Supplemental material to the manuscript

Spine-to-Dendrite Calcium Modeling Discloses Relevance for Precise Positioning of Ryanodine-Receptor-Containing Spine Endoplasmic Reticulum

Markus Breit, Marcus Kessler, Martin Stepniewski, Andreas Vlachos, Gillian Queisser

Supplemental Figure S1

Supplemental Figure S1: Effects of passive spine ER on spine-to-dendrite Ca²⁺ signaling in response to 150 ms Ca²⁺ release into the spine head.} Comparable to the results presented in Fig. 2 and consistent with experimental data, only a small fraction of Ca²⁺ released in the head **(a)**, propagating through the neck **(b)** reaches the dendritic compartment **(c)**. When the ER is present only as a geometric obstacle, nearly identical and near-zero dendritic Ca²⁺ profiles for all ER lengths are observed.

Supplemental Figure S2

Supplemental Figure S2: Critical spine ER transition lengths regulate all-or-nothing spine-todendrite communication in response to 150 ms Ca²⁺ influx into the spine head. **(a)** For a RyRcontaining ER of length 0.4 μ m, no Ca²⁺ communication to the dendrite can be measured. **(b)** Increasing the RyR-containing ER to a length of

0.45 μ m surpasses a critical spine ER length to trigger spine-to-dendrite communication. **(c)** Adding IP₃R to the ER allows for spine-to-dendrite signals at an ER length for which RyR-only ER was not capable of transmitting a signal to the dendrite (see panel (a) of this figure). While the exact position of this transition zone depends on the initial Ca²⁺ release in the spine head, the effects of the spine ER within this critical zone are robust. Note the rapid Ca²⁺ release from the ER, which "sharpens" the signal (c.f., Figure 6f).