diluted 1:3 in dilution buffer (20 mmol/L Tris/HCl pH 7.4, 100 mmol/L NaCl, 2 mmol/L 

EDTA, 0.5% Triton X-100 and protease inhibitors). Pre-clearing was done with 20 µL DiaMag 

protein A and protein G coated magnetic beads slurry (Diagenode) for 45 min at 4°C. The 

samples were incubated as indicated over night at 4°C with the antibodies indicated. 5% of 

the samples served as input. The complexes were collected with 50 µL DiaMag protein A 

and protein G coated magnetic beads (Diagenode) for 3 h at 4°C, subsequently washed 

twice for 5 min with each of the wash buffers 1-3 (Wash Buffer 1: 20 mmol/L Tris/HCl pH 7.4, 

150 mmol/L NaCl, 0.1% SDS, 2 mmol/L EDTA, 1% Triton X-100; Wash Buffer 2: 20 mmol/L 

Tris/HCl pH 7.4, 500 mmol/L NaCl, 2 mmol/L EDTA, 1% Triton X-100; Wash Buffer 3: 10 

mmol/L Tris/HCl pH 7.4, 250 mmol/L lithium chloride, 1% Nonidet p-40, 1% sodium 

deoxycholate, 1 mmol/L EDTA) and finally washed with TE- buffer pH 8.0. Elution of the 

beads was done with elution buffer (0.1 M NaHCO3, 1% SDS) containing 1x Proteinase K 

(Diagenode) and shaking at 600 rpm for 1h at 55°C, 1h at 62°C and 10 min at 95°C. After 

removal of the beads, the eluate was purified with the QiaQuick PCR purification kit (Qiagen) 

and subjected to qPCR analysis.  

2.2.1.17 Statistics for wet-laboratory experiments 

Unless otherwise indicated, data are given as mean ± standard error of the mean. 

Calculations were performed with Prism 5.0. The latter was also used to test for normal 

distribution and similarity of variance. In the case of multiple testing, Bonferroni correction 

was applied. For multiple group comparisons, analysis of variance followed by post hoc 

testing was performed. Individual statistics of dependent samples were performed by paired 

t-test, of unpaired samples by unpaired t-test, and, if not normally distributed, by Mann-

Whitney test. P values of <0.05 were considered significant. Unless otherwise indicated, n 

indicates the number of individual experiments. 
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2.2.2 Computational methods 

2.2.2.1 Gene set enrichment analysis (GSEA) 

Genes of interest were compared to 17,780 canonical and non canonical gene sets from the 

Molecular Signatures Databse (MSigDB version 6.0 or older). These included the canonical 

gene set collections GO, KEGG, REACTOME and BIOCARTA. The gene set collections 

were retrieved using the R package GSEABase (BiocLite, Bioconductor). The enrichment of 

the 17,780 gene sets of MSigDB in either the differentially expressed genes (DEG) 

compared to all genes of the RNAseq data set, a certain differential connectivity (DC) cluster 

compared to all DC clusters or a given Bayesian network (BN) subnetwork to whole BN, was 

assessed by Fisher’s exact test using R. The false discovery rate (FDR) corresponding to a 

given p-value threshold was computed as the ratio of the number of pathways with a p-value 

below threshold, averaged over 50 randomized data sets, and the number of pathways with 

p-value below threshold. A 5% FDR based on the empirical permutation test corresponds to 

a Fisher’s exact test p-value <1x10-3.  

2.2.2.2 Heatmap creation 

Heatmaps for RNAseq data and amino acid profiles were created using the Heatmap.2 

function within the R package gplot (CRAN) using R. Dendrograms were computed using the 

distfun function to calculate the dissimilarity (distance) between rows and between columns. 

The hclust function was used to calculate the hierarchical clustering when no dendrogram 

was applied for either rows or columns. For this, the agglomeration method Unweighted Pair 

Group Method with Arithmetic mean (UPGMA) was applied. 

2.2.2.3 Network visualization 

Networks were created in R as *.sif formate and visualized using Cytoscape version 3.5.1 or 

older. Node tables and edge tables were created using R. The cytoscape plugin Reactome 

FI was used as template to visualize the KDM7A signature within a Reactome gene set. 

2.2.2.4 Differential connectivity analysis 

Differential connectivity (DC) analysis of gene expression traits can detect disease 

associated genes that are not detected by conventional t-statistics based differential 

expression (DE) analysis. Differentially co-expressed gene pairs and DC clusters were 

computed as previously described (Narayanan et al, 2014). Changes in gene-gene 

correlation between control and oxPAPC treated groups were calculated under the 

assumption that gene pairs are bivariate normally distributed by a parametric meta-analysis. 
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Firstly, Spearman correlation coefficients $%�& rtij (' = 1 for oxPAPC samples and ' = 2 for 

control samples) for each gene pair ((, )) were transformed into Fisher’s Z-statistics (*%�&):  
(15) *%�& = �

� +,- .
�/0123
�401235 

This allows normal distribution with zero mean and standard deviation for a given sample 

size (nt): 

(16) 6� = �
781234� 

Secondly, heterogeneity statistic Q was calculated for each gene pair: 

(17) 9 = ∑ = �*%�& − *̅��%�&  

The weights =%�& were used to calculate the weighted average * of *	in oxPAPC and control 

samples: 

(18) =%�& = >%�& − 3 

The Q statistic follows a χ� distribution with a large χ� meaning less similar gene-gene 

correlation between oxPAPC and control group. Next, permutations were carried out to  

make differential co-expression calls from the Q-statistics: 997 permutations and applying the 

meta-analysis for each permutation were conducted by randomly assigning sample labels to 

shuffle the two groups together. The ratio of the number of gene pairs that had Q>Q0 with Q0 

as global cutoff was chosen as FDR for this cutoff. A final cutoff of Q0=22.5, which 

corresponds to FDR = 4.89%, for oxPAPC versus control was used to detect DC pairs. In 

addition a given gene pair had to be significantly co-expressed (Spearman’s correlation p-

value >0.01) in either control or oxPAPC group but not both to be called a differentially co-

expressed DC gene pair. If the differentially co-expressed gene pair was significantly co-

expressed in control group, but not oxPAPC group it was assigned to loss of connectivity 

(LOC) category and if the DC gene pair was significantly co-expressed in oxPAPC, but not 

control group it was assigned to gain of connectivity (GOC) category. 

2.2.2.5 Identification of key drivers and associated subnetworks 

For control and oxPAPC Bayesian network key causal regulators were computed as 

described previously (Zhu et al, 2007). For reading and analyzing the networks, the R 

packages BioNet and igraph (BiocLite, Bioconductor) were used. To determine key drivers, 

the number of N-hob downstream nodes (NHDN) for each gene was calculated. Firstly, 

genes which have  

(19) μ > 	μB + D�μ� 
with µ = NHDN were nominated as key drivers. Secondly, nominated key drivers which have 

(20) E > E̅ + 2D�E� 
with d as the outdegrees, meaning edges in outward direction, were selected as key drivers. 

With both criteria fulfilled, key drivers possessed a greater number of downstream nodes and 



Materials and Methods 

37 

out links significantly above the average. The key drivers were ranked by the neighborhood 

size in outdegree direction, meaning number of downstream nodes. 29 key drivers were 

detected in BNct and 27 key drivers in BNox.  

Next, the subnetwork associated with each key driver was defined as downstream nodes (i.e. 

neighbors in outdegree direction) with the key driver as the seeding point. Edges remained 

the same as in the complete network.  

2.2.2.6 Identification of gene signature subnetworks 

For the identification of KDM7A and PHF8 signature subnetworks, the R package igraph 

(BiocLite, Bioconductor) was used. Firstly, differentially expressed genes (DEG) of the 

KDM7A and PHF8 RNAseq data were identified (FDR < 0.05). Secondly, DEG which are 

contained within the Bayesian network, were selected. Next, directed neighbors to DEG 

within the network (order = 1) in indegree and outdegree direction were additionally selected. 

All selected genes were extracted leading to connected subnetworks of different size or non 

connected nodes. The resulting subnetworks were sorted by node size and the largest 

connected subnetwork was defined as the signature subnetwork. Next, key drivers of the 

signature subnetwork were defined and the subnetwork was tested for enriched biological 

processes (GSEA).  

2.2.2.7 RNA sequencing and data analysis 

RNA isolated from HAEC was treated with DNase (Qiagen, Cat# 79254). Library construction 

(LncRNA library, Ribo-Zero), quality assessment and sequencing (HiSeqSE50) were 

performed by Novogene. Differentially expressed genes were identified using the following 

procedure: first, sequencing reads were aligned to the human reference genome hg19 using 

TopHat (Trapnell et al, 2009). Next, the mapped sequences were aligned with htseq-count to 

quantify the read count for each gene (Anders et al, 2015). The edgeR package (Robinson et 

al, 2009) was then used to identify differentially expressed genes between control and siRNA 

treatment. 286 differentially expressed genes were detected at adjusted p-value of 0.005. 

2.2.2.8 Assessment of Bayesian networks 

To assess the accuracy of the human aortic endothelial cell Bayesian networks, the BNs 

were compared with several widely used databases of gene networks and gene sets: 1) 

37,080 interactions covering 9,465 genes from Human Protein Reference Database (HPRD) 

database (Peri et al, 2004), 2) 195,859 high confident interactions covering 12,427 genes 

from STRING database (Franceschini et al, 2013), 3) 1,329 canonical pathways covering 

8,439 genes from MsigDB databases (Subramanian et al, 2005), and 4) 11,174 Gene 

Ontology (GO) annotation sets (sets with size >=200 are excluded) covering 11,508 genes.  
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In particular, the percentage of inferred gene-gene connections within the BNs which were in 

existing protein/gene network databases, or within the same pathway in gene set databases 

were calculated. For comparison, 100 random networks were generated for corresponding 

BNs by using degree.sequence.game function within the igraph R package, and estimated 

accuracy of random networks was determined.  

Additionally, the predictive power of the BNs was assessed by using gene sets closely 

regulated in endothelial cells. In particular, two independent gene sets were used: 77 gene 

sets related to endothelial cell from MsigDB and 400 siRNA gene signatures in HUVEC 

(Hurley et al, 2012). For siRNA gene signatures, microarray data were downloaded from 

Gene Expression Omnibus (GEO) (GSE27869) and preprocessed as previously described 

(Hurley et al, 2012). The R packages Biobase, BSDA and multicon were used to pre-process 

the data, z-transformation and z-test. Genes with a z-score >2 and <-2 were defined as 

significantly up-regulated and down-regulated genes respectively. Based on these gene sets, 

the accuracy of the BNs were compared to that of widely used gene networks including 

HRPD database by calculating the percentage of gene-gene connections that are within the 

same gene set. 

2.2.2.9 Processing of Atheroma, Biobank and SLE data 

Human carotid atheroma data (Ayari & Bricca, 2013) (GSE43292), biobank human carotid 

plaque data GSE21545 (Folkersen & Persson, 2012) and Systemic lupus erythematodes 

(SLE) data (Hung et al, 2015) (GSE72509) were downloaded from GEO. Each platform’s 

probe ID was mapped to the corresponding gene symbol and the expression levels were 

averaged over multiple probes mapped to the same gene symbol. The significance level of 

differentially expressed genes between disease and control group was calculated by 

Wilcoxon rank sum test. Correlation coefficients were calculated using the cor function in R 

for Pearson correlation. The cumulative distribution function (CDF) was plotted using the plot 

function in R. 

2.2.2.10 Genome-wide association studies (GWAS) of plasma metabolites 

and coronary artery disease 

Significant single nucleotide polymorphisms (SNPs) (meta-analysis p-value < 1x10-4) 

associated with one of more than 400 metabolites in human blood in a genome-wide 

association study (http://metabolomics.helmholtz-muenchen.de/gwas/) (Shin et al, 2014b) 

were collected. Candidate SNPs were mapped to genes if their physical locations were within 

± 5kb of gene bodies. Candidate SNPS in CARDIoGRAMplusC4D (Coronary ARtery DIsease 

Genome wide Replication and Meta-analysis (CARDIoGRAM) plus The Coronary Artery 

Disease (C4D) Genetics) consortium were also compared. In particular, significant SNPs 
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with p-value < 1x10-4 based on CARDIoGRAMplus4D 1000 Genome-based GWAS study, 

which is a meta-analysis of GWAS studies using 1000 genomes with 38 million variants 

(Nikpay et al, 2015), were collected. Significant SNPs whose physical location was within 

±500kb of coding region of genes within the MTHFD2 subnetwork were searched. 
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3 Results 

3.1 Integrative network analysis of human aortic endothelial cells in response 

to oxPAPC 

In order to determine key drivers and gene clusters which shape the response of endothelial 

cells to pro-atherogenic lipids, an integrative network approach was applied (Hitzel et al, 

2018). In a first step, expression profiles of HAEC obtained from 147 heart transplant donors 

were reused. HAEC of this cohort had been split and exposed to oxPAPC and vehicle control 

for 4 hours (Romanoski et al, 2011). Apart from canonical identification of differentially 

expressed genes, this dataset was exploited to identify gene pairs which show differential co-

expression between control and oxPAPC treated state (Figure 10 A).  

 

Figure 10: Integrative network approach in HAEC. 

Expression profiles were used to compute differential connectivity clusters (A, B) and 
genotype profiles were integrated to construct Bayesian networks (C).  Key drivers of the 
Bayesian networks were identified (D) and the subnetwork of the key driver MTHFD2 was 
investigated in detail (E). (Hitzel et al, 2018) 

Hierarchical clustering of these differential connected gene pairs revealed 20 gene clusters 

which were characterized using gene set enrichment analysis (GSEA) (Figure 10 B). Since 

the data sets of the control and oxPAPC treated state are characterized by the same 

genotype as they originate from the same cohort of human individuals, expression 

quantitative trait loci of this cohort (Erbilgin et al, 2013) were integrated with the expression 

profiles to infer causal relationships between genes (Figure 10 C). The resulting Bayesing 

networks were assessed for their predictive power by systematically comparing them to 

known gene-gene relationships. Causal networks were marked by intrinsic hierarchy and 

therefore allowed identification of nodes which control large parts within the network. These 
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key drivers and their associated subnetworks were identified and the functions of these 

subnetworks were assessed by gene set enrichment analysis (Figure 10 D). The oxPAPC 

emerged subnetwork which was controlled by the key driver MTHFD2 was selected for 

detailed investigation which among others included RNAseq profiling, metabolomics and 

functional characterization (Figure 10 E).  

3.1.1 Differential connectivity clusters reveal a deregulated amino acid 

metabolism in response to oxPAPC 

Undirected gene co-expression networks have been widely used to represent more general 

relationships among genes. Such a weighted gene co-expression approach identified 

Hemeoxygenase 1 (HO1) as a hub protein in a module in oxPAPC exposed HAEC 

(Romanoski et al, 2011). Instead of focusing on co-expression modules with limited 

information, the analysis was extended and differential co-expression clusters were 

computed. This approach gives additional information about the direction of the connection 

between genes in control versus treated state (Narayanan et al, 2014) and thereby helps 

identifying differentially regulated biological processes upon oxPAPC exposure.  

 

Figure 11: Differential connectivity clusters of HAEC exposed to oxPAPC. 

Topological overlap matrix (TOP) of nine clusters with significant gain of co-expression (GOC) 
(A) and eleven clusters with significant loss of co-expression (LOC) (B) identified in a 
comparison of genome-wide gene-gene co-expression relations between oxPAPC treated and 
control HAEC. (Hitzel et al, 2018) 

Firstly, differential connected (DC) gene pairs under the two conditions were identified (Hitzel 

et al, 2018). 26,759 DC gene pairs showed significant differential co-expression. Among 

these significantly co-expressed DC gene pairs 50.4% showed gain of connectivity (GOC) 

meaning enhanced co-regulation between genes with oxPAPC treatment. In comparison, 
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49.5% showed loss of connectivity (LOC), thus reduced co-regulation between genes. 

Secondly, hierarchical clustering was applied which yielded nine significant GOC clusters 

(Figure 11 A) and eleven significant LOC clusters (Figure 11 B) with co-regulations elicited 

by oxPAPC. Among all DC clusters, GOC cluster 6 showed the most coherent differential 

connectivity changes which suggest that GOC cluster 6 represents the strongest response of 

HAEC to oxPAPC. To dissect biological meaning of DC gene clusters, gene set enrichment 

analysis (GSEA) was performed.  

Table 1: Significantly overrepresented canonical pathways in GOC clusters. (Hitzel et al, 2018) 

GOC cluster Top functional category p–value 

GOC1 GO_MACROAUTOPHAGY 2.55E-03 

GOC2 

GO_HOMOPHILIC_CELL_ADHESION_VIA_PLASMA_MEMBRANE_ADHESION_MOLE

CULES 

KEGG_LYSOSOME 

3.22E-34 

 

2.21E-10 

GOC3 GO_LAMELLIPODIUM 1.81E-05 

GOC4 

GO_MITOTIC_CELL_CYCLE 

HALLMARK_G2M_CHECKPOINT 

REACTOME_CELL_CYCLE 

KEGG_CELL_CYCLE 

2.12E-31 

1.11E-21 

4.35E-19 

2.06E-05 

GOC5 GO_NEGATIVE_REGULATION_OF_MITOTIC_CELL_CYCLE 7.74E-05 

GOC6 

GO_CELLULAR_AMINO_ACID_METABOLIC_PROCESS  

HALLMARK_MTORC1_SIGNALING 

REACTOME_CYTOSOLIC_TRNA_AMINOACYLATION 

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 

1.63E-09 

2.66E-11 

4.24E-09 

1.19E-08 

GOC7 GO_ORGAN_MORPHOGENESIS 8.13E-08 

GOC8 GO_NUCLEIC_ACID_BINDING_TRANSCRIPTION_FACTOR_ACTIVITY 6.28E-08 

GOC9 GO_REGULATION_OF_CELLULAR_RESPONSE_TO_HEAT 6.33E-10 

 

Table 2: Significantly overrepresented canonical pathways in LOC clusters. (Hitzel et al, 2018) 

LOC cluster Top functional category p–value 

LOC1 
GO_REGULATION_OF_MESODERM_DEVELOPMENT 

HALLMARK_ESTROGEN_RESPONSE_LATE 

2.91E-05 

5.49E-05 

LOC2 
GO_POSTTRANSCRIPTIONAL_REGULATION_OF_GENE_EXPRESSION 

HALLMARK_P53_PATHWAY 

1.96E-06 

3.66E-07 

LOC3 
GO_CATABOLIC_PROCESS 

REACTOME_METABOLISM_OF_RNA 

6.59E-07 

9.46E-05 

LOC4 

GO_DNA_DEPENDENT_DNA_REPLICATION 

REACTOME_CELL_CYCLE 

HALLMARK_E2F_TARGETS 

KEGG_DNA_REPLICATION 

2.49E-09 

4.18E-09 

1.17E-08 

7.28E-05 

LOC5 

GO_MITOCHONDRIAL_PART 

HALLMARK_MYC_TARGETS_V1 

REACTOME_CELL_CYCLE 

2.01E-10 

5.02E-10 

4.29E-07 

LOC6 GO_SPHINGOLIPID_METABOLIC_PROCESS 1.09E-04 

LOC7 
GO_REGULATION_OF_CELLULAR_AMIDE_METABOLIC_PROCESS 

HALLMARK_TNFA_SIGNALING_VIA_NFKB 

1.81E-06 

3.01E-06 
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LOC8 
GO_RIBONUCLEOTIDE_BINDING 

HALLMARK_G2M_CHECKPOINT 

2.39E-09 

9.23E-11 

LOC9 

GO_NCRNA_PROCESSING 

REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PROTEIN_TARGETING_TO_M

EMBRANE 

KEGG_RIBOSOME 

2.65E-09 

3.61E-08 

9.28E-07 

LOC10 

GO_IMMUNE_SYSTEM_PROCESS 

KEGG_CELL_ADHESION_MOLECULES_CAMS 

REACTOME_IMMUNOREGULATORY_INTERACTIONS_BETWEEN_A_LYMPHOID_AN

D_A_NON_LYMPHOID_CELL 

1.40E-07 

1.41E-06 

8.34E-05 

LOC11 

GO_CIRCULATORY_SYSTEM_DEVELOPMENT 

HALLMARK_TGF_BETA_SIGNALING 

KEGG_TGF_BETA_SIGNALING_PATHWAY 

3.90E-12 

1.18E-06 

2.17E-06 

 

The top functional GO category of each GOC and LOC cluster is listed in Table 1 and Table 

2 respectively. Additionally the top functional category from KEGG, HALLMARK and 

REACTOME gene sets (MSigDB v.6) are listed if p-value ≤ 1E-05 according to Fisher’s exact 

test (FET). Biological processes related to cell adhesion and lysosomal function (GOC2) as 

well as cell cycle (GOC4) and heat shock response (GOC9) showed the strongest 

enrichment for gain of connectivity between genes upon oxPAPC treatment (Table 1). In 

contrast, loss of connectivity was observed for biological processes related to development 

(LOC11), cell cycle (LOC4, LOC5, LOC8) and non-coding RNA (LOC9) (Table 2). Top 10 

significantly overrepresented canonical gene set categories (MSigDB v.6) for cluster GOC6 

are listed in Table 3. GOC cluster 6 was significantly enriched for categories related to 

mTOR signaling and unfolded protein response. Many of the 10 most significantly enriched 

canonical gene set categories were related to amino acid metabolism. Therefore, GOC 

cluster 6 was termed GOC-AA.  

Table 3: Significantly overrepresented gene set categories in GOC-AA. (Hitzel et al, 2018) 

GOC-AA: Top functional canonical gene set categories p–value 

MTOR_UP.N4.V1_UP  4.74E-14 

ALK_DN.V1_UP  3.24E-12 

HALLMARK_MTORC1_SIGNALING  2.66E-11 

HALLMARK_UNFOLDED_PROTEIN_RESPONSE 1.07E-09 

GO_CELLULAR_AMINO_ACID_METABOLIC_PROCESS 1.63E-09 

REACTOME_CYTOSOLIC_TRNA_AMINOACYLATION 4.24E-09 

GO_ORGANIC_ACID_METABOLIC_PROCESS  8.75E-09 

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS  1.19E-08 

REACTOME_TRNA_AMINOACYLATION  1.19E-08 

TGANTCA_AP1_C  3.83E-08 

RCGCANGCGY_NRF1_Q6  4.61E-08 

GO_NEGATIVE_REGULATION_OF_CELL_DEATH 5.55E-08 
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Taken together, the applied DC clustering approach suggests that amino acid metabolism 

experiences a massive remodeling in response to oxidized phospholipids. 

3.1.2 Bayesian network modeling of HAEC exposed to oxPAPC 

To explore the mechanism underlying deregulated amino acid metabolism in response to 

oxPAPC, Bayesian network modeling was applied (Hitzel et al, 2018). This approach gives 

hierarchical information of gene gene relationships and therefore allows for the identification 

of causal regulators. In order to construct directed probabilistic Bayesian networks, 

expression profiles of control and oxPAPC treated state, as used for computing the DC 

clusters, and expression quantitative trait loci of the same cohort were integrated to infer 

causal relationships among genes. The resulting control Bayesian network (BNct) and 

oxPAPC Bayesian network (BNox) were assessed, analyzed and experimentally validated. 

3.1.3 Systematic assessment of HAEC Bayesian networks 

Firstly, BNct and BNox were compared with widely used databases for gene sets and gene 

networks (Hitzel et al, 2018). The estimated accuracies of BNct and BNox were higher than 

corresponding 100 random networks for: 37,080 interactions covering 9,465 genes from 

Human Protein Reference Database (HPRD); 195,859 high confident interactions covering 

12,427 genes from STRING database; 1,329 canonical pathways covering 8,439 genes from 

MsigDB databases; and 11,174 Gene Ontology (GO) annotation sets covering 11,508 genes 

(Figure 12 A).  

 

Figure 12: Validation of HAEC Bayesian networks. 

A: Percentage of inferred gene gene connections in BNs and corresponding random networks 
within gene set and network databases. B, C: Percentage of gene gene connections in BNct (B) 
and BNox (C) compared to HPRD networks within endothelial signatures. (Hitzel et al, 2018) 

Secondly, the predictive power of BNct and BNox were assessed with respect to endothelial 

specific signatures. The percentage of gene gene connections within BNct (Figure 12 B) and 

BNox (Figure 12 C) was higher than in global gene networks from HPRD for endothelial 
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specific signatures which consisted of 77 endothelial related gene sets (MSigDB) and 400 

siRNA gene signatures in HUVEC (Hurley et al, 2012).  

3.1.4 Key driver analysis of HAEC Bayesian networks 

To identify causal regulators and their regulated biological processes, key driver analysis 

was performed (Zhu et al, 2008; Zhang et al, 2013). Key drivers are defined as nodes which 

control many downstream nodes and which influence the expression of a significant portion 

of the subnetwork they reside in. 73 and 72 key drivers were identified in BNct and BNox 

respectively. Next, the subnetwork associated with each key driver was extracted. Each key 

driver was used as seeding point and all downstream nodes, meaning neighbors in 

outdegree direction, were defined. This approach yielded 29 and 27 key drivers with 

associated subnetworks with more than 100 nodes in size for BNct and BNox respectively 

(Figure 13).  

 

Figure 13: HAEC Bayesian networks. 

Network view of HAEC Bayesian networks of control state (BNct) (A) and oxPAPC treated state 
(BNox) (B). Key drivers with more than 100 downstream nodes are indicated and ten selected 
top-ranked subnetworks are colored. Edges are colored according to source node. (Hitzel et al, 
2018) 

Gene set enrichment analysis of identified key driver subnetworks in BNct showed canonical 

gene set categories related to cell cycle, ribosome biogenesis, Wnt-signaling and vacuolar 

lumen / Lysosome related  pathways as major biological processes (Table 4, Appendix).  
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Table 4: Most significantly overrepresented canonical gene set category (FET p-value) in key 
driver (KD) associated subnetworks (node size ≥ 100) in BNct. Selected top-tanked subnetworks 
are highlighted as in Figure 13. (Hitzel et al, 2018) 

KD size Top functional canonical gene set category p–value 

CDCA3 589 GO_DNA_REPLICATION 6.58E-19 

PDSS1 544 GO_RIBOSOME_BIOGENESIS 5.83E-10 

DOCK9 348 GO_INORGANIC_ION_TRANSMEMBRANE_TRANSPORT 5.85E-06 

NEK2 317 HALLMARK_E2F_TARGETS 5.28E-24 

TRAM1 281 KEGG_WNT_SIGNALING_PATHWAY 4.73E-05 

TBC1D8 268 GO_INORGANIC_ION_TRANSMEMBRANE_TRANSPORT 8.52E-05 

EMG1 243 GO_TRNA_PROCESSING 1.13E-04 

CKS1B 232 GO_DNA_REPLICATION 7.56E-29 

ITGAV 230 HALLMARK_INFLAMMATORY_RESPONSE 1.70E-06 

PBK 223 GO_DNA_REPLICATION 2.86E-19 

UBXN4 210 KEGG_WNT_SIGNALING_PATHWAY 4.95E-05 

TIPIN 179 GO_ANTIGEN_PROCESSING_AND_PRESENTATION_VIA_MHC_CLASS_IB 6.61E-04 

TMOD3 158 GO_REGULATION_OF_RNA_SPLICING 5.72E-05 

GINS1 151 GO_DNA_REPLICATION 2.67E-20 

PPM1F 150 GO_MEMBRANE_REGION 1.05E-05 

DUT 143 GO_L_ASCORBIC_ACID_BINDING 4.05E-04 

CDC20 141 GO_PEPTIDYL_TYROSINE_MODIFICATION 4.74E-04 

TPP1 140 GO_VACUOLAR_LUMEN 1.76E-06 

UCHL5 139 GO_RESPONSE_TO_TOPOLOGICALLY_INCORRECT_PROTEIN 7.36E-04 

TAF9B 131 GO_TRANSCRIPTION_FACTOR_COMPLEX 5.06E-05 

SERPINE1 127 
GO_REGULATION_OF_N_METHYL_D_ASPARTATE_SELECTIVE_GLUTAMATE_

RECEPTOR_ACTIVITY 
6.12E-05 

KDR 125 GO_MEMBRANE_REGION 6.99E-07 

SGSM2 122 REACTOME_UNFOLDED_PROTEIN_RESPONSE 3.92E-04 

MRTO4 119 GO_RIBOSOME_BIOGENESIS 6.91E-07 

SFRS1 112 GO_POSITIVE_REGULATION_OF_GENE_EXPRESSION 2.01E-04 

PGF 111 GO_TRIGLYCERIDE_CATABOLIC_PROCESS 1.59E-04 

NISCH 110 REACTOME_UNFOLDED_PROTEIN_RESPONSE 2.06E-04 

RBBP4 109 GO_EXECUTION_PHASE_OF_APOPTOSIS 2.14E-04 

TSPAN7 100 GO_IMPORT_INTO_CELL 2.51E-04 

 

Biological processes related to cell cycle, golgi, lysosome and amino acid metabolism were 

enriched in BNox (Table 5, Appendix).  
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Table 5: Most significantly overrepresented canonical gene set category (FET p-value) in key 
driver (KD) associated subnetworks (subnetwork size ≥ 100) in BNox. Selected top-tanked 
subnetworks are highlighted as in Figure 13. (Hitzel et al, 2018) 

KD size Top functional canonical gene set category p–value 

CCNB2 513 HALLMARK_E2F_TARGETS 1.52E-20 

UBXN4 318 GO_GOLGI_ORGANIZATION 2.85E-05 

KIF4A 304 GO_CELL_CYCLE_PROCESS 3.52E-14 

NDC80 263 HALLMARK_E2F_TARGETS 2.72E-14 

PCDH12 261 GO_ANGIOGENESIS 4.85E-05 

ASPM 242 GO_ORGANELLE_FISSION 1.96E-09 

CCNB1 235 GO_ANION_TRANSMEMBRANE_TRANSPORTING_ATPASE_ACTIVITY 3.76E-04 

KDR 214 HALLMARK_ESTROGEN_RESPONSE_LATE 1.96E-04 

CDCA3 184 KEGG_ABC_TRANSPORTERS 1.12E-05 

NUSAP1 175 GO_DNA_REPLICATION 2.71E-14 

PLK1 160 GO_ANION_TRANSMEMBRANE_TRANSPORTING_ATPASE_ACTIVITY 1.18E-04 

CDKN3 159 GO_ANION_TRANSMEMBRANE_TRANSPORTING_ATPASE_ACTIVITY 1.16E-04 

DPYSL2 155 GO_IRON_ION_HOMEOSTASIS 6.65E-04 

LOC100292189 139 GO_CIRCULATORY_SYSTEM_DEVELOPMENT 2.22E-04 

GRN 138 KEGG_LYSOSOME 8.22E-11 

KIAA1462 136 GO_REGULATION_OF_PHOSPHORUS_METABOLIC_PROCESS 3.95E-06 

TMED2 131 GO_ACTIVATION_OF_NF_KAPPAB_INDUCING_KINASE_ACTIVITY 6.07E-04 

DNAJB1 129 GO_PROTEIN_FOLDING 6.55E-07 

EMG1 129 GO_NCRNA_PROCESSING 3.68E-05 

ASNS 121 GO_CELLULAR_AMINO_ACID_METABOLIC_PROCESS 2.38E-09 

MTHFD2 114 GO_CELLULAR_AMINO_ACID_METABOLIC_PROCESS 7.32E-08 

PNMA2 114 GO_CIRCULATORY_SYSTEM_DEVELOPMENT 5.13E-04 

YWHAZ 113 BIOCARTA_ARAP_PATHWAY 3.92E-04 

HSPA1A 111 GO_PROTEIN_FOLDING 6.34E-06 

ARMCX2 109 GO_CIRCULATORY_SYSTEM_DEVELOPMENT 2.71E-04 

CHAC1 107 REACTOME_CYTOSOLIC_TRNA_AMINOACYLATION 2.98E-08 

SYPL1 102 GO_NEGATIVE_REGULATION_OF_ERBB_SIGNALING_PATHWAY 5.86E-05 

 

Asparagine synthetase (ASNS) and the mitochondrial methylenetetrahydrofolate 

dehydrogenase/cyclohydrolase (MTHFD2) were identified as key drivers for subnetworks 

enriched in amino acid metabolic processes. ASNS and MTHFD2 are no key drivers in BNct 

and amino acid metabolism has not been identified as a significantly enriched biological 

process in the control state. This observation confirms the above identified emergence of an 

amino acid metabolism cluster in response to oxPAPC. Since folate metabolism is potentially 

important in the process of atherosclerosis, MTHFD2 was of particular interest. 

The subnetwork regulated by MTHFD2, termed BNMTHFD2, showed similar enrichment as the 

identified GOC-AA cluster (Table 6). Confirmatory, BNMTHFD2 significantly overlapped with 

the GOC-AA cluster (FET p-value=2.33E-28). Thus, MTHFD2 may facilitate a shift in amino 

acid metabolism in HAEC in response to oxidized phospholipids. 
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Table 6: Gene set enrichment analysis of canonical gene set categories (FET p-value) in 
BNMTHFD2. (Hitzel et al, 2018) 

BNMTHFD2: Top functional canonical gene set categories p–value 

MTOR_UP.N4.V1_UP  5.35E-13 

ALK_DN.V1_UP  2.23E-11 

GO_CELLULAR_AMINO_ACID_METABOLIC_PROCESS  7.32E-08 

KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM  2.53E-06 

REACTOME_CYTOSOLIC_TRNA_AMINOACYLATION  2.53E-06 

GO_SERINE_FAMILY_AMINO_ACID_METABOLIC_PROCESS  2.53E-06 

GO_TRNA_BINDING  2.53E-06 

HALLMARK_MTORC1_SIGNALING  3.91E-06 

GO_INTRINSIC_APOPTOTIC_SIGNALING_PATHWAY_IN_RESPONSE_TO_ENDOPLASMIC_RETICULUM_

STRESS  
6.39E-06 

GO_ORGANIC_ACID_METABOLIC_PROCESS  7.46E-06 

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS  1.08E-05 

REACTOME_TRNA_AMINOACYLATION  1.08E-05 

 

3.1.5 MTHFD2 links endothelial reactions and oxidized phospholipids to an 

amino acid subnetwork 

MTHFD2 is highly overexpressed in many cancers and constitutes a core enzyme for 

mitochondrial one-carbon metabolism which represents the highest scoring metabolic 

pathway across all human cancers (Nilsson et al, 2014; Tedeschi et al, 2015). MTHFD2 is 

localized to mitochondria and possesses 5,10-methylene-tetrahydrofolate (5,10-MTHF) 

dehydrogenase and cyclohydrolase activity. In essence, MTHFD2 catalyzes the conversion 

of 5,10-MTHF to 10-formyl-tetrahydrofolate (10-FTHF) which is a 1C donor indispensable for 

de novo synthesis of purines like adenine or guanine (Tibbetts & Appling, 2010). Since the 

function of MTHFD2 has been studied to a vast majority in undifferentiated cells, its role in 

adult cells and in particular in endothelial biology is, to this date, totally unknown. In 

particular, a link between MTHFD2 dependent amino acid metabolism and atherogenic lipid 

signaling is not known. Given the importance of metabolism for the endothelium, the 

MTHFD2 network was analyzed in greater detail.  
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Figure 14: Network view of the MTHFD2 Bayesian network. 

Nodes which belong to indicated significantly overrepresented canonical gene set categories 
are highlighted respectively. Node size reflects outdegree. The key driver MTHFD2 is 
highlighted in red and its downstream node PSAT1 is indicated (red arrow). (Hitzel et al, 2018) 

The MTHFD2 associated subnetwork comprised 114 genes of which many constituted 

enzymes involved in glycine-serine metabolism (blue), solute carrier (SLC) transporters 

which mediate cellular uptake of sugar and mostly large amino acids (pink), aminoacyl tRNA 

synthetases (AARs) (yellow) and stress responsive genes (green) (Figure 14). 

3.2 Experimental validation of MTHFD2 Bayesian network 

3.2.1 MTHFD2 mediates the oxPAPC-dependent changes in amino acid 

metabolism 

BNMTHFD2 comprises enzymes which center on cytosol-mitochondrial coupled serine-glycine 

synthesis (Figure 15 A). The mitochondrial folate cycle generates glycine from serine, which 

is catalyzed by SHMT2. In the course of this reaction the co-factor tetrahydrofolate is 

converted to 5,10-MTHF. The enzyme MTHFD2 then uses 5,10-meTHF to produce the 

highly reactive 1-C donor 10-formyl-THF, which is recycled to tetrahydrofolate by MTHFD1L. 
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The serine consumed for this reaction is synthesized by PHGDH and PSAT1 from glycolysis 

intermediates (Tedeschi et al, 2013).  

To validate BNMTHFD2 and to better understand the role of MTHFD2 in endothelial cells an 

experimental approach was applied. HAEC were exposed to oxPAPC and MTHFD2 was 

silenced by siRNAs. In accordance with the above observed emergence of BNMTHFD2 upon 

oxPAPC exposure, MTHFD2 expression was induced by oxPAPC (Figure 15 B). Importantly, 

expression of all key enzymes of the cytosol-mitochondrial serine-glycine synthesis pathway 

(PHGDH, PSAT1 and SHMT2) was increased by oxPAPC. Additionally, siRNA mediated 

silencing of MTHFD2 induced expression of these enzymes, which was potentiated by 

oxPAPC. Down-regulation of MTHF2D or oxPAPC exposure also increased the expression 

of other genes in BNMTHFD2: the aminoacyl tRNA synthetases (AARS) GARS and CARS, the 

transcription factor CEBPB and the transporters SLC7A5 and SLC7A1 which import large 

amino acids. To determine the hierarchical position of MTHFD2 within the subnetwork, its 

direct downstream node PSAT1 (Figure 14, arrow) was silenced. Expression of genes in 

BNMTHFD2 was affected to a lesser extent by PSAT1 knockdown than by MTHFD2 knockdown 

(Figure 15 B). Importantly, MTHFD1L, which contributes to formate formation within the 

mitochondrial one-carbon cycle but does not belong to the MTHFD2 network, was not only 

not affected by oxPAPC but was also unaltered in response to siRNA against PSAT1 or 

MTHFD2. Collectively, these results validate MTHFD2 as a key regulator of the MTHFD2 

network in oxPAPC exposed HAEC. Furthermore, they indicate that oxPAPC elicits a 

metabolic shift promoting the cellular uptake of amino acids and the de novo synthesis of 

glycine.  
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Figure 15: Key driver MTHFD2 and oxPAPC induce expression of genes in BNMTHFD2. 

A  Schematic diagram of enzymes of BNMTHFD2 involved in amino acid metabolism. Enzymes of 
BNMTHFD2 (blue) are involved in serine, glycine, cysteine and aspartate interconversion. B: 
Experimental validation of BNMTHFD2 as assessed by quantitative RT-PCR. HAEC with siRNA 
knockdown against key driver MTHFD2, the downstream node PSAT1 or scramble control were 
exposed to medium (1% FCS) with or without oxPAPC for 4 hours (n≥4). Genes which belong to 
BNMTHFD2 are framed by the color of the corresponding gene set category as in Figure 14. 
MTHFD2 = methylenetetrahydrofolate dehydrogenase (NADP

+
 dependent) 2-

methenyltetrahydrofolate cyclohydrolase, SHMT2 = serine hydroxymethyltransferase 2, 
PHGDH = phosphoglycerate dehydrogenase, PSAT1 = phosphoserine aminotransferase 1, 
CEBPB = CCAAT/enhancer binding protein beta, GARS = glycyl-tRNA synthetase, CARS = 
cysteinyl-tRNA Synthetase, SLC7A5 = solute carrier family 7 member 5, SLC7A1 = solute 
carrier family member 1, MTHFD1L = methylenetetrahydrofolate dehydrogenase (NADP

+
 

dependent) 1-like. Data are represented as ± SEM *≤0.05 (Student’s t-test). (Hitzel et al, 2018) 

3.2.2 MTHFD2 regulates 18 core genes related to amino acid metabolism 

In order to directly address the importance of MTHFD2 for endothelial cell gene expression, 

RNAseq with siRNA-based knockdown of MTHFD2 in HAEC was performed. Differentially 

expressed genes were identified (FDR <0.01, Figure 16 A) and significantly overrepresented 

gene set categories of the RNA signature at FDR < 0.05 were determined.  
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Table 7: Significantly overrepresented canonical gene set categories in MTHFD2 RNAseq 
signature (FDR<0.05). (Hitzel et al, 2018) 

MTHFD2 RNAseq: Top functional canonical gene set categories p–value 

HALLMARK_MTORC1_SIGNALING  9.33E-19 

MTOR_UP.N4.V1_UP  5.44E-16 

NFE2L2.V2  5.38E-14 

GO_CELLULAR_AMINO_ACID_METABOLIC_PROCESS 7.54E-14 

REACTOME_CYTOSOLIC_TRNA_AMINOACYLATION 2.44E-12 

HALLMARK_UNFOLDED_PROTEIN_RESPONSE 1.29E-11 

ALK_DN.V1_UP  1.10E-10 

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS  1.51E-10 

REACTOME_TRNA_AMINOACYLATION  1.81E-10 

GO_LIGASE_ACTIVITY_FORMING_CARBON_OXYGEN_BONDS  2.55E-10 

GO_AMINO_ACID_ACTIVATION  8.69E-10 

GO_SERINE_FAMILY_AMINO_ACID_BIOSYNTHETIC_PROCESS  1.80E-09 

 

The majority of the most significantly enriched canonical gene sets were related to amino 

acid metabolism (Table 7). Additionally, categories related to mTOR, UPR and the Nrf2 

response (NFE2L2) were enriched. Notably, the signature of enriched gene sets resembled 

that of the GOC-AA cluster and BNMTHFD2. Next the MTHFD2 siRNA signature was projected 

onto BNMTHFD2. Consistently, close neighbors of the key driver MTHFD2 were upregulated in 

the MTHFD2 RNAseq signature (Figure 16 B). Indeed, the MTHFD2 siRNA signature 

significantly overlapped with BNMTHFD2 as compared to whole BNox (FET p-value=8.34E-16). 

Finally, the siRNA signature also significantly overlapped with the GOC-AA cluster as 

compared to all DC clusters (FET p-value=1.19E-17).  

Next, indispensable pathway genes were identified by comparing cluster GOC-AA, BNMTHFD2 

and the RNAseq signature. This analysis yielded 18 commonly shared genes: the 

mitochondrial one-carbon cycle genes MTHFD2 and SHMT2, the serine synthesizing 

enzymes PHGDH and PSAT1, SLC transporters, AARs as well as CEBPB and the 

mitochondrial phosphoenolpyruvate carboxykinase 2 (PCK2) (Figure 16 C). Collectively, 

integrative analysis of the MTHFD2 RNAseq signature validated the MTHFD2 subnetwork 

and confirmed the fundamental role of MTHFD2 in amino acid metabolic reprogramming.  
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Figure 16: RNAseq validation of MTHFD2 Bayesian subnetwork. 

A: Heatmap for fragments per kilobase of transcript per million mapped reads (FPKM) of 
significantly differentially expressed genes (FDR < 0.01). RNAseq was performed in HAEC with 
three different siRNAs against key driver MTHFD2 or scramble control. B: Projection of 
RNAseq signature (FDR < 0.05) in A onto BNMTHFD2. Direction of expression of BNMTHFD2 nodes in 
RNAseq signature is indicated by node color. Node size reflects outdegree. C: Venn diagram of 
genes in GOCaa, BNMTHFD2 and RNAseq signature (FDR < 0.01). Genes belonging to all three 
gene sets are indicated. (Hitzel et al, 2018) 

3.2.3 MTHFD2 expression in response to oxPAPC 

The MTHFD2 network was strongly enriched for mTOR signaling and MTHFD2 expression 

was reported to be regulated by the mTOR-ATF4 axis (Ben-Sahra et al, 2016). Consistently, 

siRNA mediated knockdown of ATF4, but not the transcription factor TCF7L2 which was a 

predicted transcription factor for GOC-AA, reduced expression of MTHFD2 in response to 

oxPAPC (Figure 17 A). Additionally, the mTOR inhibitor rapamycin abolished expression of 

ATF4 and MTHFD2 (Figure 17 B).  
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Figure 17: Induction of MTHFD2 in response to oxPAPC is dependent on ATF4. 

A: Quantitative RT-PCR detection. HAEC were treated with siRNA against control, ATF4 or 
TCFL2 and exposed to oxPAPC for 4 h in 1% FCS (n=4). B: HAEC were treated with rapamycin 
(20 nM) for 16 h and exposed to oxPAPC for 4 h in 1% FCS (n=4). C: HAEC were exposed to 
growth medium (8% FCS) (non-starv) with or without oxPAPC or basal medium (1% FCS) 
(starv) with or without oxPAPC (n=4). Genes belonging to BNMTHFD2 are framed as above. 
SXBP1 = spliced x-box binding protein 1, GCLM = glutamate-cysteine ligase modifier subunit. 
D: HAEC were pre-treated with N-acetyl-L-cysteine (NAC) (5mM) and glycine (500 µM) for 1 h 
and then exposed to oxPAPC for 4 h in 1% FCS (n=3). Data are represented as mean ± SEM 
*≤0.05 (Student’s t-test). (Hitzel et al, 2018) 

Oxidized phospholipids induce cellular oxidative stress. One of the strongest responses to 

oxidized phospholipids therefore constitutes the activation of the redox-defensive Nrf2-Keap1 

system (Jyrkkanen et al, 2008). Interestingly, whereas the Nrf2 target gene glutathione 

synthesizing enzyme glutamate-cysteine ligase modifier subunit (GCLM) (Jyrkkanen et al, 

2008) was induced by oxPAPC in the presence or absence of fetal calf serum in the culture 

medium, expression induction of genes in BNMTHFD2 like MTFHD2 or the active spliced form 

of x-box binding protein 1 (XBP1) was massively attenuated upon serum addition (Figure 17 

C). This finding suggests that serum constitutes might satisfy the cellular needs of substrates 

otherwise generated by BNMTFHD2. Supplementation of glycine, which is produced by the 

mitochondrial one-carbon cycle, and which is part of the redox defense peptide glutathione 

did not prevent  induction of MTHFD2  (Figure 17 D). In contrast, the reactive oxygen species 

(ROS) scavenger N-acetyl-L-cysteine (NAC) prevented the induction of MTHFD2. NAC was 

reported to react with the oxPAPC component PEIPC thereby neutralizing its activity 

(Springstead et al, 2012). This observation therefore suggests that the oxPAPC elicited 

induction of MTHFD2 might be due to PEIPC activity. 
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3.2.4 BNMTHFD2 is linked to atherosclerosis 

The circumstance that atherosclerosis is driven in part by oxidized lipids raises the possibility 

that BNMTHFD2 is active in atherosclerotic samples (Hitzel et al, 2018). Therefore, gene 

expression profiles which compare 32 carotid artery plaque and 32 healthy tissues from a 

human cohort (Ayari & Bricca, 2013) was reanalyzed. Expression changes for the 114 genes 

in the BNMTHFD2 were similar in the expression profiles of the HAEC cohort in response to 

oxPAPC as compared to the carotid arteries in response to atherosclerosis (Figure 18). The 

majority of genes in the BNMTHFD2 which were induced in response to oxPAPC were also 

increased in atherosclerosis, among them SLC transporters, AARs, PCK2 and XBP. 

Moreover, also an association was observed for oxPAPC- and atherosclerosis-mediated 

gene repression. 

Table 8: Association between genes in the BNMTHFD2 and CAD risk loci. Genetic variances in 
genes in the BNMTHFD2 associated with CAD risk. (Hitzel et al, 2018) 

 

To further investigate the possible association of the BNMTHFD2 with cardiovascular pathology, 

genetic variations linked to coronary artery disease (CAD) were re-analysized with respect to 

the BNMTHFD2. The CARDIoGRAMplusC4D genome-wide association study (GWAS) (Nikpay 

et al, 2015) which contains genomic variations associated with coronary artery disease and 

myocardial infarction was searched for single nucleotide polymorphisms (SNPs) (p-

value<1x10-4) whose physical location was within ±500kb of coding region of the 114 genes 

of the BNMTHFD2. Genes of the BNMTHFD2 contained several SNPs (Table 8) and CAD risk loci 

were enriched in the BNMTHFD2 (FET p-value<0.0077). Collectively, these data raise the 

possibility that the BNMTHFD2 in HAEC causally contributes to CAD development. They also 

demonstrate that the amino acid reprogramming response, represented by the BNMTHFD2, 

operates in humans and is likely to be important in the atherosclerotic disease process. 

 

Gene SNP p-value 

SORT1 rs7528419, rs12740374, rs4970834, rs611917 7.05E-08, 1.25E-07, 1.04E-06, 1.45E-06 

SLC7A1 rs9551751 7.93E-08 

SHMT2 rs11172113 1.72E-06 

DDIT3 rs11172113 1.72E-06 

MARS rs11172113 1.72E-06 

CEBPB rs6095611, rs1034056, rs6067199, rs6091031 9.14E-06, 1.38E-05, 1.59E-05, 1.75E-05 

FOXO1 rs9594389, rs7323896 1.68E-05, 1.78E-05 

GJA4 rs1336624 2.42E-05 

CDC42EP2 rs12419237 4.82E-05 

PIK3C2B rs16854023 5.57E-05 
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Figure 18: Expression of genes in the BNMTHFD2 in human aortic plaques. 

Difference in expression levels of 114 genes in the BNMTHFD2 in 32 human atheroma plaques 
versus healthy tissue (y-axis) compared to expression levels of 114 genes in the BNMTHFD2 in 
147 HAEC exposed to oxPAPC for 4 h (x-axis). (Hitzel et al, 2018) 

3.3 Physiological function of the MTHFD2 Bayesian network  

3.3.1 Short-term oxPAPC exposure and knockdown of MTHFD2 deplete 

intracellular glycine pools in cardiovascular cells 

As shown in the previous chapters, the emergence of an MTHFD2 controlled amino module 

was computationally established and experimentally validated. These findings, however, do 

not explain the physiological function of this response. To address this experimentally, first 

the impact of oxPAPC and of silencing of MTHFD2 on intracellular amino acid levels in 

HAEC was evaluated (Figure 19). SiRNA mediated knockdown of MTHFD2 decreased the 

intracellular glycine concentration which suggests that the de novo mitochondrial glycine 

synthesis is highly active in endothelial cells and that it is much more important than the 
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cellular uptake or the cytosolic glycine synthesis. Importantly, 4 h of oxPAPC exposure 

decreased the intracellular glycine pool, an effect which was potentiated by knockdown of 

MTHFD2.  

 

Figure 19: Heatmap of amino acid profile in HAEC. 

HAEC were treated with three different siRNAs against the key driver MTHFD2 or scramble 
control and then exposed to medium (1% FCS) with or without oxPAPC for 4 hours. Amino 
acids in cell lysates were measured by mass spectrometry (n=6-9). (Hitzel et al, 2018) 

Consistent with the observed emergence of the MTHFD2 centered amino acid metabolic 

response, glycine was the most markedly changed amino acid in response to oxPAPC or to 

MTHFD2 knockdown. Since MTHFD2 indirectly contributes to serine-to-glycine conversion, 

knockdown of MTHFD2 increased serine levels (Figure19). Additionally, cysteine and cystine 

which are linked to serine metabolism by the BNMTHFD2 gene cystathionine-beta-synthase 

(CBS) and which contribute to redox defense were increased by oxPAPC. Although cysteine 

and glycine are both amino acids for glutathione synthesis, they were oppositely affected, 

suggesting a different function and an additional consumption path for glycine upon oxidized 

phospholipid exposure.  

MTHFD2 and short time oxPAPC caused drain of the intracellular glycine pool was also 

observed in human aortic smooth muscle cells (HASMC), although to a lesser extend (Figure 

20 A). This suggests a general importance of the mitochondrial one-carbon metabolism for 

the cellular glycine pool in cardiovascular cells. In line with this, siRNA based knockdown of 
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MTHFD2 in HASMC increased the expression of the serine synthesizing PHGDH and 

PSAT1 as well as of the ER stress transcription factor ATF4 (Figure 20 B).  

 

Figure 20: A: MTHFD2 is required for glycine synthesis in human aortic smooth muscle cells. 

A: HASMC were treated with three different siRNAs against the key driver MTHFD2 or scramble 
control and then exposed to medium (1% FCS) with or without oxPAPC for 4 hours. Amino 
acids in the cell lysates were measured by mass spectrometry (n=6). B: Relative mRNA 
expression in HASMC treated with siRNAs against MTHFD2 or scramble control after exposure 
to oxPAPC (1% FCS) (n=4).  

3.3.2 MTHFD2 impacts on plasma metabolites in humans 

To further solidify the physiological importance of the BNMTHFD2 its association with human 

plasma metabolites was analyzed. For this, data from a human genome-wide association 

study which contained the plasma level of 400 metabolites (Shin et al, 2014b) was tested for 

SNPs (meta-analysis p-value<1x10-4) within ±5kb of gene bodies of the 114 genes of the 

BNMTHFD2.  



Results 

59 

Table 9: Association between genes in the BNMTHFD2 and plasma metabolites. (Hitzel et al, 2018) 

Gene Metabolite SNP p-value 

MTHFD2 N-acetylglycine rs10174907 1.43E-05 

EPAS1 N-acetylglycine rs1530628, rs2197698, rs1530627 8.69E-05, 9.45E-05, 9.76E-05 

GLDC glycine rs2297442 2.94E-05 

AARS tyrosine rs9936903 1.89E-08 

LTA4H methionine rs12579455 4.99E-05 

SETX citrulline rs612169, rs545971, rs674302, rs514659 5.91E-05, 6.35E-05, 6.39E-05, 6.86E-05 

EPAS1 tryptophane rs1530628 8.13E-05 

PCK2 glycerol 3-phosphate rs1062230 2.60E-05 

 

In total, 60 SNPs in 28 genes in the MTHFD2 network were associated with plasma 

metabolite concentrations. A SNP rs10174907 in MTHFD2 was significantly associated with 

plasma N-acetylglycine concentration (Table 9) and SNPs associated with N-acetylglycine 

concentration were enriched for genes in the BNMTHFD2 (FET p-value<0.0045). This analysis 

suggests that the MTHFD2 network may contributes to the regulation of plasma metabolite 

concentrations and substantiates the functional significance for the BNMTHFD2 for 

cardiovascular amino acid metabolism.  

3.3.3 Emergence of the BNMTHFD2 is a consequence of oxPAPC-mediated 

depletion of intracellular glycine 

The above made observations hint that the BNMTHFD2 induction in response to oxPAPC is a 

direct consequence of oxPAPC-elicited glycine depletion. Indeed, supplementation of 

glycine, but not of serine or of asparagine fully prevented the induction of genes in the 

BNMTHFD2 in umbilical vein endothelial cells (HUVEC) in response to the downregulation of 

MTHFD2 (Figure 21 A). Furthermore, HAECs which were deprived of glycine and serine 

showed induced expression of MTHFD2 and PHGDH (Figure 21 B). Consistently, long-term 

oxPAPC exposure increased the production of glycine and led to elevated intracellular 

glycine levels (Figure 21 C) To substantiate these results, amino acid deprivation in response 

to asparaginase, which depletes cells of asparagine (Richards & Kilberg, 2006), and to the 

histidine analog L-histidinol (HisOH), which inhibits activation of histidine by histidyl-tRNA 

synthetase, was examined (Bouman et al, 2011). Both treatments induced the expression of 

genes in the BNMTHFD2 (Figure 21 D, E). Taken together, these findings suggest that the 

BNMTHFD2 constitutes an amino acid response which in response to oxPAPC compensates for 

the loss of glycine.  
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Figure 21: Glycine, but not serine or asparagine prevents the induction of the Bayesian amino 
acid subnetwork. 

A: HUVEC were treated with siRNA against MTHFD2 or scramble control. Subsequently, the 
groups indicated were supplemented with glycine, serine or asparagine (500 µM) for 16 hours 
(n=4). Genes belonging to the BNMTHFD2 are framed by the color of the corresponding gene set 
category as above. DDIT3 = DNA damage inducible transcript 3 (CHOP), ATF4 = activating 
transcription factor 4. B: Quantitative RT-PCR detection of MTHFD2 and PHGDH in HAEC 
cultured in medium without serine and glycine (wo) or supplemented with serine (300 µM) and 
glycine (30 µM) for 16 h (n=4). C: HAEC were exposed to oxPAPC in 15 FCS for 24 h and 
intracellular amino acids were measured by mass spectrometry (n=4). D: HAEC were treated 
with 1 U/ml asparaginase (ASNase) or H2O in growth medium for 4 and 24 hours (n≥4). Genes 
belonging to the BNMTHFD2 are framed as above. CTH = cystathionine gamma-lyase, CBS = 
cystathionine-beta-synthase, F3 = coagulation factor III / tissue factor, ASNS = asparagine 
synthetase, KDM7A = lysine demethylase 7A, GSS = glutathione synthetase. E: HAEC were 
treated with L-Histidinol (2 µM) or H2O in growth medium for 4 and 24 hours (n≥4).  Genes 
belonging to the BNMTHFD2 are framed as before. Data are represented as ± SEM *≤0.05 
(Student’s t-test). (Hitzel et al, 2018) 

3.3.4 Knockdown of MTHFD2 impairs the angiogenic capacity in a glycine-

dependent manner 

In order to determine the importance of the MTHFD2 response on the cellular functional 

level, the endothelial angiogenic capacity as determined by spheroid outgrowth in response 
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to vascular endothelial growth factor A (VEGFA) was measured (Hitzel et al, 2018). SiRNA 

against MTHFD2 in HUVEC strongly impaired the angiogenic function as assessed by sprout 

length and number of sprouts, an effect which was prevented by glycine supplementation 

(Figure 22 A, B, C). Additionally, silencing of MTHFD2 reduced the endothelial migration as 

assessed by scratch wound assay and glycine supplementation also restored the migration 

(Figure 22 D). Thus, MTHFD2-derived glycine is a prerequisite for VEGF-mediated 

angiogenic ability of endothelial cells. 

 

Figure 22: Glycine prevents the impairment of spheroid outgrowth in response to MTHFD2 
knockdown. 

A: Spheroid assay of HUVEC treated with or without the siRNAs indicated and VEGF-A165 (10 
ng/ml) or glycine (500 µM) (n=3). B, C: Quantification of the cumulative sprout length (B) and 
sprout number (C) of the spheroid assay in A (n=3). D: HUVEC were treated with the indicated 
siRNAs and supplemented with or without glycine (500 µM). Migration distance after 
application of scratch is depicted (n=3). Data are represented as ± SEM *≤0.05 (Student’s t-test). 
(Hitzel et al, 2018)  

3.3.5 Oxidized phospholipids elicit endothelial purine nucleotide release  

In the above chapters it was shown that oxPAPC induced endothelial glycine depletion; that 

the BNMTHFD2 was induced to compensate this response and that the BNMTHFD2-dependent 

glycine production was essential for endothelial cell function. To get behind the biological 

meaning of the BNMTHFD2 it is necessary to understand why endothelial glycine levels 

decrease upon oxPAPC stimulation. Glycine is an important substrate for numerous cellular 

pathways including heme synthesis, glutathione synthesis and for protein de novo synthesis. 

However, glycine and 10-formyl-THF are particularly synthesized by the mitochondrial one-
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carbon cycle to feed the synthesis of purines. Purines, in the form of ATP and GTP are 

essential for the cellular energy homeostasis and for DNA and RNA de novo synthesis.  

 

Figure 23: OxPAPC elicits ATP release. 

A: Nucleoside measurement in HAEC exposed to medium (1% FCS) with or without oxPAPC for 
24 hours. Cell lysates were measured by mass spectrometry (n=6). B: Nucleoside 
measurement in supernatants of HAEC exposed to medium (1 % FCS) with or without oxPAPC 
for 24 hours. Supernatants were measured by mass spectrometry (n=4). C: ATP measurement 
of supernatants of HAEC exposed to medium (1% FCS) with or without oxPAPC and flufenamic 
acid (FFA, 50 µM) for 8 hours. ATP was measured by luminescence and normalized to the 
intracellular RNA concentration (n=4). D: qRT-PCR detection of MTHFD2 and PHGDH in HAEC 
exposed to medium (1% FCS) with or without oxPAPC and flufenamic acid (FFA, 50 µM) for 24 
h (n=4). E: Quantitative RT–PCR detection of metabolic enzyme markers in HAEC in medium 
(1% FCS) with and without oxPAPC for 24 hours (n=4). Genes belonging to the BNMTHFD2 are 
framed as before. PCK2 = Phosphoenolpyruvate carboxykinase 2, PFKFB3 = 6-phosphofructo-
2-kinase/fructose-2,6-biphosphatase 3, G6PD = glucose-6-phosphate dehydrogenase, EHHADH 
= enoyl-CoA hydratase/3-hydroxyacyl CoA dehydrogenase. F: Oxygen consumption rate (OCR) 
profile as an index of mitochondrial respiration in HAEC exposed for 4 hours to medium (1% 
FCS) with or without oxPAPC (n≥3). HAEC were treated with the ATP synthase inhibitor 
oligomycin (2.5 µM), carbonyl cyanide-3-chlorophenylhydrazone (CCCP) (1 µM) for maximal 
mitochondrial capacity and antimycin A (1 µg/ml) and rotenone (1 µM) to inhibit mitochondrial 
activity (n>7). Data are represented as ± SEM *≤0.05 (Student’s t-test). (Hitzel et al, 2018) 

Purines are also important signaling transmitters and it is well known that endothelial cells 

release purines as signaling autacoids in response to a broad array of stimuli, including 

shear stress (Wang et al, 2016b). Through the activation of purinergic receptors, purines 

impact on the vascular homeostasis, coagulation, inflammation and the control of vascular 

tone (Lohman et al, 2012). Therefore, it was speculated that oxPAPC induces the release of 

ATP and other nucleotides from endothelial cells and thereby depletes endothelial cells of 
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purines and subsequently glycine. Confirming this hypothesis, exposure to oxPAPC 

significantly reduced the endothelial intracellular purine, but not pyrimidine nucleoside pools 

(Figure 23 A). In line with this, the extracellular degradation products of ATP and GTP, but 

not of pyrimidines as measured in the cell culture supernatant were increased in response to 

oxPAPC in HAEC (Figure 23 B).  

If purine release was indeed the mechanism driving the cellular responses to oxPAPC, 

blockade of ATP release would largely attenuate the effects of oxPAPC. Indeed, flufenamic 

acid (Riteau et al, 2012) not only blocked the oxPAPC-mediated increase in extracellular 

ATP (Figure 23 C), but also prevented the induction of genes in the BNMTHFD2 in response to 

oxPAPC (Figure 23 D). This observation indicates that oxPAPC-redirected amino acid 

metabolism fuels purine synthesis to enable endothelial cells to release ATP. Next, it was 

tested if endothelial cells increase their metabolism to produce ATP. Expression of PCK2, 

the mitochondrial rate limiting enzyme for gluconeogenesis, which belongs to the identified 

18 core genes, was increased whereas the endothelial glycolysis marker 6-phosphofructo-2-

kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) (De Bock et al, 2013), the pentose 

phosphate pathway marker glucose-6-phosphate dehydrogenase (G6DP) and the fatty acid 

oxidation enzyme enoyl-CoA hydratase/3-hydroxyacyl CoA dehydrogenase (EHHADH) 

showed decreased expression (Figure 23 E). Furthermore, oxPAPC exposure increased the 

mitochondrial oxygen consumption rate, indicating that oxPAPC exposure, which is 

accompanied by oxidative stress, does not inhibit the mitochondrial function, but rather 

increases mitochondrial activity (Figure 23 F). 

3.3.6 Blockade of ATP release prevents impaired angiogenic ability in 

response to oxPAPC  

Next, the effect of the blockade of the ATP release was tested on the functional level (Hitzel 

et al, 2018). Blockade of ATP release prevented the inhibitory effect of oxPAPC on the 

endothelial cell angiogenic capacity as assessed by the spheroid outgrowth assay (Figure 24 

A, B, C). Taken together the results, oxidized phospholipids induced an amino acid metabolic 

reprogramming response in endothelial cells which allowed for the replenishment of the 

cellular nucleotide pools which became depleted as a consequence of oxPAPC-induced 

nucleotide release (Figure 24 D).  
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Figure 24: Flufenamic acid prevents the impairment of angiogenesis upon oxPAPC exposure. 

A: Spheroid assay of HUVECs treated with oxPAPC, flufenamic acid (FFA, 50µM) and VEGF-
A165 (10 ng/ml) as indicated (n=3). B, C: Quantification of the cumulative sprout length (B) and 
sprout number (C) of the spheroid assay in A (n=3). D: Model of findings. Data are represented 
as mean ± SEM *≤0.05 (Student’s t-test). (Hitzel et al, 2018) 

3.4 Signature networks of HAEC BNs 

Besides analysis of the HAEC Bayesian networks themselves, the networks were exploited 

to define perturbation associated networks. Specifically, perturbation signatures from the 

KDM7 family members PHF8 (KDM7B) and KDM7A were used to obtain EC specific 

epigenetic associated networks.  

3.4.1 PHF8 signature Bayesian network and identification of key drivers 

Firstly, RNA sequencing data from HUVEC treated with siRNA against PHF8 were analysed. 

726 differentially expressed genes were detected (pval < 0.05) and defined as the PHF8 

signature. Secondly, the signature was projected onto the BNct and directed neighbors (order 

= 1) were extracted together with the signature genes. The largest connected subnetwork 

resulting from the signature subnetworks was defined as the PHF8 Bayesian network (Figure 

25).  
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Figure 25: Network view of PHF8 Bayesian network. 

The PHF8 associated Bayesian network consists of 636 nodes. Genes belonging to the PHF8 
signature are indicated by a node circle and colored according to log2 fold change in the 
underlying RNA sequencing data set. Key drivers belonging to the PHF8 signature are 
highlighted by red font labelling and red borders whereas key drivers which do not belong to 
the PHF8 signature are not highlighted by a node circle. 

The genes TIPIN, GINS1, ZWILCH, CDC20, SERPINE1, NEK2, GMNN, PLK4, CDCA3, 

RAD51AP1, PBK, PDSS1 and EBNA1BP2 were identified as key drivers of the PHF8 

signature. In contrast, PGF, ITGAV, SMURF2 and CKS1B were detected as key drivers 

which were not within the PHF8 signature. The large majority of the detected key drivers 

were genes involved in cell cycle regulation. Gene set enrichment analysis of the PHF8 

network showed strong significant enrichment for cell cycle related canonical gene set 

categories (Table 10). 



Results 

66 

Table 10: Significantly enriched gene set categories GSEA of PHF8 Bayesian network. 

PHF8 Bayesian network: Top functional canonical gene set categories p–value 

HALLMARK_E2F_TARGETS 1.05E-43 

GO_CELL_CYCLE_PROCESS 5.94E-36 

GO_CELL_CYCLE 9.89E-36 

REACTOME_CELL_CYCLE 1.79E-35 

REACTOME_CELL_CYCLE_MITOTIC 5.33E-35 

GO_MITOTIC_CELL_CYCLE 8.94E-35 

REACTOME_DNA_REPLICATION 3.10E-28 

GO_ORGANELLE_FISSION 1.70E-27 

HALLMARK_G2M_CHECKPOINT 2.65E-27 

GO_MITOTIC_NUCLEAR_DIVISION 6.62E-26 

REACTOME_MITOTIC_M_M_G1_PHASES 1.41E-23 

GO_CHROMOSOME_ORGANIZATION 3.14E-23 

 

PHF8 demethylates H4K20me1 of E2F1-regulated gene promoters, thereby influencing cell 

cycle progression (Liu et al, 2010). Furthermore, PHF8 was reported to bind directly to 

CDC20 during mitosis and contributes to G2/M transition (Lim et al, 2013). Consistently, 

CDC20 was detected as a key driver in the PHF8 BN. However, many of the detected key 

drivers are only sparsely known. Therefore, some key drivers of the PHF8 signature were 

experimentally validated.  

 

Figure 26: Experimental validation of newly identified key drivers in PHF8 BN. 

HUVEC were treated with siRNA against PHF8 and qPCR was performed to test for the PHF8 
BN key drivers TIMELESS interacting protein (TIPIN), GINS complex subunit 1 (GINS1), zwilch 
kinetochore protein (ZWILCH) and EBNA1 binding protein 2 (EBNA1BP2) (n=6). Data are 
represented as ± SEM *≤0.05 (Student’s t-test). 

SiRNA mediated knockdown of PHF8 in HUVEC led to a decreased expression of the newly 

identified key drivers TIPIN, GINS1 and ZWILCH (Figure 26). These are not yet well 

described proteins and therefore constitute potential new players in the PHF8-mediated cell 

cycle regulation.  
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3.4.2 KDM7A Bayesian network analysis 

Since the function of the KDM7 subfamily member KDM7A is the least known of all three 

KDM7 family members, RNA sequencing was performed and the BN was exploited to 

describe a KDM7A associated network in endothelial cells. 

3.4.2.1 RNA sequencing and canonical signature analysis of KDM7A 

First, KDM7A compared to empty plasmid was overexpressed in HUVEC and RNA 

sequencing performed. 48 differentially expressed genes (FDR < 0.05) were detected and 

enrichment for canonical pathways was performed. Gene set categories related to interferon 

type I and II signaling, immune response and cytokine signaling were significantly enriched 

(Table 11).  

Table 11: Significantly enriched gene set categories in KDM7A signature. 

KDM7A RNAseq signature: Top functional canonical gene set categories p–value 
HALLMARK_INTERFERON_GAMMA_RESPONSE 3.36E-29 
GO_RESPONSE_TO_TYPE_I_INTERFERON 3.53E-28 
GO_DEFENSE_RESPONSE_TO_VIRUS 2.90E-24 
REACTOME_INTERFERON_ALPHA_BETA_SIGNALING 5.04E-24 
REACTOME_INTERFERON_SIGNALING 7.09E-24 
GO_DEFENSE_RESPONSE 8.64E-22 
GO_RESPONSE_TO_VIRUS 3.13E-21 
GO_INNATE_IMMUNE_RESPONSE 3.80E-21 
HALLMARK_INTERFERON_ALPHA_RESPONSE 1.93E-20 
GO_IMMUNE_RESPONSE 2.48E-20 
REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM 3.99E-20 
GO_CYTOKINE_MEDIATED_SIGNALING_PATHWAY 5.90E-19 
 

Next, the Reactome FI Plugin in Cytoscape was used to visualize KDM7A signature genes 

within the interferon response. The Reactome Interferon alpha/beta signaling diagram was 

used as template to detect KDM7A signature genes within the pathway (Figure 27). The 

majority of KDM7A signature genes were located in the cytosol and classified as “Expression 

of IFN-induced genes” in the Reactome pathway and downstream of an unknown regulator. 

This canonical analysis suggested that KDM7A is potentially involved in the regulation of 

interferon-induced genes. 

3.4.2.2 KDM7A Bayesian network and key drivers 

To filter out important players within the KDM7A signature, a KDM7A-specific Bayesian 

network was defined. The KDM7A signature (FDR < 0.05) was projected onto the BNct and 

the largest connected subnetwork (order = 1) was extracted and analyzed. 
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Figure 27: Visualization of KDM7A signature genes in the interferon alpha/beta Reactome 
pathway. 

The Reactome interferon alpha/beta pathway within the Reactome FI Cytoscape plugin was 
used as template. Cellular localization is highlighted by border color. Genes of the KDM7A 
signature are highlighted by red font labeling. The grey marked node is not defined within the 
Reactome pathway. 

 

Figure 28: Network view of KDM7A Bayesian network. 

The KDM7A Bayesian network consists of 168 nodes. Genes of the KDM7A signature are 
highlighted in blue (downregulated) and orange (upregulated) respectively. Nodes of the BNct 
which are not within the KDM7A signatures are not highlighted by a circle. Key drivers are 
highlighted by red font labeling. 
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The genes interferon induced protein with tetratricopeptide repeats 1 (IFIT1), interferon 

induced with helicase C domain 1 (IFIH1), TNF superfamily member 10 (TNFSF10) and 

squalene epoxidase (SQLE) were detected as key drivers of the KDM7A Bayesian network 

(Figure 28). The additional detected key drivers CDCA3, ITGAV and SC4MOL did not belong 

to the KDM7A signature. SiRNA mediated knockdown of KDM7A in HUVEC decreased 

expression of the key driver IFIT1 as well as IFIT3, which was part of the KDM7A BN, and 

the cytokines IFNβ and IL1β (Figure 29). 

 

Figure 29: KDM7A affects expression of intereferon responsive genes. 

HUVEC were treated with siRNA against KDM7A and relative mRNA expression of identified 
key drivers interferon induced protein with tetratricopeptide repeats 1 (IFIT1) as well as the 
KDM7A BN gene IFIT3 and the cytokines IFNβ and IL1β (n=4). Data are represented as ± SEM 
*≤0.05 (Student’s t-test). 

By means of the KDM7A signature-based network modeling, a possible association of 

KDM7A with the interferon response was highlighted. 

3.4.2.3 KDM7A is associated with the interferon response 

Next, a potential implication of KDM7A in an interferon-related disease was tested. Systemic 

lupus erythematosus (SLE) is an autoimmune disease, which is characterized by elevated 

interferon levels (Choi et al, 2012). Patients with SLE exhibit impaired endothelial function 

and excessive LDL and phospholipid oxidation and show accelerated atherosclerosis and 

high rates of cardiac death (Hahn & McMahon, 2008; Piper et al, 2007). An analysis of the 

whole blood RNA sequencing from 99 SLE and 18 healthy patients (GSE72509) (Hung et al, 

2015) with regard to KDM7 family members showed a significant increased expression of 

KDM7A, but no increased expression of PHF2 and a decreased expression of PHF8 (Figure 

30). Consistently, the histone methyltransferase for H2K27me2 G9a, which was shown to be 

oppositely regulated to KDM7A (Pan et al, 2016), was downregulated. Furthermore, KDM7A 

but not PHF8 expression was positively correlated with the response to virus in 32 human 

atheroma plaques (Ayari & Bricca, 2013), but not PHF8. These data support an association 

of KDM7A with the interferon response under pathophysiological conditions.  
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Figure 30: KDM7A is associated with interferon signaling. 

A: RPKM of the KDM7 family members KDM7A, PHF2 and PHF8 as well as the histone 
methyltransferase G9a in whole blood RNA sequencing samples from 99 SLE and 18 healthy 
patients (Wilcoxon-Mann-Whitney test) B: Pearson correlation of KDM7A or PHF8 with genes 
within the gene set category GO-RESPONSE_TO_VIRUS compared to all other genes in 32 
human atheroma plaques. Shown is the empirical cumulative distribution function (CDF). 

3.4.2.4 CAD risk loci of JmjC histone demethylases 

Since SLE is associated with accelerated atherosclerosis, it was tested if the locus of 

KDM7A is associated with coronary artery disease and myocardial infarction. The 

CARDIoGRAMplusC4D GWAS study (Nikpay et al, 2015) was searched for SNPs 

significantly associated with coronary artery disease (CAD) (p-value<1x10-4) within 500kb of 

gene loci. Analysis of loci of previously defined 710 epigenetic modifiers (Medvedeva et al, 

2015) revealed that among 21 JmjC histone demethylase only KDM7A, KDM2B and JMJD6 

contained CAD risk loci with KDM7A having the highest association (Table 12). 

Table 12: CAD risc loci in JmjC histone demethylases. 

Gene SNP p-value 

KDM7A rs9640375, rs6945612, rs3735352, rs35586793 4.05E-07, 5.23E-07, 3.92E-07, 4.17E-07 

KDM2B rs1169288, rs1169291, rs2244608 2.75E-06, 6.22E-06, 2.86E-06 

JMJD6 rs72860151 2.96E-05 



Results 

71 

3.4.2.5 KDM7A and PKC activity 

The transcription factor Early growth response 1 (EGR1) was part of the KDM7A network. 

EGR1 is a canonical Protein kinase C (PKC) dependent early response gene (Thiel et al, 

2010). EGR1 is associated with multiple cardiovascular pathological processes and 

associated with atherosclerotic pathogenesis as a major pathogenic transcription factor 

(Khachigian, 2006). Therefore, a correlation between PKC-regulated genes and KDM7A in 

plaque tissue was tested.  

 

Figure 31: KDM7A is associated with PKC activity. 

A: Correlation of KDM7A and PHF2 with PKC target genes in human carotid plaque tissue and 
peripheral blood mononuclear cells. B: Relative RNA expression of KDM7A and JHDM1D-AS1 
in HUVEC treated with DMSO or PMA (50nM) or the PKC inhibitor bisindolmaleimide-I for 4 h 
(BIM-I) (n=3). B: Western analysis of HUVEC treated as in A. D: HUVEC were treated with siRNA 
against KDM7A or PHF8 and mRNA expression of LDLR was assessed (n=4). Data are 
represented as ± SEM *≤0.05 (Student’s t-test). 

KDM7A, but not PHF2 was positively correlated to previously reported upregulated genes 

upon activation of PKC (Caino et al, 2011) in 126 human carotid plaque tissues (Folkersen & 

Persson, 2012) (Figure 31 A). In contrast, no correlation was observed between KDM7A and 

PKC-regulated genes in peripheral blood mononuclear cells (PBMC) of 97 patients of the 

same cohort. Furthermore, phorbol-12-myristate-13-acetate (PMA), an activator of PKC 

increased the expression of KDM7A (Figure 31 B, C). The KDM7A locus contains in 

antisense direction a natural antisense transcript (NAT). Both share a promoter of 323 base 

pairs. However, the natural antisense transcript of KDM7A, the lncRNA JHDM1D-AS1, is not 

yet described in endothelial cells. Similar to KDM7A, JHDM1D-AS1 expression was induced 

by PKC activation. The selective PKC inhibitor bisindolmaleimide-I (BIM-I) prevented the 

induction of KDM7A and of JHDM1D-AS1. Furthermore, the low density lipoprotein receptor 

(LDLR), which is part of the KDM7A network and which constitutes an EGR1 target gene, 
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was reduced upon knockdown of KDM7A but not of PHF8 (Figure 31 D). Taken together, 

these data suggest that expression of KDM7A is associated with PKC activity and suggest 

the possibility that the EGR1-PKC-KDM7A axis is associated with atherosclerotic plaque 

pathogenesis. 

3.4.2.6 EGR1 mediated expression of KDM7A 

Since EGR1 was part of the KDM7A network and KDM7A expression correlated with PKC 

activity, the PKC-EGR1-KDM7A axis was further tested. SiRNA mediated knockdown of 

EGR1 prevented the induction of KDM7A and JHDM1D-AS1 upon PKC activation (Figure 32 

A). Additionally, chromatin immunoprecipitation showed the binding of EGR1 to the shared 

promoter (TSS) of the KDM7A/JHDM1D-AS1 pair upon PKC activation in HEK293 cells 

(Figure 32 B). Next, the transcription factor activity in 126 human carotid plaque tissues 

(Folkersen & Persson, 2012) compared to that of PBMC of 97 patients of the same cohort 

was inferred as described previously (Lee et al, 2014). The analysis was conducted for loci of 

previously defined 710 epigenetic modifiers (Medvedeva et al, 2015). Integration of genome 

wide mRNA expression, DNase I hypersensitive regions in HUVEC and transcription binding 

affinity information of 205 transcription factors from JASPAR showed the transcription factor 

DNA Repair Associated (BRCA1) to have the highest association to KDM7A in plaque 

(Figure 32 C). BRCA1 was suggested as a target to delay atherosclerosis progression (Singh 

et al, 2013). In contrast, the transcription factor YY1, which showed a predicted binding site 

for the KDM7A/JHDM1D-AS1 promoter according to the Jaspar database alone, showed no 

binding to KDM7A. Consistently, overexpression of BRCA1 and of EGR1, but not of YY1 

increased the luciferase reporter activity by binding to the KDM7A/JHDM1D-AS1 promoter in 

HEK293 cells (Figure 32). Collectively, the integrative analysis of KDM7A suggests that 

KDM7A is involved in the interferon signaling and that the PKC-EGR1-KDM7A axis is 

potentially active in atherosclerosis. 
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Figure 32: The PKC-EGR1-KDM7A axis. 

A: Relative RNA expression of EGR1, JHDM1D-AS1 and KDM7A in HUVECs treated with 
scramble control siRNA or EGR1 siRNA and stimulated with PMA (50nM) for 8 h (n=3). B: ChIP 
for EGR1 in HEK293 cells stimulated with PMA for 1 h and 4 h for the KDM7A/JHDM1D-AS1 
Promoter (TSS) or 1000 bp upstream of the TSS (n=3). C: Transcription factor activity of BRCA1 
or YY1 to gene loci of 710 epigenetic modifiers in carotid plaque tissues and peripheral blood 
mononuclear cells (PBMC). E: HEK293 cells were transfected with the KDM7A/JHDM1D-AS1 
promoter plasmid and the overexpression plasmid for EGR1, BRCA1 or corresponding empty 
vector. Luciferase activity was measured by luminescence (n=3). Data are represented as mean 
+/- SEM (*P<0.05).  
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4 Discussion 

4.1 MTHFD2 controls an amino acid network to facilitate the ATP release in 

endothelial cells 

4.1.1 Summary and Significance of the study 

In this study a Bayesian network approach together with wet laboratory experiments and 

clinical data were used to uncover the reaction of human aortic endothelial cells to oxidized 

phospholipids (Hitzel et al, 2018). The application of an integrative network modeling 

approach resulted in the identification of deregulated gene clusters and causal regulators. 

Unexpectedly, an association of atherogenic lipids with the mitochondrial-one carbon 

metabolism was detected. Oxidized phospholipids induced a subnetwork regulating the 

serine-glycine metabolism with the mitochondrial methylenetetrahydrofolate 

dehydrogenase/cyclohydrolase (MTHFD2) as a causal regulator. The MTHFD2-controlled 

gene cluster redirected metabolism to glycine synthesis to replenish purine nucleotides. 

Endothelial cells secreted ATP as a signaling autacoid in response to oxPAPC. The 

MTHFD2-controlled subnetwork was necessary to maintain endothelial ATP level. Thus, 

MTHFD2 controlled endothelial reprogramming towards serine-glycine and mitochondrial 

one-carbon metabolism to compensate for the loss of ATP in response to oxPAPC. 

Confirming the importance of the mitochondrial one-carbon metabolism for endothelial 

function, MTHFD2-dependent glycine synthesis was a prerequisite for endothelial sprout 

formation and migration. Importantly, the MTHFD2-controlled subnetwork was activated in 

human atherosclerotic plaque material and single nucleotide polymorphisms within the 

subnetwork associated with coronary artery disease.  

This study is characterized by the following principal novelty: 

1) It demonstrates the power and suitability of Bayesian networks to identify and 

understand cellular responses. 

2) It establishes metabolic reprogramming of endothelial cells as a prerequisite to 

facilitate ATP release. 

3) It establishes a novel role of several enzymes in maintaining the endothelial amino 

acid and purine pool. 

4) It defines a comprehensive reactome of endothelial cells to oxidized phospholipids. 

5) It demonstrates that mitochondrial one-carbon related amino acid metabolism is 

activated in human plaques and single nucleotide polymorphisms in genes of the 

mitochondrial one-carbon metabolism are associated with coronary artery disease. 



Discussion 

75 

These findings establish MTHFD2 as a key driver with significant importance in adult 

cardiovascular cells. This study reveals that MTHFD2 orchestrates an amino acid response 

to enable endothelial cells to release ATP. Most strikingly, this by MTHFD2 driven response 

is elicited by pro-atherogenic lipids, thereby linking cardiovascular pathogenesis to 

mitochondrial metabolism. 

4.1.2 Deregulated pathways in response to oxPAPC 

A comprehensive characterization of gene-gene connectivity can provide significant insights 

and a different perspective into disease relevant processes compared to looking at single 

gene environments. The applied differential connectivity analysis revealed that gene-gene 

coregulation is drastically altered by oxPAPC in ECs. 9 GOC and 11 LOC clusters were 

causally related to oxPAPC. Interestingly, ECs reacted to oxPAPC with an equal proportion 

of disrupted (LOC) and newly connected (GOC) co-expressed DC gene pairs. In contrast, in 

neuronal pathological states, as in late-onset Alzheimer’s disease and Huntington’s disease, 

GOC traits were predominant (Narayanan et al, 2014; Zhang et al, 2013). It therefore should 

be considered, that in order to restore atherogenic lipid caused endothelial dysfunction to a 

healthy state not only emerging dysregulated patterns should be considered, but also healthy 

biological processes which are lost during disease progression.  

The identified DC clusters reflect previously reported findings as well as not known 

processes in response to oxPAPC. The DC clusters reveal a shift in cell cycle: whereas 

processes related to active cell cycle and replication are disrupted (LOC4, LOC), processes 

related to cell cycle checkpoint activity are activated (GOC4, GOC5). Although low 

concentration of oxLDL can stimulate HAEC proliferation (Yu et al, 2011), the applied 

oxPAPC concentration used here rather limits cell cycle progression and induces apoptosis 

and thereby significantly contributes to oxPL elicited endothelial dysfunction (Li & Mehta, 

2000; Li et al, 1998). GOC9 reflects activation of the unfolded protein response (UPR). 

Accordingly, oxidized phospholipids activate all three canonical branches of the UPR 

including nuclear translocation of ATF6, splicing of XBP1 and phosphorylation of eIF2α 

(Gargalovic et al, 2006a). Furthermore, processes related to inflammatory cell adhesion were 

disrupted upon oxPAPC exposure (LOC10). This supports the previously observed context-

dependent anti-inflammatory activities in response to oxPAPC, which block expression of 

inflammatory adhesion molecules in endothelial cells (Birukov et al, 2004). In contrast, 

processes related to cell adhesion by cadherins, which form adherens junctions to mediate 

cell-cell contact, showed increased connectivity (GOC2). In line with this, oxPAPC showed 

barrier protective effects in ECs by binding to membrane localized GRP78 leading to Rac1 

activation and subsequent cytosceleton reorganization (Birukova et al, 2014). 
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4.1.3 Key drivers of the HAEC oxPAPC response 

The applied network modeling approach revealed hidden information stored in expression 

and genome profiles of the exploited HAEC cohort. Some biological processes are not 

obvious and can be overlooked by classical high throughput data analyses which include 

identification of differentially expressed genes, gene set enrichment analysis and correlation 

analysis. A Bayesian network approach provides comprehensive information about 

structures of relationships between the entities in a complex system as well as on the single 

gene-gene level. Furthermore, the advantage of the utility of such a network modeling 

approach is the possibility to provide an objective filter to rank-order genes based on network 

features as connectivity or hierarchy. This study utilized Bayesian inference to highlight and 

to prioritize genes and pathways causally related to oxPAPC in endothelial cells. With this 

study the first comprehensive endothelial cell Bayesian networks based on genome-wide 

expression and genotype data were analyzed.  

Systematic validation showed that the EC Bayesian networks had higher predictive power for 

EC specific data sets than public databases as well as higher predictive power for public data 

sets than random networks. The networks therefore were questioned for the identification of 

novel causal regulators. GSEA of key driver associated subnetworks showed similar 

enrichments as the DC clusters, e.g. cell cycle and lysosome related categories, as well as 

new categories like ABC transporters. Within the Bayesian networks key drivers were 

detected which are known to be related to EC function as KDR, ITGAV and CDCA3, as well 

as sparsely described proteins as TRAM1, TBC1D8 or UBXN4. Also, the oxPAPC network 

suggests many novel key drivers like LOC100292189. Since the EC BNs have been shown 

to be highly predictive, they can be exploited to further investigate these potentially important 

genes. Interestingly, the oxPAPC Bayesian network comprised KIAA1462 as a key driver. 

Although the KIAA1462 gene locus contains a well known risc locus for coronary artery 

disease (CAD) (Deloukas et al, 2012), its function is sparsely known. The protein of the 

KIAA1462 locus, JCAD, was recently shown to contribute to angiogenesis in vivo and in vitro 

(Hara et al, 2017).  

Consistent with the identified GOC-AA, the oxPAPC but not control BN contained a 

subnetwork with similar gene set enrichments thereby confirming amino acid metabolism as 

a critical response to pro-atherogenic lipids. In this study, the mitochondrial folate-cycle 

enzyme MTHFD2 was identified and experimentally validated as a key driver of this network. 

MTHFD2 was in the center of an oxPAPC-evoked response which integrated serine-glycine-

synthesizing enzymes, SLC transporters and AARs. Other pathways activated by oxPAPC, 

and contained within the network, included elements of the redox-stress response and of the 

ER-stress-apoptosis machinery including DDIT3/CHOP and XBP1.  
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4.1.4 MTHFD2 centered amino acid metabolism in response to oxPAPC 

In this study, the endothelial cell Bayesian networks revealed new processes in the 

reprogramming of HAEC in response to a pro-atherosclerotic stimulus (Hitzel et al, 2018). 

The HAEC Bayesian networks had high predictive power and in this study it was shown that 

an amino acid subnetwork emerged in response to oxidized phospholipids.  

Oxidized phospholipids have not yet been linked to metabolism in HAEC. Endothelial 

metabolism has emerged as an important factor for endothelial function (Pircher et al, 2016), 

for controlling the angiogenic response and for the adaptation of endothelial cells to 

environmental conditions (Potente et al, 2011). In contrast, deregulated amino acid 

metabolism and in particular overexpression of serine-glycine-synthesizing enzymes and 

mitochondrial one-carbon metabolism was so far predominantly associated with fast 

proliferating cancer cells (Amelio et al, 2014; Jain et al, 2012). Given their high demand for 

purines for DNA synthesis, this reaction is expected. It also explains why knockout of 

MTHFD2 is lethal in the developing embryo, which also consists of rapidly dividing cells (Di 

Pietro et al, 2002). In contrast to this, MTHFD2 is weakly expressed in most postmitotic and 

normally proliferating cells (Nilsson et al, 2014; Ben-Porath et al, 2008). Potentially, these 

cells satisfy their demand for purines and glycine by uptake and salvage. Alternatively, under 

steady state conditions, the required de novo synthesis of these molecules is very low. 

Interestingly, our study suggests that MTHFD2 contributes to glycine synthesis in cultured 

endothelial cells under resting conditions and that this aspect might be relevant for vascular 

disease. We show that glycine levels were decreased upon short-term oxPAPC exposure as 

well as MTHFD2 knockdown. Additionally long-term induction of the MTHFD2 network in 

response to oxPAPC increased intracellular glycine. We thereby show that oxidized 

phospholipids cause a metabolic switch in mitochondrial one-carbon metabolism to facilitate 

the mitochondrial production of amino acids. In line with this observation, it was shown that 

cells barely take up glycine and rather synthesize this important amino acid on a de novo 

basis within mitochondria (Lewis et al, 2014). Additionally, MTHFD2 contributed to glycine 

levels in smooth muscle cells. Since smooth muscle cells substantially contribute to plaque 

development and are activated by oxidized phospholipids (Pidkovka et al, 2007), this 

observation strengthens the possible importance of MTHFD2 in the vascular system. 

Plasma glycine is inversely associated with myocardial infarction risk (Ding et al, 2016) and 

our present work suggests an association between plasma amino acids, the MTHFD2 

genotype and cardiovascular risk. Moreover, in our study plasma N-acetylglycine was 

associated with a genetic variant in the MTHFD2 gene locus. The function of N-acetylglycine 

and whether this modified glycine serves as a glycine donor is not known. It was shown that 

plasma levels of N-acetylglycine, glycine and serine negatively correlated with hepatic 
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steatosis (Mardinoglu et al, 2017). N-acetylglycine therefore might be a possible new amino 

acid derivative important under pathological conditions. 

Knockdown of MTHFD2, the key driver of the amino acid response in the present study, 

reduced the angiogenic function of cultured endothelial cells. Importantly, glycine prevented 

this effect and also blocked the induction of the MTHFD2 network in response to MTHFD2 

siRNA. Currently, MTHFD2 is tested as a potential drug target for cancer therapy (Pikman et 

al, 2016; Gustafsson et al, 2017). The present data suggest that in addition to a direct effect 

on cancer cells, MTHFD2 inhibition might also attenuate tumor angiogenesis.  

The MTHFD2 network was induced by amino acid starvation as represented by MTHFD2-

knockdown mediated cellular glycine-depletion as well as serine-glycine depleted medium 

and L-histidinol treatment. Therefore, MTHFD2-knockdown potentiated the induction of the 

network under oxPAPC exposure. However, glycine supplementation did not rescue the 

induction of the MTHFD2 network, indicating that either glycine is not sufficiently taken up by 

the cells or that the induction of the MTHFD2 network in response to oxPAPC is regulated by 

a different mechanism.  

4.1.5 The MTHFD2 axis between amino acid response and mTOR signaling 

The major gene ontology categories regulated by oxPAPC identified by co-expression 

clusters in a previous study included sterol synthesis, UPR, redox signaling and inflammation 

(Romanoski et al, 2011). In that study, CHAC1, which is the rate limiting enzme for 

glutathione synthesis, was identified as a hub protein regulated by ATF4 as well as HMOX1. 

Since our study expanded co-expression analysis to differentially co-regulated genes, new 

insights were gained. Unexpectedly, one of the most coherent DC clusters was GOC-AA and 

the corresponding BNMTHFD2, which was enriched for biological processed related to mTOR 

activation, amino acid starvation and ER stress. This complex response pattern might be a 

reflection of the central position of glycine in cellular metabolism. The Ser/Thr protein kinase 

target of rapamycin (mTOR) is part of the two complexes mTOR complex 1 (mTORC1) and 

mTOR complex 2 (mTORC2) (Jewell et al, 2013). MTORC1 is a master regulator which 

promotes cell growth in the presence of amino acids and growth factors. In contrast, under 

starvation conditions mTORC1 is inhibited and autophagy is promoted. MTOR was shown to 

be activated by oxLDL in smooth muscle cells to promote proliferation (Brito et al, 2009) 

which contributes to the formation of the fibrous cap in atherosclerotic plaques. Due to the 

potentially beneficial effects of mTOR inhibition to induce autophagy, mTOR inhibition was 

suggested as a promising approach to stabilize atherosclerotic plaques (Mueller et al, 2008; 

Martinet et al, 2014). It was shown that oxPAPC remodels the cytoskeleton and leads to the 

assembly of the signalosome S1PR1-Akt-mTOR (Birukova et al, 2014). However, a link 

between mTOR, amino acid metabolism and oxidized phospholipids is not known. In this 
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study we show that MTHFD2 expression is dependent on mTOR activity and dependent on 

ATF4. In contrast to previous findings, in embryonic fibroblasts where the mTOR-ATF4-

MTHFD2 axis was necessary for DNA and RNA purine nucleotide synthesis (Ben-Sahra et 

al, 2016), we hypothesize that the MTHFD2 network was activated for ATP purine synthesis 

for nucleotide release. Several universal transcription factors have shown to regulate de 

novo serine and mitochondrial folate cycle, predominantly ATF4, c-myc and p53 (Bao et al, 

2016). Therefore, it is possible that oxPAPC induces the MTHFD2 network by different 

transcription factors besides ATF4.  

The universal transcription factor ATF4 regulates a branch of the UPR, the amino acid 

starvation response as well as the growth response downstream of mTORC1 (Wu & 

Kaufman, 2006; Ben-Sahra et al, 2016). It therefore seems that the MTHFD2 network 

constitutes a universal response, which is activated under different conditions: under amino 

acid starvation as it contains SLC transporters to take up amino acids and serine-glycine 

related amino acid synthesizing enzymes to synthesize amino acids de novo. The MTHFD2 

network contains a variety of transporters of the solute carrier family. Among them are the 

glucose transporters SLC2A14 and SLC2A3, the neutral amino acid transporter SLC1A5, the 

large neutral amino acid transporters SLC7A5 and SLC3A2 and the cationic amino acid 

transporter SLC7A1. On the other hand, the network can be activated downstream of 

mTORC1, which represents growth conditions. Under such conditions the cell activates 

serine-glycine metabolism, SLC transporters as well as AARs to increase purine synthesis 

and nutrient uptake for growth and protein translation.  

In vitro depletion of any amino acid activates the amino acid response (AAR). Consistently, 

the histidine antagonist histidinol as well as asparagine depletion induced the MTHFD2 

network. Asparagine synthetase (ASNS) constitutes a canonical amino acid response gene 

(Siu et al, 2002). Therefore, asparagine synthetase was together with MTHFD2 network 

genes strongly induced upon amino acid deprivation and additionally asparagine was 

together with serine strongly increased upon MTHFD2 knockdown. In line with this, 

asparagine synthetase was identified as a key driver close to MTHFD2 within BNox.  

The presence of uncharged tRNAs activates the serine threonine kinase GCN2 which 

phosphorylates the translation initiation factor elF2α leading to increased transcription of 

ATF4 (Dong et al, 2000; Hao, 2005; Harding et al, 2000). ATF4 can act together with ATF6 

and XBP1 to induce genes involved in protein folding, maturation, and degradation (Lee et al, 

2003; Okada et al, 2002). Furthermore, ATF4 upregulates apoptosis genes like CHOP, ER 

redox control genes like ERO1 and glucose metabolism involved genes (Ma et al, 2002). 

Additionally, ATF4 can upregulate amino acid metabolism, glutathione biosynthesis and 

resistance to oxidative stress (Harding et al, 2003). ATF4 can be induced by Nrf2 and links 

ER stress to the anti-oxidative defense system by orchestrating transcription of antioxidant-
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response-element containing genes like HO1 and TXNRD1 (Cullinan & Diehl, 2006).  

Oxidized phospholipids were shown to increase ATF4 and VEGF expression through NRF2 

thereby inducing the unfolded protein response and angiogenic reactions (Afonyushkin et al, 

2010). oxPAPC treated HAECs show induction of ATF4 and ATF4 mediated IL8, IL6 and 

MCP-1 induction linking the ATF4 branch of UPR to inflammatory gene expression 

(Gargalovic et al, 2006a). ATF4 was also found to be a top hub gene in co-expression 

networks in HAECs in the UPR module (Gargalovic et al, 2006b). Also oxLDL triggers ATF6 

mediated UPR (Sanson et al, 2009). Furthermore, homocysteine activate UPR and changes 

ATF4 expression (Outinen et al, 1999). ATF4 regulates this diverse array of pathways to 

balance amino acid metabolism under starvation, growth and redox stress conditions and 

unsurprisingly its target MTHFD2 orchestrates a network, which is enriched for exactly these 

pathways. 

The function of the MTHFD2 axis in adult cells and tissues is barely known. Interestingly 

ATF4 is independently of the AAR pathway upregulated in response to insulin maybe to 

regulate insulin mediated protein synthesis which will lead to accumulation of uncharged 

tRNAs (Malmberg & Adams, 2008). In the presence of dexamethasone, insulin induced not 

only ATF4 but also ASNS, PSAT1, MTHFD2, and the transporters SLC7A1 and SLC7A5 in 

mouse L cells. There is evidence that insulin resistance and hyperglycemia promote, 

however by unknown mechanisms, atherosclerosis (Bornfeldt & Tabas, 2011). In another 

study, metabolic changes from fatty acid to glucose oxidation as energy use in heart resulting 

in hypertrophy was accompanied by mTOR dependent induction of genes which also belong 

to the MTHFD2 Bayesian network: mthfd2, Trib3 and Slc7a5 (Schisler et al, 2015). 

4.1.6 MTHFD2 axis and the redox defense 

In the enzymatic reaction of MTHFD2, NADPH is produced for nucleic acid and lipid 

synthesis and to recycle antioxidants like glutathione and thioredoxin (Fan et al, 2014). 

Glycine is also involved in redox-defense since it is used for glutathione synthesis. Therefore, 

it is unsurprising that MTHFD2 also contributes to redox defense. In line with this, siRNA 

against MTHFD2 induced an oxidative stress response with upregulation of Nrf2 target 

genes. The MTHFD2 network was, however, distinct from the Nrf2-dependent network. 

Nevertheless, MTHFD2 induction was rescued by the ROS scavenger NAC. Since NAC 

reacts with the oxPAPC component PEIPC (Springstead et al, 2012), the MTHFD2 network 

is possibly activated by PEIPC rather than by the Nrf2-Keap1 system. Nevertheless, we 

cannot exclude that reprogramming towards mitochondrial one-carbon metabolism could 

serve to produce NADPH as well as glycine for glutathione synthesis. Consistently, MTHFD2 

was shown to contribute to NADPH production (Fan et al, 2014). Interestingly, MTHFD1L, 

which recouples 10-formyl-THF back to formate, was neither part of the MTHFD2 network 
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nor affected on expression level by oxPAPC or MTHFD2 knockdown. This could indicate that 

10-formyl-THF not only fuels formate synthesis by MTHFD1L but is also oxidized to CO2 by 

ALDH1L2 to contribute to NADPH production. Furthermore, the mitochondrial cleavage 

system enzyme GLDC which recycles glycine to produce additional 5,10-meTHF, the 

substrate for MTHFD2, was part of the network. In this glycine cleavage system additional 

NADPH is produced. Therefore, it is possible that the MTHFD2 network contributes not only 

to glycine and folate but also NADPH production. 

4.1.7 Amino acid and folate metabolism in atherosclerosis 

Beneficial effects of amino acids in the development of atherosclerosis have not been shown. 

Also, the association of amino acids and atherosclerosis is not clear. Analysis of the plasma 

of CAD patients suggested branched-chain and aromatic amino acids as biomarkers for 

cardiovascular disease (CVD) development (Magnusson et al, 2013). 

The most studied amino acid pathways in cardiovascular diseases are arginine and cysteine 

metabolism. Although eNOS produced NO shows atheroprotective effects inducing smooth 

muscle cell relaxation, inhibition of endothelial inflammation, enhancing anit-oxidant and anti-

apoptotic properties it is still controversial if dietary arginine intake is atheroprotective or 

atherogenic as there is still no clinical evidence (Tousoulis et al, 2007). 

In contrast to arginine metabolism, the MTHFD2 network is indirectly linked to homocysteine 

metabolism via serine metabolism as well as associated folate metabolism. Many enzymes 

of the MTHFD2 network, which are directly and indirectly involved in serine-glycine 

metabolism use pyridoxal phosphate (PLP, Vitamin B6) as a cofactor. A beneficial effect of 

vitamin B6 and folate food intake for prevention of CAD has not been proven (Debreceni & 

Debreceni, 2012; Antoniades et al, 2009). Homocysteine is being considered a risk factor 

and potentially causal for CVD (Schnabel et al, 2005). The enzyme cystathionine β-synthase 

(CBS) of the reverse transsulfuration pathway, which is part of the MTHFD2 network, was 

with the second transsulfuration pathway enzyme cystathionine gamma-lyase (CTH) induced 

with the other MTHFD2 network genes under amino acid deprivation conditions. 

Furthermore, cysteine and homocysteine levels were increased in oxPAPC exposed HAEC 

with MTHFD2 knockdown. CBS condensates homocysteine and serine into cystathionine 

and CTH converts the latter into cysteine. Homocysteine is synthesized from methionine 

(Marinou et al, 1995) and this reaction is coupled to the folate cycle via the cofactor 5-

meTHF as described in the introduction. The mitochondrial folate cycle is, therefore, 

indirectly coupled to homocysteine levels via serine and additionally via folates. Although 

homocysteine gives rise to elevated ROS burden and eNOS uncoupling through different 

mechanisms leading to endothelial dysfunction, classical antioxidant treatment or antioxidant 

vitamin intake, could so far not modifiy the clinical outcome of atherosclerosis (Antoniades et 
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al, 2009; Thomson et al, 2007). Administration of folate was shown to have beneficial effects 

on the vascular wall, however, additional folate supplement showed no benefit in countries 

with already high folate loaded diet (Shirodaria et al, 2007). Furthermore, high folate intake 

increases the transsulfulration pathway to methionine leading to high levels of SAM, which 

may has proatherogenic properties by hypermethylating DNA, uncoupling eNOS and 

increasing proliferation (Loscalzo, 2006; Mittermayer et al, 2006).  

4.1.8 MTHFD2 axis and UPR in atherosclerosis 

Chronic ER stress and ATF6 mediated UPR has been linked to atherosclerosis susceptibility 

regions of the arterial endothelium, where the role of ATF4 remains unclear (Civelek et al, 

2009). OxPAPC and knockdown of MTHFD2 induced ATF4 and several ER stress response 

genes like CHOP, sXBP1 which were also members of the MTHFD2 network. This 

observation is in line with the fact that ER stress is present in atherosclerotic plaques and 

promotes the atherosclerotic process through apoptosis (Thorp et al, 2011; Zhou et al, 2005; 

Dong et al, 2010; Myoishi et al, 2007; Gargalovic et al, 2006a). Important pro-atherosclerotic 

lipids like 7-ketocholesterol fuel the atherosclerotic process through this mechanism (Scull & 

Tabas, 2011). This and the inflammatory activation of the endothelium in the atherosclerotic 

process explain why we observed an activation of the MTHFD2 network in atherosclerotic 

plaques. Moreover, our finding that decreasing MTHFD2 expression induces endothelial cell 

dysfunction could serve as an explanation of why genetic variations in genes of the MTHFD2 

network were associated with CAD risk.  

4.1.9 MTHFD2 response and ATP release 

Purines are products of glycine in the intermediate metabolism and our data suggest that 

induction of the MTFHD2 network facilitates the endothelial production of purines in response 

to oxPAPC. In fact, purine nucleotides are important autacoids which, if released from 

endothelial cells, elicit a plethora of responses. The local release of purine nucleotides from 

atherosclerotic plaques and the subsequent activation of cellular purinergic receptors, for 

example, is thought to promote the development of atherosclerosis (Ferrari et al, 2015). 

Nucleotide release is a well-known stress reaction of endothelial cells and occurs in 

response to thrombin and shear stress (Godecke et al, 2012; Wang et al, 2016b). Although 

endothelial purine nucleotide release in response to oxPAPC has not been reported, copper-

oxidized LDL (oxLDL) has been shown to induce this effect (Seye et al, 2002). The 

mechanism of thrombin and mechanical stress induced release of purine nucleotides is not 

fully understood but a role of gap junctions in this process has been suggested (Godecke et 

al, 2012; Lohman & Isakson, 2014). In keeping with this concept, the gap junction blocker 

flufenamic acid prevented ATP release in response to oxPAPC in the present study. 
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Flufenamic acid also prevented the induction of the MTHFD2 network in response to 

oxPAPC which suggests that the induction of the network is a compensatory reaction to the 

loss of purines.  

In conclusion, by taking advantage of an integrative network modeling approach we unveiled 

a new reaction pattern of endothelial cells. On the basis of Bayesian network analysis we 

discovered that oxPAPC induced ATP release from endothelial cells results in glycine 

depletion. Subsequently, a network containing MTHFD2 as a key driver was activated to 

replenish amino acids and purines in endothelial cells. Our work not only demonstrates the 

power of Bayesian network analysis to uncover novel signaling mechanisms in vascular 

disease, it also illustrates the enormous secretory capacity of endothelial nucleotide release 

in the signaling context (Hitzel et al, 2018). It appears that endothelial cells prioritize autacoid 

release to such an extent that they would rather become deprived of vital metabolic 

components than neglect their signaling function.  

4.1.10 Signature associated Bayesian networks 

Exploiting the Bayesian network for retrieving epigenetic associated networks for the KDM7 

A and B family members yielded two networks. 

PHF8 is not well described in endothelial cells. It was shown that PHF8 contributes to 

proliferation and migration by maintaining E2F4 expression in endothelial cells (Gu et al, 

2016). Consistently, the PHF8 HUVEC signature derived Bayesian network was strongly 

enriched for cell cycle related genes. The majority of central nodes within the network were 

downregulated by PHF8 whereas peripheral nodes were upregulated, which strengthens the 

importance of PHF8 for endothelial proliferation. However, although PHF8 had a strong 

impact on cell cycle gene expression, its mechanistic action in ECs is not known. The PHF8 

Bayesian network suggested the new key drivers TIPIN, GINS1 and ZWILCH as candidates 

for PHF8 dependent endothelial cell cycle regulation. The PHF8 Bayesian network therefore 

confirmed the predictive power of the in this study presented HAEC Bayesian network for the 

identification of new key drivers in endothelial cells for specific perturbation signatures.  

In contrast to PHF8, the KDM7A signature-derived Bayesian network highlighted an 

association of KDM7A with the endothelial interferon response. Many KDM7A signature 

genes are known interferon induced genes. The identified key drivers, which were part of the 

KDM7A signature, belonged predominantly to viral sensing and immune response pathways: 

IFIT1, IFIH1 and TNFSF10. KDM7A, but not the other KDM family members PHF8 and 

PHF2, was induced in SLE patients which strengthens the possible importance of KDM7A 

under pathological conditions. The potential clinical importance of KDM7A is highlighted by 

the observation that among all JmjC histone demethylases KDM7A contained loci with the 

strongest association with CAD.  
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KDM7A was shown to mediate TNFα induced ICAM expression by modulating its protein 

stability via the lysosomal pathway (Choi & Jo, 2016). However, other functions of KDM7A in 

the immune response are not known. Interestingly, the KDM7A interferon network contained 

genes known to contribute to the pathology of atherosclerosis: EGR1 and LDLR. The 

KDM7A Bayesian network therefore suggests that KDM7A links the inferferon response to 

atherosclerosis. Confirming, expression of LDLR was dependent on KDM7A, but not PHF8. 

Additionally, we show that KDM7A expression was regulated by the PKC-EGR1 axis. 

KDM7A was shown to act together with JMJD3 in PMA activated HL60 cells to promote 

transcriptional elongation (Chen et al, 2012). However, the transcriptional regulation of 

KDM7A is not known. We show that EGR1 binds to the promoter upstream of KDM7A. The 

observation that EGR1 was not a predicted transcription factor for the KDM7A locus in a 

human plaque cohort may contribute to the fact that EGR1 is an early responsive genes. 

Furthermore, since KDM7A was reported to be induced by TNFα, PMA as well as under 

nutrient starvation hints that KDM7A expression is regulated by different pathways and 

transcription factors in a context dependent manner (Choi & Jo, 2016; Chen et al, 2012; 

Osawa et al, 2011). Interestingly, the lnc-RNA JHDM1D-AS1, which is antisense to KDM7A, 

was similar to KDM7A regulated by the PKC-EGR1 axis. This lncRNA was reported to  

promote angiogenesis in starved tumors by increasing tumor-derived FDF-1 and stimulates 

tumor growth (Kondo et al, 2017). However, its expression regulation and function is not 

known. 

Taken together, the KDM7A subnetwork highlighted an associated of KDM7A to the 

interferon response and atherosclerotic genes.  
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5 MTHFD2 and HAEC Bayesian networks: an outlook 

5.1 MTHFD2 is a new player in atherosclerosis 

In this study MTHFD2 was identified as a potential regulator of the induction of genes of the 

serine-glycine metabolism in endothelial cells in response to oxidized phospholipids. This 

study proposes that the MTHFD2-axis is activated to maintain cellular ATP, which is released 

upon oxPAPC treatment. 

To further investigate glycine-serine metabolism and the involvement of MTHFD2 in 

response to oxPAPC, flux analyses can be carried out. Tracing of heavy labeled glycine can 

help to determine whether endothelial cells take up extracellular glycine or not. Since glycine 

and activated carbons are synthesized from serine, tracing of heavy labeled serine will reveal 

the flow of carbons upon oxPAPC treatment and its disturbance when MTHFD2 is 

downregulated by siRNAs. Measurement of intra- and extracellular heavy labeld ATP, purine 

intermediates and glutathione can confirm that the activated MTHFD2-axis contributes to 

synthesis of ATP. It will also help to determine whether glycine is, besides for ATP synthesis, 

also consumed for glutathione synthesis. Furthermore, to confirm the association between 

MTHFD2 and N-acetylglycine, amounts of this glycine-derivative can be measured intra- and 

extracellularly. It would also be important to know, whether not only oxPAPC, but also more 

naturally occurring oxidized lipids as in oxLDL or LDL from CAD patients activate the 

MTHFD2 network and reshape serine-glycine metabolism.  

In a next step, the proposed mechanism can be assessed in an in vivo model. The folate 

pathway was investigated by inhibitors in a zebrafish model, where also a zebrafish ortholog 

of mthfd2 was identified (Lee et al, 2012a). However, a zebrafish knockout of mthfd2 has not 

been studied yet. A morpholino based knockout in an endothelial reporter zebrafish can give 

new insights into the importance of MHTFD2 for angiogenesis and the development of the 

vasculature. Furthermore, a high cholesterol diet, which has been proposed as an attractive 

in vivo model of atherosclerosis (Fang et al, 2014) and which results in lipoprotein oxidation 

and hypercholesterolemia, can serve as an in vivo approach to study the contribution of the 

mitochondrial folate pathway to the atherosclerotic process. Since MTHFD2 is embryonic 

lethal in mice, a conditional endothelial specific knockout can be created. A conditional 

mthfd2 knockout in an ApoE background can serve to study whether in such an 

atherosclerosis model mthfd2 contributes to plaque formation and plaque angiogenesis. 

5.2 EC Bayesian networks as a platform to understand EC pathology 

Since the HAEC Bayesian networks have been validated in this study, other key drivers and 

their associated subnetworks can be studied as they possibly consitute new potential targets 
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for disease treatment in atherosclerosis related endothelial pathology. The most promising 

key driver is KIAA1462. This key driver emerged as such upon oxPAPC treatment and 

although the KIAA1462 locus is associated with coronary artery disease (Peden et al, 2011; 

Erdmann et al, 2011) its function is marginally known (Hara et al, 2017). The here presented 

HAEC Bayesian KIAA1462 subnetwork represents an ideal model to shed light on the role 

and function of KIAA1462.  

Since atherosclerosis is a complex disease involving different cell types acting in concert and 

influencing each other, the here presented endothelial networks can be integrated into cross-

tissue networks containing atherosclerosis relevant cell types (Talukdar et al, 2016). Such a 

super-network can comprise endothelial and smooth muscle cells, immune cells as well as 

metabolic tissues contributing to CAD like liver and blood. Since more and more large scale 

consortium based CAD studies like STARNET (Franzén et al, 2016) provide RNAseq data, 

more information, as compared to microarray-based studies, like the non-coding 

transcriptome can be integrated. 

Bayesian networks constitute flexible models and can therefore incorporate a large variety of 

such different high throughput data. The HAEC Bayesian networks could therefore be 

interrogated in further studies with a different focus to predict endothelial behavior. For 

instance, high-throughput data of blood metabolites in CAD patients (Wurtz et al, 2012) could 

be a valuable  layer of information to be integrated into the HAEC Bayesian networks to more 

comprehensively understand endothelial behavior in CAD pathology.  
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6 Deutsche Zusammenfassung 

In der vorliegenden Arbeit wurde ein integrativer Netzwerkmodellierungsansatz gewählt, um 

die Rolle des Endothels im Kontext der Arteriosklerose zu untersuchen. Hierbei wurden 

bioinformatische Analysen, laborexperimentelle Versuche und klinische Daten vereinigt und 

aus dieser Synthese neue klinisch relevante Gene identifiziert und beschrieben.  

Das Endothel trägt maßgeblich zur Homöostase des vaskulären Systems bei und eine 

Dysfunktion des Endothels fördert die Entstehung der Arteriosklerose. Im Zuge der 

Atherogenese entstehen vermehrt reaktive Sauerstoffspezies, die Lipide in der Membran von 

Plasma-Lipoprotein-Partikeln und in der zellulären Plasmamembran oxidieren. Eine Gruppe 

solcher oxidierter Membranlipide ist oxPAPC, das in erhöhter Konzentration in 

arteriosklerotischen Plaques und lokal an Orten chronischer Entzündung im vaskulären 

System vorkommt. Weitherhin findet sich diese Gruppe von oxidierten Phospholipiden in 

oxidierten LDL-Partikeln, in denen oxPAPC die Bindung an Makrophagen vermittelt und 

hierdurch maßgeblich zur Bildung der Schaumzellen und damit zum arteriosklerotischen 

Prozess beiträgt. Die durch oxPAPC verursachte Veränderung der Endothelzelle ist bisher 

wenig erforscht. Es ist jedoch bekannt, dass oxPAPC die Transkriptionslandschaft in 

Endothelzellen tiefgreifend verändert. Um der Komplexität der Endothelzellveränderung 

gerecht zu werden, wurde ein bayesscher Ansatz angewendet.  

In einem ersten Schritt wurden Expressionsprofile von humanen Aortenendothelzellen 

(HAEC) aus 147 Herztransplantatspendern verwendet. Diese Expressionprofile enthalten 

Transkriptionsinformationen der 147 HAEC, die mit oxPAPC oder Kontrollmedium  behandelt 

worden waren. Es wurden signifikant koexprimierte Gene identifiziert und hiervon Gen-Paare 

berechnet, die einen differentiellen Vernetzungsgrad zwischen Kontroll- and oxPAPC-Status 

aufweisen. Dieses Netzwerkmodell gibt darüber Aufschluss, welche Gene miteinander in 

Verbindung stehen. 26759 Gene-Paare, die differentiell verbunden und signifkant 

koexprimiert waren, wurden hierarchisch gruppiert. Es wurden neun Gen-Gruppen mit einer 

erhöhten und elf Gen-Gruppen mit einer verminderten Konnektivität nach oxPAPC 

identifiziert. Gruppe 6 der erhöhten Konnektvitäts-Gruppen wies hierbei die höchste 

kohärente Konnektivität von allen Gruppen auf. Eine Analyse signifikant überrepräsentierter 

kanonischer Gensätze ergab, dass diese Gruppe insbesondere Serin-Glycin-

Aminosäuremetabolismus, tRNA- und mTOR-Aktivierung wiederspiegelte. Der hier gewählte 

Netzwerkmodellierungsansatz zeigte auf, dass der Aminosäuremetabolismus durch 

oxidizerte Phospholipide massiven Veränderungen unterworfen ist. 

Um den Mechanismus der Veränderung des Aminosäuremetabolismus näher zu 

untersuchen, wurden bayessche Netzwerkmodelle verwendet. Dieses Netzwerkmodell 
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enthält im Gegensatz zum differentiellen Koexpresssionsmodell gerichtete Informationen 

innerhalb des Netzwerkgraphes. Die Gen-Gen Verbindungen sind kausal, wodurch sich eine 

Hierarchie bildet und Schlüsselfaktoren innerhalb des Netzwerks bestimmt werden können. 

Durch die Integrierung von Expressionsprofilen und Genomprofilen derselben HAEC-Kohorte 

und der Inferenz von kausalen Gen-Gen-Verbindungen ergaben sich zwei bayessche Netze: 

Kontroll- und oxPAPC-Netzwerk. Permutationsuntersuchungen und systematische 

Beurteilung im Vergleich zu Gen-Gen-Verbindungen in Online-Datenbanken zeigten eine 

erhöhte Prognosefähigkeit der beiden HAEC bayesschen Netze. Es wurden die 

Schlüsselfaktoren und deren Teilnetzwerke berechnet und auf biologische Wege hin 

untersucht. Hierbei wurde das mitochondriale Protein MTHFD2 als ein Schlüsselfaktor für ein 

Teilnetzwerk des oxPAPC bayesschen Netzes identifiziert. Dieses Teilnetz zeigte eine 

ähnliche Gensatzanreicherung wie GOC-AA und überlappte mit diesem signifikant. 

MTHFD2 ist Teil des 1C-Metabolismus und katalysiert im Mitochondrium die Umwandlung 

von 5,-10-mTHF zu 10-fTHF, einem reaktiven 1C-Donor. Diese Reaktion ist Teil des 

mitochondrialen Folat-Zyklus, der Serin in Glycin umwandelt und gleichzeitg 1C-Donoren 

synthetisiert, die in Form von Format ins Cytosol gelangen. Glycin und Format werden im 

Cytosol in das Purin-Rückgrat eingebaut. Serin speißt diesen Zyklus und wird aus dem 

Glykolysezwischenprodukt 3-Phosphoglycerat synthetisiert. Es konnte experimentell validiert 

werden, dass oxPAPC den Schlüsselfaktor MTHFD2 und weitere Gene des Teilnetzes 

induziert: SHMT2, das Serin in Glycin umwandelt, PHGDH und PSAT1 die Serin aus der 3-

Phosphoglycerat synthetisieren, die tRNA-Aktivatoren CARS und GARS und die 

Aminosäuretransporter SLC7A5 und SLC7A1. Eine siRNA vermittelte Herunterregulierung 

des Schüsselfaktors MTHFD2 induzierte die Expression der Gene des Netzwerks während 

die Herunterregulierung von PSAT1, das in der Hierarchie des bayesschen Netzes weiter 

unten stand, einen deutlich geringeren Einfluss hatte. Somit konnte anhand des bayesschen 

Netzes MTHFD2 als Schlüsselfaktor für ein Teilnetzwerk identifiert werden, das für eine 

metabolische Verlagerung zur Aminosäure-Aufnahme und Glycin-de-novo-Synthese der 

Endothelzelle codierte. RNA-Sequenzierung nach Herrunterregulierung von MTHFD2 ergab 

eine signifikant differentiell exprimierte Gensignatur, die mit dem MTHFD2 bayesschen Netz 

und dem GOC-AA signifikant überlappte. 18 Gene des Serin-Glycin-Metabolismus, der 

Aminosäureaktivatoren und SLC-Transporter wurden hierbei als Kern-Gene der Antwort 

identifiziert. 

Massenspektrometrische Untersuchungen des Aminosäure-Profils zeigten eine intrazelluläre 

Depletion von Glycin nach kurzzeitiger oxPAPC-Behandlung und nach Herrunterregulation 

von MTHFD2. Die Expressions-Induktion von Genen des MTHFD2-Netzes nach 

Herrunterregulierung von MTHFD2 konnte durch Glycin wieder normalisiert werden. Glycin 
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stellte ebenfalls die nach MTHFD2-Herunterregulation reduzierte endotheliale Angiogenese 

und Migration wieder her. In dieser Stude wurde hierdurch herausgestellt, dass das MTHFD2 

bayesssche Netz maßgeblich zur Glycinsynthese in Endothelzellen beiträgt und die 

angiogene Funktion der Endothelzellen hiervon abhängt. Es konnte weiterhin gezeigt 

werden, dass MTHFD2 vom Transkriptionsfaktor ATF4 abhängig ist und dass die Induktion 

der Gene des MTHFD2-Netzes durch mTOR-Inhibierung gehemmt wird. Um zu ergründen, 

warum oxPAPC das Netzwerk induziert, wurden Purin-Nukleoside massenspektrometrisch 

gemessen. Es konnte gezeigt werden, dass Purin-Nukleoside extrazellulär angereichert 

waren. Durch weitere Untersuchungen wurde bestätigt, dass oxPAPC zur ATP-Sezernierung 

führt. Die ATP-Freisetzung durch Endothelzellen trägt maßgeblich zur Aktivierung von 

purinergen Signalwegen im vaskulären System bei. Die ATP-Freisetzung nach oxPAPC 

wurde durch den ATP-Freisetzungsinhibitor FFA verhindert. Übereinstimmend hemmte FFA 

auch die Expressionsinduktion der Gene des MTHFD2-Netzes. Auf physiologischer Ebene 

blockierte oxPAPC die Angiogenese, welche durch FFA wiederhergestellt wurde.  

Die physiologische Bedeutung des MTHFD2-Netzes wurde durch die Untersuchung einer 

GWAS-Studie über die Plasmakonzentration von Metaboliten unterstrichen. Die genomische 

Variante rs10174907 im MTHFD2-Lokus war signifikant mit der N-Acetylglycin-Konzentration 

im Plasma assoziiert. SNPs assoziiert mit N-Acetylglycin waren angereichert in Genen des 

MTHFD2-Netzes. Weiterhin ergab die Untersuchung der CARDIoGRAMplus4CD GWAS-

Studie eine Anreicherung von kardiovaskulär krankheitsrelevanten Genvariationen in Loci 

des MTHFD2-Netzwerks. Auch waren Genexpressionsänderungun von Genen des 

Teilnetzes in 32 humanen atheromen Plaques im Vergleich zu gesunden Proben ähnlich wie 

Genexpressionsänderungen in oxPAPC exponierten HAEC.  

In dieser Arbeit wurde die Aktivierung des mitochondrialen 1C-Metabolism und damit 

assoziiertem Aminosäuremetabolism durch pro-atherogene Lipide aufgezeigt. MTHFD2 

wurde als Schlüsselfaktor dieser Aminosäure-Reprogrammierung anhand eines 

endothelspezifischen bayessches Netzes identifiziert. Das Netzwerk wurde durch den 

Verlust von ATP, das als Signalautakoid freigesetzt wurde, aktiviert. 

Das bayessche Netz erwies sich als prädiktiv und wurde daher verwendet, um epigenetische 

Signaturen der Endothelzelle näher zu untersuchen. Epigenetik beschreibt den Einfluss der 

Chromatin-Struktur und der DNA-Modifizierung auf die Expression und das Verhalten der 

Zelle. Eine große Gruppe der epigenetischen Enzyme mit über 20 Mitgliedern sind 

Histondemethylasen mit einer Jumonji (JmjC) Domäne. Diese Enzyme entfernen 

Methylgruppen von Histonen und aktivieren oder reprimieren hierdurch die Genexpression. 

KDM1-7 sind Untergruppen dieser Familie und viele dieser KDM-Histondemethylasen 

spielen eine wichtige Rolle im vaskulären System. Die drei Enzyme der KDM7, auch Plant-



Deutsche Zusammenfassung 

90 

Homeodomain-Finger (PHF)-Familie genannt, PHF2, PHF8 und KDM7A, sind jedoch noch 

unzureichend im kardiovaskulären System untesucht. Daher wurde das Endothelzell-

Netzwerk verwendet, um endothelzellspezifische Netzwerkstrukturen der Signaturen von 

KDM7A und PHF8 zu untersuchen. Diese beiden Enzyme demethylieren die Lysine 9 und 27 

des Histons 3 und beeinflussen, meist aktivieren, hierdurch die Genexpression.  

Zunächst wurde eine endothelzellspezifische PHF8-Signatur, die durch RNA-Sequenzierung 

in HUVEC nach siRNA-Behandlung gewonnen und als differenziell exprimierte Gene 

definiert wurde, auf das Netzwerk projiziert und mit den direkten Nachbarn des Netzwerks 

extrahiert. Die Analyse des sich hieraus ergebenden größten PHF8-spezifischen 

Teilnetzwerks ergab eine signifikante Anreicherung von Gensätzen der Zellzyklus-

Regulation. Weiterhin wurden zentrale Schlüsselgene des PHF8-Netzwerks identifizert und 

experimentell validiert. Hierzu zählten die bisher wenig beschriebenen Gene TIPIN, GINS1 

und ZWILCH. Durch diesen Ansatz wurden daher neue potenziell durch PHF8-regulierte 

Gene identifiziert.  

In einem analogen Analyseweg wurde ein KDM7A-spezifisches Teilnetz identifiziert und 

analysiert. Dieses Netzwerk zeigte Wege der Interfon-, Stimulus- und Immun-Antwort als 

signifikant angereichert. Als Schlüsselfaktor wurde IFIT1 identifiziert und experimentell 

verifiziert. Hiermit übereinstimmend korrelierte die Expression von KDM7A in humanen 

Plaques mit Genen der Virus-Antwort. Die Untersuchung der CARDIoGRAMplus4CD 

GWAS-Studie zeigte, dass von allen JmjC Histondemethylasen der KDM7A-Locus die 

signifikantesten Genvariationen mit Assoziation zu kardiovaskulären Krankheiten aufwies. 

Weiterhin war die Expression des LDL Rezeptors, der Teil des KDM7A-Netzes war, durch 

die Herunterregulation von KDM7A, aber nicht durch PHF8, vermindert. Die KDM7A-

Expression war auch in humanen Blutproben von Patienten mit der Autoimmunkrankheit 

Lupus erythematodes, die durch erhöhte Interferon-Werte gekennzeichnet ist, erhöht. Es 

wurde gezeigt, dass die Expression von KDM7A und deren sich im KDM7A-locus 

befindlichen lncRNA JHDM1D-AS1 PKC-abhängig ist. Die Expression wurde durch die 

Transkriptionsfkatoren EGR1, der Teil des KDM7A-Netzes war und durch PKC aktiviert wird, 

und BRCA1 beeinflusst. In dieser Teilstudie wurde KDM7A als potenzieller Regulator in der 

interferon-abhängigen Immunantwort und der Arteriosklerose identifiziert.  

Zusammenfassend wurden in dieser Arbeit die ersten umfassenden endothelzellspezifischen 

Bayesschen Netze analysiert. Das Bayessche Netz wurde erfolgreich verifiziert und ein 

neuer deregulierter biologischer Weg nach oxPAPC-Aktivierung entdeckt. Weiterhin wurde 

anhand der Gensignatur-basierten Anwendung des Bayesschen Netzes gezeigt, dass dieses 

auch als Filter für Omics-Daten verwendet werden kann, um in Gen-Signaturen 

krankheitsrelevante Wege und Gene zu identifieren. 
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8 Apppendix 

8.1 Selected key driver associated subnetworks 

 

Figure 33: UBXN4 associated BNox.  

Key drivers UBXN4 and TMED2 are highlighted in red. Genes which belong to the gene set 
category GO_GOLGI_ORGANIZATION are colored in yellow. 
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Figure 34: GRN associated BNox. 

Key drvier GRN is highlighted in red. Genes which belong to the gene set category 
KEGG_LYSOSOME are colored in yellow. 
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Figure 35: TRAM1 associated BNct. 

Key drviers TRAM1, UBXN4 and RBBP4 are highlighted in red. Genes which belong to the gene 
set category KEGG_WNT_SIGNALING_PATHWAY are colored in yellow. 
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Figure 36: TPP1 associated BNct. 

Key drvier TPP1 is highlighted in red. Genes which belong to the gene set category 
GO_VACUOLAR_LUMEN are colored in yellow. 
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8.2 Tables 

Table 13: Genetic variances in genes in BNMTHFD2 associated with CAD risk.  

List of genes in BNMTHFD2 with SNPs (meta-analysis p-value < 1x10
-4

) associated with Coronary 
artery disease (CAD) and myocardial infarction based on the CARDIoGRAMplusC4D 
consortium. 

GeneSymbol TxStart TxEnd markername p_dgc 

SORT1 1.1E+08 1.1E+08 rs7528419 7.05E-08 

SLC7A1 30083550 30169825 rs9551751 7.93E-08 

SORT1 1.1E+08 1.1E+08 rs12740374 1.25E-07 

SORT1 1.1E+08 1.1E+08 rs4970834 1.04E-06 

SORT1 1.1E+08 1.1E+08 rs611917 1.45E-06 

SHMT2 57623827 57628718 rs11172113 1.72E-06 

DDIT3 57910370 57914300 rs11172113 1.72E-06 

MARS 57881735 57910438 rs11172113 1.72E-06 

CEBPB 48807119 48809227 rs6095611 9.14E-06 

CEBPB 48807119 48809227 rs1034056 1.38E-05 

TUFT1 1.52E+08 1.52E+08 chr1:151745545:D 1.48E-05 

CEBPB 48807119 48809227 rs6067199 1.59E-05 

CEBPB 48807119 48809227 chr20:48333314:D 1.65E-05 

FOXO1 41129800 41240734 rs9594389 1.68E-05 

CEBPB 48807119 48809227 rs6091031 1.75E-05 

FOXO1 41129800 41240734 rs7323896 1.78E-05 

CEBPB 48807119 48809227 rs6067190 1.97E-05 

CEBPB 48807119 48809227 rs913477 2.05E-05 

CEBPB 48807119 48809227 rs3787327 2.17E-05 

CEBPB 48807119 48809227 rs12329570 2.20E-05 

CEBPB 48807119 48809227 rs6063420 2.29E-05 

CEBPB 48807119 48809227 rs6095616 2.30E-05 

GJA4 35258598 35261348 rs1336624 2.42E-05 

CEBPB 48807119 48809227 rs6095618 2.47E-05 

CEBPB 48807119 48809227 rs13044772 2.62E-05 

TUFT1 1.52E+08 1.52E+08 rs6683364 2.87E-05 

CEBPB 48807119 48809227 rs6067189 2.95E-05 

CEBPB 48807119 48809227 rs6012717 3.13E-05 

CEBPB 48807119 48809227 rs4810977 3.37E-05 

CEBPB 48807119 48809227 rs913476 3.40E-05 

TUFT1 1.52E+08 1.52E+08 rs3790514 3.54E-05 

CEBPB 48807119 48809227 rs4809751 3.60E-05 

CEBPB 48807119 48809227 rs1927781 3.62E-05 

TUFT1 1.52E+08 1.52E+08 rs1054479 3.64E-05 

CEBPB 48807119 48809227 rs4809753 3.66E-05 

CEBPB 48807119 48809227 rs4810980 3.67E-05 

CEBPB 48807119 48809227 rs4810979 3.68E-05 

CEBPB 48807119 48809227 rs13043361 3.80E-05 

CEBPB 48807119 48809227 rs35854666 3.83E-05 

TUFT1 1.52E+08 1.52E+08 rs7542898 3.84E-05 

CEBPB 48807119 48809227 rs74462005 3.88E-05 

CEBPB 48807119 48809227 rs4810981 3.92E-05 

FOXO1 41129800 41240734 rs7328137 4.06E-05 

FOXO1 41129800 41240734 rs9603683 4.71E-05 

FOSL1 65659691 65667997 rs12419237 4.82E-05 

CDC42EP2 65082288 65089900 rs12419237 4.82E-05 

PIK3C2B 2.04E+08 2.04E+08 rs16854023 5.57E-05 

CEBPB 48807119 48809227 rs6012716 5.72E-05 

FOXO1 41129800 41240734 rs9549073 5.88E-05 

WASF3 27131839 27263082 rs9512451 6.89E-05 

TUFT1 1.52E+08 1.52E+08 rs6673917 7.00E-05 

MET 1.16E+08 1.16E+08 rs184476308 7.11E-05 

TUFT1 1.52E+08 1.52E+08 rs6681093 7.34E-05 

SLC47A1 19437166 19482346 rs7502682 7.47E-05 
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SLC47A1 19437166 19482346 rs2233072 7.62E-05 

ARHGEF2 1.56E+08 1.56E+08 rs822509 7.92E-05 

ARHGEF2 1.56E+08 1.56E+08 rs822505 8.13E-05 

ARHGEF2 1.56E+08 1.56E+08 rs2948071 8.18E-05 

GARS 30634180 30673648 rs142982771 8.26E-05 

PPARD 35310334 35395968 rs10484578 8.37E-05 

GARS 30634180 30673648 chr7:30374648:I 8.40E-05 

MET 1.16E+08 1.16E+08 rs6951060 8.63E-05 

SLC47A1 19437166 19482346 rs973649 8.93E-05 

GARS 30634180 30673648 rs35295500 9.21E-05 

SLC47A1 19437166 19482346 rs973650 9.33E-05 

ARHGEF2 1.56E+08 1.56E+08 rs822527 9.39E-05 

RCOR3 2.11E+08 2.11E+08 rs7540109 9.44E-05 

FOXO1 41129800 41240734 rs4943737 9.59E-05 

 

Table 14: Association between genes in BNMTHFD2 and plasma metabolites.  

List of genes in BNMTHFD2 with SNPs (meta-analysis p-value < 1x10
-4

) associated with 
metabolites in human blood with physical locations of the variant within ±5 kb of gene bodies. 

Gene metabolonID metabolonDescription SNPs p-value 

SETX M33801 ADpSGEGDFXAEGGGVR* rs612169 9.66E-14 

SETX M33801 ADpSGEGDFXAEGGGVR* rs644234 1.43E-13 

SETX M33801 ADpSGEGDFXAEGGGVR* rs643434 1.45E-13 

SETX M33801 ADpSGEGDFXAEGGGVR* rs514659 2.63E-13 

SETX M33801 ADpSGEGDFXAEGGGVR* rs545971 3.33E-13 

SETX M33801 ADpSGEGDFXAEGGGVR* rs674302 3.56E-13 

SETX M33801 ADpSGEGDFXAEGGGVR* rs529565 5.41E-13 

SETX M33801 ADpSGEGDFXAEGGGVR* rs505922 7.76E-13 

SETX M33801 ADpSGEGDFXAEGGGVR* rs630014 3.53E-09 

AARS M01299 tyrosine rs9936903 1.89E-08 

AARS M02734 gamma-glutamyltyrosine rs9936903 9.21E-08 

SETX M32740 X-11423 rs643434 1.53E-07 

SETX M32740 X-11423 rs644234 1.54E-07 

SETX M32740 X-11423 rs529565 6.02E-07 

SETX M32740 X-11423 rs505922 6.02E-07 

SETX M32740 X-11423 rs674302 6.05E-07 

SETX M32740 X-11423 rs545971 6.13E-07 

SETX M32740 X-11423 rs514659 6.56E-07 

SETX M32740 X-11423 rs612169 7.99E-07 

GJA4 M32654 3-dehydrocarnitine* rs4609395 2.19E-06 

SETX M33084 ADSGEGDFXAEGGGVR* rs529565 2.75E-06 

SETX M33084 ADSGEGDFXAEGGGVR* rs505922 3.48E-06 

SETX M33084 ADSGEGDFXAEGGGVR* rs514659 3.87E-06 

SETX M33084 ADSGEGDFXAEGGGVR* rs612169 3.96E-06 

SETX M33084 ADSGEGDFXAEGGGVR* rs545971 4.35E-06 

SETX M33084 ADSGEGDFXAEGGGVR* rs674302 4.38E-06 

SETX M32808 X-11491 rs514659 6.61E-06 

SETX M32808 X-11491 rs545971 6.66E-06 

SETX M32808 X-11491 rs674302 6.99E-06 

SETX M32808 X-11491 rs612169 7.99E-06 

GJA4 M32654 3-dehydrocarnitine* rs4604660 1.20E-05 

GJA4 M32654 3-dehydrocarnitine* rs12725080 1.20E-05 

SETX M33801 ADpSGEGDFXAEGGGVR* rs568203 1.24E-05 

SETX M32808 X-11491 rs505922 1.25E-05 

SETX M32808 X-11491 rs529565 1.26E-05 

CBS M32709 X-03056 rs4819388 1.40E-05 

MTHFD2 M27710 N-acetylglycine rs10174907 1.43E-05 

SETX M32808 X-11491 rs500498 1.60E-05 

CBS M32709 X-03056 rs7278940 1.62E-05 

GJA4 M32654 3-dehydrocarnitine* rs12058538 1.92E-05 

GJA4 M32654 3-dehydrocarnitine* rs7526321 1.92E-05 
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SETX M32808 X-11491 rs644234 2.10E-05 

SETX M32808 X-11491 rs643434 2.10E-05 

HERPUD1 M32616 X-11299 rs7185970 2.22E-05 

CBS M32709 X-03056 rs4818887 2.23E-05 

PPARD M37202 4-androsten-3beta,17beta-diol rs6938138 2.35E-05 

SETX M33084 ADSGEGDFXAEGGGVR* rs644234 2.52E-05 

SETX M33084 ADSGEGDFXAEGGGVR* rs643434 2.53E-05 

LYST M22030 2-hydroxyisobutyrate rs12136895 2.55E-05 

SPRED2 M01645 laurate (12:0) rs1344891 2.57E-05 

PCK2 M15365 glycerol 3-phosphate (G3P) rs1062230 2.60E-05 

THG1L M27273 X-10506 rs1052926 2.78E-05 

GLDC M32338 glycine rs2297442 2.94E-05 

HSPA13 M32489 caproate (6:0) rs1297269 2.95E-05 

NPC1 M31555 pyridoxate rs13381663 3.71E-05 

HERPUD1 M32616 X-11299 rs16960143 3.84E-05 

CBS M33587 eicosenoate (20:1n9 or 11) rs3746963 4.02E-05 

SPRED2 M01645 laurate (12:0) rs7562559 4.15E-05 

SPRED2 M01645 laurate (12:0) rs1437461 4.15E-05 

CBS M32709 X-03056 rs3746963 4.85E-05 

ARMC9 M01558 4-acetamidobutanoate rs6734039 4.94E-05 

ARMC9 M01558 4-acetamidobutanoate rs12988432 4.95E-05 

SHMT2 M36776 7-alpha-hydroxy-3-oxo-4- rs11172833 4.95E-05 

LTA4H M01302 methionine rs12579455 4.99E-05 

TRIB3 M34350 X-12740 rs6051957 5.24E-05 

STC2 M32867 X-11550 rs11134792 5.44E-05 

FOSL2 M33230 1- rs1881253 5.70E-05 

SETX M02132 citrulline rs612169 5.91E-05 

NAV3 M12017 3-methoxytyrosine rs10746103 5.95E-05 

SETX M32740 X-11423 rs500498 6.33E-05 

SETX M02132 citrulline rs545971 6.35E-05 

SETX M02132 citrulline rs674302 6.39E-05 

STC2 M32867 X-11550 rs11134793 6.66E-05 

SETX M02132 citrulline rs514659 6.86E-05 

TUFT1 M33422 gamma-glutamylphenylalanine rs10888547 6.88E-05 

FOSL2 M33960 1-oleoylglycerophosphocholine rs1881253 6.99E-05 

GJA4 M34481 X-12798 rs12058538 6.99E-05 

GJA4 M34481 X-12798 rs7526321 6.99E-05 

HERPUD1 M32616 X-11299 rs7203177 7.11E-05 

ARMC9 M22649 X-09108 rs12988432 7.31E-05 

CBS M33587 eicosenoate (20:1n9 or 11) rs4818887 7.35E-05 

ARMC9 M22649 X-09108 rs6734039 7.36E-05 

KIF3A M18369 gamma-glutamylleucine rs2243211 7.50E-05 

KIF3A M18369 gamma-glutamylleucine rs2243210 7.57E-05 

SETX M36230 X-14304 rs643434 7.67E-05 

SETX M36230 X-14304 rs644234 7.70E-05 

FOSL2 M33230 1- rs13017378 7.81E-05 

SETX M31548 DSGEGDFXAEGGGVR* rs529565 7.88E-05 

EPAS1 M00054 tryptophan rs1530628 8.13E-05 

ANKRD46 M32838 X-11521 rs7007746 8.30E-05 

SPRED2 M27718 creatine rs2118304 8.31E-05 

DAPK1 M01712 cortisol rs11142238 8.33E-05 

TRIB3 M36673 X-14745 rs2295495 8.43E-05 

EPAS1 M27710 N-acetylglycine rs1530628 8.69E-05 

SETX M31548 DSGEGDFXAEGGGVR* rs612169 8.81E-05 

HERPUD1 M33163 X-11818 rs16960143 8.86E-05 

CBS M33587 eicosenoate (20:1n9 or 11) rs4819388 9.04E-05 

NFIL3 M03127 hypoxanthine rs1152759 9.13E-05 

SETX M31548 DSGEGDFXAEGGGVR* rs514659 9.20E-05 

TUFT1 M34420 bradykinin, des-arg(9) rs10788864 9.29E-05 

FOSL2 M33230 1- rs11127162 9.39E-05 

SETX M31548 DSGEGDFXAEGGGVR* rs545971 9.43E-05 

EPAS1 M27710 N-acetylglycine rs2197698 9.45E-05 



Appendix 

119 

FOSL2 M33821 1- rs11127164 9.49E-05 

SETX M31548 DSGEGDFXAEGGGVR* rs674302 9.52E-05 

SETX M31548 DSGEGDFXAEGGGVR* rs505922 9.59E-05 

SLC7A5 M33961 1-stearoylglycerophosphocholine rs4785651 9.75E-05 

EPAS1 M27710 N-acetylglycine rs1530627 9.76E-05 

 

  



Appendix 

120 

8.3 List of figures 

Figure 1: Chemical structure of oxPAPC and effects of oxPLs. ...................................... 2 

Figure 2: Network approach to link high-throughput data to physiology and 

pathophysiology. ................................................................................................................. 4 

Figure 3: Infering relationships between molecular entities. ........................................... 6 

Figure 4: Different network models to fit underlying data. ............................................... 9 

Figure 5: Network analysis of complex diseases by an integrative multi-scale omics 

approach. ............................................................................................................................10 

Figure 6: Compartmentalization of cytosolic and mitochondrial one-carbon 

metabolism. ........................................................................................................................13 

Figure 7: Composition of the purine backbone. ...............................................................15 

Figure 8: Family of 2-oxoglutarate oxygenases. ..............................................................17 

Figure 9: The jmjC histone demethylases of the KDM7/PHD subfamily. ........................19 

Figure 10: Integrative network approach in HAEC. ..........................................................40 

Figure 11: Differential connectivity clusters of HAEC exposed to oxPAPC. ..................41 

Figure 12: Validation of HAEC Bayesian networks. .........................................................44 

Figure 13: HAEC Bayesian networks. ...............................................................................45 

Figure 14: Network view of the MTHFD2 Bayesian network. ...........................................49 

Figure 15: Key driver MTHFD2 and oxPAPC induce expression of genes in BNMTHFD2. .51 

Figure 16: RNAseq validation of MTHFD2 Bayesian subnetwork. ..................................53 

Figure 17: Induction of MTHFD2 in response to oxPAPC is dependent on ATF4. .........54 

Figure 18: Expression of genes in the BNMTHFD2 in human aortic plaques. ....................56 

Figure 19: Heatmap of amino acid profile in HAEC. .........................................................57 

Figure 20: A: MTHFD2 is required for glycine synthesis in human aortic smooth 

muscle cells. .......................................................................................................................58 

Figure 21: Glycine, but not serine or asparagine prevents the induction of the 

Bayesian amino acid subnetwork. ....................................................................................60 

Figure 22: Glycine prevents the impairment of spheroid outgrowth in response to 

MTHFD2 knockdown. .........................................................................................................61 

Figure 23: OxPAPC elicits ATP release. ...........................................................................62 

Figure 24: Flufenamic acid prevents the impairment of angiogenesis upon oxPAPC 

exposure. ............................................................................................................................64 

Figure 25: Network view of PHF8 Bayesian network. ......................................................65 

Figure 26: Experimental validation of newly identified key drivers in PHF8 BN. ...........66 

Figure 27: Visualization of KDM7A signature genes in the interferon alpha/beta 

Reactome pathway. ............................................................................................................68 

Figure 28: Network view of KDM7A Bayesian network. ...................................................68 



Appendix 

121 

Figure 29: KDM7A affects expression of intereferon responsive genes. .......................69 

Figure 30: KDM7A is associated with interferon signaling. ............................................70 

Figure 31: KDM7A is associated with PKC activity. .........................................................71 

Figure 32: The PKC-EGR1-KDM7A axis. ...........................................................................73 

Figure 33: UBXN4 associated BNox. ................................................................................ 112 

Figure 34: GRN associated BNox. .................................................................................... 113 

Figure 35: TRAM1 associated BNct. ................................................................................. 114 

Figure 36: TPP1 associated BNct. .................................................................................... 115 

 

  



Appendix 

122 

8.4 List of tables 

Table 1: Significantly overrepresented canonical pathways in GOC clusters. ..............42 

Table 2: Significantly overrepresented canonical pathways in LOC clusters. ...............42 

Table 3: Significantly overrepresented gene set categories in GOC-AA. .......................43 

Table 4: Most significantly overrepresented canonical gene set category (FET p-value) 

in key driver (KD) associated subnetworks (node size ≥ 100) in BNct. Selected top-

tanked subnetworks are highlighted as in Figure 13. ......................................................46 

Table 5: Most significantly overrepresented canonical gene set category (FET p-value) 

in key driver (KD) associated subnetworks (subnetwork size ≥ 100) in BNox. Selected 

top-tanked subnetworks are highlighted as in Figure 13. ...............................................47 

Table 6: Gene set enrichment analysis of canonical gene set categories (FET p-value) 

in BNMTHFD2. ..........................................................................................................................48 

Table 7: Significantly overrepresented canonical gene set categories in MTHFD2 

RNAseq signature (FDR<0.05). ..........................................................................................52 

Table 8: Association between genes in the BNMTHFD2 and CAD risk loci. Genetic 

variances in genes in the BNMTHFD2 associated with CAD risk. ........................................55 

Table 9: Association between genes in the BNMTHFD2 and plasma metabolites. .............59 

Table 10: Significantly enriched gene set categories GSEA of PHF8 Bayesian network.

 .............................................................................................................................................66 

Table 11: Significantly enriched gene set categories in KDM7A signature. ...................67 

Table 12: CAD risc loci in JmjC histone demethylases. ..................................................70 

Table 13: Genetic variances in genes in BNMTHFD2 associated with CAD risk. .............. 116 

Table 14: Association between genes in BNMTHFD2 and plasma metabolites. ............... 117 

 

  



Appendix 

123 

8.5 Abbreviations 

°C Degree Celsius 

µg Mikrogramm 

µl Mikroliter 

µM Mikromolar 

10-fTHF 10-Formyl tetrahydrofolate  

5,10-meTHF 5,10-methylene tetrahydrofolate 
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CEP 2-(ω-car-boxyethyl)Pyrrole 
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DUT Deoxyuridine triphosphatase 
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EC Endothelial cell 
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EDTA Ethylenediaminetetraacetic acid 

EGF Epidermal growth factor 

EGM Endothelial growth medium 

EGR1 Early growth response 1 

EGTA Ethylene glycol tetraacetic acid 

EHHADH Enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase 
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eNOS endothelial nitric oxide synthase 

eQTL Expression quantitative trait loci 

ER Endoplasmic reticulum 
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F3 Coagulation factor III, tissue factor 

FCS Fetal calf serium 
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phosphoribosylglycinamide synthetase, 

phosphoribosylaminoimidazole synthetase 
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GEO Gene expression omnibus 
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GO Gene ontology 

GOC Gain of connectivity 

GOC-AA Gain of connectivity cluster 6 (amino acid) 

GOT1 Glutamic oxaloacetic transaminase 1 

GRN Granulin precursor 

GSEA Gene set enrichment analysis 

GSS Glutathione synthetase  
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GWAS Genome wide association study 

H3K4me2 Histone 3 Lysine 4 dimethylation 

HAEC Human aortic endothelial cells 
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hEGF human epidermal growth factor 

HEK293 Human embryonic kidney cells 293 
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HisOH L-Histidinol 

HO1/HMOX1 Heme oxygenase 1 
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HSPA1A Heat shock protein family A member 1A 
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HUVEC Human umbilical vein endothelial cell 

IFIH1 Interferon induced with helicase C domain 1 

IFIT1/3 Interferon induced protein with tetratricopeptide repeats 1/3 

IFNβ Interferon beta 

IL1β Interleukin 1 beta 

ITGAV Integrin subunit alpha V 

JHDM1D-AS1 JHDM1D antisense RNA 1 

JmjC Jumonji C 

JMJD Jumonji domain containing 

kb kilobase 

Kcat catalytic rate 

KCl Potassium chloride 

kDa Kilodalton  

KDM7A Lysine demethylase 7A  

KDR Kinase insert domain receptor 

KIF4A Kinesin family member 4A 

KM Michaelis constant 

KOdiAPC  1-palmitoyl-2-(5-keto-6-octene-dioyl)-sn-glycero-3-

phosphocholine 

L Liter 

LDL Low density lipoprotein 

LDLR Low density lipoprotein receptor 

lncRNA long non coding RNA 

LOC Loss of connectivity 

LPS Lipopolysaccharide 

LSD1/2 Lysine-specific histone demethylase 1/2 

mA Milliampere 

MARS Methionyl-tRNA synthetase 

MCMC Monte Carlo Markov chain 

MDA Malondialdehyde 

MEM Minimum essential medium 

mg milligramm 

min minute 

ml milliliter 

mM millimolar 

mmol millimol 

mRNA messenger RNA 
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MRTO4 MRT4 homolog, ribosome maturation factor 

MSigDB Molecular signatures databse 

MTFMT Mitochondrial methionyl-tRNA formyltransferase  

MTHFD1 Methylenetetrahydrofolate dehydrogenase, cyclohydrolase and 

formyltetrahydrofolate synthetase 1 

MTHFD1L/2L  Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 

1/2-like 

MTHFD2  Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 

2, methenyltetrahydrofolate cyclohydrolase 

MTHFR Methylenetetrahydrofolate reductase 

mTOR Mechanistic target of rapamycin 

mTORC1/2 Mechanistic target of rapamycin complex 1/2 

MTR 5-Methyltetrahydrofolate-homocysteine methyltransferase 

NAC N-Acetyl-L-cysteine 

NaCl Sodium chloride 

NAD Nicotinamide adenine dinucleotide 

NADPH Nicotinamide adenine dinucleotide phosphat 

NAT Natural antisense transcript 

NDC80 NDC80, kinetochore complex component 

NEK2 NIMA related kinase 2 

NHDN N-hob downstream nodes 

NISCH Nischarin 

nm nanometer 

nM nanomolar 

NO Nitric oxide 

NP nondeterministic polynomial 

NUSAP1 Nucleolar and spindle associated protein 1 

OA Ocadaic acid 

OV Orthovanadate 

oxCE oxidized cholesteryl ester 

oxLDL oxidized low density lipoproteins 

oxPAPC oxidized PAPC 

oxPC oxidized phosphatidylcholine 

oxPE oxidized phosphatidylethanolamine 

oxPL oxidized phospholipid 

PAGE Polyacrylamide gel electrophoresis 

OCR Oxygen consumption rate 
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PAPC 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine 

PBK PDZ binding kinase 

PBMC Peripheral blood mononuclear cell 

PBS Phosphate buffered saline 

PCDH12 Protocadherin 12  

PCK2 Phosphoenolpyruvate carboxykinase 2 

PDSS1 Decaprenyl diphosphate synthase subunit 1 

PECPC  1-palmitoyl-2-(5,6-epoxyisoprostane A2)-sn-glycero-3-

phosphocholine 

PEIPC  1-palmitoyl-2-(5,6-epoxyisoprostanoyl)-sn-glycero-3-

phosphocholine 

PFA Paraformaldehyde 

PFKFB3 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 

PGF Placental growth factor 

PGPC 1-Palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine 

PHD Plant homeo domain 

PHF8 PHD finger protein 8 

PHGDH Phosphoglycerate dehydrogenase 

PKC Protein kinase C 

PLK1/4 Polo like kinase 1/4 

PMA Phorbol-12-myristate-13-acetate  

PMSF Phenylmethylsulfonylfluoride 

PNMA2 Paraneoplastic Ma antigen 2 

POVPC 1-Palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phospho-choline 

PPM1F Protein phosphatase Mg2+/Mn2+ dependent 1F 

PSAT1 Phosphoserine aminotransferase 1 

PSPH Phosphoserine phosphatase 

PUFA polyunsaturated fatty acid 

qPCR Quantitative polymerase chain reaction 

RAD51AP1 RAD51 associated protein 1 

RBBP4 RB binding protein 4 chromatin remodeling factor 

RGN Regulatory gene network 

RNA Ribonucleic acid 

RNAseq RNA sequencing 

ROS Reactive oxygen species 

Rpm Rounds per minutes 

RT Reverse transkriptase 
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SAM S-adenosyl methionine 

SBC/SBIC Schwarz criterion 

SC4MOL Sterol-C4-methyl oxidase-like 

SDS Sodium dodecylsulfate 

SEM Standard error of the mean 

SERPINE1 Serpin family E member 1 

SFRS1 Serine and arginine rich splicing factor 1  

SGSM2 Small G protein signaling modulator 2 

SHMT1/2 Serine hydroxymethyltransferase 1 

siRNA Small interfering ribonucleic acid 

SLC1A5 Solute carrier family 1 member 5 

SLC3A2 Solute carrier family 3 member 2 

SLC7A1 Solute carrier family 7 member 1 

SLC7A5 Solute carrier family 7 member 5 

SLE Systemic lupus erythematodes 

SMURF2 SMAD specific E3 ubiquitin protein ligase 2 

SNP Single nucleotide polymorphism 

SQLE Squalene epoxidase 

STC2 Stanniocalcin 2 

sXBP1 spliced x-box binding protein 1 

SYPL1 Synaptophysin like 1 

TAF9B TATA-Box binding protein associated factor 9b 

TBC1D8 TBC1 domain family member 8 

TCF7L2 Transcription factor 7 like 2 

TEMED Tetramethylethylendiamine 

THF Tetrahydrofolate 

TIPIN TIMELESS interacting protein 

TMED2 Transmembrane P24 trafficking protein 2 

TMOD3 Tropomodulin 3 

TNFSF10 TNF superfamily member 10 

TOP topological overlap matrix 

TPP1 Tripeptidyl peptidase 1 

TRAM1 Translocation associated membrane protein 1 

TRIB3 Tribbles pseudokinase 3 

TRIS Tris (hydroxymethyl) aminomethane 

tRNA transfer ribonucleic acid 

TSPAN7 Tetraspanin 7 
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TSS Transcriptional start site  

TXNRD1 Thioredoxin reductase 1 

TYMS Thymidylate synthetase 

UBXN4 UBX domain protein 4 

UCHL5 Ubiquitin C-terminal hydrolase L5 

UPGMA Unweighted pair group method with arithmetic mean 

UPR Unfolded protein response 

VEGFA Vascular endothelial growth factor A 

WGCNA weighted gene co-expression network analysis 

YARS Tyrosyl-tRNA synthetase 

YWHAZ Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 

activation protein zeta 

YY1 YY1 transcription factor 

ZWILCH Zwilch kinetochore protein  

 

 

 

 

 

 

  



Appendix 

131 

8.6 Declaration 

Except where stated otherwise by reference or acknowledgement, the work presented was 

generated by myself under the supervision of my advisors Prof. Ralf Brandes and Prof. Jun 

Zhu during my doctoral studies. All contributions obtained from colleagues and in the context 

of collaborative research are explicitly listed below: 

 

Figure 11: Differential connectivity clusters of HAEC exposed to oxPAPC. Yi Zhang; 

Department of Mathematics, Hebei University of Science and Technology, Shijiazhuang  

Hebei, China; computation of DC clusters. Eunjee Lee; Icahn Institute of Genomics and 

Multiscale Biology, Mount Sinai Icahn School of Medicine, New York; DC cluster 

visualization. Juliane Hitzel; GSEA and figure preparation 

Figure 12: Validation of HAEC Bayesian networks. Eunjee Lee; Icahn Institute of Genomics 

and Multiscale Biology, Mount Sinai Icahn School of Medicine, New York; assistance with 

computation. Juliane Hitzel; processing of endothelial signatures and figure preparation 

Figure 13: HAEC Bayesian networks. Jun Zhu; Icahn Institute of Genomics and Multiscale 

Biology, Mount Sinai Icahn School of Medicine, New York; construction and provision of the 

Bayesian networks. Eunjee Lee; Icahn Institute of Genomics and Multiscale Biology, Mount 

Sinai Icahn School of Medicine, New York; assistance with visualization. Juliane Hitzel; 

network visualization, key driver analysis, subnetwork extraction, GSEA 

Figure 16: RNAseq validation of MTHFD2 Bayesian subnetwork. Eunjee Lee; Icahn Institute 

of Genomics and Multiscale Biology, Mount Sinai Icahn School of Medicine, New York; 

processing of RNAseq data. Juliane Hitzel; HAEC treatment, heatmap creation, DEG 

projection onto network, network visualization, venn diagram  

Figure 18: Expression of genes in the BNMTHFD2 in human aortic plaques. Eunjee Lee; 

Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Icahn School of Medicine, 

New York; assistance with computation. Juliane Hitzel; assistance with data processing and 

figure preparation 

Figure 19: Heatmap of amino acid profile in HAEC. Sven Zukunft; Institute for Vascular 

Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main; mass 

spectrometry measurement. Juliane Hitzel; HAEC treatment, data analysis, heatmap creation 

Figure 20: A: MTHFD2 is required for glycine synthesis in human aortic smooth muscle cells. 

Sven Zukunft; Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe 

University, Frankfurt am Main; mass spectrometry measurement. Beatrice Pflüger; Institute 

for Cardiovascular Physiology, Goethe University, Frankfurt am Main; smooth muscle cell 

treatment. Juliane Hitzel; data analysis, heatmap creation 

Figure 21: Glycine, but not serine or asparagine prevents the induction of the Bayesian 

amino acid subnetwork. Sven Zukunft; Institute for Vascular Signalling, Centre for Molecular 



Appendix 

132 

Medicine, Goethe University, Frankfurt am Main; mass spectrometry measurement. Juliane 

Hitzel; HAEC treatment, qPCR, data analysis 

Figure 22: Glycine prevents the impairment of spheroid outgrowth in response to MTHFD2 

knockdown. Matthias Leisegang; Institute for Cardiovascular Physiology, Goethe University, 

Frankfurt am Main; spheroid outgrowth assay. Juliane Hitzel; migration assay 

Figure 23: OxPAPC elicits ATP release. Dominique Thomas; Institute of Clinical 

Pharmacology, Pharmazentrum Frankfurt/ZAFES, Faculty of Medicine, Goethe University, 

Frankfurt am Main; mass spectrometry measurement. Dmitry Namgaladze; Institute of 

Biochemistry I, Goethe University, Frankfurt am Main; OCR measurement. Juliane Hitzel; 

HAEC treatment, qPCR, ATP measurement 

Figure 30: KDM7A is associated with interferon signaling. Eunjee Lee; Icahn Institute of 

Genomics and Multiscale Biology, Mount Sinai Icahn School of Medicine, New York; 

assistance with computation. Juliane Hitzel; SLE data processing 

Figure 31: KDM7A is associated with PKC activity.  Eunjee Lee; Icahn Institute of Genomics 

and Multiscale Biology, Mount Sinai Icahn School of Medicine, New York; assistance with 

computation. Juliane Hitzel; HUVEC treatment, qPCR, WB 

Figure 32: The PKC-EGR1-KDM7A axis. Eunjee Lee; Icahn Institute of Genomics and 

Multiscale Biology, Mount Sinai Icahn School of Medicine, New York; assistance with 

computation; Beatrice Pflüger; Institute for Cardiovascular Physiology, Goethe University, 

Frankfurt am Main; ChIP experiment. Juliane Hitzel; HUVEC experiments 

Table 8: Association between genes in the BNMTHFD2 and CAD risk loci. Genetic variances 

in genes in the BNMTHFD2 associated with CAD risk. Eunjee Lee; Icahn Institute of 

Genomics and Multiscale Biology, Mount Sinai Icahn School of Medicine, New York; 

assistance with computation. Juliane Hitzel; figure preparation 

Table 9: Association between genes in the BNMTHFD2 and plasma metabolites. Eunjee 

Lee; Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Icahn School of 

Medicine, New York; assistance with computation; figure preparation 

Table 11: Significantly enriched gene set categories in KDM7A signature. Wei Chen; Max-

Delbrück-Center for Molecular Medicine, Berlin; Mario Looso; Max Planck Institute for Heart 

and Lung Research, Bad Nauheim; RNAseq measurement and pre-processing. Juliane 

Hitzel; RNAseq analysis, GSEA 

 

Whenever a figure or table or text is identical to a previous publication, it is referenced 

explicitly. Copyright permission and co-author agreement has been obtained. 

The following parts of the thesis have been previously published: 

- Figures 10-19, 21-24 

- Tables 1-9  



Appendix 

135 

8.9 Publications 

 

Hitzel J, Lee E, Zhang Y, Bibli SI, Li X, Zukunft S, Pflüger B, Hu J, Schürmann C, Vasconez 

AE, Oo JA, Kratzer A, Kumar S, Rezende F, Josipovic I, Thomas D, Giral H, Schreiber Y, 

Geisslinger G, Fork C, Yang X, Sigala F, Romanoski CE, Kroll J, Jo H, Landmesser U, Lusis 

AJ, Namgaladze D, Fleming I, Leisegang MS, Zhu J, Brandes RP. Oxidized phospholipids 

regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in 

endothelial cells. Nat Commun. 2018 Jun 12;9(1):2292. doi: 10.1038/s41467-018-04602-0 

Josipovic I, Pflüger B, Fork C, Vasconez AE, Oo JA, Hitzel J, Seredinski S, Gamen E, 

Heringdorf DMZ, Chen W, Looso M, Pullamsetti SS, Brandes RP, Leisegang MS. Long 

noncoding RNA LISPR1 is required for S1P signaling and endothelial cell function. J Mol Cell 

Cardiol. 2018 Jan 31;116:57-68; doi: 10.1016/j.yjmcc.2018.01.015 

Gu L, Hitzel J, Moll F, Kruse C, Malik RA, Preussner J, Looso M, Leisegang MS, Steinhilber 

D, Brandes RP, Fork C. The Histone Demethylase PHF8 Is Essential for Endothelial Cell 

Migration. PLoS One. 2016 Jan 11;11(1):1-15 

Fork C, Gu L, Hitzel J, Josipovic I, Hu J, SzeKa Wong M, Ponomareva Y, Albert M, Schmitz 

SU, Uchida S, Fleming I, Helin K, Steinhilber D, Leisegang MS, Brandes RP. Epigenetic 

Regulation of Angiogenesis by JARID1B-Induced Repression of HOXA5. Arterioscler 

Thromb Vasc Biol. 2015 Jul;35(7):1645-1652 

Fork C, Hitzel J, Nichols BJ, Tikkanen R, Brandes RP. Flotillin-1 facilitates toll-like receptor 3 

signaling in human endothelial cells. Basic Res Cardiol. 2014;109(6):439 1-13  

 

 

 

  


