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Supplemental Methods

GRO-cap and CAGE expression estimation

GRO-cap data for K562 cell was downloaded from GEO under accession
GSE60456 provided by (Core et al|[2014] and CAGE data for both K562
and HepG2 samples from ENCODEConsortium| [2012]. The count of the
reads overlapping with a window in the region [0,+100] bps downstream of
a gene’s TSS is used to define GRO-cap or CAGE derived expression.

Bulk RNA expression quantification

BAM files of RNA-seq reads for HepG2 were produced with TopHat 2.0.11
[Kim et al., 2013], with Bowtie 2.2.1 [Langmead and Salzberg, 2012] and
NCBI build 37.1 with parameters: —library-type fr-firststrand and —b2-very-
sensitive. Cufflinks was used for gene expression computation |[Trapnell

et al., [2012] using GENCODE release 19 (GRCh37.p13).

Small RNA abundance in BPs

The BAM alignment files for small RNA data measured at the nuclear frac-
tion of the HEpG2 and K562 cells were obtained from ENCODEConsor-
tium| [2012]. Then, bamCoverage from bedtools was applied to generate the
bedgraph files, which then the binning approach explained in the previous
section was performed to achieve the small RNA profile defined around the
BPs. For illustration purposes, all values larger than 200 were set to 200.

Mapping of ChIP-seq data

Reads were mapped to the 1000 genomes phase 2 assembly of the human
reference genome (NCBI build 37.1, downloaded from ) with a hardware-
accelerated implementation of Burrows-Wheeler Aligner BWA aln version
0.6.2 |Liu et al. [2012] with -q 20, and BWA 0.6.2 sampe with -a 1000.


ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/

Merging and duplicate marking was performed with Picard version 1.125
(http://broadinstitute.github.io/picard).

Measuring H3K36me3 in transcripts span of BPs

The H3K36me3 ChIP-seq reads are counted in the region starting from the
TSS of a bidirectional gene extending down to the transcripts span parti-
tioned into 10 bins. It is worth noting that the bin sizes might vary between
genes as they have variable transcripts span lengths. Therefore, read counts
are normalized according to the bin size.

Measuring average methylation in BPs

WGBS-seq data for HepG2 was produced by DEEP and for K562 was ob-
tained from |[ENCODEConsortium| [2012]. Both files were processed using
the RnBeads package in R [Assenov et al., |2014] to measure the average
methylation levels around the TSSs. Briefly, for each T'SS, the methylation
level was computed in a 2 kb window (partitioned into bins of 100 bp) down-
stream of the L and the H gene, respectively (in total 40 bins). Additionally,
the methylation level was measured within the region between the TSSs of
L and H genes. Finally, the results were concatenated in genomic order (in
total a vector of size 41).

Measuring G-C content in BPs

GC-content profiles were computed based on the human GRCh37 reference
genome. For each TSS GC-content was computed in a 2 kb window (parti-
tioned into bins of 100 bp) downstream of the L and the H gene, respectively
(in total 40 bins). Additionally, the GC-content was measured within the
region between the TSSs of L and H genes. For visualization the results
were concatenated in genomic order (in total a vector of size 41).

Measuring 3’UTR length in BPs

3’UTR coordinates for our BPs were retrieved from annotated ENSEMBL
genes (GRCh37.75) to show the 3'UTR length of the highly and lowly ex-
pressed genes, particularly, in the stable and unstable categories as illus-
trated in Supplementary Figure 4C. The Mann-Whitney test was used be-
tween the highly and lowly expressed genes within each category to compute
the p-values with the 0.05 cutoff for significance calling.

Chromatin state segmentation score

We acquired the 18-states ChromHMM [Ernst and Kellis, |2012] annotation
for both cell lines, for HepG2 produced by DEEP, and for K562 downloaded


http://broadinstitute.github.io/picard

from Roadmap [Consortium et al.,|2015]. For simplicity, we collapsed all TSS
related states to one state called, T'SS. Similarly, we defined Enhancer and
Repressed states and assigned all the remaining states to Others, yielding
four summarized states in general. Later, for each gene g we defined a
window, Wy, starting at the T'SS of the gene and extending up to the size
of the transcripts span, see above. We then computed the average number
of bases having a particular chromatin state, s, overlapping in that window.
We called this value ChromScorey, described as follows:

R C =
ChromScore; = S{|IR|: R C Wg;/nd state(R) s}’ (1)
g

where R defines a region in the genome, |R| designates the size of this
region, and state(R) denotes the chromatin state assigned by ChromHMM
to region R. It should be noted that since the ChromHMM state annotation
is continuous across the genome, the following equation holds:

S __
z}se{TSS,Enhcmcer,Rep?”essed,Others}C’h’rornscoreg =1 ) (2)

and thus ChromScore is properly normalized to account for a difference in
transcripts span per gene. To assign ChromScore to a cluster of genes, C,
(defining the four transcription states introduced earlier), we formulated the
following:

ChromScore¢: = SgecChromScorey, (3)

Later, as the last step, we convert the ChromScoreg, into percentages to
make the score comparable across different clusters of genes with different
gene sizes:

ChromScoret,

s
percent(ChromScored) = .
Ese {T'SS,Enhancer,Repressed,Others} ChTOTI”LSCOT@SC

(4)
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Figure S1: A) Comparison between raw and imputed read counts for both
HepG2 and K562 cell lines. B) Comparison of average single cell RNA-seq
expression (x-axis) versus bulk RNA-seq expression (y-axis) in bidirectional
genes for HepG2 and K562 cell lines. C) Number of expressed genes ac-
cording to the four intervals defined on TPM values per cell. TPM > 1
shows the overall number of genes detected to have expression larger than 1
TPM. On average, there are over 7,000 genes expressed for both cell lines.
D) Similar to (C) but for read counts.
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Figure S2: Single cell RNA-seq expression in bidirectional promoters. A)
Hierarchical clustering of the K562 single cell transcript expression matrix
visualized as a heatmap (log2, TPM) and grouped into four distinct clusters
(BLE, BSD, BWD, BND). B) Number of BPs falling into the gene prod-
uct categories (NC—NC, NC—PC, etc.). Statistically enriched values are
shown in bold (Hypergeometric test p<0.05). C) Heatmap of bulk RNA-seq
expression in K562 cells (log2, TPM), arranged according to A. D) CAGE
read counts, measured for each bidirectional gene (L and H), shown for each
transcription state. Color code as in A. Significant differences are marked
with * (paired and two-sided Mann-Whitney test, p <0.05). E) The same
as D except that the result is shown for GRO-cap read counts. F) Effects of
transcript length and transcripts span on average single cell TPM expression
in all genes. G) Heatmaps of the G-C content measured around the TSSs of
bidirectional genes (see Materials and Methods) for HepG2 (left panel, color
code as in Figure 1D) and K562 (right panel, color code as in A) samples.
H) Distributions of transcript length of L and H genes in HepG2 (color code
as in Figure 1D) and I) K562 (color code as in A). Significant differences are
marked by * (Mann-Whitney paired and two-sided test, p-value < 0.05).
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Figure S3: Epigenetic characteristics in transcription states. A) Histone
modification (ChIP/Input) and DNA-seql (raw read counts) shown as me-
dian profiles (top panel) and log-transformed values as heatmap (bottom
panel). Arrangement of genes as in Figure S2A. The reads are measured in
40 bins of size 100 bp forming a window of size 4000 bp centered around
the TSSs, with an additional variable bin between the TSSs. B) Measured
H3K36me3 ChIP-seq counts in bins of variable size covering the region start-
ing from the TSS of L and H genes extending down to thetranscripts span.
C) Small RNA abundance heatmaps measured similar to A for HepG2 (left
panel) and K562 (right panel). For better visibility, bins with more than
200 reads were set to 200. D) Average methylation profiles measured by
WGBS-seq read counts in bins of 100 bp following the approach explained
in A, shown for both HepG2 (left panel) and K562 (right panel).
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Figure S4: Prediction of RNA stability. A) Scatter plot showing the studen-
tized residuals versus the measured mRNA as average single cell transcript
expression for both HepG2 and K562 samples. B) Percentage of L or H genes
inferred as stable or unstable per state. C) The 3'UTR length distribution
shown for L or H genes per each stability category.
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Figure S5: Transcription factor enrichment. A) Enrichment score,

Enrich(TF?), formula to compute the enrichment of TFs tailored for BPs.
At the bottom, the binding profile of TF® for a BP is shown. The curve
shown in black represents the background defined based on the bin-wise
median of TF* binding across all BPs. The example demonstrates the ef-
fectiveness of the Enrich(TF?) score in capturing the spatial differences
between true TF signal and the background. B) Heatmap of 50 TF en-
richment scores (log ratio against background) for each BP (row) in K562
cells.
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Figure S6: A schematic representation of computing the segmented genomic
regions using ChromHMM for a region defined at the transcripts span of
either genes (L and H). The overlapping regions are taken into account for
computing the ChromsScore (see Methods).



