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We analyse statistical and information-theoretical properties of EEG microstate

sequences, as seen through the lens of five different clustering algorithms. Microstate

sequences are computed for n = 20 resting state EEG recordings during wakeful rest.

The input for all clustering algorithms is the set of EEG topographic maps obtained

at local maxima of the spatial variance. This data set is processed by two classical

microstate clustering algorithms (1) atomize and agglomerate hierarchical clustering

(AAHC) and (2) a modified K-means algorithm, as well as by (3) K-medoids, (4) principal

component analysis (PCA) and (5) fast independent component analysis (Fast-ICA).

Using this technique, EEG topographies can be substituted with microstate labels by

competitive fitting based on spatial correlation, resulting in a symbolic, non-metric time

series, the microstate sequence. Microstate topographies and symbolic time series are

further analyzed statistically, including static and dynamic properties. Static properties,

which do not contain information about temporal dependencies of the microstate

sequence include the maximum similarity of microstate maps within and between the

tested clustering algorithms, the global explained variance and the Shannon entropy

of the microstate sequences. Dynamic properties are sensitive to temporal correlations

between the symbols and include the mixing time of the microstate transition matrix, the

entropy rate of the microstate sequences and the location of the first local maximum of

the autoinformation function. We also test the Markov property of microstate sequences,

the time stationarity of the transition matrix and detect periodicities by means of

time-lagged mutual information. Finally, possible long-range correlations of microstate

sequences are assessed via Hurst exponent estimation. We find that while static

properties partially reflect properties of the clustering algorithms, information-theoretical

quantities are largely invariant with respect to the clustering method used. As each

clustering algorithm has its own profile of computational speed, ease of implementation,

determinism vs. stochasticity and theoretical underpinnings, our results convey a positive

message concerning the free choice of method and the comparability of results obtained

from different algorithms. The invariance of these quantities implies that the tested

properties are algorithm-independent, inherent features of resting state EEG derived

microstate sequences.

Keywords: EEG microstates, information theory, entropy, mutual information, markovianity, stationarity

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2018.00070
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2018.00070&domain=pdf&date_stamp=2018-08-27
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:vonWegner@med.uni-frankfurt.de
https://doi.org/10.3389/fncom.2018.00070
https://www.frontiersin.org/articles/10.3389/fncom.2018.00070/full
http://loop.frontiersin.org/people/28419/overview
http://loop.frontiersin.org/people/61439/overview


von Wegner et al. Ms-Invariants

1. INTRODUCTION AND BACKGROUND

Electroencephalography (EEG) records the brain electrical
potential from the scalp. In a task-free or resting state
condition, the electrical potential shows temporal oscillations
in the frequency range of approximately 1–70 Hz. In terms
of amplitude, these oscillations are dominated by the so-called
alpha rhythm, an amplitude-modulated 8–12 Hz rhythm that
characterizes the wakeful rest condition (Niedermeyer and
da Silva, 2005). In the spatial domain, the cortical potential
also displays characteristic patterns varying over time. EEG
microstate analysis aims to characterize these patterns using data
compression or clustering techniques. The clustering algorithm
reduces the complete set of spatial patterns, provided as input
data, to a small, representative set of EEG topographic maps.
Thanks to advances in the fields of data science and machine
learning in recent years, a large number of clustering algorithms
now exist in the literature. These algorithms mainly differ in
how they define cluster membership and in their definition
of cost functionals to be optimized (Xu and Tian, 2015). For
EEG microstate analysis, two methods derived from classical
clustering algorithms cover the majority of the existing literature.
These methods are the modified K-means algorithm (Pascual-
Marqui et al., 1995; Murray et al., 2008) and the atomize
and agglomerate hierarchical clustering (AAHC) algorithm
(Murray et al., 2008; Brunet et al., 2011). Also, principal
component analysis (PCA) and independent component analysis
(ICA) have been proposed for microstate research, but are
only found in relatively few publications (Skrandies, 1989;
Spencer et al., 1999, 2001; De Lucia et al., 2010; Yuan et al.,
2012).

The neurobiological relevance of EEG microstates has been
studied for physiological and pathological conditions. Among
these, the reader can find resting-state experiments (Britz et al.,

2010; Musso et al., 2010; Van de Ville et al., 2010; Brodbeck et al.,
2012), different task-related conditions (Dimitriadis et al., 2013,

2015; Milz et al., 2015; Dimitriadis and Salis, 2017) and sleep
(Brodbeck et al., 2012). Clinical conditions include schizophrenia
(Koenig et al., 1999), Alzheimer’s disease (Nishida et al., 2013),
and narcolepsy (Kuhn et al., 2015; Drissi et al., 2016). An
overview of the field has recently been published in two reviews

(Khanna et al., 2015; Michel and Koenig, 2017).
Although the variety of clustering algorithms is widely

available to researchers, thanks to implementations in basically
all programming languages, the interpretation of EEGmicrostate
results obtained with different clustering methods is not obvious.
In particular, when comparing studies performed with different
clustering algorithms, it is not clear if diverging results should be
attributed to the fact that each algorithm extracts different data
features or if we are observing differences in the neurobiological
processes actually occurring in the brain.

We therefore implemented five clustering methods and
applied them to a set of 20 resting state EEG recordings acquired
from healthy subjects. We computed a number of statistical
and information-theoretical quantities commonly employed to
describe microstate data. Our main question concerns the
invariance of statistical results across clustering algorithms. In

other words, we try to identify robust neurobiological features
that do not depend on the chosen algorithm.

As microstates computed by different algorithms can display
different geometries, the standard labeling A-D used to label the
four canonical microstate maps (Koenig et al., 1999) cannot be
applied unequivocally. Even if applied, properties of a certain
map from one clustering algorithm may not be comparable
with any of the maps produced by another algorithm, in case
it has a unique geometry. Therefore, we chose to exclusively
use quantities that do not depend on a specific labeling of the
microstates. In theoretical terms, all quantities we computed
are symmetric with respect to the microstate labeling, i.e., any
permutation of microstate labels does not affect the result.
Moreover, all quantities used in this work are not restricted to the
use of four microstates but can also be calculated for any other
number of clusters.

2. MATERIALS AND METHODS

2.1. Experimental Data
A set of EEG recordings from 20 right-handed healthy subjects
during wakeful rest (age range: 19–27, mean age: 22,5 years, 7
male) was recorded during a wakeful rest condition. We reported
the detailed pre-processing pipeline before (von Wegner et al.,
2016, 2017). For each subject, we selected a 120 s segment
showing clear posterior alpha oscillations and no movement,
eye-blink or electrode artifacts. The 30 channel EEG raw data
was sampled at 5 kHz using the standard 10–10 electrode
configuration. The pre-processing steps were: (i) band-pass
filtering to the 1–30 Hz range using a sixth order zero-phase
Butterworth filter with a slope of 24 dB/octave, (ii) down-
sampling to 250 Hz, and (iii) re-referencing to an average
reference. Written informed consent was obtained from all
subjects and the study was approved by the ethics committee of
the Goethe University, Frankfurt, Germany.

2.2. Microstate Analysis
In the following, we will describe the basic properties of the
clustering algorithms used and give implementation details
to facilitate the reproduction of the results. The code used
in this manuscript is contained in our Github repository
eeg_microstates.

The input to all clustering algorithms is a set of multi-channel
EEG signals. The computational data structure is an array of
floating point numbers denoted Xij, with dimensions (nt , nch),
where nt is the number of temporal samples, and nch is the
number of EEG channels.

The voltage time series at EEG channel j is found as column j
of the array:

X•j = Xij, i = 0, . . . , nt − 1

and the voltage topography at time point i is stored in the i-th
row

Xi• = Xij, j = 0, . . . , nch − 1.
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For average reference data, we automatically have
∑

j Xij = 0 for

all i, which facilitates the computation of correlation terms. To
simplify notation, we will make consistent use of indices (time
i = 0, . . . , nt − 1, EEG channel j = 0, . . . , nch− 1, and microstate
label l = 0, . . . ,M − 1) and therefore omit the explicit limits of
sums.

The global field power (GFP) σi at time point i is defined as the
spatial standard deviation of the instantaneous EEG topography:

σi =

√

∑

j X
2
ij

nch − 1
.

We here follow the approach that only EEG topographies at local
GFP maxima are presented to the algorithm, a technique based
on the observation that the GFP time series periodically achieves
local maxima and that EEG topographies are most clearly defined
at these maxima (Lehmann et al., 1987; Strik and Lehmann,
1993; Wackermann et al., 1993; Koenig et al., 1999). Our group
followed this approach in all our previous publications on EEG
microstates (Brodbeck et al., 2012; Kuhn et al., 2015; vonWegner
et al., 2017). To find local maxima of the GFP time series, we first
compute the discrete time derivative δi = σi+1 − σi, and then
identify local GFP maxima as the set of time points Imax where
the sign of δi crosses from positive to negative values, i.e.,

Imax = {i | sgn(δi)− sgn(δi−1) = −2}.

The number of GFP maxima is denoted nmax = |Imax|. The
input data set to all clustering algorithms is denoted X̃, where
X̃ = Xij, i ∈ Imax.

Each clustering algorithm, using one of the methods detailed
below, yields a set of M microstate maps that represent the EEG
data set. Computationally, the microstate maps are stored in an
array Alj, with microstate index l = 0 . . .M − 1 and channel
index j = 1 . . . nch. In classical microstate analysis (Pascual-
Marqui et al., 1995), each EEG topography is represented by
exactly one microstate map Al•, rather than using a linear
combination of the M selected microstate maps. The individual
microstate map chosen to represent the EEG topography at time
point i is determined via a minimum distance, or equivalently,
a maximum similarity criterion. The commonly used distance
measure between the instantaneous EEG topography Xi• at time
point i, and the candidate microstate map Al•, is the orthogonal
squared distance between both vectors (Pascual-Marqui et al.,
1995; Murray et al., 2008):

d2il =
∑

j

X2
ij − (XijAlj)

2.

Minimizing d2
il

is equivalent to maximizing the squared
covariance between Xi• and Al•:

C2
il =





∑

j

XijAlj





2

(1)

The computation of microstate sequences is identical for all
clustering methods, following a “winner takes all” approach, also
called competitive back-fitting (Pascual-Marqui et al., 1995). To
achieve this effect, the microstate label Li at time point i is
determined by the maximum squared correlation:

Li = argmax
l

C2
il. (2)

To measure how well the microstate sequence approximates the
underlying EEG data set, a frequently used quantity is global
explained variance (GEV) (Murray et al., 2008). GEV measures
the percentage of data variance explained by a given set of
microstate maps. The GEV value for a specific microstate map
with label l is:

GEVl =

∑

i σ
2
i C2

il
δl,Li

∑

i σ
2
i

(3)

where δl,Li is the Kronecker delta, i.e., δl,Li = 1 for Li = l, and
δl,Li = 0 otherwise. The total global explained variance (GEV) is
the sum of the GEV values over all microstate maps

GEV =
∑

l

GEVl. (4)

To further facilitate information-theoretical computations, the
microstate labels are stored directly as array indices (0, . . . ,M−1)
that can be used to compute the discrete distributions that appear
in information-theoretical functionals.

2.2.1. Number of Clusters
All clustering algorithms used here can be run to yield different
numbers of microstate maps and the optimum number can be
defined in numerous ways. To keep our analysis compact, we
chose to use a fixed number of four microstates for all algorithms.
This is useful with respect to the subsequent information-
theoretical analyses, but also represents a clear limitation with
regard to the optimum performance of the different clustering
algorithms. In particular, when focusing on the compressing
and representative power of a specific clustering algorithm,
the optimum number of clusters (microstate maps) should be
computed based on one of several optimization criteria (Murray
et al., 2008). The focus of the present work, however, is the
comparison of several information-theoretical quantities based
on entropy-like expressions. These absolute values of these
quantities depend on the size of the discrete distributions and
thus on the number of microstate maps. As a simple example,
the maximum Shannon entropy of any sequence of M labels
(microstate maps) is Hmax = log(M). The situation becomes
more complicated for other functionals, that all depend onM. To
summarize, the presented analyses allow for direct comparison
between the numerical values of the quantities introduced
in the following. Future developments may use a combined
approach testing optimum cluster numbers for each algorithm,
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and compare information-theoretical quantities computed for
different M, simultaneously. However, the reader should note
that all methods used in this work and the referenced source code
work for any number of microstatesM > 1.

2.3. Atomize and Agglomerate Hierarchical
Clustering (AAHC)
The AAHC algorithm as described in Murray et al. (2008)
is a deterministic hierarchical clustering method. Determinism
means that given a specific input data set, the algorithm will
always follow the same steps and yield the same microstate
maps for repetitive runs of the algorithm. The AAHC algorithm
uses a bottom-up approach in the sense that the algorithm is
initialized with a large number of clusters, and then reduces
the number of clusters by one during each iteration step. As
for all other clustering algorithm implementations used here,
AAHC is presented with the EEG topographies at local GFP
maxima X̃i•, i ∈ Imax (Lehmann et al., 1987; Wackermann
et al., 1993; Koenig et al., 1999). For the bottom-up AAHC
approach, reducing the input data size is crucial to achieve
feasible computation times. For instance, a 200 s. EEG recording
down-sampled to 250 Hz yields 50,000 input vectors, in case
all vectors are used for initialization. Using GFP maxima only,
and assuming a dominant alpha rhythm of approximately 10 Hz,
with two GFP maxima per alpha cycle, the input data set can be
reduced to 4,000 EEG data vectors. In the initial assignment, each
of these topographies is chosen to represent a cluster:

Ai• = X̃i•, i ∈ Imax.

Thus, the initial clusters contain a single data vector X̃i•. At
each iteration, the worst cluster is disintegrated (atomized) and
its members are re-assigned to the remaining clusters, thereby
reducing the number of clusters by one (Murray et al., 2008;
Brunet et al., 2011; Khanna et al., 2014). To this end, the
microstate sequence Li according to the current microstate map
assignment is computed using Equations 1 and 2. Next, for
each microstate map, the GEV value is computed according to
Equation 3. The worst cluster is the one with the lowest GEV
value and is indexed by lmin = argmin

l

GEVl. Each member of the

worst cluster is re-assigned to one of the remaining clusters l 6=
lmin according to maximum similarity, again using the squared
correlation coefficient as in Equation 2. The iteration stops when
the desired number of clusters is reached.

The deterministic cluster calculation is a big advantage as a
given data set will always lead to the same clustering results,
facilitating the reproducibility of results. It is important to note
that reproducibility in this context refers to a fixed data set,
and does not refer to either test-retest-reliability for different
recordings from the same subject (Khanna et al., 2014), or to
cross-validation experiments where clustering is performed on a
training data set and validated on the remaining test data.

The main drawback of the AAHC algorithm is the relatively
low computational speed. Even though we did not perform
a formal benchmarking of the algorithm, it is by far the

slowest method among those presented. A Python (Numpy)
implementation running on a 64-bit Linux OS and a Quad-Core
Intel architecture resulted in computation times of several hours
for data sets containing approximately 4,000–5,000 GFPmaxima.
The algorithm should allow for parallelization to improve speed,
but to the best of our knowledge, parallel implementations are
still unavailable.

2.4. Modified K-Means Clustering
The modified K-means algorithm as detailed in Pascual-Marqui
et al. (1995) and Murray et al. (2008) is a stochastic clustering
method based on a linear model of the EEG data. Each EEG data
vector (topography) Xi• is modeled as the linear combination of
M representative microstate maps Al•, with microstate index l =
0 . . .M − 1, and a residual vector ǫi• composed of nch identically
and independently distributed Gaussian random variables. The
general expression for this data model is

X̃i• =
∑

l

αilAl• + ǫi•

and a solution can be found by minimizing the cost functional
(Pascual-Marqui et al., 1995)

F =
∑

i

∥

∥

∥

∥

∥

X̃i• −
∑

l

αilAl•

∥

∥

∥

∥

∥

.

Competitive back-fitting, as discussed above, chooses ALi•,
the single microstate map with index Li, to represent the
instantaneous EEG topography Xi•, rather than using a linear
combination ofM microstate maps with coefficients αil. In terms
of the linear model, competitive back-fitting is equivalent to the
choice αiLi = 1, and αil = 0 for l 6= Li.

The algorithm is initialized with M randomly selected input
vectors X̃i•, i = 0, . . . ,M− 1, in our case using EEG data vectors
at M randomly chosen GFP maxima. The modified K-means
algorithm finds local minima of the cost functional in an iterative
manner, performing two computational steps per iteration. First,
at each iteration the microstate sequence Li according to the
current cluster assignment Al• is calculated using Equations 1
and 2. In the second step, the microstate maps are updated
using the microstate label sequence Li computed in the first
step. The updated microstate map Al• is given as the normalized
eigenvector to the largest eigenvalue of the matrix Sl defined as
(Pascual-Marqui et al., 1995):

Sl =
∑

i : Li=l

X̃′
i•X̃i•

Using the eigenvector method is equivalent to solving

Al• = argmax
U

U ′ Sl U
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where the maximum is computed across all nch-dimensional
column vectors U, subject to ‖U‖ = 1. Knowledge of Li
is necessary to select the correct indices in the above sum.
The sequence Li essentially defines the cluster assignments and
changes during the optimization procedure. Convergence is
assessed using the relative change in residual variance. Given the
microstate assignment Li, the residual variance with respect to
EEG data at GFP maxima (X̃) is proportional to Pascual-Marqui
et al. (1995):

σ 2
L ∝

∑

i

∑

j

X̃2
ij −

(

X̃ijALij

)2
. (5)

The normalization constant to obtain the correct variance
value can be omitted for optimization purposes, as it does
not change over iterations. In terms of EEG topographies,
the eigenvector method implicitly ignores the polarity of the
maps as the eigenvector simply defines a direction in the nch-
dimensional EEG sensor space. As the initialization step is
stochastic, the resulting microstate maps differ for different runs
of the algorithm. To approach the global maximum of the
optimization problem, it is recommended to run the K-means
algorithm various times. We chose the best out of ten runs to
define microstates. For each run of the algorithm, we set the
convergence criteria to a maximum number of 500 iterations and
a relative error in σ 2

L of 10−6. The best run of the algorithm is
chosen according to the cross-validation criterion CV given in
Murray et al. (2008):

CV = σ̂ 2
L

(

nch − 1

nch − 1−M

)2

where σ̂ 2
L is calculated with Equation 5, but including the time

indices i = 0, . . . , nt − 1 of the entire EEG data set Xij. The
best run of the modified K-means algorithm is the one with the
minimum CV value.

K-means is a fast, commonly used method for which
pseudo-code can be found in the original article (Pascual-
Marqui et al., 1995). A detailed introduction to our open-source
implementation (eeg_microstates) is given in von Wegner and
Laufs (2018), where further Matlab and Python implementations
by other groups are also listed.

2.5. K-Medoids Clustering
K-medoids is a method highly similar to K-means but calculates
cluster centroids, i.e., microstate maps by a median operator,
rather than by the arithmetic mean or the maximum eigenvector
of the cluster members (Park and Jun, 2009; Xu and Tian,
2015). This means that each cluster representative is an
actual input data vector. In our context, each microstate
map produced by this procedure represents an actual EEG
topography as recorded during the experiment. In contrast,
the AAHC/K-means microstate maps correspond to averaged
topographies or eigenvectors, respectively. Thus, the microstates
obtained from the AAHC/K-means algorithms theoretically may

lack neurobiological significance and could actually represent
biophysically impossible potential distributions. On the other
hand, K-medoids focuses on a specific map to represent the
cluster, and the lack of averaging may lead to a sub-optimum
representation of other important topographies. In analogy to the
modified K-means algorithm, we ran the algorithm ten times and
allowed for a maximum of 500 iterations. Similar to K-means, K-
medoids is a stochastic algorithm with short computation times.
Matlab code for the K-medoids algorithm can be found in several
open-source projects (e.g., kmedoids1 and kmedoids2), as well
as in the commercial Matlab statistics and machine learning
toolbox. Our Python implementation is part of our Github
repository.

2.6. Principal Component Analysis (PCA)
Principal component analysis (PCA) is one of themost frequently
encountered clustering algorithms with a straightforward
statistical interpretation (Haykin, 1999). Spatial PCA has been
used to cluster EEG topographies mainly in the context of
ERP experiments (Skrandies, 1989; Spencer et al., 1999, 2001).
Clusters, or principal components, correspond to eigenvectors of
the data covariance matrix

Q =
1

nmax − 1
X̃′ X̃

where X̃ contains the EEG data vectors at GFP peaks, and the
prime denotes matrix transposition. Q is a symmetric square
matrix of size nch. Due to symmetry, the eigenvalues are all
real-valued and the eigenvectors are mutually orthogonal. The
matrix Q can be reconstructed exactly from the complete set of
eigenvalues λi and the row eigenvectors ai•, for i = 0, . . . , nch−1:

Q =
∑

i

λi a
′
i• ai•. (6)

The PCA algorithm produces a partition of the total data
variance, such that the sum of the single component variances
is equal to the total variance of the data set. Moreover, the PCA
algorithm yields a natural ordering of components in terms of
eigenvalues and explained variance, as the variance contribution
of each principal component decreases with the norm of the
eigenvalue. A common procedure in data compression is to
truncate the eigenvector decomposition in Equation 6, using
only M components. Geometrically, the truncation represents
a projection of the multidimensional data set onto a linear
subspace of dimension M. The truncation can be performed in
different ways (Haykin, 1999). One option is to preset a desired
threshold of explained variance and then find the dependent
variableM, such that the threshold criterion is met. Alternatively,
the number of components can be fixed at M, which renders
the amount of explained variance the dependent variable. To be
consistent with the other clustering algorithms, we follow the
second approach, using M = 4. The EEG data set can thereby
be reduced from nch = 30 to M = 4 dimensions. Using the
classical microstate approach, we further reduce the data set to
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a symbolic sequence via competitive back-fitting (Equations 1,
2). This means that only one principal component, or microstate
map, is used to represent the EEG data vector Xi•.

PCA-based clustering is a deterministic algorithm and thereby
useful when reproducibility of the results is a primary target. As
argued in the AAHC section, reproducibility refers to a given data
set, not to repetitive measurements of a subject. The clustering
is efficient in the sense that the clusters are uncorrelated and
form orthogonal subspaces of the complete data space. On the
other hand, it may be argued that the mandatory orthogonality
of clusters may produce microstates that lack biological relevance
as the microstate geometry has to comply with the restrictions
given by the algorithm, rather than adapting to some biological
boundary condition.

PCA is a generic method that facilitates the integration
of other electrophysiological or imaging modalities (e.g.,
magnetencephalography, functional MR imaging) into the
same analysis framework. The algorithm is very fast and
implementations can be found for the majority of programming
languages and in numerous statistical software packages. We
used the PCA algorithm contained in the Python scikit-learn
statistics and machine learning package.

2.7. Fast Independent Component Analysis
(Fast-ICA)
Independent component analysis (ICA) is another widely used
technique to analyze neurophysiological data sets, especially
in the areas of EEG and fMRI, among others (Makeig et al.,
1995; Haykin, 1999; Yuan et al., 2012). In the context of EEG
microstates, ICA decomposition is not frequently encountered
(De Lucia et al., 2010; Yuan et al., 2012). While PCA clustering
is based on statistical decorrelation, ICA looks for statistical
independence between components (or clusters). In the context
of EEG microstates, ICA theory translates to a model in
which the EEG topographies are a linear mixture of a set of
unknown source topographies. The key construct is the unmixing
matrix, denoted W in standard ICA notation. The matrix W
inverts the mixing process, under the additional constraint that
the reconstructed source signals are statistically independent.
The ICA algorithm intrinsically ignores the signal’s polarity.
Unmixing can be written in matrix notation as S = W X̃′,
where X̃′ are the EEG data vectors at GFP maxima and S is
the so-called source matrix. The unmixing matrix W contains
the independent components as row vectors. Algorithmic details
have been presented numerous times in the literature (e.g.,
Makeig et al., 1995; Haykin, 1999) and are not repeated here.
The algorithm can be setup to yield any number of M ≤

nch independent components, each of which is interpreted
as a microstate map Al• = Wl• in our setting. We could
have used the symbol A instead of W directly, however this
would conflict with standard ICA notation where A is the
mixing matrix. Readers familiar with ICA literature should be
aware of the different use of the symbol A in this manuscript.
Although anatomical and functional brain networks are strongly
connected and therefore often produce statistically dependent
signals, the search for independent components may reveal

complementary information about brain function and has its
own tradition in modern neuroscience. Similar to our arguments
regarding the use of PCA, the necessary condition of independent
clusters may interfere with biological reality, i.e., functionally
important EEG topographies may remain hidden to ICA if
they are statistically dependent. A similar argument against
ICA to analyze microstates is found in Brunet et al. (2011).
However, as the ICA principle is not reflected by the other
algorithms, we decided to include ICA in our analysis. We use
the Fast-ICA algorithm in its parallel form, with pre-whitening
and an exponential activation function, as implemented in the
scikit-learn package.

2.8. Information-Theoretical Analysis
In contrast to a metric time series consisting of integer or real
numbers, microstate sequences are symbolic time series to which
many metric methods (e.g., power spectrum, autocorrelation
function) cannot be applied directly. We therefore introduced an
information-theoretical approach that uses the microstate labels
as random variables directly. The details of this approach have
been given in von Wegner et al. (2017) and have been made
available as an open-source Python package (von Wegner and
Laufs, 2018).We here briefly summarize the methods used in this
paper.

The number of times a specific microstate label (A-D) occurs
in a microstate sequence gives the empirical distribution of
microstate labels p =

(

pA, pB, pC, pD
)

. The shape of this
distribution can be characterized by its Shannon entropy

(Kullback, 1959)

h = −
∑

i

pi log pi (7)

where the sum index i runs over the set of microstate labels. The
minimum value for entropy is h = 0 in case of a distribution
that has a value pi = 1 for a specific label i, and pj = 0 for all
other labels j 6= i. The maximum entropy of any sequence of
four symbols is log 4, corresponding to a uniform distribution of
symbols (pi = 0.25 for all i).

The joint entropy hn for n-dimensional distributions
p(x1, . . . , xn) is given by Kullback (1959)

hn = −
∑

x1 ,...,xn

p(x1, . . . , xn) log p(x1, . . . , xn). (8)

The entropy rate h′n of a stochastic process quantifies how much
uncertainty or randomness the process produces at each new
time step, given knowledge about the past states of the process
(Levin et al., 2006):

h′n = −
1

n

∑

x1 ,...,xn

p(x1, . . . , xn) log p(x1, . . . , xn) (9)

=
1

n
hn (10)

where p(x1, . . . , xn) denotes the joint probability of a specific
sequence of microstate labels (x1, . . . , xn). In theoretical analyses
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of stochastic processes with analytically known properties, the
entropy rate is calculated as the limit of h′n for n → ∞. For
empirical and finite data sets, as EEG microstate sequences, the
entropy rate however has to be estimated from finite dimensional
joint distributions, Equation 8 (Lizier et al., 2012). The empirical
finite dimensional distributions p(x1, . . . , xn), and the associated
joint entropies hn are computed using their maximum likelihood
estimates (Marton and Shields, 1994), also termed the plug-in
estimates in e.g., Lizier (2014).

To approximate Equation 9, the entropy rate h′n is estimated
as the slope of the linear least squares fit of n vs. hn (Lizier
et al., 2012). As the quality of joint entropy estimates quickly
deteriorates with increasing n, we numerically determined an
optimum parameter n̂. To this end, we synthesized a first-order
Markov surrogate sequence for each EEG microstate sequence,
using the microstate sequences’ symbol distribution π and
transition matrix T, as described theoretically in Häggström
(2002), and as explained for microstate sequences in vonWegner
and Laufs (2018). It is important to use surrogates of the same
length as the original data, as the number of samples clearly
influences the estimate. The theoretical entropy rate h′MC for
the Markov chain surrogate with stationary distribution π and
transition matrix T is given by h′MC = −

∑

i πi
∑

j Tij logTij

(Levin et al., 2006). We averaged the relative error ǫ =
|h′n−h′MC|

h′MC

of our estimate over all subjects for n = 4 . . . 10, and found that
n̂ = 8 was the largest dimension such that ǫ < 0.05. This was
found for all clustering algorithms. Therefore, in the following,
all entropy rates correspond to estimates h′n=8.

The expressions for the Markovianity and stationarity tests
were derived in Billingsley (1961), Kullback et al. (1962), and
applied to characterize microstate sequences in vonWegner et al.
(2017), von Wegner and Laufs (2018). Stationarity is assessed
for data segments of length L = 500 (2 s), L = 1, 000 (4 s),
L = 2, 500 (10 s), L = 5, 000 (20 s), and L = 10, 000
(40 s). Finally, temporal dependencies in microstate sequences
are estimated with the information-theoretical analog of the time
autocorrelation function, the autoinformation function (AIF)
(von Wegner et al., 2017). The AIF of the stochastic process Xt

and for time lag k is defined by the mutual information between
the random variables Xt and Xt+k:

I(k) = H(Xt+k)−H(Xt+k | Xt). (11)

Further theoretical details and the software implementation can
be found in von Wegner et al. (2017), von Wegner and Laufs
(2018).

2.9. Hurst Exponents
Hurst exponents quantify the scaling behavior of the multi-
scale variance of random walks and other stochastic processes
(Veitch and Abry, 1999; Abry et al., 2002). Long-range correlated
stationary processes show a linear increase of their scale-
dependent variance as a function of scale, when plotted in log-log
coordinates. TheHurst exponentmeasures the slope of themulti-
scale variance estimate and quantifies long-range correlations for
stationary processes. For a stationary process, a Hurst exponent

of H > 0.5 indicates long-range correlations whereas H =

0.5 indicates a short-range correlated stationary process. With
respect to microstate analysis, a method to apply Hurst exponent
estimation to symbolic sequences has been reported (Van de
Ville et al., 2010). We implemented three different estimates of
the Hurst exponent that we have analyzed earlier for K-means
clustered microstates (von Wegner et al., 2016). In particular, we
use the aggregated variance (AV) method, detrended fluctuation
analysis (DFA) and a discrete wavelet transform (DWT) based
estimate. Further details are found in von Wegner et al. (2016).

2.10. Static and Dynamic Properties
In the following, we will group six of the aforementioned
quantities into two groups to summarize the statistics of
microstate sequences. We distinguish static from dynamic
properties and define static properties to be quantities that do
not contain information about temporal dependencies within
the microstate sequences, whereas dynamic properties capture
temporal properties of the symbolic sequences.

2.10.1. Static Properties

2.10.1.1. Intra-group correlation
To quantify the similarity between microstate maps, we use a
correlation-based measure. Given two microstate maps with nch
EEG channels each, u = (u1, . . . , unch ) and v = (v1, . . . , vnch ),
Pearson’s correlation coefficient ρ between u and v is defined as

ρ(u, v) =

∑nch−1
i=0 (ui − µu) (vi − µv)

σuσv
(12)

where µu,v and σu,v represent the means and standard deviations
of the maps u and v, respectively. Ignoring polarity, we use the
absolute value of the correlation coefficient, |ρ(u, v)|, to measure
similarity between u and v. We summarize the similarity between
microstate maps produced by a specific clustering algorithm by
the maximum absolute value of Pearson’s correlation coefficient,
Equation 12, across all pairs of maps. When comparing the four
maps produced by any given algorithm, the diagonal elements
(equal to one) and half of the off-diagonal elements can be
omitted due to symmetry, such that six values remain.

ρmax = max
i>0, j>i

|ρ(Ai•,Aj•)|.

Another option would have been to measure maximum
dissimilarity by the minimum correlation value between pairs of
maps.

2.10.1.2. Global explained variance
We used the global explained variance (GEV) as defined for a
single microstate map in Equation 3, and for a set of maps in
Equation 4, following (Murray et al., 2008). GEV is computed
across the whole sequence and measures the amount of EEG data
variance captured by the set of microstate maps. As it does not
contain about temporal dynamics, it can be considered a static
property.
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2.10.1.3. Shannon entropy
Shannon entropy as defined in Equation 7 and Kullback
(1959), can be considered as an information-theoretical analog
of variance, as it measures the width of the probability
distribution of microstate labels. It is averaged across the
entire microstate sequence and can also be considered a static
property.

2.10.2. Dynamic Properties

2.10.2.1. Mixing time
Single time step dependencies (t → t + 1) of a microstate
sequence are often summarized by the so-called transition matrix
T, where each matrix element Tij represents the conditional
probability of observing microstate label j at time t+1, given that
microstate label i occurred at time t (Koenig et al., 2002; Brodbeck
et al., 2012; von Wegner et al., 2017). To characterize T and
compare transitionmatrices from different clustering algorithms,
we use the eigenvalues of T as these are invariant under
permutations of the microstate labels (von Wegner et al., 2016).
The set of four eigenvalues is further summarized by a quantity
called spectral gap, λ0 − λ1, where λ0 and λ1 are the largest
and second largest eigenvalue of T, respectively. Furthermore,
the Perron-Frobenius theorem for stochastic matrices assures
λ0 = 1. The mixing time τ of the Markov process represented
by T is defined as

τ =
1

1− λ1
. (13)

2.10.2.2. Entropy rate
The entropy rate, as defined in Equation 9, measures a temporal
property of the microstate sequence as it quantifies the average
amount of information produced at each time step. It can
be regarded as the averaged derivative of Shannon entropy
with respect to time. The entropy rate cannot be larger than
the Shannon entropy of a given sequence. For a temporally
uncorrelated stationary sequence, the entropy rate is equal to the
Shannon entropy.

2.10.2.3. Autoinformation peaks
In the following, the dominant periodicity of a microstate
sequence is measured by the location of the first peak of the
autoinformation function, Equation 11. We consider periodicity,
i.e., oscillatory activity, a temporal property and therefore added
the first peak parameter to the set of dynamic properties. The
AIF always has an absolute maximum at time lag zero, such
that the we search for first local maximum for time lags larger
than 8 time steps (32 ms). To reduce the influence of noise,
we search for the first peak after smoothing the AIF with a
moving average filter of size 3. The actual local maximum
is calculated from the discrete derivative as explained above
for GFP peaks. Visual inspection of all AIF curves and the
automatically computed local maximum showed that no peaks
were missed.

3. RESULTS

All five algorithms were applied to the 20 resting state EEG data
sets and all runs of the tested clustering algorithms converged.
To quantify the properties of microstate clusterings produced
by different algorithms, we analyse a set of static and dynamic
properties for both, the sets of microstate maps, and for the
symbolic time series of microstate labels (microstate sequences).

3.1. Static Properties
3.1.1. Microstate Maps
The canonical microstate map geometries have been described
based on two algorithms, AAHC and the modified K-means
approach (Lehmann et al., 1987; Pascual-Marqui et al., 1995;
Koenig et al., 2002). The resulting maps can be described by
their geometry. For microstate A, the border between positive
and negative potentials runs approximately along the diagonal
from the left frontal to the right occipital right corner of the scalp.
For the canonical microstate B, the diagonal runs in the opposite
direction. Microstate C has a horizontal orientation and map D
is often circular. Sometimes, the classical algorithms (AAHC, K-
means) produce different symmetries, mostly one with a vertical
border between positive and negative potentials. We observed
that the other algorithms presented here produce some new
geometries. As these geometries are hard to classify quantitatively
and to use in statistics, we will just illustrate a set of microstates
for one subject and then proceed with the quantitative analyses.
Figure 1 shows five sets of four microstates, one set for each
clustering algorithm. We observe the four canonical maps in
the first two rows (AAHC, K-means). The canonical microstate
labeling for AAHC would be D, B, A, C and the ordering for the
K-means results would be D, A, B, C. The K-medoids algorithm
shows the canonical maps B, C, A in columns 2–4, but map 1 in
the first column is more difficult to classify. Both, PCA and ICA
(rows 4 and 5) show a new microstate geometry with a frontal
and an occipital maximum (PCA microstate 4, ICA microstate
2), that cannot be mapped unequivocally to one of the canonical
microstates. Similarly, the circular maps (PCA microstate 3, ICA
microstate 1) are clearly different from the microstates produced
by AAHC or K-means.

3.1.2. Inter-group Correlations
To quantify the similarity between the microstate maps analyzed
in a descriptive way above, using a correlation-based measure.
We quantify the similarity between two microstate maps u and
v by the measure defined in Equation 12. As each algorithm
yields four microstate maps, the similarities between the maps
produced by two clustering algorithms can be summarized in
a 4 × 4 correlation matrix Cij = ρ(ui, vj), where ui is a map
computed by one algorithm, and vj is a map computed another
algorithm. As C is symmetric (Cij = Cji), it contains only ten
independent coefficients. To compare two algorithms, we only
retain the maximum absolute correlation cmax = maxij |Cij| out
of each 4 × 4 matrix C. To compare the microstate maps of all
clustering algorithms, i.e., for each pairwise combination of the
five methods, we place the corresponding cmax value into a 5 ×

5 matrix Cmax. Each element of Cmax contains the maximum
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FIGURE 1 | Exemplary microstate maps from a resting state EEG recording of 120 s duration from a single healthy subject. The four microstates produced by each

clustering method are shown row-wise and the algorithms are abbreviated in the upper left corner. The color map shown in the upper right corner is valid for all

algorithms. As microstate maps are normalized and neither absolute amplitudes nor polarity is used in further analyses, values can be represented in the [0, 1] range.

similarity between the microstate maps computed by two
different clustering algorithms, the results are given in Table 1.
As correlation is symmetric, we omit the values below the
diagonal. Likewise, we can omit the diagonal itself as all values are
exactly one. The table shows the mean values and their standard
errors across the 20 subjects studied. We tested for statistically
significant differences between the Cmax values using a one-
way ANOVA across the ten possible combinations of clustering
algorithms and found p = 0.000, i.e., significant differences
exist within the similarity matrix. Maximum correlation values
range from 0.669 (AAHC vs. ICA) to 0.982 (PCA vs. ICA).
The similarity of the two classical algorithms, AAHC and K-
means, lies in the mid range (0.825). In total, the microstate maps
between any pair of the clustering algorithms show a rather high
similarity. As we use maximum correlation, this result does not
imply the absence of uncorrelated maps but states that for any
pair of algorithms, at least one of the microstate maps shows a

high similarity with at least one of the maps produced by the
other algorithm.

3.1.3. Intra-Group Correlations
Next, we quantify the similarity between the maps found by
a specific clustering algorithm, using the maximum absolute
value of Pearson’s correlation coefficient, Equation 12. When
comparing the four maps produced by any given algorithm,
the diagonal elements (equal to one) and half of the off-
diagonal elements can be omitted due to symmetry, such
that six values remain. The results are shown in the first
column (ρmax) of Table 2. Most notably, the PCA results
yield zero correlation between any pair of maps. This fact
can be anticipated and indicates correct working of the PCA
algorithm as the clusters are represented by the orthogonal
eigenvectors of the data covariance matrix. Apart from PCA,
ICA shows the lowest intra-group correlations, ρmax ≈ 0.36.
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TABLE 1 | Maximum between-group correlations.

Algorithm AAHC K-means K-medoids PCA ICA

AAHC - 0.825 ± 0.086 0.778 ± 0.081 0.776 ± 0.084 0.669 ± 0.103

K-means - - 0.962 ± 0.022 0.981 ± 0.015 0.903 ± 0.080

K-medoids - - - 0.949 ± 0.037 0.842 ± 0.091

PCA - - - - 0.982 ± 0.037

ICA - - - - -

The maximum absolute correlation value between microstate maps from different
algorithms and for all subjects. Mean and SD values are given for unique pairs of
algorithms.

The ICA algorithm partially de-correlates the input data but
some linear correlation remains between the maps. The other
three algorithms yield comparatively largemaximum intra-group
correlation of approximately 70-80 %. We tested for statistically
significant differences between ρmax values using a one-way
ANOVA across clustering algorithms and found p = 0.000.
This result is not surprising as the PCA results, and to a lesser
extent also the ICA results are clearly separated from the other
algorithms. However, post-hoc analysis shows that even when
excluding the PCA and ICA results, the maximum correlation
values of the other three algorithms are still significantly different.

3.1.4. Global Explained Variance
GEV, as defined in Equation 4, measures the percentage of
data variance explained by a given set of microstates. Though
GEV values can be computed for each of the microstate maps
(Equation 3), often the sum over GEV values of all individual
microstates is reported. The second column (GEV) of Table 2
shows the results for our data set. We find GEV values ranging
from 0.483 to 0.658. The values for AAHC and K-means (0.6 −
0.7) are in general agreement with the literature (e.g., Koenig
et al., 2002; Brodbeck et al., 2012). The GEV for PCA (0.611) is
similar to the classical algorithms, whereas K-medoids (0.583)
and ICA (0.483) yield rather low values. The one-way ANOVA
across all methods shows significant differences between the GEV
values of different algorithms (p = 0.000). Post-hoc exclusion of
either ICA or both, PCA and ICA, does not change these findings.

3.1.5. Shannon Entropy
While GEV measures how much of the time-varying spatial
variance of the EEG signal is captured by the four microstate
maps, Shannon entropy as given in Equation 7, measures
the amount of information, or uncertainty, contained in the
microstate sequence. Shannon entropy is bounded from above
by the maximum amount of entropy for any symbolic sequence
with four symbols, in our case hmax = log(4) ≈ 1.386. Shannon
entropy measures the shape of the microstate distribution
independent of the specific labeling of the maps. The results
are shown in the third column of Table 2. A minimum
entropy of 1.161 is found for PCA and the maximum value
of 1.381 is found for K-means. The one-way ANOVA across
all clustering methods, as well as post-hoc pairwise comparison
of pairs of algorithms shows significant differences between all
algorithms.

TABLE 2 | Static microstate properties, given as mean ± SD values.

Algorithm ρmax GEV [%/100] Entropy [nats]

AAHC 0.819 ± 0.061 0.613 ± 0.056 1.360 ± 0.013

K-means 0.734 ± 0.061 0.658 ± 0.049 1.381 ± 0.006

K-medoids 0.890 ± 0.066 0.583 ± 0.063 1.324 ± 0.050

PCA 0.000 ± 0.000 0.611 ± 0.044 1.161 ± 0.062

ICA 0.363 ± 0.131 0.483 ± 0.070 1.233 ± 0.078

TABLE 3 | Dynamic microstate characteristics, given as mean ± SD values.

Algorithm Mixing time Entropy rate [nats] AIF-1 [ms]

AAHC 3.401 ± 0.261 1.094 ± 0.048 49.60 ± 6.62

K-means 3.350 ± 0.261 1.101 ± 0.051 50.00 ± 5.87

K-medoids 3.400 ± 0.275 1.072 ± 0.062 49.80 ± 6.48

PCA 3.602 ± 0.290 0.915 ± 0.056 49.80 ± 5.86

ICA 3.618 ± 0.261 0.960 ± 0.065 50.91 ± 6.38

Legend.

3.2. Dynamic Properties
3.2.1. Transition Matrix Spectra and Mixing Time
The first column of Table 3 shows the mixing time statistics for
the 20 EEG data sets. The ANOVA across methods gives p =

0.004, i.e., there are significant difference between the clustering
algorithms. Post-hoc analysis by means of a two-sided t-test for
samples with unequal variances shows no significant differences
for the comparisons AAHC/K-means (p = 0.552), AAHC/K-
medoids (p = 0.985), AAHC/PCA (p = 0.031), AAHC/ICA (p =

0.015), K-means/K-medoids (p = 0.576), K-medoids/PCA (p =

0.033), K-medoids/ICA (p = 0.017), and PCA/ICA (p = 0.867).
Significant differences (p < 0.01) are found for the comparisons
K-means/PCA (p = 0.008) and K-means/ICA (p = 0.003).

3.2.2. Entropy Rate
The entropy rate of a stochastic process quantifies how much
information or uncertainty is produced by the sequence at each
time step. The second column of Table 3 summarizes the entropy
rate statistics. ANOVA across methods gives p = 0.000, i.e.,
significant differences between the algorithms. Post-hoc analysis
with a t-test does not show differences between AAHC/K-means
(p = 0.681), AAHC/K-medoids (p = 0.226), K-means/K-
medoids (p = 0.126), and PCA/ICA (p = 0.028).

3.2.3. Periodicity-First AIF Peak
We here report the location of the first local AIF maximum
as detailed in the Methods section. The value characterizes
the dominant periodic component of the underlying microstate
sequence. The characteristic frequencies observed are closely
related to the dominant EEG frequency band. In particular,
we observed that microstate sequences display a dominant
wavelength of approximately 50 ms, corresponding to twice the
alpha frequency. The results are presented in the third column
of Table 3. All algorithms find values around 50 ms, as expected
in the case of a dominant alpha frequency of approximately
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10 Hz, i.e., an oscillation with period 100 ms. Using a one-way
ANOVA across methods, we do not find significant differences

between the first-peak locations of the autoinformation functions

computed for different clustering algorithms.

The autoinformation functions of all subjects along with the

arithmetic average of all AIFs is shown in Figure 2. We observe

that all sequences reproduce periodicity with a main period of

50 ms. The main periodic component is twice the dominant
(alpha) frequency of the underlying EEG data set. This effect,

that we termed frequency doubling, is discussed in detail in von
Wegner et al. (2017).

3.3. Correlations Between Static and
Dynamic Properties
We will here summarize the mutual relations between
static and dynamic properties for each clustering algorithm
by means of cross-correlation matrices shown in the
Supplementary Data section. The most consistent correlations

FIGURE 2 | Autoinformation functions (AIF) of microstate sequences from different clustering algorithms. (A) Atomize and Agglomerate Hierarchical Clustering

(AAHC), (B) Modified K-means algorithm, (C) Kmedoids clustering, (D) Principal Component Analysis (PCA), (E) Fast Independent Component Analysis (Fast-ICA).

The individual AIFs for each subject are shown in light gray and the average AIF across all subject is shown in blue. The same periodicities are observed for all

clustering algorithms.
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found among all five clustering algorithms, that were statistically
significant at a α = 0.05 level for at least four algorithms, were
two correlation values related to the mixing time τ . First, τ was
negatively correlated to h′n=8. Microstate sequences with larger
τ values relax more slowly, or have a larger autocorrelation
time. In other words, they fluctuate less and are more regular
than ones with smaller τ values. This is in accordance with
the interpretation of the entropy rate as an indicator of how
much surprise the sequence produces per time step. Thus, the
sequences with fast fluctuations have smaller τ values and larger
entropy rates. Second, τ was positively correlated with the first
AIF peak. This means, that microstate sequences with a longer
characteristic periodicity also show slower relaxation times, as
their whole dynamics evolve on a slightly larger time scale.

3.4. Information-Theoretical Quantities
3.4.1. Markov Property
We tested all microstate sequences for the Markov property of
order 0, 1 or 2, and applied Bonferroni’s multiple comparisons
correction with respect to the 20 subjects tested. For all clustering
algorithms and all subjects, the Markovian null hypothesis
was rejected. It can therefore be concluded that all microstate
sequences showmemory effects extending beyond two time steps.

3.4.2. Non-stationarity
Using K-means clustering, we recently reported non-stationary
microstate transition matrices over time windows of 2–40 s,
indicating that the transition probabilities between microstates
can change during the time spans considered (von Wegner
et al., 2017). We also found that for longer time windows, the
proportion of non-stationary sequences decreases, suggesting a
tendency toward stationary microstate transitions for time spans
of approximately 20–40 s.

The results of stationarity testing for microstate sequences
generated by the five clustering algorithms are shown in Table 4.
For each algorithm (rows) and each block size L (columns), we
show the proportion of subjects for which the null hypothesis
of stationarity is rejected. A value of 0.85, for instance, means
that 85% of the subjects (17/20) show non-stationary transition
matrices, after Bonferroni correction of the 20 subjects studied.
We observe the same general behavior, a large proportion of
non-stationary segments for short blocks (L = 500 samples, or
2 s), and a tendency toward stationarity for longer blocks up to
L = 10, 000 samples or 40 s. In total, ICA shows a significantly
lower proportion of non-stationary data segments than the other
algorithms, though following the same general tendency toward
stationarity.

3.4.3. Periodic Autoinformation Function
The autoinformation functions for all subjects cized in Figure 2.
For each algorithm, the individual AIF of each subject is plotted
in light gray color and the mean AIF across all 20 subjects
is shown as a bold blue line. We observe that all clustering
algorithms show the same periodicities within the microstate
sequences that we recently reported for maps computed from the
modified K-means algorithm.

TABLE 4 | Non-stationarity test for data blocks of size L (number of samples).

Algorithm L = 500 L = 1, 000 L = 2, 500 L = 5, 000 L = 10, 000

AAHC 0.85 0.85 0.75 0.70 0.45

K-means 0.95 0.90 0.75 0.65 0.40

K-medoids 0.95 0.95 0.90 0.65 0.55

PCA 0.80 0.70 0.55 0.55 0.40

ICA 0.60 0.40 0.25 0.30 0.20

TABLE 5 | Mean Hurst exponent estimates.

Algorithm AV DFA DWT

AAHC 0.586 0.634 0.589

K-means 0.586 0.656 0.593

K-medoids 0.575 0.649 0.590

PCA 0.591 0.660 0.584

ICA 0.567 0.630 0.589

AV, aggregated variance; DFA, detrended fluctuation analysis; DWT, discrete wavelet
transform.

3.5. Hurst Exponents of the Microstate
Random Walk
Even though the relation of Hurst exponents and long-range
correlations is questionable in the case of non-stationary time
series (von Wegner et al., 2016, 2018), H contains information
about the multi-scale variance of the microstate time series and
may therefore be used to characterize microstate sequences.
We here present the Hurst exponent estimates computed by
three different methods. Table 5 shows the average Hurst
exponent estimates, all of which are larger than 0.5. Thus, all
sequences show multi-scale variance effects and possibly long-
range correlations, although the presence of non-stationarity
would require further testing to detect these. The ANOVA test
across the different clustering algorithms indicates significant
differences between the clustering algorithms for DFA (p =

0.0055) and for DWT (p = 0.0006). For aggregated variance, no
significant differences are found (p = 0.296).

4. DISCUSSION

In the present article, we compare statistical and information-
theoretical properties of resting state EEG microstates derived
from different clustering algorithms. We designed a systematic
analysis of microstate properties that are independent of
a specific map labeling in order to allow comparison of
geometrically different microstate patterns and to analyze
decompositions into more than the usual four microstate
clusters. We consider static and dynamic properties of the
microstate representation separately. Static properties involve
similarity indices between microstate maps, the total percentage
of data variance explained by the cluster representation, and the
entropy of the microstate label distribution. Dynamic properties
detect temporal dependencies in the microstate sequences, in
analogy to the autocorrelation structure of metric time series.
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We first observed that some algorithms can produce map
geometries different from the four canonical maps described
in the literature (Koenig et al., 2002) (Figure 1). However,
inter-group correlations between microstate maps show large
maximum correlation coefficients of 0.7–0.9 for most algorithm
combinations. This result shows that there is at least one highly
similar map combination found in both methods. The analysis
of maximum intra-group correlations shows large similarities
(ρmax ≈ 0.8) between maps for AAHC, K-means and K-
medoids, low intra-group correlations for ICA (ρmax ≈ 0.4) and,
by construction, zero correlations for PCA derived microstates.
Further analyses of static properties show that the global
explained variance (GEV) and the Shannon entropy of the
computed sequences are within the same order of magnitude,
but show statistically highly significant differences between
algorithms.

The first two dynamic properties considered, i.e., the mixing
time of the transition matrix and the entropy rate of the
microstate sequences, also show significant differences between
the algorithms, but post-hoc analysis suggests that for some
combinations of clustering methods, these differences may be
negligible. The location of the first AIF peak however does not
show significant differences between the studied methods.

The information-theoretical tests for the Markov property
of orders 0–2 show unequivocal results across the clustering
methods, as Markovianity is rejected in all cases, even after
Bonferroni correction. Thus, all microstate sequences seem to
possess temporal correlations extending at least for 2 samples.
Also the stationarity tests show a common behavior of non-
stationary transitions for short time windows (e.g., 2 s) and
a tendency toward stationarity for larger time windows (max.
40 s). The absolute proportion of non-stationary segments for
ICA is lower than for the other algorithms, but follows the same
tendency.

Finally, we assessed global temporal dependencies within
microstate sequences with the information-theoretical
autoinformation function (Figure 2). Our results show that
the recently described phenomenon of periodically recurring
microstates is invariant with respect to the clustering algorithm
used (von Wegner et al., 2017).

It should be noted, however, that many of the quantities used
here are mathematically well defined only for time-stationary
time series. Yet, most EEG quantifiers, including such classical
measures as the power spectral density, are not well defined in

the presence of non-stationarity. However, these measures can
be valid biomarkers if they reliably vary with the experimental
condition studied.We focused on non-stationarity issues in three
recent articles (von Wegner et al., 2016, 2017, 2018).

Our interpretation of these results is that the static properties
contain a significant amount of information about the clustering
algorithm used, e.g., the decorrelation property of PCA. Dynamic
properties and information-theoretical quantities in particular,
on the other hand, seem to reflect intrinsic properties of the
underlying EEG signal that are independent of the algorithm
employed to construct the microstate sequence. In total, we
believe that our results convey a positive message with regard
to the free choice of the clustering algorithm and to the use of
information-theoretical methods for microstate research. Even
though the algorithms may produce non-identical maps and
diverging between-map correlations, dynamic properties directly
related to the EEG and thus, to brain electrical activity, seem to
be robust against the initial clustering algorithm. Further studies
to explore the discussed properties in the context of cognitive
task experiments or in ERP experiments are certainly needed.
Our current results suggest that all clustering methods actually
capture neurobiologically relevant properties of the EEG signal,
rather than showing their own signature.
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