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1 Introduction

Latency is generally defined as the time interval between the transmission of a request and

the receipt of a corresponding response. In financial market trading, the order execution

latency is the time it takes from sending out an market order until it enters the orderbook.

By contrast, the settlement latency is the time until the corresponding transaction is

settled, i.e., until the legal transfer of ownership is accomplished. In traditional markets,

this settlement process involves several intermediaries and takes two to three business days

after the execution of a trade (see, e.g., SEC (2017) or Khapko and Zoican (2017)). Due

to this delay, the trading process is typically disconnected from the transfer of ownership

as central securities depositories provide clearing and settlement. The implications of this

separation are twofold. First, both transacting parties face counterparty risks during the

settlement period. Second, the transfer of ownership does not affect the speed of trading

since central clearing provides the opportunity for an immediate continuation of trading

on a newly acquired position. Hence, ultimately market participants only face execution

latency, which is crucial in high-frequency trading (see, e.g., Hasbrouck and Saar (2013)

or Foucault et al. (2017)), but usually negligible for other market participants.

Distributed ledger technologies, such as blockchain or directed acyclic graphs, promise

fast settlement without the need of such designated intermediaries. To considerably

shorten the settlement process to a few minutes or seconds, distributed systems rely on

protocols to establish consensus about transaction histories. Consensus protocols are

still time-consuming as validators have to reach agreement on the current state of the

ledger either through computationally expensive competition, decentralized voting, or

simply the distribution of new information to other participants.1 In fact, the time it

takes a transaction until its inclusion in a distributed ledger is generally non-trivial and

stochastic. Traders thus face uncertain waiting times until the transfer of assets between
1See Appendix A for more details on distributed ledgers, consensus protocols, and the underlying

technological aspects.
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markets is settled on a distributed ledger. Unlike in traditional markets, a trader cannot

dispose of her position before the transfer of ownership is confirmed by the network.

This stochastic settlement latency is an inherent feature of distributed ledgers and it is

several magnitudes larger than (execution) latencies in traditional markets. Even though

distributed ledger technologies promise fast settlement on secure ledgers at low costs,

they introduce a severe market friction which has implications for trading on and across

markets.

In this paper, we show that stochastic latency introduced by distributed systems im-

poses limits to (statistical) arbitrage. While it is well established that transaction costs

limit the possibility to exploit instantaneous differences in prices of a single asset that

is traded on multiple markets (e.g., de Long et al., 1990; Pontiff, 1996), we show that

stochastic settlement latency constitutes an additional friction. Settlement latency ex-

poses arbitrageurs to the risk of adverse price movements and implies boundaries below

which risk-averse arbitrageurs abstain from exploiting violations of the law of one price.

Price differences below these boundaries might thus persist and are consistent with the

risk-return trade-off of a rational arbitrageur. We theoretically derive these arbitrage

boundaries under general conditions and thereby provide a framework to assess (statis-

tical) arbitrage opportunities and the efficiency of markets with stochastic settlement

latency.

Figure 1 illustrates the relevance of a theoretical framework to quantify (potential)

arbitrage opportunities in markets with stochastic latency. It shows the midquotes of

different exchanges featuring trading Bitcoin against US Dollar for a representative day

in 2018. We find a commonly observed feature in cross-market Bitcoin trading2: the

existence of substantial and persistent price differences between individual exchanges.

The question to be addressed is whether these price differences are due to (neglected)

arbitrage opportunities or due to market frictions, such as settlement latency.
2See, e.g., Makarow and Schoar (2018) or Choi et al. (2018).

2



Figure 1: Bitcoin-Dollar Midquotes on May 25, 2018.
This figure shows the midquotes of one Bitcoin in US Dollar on May 25, 2018, for 17 different exchanges.
We gather high-frequency order book information of these exchanges by accessing their public application
programming interfaces (APIs) on a minute level and calculate the midquote as the average of the best
bid and best ask.

The main contribution of our paper is twofold. First, we provide a general theory on

latency-induced limits to arbitrage that is applicable to any market where the processing

of transactions and the transfer of assets between markets is time-consuming and where

no intermediary is stepping in and guarantees immediate settlement. We consider a

risk-averse arbitrageur who monitors the quotes of an asset on multiple markets. If

an instantaneous transfer of the asset between markets is possible, a bid quote on one

market exceeding the ask quote on another market implies a riskless profit. However, if

the transfer of the asset is time-consuming, the arbitrageur faces price risk on the sell-

side market. In this case, the risk averse arbitrageur only exploits price differences if

the instantaneous profit compensates for price risk, which is increasing in the expected

latency and latency uncertainty. Both aspects increase the variance of the arbitrageur’s

expected return distribution and imply boundaries below which she does not exploit price

differences.
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Under the assumption that the underlying price process follows a Brownian motion

with locally constant drift and spot volatility, the arbitrageur’s expected return follows

a general class of normal variance-mean mixture distributions. These distributions are

fully described through their characteristic function, which allows us to provide an exact

representation of the arbitrageur’s certainty equivalent of exploiting cross-market price

differences. This representation holds for arbitrary concave utility functions and a gen-

eral class of latency distributions. Given the certainty equivalent, the arbitrage boundary

is then derived as the minimum instantaneous return required to make the arbitrageur

indifferent between trading and staying idle. We also extend our framework to account

for transaction costs in the form of trading fees and market impact. Moreover, we discuss

the implications of so-called settlement fees that are chosen individually and allow the ar-

bitrageur to provide incentives for a reduction of the expected latency. Latency-reducing

fees typically exist in blockchain-based systems, but do not change the central insights

of our framework.

To obtain expressions that convey economic intuition, we equip the arbitrageur with

an explicit utility function. We then can cast the arbitrage boundaries in terms of the

spot volatility, the moments of a general latency distribution, and the arbitrageur’s risk

aversion. While the special case of a utility function with constant absolute risk aversion

provides analytically tractable solutions, we also derive arbitrage boundaries for the com-

monly used class of isoelastic utility functions with constant relative risk aversion.3 For

both cases, we show that the arbitrage boundary increases with (i) the arbitrageur’s risk

aversion, (ii) the local volatility on the sell-side market, (iii) the expected waiting time

until settlement and (iv) the expected variance of this waiting time.

Our second major contribution is the estimation of arbitrage boundaries for the Bit-

coin market. We collect minute-level price information from 17 exchanges that feature
3See, e.g., Balduzzi and Lynch (1999) and Chetty (2006) for applications of isoelastic utility in a

financial context.
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trading Bitcoin against US Dollar. Furthermore, we gather real-time information about

the Bitcoin network, providing us with, among other things, the time it takes for every

transaction from entering the Bitcoin network until its inclusion in the blockchain. This

procedure yields a unique database providing a complete picture of Bitcoin transaction

activities including settlement latencies and other network characteristics.

The estimation of arbitrage boundaries rests on three ingredients. First, we estimate

the spot volatility using minute-level midquote data employing a kernel estimator in line

with Kristensen (2010). Second, we parametrize the latency distribution according to a

conditional gamma distribution, depending on network and transaction-specific charac-

teristics that affect the settlement time. Both the spot volatility and the moments of the

latency distribution are estimated based on rolling windows to rule out any look-ahead

bias and to mimic the viewpoint of an arbitrageur who aims to predict her certainty

equivalent based on contemporaneously available information. Third, in line with exist-

ing literature, we choose an isoelastic utility function with exogenously given coefficient

of relative risk aversion.

Accounting solely for stochastic latency and assuming a relative risk aversion of 2,

the average estimated arbitrage boundary amounts to 124 bp.4 We find that 88% of

all observed instantaneous price differences across markets fall into these boundaries.

Adjusting additionally for transaction costs, the boundaries contain even up to 98% of

the observed price differences. The few price differences exceeding the boundaries might

be due to the presence of arbitrageurs with higher risk aversion or additional market

frictions.5 In fact, we show that the average implied relative risk aversion necessary to

capture all observed price differences, amounts to 12.

In addition, we provide deeper insights into the main components determining the
4See Conine et al. (2017) for a review of the empirical literature on the estimation of the coefficient

of relative risk aversion.
5These might be, for instance, information frictions (Mitchell et al., 2002), short sale constraints

(Lamont and Thaler, 2003a,b; de Jong et al., 2009), or slow moving capital (Roll et al., 2007; Mitchell
et al., 2007).
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arbitrage boundaries. For instance, the fact that the latency is stochastic (and thus not

perfectly predictable) is responsible for, on average, around 43% of the arbitrage bound-

aries. Moreover, to increase the security and to guarantee the reliability of transactions,

exchanges typically consider a transaction as valid only if it is confirmed by additional

subsequent blocks after it is included in the ledger for the first time. These requirements

aim at protecting the system from potential double-spending attacks yielding fraudulent

transactions. In our sample, exchanges require up to five additional confirmations after

a transaction is included in the block for the first time. We find that this security com-

ponent accounts for on average about 55% of the arbitrage boundaries. To quantify the

trade-off between the number of confirmations and the resulting increase in market fric-

tions (in terms of arbitrage boundaries), we show that the requirement of 10 confirmations

increases the average arbitrage bound by more than 24%.6

The promise of fast and low-cost transaction settlement leads central banks and mar-

ketplaces to actively explore potential applications of distributed ledgers for transaction

settlement (e.g., BIS, 2017; NASDAQ, 2017; ECB and BoJ, 2018; SIX, 2018). Our results,

however, show that distributed settlement, in particular under sufficiently high security

standards, is time-consuming and implies costs in form of non-trivial market frictions.

These frictions impair market efficiency and substantially distort the law of one price.

Our results shed some light on these costs (in terms of arbitrage boundaries) caused by

the individual features underlying the settlement system and their stochastic nature.

Our theoretical results apply to all markets with stochastic settlement latency. We

thus contribute to the literature on limits to arbitrage and market efficiency (e.g., Fama,

1965; de Long et al., 1990; Shleifer and Vishny, 1997) by highlighting a novel friction that

impedes arbitrageurs’ ability to exploit mispricing.7 Our framework is also applicable
6The requirement of 10 confirmation reduces the likelihood of a successful attack to less than 5% if

the attacker controls 10% of the total available computing power.
7We refer to Gromb and Vayanos (2010) for an extensive survey of the theoretical literature on the

limits of arbitrage.
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to settings with (stochastic) latency in order execution and its implications for market

making (e.g., Budish et al., 2015; Menkveld and Zoican, 2017; Foucault et al., 2017).

Moreover, we contribute to the recent literature that examines price formation in

Bitcoin markets. For instance, Gandal et al. (2018) demonstrate that suspicious trading

activity from tradebots likely causes temporary price spikes. Similarly, Griffin and Shams

(2018) find evidence for price manipulation on Bitcoin markets through the creation

of tokens pegged to the Dollar. Such price movements could lead to substantial price

differences across markets that remain unexploited if they coincide with periods of high

stochastic latency. Our results also complement the findings of Makarow and Schoar

(2018) who show that a common component explains a high share of observed price

differences.

Finally, we contribute to the emerging literature on the economic impact of blockchain

technology. Malinova and Park (2017) analyze the effect of various degrees of trans-

parency on liquidity traders’ strategies, while Khapko and Zoican (2017) show how

flexible settlement may interact with search frictions and counterparty risk. Cong and

He (2017) investigate how the informational environment for contracting might change

due to decentralized consensus mechanisms. Furthermore, Biais et al. (2017) and Saleh

(2018) analyze the equilibrium properties of different blockchain-based consensus proto-

cols. Abadie and Brunnermeier (2018) discuss fundamental trade-offs of the migration

to distributed ledgers with computationally expensive consensus protocols, while Chiu

and Koeppl (2018) show that moving the US corporate debt market to blockchain-based

settlement might create substantial welfare gains.

The remainder of the paper is organized in the following way. In Section 2, we

theoretically derive arbitrage boundaries under general conditions. Section 3 presents

the data, summary statistics stemming from the Bitcoin network and evidence on cross-

market price differences. In Section 4, we provide estimates of arbitrage boundaries
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and their main determinants, and quantify how much of the observed cross-market price

differences are captured by these boundaries. Section 5 concludes.

2 Stochastic Latency and Limits to Arbitrage

2.1 Return distribution under stochastic latency

We consider an economy containing a single asset that is traded on two different markets

b and s. For now, we abstract from short sales and other derivatives, but we discuss their

relation to stochastic settlement latency further below. The trading activity on these

markets is exogenously given and we assume that agents can continuously monitor the

quotes of one unit of the asset across all markets.

Definition 1. Market i ∈ {b, s} continuously provides marginal buy quotes (asks) Ai
t and

sell quotes (bids) Bi
t for a small unit of the asset, where Bi

t ≤ Ai
t, at time t.

We introduce transaction costs and the possibility to trade more than one unit of the

asset below and show that these aspects do not affect our main insights. Our sole agent

is an arbitrageur that aims at exploiting observed price differences across markets.

Definition 2. The arbitrageur has unlimited capital, continuously monitors the quotes

on markets b and s and considers the following strategy: if buy and sell quotes across

markets imply a profit, she intends to buy one unit of the asset at the market with the

lower buy quote, transfer the asset to the market with a higher sell quote and sell it as

soon as the transfer is settled.

The assumption of unlimited capital allows us to abstract from capital constraints that

might impose additional limits to arbitrage (Shleifer and Vishny, 1997).

Without loss of generality, we focus on a scenario where the arbitrageur buys on

market b and sells on market s. The converse case of selling on market b and buying
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on market s can be handled analogously. Hence, in case of frictionless trading and no

latency in settlement, the arbitrageur simply exploits observed price differences if

Bs
t − Ab

t > 0, (1)

as she can buy the asset on market b at Ab
t , instantaneously transfer the asset to market

s and sell it again at price Bs
t .

An instantaneous transfer is not possible, however, whenever the settlement of the

transaction is time-consuming. Such a (possibly random) latency constitutes a funda-

mental element of distributed ledger systems that do not rely on central clearing entities.8

It should not be confused, however, with latency in order execution as heavily discussed

in the context of high-frequency trading (e.g., Hasbrouck and Saar, 2013; Foucault et al.,

2017). Such latencies are in the order of milliseconds and thus are of several magnitudes

smaller than settlement latencies. Therefore, we refrain from latency in order execution

and assume that markets process orders instantaneously.

Definition 3. Latency τ is the random waiting time until a transfer of the asset between

markets is settled.

If the buy transaction at market b takes place at time t and the transfer of the asset

to market s is settled at t + τ , the arbitrageur faces the sell quote Bs
t+τ . The profit of

the arbitrageur’s trading decision is thus at risk, if the probability of losing money is

non-zero, i.e., if

P
(
Bs

t+τ < Ab
t

)
> 0. (2)

In this case, a risk averse arbitrageur would face limits to (statistical) arbitrage if the

associated risk exceeds the expected returns (Bondarenko, 2003). To formalize the trading

decision of the arbitrageur, denote the log prices as abt := log
(
Ab

t

)
and bst := log (Bs

t ),
8See Appendix A for a detailed discussion of distributed ledger technologies.
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respectively, to cast the payoff in log returns.

Definition 4. The log return of buying on market b at time t and selling on market s at

time t+ τ is defined as

rb,s(t:t+τ) := bst+τ − abt = δb,st︸︷︷︸
instantaneous

return

+ bst+τ − bst︸ ︷︷ ︸
exposure to

price risk

, (3)

where δb,st := bst − abt.

The first part of the return decomposition contains the returns the arbitrageur would

earn under instantaneous settlement, i.e., in the absence of any latency. The second part

captures the risk of adverse price movements on the sell-side market. As the instantaneous

return only depends on observed prices, the arbitrageur solely faces uncertainty about

the evolution of prices on the sell-side market. The price process on the sell-side market

is given as follows.

Assumption 1. For a given latency τ , we model the log price changes on the sell-side

bst+τ − bst as a Brownian motion with drift µs
t such that

rb,s(t:t+τ) = δb,st + τµs
t +

t+τ∫
t

σs
tdW

s
k , (4)

where σs
t denotes the spot volatility of the bid quote process on market s, and W s

k denotes

a Wiener process. We assume that σs
t is constant over the interval [t, t+ τ ].9

The dynamics of the sell price thus expose the arbitrageur to uncertainty about her

profits. The uncertainty is triggered by the spot volatility σs
t and the latency τ . We

require only weak assumptions regarding the stochastic nature of the latency.
9Time-varying and stochastic volatility can be incorporated by means of a change of the time-scale

underlying the Brownian motion. We provide the corresponding derivations in Appendix B.
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Assumption 2. The stochastic latency τ ∈ R+ is a random variable equipped with a

conditional probability distribution πt(τ) := π (τ |It), where It denotes the set of available

information at time t. We assume that the moment-generating function of πt(τ), defined

as mτ (u) := Et (e
uτ ) for u ∈ R, is finite on an interval around zero.

Assumptions 1 and 2 allow us to fully characterize the return distribution πt

(
rb,s(t:t+τ)

)
through the interval from t to t+ τ for a wide range of latency distributions.

Lemma 1. Under Assumptions 1 and 2, the returns follow a normal variance-mean

mixture with probability distribution

πt

(
rb,s(t:t+τ)

)
=

∫
R+

πt

(
rb,s(t:t+τ)

∣∣τ) πt (τ) dτ, (5)

and corresponding characteristic function10

φrb,s
(t:t+τ)

(u) = eiuδ
b,s
t mτ

(
iuµs

t −
1

2
u2(σs

t )
2

)
. (6)

Proof. See Equation (2.2) in Barndorff-Nielsen et al. (1982) and thereafter.

Lemma 1 characterizes the impact of stochastic latency on the return distribution. To pro-

vide an illustrative example, we parametrize the probability distribution of the stochastic

latency as an exponential distribution with locally-constant scale parameter λt := λ (It).

The probability density function of the latency is then given by

πt (τ) = λte
−λtτ , (7)

with conditional mean Et (τ) = λ−1
t and conditional variance Vt (τ) = λ−2

t . The moment
10The characteristic function of a random variable provides an alternative way to fully describe the

behavior and properties of the probability distribution of the random variable. More specifically, the
characteristic function φX(u) of a random variable X is defined as φX(u) = E(eiuX), where i is the
imaginary unit and u ∈ R is the argument of the characteristic function.
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generating function of the exponential distribution is mτ (u) =
(
1− λ−1

t u
)−1

. Thus,

Lemma 1 yields

φrb,s
(t:t+τ)

(u) =
eiuδ

b,s
t

1− i
µs
t

λt
u+

(σs
t )

2

2λt
u2

, (8)

which corresponds to the characteristic function of an asymmetric Laplace distribution

with Et

(
rb,s(t:t+τ)

)
= δb,st +

µs
t

λt
and Vt

(
rb,s(t:t+τ)

)
= 1

λt

(
(µs

t)
2 + (σs

t )
2) (e.g., Kotz et al., 2012).

Without a drift (µs
t = 0), the distribution collapses to a symmetric Laplace distribution

with location parameter δb,st , scale parameter σs
t√
2λt

, and corresponding probability density

function

πt

(
rb,s(t:t+τ)

)
=

√
2λt

2σs
t

exp

(
−
√
2λt

σs
t

∣∣∣rb,s(t:t+τ) − δb,st

∣∣∣) , (9)

with Et

(
rb,s(t:t+τ)

)
= δb,st and Vt

(
rb,s(t:t+τ)

)
= (σs

t )
2 Et (τ). Hence, not surprisingly, in the

absence of a drift in the underlying Brownian motion, the (conditionally) expected return

implied by the arbitrage strategy is equal to the instantaneous return δb,st = bst − abt . The

(conditional) variance equals the (locally constant) spot variance on market s, (σs
t )

2,

scaled by the (conditional) expected waiting time until the settlement of the transaction,

λ−1
t . Hence, the higher the volatility on the sell-side market or the longer the expected

waiting time until the transfer is settled, the higher is the risk of extreme adverse price

movements.

Figure 2 provides a graphical illustration of the resulting distributions. The plots

show simulated draws from a Brownian motion stopped at randomly sampled waiting

times. The marginal distribution at the top of each figure illustrates the exponential

distribution of the waiting times. The marginal distribution on the right-hand side shows

the resulting sampling distribution of the price process which converges in the limit to a

Laplace distribution. Panel A shows the resulting distribution for a price process without

drift, while the price process in Panel B includes a negative drift.
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Figure 2: Distribution of Returns under Stochastic Latency.
This figure illustrates the impact of stochastic latency (horizontal axis) on the distribution of returns
(vertical axis) if log prices follow a Brownian motion and if latencies are exponentially distributed. The
individual paths correspond to sample draws of the price process and the dots correspond to the terminal
value of the stopped Wiener process. The marginal distribution on the top corresponds to the sampled
latencies. The marginal distribution on the right-hand side corresponds to the sampled distribution of
returns which converges in the limit to a Laplace distribution. Panel A shows the resulting distribution
for a price process without drift, while the price process in Panel B includes a negative drift.

Panel A: Price Process without Drift (µs
t = 0)

Panel B: Price Process with Drift (µs
t < 0)
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2.2 Arbitrage boundaries for risk averse arbitrageurs

To quantify the arbitrageur’s assessment of risk, we have to to equip her with a corre-

sponding utility function.

Assumption 3. The arbitrageur has an utility function Uγ(r) with risk aversion param-

eter γ, where r are the log returns implied by her trading decision. Furthermore, assume

U ′
γ(r) > 0 and U ′′

γ (r) < 0.

The arbitrageur maximizes the expected utility Et (Uγ(r)), which we express in terms

of the certainty equivalent (CE). The CE is the riskless return which yields the same

expected utility as the risky payoff r, i.e., Uγ(CE) = Et (Uγ(r)). We derive the CE of

exploiting instantaneous cross-market price differences in the following theorem.

Theorem 1. Under Assumptions 1 - 3, the certainty equivalent (CE) of trading is given

by

CE =δb,st + Et(τ)µ
s
t +

∞∑
k=2

U
(k)
γ

(
δb,st + Et(τ)µ

s
t

)
k!U ′

γ

(
δb,st + Et(τ)µs

t

)Et

((
rb,s(t:t+τ) − δb,st − Et(τ)µ

s
t

)k)
, (10)

where U
(k)
γ (µr) :=

∂k

∂µk
r
Uγ (µr).

Proof. See Appendix C.

Theorem 1 allows us to compare the utility of trading versus staying idle (which yields

a riskless return of zero). Therefore, the arbitrageur is willing to exploit cross-market

price differences if and only if the CE of trading given by Equation (10) is positive. A

positive CE corresponds to a statistical arbitrage opportunity in the sense of positive

expected risk-adjusted profits. Whenever the observed price differences δb,st are positive,

but CE is negative, the arbitrageur does not exploit the arbitrage opportunity. In this

case, although the trade would be profitable under instantaneous settlement, limits to
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(statistical) arbitrage arise due to stochastic latency. Hence, the arbitrageur is indifferent

between trading and staying idle if price differences δb,st imply CE = 0.

Definition 5. We define the arbitrage boundary dst as the minimum price difference

necessary such that the arbitrageur prefers to trade if δb,st > dst . Formally, dst is the

maximum of zero and the (unique) root of

F (d) = d+ Et(τ)µ
s
t +

∞∑
k=2

U
(k)
γ (d+ Et(τ)µ

s
t)

k!U ′
γ (d+ Et(τ)µs

t)
Et

((
rb,s(t:t+τ) − d− Et(τ)µ

s
t

)k)
.11 (11)

Price differences below the arbitrage boundary might persist as the arbitrageur prefers

not to trade in such a scenario. To provide a more intuitive representation of the arbitrage

boundary, we now consider a special case by assuming that the arbitrageur is equipped

with constant absolute risk aversion (CARA). In line with Schneider (2015), we ignore

the impact of higher order moments above the fourth degree of the Taylor representation

in Equation (10). These assumptions yield an analytically tractable formulation of the

arbitrage bound.

Lemma 2. If, in addition to Assumptions 1 and 2, the arbitrageur has an exponential

utility function Uγ(r) :=
1−e−γr

γ
with risk aversion γ > 0, then the arbitrage boundary is

dst =− Et (τ)µ
s
t +

γ

2

(
Vt (τ) (µ

s
t)

2 + (σs
t )

2 Et (τ)
)

− γ2

6

(
3µs

t (σ
s
t )

2Vt (τ) + (µs
t)

3 Et

(
(τ − Et (τ))

3))
+

γ3

24

(
(µs

t)
4 Et

(
(τ − Et (τ))

4)+ 6 (σs
t )

2 (µs
t)

2 (E (τ)3 + Et

(
τ 3
)
− 2Et (τ)

2)+ 3Et

(
τ 2
)
(σs

t )
4) .

(12)

Proof. See Appendix C.

11By definition of CE, F (d) = U−1
γ

(
Et

(
Uγ

(
d+ µs

tτ +
∫ t+τ

t
σs
tW

s
k

)))
. Since U ′

γ(r) > 0, the expecta-
tion is increasing in d. Moreover, since U ′′

γ (r) < 0, the inverse U−1
γ (r) > 0 is also strictly concave. Thus,

F (d) is strictly increasing and has a unique root.
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In the absence of a drift (µs
t = 0), the arbitrage boundary of Lemma 2 further simplifies

to

dst =
γ

2
(σs

t )
2Et (τ) +

γ3

8
(σs

t )
4
(
Vt (τ) + Et (τ)

2) . (13)

Hence, the arbitrage boundary dst positively depends on (i) the arbitrageur’s risk aversion,

(ii) the local volatility on the sell-side market s, (iii) the expected waiting time until

settlement, and (iv) the variance of the waiting time, Vt (τ). Moreover, note that the

boundary does not depend on characteristics of the buy-side market.

The boundary crucially depends on the arbitrageur’s risk aversion γ. In our setting,

this risk aversion corresponds to the arbitrageur’s attitude towards the risk of a single

trade. Theoretically, an arbitrageur can reduce her risk by repeatedly exploiting cross-

market price differences as a law of large numbers may lead to a vanishing variance of the

arbitrageur’s aggregate returns. While such a repeated strategy can make the arbitrageur

becoming risk-neutral in the theoretical limit (by means of a law of large numbers), in

practice, this case is equivalent to the assumption of a lower risk aversion. Then, Equation

(13) still applies, but implies a contraction of the relevant boundaries.

Accordingly, for a risk neutral arbitrageur, we have dst = 0 and she would exploit

any positive price difference δb,st > 0. In this case, any price differences between the

two markets should be absorbed immediately. The empirical evidence for the Bitcoin

market according to Figure 1, however, suggests that this is not the case. According to

our model, the existence of persistent price differences between the two markets (which

are obviously not traded away) indicates that the markets are populated by risk averse

arbitrageurs who do not exploit price differences below the threshold dst . We thus denote

the interval [0, dst ] as the no-trade region for selling on market s implied by stochastic

latency and risk aversion.

The lower bound dst is a fundamental pillar of markets with stochastic latency, as

the implied costs of stochastic latency affect the entire action and contracting space of
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market participants. The only possibility for the arbitrageur to circumvent the exposure

to stochastic latency would be the ability to sell instantaneously at the more expensive

market to lock in the price difference. This is, however, only possible if the arbitrageur

already has an inventory of the asset on the expensive (sell) market, or if she can borrow

the asset on that market. Then, she can instantaneously buy on the cheap market and sell

on the expensive market without the need of waiting for the verification of the transaction.

The first alternative, however, bears considerable price risk. To be able to exploit

instantaneous price differences whenever they arise, it is necessary to keep inventory

on the sell-side market over longer periods. Such a strategy continuously exposes the

arbitrageur to price risk until an arbitrage opportunity arises (without any guarantee that

this event will ever occur), which makes this strategy riskier than the strategy described in

Definition 2. Second, if the arbitrageur can hedge the price risk (e.g., through borrowing),

she substitutes the price risk with the implied hedging costs. In a competitive market,

however, potential lenders of the asset demand a compensation for the opportunity costs

of exploiting the price difference themselves. The boundaries dst should thus enter the

price of the hedging instrument and diminish the attractiveness of the strategy.

The choice of CARA (exponential utility) provides convenient analytical results, how-

ever, the case of constant relative risk aversion (CRRA) is more realistic as it implies that

decision-making is independent of the arbitrageur’s initial wealth (Harvey et al., 2010).

The following lemma yields the arbitrageur’s optimal decision for a CRRA utility func-

tion.

Lemma 3. If, in addition to Assumptions 1 and 2, the arbitrageur has an isoelastic utility

function Uγ(r) :=
r1−γ

1−γ
with risk aversion parameter γ > 1, then the arbitrage boundary

for µs
t = 0 is given by

dst =
1

2
σs
t

√
γEt (τ) +

√
γ2Et (τ)

2 + 2γ(γ + 1)(γ + 2)Et (τ 2). (14)
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Proof. See Appendix C.

The main insights of the simple CARA model remain unchanged: the higher the expected

latency, the variance of the latency, or the risk aversion, the less likely is the arbitrageur

to trade.

2.3 The effect of transaction costs

Most markets feature trading fees that agents pay upon the execution of a trade. For

instance, traders frequently pay fees as a percentage of the trading volume when they

execute trades on centralized exchanges. Similarly, broker-dealers usually charge markups

for the execution of trades in over-the-counter markets. Moreover, markets typically

exhibit limited supply in the form of price-quantity schedules that agents are willing

to trade, possibly leading to substantial price impacts for large trading quantities. To

incorporate trading fees and liquidity effects into our framework, we make the following

assumption.

Assumption 4. Trading the quantity q ≥ 0 on market i exhibits proportional transaction

costs such that the average per unit sell and buy quotes are

Bi
t(q) = Bi

t

(
1− ρi,B(q)

)
(15)

Ai
t(q) = Ai

t

(
1 + ρi,A(q)

)
, (16)

with ρi,B(q) ≥ 0 and ρi,A(q) ≥ 0.

The presence of transaction costs changes the objective function of the arbitrageur who

focuses on maximizing returns net of transaction costs defined as

r̃b,s(t:t+τ) = bst+τ − bst + δb,st − log

(
1 + ρb,A(q)

1− ρs,B(q)

)
= rb,s(t:t+τ) − log

(
1 + ρb,A(q)

1− ρs,B(q)

)
. (17)
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Due to the concavity of the utility function, transaction costs decrease the expected

utility of the arbitrageur. A different interpretation of Equation (17) is that transaction

costs only increase the instantaneous return required to make the arbitrageur indifferent

between trading and staying idle. The following lemma summarizes the arbitrageurs’

decision problem in the presence of transaction costs.

Lemma 4. Under assumptions 1 - 4, the arbitrageur prefers to trade a quantity q > 0

over staying idle if

δb,st − log

(
1 + ρb,A(q)

1− ρs,B(q)

)
> dst . (18)

Proof. See Appendix C.

2.4 The effect of latency-reducing settlement fees

In distributed ledger systems, validators typically receive a reward for confirming trans-

actions. This reward (at least partly) comprises of fees that originators of transactions

offer to potential validators. Since the information that can be added to the ledger at

any point in time is usually limited, such fees aim to provide validators with incentives to

prioritize the settlement of transactions that include a higher fee (Easley et al., 2017). In

particular, by offering a higher fee, arbitrageurs can thus decrease the settlement latency

they face. We extend our framework to incorporate such latency-reducing settlement fees

as follows.

Assumption 5. A settlement fee f > 0 implies a latency distribution πt (τ |f) that can be

ordered in the sense that for f̃ > f , πt (τ |f) first-order stochastically dominates πt

(
τ |f̃
)

,

i.e., P
(
τ ≤ x|f̃

)
> P (τ ≤ x|f) for all x ∈ R+.

The ordering of latency distributions in Assumption 5 implies a lower CE of trading

for f̃ > f (e.g., Hadar and Russell, 1969; Levy, 1992). Denote by dst(f) the arbitrage

boundary associated with the latency distribution πt (τ |f). Theorem 1 then implies that
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dst(f) > dst(f̃), i.e., by paying a higher settlement fee, the arbitrageur can reduce the risk

associated with stochastic latency and becomes more likely to trade. For simplicity, we

assume that dst(f) is differentiable such that Assumption 5 implies ∂
∂f
dst(f) < 0.

While settlement fees reduce the latency, they are costly for the arbitrageur. Since the

arbitrageur does not hold inventory of the asset on the buy-side market, she has to acquire

the additional quantity f to spend it in the settlement process. We thereby assume that

the arbitrageur has to pay the settlement fee in terms of the underlying asset. Given the

transaction costs from the previous section, the choice of f thus also affects the trading

quantity q. The following lemma summarizes the arbitrageur’s decision problem in the

presence of transaction costs and settlement fees.

Lemma 5. Under assumptions 1 - 5, the arbitrageur prefers to trade a quantity q > 0

and pay a settlement fee f > 0 over staying idle if

δb,st − log

(
1 + ρb,A(q + f)

1− ρs,B(q)

)
> dst(f). (19)

Proof. See Appendix C.

2.5 Optimal choice of trading quantities and settlement fees

While trading a larger quantity might deliver higher total returns, it comes at the cost

of higher transaction costs on both the buy-side and sell-side market. Moreover, paying

higher settlement fees leads to lower arbitrage boundaries, but at the cost of additional

transaction costs on the sell-side market. The arbitrageur’s trading decision thus fea-

tures a trade-off between q and f with endogenous arbitrage boundaries. Formally, the

arbitrageur aims to maximize total returns

max
{q,f}∈R2

+

Bs
t

(
1− ρs,B(q)

)
q − Ab

t(1 + ρb,A(q + f))(q + f) (20)
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subject to the constraint

δb,st − log

(
1 + ρb,A(q + f)

1− ρs,B(q)

)
≥ dst(f). (21)

We characterize the arbitrageur’s optimal choice of trading quantities and settlement fees

in the following lemma.

Lemma 6. A total return maximizing arbitrageur chooses trading quantities q∗ > 0 and

settlement fees f ∗ ≥ 0 such that

δb,st − log

(
1 + ρb,A(q∗ + f ∗)

1− ρs,B(q∗)

)
= dst(f

∗). (22)

Moreover, a total return maximizing arbitrageur only pays a settlement fee f ∗ > 0 to

trade a quantity q∗ > 0 if the following necessary conditions are met:

1− ρs,B(q∗)

q∗
> ρs,B

′
(q∗) (23)

− ∂

∂f
dst(f

∗) >
ρs,B

′
(q∗)

1 + ρs,B(q∗)
. (24)

Otherwise, the arbitrageur optimally sets f ∗ = 0.

Proof. See Appendix C.

The first part of the lemma states that the arbitrageur always chooses trading quantities

and settlement fees such that the constraint in Equation (21) is binding. If the constraint

would not be binding, then the arbitrageur could either trade a larger quantity or pay a

lower settlement fee to increase her objective.

The second part of the lemma provides conditions for the choice of the settlement

fee. According to Equation (23) the arbitrageur increases the settlement fee as long as

the marginal price impact is below the average price impact. However, Equation (24)
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shows that the reduction of the arbitrage bound through a higher settlement fee must

exceed the implied opportunity costs, i.e., the possible gain in selling a higher quantity.

Consequently, the arbitrageur tends to pay a higher settlement fee if the sell-side market

is very liquid (keeping the marginal price impact low) and the settlement fee has a high

impact on the boundary (i.e., reducing the latency and thus risk). If these conditions are

violated, the arbitrageur optimally chooses not to pay any settlement fee, but might still

decide to trade.

3 Bitcoin Network and Orderbook Data

We utilize data from the Bitcoin network, which constitutes the most popular decentral-

ized protocol since Nakamoto (2008) published the concept and the underlying code. As

of April 2018, Bitcoin (BTC) can be traded against fiat currencies and other cryptocur-

rencies on more than 400 markets that differ substantially in terms of location, regulation,

security, technology, and fee structure. Bitcoin is continuously traded with an average

daily trading volume of more than $4.5B as of April 2018.

To estimate the arbitrage boundaries according to Lemma 3, we need to estimate the

local volatility of the price process as well as the moments of the latency distribution.

For the former, we collect minute-level order book information, i.e., the list of all open

buy and sell quotes, as well as exchange-specific trading fees from several trading venues

that feature trading BTC against USD. To characterize the distribution of latencies, we

collect real-time information from the Bitcoin network.

3.1 Bitcoin orderbook data

We gather orderbook information from the public application programming interfaces

(APIs) of the 17 largest cryptocurrency exchanges that feature BTC versus USD trad-
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ing.12 We retrieve all open buy and sell orders for the first 25 levels on a minute level

since April 2018. The granularity of our data yields detailed information on orderbook

depth.13

Table 1 lists the corresponding exchanges and provides summary statistics of the un-

derlying orderbook data based on our sample ranging from April 1, 2018 until September

30, 2018. The number of observations varies across exchanges, as the APIs can be un-

stable, i.e., they temporarily do not send responses to requests. During such periods,

trading was not possible anyway and thus the missing data does not affect our analysis.

We observe a strong heterogeneity with respect to exchange-specific liquidity. For

instance, whereas investors could have traded BTC versus USD at Coinbase Pro with

an average spread of 0.05 USD, the average quoted spread at Gatecoin was about 150

USD since April 2018. For most exchanges, however, the relative bid-ask spreads are

comparable to those from equity markets such as NASDAQ or NYSE, where relative

spreads range from 5 basis points (bp) for large firms to 38 bp for small firms (Brogaard

et al., 2014). To illustrate the importance of the orderbook depth, we also compute the

change in marginal prices for a given trading quantity. For instance, buying one BTC

at Lykke increases the marginal price on average by 37 bp. Selling 10 BTC at Bitfinex

decreases the marginal price on average by 4 bp.

The exchanges also exhibit substantial heterogeneity in terms of trading-related char-

acteristics. We therefore collect information on trading fees (i.e., taker fees) that directly

feed into the price differences. Taker fees range from 0% on Lykke to 1% on Gemini.

Furthermore, exchanges have different requirements with respect to the number of block

confirmations before they proceed to process BTC deposits. For instance, Kraken re-

quires 6 confirmations, i.e., incoming transactions must be included in at least 6 blocks.
12Some exchanges do not feature fiat currencies. However, they allow trading BTC against Tether, a

token that is backed by one USD for each token and trading close to par with USD.
13To the best of our knowledge, none of these exchanges offers the opportunity to place hidden orders

such that our data set indeed reflects a real-time image of the available liquidity at the distinct exchanges.
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The objective of these requirements is to reduce the possibility of an attack that aims at

revoking previous transactions (i.e., a so-called ’double-spending attack’). In such a case,

a potential attacker has to alter all blocks containing the corresponding transaction. The

probability that an attacker catches up with the honest chain decreases exponentially

with the number of blocks the attacker has to alter. For instance, in the case of a confir-

mation requirement of 10 blocks, the probability of a successful attack is less than 0.01%

(5%), if the attacker has a share of 30% (10%) of the total available computing power

(Nakamoto, 2008). As we discuss below, these requirements confront arbitrageurs with

an increase in the settlement latency.

3.2 Bitcoin network data

By running a full node14 and gathering transaction-specific information in real time, we

collect data on the status of the Bitcoin network on a minute level. The full node allows

us to retrieve all transactions entering the Bitcoin network and waiting for verification.

Each transaction contains a unique identifier, a timestamp of the initial announcement to

the network, and, among other details, the fee (per byte) the initiator of the transaction

offers validators to verify the transaction.15

All transactions enter the so-called mempool (short for memory pool) which is essen-

tially a collection of all unconfirmed transactions. These transactions wait in the mempool

until they are picked up by validators and get verified. The size of the mempool thus

reflects the number of transactions that wait for confirmation. By design, however, the

Bitcoin protocol restricts the number of transactions that can enter a single block. This
14Any computer that connects to the Bitcoin network is referred to as a node. Full nodes download

every transaction and block and check them against specific consensus rules. If a transaction complies
with the rules, it is distributed to validators. If a newly validated block complies to the rules, it is
broadcast to other nodes.

15The fee per byte is more relevant than the total fee associated with a transaction as block sizes are
limited in terms of bytes. In principle, a transaction can have multiple inputs and outputs, i.e., several
addresses that are involved as senders or recipients of a transaction, which increases the number of bytes.
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restriction induces competition among the originators of transactions who can offer higher

settlement fees, as discussed in Section 2.4, to make it attractive for validators to include

transactions in the next block. Consequently, transactions with no or very low settlement

fees may not attract validators and thus stay in the mempool until they become verified

eventually.

Validators bundle transactions that wait for verification and try to solve a computa-

tionally expensive problem which involves numerous trials until the first validator finds

the solution. By design of the Bitcoin protocol, validators successfully find a solution

and append a block on average every 10 minutes.16 The system’s protocol, however, also

limits the number of transactions that can be included in a single block. Even though

the expected block validation time is 10 minutes, it is uncertain when a transaction is in-

cluded in a block for the first time. For any transaction this induces stochastic settlement

latency. The probability of being included in the next block decreases, however, with the

number of transactions that wait for settlement and increases with the settlement fee the

investor is willing to pay.

Any transaction in the Bitcoin network has to go through the mempool, irrespective

of its origin. The entire cross-section of transactions thus determines the latencies for the

transfer of BTC across exchanges. Table 2 provides summary statistics of the recorded

transactions. The average settlement fee is about 0.73 USD. The distribution of fees is

highly skewed with a median of 0.15 USD. The average waiting time until the verification

of a transaction is about 18 minutes, while the median is about 8.2 minutes. The time

until verification, however, should not be confused with the time it takes until a new

block is mined. Whereas, during our sample period, validators announce a new block

to the network on average every 9.5 minutes, transactions may not be included in the

subsequent block but instead have to wait longer until they get verified.

The Bitcoin network is prone to high fluctuation both in terms of usage and validators’
16We provide a more detailed discussion of the underlying consensus protocol in Appendix A.
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Table 2: Descriptive Statistics of the Bitcoin Network.
This table reports descriptive statistics for Bitcoin transaction data from April 1, 2018, until September
30, 2018. The sample contains all transactions announced to the Bitcoin network. Transactions leave
the mempool either because they are included in a block (validation) or after a certain waiting time
(no validation). Our sample comprises of 22,572,426 transactions that are verified in 25,762 blocks. Fee
per Transaction is the total settlement fee per transaction. Fee per Byte is the total fee per transaction
divided by the size of the transaction in bytes where 100,000,000 Satoshi are 1 Bitcoin. We approximate
the USD price by the average minute-level midquote across all exchanges in our sample. Latency is the
time until the transaction is either validated or leaves the mempool without verification (in minutes).
Mempool Size is the number of other transactions in the mempool at the time a transaction of our
sample enters the mempool. Block Validation Time is the time (in minutes) between two consecutive
block announcements to the Bitcoin network.

Mean SD 5 % 25 % Median 75 % 95 %

Fee per Byte (Satoshi) 24.16 106.00 2.31 5.02 8.31 19.25 102.64
Fee per Transaction (USD) 0.73 7.26 0.04 0.08 0.15 0.38 2.78
Latency (Minutes) 18.13 41.97 0.88 3.55 8.28 17.57 58.30
Transaction Size (Byte) 474.93 2087.21 142.00 191.00 225.00 333.00 933.00
Mempool Size 2938.35 3474.47 193.00 779.00 1765.00 3685.00 9878.00
Block Validation Time (Minutes) 9.53 9.33 0.55 2.87 6.70 13.18 28.13

activity. Figure 3 illustrates the high variation of observed latencies. The daily median of

all transactions verified on a particular day in our sample ranges from 5.6 to 26.4 minutes

indicating considerable changes over time. The shaded area in Figure 3 shows the 5%

and 95% daily quantiles, indicating large cross-sectional dispersion of latencies.

3.3 Price differences across markets

To provide systematic empirical evidence on the extent of (potential) arbitrage opportu-

nities and thus violations of the law of one price, we compute the observed instantaneous

cross-market price differences of all N(N − 1)/2 exchange pairs, with the total number

of exchanges N = 17, defined as

∆t :=


0 · · · δN,1

t

... . . . ...

δ1,Nt · · · 0

 =


0 · · · b1t − aNt
... . . . ...

bNt − a1t · · · 0

 , (25)
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Figure 3: Distributions of Observed Latencies in the Bitcoin Network.
The figure illustrates the distribution of transaction settlement latency over time. The solid line cor-
responds to the median latency of all transactions verified on the particular day. The shaded area
illustrates the corresponding 5% and 95% quantiles (in minutes). For illustrative purposes we use the
log scale for the horizontal axis.

where bit and ait correspond to the (log) best bid and ask prices at exchange i and time

t, respectively. These price differences are akin to a setting where arbitrageurs trade

marginal quantities on each market. The effective price difference, however, depends on

taker fees and the trading quantities which might create price impact by passing through

higher orderbook levels. We thus define the transaction cost adjusted price differences as

∆̃t :=


0 · · · δ̃N,1

t

... . . . ...

δ̃1,Nt · · · 0

 =


0 · · · b̃1t

(
q1,Nt

)
− ãNt

(
q1,Nt

)
... . . . ...

b̃Nt

(
qN,1
t

)
− ã1t

(
qN,1
t

)
· · · 0

 ,

(26)

where b̃it(q
i,j
t ) is the transaction cost adjusted (log) sell price of qi,jt units of the asset on

exchange i at time t and ãit(q
i,j
t ) is the transaction cost adjusted (log) buy price of qi,jt

units of the asset.
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Transaction costs are proportional to the trading quantity and correspond to our

definition in Assumption 4. We choose qi,jt as the quantity which maximizes the resulting

return for the exchange pair i and j given the prevailing orderbooks at time t and the

taker fees of exchanges i and j. If the limit orderbook would not be available, we would

have to rely on a specific transaction cost function. In our setting, however, we avoid

such assumptions and use the fully observed orderbook on a minute level. Accordingly,

we account for proportional exchange-specific taker fees (as reported in Table 1), which

increase the average buy price and decrease the average sell price. We then use the

resulting shifted orderbook queues and apply a grid search algorithm to identify the

trading quantity that maximizes the total return for each exchange pair. This data-driven

approach thus just mimics the choice of an arbitrageur who aims at maximizing arbitrage

profits by optimally accounting for the prevailing orderbook depth. As price differences

obviously can only be positive for one direction, we set negative price differences to zero

as (even without latency) such scenarios do not correspond to arbitrage opportunities.

The resulting matrix of price differences thus contains only positive values.

Figure 4 visualizes the resulting average price differences for each exchange-pair. Panel

A shows the price differences based on best bid and best ask according to Equation (25).

The heatmap shows that some exchanges exhibit quotes that tend to deviate quite system-

atically from (nearly) all other exchanges. For instance, CEX.IO, Gatecoin and HitBTC

quote on average higher bids than most other exchanges and thus exhibit large price

differences when used as a sell-side market. Conversely, other exchange pairs do not fea-

ture large average price differences. For instance, there are hardly any price differences

between Gate and other markets. Panel B of Figure 4 visualizes the average price differ-

ences adjusted for transaction costs, corresponding to elements of ∆̃t. The magnitudes

of price differences decrease on average by 50 bp, indicating the relevance of transaction

costs for the Bitcoin markets. However, price differences adjusted for transaction costs
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are still of relevant magnitudes. Bid prices on Gatecoin, for instance, exceed most other

exchanges on average by roughly 70 bp.

Figure 5 depicts the 25%, 50% and 75% quantiles of the minute-level price differences

across all exchange pairs. We observe a substantial variation over time. The median

price difference across all exchange pairs is on average 24 bp. The 25% (75%) quantile is

on average 10 bp (67 bp), indicating a large dispersion of price differences in our sample

period. The average price difference over all exchange pairs and over the whole sample

period is 55 bp, indicating outliers that raise the mean considerably above the median.

Panel B of Figure 5 depicts the corresponding price differences adjusted for transaction

costs as of Equation (26). Interesting to note is the apparent trend towards quoted price

differences which do not exhibit arbitrage opportunities when adjusting for transaction

costs.

Figure 6 visualizes the dispersion of observed price differences adjusted for transaction

costs for each month in our sample. The kernel estimates indicate that during our sample

period, price differences clustered more around zero whereas the occurrence of extreme

price differences decreased. These dynamics could be due to either increased competition

among arbitrageurs or liquidity providers, or decreased arbitrage boundaries (e.g., because

of lower risk aversion) of market participants.

4 Quantifying Arbitrage Boundaries in Bitcoin Mar-

kets

According to Lemma 3, the estimation of arbitrage boundaries at time t requires to

predict the spot volatility (σs
t )

2, which we assume to be locally constant through the

interval until the settlement of a transaction and the conditional mean and variance of

the latency, Et(τ) and Vt(τ).
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Figure 4: Price Differences between Exchanges.
This heat map shows the mean price differences (in basis points) across time for each exchange pair in our
sample. Price differences are based on minute-level best bid and best ask for each exchange. The darker
the color, the higher the average price difference through our sample period in the specific exchange pair.
White or very light colors indicate that there are on average no or few price differences for a specific
exchange pair.

Panel A: Price Differences Based on Best Bid and Best Ask

Panel B: Price Differences Adjusted for Transaction Costs
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Figure 5: Price Differences over Time.
This figure shows the 25%, 50% and 75% quantiles of the price difference δb,st (in bp) across exchange
pairs on hourly basis. Price differences are based on minute-level best bid and best ask for each exchange.
Price differences adjusted transaction costs, δ̃b,st , are computed based on the transaction cost adjusted
prices of trading qb,st units of BTC where qb,st is chosen as the quantity which maximizes the resulting
return. We then aggregate minute-level price differences to hourly exchange-pair specific price differences
and plot the 25%, 50% and 75% quantiles across all exchange pairs.

Panel A: Price Differences Based on Best Bid and Best Ask

Panel B: Price Differences Adjusted for Transaction Costs
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Figure 6: Price Differences over Time.
This figure shows the dispersion of observed price differences for each month in our sample after adjusting
for transaction costs. The lines correspond to density estimates of all observed price differences (across
all exchange-pairs) for the corresponding month.

4.1 Spot volatility prediction

To compute an estimate of the spot volatility (̂σs
t )

2
, we follow the approach of Kristensen

(2010). For each market s and time t, we estimate (σs
t )

2 by

(̂σs
t )

2
(h) =

t∑
l=1

K (l − t, h)
(
bsl − bsl−1

)2
, (27)

where K (l − t, h) is a one-sided Gaussian kernel smoother with bandwidth h. The choice

of a one-sided kernel rules out any forward-looking bias, in the sense that only information

up to t is utilized. The choice of the bandwidth h involves a trade-off between the variance

and the bias of the estimator. Considering too many observations introduces a bias if

the volatility is time-varying, whereas shrinking the estimation window through a lower

bandwidth results in a higher variance of the estimator. Kristensen (2010) thus proposes
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to choose h such that the Integrated Squared Error (ISE)

ÎSET (h) =
∑

i∈{IT }

[(
bsi − bsi−1

)2 − (̂σs
T,i

)2
(h)

]2
(28)

is minimized. Here, IT refers to all observations on day T and
(̂
σs
T,i

)2
(h) is the spot vari-

ance estimator for timestamp i on day T based on bandwidth h. The optimal bandwidth

on day T + 1 is thus chosen as h = argminh>0 ÎSET (h). The bandwidth choice implies

that information on day T is used for the estimation on day T + 1.

Table 3 summarizes the distributions of the exchange-specific time series of spot

volatility estimates. We trim the distribution of all estimates at 1% on both tails to

eliminate outliers (e.g., due to flickering quotes). Since the underlying is identical, as

expected, the resulting estimates do not differ substantially across exchanges. The aver-

age minute-level volatility across exchanges is about 0.08%, which translates to a daily

volatility of about 3%.17 The average daily volatility of the S&P 500 index during the

same period yields roughly 0.65%, thus Bitcoin represents a rather volatile asset. Given

that the cross-sectional correlation between exchange-specific spot volatilities is high,

Figure 7 displays the corresponding cross-market average on an hourly basis.

4.2 Latency prediction

Figure 8 plots the empirical distribution of the observed latencies at four randomly chosen

dates. For each day, the measured latencies are clustered around 8 minutes, but reveal

a strong skewness, indicating extreme outliers with substantially longer waiting times.

Based on the shape of the empirical distribution, we parametrize the latency as being

conditionally gamma distributed.

Accordingly, the conditional probability density function of transaction i with latency
17We convert minute-level estimates to the daily level by multiplying it with the square root of the

number of minutes on any given trading day, i.e.,
√
1440.
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Table 3: Summary of Exchange-Specific Spot Volatility Estimates.
This table summarizes the estimation results of exchange-specific volatilities following Kristensen (2010).
The estimates correspond to time-weighted average of squared price changes with a one-sided Gaussian
kernel. We report all estimates in percent and on a minute-level.

Mean SD 5 % 25 % Median 75 % 95 %

Binance 0.08 0.04 0.03 0.05 0.07 0.09 0.15
Bitfinex 0.07 0.04 0.02 0.04 0.06 0.09 0.15
bitFlyer 0.08 0.04 0.04 0.06 0.07 0.10 0.16
Bitstamp 0.08 0.04 0.03 0.05 0.07 0.09 0.15
Bittrex 0.11 0.05 0.05 0.09 0.11 0.14 0.20
BTCC 0.06 0.07 0.00 0.00 0.05 0.10 0.22
CEX.IO 0.08 0.04 0.03 0.05 0.07 0.10 0.15
Gate 0.08 0.04 0.03 0.05 0.07 0.10 0.15
Gatecoin 0.09 0.07 0.00 0.03 0.06 0.12 0.24
Coinbase Pro 0.07 0.04 0.02 0.04 0.06 0.08 0.14
Gemini 0.07 0.04 0.03 0.04 0.06 0.09 0.15
HitBTC 0.07 0.04 0.02 0.04 0.06 0.09 0.14
Kraken 0.07 0.04 0.02 0.04 0.06 0.09 0.14
Liqui 0.08 0.04 0.02 0.05 0.08 0.10 0.15
Lykke 0.07 0.05 0.02 0.04 0.06 0.10 0.16
Poloniex 0.08 0.04 0.03 0.05 0.07 0.09 0.15
xBTCe 0.07 0.05 0.00 0.04 0.06 0.09 0.15

Figure 7: Time Series of Spot Volatility Estimates.
This figure summarizes the cross-market average of minute-level volatilities following Kristensen (2010).
The shaded areas correspond to the range across exchanges. The estimates correspond to time-weighted
average of squared price changes with a one-sided Gaussian kernel. For each hour, we compute the
average volatility across all exchanges. The zeros at the end of April and beginning of May result from
missing data.
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Figure 8: Distribution of Observed Latencies.
This figure illustrates the dispersion of the verification latency at four randomly chosen days. The lines
correspond to density estimates of the latency of all transactions verified on the particular day.

τi with parameterized rate parameter βi and shape parameter αT is given by

π(τi|θT ) =
βαT
i

Γ (αT )
ταT−1
i e−βiτi , (29)

where

βi = exp(−x′
iθ

β
T ), αT > 0, (30)

with xi including an intercept and denoting (pre-determined) covariates driving τi, θβT ∈

RK denoting the corresponding vector of parameters and Γ (x) :=
∫
R+

zx−1e−zdz being

the Gamma function. The gamma distribution collapses to an exponential distribution

for αT = 1. We estimate the parameter vector θT := (θβT , αT )
′ on a daily basis using the

sample of all verified transactions {τ1, . . . , τm} on a particular day T .

As covariates xi, we include settlement fees as described in Section 3.2 and the size of

the mempool. The number of transactions waiting for verification serves as a proxy for
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competition among transactions and thus indicates the length of the queue of transactions

waiting for verification. The settlement fees enter as fees per byte as the relevant metric

for validators who face a restriction in terms of the maximum size of a block (in bytes).

Both characteristics are available at the time of the trading decision.

We estimate the parameters θ̂T by maximum likelihood for each day in our sample,

both with and without covariates. In addition, we estimate an exponential model by

fixing αT = 1. In Table 4, we provide summary statistics of the estimated parameters.

The numbers in the brackets denote the 5% and 95% of the time-series of estimated

parameters. The covariates are statistically significant and have the expected sign for

nearly all days, i.e., higher fees and lower mempool activity predict a lower latency.

Likelihood ratio tests indicate that the covariates have joint explanatory power. We

therefore find evidence that the waiting time until a transaction enters the next block

of the blockchain is predictable. We moreover find that the exponential distribution is

rejected in favor of the more general gamma distribution.

To avoid any look-ahead bias, we use the day-T parameter estimates, θ̂T , to parametrize

the conditional moments of the latency distribution on the subsequent day T + 1. Ac-

cordingly, the (conditional) mean and variance of the latency τ induced by a transaction

at time t on day T + 1 is given by

Êt (τ) = α̂T exp (x′
tθ̂

β
T ), and V̂t (τ) = α̂T exp (2x′

tθ̂
β
T ). (31)

As a proxy for the (individually chosen) settlement fees we use the fees recommended by

the Bitcoin network. Intuitively, these recommendations are based on an algorithm that

provides the lowest fee that during the recent history resulted in a high fraction of trans-

actions that got validated in the next possible block. This fee, however, is higher than

the (unobservable) ’optimal’ fee an arbitrageur would choose if she would not only aim at

minimizing the latency but also at maximizing her expected returns (net of transaction
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Table 4: Parameter Estimates for the Duration Models.
This table reports summary statistics for the estimated parameters of the gamma duration model given
by Equation (29). Fee denotes fee per byte and Mempool Size is the number of transactions in the
mempool waiting for verification. The model is estimated on a daily basis, where the reported values
denote the time series average of the estimated parameters. Values in brackets correspond to the 5% and
95% percent quantiles of the estimated parameters. F-Test denotes the fraction of days (in percent) at
which the hypothesis θT = 0 is rejected at the 95% percent level. LR (Covariates) rests on a likelihood
ratio test against a model without covariates. LR (Gamma vs. Exp.) rests on a likelihood ratio test
against the exponential specification. The reported value denotes the fraction of days (in percent) where
the hypothesis that the likelihood of the more general model equals the likelihood of the restricted model
is rejected at the 95% significance level.

Exponential Gamma
W Covariates W/o Covariates W Covariates W/o Covariates

Intercept 2.75 2.79 2.9 2.98
[ 2.26 , 3.45 ] [ 2.29 , 3.53 ] [ 2.08 , 4.04 ] [ 2.21 , 4.19 ]

α - - 0.86 0.82
- - [ 0.55, 1.16 ] [ 0.51 , 1.12 ]

Fee per Byte -0.04 - -0.04 -
[ -0.1 , -0.01 ] - [ -0.1 , -0.01 ] -

Mempool Size 0.19 - 0.19 -
[ -0.03 , 0.49 ] - [ -0.03 , 0.49 ] -

F-test 100 - 99.52 -

LR (Covariates) 100 - 99.43 -
LR (Gamma vs.Exp.) 100 - - -
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Figure 9: Expected Latency in the Bitcoin Network.
This figure summarizes the conditional expected latency. The estimates on day T + 1 are based on the
fitted parameter θ̂GT of the gamma model. We plot the average expected latency on an hourly basis
through our sample period.

costs). Therefore, the expected arbitrage boundaries resulting from these recommended

fees are smaller than in the case of lower (’optimal’) settlement fees. Consequently, our

estimates are conservative in the sense that they represent the smallest interval in which

price differences might persist.

Figure 9 provides the corresponding predictions of latencies. The predictions vary

considerably, mainly due to the dynamics of the mempool size. The average expected

latency for the entire sample is 13.4 minutes. During certain periods, however, the ex-

pected latency exceeds 90 minutes, thus exposing the arbitrageur to substantial price risk

if the spot volatility during these periods is high as well.
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4.3 Estimates of arbitrage boundaries

In the empirically relevant CRRA case based on Lemma 3, the estimated arbitrage bound-

aries d̂st are given by

d̂st =
1

2
σ̂s
t

√
γc1 +

√
γ2c21 + 2γ(γ + 1)(γ + 2)c2, (32)

c1 = Êt (τ) + Êt (τB) · (Bs − 1), (33)

c2 = V̂t (τ) + V̂t (τB) · (Bs − 1)2 +
(
Êt (τB) · (Bs − 1) + Êt (τ)

)2
, (34)

where σ̂s
t denotes the square-root of the estimated spot volatility on the sell-side market,

and Êt (τ) and V̂t (τ) denote the estimated conditional mean and variance, respectively,

of the latency distribution. Moreover, Bs refers to the number of blocks that the sell-side

exchange s requires to consider incoming transactions as being valid. This exchange-

specific security requirement thus further increases the settlement latency beyond the

waiting time until a transaction’s validation in the first block.18 We thus decompose the

latency into two components: the time it takes until a transaction is included in the

blockchain, τ , and the additional time until exchanges accept the transaction as de facto

being immutable. While τ is predictable using information on the current state of the

Bitcoin network (see Section 4.2), the validation time of subsequent blocks is actually

unpredictable. In fact, we do not find evidence against non-zero autocorrelation in wait-

ing times and constant volatility in the block validation time. This evidence supports

the notion that the validation times of blocks are partly under control of the Bitcoin

network and are internally impaired by the computational complexity of the underlying

cryptographic problem. As a result, we can safely assume that the waiting times between

subsequent blocks after the first one, which includes the current transaction, are indepen-
18bitFlyer and Liqui do not report a minimum number of confirmations. They rather use a discretionary

system depending on the individual transaction and the state of the network. In this case, we assume the
number of confirmations to be equal to the median across all exchanges that provide such information,
which is 3.

40



Figure 10: Estimated Arbitrage Boundaries over Time.
This figure shows the average estimated arbitrage boundary based on CRRA utility with risk aversion
γ = 2. We estimate the boundaries using spot volatility estimates following Kristensen (2010) and
conditional moments of the latency based on a gamma distribution. The solid blue line shows the hourly
averages across all exchanges. The solid red line corresponds to the weekly moving average over the
hourly averages.

dently and identically distributed. As validators append a new block on average every

9.5 minutes in our sample (see Table 2), we use this magnitude as the best-possible pre-

diction of the time between two subsequent blocks, Êt (τB). Accordingly, V̂t (τB) denotes

the (sample) variance of the time between two consecutive blocks.

In line with Conine et al. (2017), we fix the coefficient of risk aversion to γ = 2 and

estimate d̂st for each exchange on a minute level. Figure 10 illustrates the time variation of

the average arbitrage boundaries across all exchanges. We observe a substantial variation

of these boundaries over time. The correlation between arbitrage boundaries and spot

volatilities (expected latency) is 95% (16%) which indicates that volatility is the main

driver of the variation in arbitrage boundaries.

Table 5 gives summary statistics of the resulting time series of arbitrage boundaries,

which, on average vary from 54 bp to 250 bp. Our theoretical framework allows us to

directly analyze the relevance of the latency uncertainty. As the variance of the arbi-
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Table 5: Summary of Arbitrage Boundaries.
This table summarizes the time series of estimated arbitrage boundaries for the individual sell-side mar-
kets. We compute arbitrage boundaries for risk aversion parameter γ = 2 for the case with isoelastic
utility. We estimate the boundaries using the spot volatility estimator of Kristensen (2010) and con-
ditional moments of the latency based on a gamma distribution. We report all values in basis points
(except otherwise noted). Uncertainty corresponds to the (percentage) contribution of the uncertainty in
latency to the median arbitrage boundary. Security gives the (percentage) contribution of the required
number of confirmations to the median arbitrage boundary.

Mean SD 5 % 25 % Median 75 % 95 % Uncertainty Security

Binance 96.64 53.94 40.61 63.17 84.79 117.75 194.70 38.09 45.07
Bitfinex 116.55 70.11 39.50 71.10 100.92 146.32 244.49 44.34 57.63
bitFlyer 136.25 74.14 58.76 92.60 119.14 162.36 271.20 44.64 58.15
Bitstamp 125.72 72.29 52.68 82.16 109.69 151.34 248.40 44.42 57.62
Bittrex 143.91 59.43 68.99 106.63 136.07 173.09 251.26 37.97 45.08
BTCC 100.92 124.09 0.00 0.11 65.97 136.32 353.93 37.78 43.88
CEX.IO 130.55 65.62 47.52 89.26 122.08 160.68 239.71 44.36 58.21
Gate 101.94 52.80 41.96 68.76 91.92 124.28 194.80 38.48 45.42
Gatecoin 249.62 246.77 9.02 83.76 168.65 326.00 808.93 50.35 71.98
Coinbase Pro 110.31 69.94 36.09 66.40 93.45 137.81 236.91 44.04 57.77
Gemini 117.30 69.86 41.45 73.15 101.42 146.74 239.14 44.37 57.80
HitBTC 87.75 53.01 30.79 55.02 76.58 107.75 177.76 38.14 44.83
Kraken 170.14 101.48 61.60 104.25 148.79 210.70 350.80 50.23 72.15
Liqui 128.17 64.41 36.11 86.59 122.77 160.59 235.52 44.29 58.21
Lykke 120.86 82.12 32.95 66.61 100.31 155.64 274.89 43.64 57.49
Poloniex 54.18 34.28 21.11 32.60 45.28 65.33 117.48 12.39 0.00
xBTCe 112.35 79.92 0.00 65.57 95.03 145.76 251.42 44.40 58.21

trageurs’ returns increases with the (conditional) variance of the settlement latency, we

can compare the estimated arbitrage boundaries to the (hypothetical) case of a deter-

ministic latency. The second to last column in Table 5 gives the increase in arbitrage

boundaries when adjusting for the randomness in latency. The values correspond to the

(percentage) difference between the median arbitrage boundary and boundaries based

on the assumption Vt(τ) = Vt(τB) = 0. We find that the impact of the randomness in

latency is considerable and accounts on average for approximately 43% of the arbitrage

boundaries.

Moreover, the arbitrage boundaries differ across exchanges due to an additional source

of variation: we can decompose arbitrage boundaries into the latency until a transaction

is included in a block for the first time, τ , and the latency until a transaction fulfills

exchange-specific security requirements, τB. While the conditional moments of the la-
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tency distribution affect the time series variation of the boundaries, the cross-sectional

variation is only driven by the exchange-specific spot volatilities and the required number

of confirmations, Bs. For instance, even though the spot volatility estimates are highly

correlated across exchanges, the arbitrage boundaries of Gatecoin are large particularly

due to the occurrence of periods of high volatility. Gatecoin and Kraken require Bs = 6

confirmations. Thus, these exchanges show on average the highest boundaries, while

Poloniex requires only Bs = 1 confirmation yielding the smallest boundary on average.

The last column in Table 5 gives the increase in the median arbitrage boundary when

taking exchange-specific number of confirmations into account. The values correspond to

the (percentage) difference between the median arbitrage boundary as of Equation (32)

and corresponding boundaries based on the assumption Bs = 1 for all exchanges. We

observe that the impact of exchange-specific security components on arbitrage boundaries

is substantial and accounts for 55% of the arbitrage boundaries, on average.

This analysis provides deeper insights into the implied costs of distributed settlement

under sufficiently high security standards. These costs materialize in terms of consider-

able limits of arbitrage that constitute a significant market friction. Such no-arbitrage

regions allow for violations of the law of one price and thus have implications for pricing

and quoting of market makers. To shed more light on these costs imposed by confirmation

requirements, we quantify the relationship between the level of security and the resulting

latency. For each exchange, we compute arbitrage boundaries for a given hypothetical

number of confirmations and compare it to the baseline case of no additional security

requirements (i.e., whenever the inclusion in the first upcoming block is sufficient). Fig-

ure 11 shows the increase in the average (across time and the cross-section) arbitrage

boundary for varying numbers of confirmations. We observe that (on average) arbitrage

boundaries increase by 2% if the security requirements are increased by one block. For

instance, requiring 10 confirmations increases the average arbitrage boundary by more
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Figure 11: Number of Confirmations and Arbitrage Boundaries.
This figure visualizes the trade-off between a higher number of confirmations and the resulting increase
in arbitrage boundaries. For each exchange, we compute arbitrage boundaries for a hypothetical number
of confirmations (horizontal axis). We then compare the resulting arbitrage boundaries to the baseline
case of no additional confirmations, i.e., whenever an inclusion in the first block is sufficient. For each
number of confirmation, we compute the time-series and cross-sectional average increase in arbitrage
boundaries relative to the baseline case (vertical axis).

than 20%.

4.4 Quantifying violations of arbitrage limits

To quantify to which extent observed cross-market price differences exceed the estimated

arbitrage boundaries, we define the price differences in excess of arbitrage boundaries as

Et :=

∆t −


d̂1t
...

d̂Nt


(
1 . . . 1

)⊙Ψt , (35)
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where the (i, j)-th element of Ψt is defined as

Ψt,i,j = 1

{
bit − ajt > d̂it

}
, (36)

and 1{.} is the indicator function, and ⊙ corresponds to the element-wise multiplication

operator. Similarly, we define the price differences adjusted for transaction costs in excess

of arbitrage boundaries as

Ẽt :=

∆̃t −


d̂1t
...

d̂Nt


(
1 . . . 1

)⊙ Ψ̃t, with Ψ̃t,i,j = 1

{
b̃it(q

i,j
t )− ãjt(q

i,j
t ) > d̂it

}
.

(37)

Figure 12 plots the time series of cross-sectional average returns in excess of the arbitrage

boundaries. The blue line corresponds to price differences at the best bid and best ask

not adjusted for transaction costs according to Equation (35). The red dashed line shows

the corresponding excess price differences after adjusting for transaction costs according

to Equation (37). Taking transaction costs into account lowers the returns in excess of

arbitrage boundaries on average by 15% in our sample.

To quantify which proportion of observed differences are within the arbitrage bound-

aries, we compute the fractions min{1, d̂st/δ
b,s
t }, where δb,st corresponds to the differences

of the (log) best bid and ask prices at exchanges b and s at time t according to Equation

(25), and d̂st is the arbitrage boundary for exchange s at time t.

Panel A of Figure 13 visualizes the time series of the average across all exchange-

pair-based price differences within arbitrage boundaries for different values of the risk

aversion parameter γ. We find that even for very low values of risk aversion, roughly

88% of observed price differences fall within the estimated arbitrage boundaries. By

construction, a higher risk aversion widens the no-trade regions of the arbitrageur and
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Figure 12: Average Returns in Excess of Arbitrage Boundaries.
This figure shows the time series of the average minute-level returns in excess of the estimated arbitrage
boundaries. The solid blue line corresponds to price differences based on the best bid and best ask of
the individual exchange pairs, Et. The red line displays the corresponding excess price differences after
adjusting for transaction costs, Ẽt.
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thus implies higher limits to arbitrage.

Panel B of Figure 13 provides the corresponding proportions min{1, d̂s,bt /δ̃b,st }, when

we adjust the boundaries for the impact of transaction costs utilizing optimal trading

quantities, qb,st , according to Equation (26). On average, 98% of all observed price differ-

ences are within arbitrage boundaries due to stochastic latency when transaction costs

are taken into account. Therefore, the vast majority of substantial price differences ob-

served at the Bitcoin market are within no-trade regions of rational arbitrageurs, taking

into account costs of trading and the risks associated with stochastic latency.

Obviously, observations outside the arbitrage boundaries might arise due to addi-

tional market frictions, which are not captured by our theory, e.g., capital controls (Choi

et al., 2018), or can be explained by higher risk aversion of the arbitrageurs. Instead of

displaying arbitrage limits for different values of (relative) risk aversion, one may alter-

natively compute the implied relative risk aversion, which is necessary to encompass all

price differences observed. In particular, we compute the risk aversion parameter γ̂b,s
t , for

which the observed price difference of exchange pair {b, s} at time t are located within

the implied limits to arbitrage. The interpretation of γ̂b,s
t is straightforward: if the risk

aversion of an arbitrageur is below γ̂b,s
t , it would be rational to trade. We compute γ̂b,s

t

according to the following lemma.

Lemma 7. Define γ̂b,s
t as the root of the cubic polynomial

(
δ̃b,st

)4
−1

8
(σ̂s

t )
4 c2

(
γ̂b,s
t

)3
− 3

8
(σ̂s

t )
4 c2

(
γ̂b,s
t

)2
− 1

2
(σ̂s

t )
2

(
c1

(
δ̃b,st

)2
+

1

2
(σ̂s

t )
2 c2

)
γ̂b,s
t = 0,

(38)

where, analogously to Equations (33) and (34), c1 = Êt (τ) + Ê (τB) · (Bs − 1) and

c2 = V̂t (τ) + V̂ (τB) · (Bs − 1)2 +
(
Ê (τB) · (Bs − 1) + Êt (τ)

)2
. Then, price differences

(adjusted for transaction costs) δ̃b,st constitute a (statistical) arbitrage opportunity for an

arbitrageur with risk aversion γ only if γ < γ̂b,s
t .
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Figure 13: Explanatory Power of Limits to Arbitrage.
These figures show the share of price differences explained by arbitrage boundaries. For each exchange
pair, we compute d̂st/∆

b,s
t and then take the hourly average. In Panel A, we plot the results for different

levels of risk aversion. In Panel B, we plot the results with and without taking transaction costs into
account for risk aversion γ = 2.

Panel A: Different Levels of Risk Aversion

Panel B: With and Without Transaction Costs
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Proof. See Appendix C.

The exchange pair specific implied risk aversion γ̂b,s
t is defined in a way such that the

observed price differences δ̃b,st , adjusted for transaction costs, coincide with the arbitrage

boundaries for an isoelastic utility function with risk aversion parameter γ̂b,s
t . As the

arbitrage boundaries monotonically increase with risk aversion, any value of γ below

γ̂b,s
t constitutes a trading opportunity for the arbitrageur. Conversely, γ > γ̂b,s

t reflects

that the observed price differences do not justify (unconstrained) trading because an

arbitrageur with a higher risk aversion obtains higher (expected) utility by trading less

or not at all. As the asset is traded on N markets, we define γmax
t as the minimum

risk aversion parameter for which all observed price differences fall within the implied

boundaries to arbitrage, i.e.,

γ̂max
t := max

i,j∈{1,...,N}
γ̂i,j
t . (39)

Figure 14 shows the time series of implied risk aversion parameters γ̂max
t . On average

across our sample, the implied minimum risk aversion equals 12. During more recent

periods, the decrease in observed price differences reduces γ̂max
t considerably and sug-

gests that arbitrage opportunities vanish for reasonable values of relative risk aversion.

Estimates of γ in the recent literature range from as little as 0.35 to as much as 9.0 (e.g.,

Hansen and Singleton, 1982; Aivazian et al., 1986; Chetty, 2006). Our data suggests

that particularly since August 2018 the risk aversion of active arbitrageurs required to

exploit remaining price differences (after adjusting for transaction costs) would be close

to zero. An alternative interpretation of this finding is that arbitrage opportunities at

Bitcoin markets vanish because (i) observed price differences decrease and (ii) the re-

maining instantaneous returns do not justify the substantial latency risk anymore even

for arbitrageurs that are nearly risk neutral.

Finally, to assess the overall efficiency of the market, we compute the proportion of

observations (on a minute level and per exchange pair), where the price differences exceed
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Figure 14: Implied Risk Aversion.
This figure shows the time series of the implied risk aversion parameter γ̂max

t , which yields the smallest
relative risk aversion such that all observed price differences (adjusted for transaction costs) fall within the
implied limits to arbitrage. The solid blue line shows the hourly averages. The solid red line corresponds
to the weekly moving average over the hourly averages.
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Table 6: Frequency of Arbitrage Opportunities.
This table shows the fraction of all exchange pair observations of a given month that exceed a certain
threshold. The first column corresponds to the fraction of minute-level price differences greater than zero,
the second column corresponds the fraction of price differences in excess of arbitrage boundaries implied
by stochastic latency. The third column gives the fraction of price differences in excess of boundaries
taking transaction costs into account.

Month δb,st > 0 δb,st > d̂st δ̃b,st > d̂st

2018-April 66.11 29.10 21.75
2018-May 63.05 15.31 2.91
2018-June 68.59 24.54 8.42
2018-July 60.66 16.53 7.36
2018-August 55.16 3.72 1.20
2018-September 55.16 6.69 0.89

the arbitrage boundaries. Table 6 shows the resulting summary statistics on a monthly

basis. We observe arbitrage opportunities, δb,st > 0, in 63% of all observations. However,

adjusting for stochastic latency, we only observe arbitrage opportunities, δb,st > d̂st , in

17% of all cases. The number decreases to 8% when we additionally take transaction

costs into account (δ̃b,st > d̂st). Interestingly, the occurrence of arbitrage opportunities as

implied by our theoretical framework dropped significantly since August 2018.

5 Conclusions

Many market participants believe that distributed ledger technology has the potential to

radically transform the transfer of assets. The promises of greater efficiency and higher

security, however, come at the cost of stochastic latency in the settlement process without

the option to dispose positions during this waiting time. We theoretically show that

stochastic latency implies limits to arbitrage as it exposes arbitrageurs to price risk. We

develop a framework which allows us to derive arbitrage boundaries for arbitrary concave

utility functions and a general class of latency distributions. The arbitrage boundaries

increase with spot volatility, risk aversion, expected latency and uncertainty in latency.

Furthermore, we show how to estimate these arbitrage boundaries for the realistic case
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of a utility function with constant relative risk aversion.

To quantify the limits to arbitrage in the Bitcoin market, we utilize more than 22

million transactions from the Bitcoin blockchain and high-frequency orderbook data from

several exchanges. We find that stochastic latency is a quantitatively important market

friction and imposes arbitrage boundaries of 124 bp on average. Approximately 43% of

these boundaries are due to the randomness in waiting times until settlement.

The quantification of latency-based limits to arbitrage is essential to assess the effi-

ciency of a market relying on distributed ledger technology. In fact, we show that on

average, 88% of observed Bitcoin price differences are within the corresponding arbitrage

boundaries. Additionally adjusting for transaction costs, this proportion increases to

98%.

Stochastic latency constitutes a novel market friction that might have far reaching im-

plications. First, limits to arbitrage implied by stochastic latency reduce price efficiency,

as the lower activity of arbitrageurs reduces the information flow across markets. Second,

deviations from the law of one price affect the pricing of securities, as risk neutral proba-

bilities are not uniquely defined. Third, the implied costs of stochastic latency depend on

the design of the distributed ledgers and should influence the decision whether to migrate

to a distributed settlement system. Fourth, the magnitude of these boundaries provides

market makers flexibility in setting their quotes without being exploited by arbitrageurs.

Overall, our paper provides a first step to understand the impact of stochastic settlement

latency on financial markets.
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Appendix

A Distributed ledger technology and stochastic latency

In its essence, the distributed ledger technology (DLT) is a digital record-keeping system

that allows for the verification, updating and storage of transfers of ownership without

the need for a designated third party. It relies on a single ledger that is distributed

among many different parties who are incentivized to ensure a truthful representation of

the transaction history. Nakamoto (2008) first popularized the idea of DLTs in a financial

context with the Bitcoin protocol and the underlying concept of blockchain. Nowadays,

however, Bitcoin is just one of several hundred applications that use the blockchain

technology, while other forms of DLTs, in particular directed acyclic graphs (DAG), are

actively explored as well. In the following, we first describe the building blocks of DLT

before we turn to a more detailed discussion of blockchains and DAGs.

A.1 Fundamentals of distributed ledgers

DLT solves the fundamental problems that arise in the context of digital transfer of

ownership. Transactions are pieces of information that agents authorize to be sent to

other agents. A record-keeping system has to ensure that transactions are signed and

recorded in the correct order. In principle, a single authority could verify signatures and

consistency of transactions, but it would be prone to failures. As a result, it might be

desirable to distribute this type of information to a system with multiple machines that

can sustain the failure of single units. A fault-tolerant design would enable a system to

continue its operation, even when one or several units stop working.

To achieve this goal, DLT essentially combines two fundamental concepts. First, a

distributed ledger is based on asymmetrical cryptography that enables digital signatures

of transactions. On the one hand, the sender of a transaction wants to be the sole owner
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of the signature that allows the transfer of assets from her private wealth. On the other

hand, a record-keeping system requires information about the identities of the parties

involved. Cryptographic algorithms ensure that any private keys are only known to their

owners, while public keys may be disseminated widely. That is, everybody can check

whether a private key is valid, but nobody can back out the private key from public

information.19

Second, a distributed ledger is conceptually a distributed system which checks whether

transactions should be in the system and in which order. In a distributed system, many

machines are connected through a network and ensure that the system keeps operating

even when some machines fail or try to mess up the system. For instance, if the sender

of a transaction is also a potential validator, then she has an incentive for dishonest

behavior, such as double-spending or revoking transactions. Individual machines have to

reach some form of consensus about actual transaction histories. This consensus can be

achieved through different network structures such as blockchain or DAG.

A.2 Blockchain

In the context of blockchain, the typical solution to the consensus problem involves com-

petition among potential validators for the right to append information to the ledger.20

The most common consensus protocol, Proof-of-Work (PoW), involves solving a com-

putationally expensive problem where the winner gets the right to update the ledger

and typically receives a reward. This particular form of DLT is called blockchain since

transactions are not verified individually, but rather appended to the ledger in blocks.

Validators bundle transactions that wait for verification and try to solve the problem.
19The most simple illustrative example for asymmetric cryptography is the multiplication of prime

numbers. One can easily multiply two prime numbers (private key) to get a large number (public key),
but it can be difficult to infer the initial set of numbers from the product.

20The problem is more severe in a permissionless blockchain where anybody can access and potentially
update the blockchain. Other variants, where only few institutions or individuals are entitled to direct
access to the blockchain, so-called permissioned blockchains, limit the problem to few players.
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However, the system’s protocol limits the number of transactions that can be included

in a single block. This limit leads to a queue of unconfirmed transactions and validators

are free to choose the transactions they try to append to the blockchain. Average verifi-

cation times thus not only depend on the number of unconfirmed transactions, but also

on the fee associated with a transaction, as validators find it more attractive to include

transactions with high fees in their blocks.21

The computationally difficult problem typically relies on cryptographic hash func-

tions, which map an input of arbitrary size to output of fixed size and cannot be inverted.

In the Bitcoin network, validators bundle the information of several transactions and a

reference to the current state of the blockchain and plug the data into a hash function.

The hash function converts this input into a sequence of characters and numbers of cer-

tain length. The system’s protocol then requires that the output starts with a certain

number of zeros. The probability of calculating a hash that starts with many zeros is

very low and to generate a new hash, validators include a random number called nonce

that can lead to a very different output. The difficulty of the problem is then determined

by the number of leading zeros validators have to find. Depending on total available

computational power, the system regularly adjusts the target to achieve an average of 10

minutes between two consecutive blocks.

While validators in a PoW system utilize substantial computational resources to win

the competition for block generation, validators might also be randomly chosen based on

their wealth. In the so called Proof-of-Stake (PoS) protocol, validators stake their tokens

to be able to create blocks. The higher a validator’s stake, the higher are the chances of

creating the next block. After successfully appending a new block, the validator receives

transaction fees just as in the case of PoW. If the validator submits an incorrect block or is

offline during a staking period, then she is penalized and (at least partly) loses her stake.
21Biais et al. (2017) provide an extensive discussion of the equilibrium properties of the PoW game,

while Easley et al. (2017) analyze the role of transaction fees.
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The penalty might either arise explicitly through a deduction of funds from the stake or

implicitly as dishonest behavior creates a feedback on the value of the stake. In particular,

if a validator appends to the blockchain in a way that perpetuates disagreement, then

she imposes a cost upon all users of the particular blockchain. Such behavior lowers the

value of the whole network and is also reflected in a lower valuation of the misbehaving

validator’s stake. The endogenous feedback between validators’ behavior and the value

of their stakes incentives them to eventually reach consensus.22

Other consensus protocols combine features of PoW and PoS. For instance, delegated

Proof-of-Stake (DPoS) relies both on stakeholders, who elect validators and have voting

rights proportional to their stake, and validators, who exert effort to append information

to the ledger. The reputation of validators determines their chance for reelection, while

stakeholders have incentives to select truthful validators.

A.3 Directed acyclic graphs

While blockchains record transactions in blocks, DAGs store information in single trans-

actions. More specifically, any transaction represents a node in a graph (i.e., a set of

vertices connected by edges) and each new transaction confirms at least one previous

transaction, depending on the configuration of the underlying protocol. The longer the

branch on which a transaction is based, the more certain is its validity. Intuitively,

only once a transaction is broadcasted sufficiently throughout the network, it is verified.

DAGs thus hinge on a steady flow of new transactions that enter the network to verify

and reference old transactions. The connections between transactions are directed (i.e.,

the edges in the form of confirmations are one way) and the whole graph is acyclic (i.e.,

it is impossible to traverse the entire graph starting from a single edge). Given a high

number of transactions, DAG ledgers scale better and can achieve consensus faster than

blockchains which rely on fixed block sizes and limited verification rates.
22See Saleh (2018) for a game-theoretical foundation of the stability of the PoS protocol.
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A.4 Stochastic latency in distributed systems

A distributed system features stochastic latency in transaction verification, as it is ex-ante

unclear how long it takes until validators achieve consensus or to broadcast that consen-

sus through the network. For PoW, latency depends on the time it takes for validators

to find a solution to the computationally expensive problem. In the Bitcoin protocol, for

instance, validators append a new block on average every 10 minutes, while the process

takes about 20 seconds in the Ethereum protocol. For PoS, latency depends on how long

disagreement on the correct order of transactions persists. For both blockchain-based

protocols, the information still needs to be distributed to all other nodes in the network,

possibly facing technological limitations that prevent instant percolation. Technological

limits are also particularly relevant for DAGs which rely on a large number of nodes

that verify transactions and distribute information through the network. Overall, any

distributed system that refrains from using designated third-parties bearing the counter-

party risk associated with transactions thus features stochastic latency.

B Latency distribution under stochastic volatility

We can relax the assumption that σs
t is constant over the interval [t, t + τ ] by allowing

σs
t to vary over time. More specifically, let σs

t : R+ → R+ with θ(τ) :=
t+τ∫
t

(σs
k)

2 dk <

∞ ∀τ , i.e., the volatility of the sell-side market follows a (deterministic) path with

bounded integrated variance. Assuming µs
t = 0, we can then rewrite the log returns of

the arbitrageur for given latency τ as

rb,s(t:t+τ) = δb,st +

t+τ∫
t

σs
kdW

s
k . (A.1)
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The integral above corresponds to a Gaussian process with independent increments. More

specifically, we get

Et

((
rb,s(t:t+τ) − δb,st

)2)
= θ(τ)− θ(0) = Et

(
W s

θ(τ) −W s
θ(0)

)
. (A.2)

In other words, the time changed Brownian motion W s
θ(t) has the same distribution as

the log returns given in Equation (A.1) (see, e.g. Durrett, 1984; Barndorff-Nielsen et al.,

2002). We can thus rewrite the return process as

rb,s(t:t+τ) = δb,st +

t+θ(τ)∫
t

dW s
k , (A.3)

The implications of Lemma 1 still hold, but we need to compute the moment generating

function of the transformed latency mθ(τ)(u), which depends on the latency distribution

and the dynamics of the volatility process. First, note that, as θ(τ) is strictly increasing,

the probability integral transformation yields the distribution of τ(θ),

Pt (θ(τ) = y) = Pt

(
τ = θ−1 (y)

)
∀y > 0. (A.4)

Finally, the distribution of θ(τ) is fully described via its characteristic function which is

of the form

φθ(τ) (u) = Et

(
eiθ(τ)u

)
=

1

2π

∫ ∞

0

∫ ∞

−∞
φτ (s) e

−isτdseiθ(τ)udτ. (A.5)

Lévy’s characterization allows to extend these ideas to more general non-deterministic

integrands and to stochastic time-changes. Although Equation (A.5) allows to derive

theoretical arbitrage boundaries based on Theorem 1 for every continuous local martin-

gale, we restrict our analysis to analytically more tractable and intuitive dynamics of the
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price process and the associated settlement latency.

C Proofs

Proof of Theorem 1. First, note that the characteristic function in Lemma 1 yields the

first moment µr of the returns as given by

Et

(
rb,s(t:t+τ)

)
= (−i)

∂

∂u
φrb,s

(t:t+τ)
(u)

∣∣∣∣
u=0

= δb,st eiuδ
b,s
t mτ

(
iuµs

t −
1

2
u2(σs

t )
2

)
+ eiuδ

b,s
t m′

τ

(
iuµs

t −
1

2
u2(σs

t )
2

)(
µs
t + iu(σs

t )
2
) ∣∣∣∣

u=0

= δb,st + Et(τ)µ
s
t , (A.6)

since mτ (0) = 1 and m′
τ (0) = Et(τ) by definition of the moment generating function.

In spirit of Arditti (1967) and Scott and Horvath (1980), we express the expected

utility of the arbitrageur by a Taylor expansion which results in a function of the higher-

order moments of the return distribution. A Taylor expansion of a general utility function

Uγ(r) around the mean µr yields

Uγ

(
rb,s(t:t+τ)

)
=

∞∑
k=0

U
(k)
γ (µr)

k!

(
rb,s(t:t+τ) − µr

)k
, (A.7)

where U
(k)
γ (µr) :=

∂k

∂µk
r
Uγ (µr). Then, taking expectations yields

Et

(
Uγ

(
rb,s(t:t+τ)

))
= Uγ (µr) +

∞∑
k=2

U
(k)
γ (µr)

k!
Et

((
rb,s(t:t+τ) − µr

)k)
. (A.8)

Following Markowitz (1952), we next consider a first-order Taylor expansion for the CE.

We thus implicitly assume that the risk premium, µr−CE, is small and that higher-order
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moments vanish:

Et

(
Uγ

(
rb,s(t:t+τ)

))
= Uγ (CE) = Uγ (µr) + U ′

γ (µr) (CE − µr) . (A.9)

Moreover, the first-order Taylor expansion provides a convenient closed-form approxima-

tion of the certainty equivalent which is linear in the moments of the return distribution.

We obtain the equation in the theorem by equating (A.8) and (A.9), plugging in (A.6),

and solving for CE:

CE = δb,st + Et(τ)µ
s
t +

∞∑
k=2

U
(k)
γ

(
δb,st + Et(τ)µ

s
t

)
k!U ′

γ

(
δb,st + Et(τ)µs

t

)Et

((
rb,s(t:t+τ) − δb,st − Et(τ)µ

s
t

)k)
.

(A.10)

Proof of Lemma 2. For the exponential utility, we have U (k) (r) /U ′ (r) = (−γ)k−1 for

k ≥ 1. Therefore, from Theorem 1 we have

CE =δb,st + Et (τ)µ
s
t −

γ

2
µrb,s

(t:t+τ)
(2) +

γ2

6
µrb,s

(t:t+τ)
(3)− γ3

24
µrb,s

(t:t+τ)
(4) +O (r) , (A.11)

where µrb,s
(t:t+τ)

(k) := Et

((
rb,s(t:t+τ) − δb,st − Et (τ)µ

s
t

)k)
is the k-th order central moment

of the returns and O (r) corresponds to the Taylor approximation error which we neglect

subsequently. Recognizing that by definition mrb,s
(t:t+τ)

(iu) = φrb,s
(t:t+τ)

(u), we can derive the

moment generating function of the returns given by

mrb,s
(t:t+τ)

(u) = euδ
b,s
t mτ

(
uµs

t +
1

2
u2(σs

t )
2

)
. (A.12)
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The central moment generating function is defined as

Crb,s
(t:t+τ)

(u) = Et

(
exp

(
u
(
r(t:t+τ) − Et(r

b,s
(t:t+τ))

)))
= exp

(
−uEt(r

b,s
(t:t+τ))

)
mrb,s

(t:t+τ)
(u) .

(A.13)

Thus, we have

µrb,s
(t:t+τ)

(k) =
∂k

∂uk
Crb,s

(t:t+τ)
(u)

∣∣∣∣
u=0

=
∂k

∂uk
exp (−Et (τ)µ

s
tu)mτ

(
uµs

t +
1

2
u2 (σs

t )
2

) ∣∣∣∣
u=0

.

(A.14)

Basic calculus then yields

µrb,s
(t:t+τ)

(2) = Vt (τ) (µ
s
t)

2 + (σs
t )

2 Et (τ) (A.15)

µrb,s
(t:t+τ)

(3) = 3µs
t (σ

s
t )

2Vt (τ) + (µs
t)

3 Et

(
(τ − Et (τ))

3) (A.16)

µrb,s
(t:t+τ)

(4) = (µs
t)

4 Et

(
(τ − Et (τ))

4)+ 3Et

(
τ 2
)
(σs

t )
4

+ 6 (σs
t )

2 (µs
t)

2 (Et (τ)
3 + Et

(
τ 3
)
− 2Et (τ)Et

(
τ 2
))

. (A.17)

Then, we plug in equations (A.15)-(A.17) into (A.11). Finally, recognizing that the

arbitrageur exploits price differences if and only if CE > 0, we can solve for the minimum

instantaneous price differences δb,st which completes the proof.

Proof of Lemma 3. The proof follows directly from applying Theorem 1 together with

the derivatives of the utility function which yields

dst −
1

2

γ

dst
(σs

t )
2Et (τ)−

1

8

γ(γ + 1)(γ + 2)

(dst)
3

(σs
t )

4Et

(
τ 2
)
= 0. (A.18)

Then, by Descartes’ rule of signs there is exactly one positive real root to the polynomial

(dst)
4 − 1

2
γ(σs

t )
2Et (τ) (d

s
t)

2 − 1

8
γ(γ + 1)(γ + 2)(σs

t )
4Et

(
τ 2
)
= 0. (A.19)
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All four solutions of the quartic polynomial are given by

dst = ± 1√
2

√
γ

2
(σs

t )
2Et (τ)±

√
γ2

4
(σs

t )
4Et (τ)

2 +
γ(γ + 1)(γ + 2)

2
(σs

t )
4Et (τ 2). (A.20)

However, since

γ

2
(σs

t )
2Et (τ) <

√
γ2

4
(σs

t )
4Et (τ)

2 +
γ(γ + 1)(γ + 2)

2
(σs

t )
4Et (τ 2) (A.21)

holds for all γ > 0, σs
t > 0 and Et (τ

2) > 0, the unique positive real root is given by

dst =
1√
2

√
γ

2
(σs

t )
2Et (τ) +

√
γ2

4
(σs

t )
4Et (τ)

2 +
γ(γ + 1)(γ + 2)

2
(σs

t )
4Et (τ 2). (A.22)

Proof of Lemma 4. The Taylor representation of Uγ(r̃) yields for ρ∗ := log
(

1+ρb,A(q)
1−ρs,B(q)

)
:

Et (Uγ(r̃)) = δb,st + Et(τ)µ
s
t − ρ∗

+
∞∑
k=2

U
(k)
γ

(
δb,st + Et(τ)µ

s
t − ρ∗

)
k!U ′

γ

(
δb,st + Et(τ)µs

t − ρ∗
)Et

((
rb,s(t:t+τ) − ρ∗ − δb,st − Et(τ)µ

s
t

)k)
.

(A.23)

Let dst be the arbitrage boundary (in absence of transaction costs) as defined in Equa-

tion (11). Then, dst + ln
(

1+ρb,At (q)

1−ρs,Bt (q)

)
is a root of the function

F̃ (d) :=d+ Et(τ)µ
s
t − ρ∗

+
∞∑
k=2

U
(k)
γ (d+ Et(τ)µ

s
t − ρ∗)

k!U ′
γ (d+ Et(τ)µs

t − ρ∗)
Et

((
rb,s(t:t+τ) − ρ∗ − d− Et(τ)µ

s
t

)k)
. (A.24)
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Therefore, Et (Uγ(r̃)) is positive if and only if

δb,st > dst + ln

(
1 + ρb,At (q)

1− ρs,Bt (q)

)
. (A.25)

Proof of Lemma 5. The proof directly follows from Lemma 4 and Theorem 1.

Proof of Lemma 6. We cast the arbitrageur’s optimization problem in terms of the La-

grangian

L(q, f ; ξ) =Bs
t (1− ρs,B(q))q + Ab

t(1 + ρb,A(q + f))(q + f)

− ξ
(
dst(f)− δb,st + log

(
1 + ρb,A(q)

)
− log

(
1− ρs,B(q)

))
(A.26)

and observe that the corresponding Karush-Kuhn-Tucker (KKT) conditions imply

q = 0 ∨ Bs
t

(
(1− ρs,B(q))− ρs,B

′
(q)q

)
− Ab

t

(
(1 + ρb,A(q + f)) + ρb,A

′
(q + f)(q + f)

)
− ξ

(
ρb,A

′
(q + f)

1 + ρb,A(q + f)
− ρs,B

′
(q)

1 + ρs,B(q)

)
= 0 (A.27)

f = 0 ∨ − Ab
t

(
(1 + ρb,A(q + f)) + ρb,A

′
(q + f)(q + f)

)
− ξ

(
d

df
dst(f) +

ρb,A
′
(q + f)

1 + ρb,A(q + f)

)
= 0 (A.28)

ξ = 0 ∨ dst(f)− δb,st + log
(
1 + ρb,A(q + f)

)
− log

(
1− ρs,B(q)

)
= 0, (A.29)

We first consider the case of ξ = 0. Conditions (A.27) and (A.28) now become

q = 0 ∨ Bs
t

(
(1− ρs,B(q))− ρs,B

′
(q)q

)
− Ab

t

(
(1 + ρb,A(q + f)) + ρb,A

′
(q + f)(q + f)

)
= 0 (A.30)

f = 0 ∨ − Ab
t

(
(1 + ρb,A(q + f)) + ρb,A

′
(q + f)(q + f)

)
= 0 (A.31)
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which only holds if

1 + ρb,A(q + f) = −ρb,A
′
(q + f)(q + f). (A.32)

Since ρb,A
′
(q + f) > 0 by Assumption 4, this cannot be the case for any q > 0 or f > 0.

Also note that ξ = q = f = 0 implies a contradiction. Therefore, the constraint (21)

cannot be slack at the optimum and there does not exist a candidate solution for ξ = 0.

Next, we turn to the analysis of ξ > 0. The simple case of q = 0 does not deliver any

positive returns and it does not make sense for the arbitrageur to pay any fee f > 0. If

anything, the arbitrageur would prefer not to trade at all, i.e. q = f = 0. We are left

with the two interesting cases of q > 0.

For f = 0, the KKT conditions give the candidate solution {q1, f1, ξ1} as solutions to

the system of equations

Bs
t

(
(1− ρs,B(q1))− ρs,B

′
(q1)q1

)
− Ab

t

(
(1 + ρb,A(q1)) + ρb,A

′
(q1)(q1)

)
−ξ1

(
ρb,A

′
(q1)

1 + ρb,A(q1)
− ρs,B

′
(q1)

1 + ρs,B(q1)

)
= 0 (A.33)

dst(f1)− δb,st + log
(
1 + ρb,A(q1)

)
− log

(
1− ρs,B(q1)

)
= 0 (A.34)

f1 = 0. (A.35)
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For f > 0, we can get the candidate solution {q2, f2, ξ2} as solutions to

Bs
t

(
(1− ρs,B(q2))− ρs,B

′
(q2)q2

)
−Ab

t

(
(1 + ρb,A(q2 + f2)) + ρb,A

′
(q2 + f)(q2 + f2)

)
−ξ

(
ρb,A

′
(q2 + f2)

1 + ρb,A(q2 + f2)
− ρs,B

′
(q2)

1 + ρs,B(q2)

)
= 0 (A.36)

−Ab
t

(
(1 + ρb,A(q2 + f2)) + ρb,A

′
(q2 + f2)(q2 + f2)

)
−ξ

(
d

df
dst(f2) +

ρb,A
′
(q2 + f2)

1 + ρb,A(q2 + f2)

)
= 0 (A.37)

dst(f2)− δb,st + log
(
1 + ρb,A(q2 + f2)

)
− log

(
1− ρs,B(q2)

)
= 0. (A.38)

However, combining (A.36) and (A.36) shows that the solutions are only admissible if

ξ =
Bs

t

(
(1− ρs,B(q2))− ρs,B

′
(q2)q2

)
d
df
dst(f2)−

ρs,B′ (q2)
1+ρs,B(q2)

> 0. (A.39)

Equation (A.39) now provides us with necessary conditions for a solution to the problem

that entails a strictly positive settlement fee. Namely, q2 > 0, f2 > 0 ξ2 > 0 can only be

solution if one of the following two conditions holds

(i) − d
df
dst(f2) >

ρs,B
′
(q2)

1−ρs,B(q2)
and 1− ρs,B(q2) > ρs,B

′
(q2)q2

(ii) − d
df
dst(f2) <

ρs,B
′
(q2)

1−ρs,B(q2)
and 1− ρs,B(q2) < ρs,B

′
(q2)q2.

However, condition (ii) cannot hold at the maximum since 1−ρs,B(q2) < ρs,B
′
(q2)q2 means

that the trading quantity is such that the marginal price impact exceeds the average price

impact. In this case, the arbitrageur would reduce the trading quantity to raise her total

return. Consequently, (i) remains as the necessary condition for a candidate solution with

a positive settlement fee which completes the proof.

Proof of Lemma 7. The proof follows directly from applying Theorem 1 together with
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the derivatives of the utility function which yields

dst −
1

2

γ

dst
(σs

t )
2Et (τ)−

1

8

γ(γ + 1)(γ + 2)

(dst)
3

(σs
t )

4Et

(
τ 2
)
= 0. (A.40)

Then, by Descartes’ rule of signs there is exactly one positive real root to the polynomial

(dst)
4 − 1

2
γ(σs

t )
2Et (τ) (d

s
t)

2 − 1

8
γ(γ + 1)(γ + 2)(σs

t )
4Et

(
τ 2
)
= 0. (A.41)

By definition, dst corresponds to the arbitrage boundary for a given risk aversion γ.

The arbitrageur prefers to trade if observed price differences δ̃st exceed the boundary.

Therefore, rewriting Equation (A.41) in terms of γ and replacing dst with δ̃st yields a

cubic polynomial in γ :

(
δ̃b,st

)4
−1

8
(σ̂s

t )
4 Et

(
τ 2
) (

γ̂b,s
t

)3
− 3

8
(σ̂s

t )
4 Et

(
τ 2
) (

γ̂b,s
t

)2
− (A.42)

1

2
(σ̂s

t )
2

(
Et (τ)

(
δ̃b,st

)2
+

1

2
(σ̂s

t )
2 Et

(
τ 2
))

γ̂b,s
t = 0

Replacing the (conditional) expected latencies with the values given by Equations (33)

and (34) completes the proof.
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