ABSTRACT

We live in age of data ubiquity. Even the most conservative estimates predict exponential
growth in produced, transmitted and stored data. Big data is used to power business
analytics as well as to foster scientific discoveries. In many cases, explosion of produced
data exceeds capabilities of digital storage systems. Scientific high-performance computing
environments cope with this problem by utilizing large, distributed, storage systems.
These complex systems can only provide a high degree of reliability and durability
by means of data redundancy. The most straight-forward way of doing that is by
replicating the data over different physical devices. However, more elaborate approaches,
such as erasure coding, can provide similar data protection while utilizing less storage.
Recently, software-defined reliability methods began to replace traditional, hardware-
based, solutions. Complicated failure modes of storage system components also warrant
checksums to guaranty long-term data integrity. To cope with ever increasing data
volumes, flexible and efficient software implementation of error correction codes is of great
importance. This thesis introduces a method for realizing a flexible Reed-Solomon erasure
code using the “Just-In-Time” compilation technique. By exploiting intrinsic arithmetic
redundancy in the algorithm, and by relying on modern optimizing compilers, we obtain
a throughput-efficient erasure code implementation. Additionally, exploitation of data
parallelism is achieved effortlessly by instructing the compiler to produce SIMD code for
desired execution platform. We show results of codes implemented using SSE and AVX2
SIMD instruction sets for x86, and NEON instruction set for ARM platforms. Next, we
introduce a framework for efficient vectorized RAID-Z redundancy operations of ZFS file
system. Traditional, table-based Galois field multiplication algorithms are replaced with
custom SSE and AVX2 parallel methods, providing significantly faster and more efficient
parity operations. The implementation of this framework was made publicly available
as a part of ZF'S on Linux project, since version 0.7. Finally, we propose a new erasure
scheme for use with existing, high performance, parallel filesystems. Described reliability
middleware (ECCFS) allows definition of flexible, file-based, reliability policies, adapting
to customized user needs. By utilizing the block erasure code, the ECCFS achieves
optimal storage, computation, and network resource utilization, while providing a high
level of reliability. The distributed nature of the middleware allows greater scalability and
more efficient utilization of storage and network resources, in order to improve availability
of the system.



