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“The imagination of nature is far, far greater than the imagination of man.”

Richard P. Feynman — [FL88]
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Zusammenfassung

Diese Arbeit ist der Bestimmung des reichhaltigen Phasendiagramms im Vielteil-
chen-Grundzustand und der zugehorigen spektralen Eigenschaften eines ultrakal-
ten Quantengases bosonischer Atome in einem zweidimensionalen optischen Git-
ter unter dem Einfluss kohdrent angeregter Rydbergzustiande gewidmet. Da diese
atomaren Anregungen starke langreichweitige Van-der-Waals-Wechselwirkungen
zwischen den sogenannten Rydbergatomen hervorrufen, konnen diese eine Sym-
metriebrechung der diskreten Translationssymmetrie des optischen Gitters verur-
sachen. In isolierenden Phasen kommt es dabei zu einer Treppe von Dichtewelle-
Strukturen, welcher mitunter das Attribut ,teuflisch” zugeschrieben wird, wenn es
moglich ist, zwischen zwei Stufen gegebener Dichte von Rydberganregungen, bei
hinreichend feiner Einstellung der Systemparameter, stets noch weitere Stufen zu
finden. Demgegentiiber stehen Phasen bei denen ein makroskopischer Anteil der
Teilchen als Gitter-Superfluid vorliegt. In diesen Phasen ist es ebenfalls moglich,
dass die Van-der-Waals-Wechselwirkung der Rydberanregungen eine Dichtewelle
bewirkt, sodass es in der Kombination zur Gitter-Supersoliditdt kommt. Gekenn-
zeichnet ist diese durch eine langreichweitige Ordnung, welche sich sowohl iiber
die Nebendiagonalelemente der Dichtematrix (Kennzeichen der Superfluiditét) als
auch tiber die Diagonale der Dichtematrix erstreckt und dabei die diskrete Transla-
tionssymmetrie des Gitters bricht (Kennzeichen der Dichtewelle).

In scheinbar paradoxer Weise vereint ein Supersolid somit zwei Eigenschaften,
die im klassischen Verstdndnis unvereinbar miteinander scheinen. Zum einen be-
sitzt Materie in dieser Phase einen fliissigen Anteil mit verschwindender Viskositit,
hat jedoch gleichzeitig auch Eigenschaften eines Kristalls, welche sich insbeson-
dere durch ihre steife Struktur auszeichnen. Die erste Vorhersage einer solchen
Phase geht zuriick auf Andreev und Lifshitz, die 1969 die Moglichkeit der rei-
bungsfreien Bewegung bosonischer Kristalldefekte durch ein Kristallgitter vorher-
sagten. Ihr Vorschlag beruhte auf der Beobachtung, dass das Spektrum der Qua-
siteilchen, also von quantisierten Gitterfluktuationen, wie zum Beispiel Storstellen,
in einem Kiristall bosonischer Teilchen bei steigender Wecheslwirkungsstarke ein
lokales Minimum fiir einen Impuls ungleich Null ausbildet, das sogenannte "Roton-
Minimum".

Zur Zeit der Vorhersage einer solchen Phase galt Helium-4 in seiner kristalli-
nen Phase noch als aussichtsreichster Kandidat des experimentellen Nachweises.
Da man den Anteil des Heliums, der sich in einem superfluiden Zustand befindet,
aufgrund der fehlenden Viskositit als entkoppelt vom verbleibenden Kristall anse-
hen kann, schlug Legget 1970 vor, dass man den Nachweis mit Hilfe eines Tor-
sionspendels fithren kann. Sollte diese Phase tatsdchlich in Helium auftreten, dann
sollte sie sich in einer Abweichung der Rotationstrdgheit des Pendels bemerkbar
machen. Obschon zahlreiche Experimente im Jahr 2004, angefangen mit jenen von
Kim und Chan, sowie in den folgenden Jahren vielversprechende Resultate zu geben
schienen, haben sich die vielfach beobachteten Signale als Folge eines anderen,
bisher unbekannten Effekts erwiesen. Diese sogenannte Quantenplastizitit verur-
sacht eine Versteifung des festen Heliums, was sich in einer dem Supersolid dhn-
lichen Weise auf die Rotationstragheit auswirkt. Daher erweist sich das Supersolid
aktuell als schwer realisierbar in festem Helium.

Im Jahr 2017 jedoch haben zwei Gruppen von einander unabhéngig tiber die



Beobachtung supersolider Eigenschaften in zwei grundsatzlich verschiedenen Quan-
tengas-Experimenten berichtet. Bemerkenswert dabei ist auch, dass sich beide Sys-
teme in einem Regime befinden, das scheinbar im Widerspruch zur Supersoliditit in
festem Helium steht. Ultrakalte Quantengase zeichnen sich insbesondere durch ihre
sehr geringe Dichte von 107°cm?® und weniger aus, die sechs Grofenordnungen
unter der Dichte eines Gases bei Raumtemperatur und Normaldruck liegt. Demge-
geniiber sind zur Erzeugung von festem Helium sehr hohe Driicke und damit auch
hohe Dichten notwendig. Die stark verdiinnten atomaren Dampfe der Quanten-
gase hingegen werden mit Hilfe optischer Fallen in einer Vakuumkammer in der
Schwebe gehalten.

Bevor wir uns mit den Details der genannten Experimente beschiftigen, ist an
dieser Stelle zu betonen, dass es sich in beiden Féllen um Beispiele fiir die Rea-
lisierung eines — in beiden Fillen — analogen Quantensimulators handelt. Dieses
Konzept geht zurtick auf Feynman, der 1982 vorschlug ein sehr fein einstellbares
Quantensystem zu verwenden um damit ein anderes Quantensystem nachzuah-
men, das sich aus grundverschiedenen Bestandteilen zusammensetzt, oder um ein
System zu erzeugen fiir das keine natiirlich vorkommende Entsprechung existiert.
Experimente dieser Art wurden erstmals 1995 von Ketterle und Wieman in ultra-
kalten Quantengasen realisiert, womit sie ein vollkommen neues Feld der Physik
erdffneten.

In den experimentellen Beobachtungen des Supersolids von Lénoard et al. wird
die Brechung einer kontinuierlichen Translationssymmetrie eines atomaren Bose-
Einstein-Kondensates beobachtet, das sich in zwei gekreuzten optischen Kavitdten
befindet. Bedingt durch die Kopplung der Atome an die Photonen, welche in den
Kavitdten gefangen sind, erfahren die Atome eine starke, effektiv unendlichreich-
weitige Wechselwirkung, die letztlich ursichlich fiir den Ubergang in den super-
soliden Zustand ist.

Demgegeniiber handelt es sich bei dem Experiment von Li et al. um ein schwach
wechselwirkendes atomares Bose-Einstein-Kondensat, bei dem Raman-induziertes
Tunneln zwischen zwei Gitterplitzen eines Ubergitters eine effektive Spin-Bahn-
Kopplung in der zum Ubergitter orthogonalen Richtung hervorruft. Dadurch ist
es moglich, die beiden effektiven Spin-Komponenten, die durch die beiden Gitter-
plédtze des Untergitters reprasentiert sind, mit entgegengesetztem Impuls von iden-
tischem Betrag in Interferenz zu bringen. Da diese eine stehende und raumlich os-
zillierende Dichteschwankung des Kondensats bewirkt, deren raumliche Phase sich
spontan beim Einschalten des Raman-tunnelns einstellt, kann man auch hier ein Su-
persolid beobachten.

Im Zuge dieser Arbeit beschiftigen wir uns mit einem System, in dem der
Phaseniibergang zu einem Gitter-Supersolid, das die diskrete Translationssymme-
trie eines zugrundeliegenden Gitters bricht, in Analogie zu erstem Experiment,
durch eine stark langreichweitige Wechselwirkung hervorgerufen wird. Diese wird
realisiert tiber die starken Van-der-Waals-Kréfte zwischen neutralen Rydbergatomen,
die aufgrund der hohen Polarisierbarkeit der Elektronenoribtale von Rydbergzustan-
den auftreten. Dadurch kommt es zu langreichweitigen Wechselwirkungen, welche
sich in einem optischen Gitter, mit der experimentell typischen Gitterkonstante
von 532 nm, iiber mehrere Gitterpldtze erstrecken. Die Auspriagung dieser Wech-
selwirkung wird dabei sehr stark von den Parametern des anregenden Lasers be-
stimmt. Zu erwdhnen sind hierbei insbesondere die Rabifrequenz, die sich aus den
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Laserintensititen ergibt sowie die Verstimmung der Laserfrequenz von den Fre-
quenzen der angeregten Uberginge zum gewiinschten Rydbergzustand. Des weite-
ren ist zu betonen, dass sich selbst atomare optische Gittersystem bereits durch einen
hohen Grad der Steuerbarkeit grundlegender Parameter auszeichnen. Dies gilt ins-
besondere fiir die lokale Hubbard-Wechselwirkung und die Tunnelrate zwischen
einzelnen Gitterpldtzen, die sich durch die Tiefe des optischen Gitters und dabei,
dank des Einflusses von Feshbach-Resonanzen auf die lokale Wechselwirkung, un-
abhédngig voneinander einstellen lassen.

Betrachten wir den Fall einer abstoflende Van-der-Waals-Wechselwirkung, ist
es denkbar, dass es in diesen Systemen zu einer spontanen Symmetriebrechung der
diskreten Translationssymmetrie des zugrunde liegenden optischen Gitters kommt.
Im wesentlichen beobachtet man hierbei zwei Szenarien: Fiir isolierende Phasen
ergibt sich eine Dichtewelle-Struktur der in Rydbergzustdnde angeregten Atome. Ist
die optimale Dichte der Rydberganregungen unvereinbar mit der Struktur des op-
tischen Gitter, bewirkt dies die zuvor genannte teuflische Treppe von Dichtewellen,
die insbesondere als Funktion der Frequenzverstimmung sichtbar wird. Ebenso
bestimmt die Verstimmung auch jene Dichtewelle-Strukturen, welche man in den
supersoliden Phasen beobachten kann. Aufgrund der dem Superfluid inhédrenten
Fluktuationen kdnnen beliebig feine Stufen dann jedoch nicht mehr stabilisiert wer-
den, wodurch sich die Stufenstruktur im superfluiden Regime vereinfacht.

Im Verlauf dieser Arbeit besprechen wir insbesondere das Gitter-Supersolid, das
sich in optischen Gitterfallen realisieren ldsst. Die starke Van-der-Waals-Wechselwir-
kung zwischen hoch angeregten atomaren Rydbergzustanden ermoglicht die Selbst-
ordnung eines homogenen Gitter-Supersolids durch Formierung einer Dichtewelle-
Struktur. Der erste Teil dieser Arbeit, bestehend aus den ersten drei Kapiteln, ist
einem Uberblick zu den Grundlagen solcher System gewidmet.

Im ersten Kapitel besprechen wir sowohl einige grundlegende Methoden als
auch (Mess-)Techniken der umfangreichen ,toolbox”, welche in tiblichen Quanten-
gasexperimenten zur Verfligung stehen, beziehungsweise solche, die die notwendi-
gen Temperaturen auf einer Mikrokelvin-Skala und darunter erst ermoglichen. Zu-
dem geben wir eine Zusammenfassung der grundlegenden theoretischen Konzepte
zum Verstandnis von Superfluiditat und Supersoliditit, insbesondere in zweidimen-
sionalen Systemen.

Hierauf folgt das zweite Kapitel, in welchem wir die wesentlichen Grundlagen
der Rydberg-Physik in Quantenvielteilchensystemen diskutieren. Dabei legen wir
das Hauptaugenmerk auf die Ermoglichung langreichweitiger Wechselwirkungen
zur Erzeugung eines Modells mit ausgepragten nichtlokalen Korrelationen. Zudem
besprechen wir den Einfluss der endlichen Lebensdauer der Rydberganregungen
auf mogliche Vielteilchenzustdnde, wobei die entsprechende Zeitskala in einer Um-
gebung bei Raumtemperatur insbesondere durch lawinenartige Dephasierungspro-
zesse bestimmt ist. Das Kapitel schliefst mit einer kurzen Analyse iiber die An-
wendbarkeit der Hartree-Ndherung fiir Vielteilchensysteme, bei denen die Atome
nahe der Resonanz eines einzelnen Atoms in den Rydbergzustand angeregt werden.
Die Wechselwirkung sorgt hierbei fiir eine Molekularfeldverstimmung der Energien
weiterer Anregungen in der Umgebung bereits angeregter Rydbergzustiande, was
weitere Uberginge blockiert. Somit erhilt man einen Rydberganteil, der unter dem
eines freien Atoms in einem identischen Lichtfeld liegt. Bei diesem Effekt spricht
man von der , Rydberg-Blockade”.

Die einleitenden Kapitel schlieffen im dritten Kapitel mit einer kurzen Einfiih-
rung iiber die Realisierung des Bose-Hubbard Modells in optischen Gittersystemen,
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einschliefillich der Erweiterung bedingt durch die kohdrente Anregung von Ryd-
bergzustinden. Dabei werden die Fille der Rydberganregung nahe und fern der
Einteilchenanregung als zwei fundamental verschiedene Szenarien diskutiert.

Auf diesen Teil folgen drei Kapitel, in welchen wir theoretischen Methoden
einfithren und wesentliche Erweiterungen diskutieren um das betrachtete Modell
angemessen beschreiben zu konnen. Zunichst geben wir dazu im vierten Kapi-
tel einen Uberblick iiber die bosonische ,Dynamische Molekularfeld-Theorie” (B-
DMFT), die urspriinglich von Vollhardt fiir die Analyse fermionischer Vielteilchen-
systeme vorgeschlagen wurde. Deren Grundidee ist die Verallgemeinerung des
Molekularfeldes von einer typischerweise statischen Grofie auf eine dynamische,
welche man als Weiss’sche Green’s Funktion bezeichnet. Ausgehend von dem Mo-
dell einer Anderson-Storstelle beschreibt diese Methode einen gegebenen Gitter-
platz als Realisierung eines ebensolchen Modells, wobei das Verhalten des restlichen
Gitters selbst-konsistent iiber genannte Green’s Funktion beschrieben wird. Der
Vorteil dieser Methode liegt darin, dass sie nicht-perturbativ ist und jegliche lokalen
Fluktuationen exakt berticksichtigt. Dabei werden Korrelationen ndchster Nach-
barpldtze im Gitter auf der Ebene der nicht-lokalen Einteilchenfluktuationen in
Form der Weiss’schen Green’s Funktion ebenfalls mit einkalkuliert. Da die boso-
nische Variante dieser Methode Anwendung findet, ist zudem stets noch ein sta-
tisches Molekularfeld zu beriicksichtigen, das wegen der moglichen Bose-Einstein-
Kondensation in Form des Kondensat-Ordnungsparameters vorliegt. Motiviert
durch die langreichweitige Wechselwirkung der Rydberganregungen fiihren wir
zudem die Erweiterung von B-DMFT auf eine ortsraumaufgeloste Methode (RB-
DMFT) ein und ergdnzen diese um den Hartree-Ansatz, der auf die Wechselwir-
kungsterme angewandt wird. Dadurch ergdnzen wir den Satz selbst-konsistenter
Parameter noch um die ortsaufgeldste Dichte der Rydberganregungen. Abschliefs-
end zeigen wir, wie man mittels der RB-DMFT auch Aussagen iiber das dynamische
Verhalten eines gegebenen Systems in Form der Spektralfunktion erhalt.

Mit dem fiinften Kapitel fithren wir ergdnzend eine effiziente Methode zur Trun-
kierung der lokalen Fock-Basis bosonischer Systeme ein. Da Bosonen aufgrund
ihrer Kommutationsrelationen keine natiirlich beschrankte Fock-Basis besitzen, be-
dingt jede numerische Methode, die auf diese Basis zuriickgreift, eine Beschrankung
(Trunkierung) auf eine begrenzte Zahl von Fock-Zustdnden, um Simulationen in
endlicher Zeit tiberhaupt zu ermoglichen. Dies kann in der Anwesenheit eines Kon-
densats und bei hoher Teilchendichte von mehr als einem Teilchen je Gitterplatz
rasch zur Notwendigkeit sehr hoher Trunkierung und damit numerisch aufwendi-
gen Rechnungen fithren. Da jene Vielteilchensysteme, die wir in dieser Arbeit
betrachten, bereits ausgedehnte Einheitszellen erforderlich machen, fithren wir in
diesem Kapitel einen lokalen Zustand mit kohdrentem Schweif ein, den , coherent-
tail state” (CTS), der durch einen Parameter beschrieben werden kann. Diesem Zu-
stand liegt die Beobachtung zugrunde, dass sich der Grundzustand eines idealen
Bosegases quasi exakt durch einen kohdrenten Zustand beschreiben ldsst. In diesem
Kapitel zeigen wir, dass sich der freie Parameter bei der Bestimmung des Viel-
teilchenzustandes ergibt durch die Minimierung der entsprechenden Energie. Dies
zeigen wir sowohl anhand der Gutzwiller-Wellenfunktion als auch fiir die B-DMFT.
Eine Optimierung der Resultate der jeweiligen Methode ist in beiden Féllen zu
beobachten, wobei diese ,,weiche” Trunkierung insbesondere im Falle der B-DMFT
die Simulationszeit, bei gleichbleibender Genauigkeit um mehr als eine Grofsenord-
nung zu reduzieren vermag.

Ausgehend von dem Gutzwiller-Ansatz fiir den Grundzustand eines bosonisch-
en Systems, zeigen wir im sechsten Kapitel, dass man Fluktuationen, die von der
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Gutzwiller-Wellenfunktion vernachléssigt werden, exakt in der Eigenbasis des effek-
tiven Gutzwiller-Hamiltonians darstellen kann. Wie bereits in der Doktorarbeit von
Bissbort geschildert, erlaubt dies die exakte Darstellung der vernachléssigten Terme
des effektiven Modells in quasi-bosonischen Erzeugungs- und Vernichtungsope-
ratoren lokaler Gutzwiller-Anregungen. In Analogie zur linearisierten Gutzwiller-
Bewegungsgleichung kann man sich dann auf den fithrenden Term von quadra-
tischer Ordnung in diesen Operatoren beschranken, wodurch man ein System nicht-
wechselwirkender Quasiteilchen erhilt, denen die Gutzwiller-Wellenfunktion als
Quasi-Vakuum dient. Ein wesentlicher Schwerpunkt dieses Kapitels stellt die Er-
weiterung der urspriinglichen Beschreibung auf ein mehrkomponentiges System
dar, dessen Gutzwiller-Grundzustand, bedingt durch die langreichweitigen Wech-
selwirkung, durch einen Ansatz mit einer Ubergitterstruktur beschrieben wird. Da-
durch wird die Berticksichtigung einer reduzierten Brillouin-Zone notwendig, die
mit der Riickfaltung von Quasiteilchen-Moden und dem Auftreten vermiedener
Bandkreuzungen einhergeht. Dieses Kapitel endet mit einer Schilderung zur ex-
pliziten Bestimmung zahlreicher, fiir Experimente relevanter Spektralfunktionen,
welche man Dank der Quasiteilchenbeschreibung fiir den Grundzustand des Quasi-
teilchen-Hamiltonians extrahieren kann. Mit einer Herleitung von Korrekturen
der Gutzwiller-Losung fiir den Kondensat-Ordnungsparameter, der lokalen Dichte,
sowie der Dichtematrix schliefSen wir die Diskussion der verwendeten theoretischen
Methoden.

Mit Hilfe der beschriebenen Methoden analysieren wir in den verbleibenden bei-
den Kapiteln die Phasen und spektralen Eigenschaften frei beweglicher Atome in
einem optischen Quadratgitter unter dem Einfluss von Rydberganregungen. Dazu
unterscheiden wir zum einen den Fall der Rydberganregung fern von der Ein-
teilchenresonanz, also das sogenannte ,(weak) dressing”, und zum anderen den
Fall der Rydberganregung nahe der Einteilchenresonanz, was wir in dieser Arbeit
als ,,strong dressing” bezeichnen wollen. Beide Félle werden hierbei im grofSkanon-
ischen Ensemble betrachtet.

Der erstgenannte Fall wird im siebten Kapitel betrachtet. Dabei wird ein Sys-
tem bestehend aus einem Quantengas von Rubidium-87 (”Rb) angenommen, wobei
zwei atomare Hyperfein-Grundzustidnde vorliegen sollen. Der erste dieser Grund-
zustdnde wird stark rot-verstimmt in einen Rydbergzustand angeregt, wobei der
zweite nicht davon betroffen ist. Beide Teilchenkomponenten kénnen dabei jedoch
lokal miteinander wechselwirken. Da die Rydberganregung in der ersten Kom-
ponente ein langreichweitiges Wechselwirkungspotential hervorruft, das fir kurze
Distanzen gegen eine Konstante strebt und fiir grofie Distanzen wie die Van-der-
Waals-Wechselwirkung gegen Null geht, beobachten wir in dieser Komponente eine
Tendenz zur Formierung einer Dichtewelle. Da die andere Komponente lediglich
lokale mit der ersten in Wechselwirkung tritt, tibertragt sich die Dichtewelle auf die
zweite Komponente selbst dann, wenn die erste in einem isolierenden Zustand ist
und in der zweiten noch ein Superfluid vorliegt. Dadurch ergibt sich ein grofier Pa-
rameterbereich, in dem das Gitter-Supersolid moglich ist. Im weiteren analysieren
wir zudem die spektralen Eigenschaften fiir reprasentative Phasen. Da dieses Mo-
dell einem weiteren dhnelt, welches ein System polarer Molekiile beschreibt, geben
wir auch eine kurze Analyse der Phasen jenes Modells an.

Im achten und letzten Kapitel besprechen wir ein Quantengas, bei dem die
Rydberganregung bei nur geringer Verstimmung des Anregungslasers erfolgt. Auch
hier betrachten wir ein zweikomponentiges System, wobei die eine Komponente
durch die Grundzustandsatome gegeben ist, wihrend die andere durch die Ryd-
bergatome gegeben ist. Aufgrund der skalenfreien Van-der-Waals-Wechselwirkung
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konnen wir fiir den gefrorenen Fall des Modells, also bei verschwindend geringer
Tunnelrate, eine (durch Annahmen bedingt) unvollstindige , teuflische” Treppe von
Dichtewellen finden, die beginnen sich aufzuldsen, sobald ein superfluider An-
teil vorliegt. Somit schliefsen sich bei hinreichend grofser Tunnelrate supersolide
Phasen an die Dichtewellen an. Bei einer Reduzierung der Verstimmung ergibt
sich ein Ubergang zur supersoliden Phase mit minimaler Einheitszelle (Schachbrett-
Supersolid), die abschlieffend in ein homogenes Superfluid tibergeht. Wéahrend
sich der blau-verstimmte Bereich des Phasendiagramms durch einen hohen lokalen
Rydberganteil auszeichnet, liegt dieser Wert im Schachbrett-Supersolid bei nur eini-
gen Prozent. Daher ist letztere Phase fiir die experimentelle Realisierung zu fa-
vorisieren, da die Lebensdauer der Rydberganregungen einen begrenzenden Fak-
tor darstellt. Zudem ist auch zu erwarten, dass das Schachbrett-Supersolid bereits
bei kleinen Systemgrofien zu beobachten ist. Da diese Phase stark durch Vielteil-
cheneffekte bedingt ist, welche am Rand des Systems nur reduziert auftreten, be-
sprechen wir ergdnzend eine Methode um diesem Randeffekt entgegenzuwirken.
Fiir ein solches Beispielsystem zeigen wir, wie sich die lokale Zustandsdichte im
System mit Wechselwirkung von der ohne Wechselwirkung unterscheidet. Fiir die
experimentell relevanten Phasen analysieren wir abschliefSend verschiedene spek-
trale Eigenschaften, wie die Zusammensetzung der Quasiteilchenbénder sowie die
entsprechenden Spektralfunktionen.



Abstract

In the course of this thesis we will discuss a certain kind of supersolid, the lattice-
supersolid, which can be realized using quantum gases in an optical lattice trap. The
lattice-supersolid, which simultaneously possesses off-diagonal and diagonal long-
range order in its density matrix and also breaks the discrete translational symmetry
of an underlying lattice, is induced by self-ordering of the gas due to strong long-
range van der Waals interactions. In the considered scenario, the interactions are
facilitated by the excitation of atomic Rydberg states, which exhibit enhanced van
der Waals forces.

In the first part of this thesis, we will review relevant basics of quantum gases,
Rydberg physics and introduce the extended Bose-Hubbard model. We will start
with the relevant methods and devices of the vast toolbox available in common
quantum gas experiments, as well as consider the main concepts behind superfluid-
ity and supersolidity. This is followed by an introduction of some basic concepts of
Rydberg atoms in quantum many-body systems, with a focus on the facilitation of
long-range interactions and the implementation in a theoretical model. Thereafter
a brief introduction will be given, on the realization of the Bose-Hubbard model in
optical lattice systems and its extension to include Rydberg states, which concludes
the introductory part of this thesis.

In the following part, we will introduce the theoretical tools used to derive the
results presented in the final part. First, an introduction to a real-space extension
of bosonic dynamical mean-field theory (RB-DMFT) for bosonic systems with long-
range interactions in the Hartree approximation will be given. This method is based
on the non-perturbative self-consistent evaluation of the lattice Green’s function,
which also incorporates the effect of nearest neighbor correlations due to the non-
condensed particles. Then we will focus on a quasiparticle expansion of the Bose-
Hubbard model, which has its foundation in linearized fluctuations of a static mean-
field ground-state, allowing for the prediction of a vast range of experimentally rel-
evant observables. Lastly we will introduce an efficient truncation scheme for the
local bosonic Fock-basis, which allows for the simulation of phases with high con-
densate density at a vastly reduced computational effort.

In the final part, we will apply both methods to itinerant bosonic gases in two-
dimensional optical lattices, in order to predict the equilibrium ground-state phases,
as well as the signatures of supersolidity and its formation in spectral functions and
the dynamic and static structure factor. Thereby we will consider two limiting cases.
Firstly, we will consider a two-component gas, as realized by two hyperfine ground
states, for example, of rubidium-87 (8"Rb), where one component is off-resonantly
excited to a Rydberg state, which generates a soft-core shaped interaction poten-
tial. Secondly, we will discuss the opposing limit, using near-resonant excitations
of Rydberg states, where the interacting component now directly corresponds to the
Rydberg state, which interacts via a van der Waals potential. In both cases we will
discuss the rich variety of supersolid phases, which are found for a wide range of
parameters. We will also discuss how some of these phases can be realized in exper-
iment.

In the subsequent appendices we will discuss some methodological details. Most
notably, we will consider the possible Fock-extension of the Hartree approximation,
introduced in the RB-DMFT treatment of the extended Bose-Hubbard model.
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Introduction

Isaac Newton famously wrote

If I have seen further it is by standing on [the] sho[u]lders of giants.
— Isaac Newton [NT59]

giving an inspiring metaphor for the progress of all of scientific research. To illustrate
his point, let us consider the many layers of discoveries and technical advances that
lay the foundation to the work presented in this thesis; first with a focus on the
theoretical framework, then with a focus on the physical phenomenon known as
supersolidity, but with no claim for completeness along each way. As we will see, it
is giants all the way down.

As the physics we will discuss in this thesis relies on some core concepts of quan-
tum mechanics, let us start at the dawn of this theory, when it was common scientific
consensus that the framework of physics, nowadays known as classical physics, was
mostly complete, with only minor details that still had to be sorted out. One of these
concerned the radiation emitted from any piece of matter as it is heated up. In this
process it starts to emit an incandescent glow, first red in color, until a bright white
glow can be observed as the temperature is further increased. The perception of
the white color stems from the emission of electromagnetic radiation over the whole
visible spectrum (with a wavelength ranging from 380 nm to 750 nm). In case of
a blackbody, which is best modeled by an evacuated box with a tiny hole drilled
into its side, the spectral radiance describing the emitted light intensity at a given
wavelength solely depends on the temperature of the object. Due to its simplicity
a blackbody should thus make for an optimal object of physical analysis. But as
Rayleigh and Jeans [Ray00; Jea0O5] worked out the corresponding relation based on
the then known rules of (classical) electrodynamics and statistical thermodynamics,
their theoretical relation only fit well with the experimental observations for long
wavelengths, while it actually even predicted an unphysical divergent spectral ra-
diance at small wavelengths (independently also found by Einstein [Ein05]). Their
observation was later called ultraviolet catastrophe, a phrase coined by Ehrenfest in
1911 [Ehr11].

This paradoxical situation led Planck to begin his research studying the prob-
lem. As he got the opportunity to work with the experimental data of Kurlbaum
and Rubens in the summer of 1900 [Heil1], his suggested interpolation between the
Rayleigh-Jeans law and the empirical Wien’s law (which is correct for short wave-
lengths) [Wie96] proved to give a complete agreement with their experimental ob-
servations. This discovery initiated Plancks actual theoretical venture. The hovering
question was: What is the correct interpretation of the novel formula? Based on his
previous research he concluded that the formula could be interpreted as an assertion
about the properties of the elementary oscillators (i.e. the atoms constituting the ra-
diating matter), predicting that they cannot change their energy continuously, but
only in discrete steps, which are now known as quantum jumps. The publication
of this quantum hypothesis in the December of 1900 [Pla01] heralded the start of
quantum physics.
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The hypothesis was at odds with contemporary physics and Planck’s attempt
at reconciling both led to failure in fundamental points. It took another five years
until Einstein added another important piece, suggesting that also the energy of
light is quantized [Ein05], work yielding him the Nobel prize in physics of 1921
(awarded in 1922). This insight allowed for an explanation of the photoelectric effect,
as first observed by Lenard in 1900 [Len00]. His experiment showed that the kinetic
energy of electrons emitted from a metal surface, induced by the irradiation with
ultraviolet light, does not at all depend on the intensity of the light, but only on its
wavelength. This did not only lead Einstein to the conclusion that the energy of
light, and therefore light itself, is quantized, but also the realization of an apparent
contradiction, the wave-particle duality. Light previously was considered a wave
phenomenon, which is in stark contradiction to the new perspective of light as a
particle, which could not explain the observed diffraction of light. He realized that
neither perspective by itself fully explains the nature of light, but depending on the
specific situation either or sometimes both do.

In 1911 Rutherford introduced his model of an atom [Rut11]. From the scattering
of a-particles in a thin gold foil, he concluded that the, at that time known, con-
stituents of an atom, negatively charged electrons and equal positive charges, are
distributed with most of the mass and all positive charge in the atom nucleus, while
the electrons orbit the nucleus similar to the planets orbiting the sun. Based on this
experimental account, Bohr published a series of works in 1913 [Boh13a; Boh13c;
Boh13b], in which he detailed the idea of quantized energy levels in the context of
discrete classical electron orbits, explaining the spectral lines of hydrogen via quan-
tum jumps between individual orbits, and thus on a more fundamental level then
previously described by the Rydberg formula [Boh54]. As a semi-classical descrip-
tion it also gives an asymptotically exact description for sufficiently high excitations
of a single electron, known as Rydberg states, in any other atomic element. His basic
assumptions were confirmed in the Franck-Hertz experiment one year later [FH14],
as well as was the extension via the Sommerfeld-Wilson quantization condition for
the direction of the angular momentum [Wil15; Som16] in the Stern-Gerlach experi-
ment [GS22]. But as the whole quantum theory at that time was based on a heuristic
of selection rules for classical orbits, it inevitably failed in many regards, an obvious
being its limitation to closed (stationary) orbits.

It was de Broglie who suggested that the wave-particle duality should be ex-
tended to matter itself [De 25], especially for the electrons in an atom. Considering
the electron as a wave surrounding the atom nucleus, it can only be a stationary
one, due to the geometry of the system. His proposed correspondence between the
wavelength and the momentum of the particle then serves as a bridge between the
quantization condition and the ominous duality. Considering everything in terms
of waves naturally led to the idea of replacing the equations for the position and
velocity of an electron by equations for the frequency and amplitude of the corre-
sponding matter wave. This switch in perspective led Heisenberg [Hei25; AMS04]
and subsequently also Born and Jordan [B]25; BH]26] to the development of a self-
consistent theory of quantum mechanics formulated as matrix mechanics in 1925,
which in term of Diracs operator calculus [Dir81] serves as the framework of the
theoretical considerations presented in this thesis. Schrodinger published his alter-
native formulation, which is directly based on de Broglie’s idea of the matter wave,
just months later in 1926 [Sch26a; Sch26b; Sch26¢; Sch26d], also proving the equiva-
lence of both formulations [Sch26e].

With the methodological groundwork in place let us now take a step back to
introduce the physical phenomena, which are of primary interest in this thesis. To
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do so we have to go back to the year 1925, in which Einstein predicted the collec-
tive condensation of an ideal (i.e. non-interacting) homogeneous Bose gas into the
lowest energy state at sufficiently low temperatures [Ein25], thus implying the exis-
tence of quantum phenomena on a macroscopic scale of a large number of particles
(many-body systems) well beyond the original objects of quantum mechanics. This
conjecture was based on his generalization of preceding work by Bose about the
quantum statistics of photons [Bos24] to massive particles [Ein24]. The theoretical
framework of this Bose-Einstein condensation (BEC) was later used to interpret the
disappearance of viscosity, called superfluidity, in liquid helium-4, when cooled to
very low temperatures, as first observed by Kapitza [Kap38], and Allen and Misner
[AM38] in 1938. But this did not quite work as the simple BEC theory predicted
a complete condensation, while an empirical two fluid model introduced by Tisza
[TIS38] and London [Lon38] was more consistent with observed phenomena such as
the coexistence of two values for the speed of sound in superfluid helium. As shown
by Penrose and Onsager in 1956 [PO56], this is due to the presence of strong inter-
actions between Helium atoms, which limits the fraction of particles participating in
the condensed state to 8%, even in the limit of zero temperature.

Along the way it was also discovered that the homogeneous many-body ground-
state of an interacting BEC, such as superfluid helium, can be perturbed by the
generation (excitation) of quantized fluctuations also named quasiparticles. These
quasiparticles have an associated energy, which is positive in relation to the ground-
state, thus raising the total energy when excited. But for sufficiently strong interac-
tions a local minimum appears in the energy of quantized fluctuations of a certain
wavelength. In 1969 this observation led Andreev and Lifshitz [AL69] to the predic-
tion of a seemingly paradoxical state of matter. They proposed the possibility of a
supersolid phase, meaning a many-body state with crystalline properties which al-
lows for a dissipationless flow of crystal defects through the crystal lattice. For hole
type defects this implies an effective flow of atoms passing through one another in
the opposite direction with no friction whatsoever.

It was thus suggested by Leggett in 1970 [Leg70] that it should be possible to
observe a change in the behavior of a rotational oscillator consisting of a solid piece
of “He, as a fraction of its atoms effectively decouple from the rest in a supersolid
state. While an anomaly of this type was later observed in a 2004 experiment by Kim
and Chan [KC04a; KC04b], which even was replicated by other groups, their results
were met with strong skepticism by only a few but vocal critics [Reil0]. As Reppy
took the opportunity to cooperate with Rittner, a graduate student trying to also
replicate the findings, he stepped back from going into retirement. While at first they
also observed the increased oscillation, as did Chan and Kim, they then decided to
let the helium heat up just above 1 K, cool it down again and repeat the experiment.
In this second run the change in oscillation frequency was significantly reduced. This
implies that the observed effect was not (primarily) due to the intrinsic quantum
behavior of a pure crystal, but preexisting defects had to be involved. After they
published their results in 2006 [RRO6], further observations were made also by other
groups, which contradicted the presence of a supersolid state. For example no sign
of a persistent superfluid flow was to be found and experiments by Day and Beamish
[DB07] instead suggested that the increase in oscillation frequency could also be
explained by the elasticity of solid helium, which decreases as the helium is cooled
down. This stiffening effect, which is related to the shear modulus of the solid, is
regarded to as quantum plasticity. As Kim and Chan repeated their experiment in a
setup that is free of this effect they no longer found any sign of supersolidity [KC12].
Therefore supersolidity remains elusive in solid *He.
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However in 2017 two groups reported the observation of supersolid signatures in
two distinct setups of ultracold quantum gas experiments [Léo+17b; Li+17]. These
experiments were conducted in a regime completely at odds with solid *He, as they
involve highly dilute atomic vapors, which are kept in a vacuum chamber and held
in place by optical traps. We will discuss the specific details in Sec. 1.1.2, but for
now they serve as strong examples for the possibilities of quantum gas experiments
as quantum simulators: It was suggested by Feynman in 1982 [Fey82] to use a finely
tunable quantum system to emulate the quantum physics of another system, which
at its core is of entirely different nature, or even without semblance in naturally
occurring systems. Actual experiments of that kind were first realized by Cornell
and Wieman (JILA) [And+95], and Ketterle (MIT) [Dav+95], starting a whole new
field of physics. It is this field in which the topic of the present work is placed.

In the course of this thesis we will discuss another kind of supersolid, the lattice-
supersolid, which can be realized using quantum gases in an optical lattice trap.
The supersolid then is induced by self-ordering of the gas due to strong long-range
van der Waals interactions, as facilitated by the excitation of atomic Rydberg states.
In Chap. 1 we will review the relevant methods and devices of the vast toolbox
available in common quantum gas experiments, as well as consider the main con-
cepts behind superfluidity and supersolidity. This is followed up by Chap. 2, which
introduces some basic concepts of Rydberg atoms in quantum many-body systems,
with a focus on the facilitation of long-range interactions and the implementation
in a theoretical model. Thereafter a brief introduction on the realization of the Bose-
Hubbard model in optical lattice systems and an extension to include Rydberg states
is given in Chap. 3, which concludes the introductory part of this thesis. In the fol-
lowing part, consisting of Chaps. 4 through 5, we will introduce the theoretical tools
used to derive the results presented in the final Chaps. 7 and 8. An introduction
to a real-space extension of bosonic dynamical mean-field theory (RB-DMFT) for
bosonic systems with long-range interactions in the Hartree approximation is given
in Chap. 4, which rests on the non-perturbative self-consistent evaluation of the lat-
tice Green’s function. The focus of Chap. 6 lies on a quasiparticle expansion, which
is based on linearized fluctuations of a static mean-field ground-state, allowing for
the prediction of a vast range of experimentally relevant observables. Lastly we will
introduce an efficient truncation scheme for the local bosonic Fock-basis in Chap. 5,
which allows for the simulation of phases with high condensate density at a vastly
reduced computational effort. In the final two chapters we will apply both methods
to itinerant bosonic gases in two-dimensional optical lattices in order to predict the
equilibrium ground-state phases, as well as the signatures of supersolidity and its
formation in spectral functions and the dynamic and static structure factor. In the
tirst of the two (Chap. 7) we will consider a two-component gas, as realized by two
hyperfine ground states, for example, of rubidium-87 (8’Rb), where one component
is off-resonantly excited to a Rydberg state, which generates a soft-core shaped in-
teraction potential. In the latter (Chap. 8) we will discuss the opposing case using
near-resonant excitations of Rydberg states, where the interacting component now
directly corresponds to the Rydberg state, which interacts via a van der Waals po-
tential. In the subsequent appendices we discuss some methodological details. In
App. A we will consider the possible extension of the Hartree approximation, in-
troduced in Chap. 4, to a Hartee-Fock type description. To motivate the use of the
Hartree approximation we will give some brief remarks about the scaling of the ef-
fective number of nearest neighbors for a strong long-range interaction in App. B.
Finally in App. D we will discuss the validity of approximations made in Chap. 8.
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Ultracold atoms in optical lattices

In this chapter we will briefly discuss the basic properties of dilute atomic gases in
optical lattices (OL) as well as methods to manipulate and cool them. For further
details the reader is recommended to consult the references given in each section. A
good introduction is given in [PS08] and [BZ08], while also [PS03] is recommended.
This chapter roughly follows [PS08], but with a focus on trapping, cooling and ma-
nipulation of the atomic cloud, as well as optical lattices and superfluidity. We also
discuss supersolidity and experimental methods for the observation of these sys-
tems, which are relevant within this thesis.

1.1 Bose-Einstein-condensation

In everyday life one usually encounters only three states of matter: gaseous, lig-
uid and solid in order of decreasing internal energy. All these can be understood
at least semi-classically for simple materials. But as early as 1925 Einstein predicted
another phase, in which a macroscopic majority of the particles of a non-interacting
many-body system resides in the lowest energy quantum state [Ein24; Ein25]. In the
zero temperature limit actually all particles are predicted to condense in the ground-
state. His work was a generalization of preceding work by Bose about the quantum
statistics of photons [Bos24] to massive particles, for which the statistics of Bose ap-
plies. These particles are therefore called bosons nowadays. The statistics of bosons
follows from the fact that quantum particles are indistinguishable, which is a funda-
mental difference to classical particles. When counting the microstates of a classical
system, we expect to obtain different states when exchanging any pair of particles
for a given many particle state. But this is different in the real world, where there are
only quantum particles. For those particles, only two possibilities are known when
exchanging an arbitrary (indistinguishable) pair of particles in a many particle state.
Either the quantum state remains the same, then we speak of bosons and the num-
ber classical microstates simply has to be divided by N! in the partition function,
as this is the number of permutations for N bosons in the corresponding quantum
state. Or the quantum state changes sign under each exchange of an arbitrary pair
of indistinguishable particles, which applies to fermions.

This property immediately implies the Pauli exclusion principle of fermions. If
we assume that any single particle state were occupied twice by indistinguishable
fermions, then an exchange of the two would change the sign of the state while
the state would also have to remain the same. This is a contradiction which can
only by resolved by forbidding such states, as we assume all physical states to be
normalizable.

Bosons on the other hand do not have such a restriction. In fact, a higher occupa-
tion of any single particle state is even enhanced compared to classical particles and
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can be arbitrarily high. This brings us back to the condensation introduced at the
beginning now known as Bose-Einstein condensate (BEC), which therefore cannot
be explained by classical means. Indeed it is a macroscopic manifestation of quan-
tum mechanics, realized as a thermodynamic phase. This implies that the wave-like
properties of matter are observable on a macroscopic level, making quantum effects
much more accessible as they are realized by many particles coherently occupying a
single quantum state.

An intuitive way to determine the critical condensation temperature T, is to con-
sider the thermal de Broglie wavelength \;p associated with quantum mechanical
matter waves in relation to the mean interparticle spacing, which is on the order of
n~'/3, where n is the volume density of the particles. In free space it can be shown
that the lowest temperature for which all particles still reside in excited states, in the
thermodynamic limit is implicitly given via the relation \3zn = ((3/2) ~ 2.612 (as
e.g. discussed Chap. 2 of [PS08]), where the appearance of the Riemann zeta func-
tion () results from the geometry of the system. Conventionally the thermal de
Broglie wavelength has the following definition:

2mh?2
B = . 1.1
B =/ kT (1.1)

It is given in terms of the reduced Planck’s constant # = h/2m, the mass m of a
particle, the Boltzmann constant kg and the temperature 7'. Solving the condensa-
tion criterion for T yields the relation 7 oc n2/3 /m. Thus in order to achieve a BEC,
one can either reduce the temperature or increase the density, while it also helps to
use (bosonic) particles of lower mass. But the method of increasing the density is
actually very limited from above. As the density is increased, atoms start to interact
more and more. For example if we consider densities common in day-to-day context
these interactions usually result in the formation of either solids or liquids at very
low temperature, with only few exceptions, such as the superfluid phase ! which we
will discuss in Sec. 1.1.1. The first experimental realization of a true non-interacting
Boes-Einstein condensation was therefore not realized prior to 1995, which was 70
years after its initial prediction, as no sufficiently efficient cooling technique existed
before.

These experiments were performed with dilute atomic gases achieving temper-
atures well below the pK range using cooling techniques, which we will discuss in
Sec. 1.3. The first experiments were conducted for vapors of rubidium-87 [And+95],
sodium-23 [Dav+95], and lithium-7 [Bra+95; BSH97]. They marked the beginning of
a new field of research, the study of (ultracold) quantum gases, and led to the first
nobel price in physics awarded in this field. Cornell and Wieman [And+95], and Ket-
terle [Dav+95] received this price in 2001 for their pioneering experiments in 1995.
For the alkali atoms used in these early experiments, they achieved densities on the
order of 10'3cm™3, while current experiments can reach values as high as 10™°cm ™.
These values illustrate the dilute character of the used gases, as air molecules at room
temperature and atmospheric pressure have a density of about 10'%cm™3, while the
density of atoms in liquids and solids is on the order of 10?*cm™3.

Besides the (non-)interacting ultracold atomic gases, strongly interacting BECs
have been observed as early as 1937. In January of the following year two papers
were published side by side, one by Kapitza [Kap38], and the other by Allen and

'Which besides ultracold atom systems has so far only been observed in both helium isotopes *He
and *He and via spectroscopic signatures in small clusters of para-hydrogen [Gre+00].
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Misner [AM38]. Both works presented their authors respective and independent re-
sults on the observed vanishing viscosity of liquid helium-4 (*He) below the lambda-
point® at T = 2.17K. Due to the corresponding possibility of dispersionless flow of
this liquid this state is now known as superfluid helium. While it can be understood
phenomenologically in the framework of Bose-Einstein condensation, it cannot ex-
actly be described as a simple BEC, for which all particles would occupy the ground-
state at T = 0. Instead the fraction of condensed *He atoms cannot grow above 8%,
as has been shown by Penrose and Onsager [PO56]. In the presence of interactions
the ground-state of a bosonic system can no longer be represented as a product state,
thus invalidating the original criterion for a BEC. Instead they proposed a more gen-
eral definition, based on the single particle density matrix p;; = (dg&j), where the
second-quantized operator &;r (@;) creates (annihilates) a boson in the single parti-
cle orbital |i). The expectation value can be calculated either for a pure state or in a
statistical ensemble. Considering the eigenvalues of this Hermitian matrix, they sug-
gested that if the largest eigenvalue )\ scales extensively and thus is macroscopic,
while all other eigenvalues do not, the many-body state can be considered a BEC.
Ao also is a measure for the number of particles in the condensate orbital implying
a definition for the condensate fraction f. = \o/N, where N is the total number
of particles. The condensate orbital is then given as the corresponding eigenvector
lvpEC) = X5 v?]i), as defined via the eigenvector coefficients v{ of ).

Common alternative criteria include the definition via a U(1)-symmetry break-
ing, where the expectation value (G;) has a non-zero value in the presence of a BEC
[’S08], and the concept of off-diagonal long range order (ODLRO), as introduced by
Yang [Yan62]. While the U(1)-symmetry breaking fails to give an exact picture of a
BEC in a finite system of fixed particle number [LS91], for which (a;) always van-
ishes, this can often be mitigated by assuming the presence of a particle reservoir.
Yang’s ODLRO, on the other hand, also follows from the definition by Penrose and
Onsager applied to homogeneous systems with repulsive interactions and does not
generally extend to inhomogeneous systems. While the single-particle density ma-
trix method thus gives the best description, U(1)-symmetry breaking is often used
preferentially due to its simplicity, especially on a mean-field level, where the system
is effectively treated as its own particle reservoir.

In addition to the mentioned systems, there also exist a few other contenders
for BEC. A peculiar example are fermionic condensates. As fermions by themselves
obey Fermi-Dirac statistics, which forbids multiple occupation of any single-particle
orbital, condensation seems counterintuitive in such systems. But in the presence
of sufficiently strong attractive interactions they can form (weakly) bound pairs,
thus forming composite bosons, which subsequently can condensate. A famous re-
alization is superconductivity of electrons in a solid, as described by the theory of
Bardeen, Cooper and Schrieffer (BCS-theory) [BCS57] for weakly attractive interac-
tions. In that case the bond length vastly exceeds the typical interparticle spacing.
For increasing interaction strength the bond length decreases resulting in the BCS-
BEC crossover [Che+05]. Another example is the magnon BEC, which is the conden-
sation of quantized many-body excitations of collective spin precisions or magnons.
But as there are no magnon excitations of zero energy, condensation can only be
achieved in a driven non-equilibrium system [Dzy+07]. For further examples see
Bose-Einstein condensation by [GSS95].

*This name derives from the characteristic shape of the graph for the specific heat capacity as a
function of temperature in the vicinity of the normal to superfluid transition.
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1.1.1 Superfluidity

=
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FIGURE 1.1: General features of typical excitation spectra for elementary excitations
in a cooled bosonic many-body system. The black line corresponds to excitations in
superfluid *He. The minimum roton energy is given by A at the momentum p,. The
dotted line corresponds to a weakly interacting bose gas, as realized in quantum gas
experiments. Dashed lines correspond to the maximum and minimum phase velocity
€(p)/p for each case, as long as they exist.

As has been mentioned earlier, superfluidity is a phenomenon first observed in
“He cooled below the lambda-point. It describes the property of a fluid that has zero
viscosity. This property implies that the liquid can flow through narrow channels
without any friction. A first model to explain the specific behavior in *He was in-
troduced by Tisza [TIS38] in 19382, as a response to Londons considerations [Lon38]
along similar lines. In effect they describe a model of two interpenetrating fluids
(two fluid model), consisting of one normal and one superfluid component, both
with corresponding individual velocity fields. However it was Landau [Lan41],
who pointed out that the normal component consists of quasiparticles, a concept
he introduced to quantize elementary excitations of quantum fluids. At very low
temperatures the density of the superfluid, which has zero viscosity and zero en-
tropy, approaches that of the entire liquid, while the normal density, which is vis-
cous and carries entropy, approaches zero. Therefore the superfluid density has to
be discerned from the condensate density, which is limited to a fraction of the total
density in *He as has been mentioned before. When approaching the transition to
the normal state by increasing the temperature the reverse behavior is observed: the
superfluid density vanishes at the lambda-point, such that the fraction of the normal
component becomes one.

The properties of this system are related to its elementary excitations. In a uni-
form ideal gas they correspond to the addition of a single particle in a momentum
eigenstate. For sufficiently small interactions these states remain approximate eigen-
states with a finite lifetime and still well-defined energies. In liquid “He they exist

3See The discovery of superfluidity by Balibar [Bal07] for a remarkable account of the discovery in its
intense historical context.
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for small momenta in the form of phonons (sound waves) with a linear dispersion
relation €(p) (see Fig. 1.1) given in terms of the speed of sound c.

€(p) =cp (1.2)

The dispersion shows a slight downward curvature for pressures above 18 bar, and
an upward curvature for pressures below this value. This low pressure regime is
similar to a weakly interacting Bose gas, while the linear regime vanishes completely
for a non-interacting gas, for which the dispersion becomes that of a free particle
o< p?. At even larger momenta the dispersion relation of liquid *He exhibits a local
maximum, with the maxon modes, followed by a local minimum, which carries the
roton modes®. In the vicinity of the minimum, ¢(p) has the approximate form

, (p=p)*

-A
e(p) Sy

(1.3)
In the limit of zero pressure the effective mass m* is 0.16 times the mass of the ‘He
atoms. The excitations become less defined for energies above twice the roton energy
A, as they can decay into two rotons.

Landau’s criterion for superfluidity

The hallmark feature of a superfluid is the absence of dissipative flow. In 1941 Lan-
dau published a remarkably simple criterion for the onset of dissipation [Lan41].
Let us consider a stationary obstacle, which the fluid flows past at a speed v. We
take the frame of reference in which the particle is stationary. Therefore we have
to consider the Galilean transformation of energy and momentum, starting with the
reference frame K in which E and P are the energy and momentum of the bose fluid.
Expressing both quantities in a moving frame K’, which has a relative velocity V,
yields the relations

PP - MV, (1.4)
P12 1 M

P L e yvp-p-p.ove Mvp. (1.5)
oM  2M 2

Here E = |P?|/2M, while M is the total mass of the bosons. Let us now assume
that dissipation of the flow around the particle takes place through creation of ele-
mentary excitations, as given by ¢(p). We now consider K as the reference frame
in which the bosons are at rest, so P = 0, then £’ = E + M|V|?/2 in the frame for
which the obstacle is at rest. But when a single elementary excitation of momentum
p is created, the energy of the bosons in the reference frame K becomes E + ¢(p),
while its momentum changes to p. In the reference frame with the obstacle at rest,
which moves with the velocity —v relative to the fluid, we have to set V = —v in (1.4)
and (1.5), so we obtain

*The name was meant to suggest a relation to vortex excitations, but actually they should be con-
sidered as short-wavelength phonon-like excitations.
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P’ =p + Mv, (1.6)

M
E' :E+e(p)+p-v+7|v|2. (1.7)

Comparing the situation with and without an assumed scattering event, we obtain
a difference in energy and momentum given by ¢(p) + p- v and p respectively. As
the spontaneous creation of elementary excitations and therefore energy dissipation
can only occur if and only if the corresponding process is energetically favorable.
Therefore we conclude that the change in energy in the frame of the obstacle (which
is at rest in both cases, thereby fulfilling a thermal equilibrium condition) has to be
negative for dissipation to occur

e(p)+p-v<O0. (1.8)

For any given excitation mode, dissipation is thus possible for every velocity that
is equal or greater in absolute value than the phase velocity of the respective mode,
or |v| > e(p)/|p|, and of opposite direction to the mode as all excitation energies are
positive, so p-v < 0. By considering all modes, we can find the minimum velocity
v, for which dissipation occurs. It is given by

UC:min(@). (1.9)
p

This expression is referred to as the Landau critical velocity. For velocities be-
low this value it is impossible to create excitations, thereby allowing for superfluid
behavior. For weakly interacting bosons this leads to a critical velocity given by

ve = s due to (1.2), while in a strongly interacting system one obtains v, ~ fn—%, for

pg/2Am — 0, which can be significantly less then the sound velocity c as can be seen
in Fig. 1.1. More generally for (1.3) one finds

2
__bo
), where = = SAm «< 1. (1.10)

Ve =

A (1+(1+§—\/E)2

2m* 1+§

As a final remark we note that v. = 0 for a non-interacting system exhibiting the
dispersion relation e(p) = p*/2m, which implies the absence of superfluidity in a
non-interacting BEC.

The two-dimensional system

For a two-dimensional ideal Bose gas, one can easily derive the relation between the
density nop = N /A, where N is the total number of particles and A is the area of the
system, and the chemical potential i determining .

9 2
1= k:BTln(l - e—Tw/T), where Typ = 21 12D (1.11)

ka



1.1. Bose-Einstein-condensation 11

As the two-dimensional density of states of free non-interacting particles is constant,
starting at the lowest energy states, the total number of particles in the ground-state
can be obtained by simply inserting the given chemical potential into the Bose dis-
tribution np(€;) for the ground-state ¢; = 0, where i denotes the different possible
eigenstates of a free boson:

1

NCER (112)

np(€;) =

Thus we obtain

1

——=e™/T (1.13)
(1-eTen/T) " —1

Ny =

Ny therefore only becomes on the order of N if ' $ Top/In N. But this term be-
comes vanishingly small compared to N when taking the thermodynamic limit,
where N, A - oo and ngp — constant. This leads to the conclusion that for any
non-zero temperature a BEC of a uniform two-dimensional system is forbidden in
the limit of large system size.

A more thorough analysis (see e.g. Chap. 15 of [PS08]) reveals that the be-
havior of the single-particle density matrix p(r’,r"") = p(r) of a homogeneous two-
dimensional system of linear size L, with r = r" -1/, is given by

p(r) o< (%m)77 (1.14)

Here the exponent is given by n = T'/T5p and 7, corresponds to the length scale for
which the long-wavelength approximation for the fluctuation spectrum, used in the
derivation of (1.14), fails. The density matrix thus tends to zero at large distances,
implying the absence of phase correlations over the whole system and thus of Bose-
Einstein condensation. But due to the power law behavior there still exist finite re-
gions where the phase is well correlated and also the superfluid density is non-zero.
One thus speaks of a quasicondensate. The transition temperature for this system
has been predicted by Berezinskii [Ber71; Ber72] and by Kosterlitz and Thouless
[KT73], who were the first to stress that not only phonons determine the finite tem-
perature behavior, emphasizing the crucial role of vortex lines in two-dimensional
systems. Vortices are nodal points at the center of which the condensate wave func-
tion vanishes, thus reducing the superfluid density locally. Within Gross-Pitaevskii
theory one can determine the energy of a vortex [PS08], which is given by

h2
E » mnap— In(L/¢). (1.15)

L is the linear dimension of the system, while ¢ is the healing length of the wave
function describing the required distance from a localized perturbation over which
the wave function returns to its bulk behavior. Due to their non-zero energy, vortices
are exponentially suppressed at small temperatures, but they become significant in
number at a certain temperature, which leads to a sudden drop in the superfluid
density at higher temperature referred to as the Berezinskii-Kosterlitz-Thouless tran-
sition. The critical temperature can be determined from the free energy /' = E - TS,
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where S is the entropy of a vortex. It is given by S = kln v, with v being the number
of distinct configurations of the vortex. It can be estimated by the ratio of the total
area of the system A = L? and the approximate area of the vortex core ~ 7&2, result-
ing in v ~ (L/¢)% Thus we obtain S ~ 2kIn(L/¢) for sufficiently large values of L,
resulting in the free energy

P (anDhZ
m

- QkBT) In(L/€). (1.16)

It is thus favorable to create vortex excitations when the temperature exceeds the
critical temperature TgxT:

mnaph?  Top
m2kp 4

TBKT = (1.17)
At this temperature the system undergoes a phase transition, from a quasiconden-
sate with power-law decaying phase correlations for temperatures below Tgkr, to
a normal state for temperatures above, in which the single-particle density matrix
instead decays exponentially in space, as has been observed in the context of cold

dilute gases [Had+06], while the corresponding superfluid behavior was observed
in [Des+12].

1.1.2 Supersolidity

As the roton gap, which is present in a bosonic system with sufficiently strong long-
range interactions such as in liquid 4He, is softened by reducing A, one has to as-
sume that the occupation of finite momentum states can become favorable, lead-
ing to the prediction of a peculiar quantum crystal state with superfluid properties,
namely a supersolid. It was first predicted by Andreev and Lifshitz [AL69] in 1969,
and in the following year by Matsuda and Tsuneto [MT70], discussing the coexis-
tence of diagonal long-range order, associated with crystalline order, and ODLRO
in the single-particle density matrix’, as well as by Chester [Che70] and Leggett
[Leg70], who used a wave function ansatz.

Andreev and Lifshitz consider a type of tight binding limit, starting with a crys-
tal of bosonic particles containing defects which are described as quantum particles®
(defectons) that can hop through the rigid lattice. These quasiparticles have a quasi-
momentum k and an associated dispersion e(k) with the bandwidth Ae which is
proportional to the tunneling of the defectons. For a supersolid to be present in this
picture the quasiparticles need to be sufficiently delocalized and present in equilib-
rium. Non-locality depends on their interaction with other crystalline excitations
or defects. Assuming a sufficiently low temperature for quasiparticles to persist,
Andreev and Lifshitz find a criterion such that the defects are not localized at any
specific site,

°As they assume an unusual quantization, realizing hard-core bosons via local fermionic commu-
tation and non-local bosonic commutation relations, we will not discuss their results in the context of
this thesis.

The quantum statistics these quasiparticles obey depends on the statistics of the crystal’s con-
stituent atoms and the defect itself.
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3

Ac 3/4
i e[ B2)""

mc?

(1.18)

In this expression n is the defect density and a is the lattice spacing, while m is the
mass of the lattice constituents and c is the speed of sound. To derive this result
they assume a cubic interaction potential ¢ ~ mc?(a/r)? between the defects. They
further argue that this relation has to be corrected under the assumption that the
quasiparticles may still be localized in macroscopic regions forming a superlattice.
For a delocalization of the defects it is thus necessary that the superlattice is unstable.
This is the case if the potential barrier ¢ ~ mc®na® is less than Ae or na® <« Ae/mc?.
In order to argue in favor of stability, they go on to consider the defecton energy
e¢(k), which they assume to have a minimum ¢ at k = 0 in the simplest case. So

e(k) = o + k?/2m*, (1.19)

where m* is an associated effective mass. Further considerations about the volume
dependence of ¢ on the pressure, and as such on the volume V' of the solid, com-
bined with the assumption that the bosonic defectons condense in the k = 0 state,
so they contribute with the energy of a dilute Bose gas at 7" = 0, leads them to an
expression for the energy contribution E of the defectons to the total energy of the
crystal,

_ 2
Vo VN+27TaN

E=\ —.
Vo m* V

(1.20)

Here )\ is an expansion coefficient for ¢ as a function of V/, which is assumed to be
positive, Vj is the value of V' where ¢y may vanish, a is the scattering amplitude of
the defectons and N is their total number. For repulsive defect interactions (a > 0),
this energy has a minimum Fj as a function of N. Thus the presence of non-localized
bosonic defectons with repulsive interactions may lower the total energy of the solid

by

V'VO)Q. (1.21)

E():—V 87ra( ‘/0

m*\?
Note however that their considerations heavily rely on the presence of defects, which
can only be created or destroyed at the surface of the solid. Prokof’ev and Svistunov
reinforced this observation in 2005 by showing analytically that the presence of ei-
ther zero-point vacancies or interstitial atoms is a necessary condition for the for-
mation of a supersolid [PS05], thereby especially ruling out the possibility of super-
fluidity occurring in commensurate solids breaking a continuous symmetry in the
absence of symmetry between vacancies and interstitials. Their arguments are based
on the topology of particle trajectories within a Monte-Carlo description, which have
to include the generation and annihilation of vacancy-interstitial pairs for the super-
fluid density to be non-zero. They therefore stretch the requirement of topological
ODLRO for the existence of superfluidity.
Consider that Chaudhuri et al. [CPC99] have predicted an energy of approx-
imately 15.6 + 4.2K (in agreement with X-Ray scattering experiments [FGS89]) for
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the generation of a single vacancy in a hexagonal close-packed (hcp) lattice of “He,
while Ceperly and Bernu [CB04] have predicted that the energy for the generation
of an interstitial is about 48K in hcp “He. Both values were calculated at the melt-
ing density. This implies that there is no macroscopically large number of vacancies
or interstitials present in the typical temperature ranges considered in experiments,
thus demanding a different mechanism for supersolidity in 4He, if it can exist at all.
But the outlook is less pessimistic in the case of quantum optical systems, as we will
see at the end of this section.

But for now let us briefly discuss the theoretical analysis as brought forth by
Chester [Che70] and Leggett [Leg70]. Chester starts with the ansatz of a bosonic Jas-
trow wave function ¢y = exp(—3 ¥; u(r; - r;)). The function u(r) is an arbitrary
pseudopotential, that is hard-core, bounded from below and has a finite range. He
furthermore notes that he can choose u(r) such that the probability distribution cor-
responding to ¢y mimics a classical Gibbs distribution. As such distributions can
represent crystalline systems at sufficiently low temperatures he concludes that the
wave function will also correspond to a crystalline state. Furthermore using a theo-
rem by Reatto, he is able to show that such a wave function can also describe a BEC.
He concludes that the proposed Jastrow function should work as a good approxi-
mation for solid “He. Notably he also suggests that condensation in a crystal might
only be possible if a macroscopic number of vacancies is present.

Leggett further builds on Chester’s results, proposing that a solid containing su-
perfluid constituents should exhibit a non-classical rotational inertia. He suggests
that a fraction of the mass of solid “He effectively decouples, condensing in a su-
perfluid that can acquire angular momentum only in discrete quanta. He thereby
suggests the use of a rotational pendulum in order to probe the presence of a su-
persolid phase in 4He, which, in the end, showed no signs of supersolidity [KC04a;
KC04b; KC12].

Supersolidity in cold gases

As it turns out, the realization of the supersolid state is much less debated in sys-
tems of cold dilute Bose gases, as it is in systems of solid Helium (see Introduction).
Only recently there have been two experimental groups reporting on the observa-
tion of signatures of supersolid order breaking a continuous translational symmetry
in the former systems [Léo+17b; Li+17]. This is in contrast to lattice-supersolids
which instead break a discrete translational symmetry pre-imposed by an OL (see
e.g. [Ott+95; IF09; CS+10; Pol+10; SS514; Bai+16]). These lattice-supersolids are the
primary focus of this thesis and their experimental observation still remains an open
challenge to date.

Lénoard et al. [Léo+17b] on the one hand realize the continuous U(1) symmetry
to be broken in the condensate phase via two discrete spatial symmetries generated
in two crossed optical cavities, by symmetrically coupling a BEC to the modes of
both, leading to the emergence of an order parameter exhibiting a continuous sym-
metry, which is expressed via the relative coherent field amplitudes of the cavities.
They subsequently show that the ground-state of this system spontaneously breaks
this symmetry, which simultaneously amounts to the spontaneous formation of a
density wave pattern breaking the translational symmetry. The observed random
nature of the phase of the order parameter proves the high ground-state degeneracy
associated with the breaking of a continuous symmetry. Note that the symmetry
breaking in this system is realized by internal forces, as the coupling of the BEC to
the modes of an optical cavity effectively induces an infinite range interaction for
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the BEC constituents. They further report on the observation of associated gapless
Goldstone and gapped Higgs amplitude modes in [Léo+17a].

Li et al. [Li+17] on the other hand realize a spin-orbit coupling in a two-dimen-
sional optical double-well lattice, using Raman induced tunneling between the two
wells, while the particle movement remains free along the third direction. States
in either of the two wells can be considered as effective spin states. The induced
spin-orbit coupling leads to the formation of density modulations along this third
dimension via interference of the spin manifolds with one another due to the cou-
pling. The existence of a (weakly interacting) BEC in this system leads to a zero
momentum peak in time-of-flight images (see Sec. 1.4.1), while the interference pat-
tern breaking the spatial translation symmetry leads to a finite momentum peak in
the static structure factor, which they observe using Bragg-scattering (see Sec. 1.4.4).
We note that the formation of the density wave can be understood as a perturba-
tion of the superfluid BEC, as the interference can be controlled by the strength of
the spin orbit coupling, while even an arbitrarily small coupling generates a propor-
tional amount of counter-propagating fractions of the condensate that interfere.

As a last example let us consider optical lattice systems, as will be introduced in
further detail in Sec. 1.2.2. For these systems there are multiple ways one could in-
troduce long-range interactions such that roton modes can form which may induce
spontaneous symmetry breaking, as driven by internal forces. Common examples
are polar molecules (see [Bar+12] for a review) or atoms with strong magnetic in-
teractions such as chromium [Lah+07], dysprosium [LYL10] or erbium [Bai+16]. Re-
garding theoretical works see for example [IF09; CS+10; Pol+10; Bar+12; Lu+15]. But
in the scope of this thesis we will focus on the formation of lattice-supersolids via
long-range interactions as induced by Rydberg excitations. As suggested by Pupillo
et al. [Pup+10] and others [HNP10; Hon+10] Rydberg atoms make for a versatile
tool to induces long-range interactions that might eventually lead to the realization
of supersolid order in a trapped atom cloud (see also Sec. 8.2.3). More details rele-
vant in the context of this thesis are given in Chap. 2, which is about the essential
physics of Rydberg atoms in cold atom experiments.

1.2 Manipulation and control

In this section we discuss the influence of external fields and thus methods to ma-
nipulate the behavior of the dilute atom gases. In experiment one primarily relies
on the optical dipole force, which is induced by the AC-Stark effect.

1.2.1 AC-Stark effect

An electric field E(t) = Epécos(wt), that oscillates in time, induces the AC-Stark
effect in an atom it interacts with. This leads to an induced dipole moment d(t) in
the atom, which also oscillates with the frequency w. In the description of this effect
we will follow [PS08]. It is well known, that a linear response treatment yields a
simple relation between the dipole moment and the electric field: d(t) = a(w)E(t),
where o(w) is the complex polarization.

We consider an effective two-level atom, consisting of a ground state |g), and an
excited state |e) with energies E, and E,. This is a good approxmiation as long as the
excitation frequency w lies within the linewidth of a single dipole allowed transition,
as is often the case. The wave function is given by the ansatz
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[6(1)) = ag(t)e FPath) + a, (t)e 7 P ep), (1.22)

which is given in terms of time-dependent complex amplitudes a4(t) and a.(t). The
Hamiltonian describing the dynamics of the system is given as follows:

H:Ho-‘erip(t) ZHQ—d'E(t). (123)

Hy is the unperturbed Hamiltonian, which is given in terms of the eigenstates |g)
and |e) and eigenenergies F; and E.. The dipole Hamiltonian Hg,(t) on the other
hand amounts to a perturbation. Thus considering up to first order in perturbation
theory we obtain the time-dependent amplitude of the excited state

t(Weg+w)t _ 1 (Weg—w)t _ 1
¢ ¢ ] (1.24)

o - I <e|d-é|g>[ ,

0
2h Weg + W Weg — W

Here wey, = (E. - Eg)/h. By averaging the expectation value (Hgip()): over time,
where (-); denotes an average of the expectation value over one period, one obtains
the following value for the time-averaged energy shift

2
ap-Bo| L b hd g (1.25)
4h | Weg + W Weg —w
Thus the polarizability can be derived from AE, as AE = —%(EZ(t))ta(w) = —% %ga(w)
o) = (gld- &) | i+ (1.26)
- Be-Ey+hw  Ee-Ey—hw| ‘

In this expression so far we have assumed an infinite lifetime for the excited state.
But we can take this effect into account phenomenologically by giving the excited
state a complex valued energy where the imaginary part corresponds to the sponta-
neous loss rate I'.. Thus one has to replace E, — E, — %Fe. We furthermore assume
that w is close to the transition frequency, which also allows to limit our scope to a
single excitation level. Thus we may apply the rotating wave approximation (see
also Sec. 2.2.1) by only considering the term with the smallest energy denominator.
We then obtain our final approximation for the polarizability

~ (gld - &le)]*(E. - By — hw) l(g|d - &|e)|2hT./2
) (Ee = Eg - hw)? + (Zre/2)2 ’ Z(Ee — By - hw)2 + (hT.[2)% (1.27)

Let us define the detuning ¢ and the Rabi frequency (2, as

d-a
S=w-we and Q= EOW. (1.28)

The dipole shift of the potential energy is then given by
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hO2§

Vaip = _%Re[a(w)]<E2(t)>t = RSy

(1.29)

while the rate with which atoms are lost from the ground state I'; is of Lorentzian
shape:

Im[a(w)]
h

0°T,

r, = —
g 62 +T2/4

(B*(t)); = (1.30)

The dipole shift is negative or attractive for § < 0 (red detuning) and positive or
repulsive for § > 0 (blue detuning). Note that both quantities are proportional to
the intensity I = |[E[> = E? of the electric field. Thus in order to minimize scattering
due to I'; in experiment, which causes heating of the cloud, the laser intensity and §
have to be set as large as possible. The heating rate is therefore commonly restricted
by the available laser power.

As we have seen, there is no explicit dependency on the internal hyperfine state
of the atoms with regard to the generation of an optical dipole potential. Using circu-
lar polarized light on the other hand, allows for the generation of optical potentials
which behave differently for each internal state.

Note that the perturbative treatment presented above is valid only as long as the
admixture of the excited state is small. In first order of perturbation theory it is given
by the ratio between the matrix element of the perturbation and the excitation energy
of the intermediate state which effectively has the magnitude (5% + T'2/4)'/2. Thus
the condition for a valid perturbative description is A(02 +T2/4)"/2 > Eq|(e|d - &|g)| =
hQ. Thus one either has to go for large detuning when increasing the electric field
strength, or go beyond simple perturbation theory (as discussed in Chap. 8 where
near resonant excitations are considered).

1.2.2 Optical lattices

As we have seen, the AC-Stark effect can be used to generate arbitrary shifts in
the potential energy of the atoms in a cloud. Using the same concept let us now
show how to generate a one-dimensional lattice, which can straightforwardly be
generalized to higher dimensional lattices. We start with the electric field gener-
ated by a monochromatic laser which is given by E;(r,t) = Epé cos(kr — wt), where
kr, = |k| = 2m/Ar is the angular wavenumber and A7, the corresponding wavelength.
To generate a standing wave laser field the beam is either reflected by a mirror, or
a second counterpropagating laser is used, which has to be phase locked to the first
one. As a result we have the additional electrical field Es(r,t) = Epécos(kr + wt).
The total electrical field is thus given by

E(r,t) =E (r,t) + Eo(r,t) = 2Ep€é cos(wt) cos(kr). (1.31)
With the same considerations, which lead to a value for the local dipole potential

shift Vg;p, we thus obtain a one-dimensional optical lattice (OL) potential. By setting
k = kre, we get
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V(x) = ~Vgip cos” (k). (1.32)

The lattice spacing a of this optical lattice is therefore given by a = A /2. If one gener-
alizes this method to higher dimensional lattices, it might seem at first as if great care
has to be put in the relative polarizations of the additional lasers. But as it turns out
the far simpler way to create separable hypercubic lattices is by tuning the lasers to
slightly different frequencies. On the relevant time scale this completely decouples
each optical dipole potential, while the experimental realization is far easier [Bis12].

As the laser setup is not limited to perpendicular orientations leading to the
mentioned hypercubic lattices most common in experiments, other setups allow
for more complex (e.g. frustrated) lattice geometries. Some examples are triangu-
lar and hexagonal lattices [Bec+10; Tar+12] which can be tuned from one another
in a crossover via the orientation of the laser polarization, but also kagome lattices
[Jo+12], all of which have been realized to date.

Optical lattices are much more versatile compared to solid state lattices. For ex-
ample by using circularly polarized lasers, as mentioned in Sec. 1.2.1, it is possible to
engineer potentials and therefore lattices that are spin-dependent [Gad+10]. In addi-
tion optical lattices have an inherent high tunability even in the course of an exper-
iment. Furthermore the time scale of the optical and electronic devices controlling
the configuration of the dipole potentials is far beyond the time scale of the atomic
motion, as given by tunneling rates in an OL which are usually less than 1kHz. The
specific tuning knobs which make the quantum optics toolbox so versatile are

1. the intensity of each individual lattice laser (determining the potential depth),

2. the polarization of each beam (allowing for fine control of individual hyperfine
levels, which may act as effective spin states),

3. the frequency of each laser (e.g. allowing for moving lattices by using slightly
detuned counterpropagating lasers),

4. permanent control of all above parameters on a very fast time scale throughout
the experiment (e.g. allowing for many-body interference experiments, such
as quantum state tomography, see Sec. 1.4.6).

The high degree of control in the time domain also allows for spectroscopic probing
via lattice modulation [End+12b], while lattice shaking allows for the generation of
effective gauge fields [Hau+12] which would otherwise not be present for neutral
atoms.

1.2.3 Local interactions

While cold quantum gases seem to lack strong long-range interactions due to the ab-
sence of Coulomb forces between the neutral atoms, their internal structure actually
allows for a rich variety of interactions because of the polarizability of the outermost
electron shell. The description of these interactions typically is very simple as par-
ticle separations are commonly on the order of a few 100nm, which is one order of
magnitude larger than the length scale associated with the atom-atom interactions’.
Due to the very low temperatures and thus very low kinetic energies in combination

"This also makes three-body interactions mostly irrelevant.
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with the isotropic nature of the interaction, only long wavelength s-wave scattering
is relevant in these systems. It is therefore possible to describe the effective (short-
range) interaction U(r —r’) for two atoms of mass m at the positions r and r’ by a
single parameter, the scattering length as, which is typically two orders of magni-
tude greater than the size of the typically used alkali atoms:

Arha,

U(r-r')= 5(r-r"). (1.33)

Note that the locality of this interaction implies enhanced interactions in a deep op-
tical lattice for which the atomic wave functions are strongly localized. We now
consider a short discussion on the origin of this interaction and how the sign and
strength of the interaction can be changed to nearly arbitrary values using Feshbach
resonances.

Van der Waals interaction

As neutral atoms do not interact via the Coulomb interaction directly, but instead
via mutually induced spontaneous electric dipole momenta, we have to consider
the electric dipole-dipole interaction between atoms:

1 dldex + dldey - 2dlzd22

Vdip 4 T [dl d2—3(d1 I')(dz I')] (134)

4drregrs
In this expression ¢ is the electric constant, d; and d; are the electric dipole moment
operators for each atom, and # = r/r, where r is the displacement vector between
the atoms and r = |r|. In the last step we define the orientation of the cartesian
reference system via = &,. As the atomic ground states of atoms can be considered
eigenstates of the parity operator, all diagonal matrix elements of the electric dipole
operator vanish. Consequently the leading contribution to the interaction energy is
given via the second order in perturbation theory

6 Z [(nld:[0)[*|{n"|d[0)*
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U(r) =- (1.35)

By considering the long wavelength scattering, as described by a wave func-
tion for the relative motion, which is given by the sum of an ingoing plane wave
oc exp(ikz) and an outgoing spherical wave o< exp(ikr)/r, one can deduce a theoret-
ical prediction for the scattering length a,, which corresponds to an effective phase
shift §5(k) in the scattered state defined as a;' = —limy_q k cot(Js(k)) where k is the
wavenumber of the scattered state. We note that the long wavelength scattering does
not depend on the specific details of the interaction potential®, so it can be described
with this single parameter and we can replace (1.35) by (1.33) for the interaction of
dilute gases of atoms in their electronic ground states. While the precise values of a,

are very hard to predict ab initio, measurements reveal e.g. for 5"Rb that its scattering

() _

length is al® =106+ 4aq for singlet scattering and as’ = 90+ 1ag for triplet scattering.

®E.g. the thus far neglected repulsive interaction at very small separations of a few Bohr radii O(ao)
due to the overlap of the electron clouds.
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FIGURE 1.2: Schematic sketch of a Feshbach process. Depicted are two pair-potentials
of an arbitrary pair of atoms as a function of their distance 7. The threshold energy E,
of the open channel nearly matches the energy of a bound state E in a closed channel.
Scattering between the channels induces an effective interaction in the open channel.
The relative position of the closed channel in relation to the open channel can be tuned
via external parameters.

Feshbach resonances

As introduced first by Feshbach in the context of nuclear physics [Fes62] it is possible
to dramatically modify the elastic scattering behavior of particle pairs in the presence
of a nearby bound state. In order to discuss these Feshbach resonances let us first
introduce the notion of a channel. In a scattering event the internal state of the
particles in the initial and final states are described by a set of quantum numbers
(e.g. atomic species, state of excitation, spin). We refer to specific choice of these as a
channel.

A Feshbach resonance appears when the total energy of an open channel, which
is occupied by the pair of atoms, nearly matches the energy of a bound state Eyes in
a closed channel, which has a higher energy at infinite separation of the two atoms
as illustrated in Fig. 1.2. The energy for which the pair of atoms is at rest at infinite
separation in the open channel is the threshold energy Ey,. In presence of the closed
channel the two particles in the open channel can scatter to an intermediate state
in the aforementioned closed channel and subsequently decay into two particles in
any of the open channels with positive non-zero rest energy at infinite separation.
Assuming the presence of a single closed channel and a single open channel pertur-
bation theory predicts that this second order process modifies the scattering length
as follows:

ATh? |, Amh? Hpert [t00)?
v a; _ T ag + |<¢res| pert |¢0>| ) (136)
m m Eth - Eres

Here ay is the original scattering length in the absence of the closed channel and
Hpert. is the perturbing Hamiltonian containing the off-diagonal matrix elements
coupling the two channels. In principle it is therefore possible as a function of the
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energy difference Ey, — Eies to obtain any value for the scattering length with either
sign, thus allowing for any attractive and repulsive local interaction strength. The
fact that the energies of the various channels depend on external parameters, such
as the magnetic field, therefore implies a complete tunability of the local atom-atom
interactions.

1.3 Preparation and cooling

Getting atoms to the cold temperatures required for Bose-Einstein condensation is
a demanding multi-step process, as are the various methods required to trap the
atomic vapor along the way. For this reason it took about 70 year from the prediction
of such a state until the first realization in the lab. Let us consider a brief overview
of the typical stages of the cooling and trapping procedure (for more details see e.g.
[PS08]). A beam of atoms that emerges from an oven at a temperature 7' ~ 10% -
103K corresponding to a particle velocity ~ 103m/s, subsequently passes a so-called
Zeeman slower reducing the velocity to about 30m/s or a temperature of 1K. After
the Zeeman slower atoms are sufficiently slow to be captured in a magneto-optical
trap (MOT) in which they are further cooled by means of laser cooling, whereby
temperatures of order 100uK are achieved due to the Doppler limit associated with
this process. Sisyphus cooling then allows a further reduction to the order 101K,
while evaporative cooling may further decrease temperatures well below 100nK. In
the following we briefly discuss the final stages of this cooling chain.

1.3.1 Laser cooling

Although it might seem counterintuitive it is possible to cool atom vapors by aim-
ing a laser beam on it. Let us assume that the laser frequency is detuned below a
dipole allowed electronic transition frequency. If an atom is moving towards the
laser source the frequency is Doppler shifted to a higher frequency in the rest frame
of the atom, while this shift increases for increased atom velocity. If this shift is suf-
ficiently strong, such that the frequency is within the line width of the electronic
transition, the atom is likely to absorb a photon from the laser. As a result the atom
transitions into an internally excited state while the photon transfers a momentum
kick in the opposite direction of the atom movement as seen in the lab frame. This
leads to a slow down of the atom along this direction. As the direction of the pho-
ton subsequently emitted from the atom is random the transferred momentum over
many such processes averages to zero. Thus by setting up counterpropagating pairs
of laser beams for each spatial dimension, atoms in a specific range of kinetic energy
can be cooled down.

To accommodate for the decreased population of high energy states the laser fre-
quency is usually increased over time which is referred to as “chirping”. The lowest
temperature 77}, attainable by this procedure is thus given via the laser linewidth, as
the right and left movers become indistinguishable by this process when the Doppler
shift becomes less then half of the transition linewidth I'. implying kgTy, = AL'c/2.
Typical values for this Doppler limit are on the order of few 100uK.

1.3.2 Sisyphus cooling

Despite the Doppler limit, experiments revealed another mechanism in the same
setup which allows cooling to even lower energies at much greater detuning than
predicted by the Doppler theory. It was also observed that this mechanism depends
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on the use of linear polarization of the laser beam. Let us therefore discuss the gen-
eral concepts behind this mechanism.

In the presence of two counter propagating lasers, the energies of the ground
state hyperfine multiplet of a given atom species vary in space due to the interaction
with the laser field (see Secs. 1.2.1 and 1.2.2). For a 29, /2 ground state manifold this
leads to an effective spatial potential V* for each spin state which we will denote as
the g_ and g, state respectively. We have

V*(z) = Vo [-2 +sin(2¢2)], (1.37)

where ¢ is the wave number of the laser field, while the value of Vj results from the
dipole transitions to 2 P; /2 states induced by the laser and can be shown to have the
value

2 hQO2%

Vo=-——o
0T 3524124

(1.38)

The prefactor is given by the sum of Clebsch-Gordan coefficients for the relevant
transitions, while 2 is the Rabi frequency of the transition, which is proportional to
the field strength. § is the detuning of the laser frequency from resonance and leads
to a positive value for V; if red detuned (6 < 0) and I'. is the spontaneous emission
rate.

FIGURE 1.3: Energy of each spin state g, and g_ of an atom as a function of the position
for a red detuned laser field (6 < 0). The zero of the energy scale is given by the energy
of the atom in absence of the laser field. The pumping rates I',_ and I'_, are position
dependent as depicted by the arrow size.

Due to the inhomogeneity of the standing wave laser field, the rate of optical
pumping between the two ground states depends on the position. As the rate I', _
of pumping an atom from the g_ to the g, state is proportional to the intensity of the
positively oriented circularly polarized component of the radiation, one finds

[, o< [1-5sin(2¢z)]/2. (1.39)

Conversely the opposite case is given by
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[_; o< [1+5sin(2¢2)] /2. (1.40)

Therefore pumping tends to move atoms from the spin state with higher energy
to that with lower energy (see Fig. 1.3). Note that in order for both processes to
occur both polarizations of the laser field need to be present, which implies the use
of linear polarization. The Sisyphus mechanism can thus be understood in a semi-
classical picture. We consider an atom that is moving away from a point where the
energies of g_ and g, are equal. If it is moving into a region where the enegy shift
V (z) is positive it loses kinetic energy due to conservation of its total energy, while
its tendency to be pumped in the other state increases. In the opposite case if the
atom moves into a region where the energy shift is negative it gains kinetic energy
but has a reduced tendency to be pumped in the high energy state. As a result there
is a net tendency for each atom to lose kinetic energy in the long run, in a perpetual
process of loss in kinetic energy followed by optical pumping to the low energy spin
state’.

Due to the coupling to the laser field, this process is ultimately limited by the
recoil energy

B, = (222. (1.41)

This is the kinetic energy transferred to an atom of mass m at rest as it absorbs a
photon of momentum Ag. Therefore the minimum reachable kinetic energy will be
on the order of this energy scale. As it turns out, in the limit of large detuning
|6] > T'. the minimum achievable kinetic energy is on the order of 30E, [GSS95] or
about 10uK.

1.3.3 Evaporative cooling

In this last step the atoms are usually held in a magnetic dipole trap. The process
itself is very similar to a common method for cooling a hot beverage. There the
energetic distribution of the water molecules is given by a classical Boltzmann dis-
tribution. Water molecules at the surface with sufficiently high kinetic energy can
leave the liquid, locally increasing the vapor pressure above, while molecules from
the vapor can enter the liquid again. This leads to a dynamic equilibrium between
molecules leaving and entering the liquid. But as the considered example is an open
system, more high energy molecules leave which in effect reduces the mean kinetic
energy of the remaining molecules. Trapped atom gases can be cooled by an analo-
gous mechanism, by creating a “hole” at a certain potential energy in the trapping
potential such that particles with at least this evaporation threshold energy €., can
escape the system. The loss of high energy particles leads to a reduction in the av-
erage energy, thus reducing the temperature via rethermalization processes medi-
ated by interatomic interactions'’. This method is fundamentally limited due to the
particle loss. However note that the cooling efficiency depends on the phase space

°This process reminded Dalibard and Cohen-Tannoudji of the Greek myth of Sisyphus, who was
condemned to eternal punishment in Tartarus, where his task to push a heavy rock up a hill was made
futile as the rock had the tendency to slip from his grip shortly before reaching the top. Thus they
coined the term Sisyphus cooling.

This comes as a problem when cooling fermions, usually mitigated by the use of sympathetic
cooling [Mya+97].
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density p, = nA3; which can be manipulated by the confining potential. Thus using
dimple traps [MFC04] to confine the cloud can increase the cooling efficiency signif-
icantly in relation to the commonly used dipole traps. As a result temperatures on
the order of few 100 nK are possible [Gar+11].

Further techniques are still being devised in order to reach even lower temper-
atures for which some of the most peculiar quantum phases, such as spin glass
[SS11] or spin ice [Gla+14] are predicted. Spin temperatures as low as 50pK have
already been reached in experiments utilizing spin gradient demagnetization cool-
ing [Med+11; Li+12].

1.4 Detection

Cold atoms are primarily detected by absorption imaging. A probing laser beam
shines on the cloud with a frequency resonant to a suitable electronic transition. In
opposition to the laser beam a CCD- or CMOS-camera collects and amplifies the
photon signal after passing the atom cloud. Due to resonance the photons have a
certain probability to be scattered diffusively by the atoms via spontaneous emis-
sion. Thereby the beam intensity gets reduced in direct proportion to the density of
the atoms integrated along the path. Note that multiple measurements are thus re-
quired to obtain a three dimensional image. Furthermore, a sufficiently high density
may block the beam entirely.

As we will see, it is possible to extract a wide range of properties by only mea-
suring the (integrated) density n(r) = (b*(r)b(r)). This is due to the fact that quan-
tum optical experiments have a high degree of dynamical control throughout the
experiment (as discussed in Sec. 1.2.2), so the design of the measurement protocol
determines the measured property.

1.4.1 Time-of-flight Imaging

One of the most commonly used methods to determine the momentum distribu-
tion n(k) = (b*(k)b(k)) in a many-body state is the time-of-flight imaging. Given
a many-body state to be imaged all trapping potentials (e.g. dipole traps) are sud-
denly switched off. The cloud is subsequently imaged after a certain time ¢, has
passed in which the atom cloud expands freely. As the density decreases through-
out the expansion, interactions become decreasingly relevant. It is thus typically
approximated that interactions can be neglected entirely during the expansion. Also
assuming that the initial cloud size is negligible in comparison to the final size when
the cloud is imaged, it can be shown that the finally measured real-space density
profile n(r) after the flight time ¢ is directly related to the momentum distribution
n(k) just before the release. It thus follows immediately from the free ballistic ex-
pansion of the cloud [BZ08] that

m 3
n(r) = (E) o (k)P (K). (1.42)

In this expression k is related to r by k = mr/ht, while m is the mass of the atoms and
w(k) is the Fourier transform of the Wannier function corresponding to the trapping
potential just before the release (see Sec. 3.1.3 for more details). The prefactor stems
from the transformation of the volume elements d3k ~ d3r. Furthermore, in order to
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guarantee the assumed free expansion, near Feshbach resonances one often ramps
back to the zero crossing of the scattering length before the release.

1.4.2 Optical quantum gas microscope

It is also possible to measure the site-resolved density distribution of the cloud di-
rectly in an optical lattice by using high resolution optics. This technique is known
as optical quantum gas microscopy [Bak+09], which describes an optical setup that
operates close to fundamental optical limits. It allows for the observation of indi-
vidual atoms on a submicrometer resolution and thus of single lattice sites (see also
[Sch+12; Sch+15]).

1.4.3 Noise correlation measurement

It is important to realize that in each experimental image only a single realization of
the density is observed and not the average. Depending on the imaging resolution
each pixel records on average a number N of atoms. Thus in each single realization
of an experiment the number of atoms recorded will exhibit shot-noise fluctuations
on the order of 1/v/N. As first proposed by Altman et al. [ADLO04], it is possi-
ble to extract density-density correlations from these statistical fluctuations, which
stem from the bosonic counting statistics as predicted by Hanbury Brown and Twiss
[HBT56]. This method can be used to extract real-space density-density correlations
(n(r)n(r')) in-situ, or the static structure factor (n(k)n(k’)) after time-of-flight as
first realized by Folling et al. [Fo1+05].

1.4.4 Bragg spectroscopy

FIGURE 1.4: Schematic sketch of the Bragg process in real and momentum space. (a) In
real space two laser beams with momentum £k; and energy hw; crossing at an angle ©
excite an ensemble of atoms trapped in an OL. The spectrum of available excitations of
the atoms can be seen in momentum space (b). There the Bragg process transfers energy
and momentum via a two-photon process. It leads to the population of a different state
whereby it reveals information on the excitation spectrum. In (a,b) an excitation in
[1,1]-direction close to the edge of the Brillouin zone is shown. This figure is taken
from [Ern+10].

In order to gain insight into the inherent properties of a many-body state as en-
coded in the excitation spectrum, one usually has to perturb the equilibrium state
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of the system shifting it out of equilibrium as a result. The kind of perturbation in
combination with the measured quantity (usually any of the aforementioned) deter-
mine the specific correlation function that is measured. An early example is lattice
modulation spectroscopy, which generates perturbations over a wide range of mo-
menta [Sto+04; Bis12]. A more selective method that will be of interest to us is Bragg
spectroscopy. Let us introduce the method as described in [Ern+10].

In quantum gases it is based on a two-photon process which directly transfers
energy and momentum to an atomic ensemble by inducing a collective excitation.
Two phase-coherent lasers with wavevectors k; and ks, and frequencies w; and w»
intersect on the sample as shown in Fig. 1.4. Energy and momentum conservation
imply that initial and final states with energy difference 76 = ~(ws —w;) and momen-
tum difference Akprag, are coupled resonantly by this process [see Fig. 1.4(b) for a
visualization in momentum space]. The momentum imprinted onto the sample is
freely tunable by changing the angle © between the two beams, so

hKpragg = h(k1 — ko) ~ 2hksin(©/2) - (&1 - &3). (1.43)

The unit vectors &; and €, correspond to the propagation direction of each laser
beam respectively and |k;| ~ |ka| = k for small 6. As the energy transfer 4 can be
tuned independently via the two laser frequencies, it is possible to scan the complete
excitation spectrum over the entire Brillouin zone.

1.4.5 Scanning electron beam microscopy

A well known method for the single atom resolved imaging of (conducting) con-
densed matter surfaces is the scanning tunneling microscopy. In analogy an electron
beam can also be used to image quantum gas experiments. By scanning a tightly fo-
cused electron beam over the cloud atoms are locally ionized. An electrostatic field
is used to subsequently extract the ions in order to count them in a channeltron de-
tector which reveals the density distribution line by line. The focus of the electron
beam, which is on the order of 100nm, in combination with the peak width in the
time-of-flight ion counting signal determines the possible spatial resolution and scan
time. In a typical image sequence a few hundred atoms are detected at a scan time
of 100 ms, while the overall detection efficiency is limited by the ratio of ionizing
to elastic collisions as well as the detector efficiency, in combination amounting to
10 - 20% [SO15].

1.4.6 Interferometric methods

Interferometry is a family of techniques which are used in quantum gases in or-
der to extract information about correlations, especially in the dynamical regime. It
usually involves one or multiple quenches (sudden changes in one or multiple ex-
perimental parameters) applied to a well defined initial state, commonly an eigen-
state of the Hamiltonian corresponding to the initial system. After the quench the
initial state is no longer an eigenstate but instead amounts to a linear combination
in the new eigenbasis. The subsequent time evolution leads to a dephasing of the
partial amplitudes resulting in oscillations (Ramsey fringes) in observables, such
as the spin-polarization [Zei+15] or the zero-momentum peak of a BEC [Gre+02a],
which usually decay as the ratios of the relevant eigenfrequencies amount to irra-
tional numbers. In certain cases rational or even integer ratios are possible leading
to the collapse and revival of Ramsey fringes (see e.g. [Gre+02a; Zei+17]) as a subset



1.4. Detection 27

of partial amplitudes realign their phases. It thus serves as a method to investigate
the spectrum of a given Hamiltonian.

Some experiments also include a spin-echo sequence in which a m/2-pulse is
applied at the halfway point of the time evolution reversing the order of the par-
tial phases on the equator of the Bloch sphere. In this way it is possible to can-
cel unwanted phases shifts due to single-particle effects such as the AC-Stark shift
[Zei+17].

1.4.7 Electromagnetically induced transparency
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FIGURE 1.5: Schematic sketch of electromagnetically induced transparency. (a) Three
level ladder scheme |g) - |i) — |e), where the transition |g) < |e) is dipole forbidden. The
transition |g) <> |i) is driven by the probing laser field with Rabi frequency €, while
the transition |i) <> |e) (b) is driven by the control laser with Rabi frequency €. which
can be switched off. The absorption spectrum of the probe transition is shown in (b).
In the absence of the coupling laser the spectrum has the typical Lorentzian line shape
(blue dashed line) of an atomic transition. With the control laser switched on (green
line) a transparent window opens in the probe transition centered at the position of the
original spectral line.

Electromagnetically induced transparency (EIT) describes the effect that a medium
can be made transparent in a narrow window inside an otherwise absorbing spectral
line (see [FIMO05] for a review). To induce this effect one has to introduce a coher-
ent optical nonlinearity. For this we have to consider an effective three level atom
where one of the transitions is dipole forbidden and can thus neither absorb or emit
a photon. Without loss of generality let use assume the ladder scheme shown in
Fig. 1.5 where we have a ground state |g), an intermediate state |i) and an excited
state |e) with corresponding energies £, < E; < E,. The transition |g) < |e) is dipole
forbidden while the remaining transitions are driven by two Rabi lasers with the
Rabi frequencies €2, coupling the probe transition |g) <> |i) and €. coupling the con-
trol transition |i) < |e). The intermediate state further has a finite lifetime given
by the decay rate I'. For a resonant driving of the control transition and €2, > T’, a
transparent window starts to open in the absorption spectrum of the probe transi-
tion where the strongest reduction of the absorption can be observed at resonance
dwp = wp —wy; = 0. Here w, is the frequency of the probe laser and wy; is the probe
transition frequency.
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While this effect can also be used to optimize cooling schemes [MEKO00], we dis-
cuss it in the context of this thesis as it can also be used for a real-space imaging
technique. The main idea is that the position of the transparency window depends
on the detuning dw. = w. — w;e of the control laser frequency w. with regard to the
control transition frequency w;.. Let us consider the case when both transitions are
driven on resonance. It is then possible that strong (long-range) interactions with
an impurity atom, for example via Rydberg-Rydberg van der Waals (see Chap. 2)
or Rydberg-Rydberg dipole interactions [Giin+13], induce a shift of F, in the vicin-
ity of the impurity thus breaking the EIT condition. Under these circumstances the
medium becomes opaque in a region surrounding the impurity. It is thus possi-
ble to image the position and dynamics of said impurity in an otherwise absorbing
medium using previously mentioned imaging techniques.
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Chapter 2

Many-body Rydberg systems

Despite the high versatility of ultracold atomic systems as analog quantum emula-
tors, experimental realization of strong long-range correlations still represents an
important challenge in the field. While Feshbach resonances give access to tun-
able local interactions [BZ08], progress has been made towards the trapping, cool-
ing and control of ultracold polar molecules [Car+09], as well as magnetic [Lah+07]
and Rydberg atoms [SWM10]. The significance of Rydberg excitations for creating
strong non-local correlations has been pointed out numerous times, e.g. by [Wei+08;
Hon+10], especially in the context of quantum computing [Luk+01; SWM10; Saf16].

Recent experiments have studied the statistical properties of dissipative Ryd-
berg gases [Mal+14; Sch+14], especially in the superatom regime [Zei+15; Web+15],
where the Rydberg blockade effect was analyzed. Using electromagnetically in-
duced transparency (see Sec. 1.4.7), the occurrence of diffusive Forster excitation
transport has been shown [Giin+13]. Also, ultralong-range Rydberg molecule for-
mation [GDS00] has already been observed [Ben+09], realizing bound states with ex-
otic orbital wave-function shapes, for example trilobite molecules which are bound
predominantly via the s-wave channel [Boo+15] or butterfly states which are bound
predominantely via the p-wave channel [Nie+16]. Crystallization of Rydberg atoms
has been achieved up to a small number of excitations in the frozen limit [Sch+12;
Sch+15]. There the system behaves like a spin-1 model with imbalanced interactions,
as analyzed in numerous theoretical works [Ver+15; PDL10; LG14; Sch+10a], pre-
dicting a series of lattice incommensurate ordered phases (devil’s staircase, see also
[CS+10; Rad+13]). The opposite limit of weak (off-resonant) Rydberg dressing has
extensively been investigated in theory [JR10; Hon+10; Pup+10; Cin+10; Hsu+12;
CBP14; MSC14], predicting the formation of (droplet) supersolids (SS), while its ex-
perimental realization remains an open challenge [Bal+14; Nie+15]. Only recently
coherent short-range correlations have been observed for the first time for a pair of
atoms [Jau+16] and in a two-dimensional spin lattice [Zei+16], as well as coherent
collapse and revival dynamics in a one dimensional spin chain [Zei+17; Ber+17].

In this chapter we will discuss the key concepts of Rydberg excitations, as well
as some of their peculiar properties, which are most relevant in the context of this
thesis. Because of these, Rydberg states are a versatile tool for realizing exotic types
of quantum matter in cold quantum gas systems. Throughout our considerations
we will roughly follow [SWM10] and [Low+12].

2.1 Rydberg atoms

Rydberg atoms is a term used for atoms which have at least one of its electrons
excited to a level of large principle quantum number n 2 10, which is a region
where the electronic state becomes increasingly independet of the core electrons.
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Thus the states behave very similar to hydrogen, especially for alkali atoms with
their single valence electron, and for sufficiently high angular momentum states
[ > 3 [Low+12]. The basic properties of Rydberg atoms have also been discussed
extensively [SWM10] (and references therein). In this section we will focus on those
aspects, which are of most relevance for many-body systems. First and foremost,
these are the strong long-range interactions among neutral particles, which is the
most prominent feature of Rydberg atoms. It is best summarized by comparing the
energy scales of various relevant two-body interactions between the atoms, as ex-
emplarily shown for rubidium in Fig. 2.1.
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FIGURE 2.1: Two-body interaction strength for ground state Rb atoms (Van der Waals
and magnetic dipole dipole), Rb atoms excited to the 100s level and ions. The figure is
taken from [SWM10].

The two-particle interaction of ground state atoms is dominated by 1/r% Van
der Waals (VdW) forces, while 1/r® magnetic dipole-dipole forces dominate for dis-
tances below about 30nm, where r is the inter particle distance. In typical optical
lattices with a spacing of 0.5 — 1.0pum, both couplings are negligibly small for neigh-
boring sites, with the Van der Waals coupling even orders of magnitude below 1
Hz in frequency units. As typical hopping rates are on the order of 100 Hz, these
interactions may not break the lattice symmetry in the many-body ground-state. As
Coulomb interactions among ions are larger by many orders of magnitude, crystal-
lization effects usually suppress itinerant physics. We also note that while trapping
of ions in optical lattices has been demonstrated [Sch+10b], the realization of an
itinerant ion gas in a lattice remains a challenging task due to heating effects and
trapping times [End+12a; Lin+12]. But if we consider rubidium atoms excited to the
100s Rydberg level, a more than 12 orders of magnitude increase of the long-range
non-magnetic interaction can be observed. While its short-range behavior is domi-
nated by 1/r® scaling because of dipole-dipole interactions (1.34), depending on the
principle quantum number there is a crossover length scale beyond which the char-
acter changes to an 1/r® Van der Waals tail. This length scale is strongly related to the
radius R of a Rydberg atom, which scales as R « n?. The actual value of the interac-
tion also strongly depends on the principal quantum number 7, as will be discussed
in the following sections, which will show the tremendous potential of introducing
long-range and widely scalable interactions to neutral ultracold gas experiments via
Rydberg atoms.
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2.1.1 Level energies

In order to understand the strength of the long-range interaction among Rydberg
atoms, we first consider their energy level structure. Particularly, we consider low
angular momentum states, as these are readily accessible via optical excitation from
the atomic ground state and thus optimal for common experimental setups. As-
suming sufficiently small external fields, the energy levels are represented by the
principle quantum number n, the orbital angular momentum /[, the spin angular
momentum s and the total angular momentum j. Sufficiently high energy levels are
accurately described by simple hydrogen-like energies

Ry’
(n - 6(”’7.771))2 ‘

Here we introduce the specific Rydberg constant Ry’ = Ry/(1 + m./mnuucleus ), which
is given in terms of the mass of the electron m. and the nucleus myycleus, While
Ry = 109737.315685cm™! in atomic units, corresponding to Ry = 20670.412594THz
in natural units with 4 = 1, as used throughout this thesis, if not specified otherwise.
The quantum defect 6(n, j,1) is a slowly varying function!, which mostly depends
on [. Except for low-lying s states, hyperfine interaction can in general be neglected.

Eyj=- (2.1)

2.1.2 Interactions

For large distances r > nszao, where neg = n — d(n, j,1) and ag is the Bohr radius, the
interaction is determined by a Van der Waals interaction V;,qw = —Cs/ 0. The van der
Waals coefficient can be obtained by second-order perturbation theory. For the sake
of simplicity let us consider the Van der Waals interaction between two isotropic and
fully degenerate Rydberg nS-levels:

6
(4meg)?r0 =

[nS)[("1d:=nS) __Cs

(7l
=——. 2.2
Z E +E/—2E 76 2.2)

Viaw(r) = -

Here we us the collective index j for the quantum numbers of the electronic states
of the atom”. This expression is primarily dominated by two-atom states in the en-
ergetic vicinity of the considered |[n.S)|nS) state, while the sign is determined by
relative deviations in the energy. Thus the main difference to the ground state Van
der Waals interaction stems from the presence of energy levels above and below the
considered two-atom energy. As it turns out, this expression yields a negative Cg for
Rb atoms where 30 < n < 95 [Sin+05], implying repulsive Van der Waals interactions
for the Rydberg atoms.

Furthermore, we can obtain the dominant scaling behavior of Cs as a function of
n. As the largest matrix elements of the transition dipole moment for nearby s and p
states are generally of order (0.5 - 1.5)n§ffa0, while the level spacing AE,,+1 — E,, o<
(n +1)72 = n~2 scales as n™> for large n, the overall leading behavior is given as
Cg o« n'!. Via more precise calculations, the following scaling law has been derived
in [Sin+05] for Rb, which is given in atomic units.

'In the case of rubidium the defect is in lowest order given by §(I = 0) = 3.13 and quickly decays to
zero for increasing I, so §(1 > 3) ~ 0 [Low+12].

*Besides the principal quantum number n, these are the angular orbital momentum I and its z-
projection m.
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Ce =n'" (11.97 - 0.8486n + 3.385 x 10~°n?). (2.3)

For the 355 state we thus find Cg = —1.312 x 10'%au = A x 189.5MHzum5. Rydberg
atoms thus introduce enormous interactions in an optical lattice with typical lattice
spacings of 0.532um, when compared to typical local interactions which are on the
order of a few kHz.

As a final remark, we note that the second-order perturbation theory is only valid
for distances, where the Van der Waals interaction is less than the Forster defect
OFE = E; + Ej — 2E,. For smaller distances we are in the limit of a small Forster
defect, leading to a Forster resonance [WS08] and thus a resonant coupling between
s and p state. Thus the interaction V (r) takes on a dipolar character V (r) o< 1/73, as
can be seen in Fig- 2.1. In Rb this is highly relevant when exciting Rydberg p states,
for which the channel nps/, + np3jp <> (n +1)s1/9 + nsy /5 has a defect of just § /27 =
—-4.1MHz for n = 38. But as we will primarily consider the excitation of an individual
s state, the only relevant channels are of the type ns; j2 + NS1j2 <> NAPj + Napjr, but
those do not exhibit a Forster resonance for any n < 100. Specifically § &' < ~3GHz for
n < 45, which also implies the repulsive character of the Van der Waals interaction
between rubidum Rydberg s states.

2.1.3 Lifetimes

The realization of coherent many-body ground-states is fundamentally limited by
the lifetime 7 of the considered Rydberg states. 7 is determined by radiative de-
cay to lower lying levels and blackbody radiation-induced transitions to predomi-
nantly nearby levels. Absorption and stimulated emission of thermal infrared pho-
tons, which induce transitions to neighboring states, start dominating the lifetime
for n 2 40 at room temperature (300K). But this effect can efficiently be eliminated
in a cryogenic environment [Bet+09; Bou+17], as has been realized in cavity QED
experiments, for example in [RBHO1] the experimental setup was cooled to about
1K.

Considering any pair of initial state i and final state f, with an energy difference
hw;, the transition rate between the two is generally given by an Einstein coefficient

Zezw?f )
Awif) = 360m|<ﬁ|dz|f)| (24)

for spontaneous decay and an Einstein coefficient B(w) = A(w)N (w) for stimulated
emission and absorption of blackbody radiation. Both coefficients depend on the
transition dipole matrix element |(i|d,|f})|, while B also depends on the number of
blackbody photons N (w) in each mode at temperature 7', as given by the Bose statis-
tics:

1

N(w) = cholksT _ 1"

(2.5)

We thus find the total lifetime of the state |i) by summing over all final states |f), so
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1 1 1
P > Awip) + 2 Awip) N (wig) =~ " @Ry (2.6)
v f<i f T; T,

Note that the first sum only includes dipole allowed transitions to states with en-
ergies below the Rydberg state, while the second sum is only limited by the dipole
selection rule. At T" = OK the radiative lifetime is given by

TZ-(O) = 7'75?) = Tl(O)(neff)al. (2.7)
The prefactor in general depends on the angular momentum, while for all alkali
atoms one can use a; ~ 3. The blackbody rate for large n takes the following simple
form, which also includes the effect of ionizing transitions to the continuum,

1 40°kpT 98
(BBR) 32 (2.8)
Ti
where a ~ 1?%7 is the fine-structure constant. For example we obtain Ti(BBR) = 60us at

300K for n = 35. In combination with the spontaneous decay, which is of the same
order, we thus find a combined lifetime of 7,,-35 ~ 30us compared to the experimental

result of TT(LS;};) ~ 28us for the Rb 355 Rydberg state [Bra+10; Bou+17].

2.2 Rydberg excitation in a many-body system

As we have seen, Rydberg atoms can
be used to induce strong long-range ns/np ——@— |e)
interactions to a neutral quantum gas. Q

Most commonly a two-photon excita-
tion scheme is used to generate transi- 0
tions to Rydberg states. Using light of c
opposed circular polarizations, this al- Y
lows for the exclusive generation of Ry- $ 5
dberg s-states, yielding isotropic VAW op
interactions. But also a direct transi- 0
tion to Rb p-states has been realized, al- l
though with the caveat of having to use 5s —@" |g)

ultraviolet lasers, as these transitions re-  g;5rg 2.2 Typical three-level and (reduced)
quire light at 297 nm [Zei+16]. Let us two-level scheme for the Rydberg excitation
consider the most typical two-photon of Rb. The electronic ground state |g) (blue)
ladder scheme 5s — 5p — ns, which can is usually first excited to an intermediate state
also be used to realize EIT imaging (dis- |¢), with a Rabi frequency (2, and a detuning é.
cussed in Sec. 1.4.7). The two transitions Subsequently [i) is excited to a Rydberg state

are excited using light of 780 and 480 le) (green), at a Rabi frequency (. and with
nm (see Fig. 2.2) the overall detuning A. For large § one ob-

; . tains an effective two level system |g) < |e)

As the intermediate 5p state has a yyjth effective Rabi frequency (2 and detuning
lifetime of 26ns for ®'Rb, the popula- A, A two-level scheme can also be realized,
tion of this state has to be suppressed, by directly exciting a Rydberg np-state.

which can be achieved by detuning the

[4)
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red laser far from resonance. For sufficiently large detuning 6 one can eliminate the
intermediate state from further considerations. This reduces the system to an effec-
tive two-level system, exhibiting the total Rabi coupling 2 = |Q,|/2.|/2/6|, which is
determined by the individual Rabi couplings €2, (for 5s — 5p) and €2, (for 5p — ns),
as well as the intermediate state detuning ¢. The detuning in the reduced two-level
scheme is given by the total detuning A. One also obtains a two-level system by
directly exciting to a Rydberg np-state instead.

2.2.1 Rabi driving in the rotating frame

As stated before, we introduce excited electronic states of the atoms via a coherent
driving of optical transitions to Rydberg levels. This yields Rabi oscillations which
we can effectively describe by a static Hamiltonian, where fast oscillations are elim-
inated using the rotating wave approximation. The dynamical process is described
by the interaction with the light field (see for example equation (A.11) in Chap. V
of [CT04]). We therefore introduce the following time-dependent Hamiltonian in sec-
ond quantized form, describing the effective two-level system, where we use natural
units (h = 1) and the interaction picture (/):

A Q - Qr
H]({[) = -d-Ejcos(wpt) = 5

( —iwpt + eMLt)(ATJr(t) 4 5 (e—ith + ew”)&_(t). (2.9)

The time dependence of the (pseudo) spin-flip 6*-operators, which generate spin-
flips between the ground state g and the excited state e, is given by the transition
frequency wp = We — wy, While wy, is the frequency of the light field. If we thus
insert 6* = 6Ee*™0t into (2.9), while also replacing 6 by appropriate products of
bosonic creation (annihilation) operators b o/ bt (by/b.), representing the electronic
ground/excited states of the atoms, we f1nd the full expression in the interaction

picture:

A(I)_Q —iAt i(wp+wo)t) 2172 9* —i(wr+wo)t iAt) 7217
HY _2(6 ‘e )bebg+2 (e o)t o )bgbe. (2.10)

Let us now assume that the effective Rabi frequency 2, as given by the correspond-
ing dipole matrix element and the strength of the light fields (1.28), is a real quantity.
The detuning A = wy, —wy defines the slow time scale (A <« wr,, wp). For A «< wr, +wy,
the terms oscillating with fast frequencies can be discarded, which corresponds to
the rotating wave approximation [RHO5]. The time independent Hamiltonian in
the co-rotating frame follows from the time dependent unitary transformation ma-
trix U = U(t) = f);l;g + e Atptp,:

g = URPU + 0077 = 2 (i85 + 8,) - Aa (2.11)

Q
2
This transformation for a time dependent unitary transformation follows straight
from the commutator [ ' 5 t] ( ) which has to be inserted into the Schrodinger
equation H 1(% )|w) =g 9 14p), while keep1ng in mind that the wave function transforms

as [¢)) = Ul)). We can thus include the effect of the Rabi driving in a static Hamilto-
nian.
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2.2.2 Blackbody radiation-induced avalanche dephasing

|s")
|S> P

—5— I 1

P V

[2);

l9) lg">

Atom 1 Atom 2

FIGURE 2.3: Blackbody-dominated decay from the Rydberg s-state |s) leads to a popu-
lation of nearby p-states |p). These allow for off-diagonal dipole-exchange interactions:
Ip, ') < |s”, p'). This process generates a dipole-dipole interaction between two differ-
ent Rydberg s-states. It can bring atom 2 into resonance, thus enhancing the excitation.
The corresponding energy shift broadens the transition (depicted by the gray shading).
Figure taken from [Bou+17].

Before we discuss the relevant interaction potentials, we first have to consider
another effect, which is induced by blackbody scattering from the coupled Rydberg
s-state to nearby p-states of opposite parity” (see Fig. 2.3 for a sketch of this process).
A thus produced [p) can subsequently trigger an off-diagonal dipole-exchange in-
teraction of the form |p, s’) — |s”,p"). Such processes are referred to as Forster res-
onances and can induce energy transport, as observed in [Giin+13]. It thus leads
to a dipole-dipole exchange interaction between two different Rydberg s-states. At
a certain orientation and distance of the dipoles to each other, the second dipole is
in resonance, so the excitation is enhanced. The dipole-dipole energy shift thereby
broadens the transition in the sample inhomogeneously (represented by the gray
shading of |s") and |s”) in Fig. 2.3). For |s) = |s") this leads to self-broadening, where
a single s-state transition is subsequently broadened due to the cascade of p-states it
creates. We note that the effect relies on the occurrence of certain distances between
atoms, so we expect a density dependence of the resulting line broadening, which
indeed has been observed in [Gol+16; Ama+16].

As this process happens on a MHz timescale due to the strength of the dipole in-
teraction, for example C'3 = 27 x 35MHz pm? for the 189 state of rubidium [Bou+17],
it can be considered to happen instantaneous in relation to the itinerant dynamics in
typical optical lattices (<kHz), as soon as a contaminant state has been created. We
therefore consider the average time 7. until the first contaminant excitation appears,
as it provides an estimate of the actual coherent time available before the avalanche
is triggered. For a system of N atoms, the corresponding rate can well be approxi-
mated by the collective number of Rydberg excitations N, = ¥ (1.;) = 3; ne.;, where
Ne i = leéel is the local density operator, multiplied by the rate at which the state
decays to contaminant states:

3The parity of an electronic state is calculated as P = (~1)%:'i, where the sum is taken over the
orbital angular momentum quantum number [; for each electron i.
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-1
Te =70 (b Z(ﬁe,i>) . (2.12)

Here we introduce the sum of branching ratios b = b, from the Rydberg state (with
principal quantum number n and the angular momentum /) to the contaminant
states. As the branching ratios result from blackbody induced transitions, they
strongly dependent on temperature, which can be seen in Fig. 2.4.

(b)
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FIGURE 2.4: (a) Temperature dependence of the sum of branching ratios b from different
nS states to contaminant n P states playing a significant role in the avalanche dephasing
process. (b) Effective lifetime 7y (determined by spontaneous emission and blackbody
radiation-induced transitions) for different n.S 3’Rb Rydberg states as a function of the

ambient temperature. This figure is taken from [Bou+17].

Therefore (2.12), in combination with the nature of the avalanche effect, implies
multiple pathways to an increased coherence time [Bou+17]:

1.

reduce the temperature (while b3s5 ~ 20% is a typical value at room tempera-
ture, it reduces to below 5% at 10K),

. use an off-resonant cavity with a cavity length less than the wavelength of

spontaneous emission to nearby states, so the spontaneous decay of the Ryd-
berg excitation is suppressed,

. reduce the effective number of Rydberg excitations in the system (either by

using off resonant excitations, or by self-blocking of Rydberg excitations via
long-range interactions, inducing an energy shift in the excited levels),

. reduce the system size, either dimensional, as orientation plays an important

role in the cascade of dipole-dipole exchanges, or by decreasing the particle
number (see previous statement),

. use stroboscopic excitation, by pulsing the Rabi driving on a sufficiently short

timescale ¢, (which inversely scales with the system size IV), followed by an
extended dark time t; (which is a fixed multiple of the lifetime), in order to
allow for decay of any contaminant excitation (this method implies an upper
bound for the total atom number N, = b./n. in terms of the average local Ryd-
berg fraction n., above which stroboscopic approaches significantly diminish
the dressing potential strength),

. use post-selection (as in [Zei+16]), in order to select for contaminant-free data,

which is possible as the avalanche induces a rapid ground state loss, signifi-
cantly changing its counting statistics.
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We note that in strontium a different dressing scheme can be realized that possibly
reduces the relevance of avalanche dephasing. This EIT dressing scheme, discussed
in [Gau+16], allows for a tenfold increase in the interaction strength of the dressed
atoms, which implies that less atoms are necessary to achieve similar interaction
energies as in the classical scheme.

2.2.3 Off-resonant dressing vs. near-resonant excitation

For Rydberg excitation at near resonant detuning, we expect a non-vanishing Ryd-
berg fraction in the system, which may only be suppressed due to repulsive Rydberg-
Rydberg interactions pushing nearby Rydberg levels out of resonance. This effect is
called Rydberg blockade. In that case the coherent driving of Rydberg atoms effec-
tively introduces a second particle species with three additional terms in the second
quantized Hamiltonian. The first two are given by the Rabi driving (2.11), while the
term essential for the generation of pronounced long-range correlations consists of
the long-range interaction, which we will refer to as bare interaction in the following
chapters:

. e .ene C
HVdW 25 an njVVdW (I'Z' - I‘j) y where Vde(I') = r—66 (213)

[E]

But if we consider off-resonant dressing with A > ) and red detuning A < 0
for a repulsive VAW interaction, such that facilitated excitations [LG14; Urv+15] are
suppressed, we can remove |e) from the Hamiltonian in favor of a dressed ground
state |g) ~ |g) + Ble), where 5 = Q/2A [Zei+16]. This leads to an effective two-body
potential, which can be derived via a many-body perturbation expansion in 3 of a
Born-Oppenheimer treatment of the many-body interaction potential. In this case
the interaction is instead given by the dressed pair-potential

V (rij) = Co/(r® + RY), (2.14)

where R, is the critical radius given by R. = (Cs/ 2A)1/ 6 and C is the rescaled inter-
action constant given by Cg = (2/2A)%Cs. As a typical value for Cg in natural units
is given by Cg = 27 x 241MHz pm® [Li+17], we find for = 27 x IMHz and A/Q = -7
that R./a ~ 3.0 and Cg/a8 = 27 x 0.28MHz for a = 0.532um corresponding to a typical
lattice spacing in an optical lattice. So we have V(0) = (2/2A)3Q = 27 x 0.36kHz,
which is on the order of typical local interactions discussed in Sec. 3.1.4. Also note
that due to the explicit absence of |e) there will be no Rabi driving term (2.11) in this
limit.

Hartree ansatz for the interaction

Many-body simulations using mean field methods require an efficient treatment of
the long-range interaction term in either detuning limit discussed in the previous
section. A typical method is the Hartree ansatz n‘n? = (Al)nl + ni(Al) — (AL)(AL) +

O(6n2), where dal = ni — (Adl). Let us test how this ansatz performs in describing
the ground-state manifold of a small number of atoms. We define the Van der Waals
constant V' = Cg/ ab in units of an arbitrary lattice spacing a. For two atoms at fixed
positions 1 and 2 with r = |r; - rp|, we find the simple Hamiltonian
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2
H(r) = ZﬁR,i +VxV(rig=r), with V(r)= (2.15)

1

i=1 (r/a)s’
Let us further compare the exact ground-state of this Hamiltonian to the result ob-
tained via a Hartree ansatz for the interaction term. Defining Ej as the lowest
eigenenergy of (2.15), we consider Epot(r) = Eo(r) — Eo(o0). For two particles this
pair-state energy shift as a function of their distance should correspond to the effec-
tive pair-potential (2.14) in the limit of red detuning. Here we consider the case of
V' =1000€2, while other values only lead to a shift of the soft-core radius R..
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FIGURE 2.5: (a) Ground-state energies Epo of (2.15) calculated exactly (solid lines),
given by dressed potential (dashed lines) or obtained in the Hartree ansatz (dotted
lines), for various values of the detuning shown in the legend. (b) depicts the self-

consistent values of the Rydberg state occupation n’ = (i!) obtained in the Hartree

ansatz. The values for the site 1 (solid lines) and 2 (dashed lines) start to differ from
one another below a certain critical distance, resulting in a softening of the interaction
energy at smaller distances.

As can be seen in Fig. 2.5, the ground-state energy becomes well approximated
by the pair-potential (2.14) for A/Q <« -1, while the Hartree approximation tends to
underestimate the core radius and thus overestimates the interaction energy. Note
that we can see the blockade effect at short distances qualitatively realized in the
Hartree ansatz.

If detuning instead tends towards single particle resonance corresponding to
|A/Q| < 1, the pair-potential ansatz starts to fail as shown in Fig. 2.6, which is ex-
pected for A/Q2 2 —1. The Hartree ansatz on the other hand yields a far better ap-
proximation of the energy, although it overestimates the interaction energy at small
distances. The excitation blockade is once more realized at short distances. Close
to resonance one can also observe that the Rydberg fraction obtained in the exact
calculation starts to posses a spatial dependence revealing the blockade effect. Note
that the mean-field result necessarily breaks the symmetry between the particles,
while it is retained in the exact result, which can approximately be understood as a
linear combination of all permutations of the Hartree result, as its value tends to the
average value of the Hartree ansatz.

Going beyond resonance into the blue detuned regime, as shown in Fig. 2.7, the
dressed pair-potential is no longer applicable, while the Hartree ansatz leads to an
almost exact representation of Ey. Also the average occupation number of the exact
and the mean field result nearly match.
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FIGURE 2.6: (a) Ground-state energies E,o of (2.15) calculated exactly (solid lines),
given by the dressed potential (dashed lines - not all are shown as some are out of
range) or obtained in the Hartree ansatz (dotted lines), for various values of the de-
tuning shown in the legend. (b) depicts the self-consistent values of the Rydberg state
occupation n! (solid and dashed lines). They start to differ from one another below
a certain radius. Additionally, n. as obtained in the exact calculation is given by the
dot-dashed line.
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FIGURE 2.7: (a) Ground-state energies E,o of (2.15) calculated exactly (solid lines),
given by the dressed potential (dashed lines) or obtained in the Hartree ansatz (dotted
lines), for various values of the detuning shown in the legend. (b) depicts the self-
consistent values of the Rydberg state occupation n’, (solid and dashed lines). They start
to differ from one another below a certain critical radius. Additionally n. as obtained in
the exact case is given by the dot-dashed line.

Finally we want to know how these observations generalize to higher particle
numbers. Let us therefore consider an ensemble of four atoms, which are either ar-
ranged in a square or on a line with periodic boundary conditions, while nearest
neighbor distances are given by r/a in both geometries. In the latter case the interac-
tion is truncated for distances r/a > 2. As can be seen in Fig. 2.8 the Hartree ansatz in
the larger ensemble is in very good qualitative agreement with the exact result for all
considered values of the detuning in the near resonant regime, although it still tends
to overestimate interaction energies at short distances. The dressed pair-potential on
the other hand fails in this regime, as it cannot account for the blockade of Rydberg
excitations.

To probe the blockade effect we also compare the density-density correlations
(Alhl) obtained in the exact result to those derived in the Hartree ansatz. We con-
sider the two cases when i and j are either nearest (NN) or next-nearest neighbors
(NNN). As shown in Fig. 2.9 there is a good qualitative agreement between both in
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FIGURE 2.8: (a) Ground-state energies Epo of (2.15) calculated exactly (solid lines),
given by the dressed potential (dashed lines - not all are shown as some are out of
range) or obtained in the Hartree ansatz (dotted lines), for various values of A/Q given
in the legend. Here a 4-site system with two different geometries is considered: a square
system (diamond symbols) or a linear system with periodic boundary conditions (circle
symbols). (b) depicts self-consistent values of the average Rydberg state occupation
ne = Y;n /4 (black lines) and as obtained in the exact calculation (dotted lines). The
shaded symbols represent geometry and detuning as in (a). Below a certain distance
the mean-field results start to differ from the exact result, while qualitatively following
the same behavior.
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FIGURE 2.9: Occupation number correlation functions for nearest neighbors (NN) and
next-nearest neighbors (NNN) as obtained in an exact calculation and in the Hartree
approximation (see legend) for two values of A/Q = {0,1} respectively shown in (a)
and (b). The geometry of the considered 4-site system is given by symbol type: square
geometry (diamond symbols) and linear system with periodic boundaries (circle sym-
bols).

the vicinity of resonant excitation, while the blockade radius where correlations are
suppressed entirely almost exactly coincides in both treatments.We thus conclude
that the Hartree ansatz yields a very good approximation for a many-body system
in the regime of near resonant Rydberg excitation.

We note that also the dressed pair-potential (2.14), which we have to consider in
the weak (off-resonant) dressing regime, will be treated in a Hartree approach when
we consider much larger systems, where exact methods can no longer be applied. It
is the better choice in this limit, as long-range pair-entanglement is readily included
via the dressed potential, while it is always absent in a Hartree ansatz for the bare
interaction potential.
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Extended Bose-Hubbard model

FIGURE 3.1: Dynamic processes of ultracold atoms in an optical lattice trap with har-
monic confinement, as described by the extended Bose-Hubbard model. Particles can
travel between nearest neighboring lattice sites at a tunneling rate ¢. If they encounter
one another on a given site, they experience the local Hubbard interaction U. The pres-
ence of Rydberg excitations due to the Rabi driving (not shown) even allows for long-
range interactions V' due to induced Van der Waals (or dipole-dipole) interactions.

One could describe the Hubbard model as the standard model of condensed mat-
ter physics. Albeit its minimalistic nature, describing the tunneling of quantum par-
ticles, such as electrons, atoms or molecules, between different lattice sites versus
local interactions between the particles on each site, it gives rise to a vast range of
non-trivial quantum phenomena. It has its roots in solid-state physics where it was
independently and nearly simultaneously proposed by Gutzwiller, Hubbard, and
Kanamori in 1963 (see [Mon92] for collected reprints). While its applicability is lim-
ited in the case of electrons in actual solid state systems due to the complex (“dirty”)
structure of real matter, it is especially useful for cold atoms in optical lattices. Its
underlying approximations — particularly the assumption of narrow energy bands
— can be realized in such systems close to perfection. Above all else the various in-
volved energy scales can easily be tuned in optical lattice systems over orders of
magnitude and even independently, by utilizing Feshbach resonances or Rabi pro-
cesses (see Chap. 1).

Applying the Hubbard model also to bosons was first suggested by Fisher et
al. in 1989 [Fis+89], while Jaksch et al. subsequently proposed realizing such a
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model using ultracold atomic gases trapped in optical lattices [Jak+98]. The corre-
sponding superfluid-Mott transition was first realized experimentally by Greiner et
al. [Gre+02a] in three spatial dimensions, thus paving the way towards the vast tool-
box of strongly correlated ultracold atomic lattice gases, which nowadays exists (see
e.g. [BZ08] for an introduction).

In this chapter we will discuss the derivation of the (Bose)-Hubbard model in
an optical lattice system, starting from a microscopic picture and thus allowing us
to relate the (effective) Hubbard parameters to the various experimental parameters
such as laser wavelength and intensity, atomic mass and scattering length, electronic
states and transition matrix elements of the atoms, just to name a few.

As a starter we will first review the single particle and thus non-interacting
physics in periodic potentials. Introducing non-local and thus extended Bloch states
we then derive the emergence of a band structure in the tight binding limit. Subse-
quently these states will be used as a basis for the construction of (maximally) local-
ized basis states within the individual bands, which are the Wannier states. While
our focus will be on the standard formalism, we will briefly review an alternate
definition put forward by Kivelson in 1982 [Kiv82] and discussed in great detail by
Bissbort in 2012 [Bis12]. The latter method relies on the fact that the band projected
position operator can be reduced to a simple form, yielding a numerically efficient
method to determine the then unique Wannier states even in inseparable lattice po-
tentials. Finally we will use the Wannier functions to determine the tunneling matrix
elements as well as the local interaction strength. Combining all these elements then
concludes the construction of the (Bose-)Hubbard model.

In addition to this basic derivation we will finish this chapter with a discussion
of a long-range interaction extension of the (Bose-)Hubbard model, as realized by
coherent Rydberg dressing discussed in Chap. 2. The relevant additions will be the
inclusion of a second atomic component, given by atoms which are driven by a sin-
gle — or multiple — Rabi lasers to high lying electronic states, namely Rydberg states.
Due to the high polarizability of these states this will introduce strong long-range
interactions to the model, the discussion of which concludes this chapter.

3.1 Derivation of the Bose-Hubbard model

The optimal framework for quantum many-body systems is quantum field theory
which utilizes second quantization. As we will see this yields a very convenient
quantum theory for many-body systems with strong correlations as induced by in-
teractions. A quantum many-body system of interacting particles trapped in a spa-
tially periodic potential V' (r), as for example given by atoms in an optical lattice, has
a second quantized Hamiltonian of the form

- [ (-

In this notation " (r) and 4(r) are quantum field operators which respectively ei-
ther create or annihilate a quantum particle at position r. The first term corresponds
to the kinetic energy as given by p2/2m, where p is the momentum operator given
in terms of the Nabla operator in position representation, so p = —i~2V. The second
term yields the external potential energy given by V (r), while the last represents
any two-particle interaction terms.

2 R R R r-r') - R
= +V(r))w(r)d3r+ Ji w“(r)w*@’)%w(r')w(r)d%df’)r'.

(3.1)
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3.1.1 Bloch theorem

For vanishing two-particle interactions (3.1) can easily be separated into single par-
ticle Hamiltonians Hsp, which is due the lack of entanglement induced by the inter-
action among the particles:

2 ~
Hyp = / Pt (r) (—;—mv2+V(r))¢(r)d3r. (3.2)

Due to this separability we may thus obtain from f[sp a basis representation which
already incorporates the periodic properties of the system, thereby defining a useful
starting point before also considering interaction effects. Let us now introduce an
arbitrary real space lattice vector R = }; n;a;, where n; € Z are arbitrary integers and
a; are the primitive lattice vectors, so the lattice spacing along individual directions
is a; = |a;|. The periodic property of the trapping potential implies the relation

V(r)=V(r+R). (3.3)

In order to determine the eigenvalues and eigenstates for a Hamiltonian of this gen-
eral form, we have to consider how this discrete translational invariance is reflected
by a corresponding symmetry of the Hamiltonian (3.2):

T"(R)HypT(R) = Hep. (3.4)

Here T'(r) = exp(—ir - p/h) is the translation operator which is defined by the gen-
erators of translations p; and thus by the components of the momentum operators.
Given a position state |r), 7'(r')[r) = |r + ). We can see that any translation of the
Hamiltonian (3.1) by an arbitrary lattice vector R maps FISP back onto itself. There-
fore, these translations and the Hamiltonian commute with one another, implying
that both share the same set of eigenstates, which are the Bloch states. If |¢) is an
eigenstate of M. sp With the eigenvalue A4, then T'(a;)|¢), which is the state translated
by one unit of a single primitive lattice vector, is an eigenstate as well. Assuming
a non-degenerate spectrum' of ]:Isp, this also implies that both |¢) and T(R)|¢) are
identical up to a constant complex phase factor exp(i¢). The real-space represen-
tation of these states are the Bloch functions 14(r) = (r|¢). Thus from multiple
applications of the translation operator we can conclude the relation

(r](7(2))"|6) = o (x ~ na) = ™ Pupy(x). (3.5)

There is only one ansatz that satisfies these relations for any value of both r and n:

Piea(r) = Xy o (1). (3.6)

Here ug o(r) is a complex-valued function of the same periodicity as that of the
underlying lattice, so

"Even in case of degeneracy one can choose a suitable set of eigenstates, so all the relations are
fulfilled exactly.
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ukﬂ(r) = ukva(r + R) (37)

We furthermore relabel the states by introducing the quasimomentum k, which is a
three dimensional vector of quantum numbers, corresponding to the state’s change
in phase under translations in any of the lattice directions. Its relation to the phase
factor is given by ¢ = -k - a; + 2mn, with n € Z. As there generally may be more
than one state fulfilling the relations stated above, we introduce another quantum
number «, which will turn out to be the band index. In combination the set {k, a}
uniquely specifies every individual energy eigenstate.

However, note that due to the periodicity 27 of the exponential function the
quasimomenta k are not unique. This implies the existence of different k, all of
which yield the same transformation relation (3.5). But we can determine all values
of k corresponding to the same transformation behavior, in order to subsequently
link each unique eigenstate to a single representative k. To do so we first have to
introduce the reciprocal lattice generated by the primitive reciprocal lattice vectors
b;. These are implicitly defined via the relation

ai-b-:27r5i j - (38)
J »J

Given the set of {a;}, the b; are obtained by inversion of the matrix which contains
the primitve lattice vectors in its columns. Bloch states in an individual band « and
for the two quasimomenta k and k' = k + G are identical states when both quasimo-
menta are related via a translation by the reciprocal lattice vector G = }; n;b;. Thus
the infinity of quantum numbers {k+ G, «} all refer to the same state for an arbitrary
reciprocal lattice vector G. In order to uniquely specify each state by the set {k,a}
we introduce a requirement so each state has a single representative k. Typically one
requires that the euclidean norm of each representative k is less than for any other
candidate k + G. All such k constitute the first Brillouin zone (1.BZ) and each set of
k and « then uniquely refers to different physical Bloch states.

3.1.2 Bloch states and bands

Inserting the Bloch ansatz (3.6) into the time-independent Schrodinger equation cor-
responding to the Hamiltonian (3.1) yields an effective Schrodinger equation for the
functions uy (r):

2
_Q”L_m (=i + %)% + V(1) [tiea(r) = Biauia(r). (3.9)

Due to the discrete translational symmetry of the potential V'(r) as well as the func-
tions uy o (r), it is most straightforward to express both as Fourier series

V(r) = Z Vnhm,n:iei(z:?:l ”jbj)'r’ (3.10)
{ni}
tiea(r) = 3 el pe (BT (31D

{n:}
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The individual coefficients V;;, ., n, are obtained from the inverse transformation of
the potential, which can be computed via an integration over the unit cell of the
periodic potential. Thus only the coefficients c,(}jﬁg,ng have to be determined. The
effective Schrodinger equation reduces to a simple set of linear, algebraic equations

when the Fourier series are inserted:

3 b\
ET(LM) (ko) Z Vi n'C <) = By ac(k,a) ) (3.12)

Crnimnam n1,n2,mn
kr ,N2,M3 nl, 5nl ,n2,m3

In this expression we have introduced the recoil energy E, = h%k? /2m, which is
the kinetic energy gained by an atom absorbing a photon of the lattice laser beams
(see Sec. 1.3.2) and is given by the lattice quasimomentum k;, = 7/a, where a is the
lattice spacing. If the potential is sufficiently smooth, for example when given by
a sum of cosine functions as in a simple and thus separable hyper-cubic lattice, its
corresponding coefficients V;,, ., n, decay rapidly for increasing frequency compo-
nents. Correspondingly also the cgfji;,w will decay rapidly for the low energy states.
Therefore we can truncate the high frequency terms at some |n7*|,|n5'| and |n%"|, so we
only need to consider the terms n = (n, n2,n3), where |n;| < |n}"|. In that case (3.12)
further reduces to a finite-dimensional eigenvalue problem:

(k) (k)
k —ni,—n2,—n3 C_nly_n21_n3
H® : = Fra : : (3.13)
(k) (k)
ni,nz,m3 ni,n2z,n3

The individual non-zero elements of the matrix are given by

*E,
) - (k+2nZ 2) 77 O+ Voo (3.14)
L

The diagonal of this matrix is given by kinetic energy terms, while the off-diagonal
terms couple the different plane wave states via the Fourier components of the lattice
potential, analogous to a scattering of the plane waves. Due to the periodic potential,
only quasimomentum states in the same equivalence class are coupled, making the
matrix block-diagonal with individual blocks indexed by the quasimomentum k.

VANV ANEN NN P TR
W | k=0.37/a, a=1)

| k=0, a=1)
1 | | | 1 | 1
—Re
0 1 2 3 4 5 6 7 8 m
r/a

FIGURE 3.2: Examples of one-dimensional Bloch functions for V;/E,. = 5.
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For a given truncation the diagonalization of H*) can be evaluated numerically
for each k, which results in the eigenenergies Fy  for different bands a. The cor-
responding eigenvectors contain the coefficients c,(}jﬁ;ng determining uy . (r) of the
Bloch functions. As Bloch functions are extended, they are normalized over the unit

cell of volume V;,, which implies the normalization of the coefficients:

2 2 o 2
[/ ij,a(r)‘ d3r = [/ ’uk,a(r)| d3r = Ve Z ‘nglfing,nd =1. (315)
uc uc {nl}
Then the Bloch states are given by
koa)= [ 3 cllen) el Flanbr ), (3.16)

{ni}

As all Bloch states constitute the complete set of eigenstates of H. sp, they make up an
orthonormal basis of the single-particle Hilbert space, so

(k,alk’,a') = 0k wlae and 1= |k,a)(k,al. (3.17)
k,a

Let us now consider the simple example of a one-dimensional optical lattice as
generated by a typical laser setup (see Sec. 1.2.2). We get the potential

Vi(r)=VW (sinz(k‘Lr) - %) = —% (exp(i2kpr) + exp(—i2kpr)), (3.18)

where V} is the lattice depth. As V' (r) consists only of two Fourier components (3.14)
yields a tridiagonal matrix H*) with matrix elements

2
Hflkrzr =FE;, (ﬁ + 272) 5n,n’ - E((Sn,n’+1 + 6n,n’71)- (319)

’ k L 4
Plotting the resulting eigenenergies £}, , as a function of k for each « reveals the
single particle band structure. For Vj = 0 the lattice potential vanishes and we ex-
pect a free particle dispersion relation. Due to the equivalence argument for the
quasimomenta, this relation is folded back into the first Brillouin zone as shown in
Fig. 3.3. Increasing the lattice depth to a finite value the potential couples all mo-
mentum states corresponding to the same quasimomentum lying on a vertical line
in the back folded dispersion relation. States with energy differences on the order
of the coupling by the potential start to hybridize, which opens up band gaps. Thus
avoided crossings appear where the free particle energies intersect, leading to the
formation of separate bands. In a finite lattice of L sites there are L individual Bloch
states and each band is discrete, while only in the limit L - oo the bands become
continuous.

Note that the low temperature physics of bosons in such systems are dominated
by the lowest band as long as the temperature and average interaction energies are
well below the energy gap to higher bands.

In the limit of a deep lattice Vy/ E,. > 1 the bands generally become cosine shaped,
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FIGURE 3.3: One dimensional single particle dispersion relations generated by an op-
tical lattice potential with three different potential strengths Vy/E, = {0,3,25} (a,b,c).
Individual points on each band correspond to unique Bloch states with eigenenergies
Ey o described by the quantum numbers quasimomentum k and band index «. (a) The
quadratic dispersion of a free particle is folded back into the first Brillouin zone. For
increasing lattice depth 1, band gaps open up (b), while the bands approach the tight
binding limit for V, > E, (¢).

where the lowest band becomes proportional to (1 - cos(ka)) with a positive effec-

) -1
tive mass m* = ( 2 g’;‘f:o ) . As can be seen in Fig. 3.3, the signs of these effective

masses alternate from band to band in the one dimensional example. In this so called
tight-binding limit the corresponding Wannier functions are strongly localized, so
only Wannier states on nearest neighbor sites overlap sufficiently to generate a con-
siderable tunneling amplitude ¢, as we will discuss in the following sections. Fur-
thermore the tight-binding limit can be used to approximate the band gaps, as the
states in low lying bands can be assumed to be localized primarily close to the min-
ima of the lattice potential. Let us consider the minimum r = 0 of V'(r) = V(r) + %:

2..2 9 th.Z ET‘
V) Vo2 = ™7 with w= /20, = 2 LVVo _o [YoBr 500
2 m 2m h E,. h

In that limit the potential behaves approximately as a harmonic potential with eigen-

energies that are spaced by AE = wh = 24/ g—iEr, which translates to the approximate
band spacing of the low-lying bands in the tight-binding limit.

3.1.3 Wannier state construction

Commonly, the local Wannier state centered at a site i corresponding to the position
R, in the band ¢, is defined as the discrete Fourier transform of the Bloch states in
the same band:

1 .
IRi,a) = — e ®Rilk o). (3.21)
\/Z ke%%Z

In contrast to its apparent uniqueness this definition actually hides the impor-
tance of the individual phases of each Bloch state, all of which can have arbitrary
values in the general case. Thus in order to find a unique Wannier basis, either an
algorithm is needed to determine the complex phases or a more precise definition
should be considered. With regard to the former, a typical approach is to focus on the
maximally localized Wannier functions. The Wannier functions are thus uniquely
defined as those states |R;, o) for which the Bloch state phases are chosen such that
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(Ri, o|t?|R;, @) - (R, a|#|R;, @)? is minimized. While this method is numerically fea-
sible for simple lattice geometries, using methods for the minimization of the energy
of a variational state, the variational landscape may contain local minima, especially
in more complex lattice geometries. Thus it also has to be guaranteed by the algo-
rithm that the global minimum is always found, which adds further complications.

But based on the idea by Kivelson [Kiv82], one may instead define Wannier
functions as the eigenstates of the band projected position operator, which he uses
in the context of disordered systems. While Kivelson’s work focuses on the one-
dimensional case, Bissbort gives a thorough introduction of this concept in [Bis12]
generalized to arbitrary lattice geometries at higher dimensions, even including the
scenario of an inhomogeneous system.

3.14 Evaluation of Hubbard parameters

Using either the Bloch states vy, or the corresponding band-projected Wannier
states wr, o, we can represent the Hamiltonian (3.1) using either basis representa-
tion of the field operators:

b(r) = kZ Ui (T)bica, (3.22)

P(r) = S wr o (r)bR, 0 (3.23)

(e

Here the operators IA)ka and IA)RW correspondingly annihilate a particle in a Bloch
state of quasimomentum k in band « and in a Wannier state at site R; in band «. For
temperatures and average particle interactions below the energy gap of the Bloch
bands (at least V > 3E,) this representation can be limited to the lowest band index
o = 0. Thus, omitting the band index in the operators b and ', the Hamiltonian (3.1)
can be written as

- Zb b wa 0(r)(—— +V(r))wR o(r)dr (3.24)
bibLbib; [ wi, o()wi, o )U(r -t )wrs o(r")wr, o(r)dord’y’.
“%:J J f/ R;.,0 R,;/,0 R/,0 R,;,0

From this expression we separate individual terms starting from the on-site energy:

2
f wg, o(r) (—M + V(r)) wr, o(r)d’ (3.25)

The tunneling matrix elements in general are defined for any pair of sites R; and R ;
with site indices i # j:

2
tij == f W, o(T )(—M + V(I'))wR o(r)dr. (3.26)

Finally we also get the interaction terms between pairs of atoms:
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Uiir f W, o(r)wg, o(t)U(r —r )wR' o(rHwr, o(r)d'rd’r’. (3.27)

As the Wannier functions are typically localized on each site with an approximately
exponential decay away from the site [BZ08], the tunneling amplitudes ¢;; are expo-
nentially suppressed for increasing distance. This implies that only nearest neighbor
(NN) tunneling will be relevant in a sufficiently deep lattice, while the remaining
long-range tunneling processes can be neglected. Thus the kinetic terms can be re-
stricted to a summation over NN only, which we will denote by ¥’ ; ;). The value of
this hopping in an isotropic lattice with a; = a is given as follows, where i and j are
any of the nearest neighbor pairs:

wa“O(r) (—— " V(r))wR o(r)dr. (3.28)

Regarding the derivation of the standard Bose-Hubbard model we further assume
that the interaction potential is given by a short-ranged pseudo-potential U (r —r’) =
%6 (r - 1), effectively describing the contact interactions between atoms in ul-
tracold gases as introduced in Sec. 1.2.3. Furthermore, for sufficiently deep lattices
the Wannier functions are primarily localized to the vicinity of a single site, so the
dominant contributions are given for the case where all lattice indices coincide. Thus
we obtain the Hubbard interaction

U= Arh%a,

f ‘wRi70(r)|2 ‘U)Ri,o(l‘)‘2 d’r. (3.29)

Even though we only consider the most dominant matrix element, this approach is
sufficient to describe most physical phenomena arising from the two-particle inter-
actions.

Asymptotic behavior

For sulfficiently deep lattices (Vp, V) > E., one can obtain the tunneling rate ¢ as
an exact expression given by the width W » 4t of the lowest Bloch band in the 1d
Mathieu equation [Zwe03; Sla52] (effectively two-dimensional system for V- > 1}):

3

= Vi

= %E (%) eV (3.30)
m T

Regarding the local interaction, one can show that the overlap |(Ro, 0|¢)Gauss)
between the exact Wannier state and the Gaussian ground state, corresponding to
an harmonic approximation of the potential for a given lattice site, deviates from
one by less than 3% for Vj/E, = 3 [BZ08] and approaches unity for increasing lattice
depths. Therefore one can use the Gaussian ground state to obtain a very accurate
approximation of the local interaction (V" > Vj for a two-dimensional system)

U:\/gkLasET(g) (‘g’) . (3.31)

| 2
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Standard form of the Bose-Hubbard model

Finally that we have everything together, let us write down the Bose-Hubbard model
in its standard form using second quantization:

I:IBH =—t Z (BI(A)] + hC) + g Zﬁz (ﬁz - 1) + Zgiﬁi; (332)
(4,5) i i

where we introduce the local density operator or occupation number operator 7; =
bib;.

—_—tU ‘

0 5 10 15 20 25 30
Vo/E,

FIGURE 3.4: The Bose-Hubbard parameters ¢ and U, as well as their ratio as a function
of the lattice depth V;/E, for 8"RB in an 812nm optical lattice. This figure is adapted
from [Bis12].

In actual experiments the optical lattice potential is typically deformed by an
additional external harmonic trap, resulting in a spatially inhomogeneous potential
V(r) without its discrete translational symmetry. For a sufficiently weak external
confinement we may assume that the lattice symmetry remains approximately valid
locally, such that the lowest Wannier functions mostly remain the same. In that
case the external trap simply yields a shift of the local energies proportional to the
confining potential V.(r;) = V.r?, where V0 is the strength of the harmonic trap. If
we furthermore investigate such a system in the grand canonical ensemble (Hpy —
fIBH,G), we also have to introduce the term N 11, where N = >;; and p is the global
chemical potential controlling the total number of bosons in the system. So with
g; = Vo(r;) — 1 we obtain

E[BH,G =—t Z (ZA)Z-ZA)] + hC) + % Zﬁz (ﬁz - 1) + Z(Vc(rz) - ,u)ﬁi. (333)
(4.7) i i

The Bose-Hubbard model is the simplest interacting bosonic lattice model. It
describes the competition between a repulsive on-site interaction U, disfavoring
high local occupancies while favoring localization via suppression of particle num-
ber fluctuations, versus the kinetic energy ¢, favoring delocalization of particles as
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long as delocalized particles do not interact too strongly. While it was initially pro-
posed for a description of liquid helium in porous media [Fis+89], ultracold bosonic
atoms in optical lattices allow for an almost perfect realization of the model [Jak+98;
Gre+02a; Gre+02b; Zwe03; BZ08]. Especially noteworthy is the possibility to tune
the ratio U/t over orders of magnitude by varying the lattice depth Vj, which itself
depends on the laser power of the lattice laser. This allows for a wide range of pa-
rameters for which experiments can implement the Bose-Hubbard model, especially
considering the possibility to tune local interactions independently using Feshbach
resonances (see Sec. 1.2.3).

3.2 Rydberg extension of the model

A downside of the Bose-Hubbard model presented thus far is the absence of long-
range interactions, which could generate long-range entanglement, possibly lead-
ing to a broken lattice symmetry associated with exotic phases of matter such as
the lattice-supersolid or a devil’s staircase of density wave ordered phases. Among
the various suggested methods, such as polar molecules [GSL02; MTL07; CS+10;
Pol+10] and magnetic dipole interactions [BB11; Bai+16], we focus on the use of Ry-
dberg excitations discussed in Chap. 2. As Rydberg excitations have a huge polar-
izability (scaling o n? in the principle quantum number), neutral isotropic Rydberg
atoms exhibit strong Van der Waals interactions (o< n'!). But in order to generate
coherent Rydberg excitations one has to coherently drive a Rydberg excitation via a
Rabi-laser.

Commonly there are two pathways to generate a Rydberg excitation in typical
quantum gas experiments. In most cases alkaline (e.g. 8"Rb) but also alkaline-earth
atoms (e.g. Sr as discussed in [Muk+11]) are used to generate Rydberg excitations.
Note that the presence of a second valence electron in the alkaline-earth atoms al-
lows for a simultaneous magic wavelength trapping of ground and excited states
[Muk+11], while Rydberg excited atoms by themselves commonly exhibit an optical
lattice of opposite sign in relation to the ground state. By limiting the excited Ryd-
berg fraction, one can limit this effect in practice. In both cases a single electron from
the s-valence shell is excited to a high lying Rydberg state n 2 20 in a Rabi-scheme.
Either the transition is driven directly using a UV-laser, resulting in a state with
p-wave symmetry, also for the resulting long-range interaction, or an intermediate
state is used so the final Rydberg excitation may either be an s- or d-state.

As we are primarily interested in isotropic interactions we focus on the latter
case, while the former may also behave isotropic, either in the absence of a quanti-
zation axes (as induced by polarizing fields), or in a two-dimensional system when
an external field guarantees a perpendicular alignment. One can show that this two-
photon process can effectively be mapped onto a single-photon process, coupling
the s-wave ground state to an s-wave Rydberg state (see Sec. 2.2 for further details).
Thus one obtains an effective two level system consisting of the ground state atom
|g) and the Rydberg excitation |e). Both are coupled via an (effective) Rabi frequency
2, while the total detuning A of the laser frequencies with regard to the excitation
energies generates an effective offset for the chemical potential of the Rydberg com-
ponent.

Following the derivation presented in Sec. 2.2.1 we obtain an extended two com-
ponent Bose-Hubbard model of the form

*Note that the use of electronic states makes it possible to generate arbitrary spin models by map-
ping each state onto an effective spin orientation.
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N
H = HypH jin + Z (HaBH joci + Hri + Hints) s (3.34)
where
Hopripin=—t Y, (b} b +nb} by +h.c.), (3.35)
(4,5)

~ ﬁ ~ AO AV ¢ ﬁl/ AU A0 AV

Hainioes =U (S0 = 1)+ Xafaf + Nt = 1)) = n G +70), (336)
A (O PPN ~r o~
Hp i =5 (b3, ibvi +blibo) - A, (3.37)
' V AV AV
Hmm :5 ‘ Ani njV(ri,rj) . (338)
VE:

Throughout this thesis we consider two interpretations of this model (see Fig. 3.5).
In the first case we consider the situation of far off-resonant driving (weak dress-
ing), for which the o species corresponds to a bare hyperfine level |b) in the atomic
ground state manifold, while the v species is given by another hyperfine ground
state |d), which is coupled far off-resonantly to a Rydberg excitation, with © << [Ag|.
Thus it represents a coherent mixture of the form |d) = |d) + ¢le), where € = Q/2|Agay|
determines the Rydberg fraction &2 of this single-particle dressing. For repulsive in-
teractions the driving has to be red detuned, such that the long-range interaction
does not facilitate additional excitations. Only then is it allowed to consider the
dressing as a single-particle effect.

In contrast, near resonant excitation of Rydberg states with [Anear| = O(£2) in-
duces an effective detuning of the Rabi transition, which is proportional to the to-
tal long-range interaction energy. We therefore consider near resonant excitation
(strong dressing) of the Rydberg state as a second case, where the two components
o and v are given by an atomic ground state |g) and a Rydberg excited state |e) re-
spectively.

Ahrk> Aear”
O < [Apy,] |Anear| = O(2)
——@—|) @ |d) — @ |g9)

FIGURE 3.5: The extended Bose-Hubbard model with two components can be achieved
in two ways using Rydberg excitations. Left: For far off-resonant excitation of Rydberg
states, one hyperfine ground state |d) (green) becomes weakly dressed by a Rydberg
state |e), while the bare hyperfine state |b) (blue) can interact with the dressed species
only via a local inter-species Hubbard interaction. Right: At near resonant excitation of
the Rydberg state, the two components are given by the ground state |g) (blue) and the
Rydberg state |e) (green) that is addressed by the Rabi process.

The main difference between these two cases therefore lies in the shape of the
long-range interaction. For near resonant dressing one has to consider the bare Van
der Waals (VdAW) interaction, which, using the notation r;; = r; — r;, has the form
Vi(rij) < 1/ r?j, while the weak dressing case leads to an effective soft-core interac-
tion V (rs;) o< 1/(ry; + RY), where R, is the soft-core radius (see Sec. 2.2.3).
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3.2.1 Parameters of the extended Bose-Hubbard model

Many of the parameters of the extended Bose-Hubbard model (3.34) are easily ad-
justable in experiments, some even over several orders of magnitude. The Rabi pa-
rameters can be controlled directly via the laser intensity determining the Rabi fre-
quency €2, which also depends on the matrix elements of the chosen transition, and
the laser detuning A [BZ08], while the VAW interaction is determined by the choice
of principle quantum number n for the Rydberg level (Cg o< n'!, see Sec. 2.1.2). We
have V (r;,rj) = V (ry) = a®/ |rl-j|6 and V = Cg/a®, where a is the lattice spacing. A
typical value for Cg is 240MHz ym® [Li+18], so in a typical lattice where a = 0.532nm,
V ~ 15GHz. From here on we consider spatial vectors r; to be in units of lattice spac-
ings a. Although the ground state hopping and interaction are determined by the
lattice depth, they can be tuned independently using Feshbach resonances, as dis-
cussed in Sec. 1.2.3. The remaining parameters are not as simple to control. The hop-
ping of Rydberg-excited atoms is not yet an experimentally well-controlled param-
eter, since the OL, trapping the ground state (g) atoms, is not the same for Rydberg
states by default. Often it is even of opposite sign [Dut+00; You+10; YAR10], while
proposals have been made to counter this effect via so called magic-wavelength trap-
ping [ZRS11]. A noteworthy example are alkaline-earth atoms such as strontium
with two valence electrons [Muk+11], one of which generates the Rydberg excita-
tions while the other can be used to achieve simultaneous trapping of the Rydberg
and the ground state at the magic wavelengths ), = 323.4 nm and A, = 418.6 nm.
In the presented work we focus on the limiting case n = 0, motivated by the fact
that the Rydberg part of the Hilbert space is dominated by the VAW interaction and
the Rabi frequency, while the total kinetic energy contribution from |e) will be small
compared to |g) due to low Rydberg fractions (similar to [Hon+10], see App. D.1). As
the Rydberg states are perturbed by the Rabi process, their localization will anyway
be lifted due to hybridization of |e) with |g).

The remaining local interactions on the other hand are fixed by considering the
quantum Zeno effect [MS77; GR+09; VCH14]. It describes the observation that loss
channels with a bare loss rate 79 > U are strongly suppressed in the lattice, as this
corresponds to a strong measurement of the lossy states, thus keeping them fixed
at zero occupation. Experiments have shown the large cross section of molecular
ion formation in Rydberg gases [Nie+15]. Due to the different electronic structure of
such ions, they are not trapped by the confining potential, implying a large bare loss
rate 79. The local quantum states susceptible to molecule formation or ionization
correspond to Fock states of the form |n, > 0,7, > 0). We can model their loss-
induced suppression by choosing “arbitrarily” large values® for the parameters A
and ) in (3.36).

With regard to the second interpretation of (3.34), both g and e are replaced by
two different atomic hyperfine ground states b (bare) and d (dressed), the second of
which is far off-resonantly dressed by a Rydberg state. In this case we can consider
the local interactions and the tunneling rates to be identical for both species, at least
as long as no spin-dependent lattices are used. As we do not consider driving be-
tween the two hyperfine levels, we can neglect the Rabi mixing term in (3.37) and
consider two separate chemical potentials z, = wand ji4 = 1+ A for each independent
species instead.

?A valid alternative is to neglect the corresponding part of the local Hilbert space instead.
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Chapter 4

Bosonic Dynamical mean-field
theory

Mean-field methods commonly only include a static mean-field. This implies that
any quantum-fluctuations are neglected, even if they might become important, as
for example in the vicinity of a quantum phase transition. There the fluctuations
may destabilize either of the phases with regard to the others and thus the actual
phase transition is shifted with regard to a static mean-field prediction. Conceptu-
ally speaking, in order to include fluctuation effects, one has to generalize the idea
of a static mean-field to a dynamical mean-field, thereby introducing a frequency
dependency of such a mean-field.

In this chapter we will derive the basic concepts of the bosonic dynamical mean-
field theory (B-DMFT) [BV08; HSH09; And+10; STH11; And+11], in its real-space
representation (RB-DMFT). We will see that B-DMFT naturally follows from an ex-
pansion in powers of correlation functions, starting with the lowest order, which
is the condensate order parameter ¢ = (b) defined as the expectation value of the
annihilation operator b. In contrast to the fermionic systems [Geo+96], this expecta-
tion value does not vanish in general. The next higher order correlation functions

are Green’s functions of the general form o< (5§+)5§+)), where (1) signifies the gen-
eral possibility to consider an arbitrary combination of creation and annihilation
operators. The non-number-conserving combinations are usually called anomalous
Green'’s functions and naturally arise in bosonic systems. The indices i and j corre-
spond to any selection of modes, most commonly corresponding to a pair of neigh-
boring sites. In the Heisenberg picture these Green’s functions obviously become
time dependent, even for a static Hamiltonian. They will therefore naturally serve
as dynamical Weiss-Green’s function', and as they arise from the tunneling term in
the Hamiltonian, they describe the first order effect of nearest-neighbor correlations
on the many-body behavior. We will furthermore see that DMFT is non-perturbative
with regard to local interactions, resulting in an exact consideration of local fluc-
tuations. The corresponding self-consistent loop is sketched in Fig. 4.1, while the
various quantities will be introduced in the course of this chapter.

Regarding the basic concepts of B-DMFT, we will be following the formulations
and notations, as introduced by Michiel Snoek and Walter Hofstetter in Quantum
Gases: Finite Temperature and Non-Equilibrium Dynamics (Vol. 1 Cold Atoms Series)
[SH13], using natural units ~ = 1 throughout this chapter. Thus energies will be in
units of radial frequencies w.

n the same sense, as the condensate order parameter ¢ serves as a static Weiss-mean-field.
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diag (H A 6, V, W, ¢, 1]

Goi — Asle, V, W] {|m>, En} = GI™
A I\
p'j* I
- 3
7. |
QIID Weiss Green’s function: —
Q
TUS Goi' = b+ iwnos + A, E
N—
y -
G = [(iwpo. + )1 +t] - =
G -G, =G| =< Y — X

FIGURE 4.1: Schematic depiction the self-consistent loop of RB-DMFT for an extended
Hamiltonian in the Hartree approximation. Note that the whole loop applies just as
well, when using connected quantities instead.

4.1 Effective impurity action

The first step, in order to find the local dynamical mean-field, which will be given by
a self-consistent Weiss-Green’s function, is to introduce an effective local action. This
can be achieved by tracing out all degrees of freedom (DOF) in a given lattice system,
but those of a given site. The remaining action will thus contain all dynamic prop-
erties of the full system while effectively describing a single site. Let us derive this
effective description for an extended Bose-Hubbard model of N bosonic flavors, as
we will be using for the description of a Rydberg system, given in a grand-canonical
ensemble:

- tfﬂbfabyw Y- Usyitio (i = 0oy) = Z”Uanr 2, Vo i f)iohyo. (4.1)

0,057 2ion 0,0 i#j,0

oy oy _ 'yo
The hopping matrices t generally have to obey the relation ¢; i t . In our

case they are only non- zero either for nearest neighbors of the same flavor o = v,
or when both o # v and i = j are fulfilled simultaneously, where the latter case
corresponds to the Rabi terms, so t;’? = Q4 /2 for o # 7. For the two component
system considered in this work, it is thus given by gy, = Qeg = . Furthermore
we only assume long-range interactions of the form V,(i,j) = V,(r; - r; = r) (and
no singular i.e. divergent behavior for any r possible on a given lattice). We will
therefore use the shorthand expression V, (i) = V,(4,0). As is well known (see e.g.
Sec. 4.2 ‘Field integral for the quantum partition function” in Condensed Matter Field
Theory by Altland and Simons [AS10]), the partition function (Z) can be expressed
as a Feynman path integral in terms of the total action S[b*, b], which is given in the
coherent state representation. So

Z= [ D[b*]D[b]exp (~-S[b*,b]). 4.2)

Here we use the abbreviated notation j D[b*]D[b] = [ I1;, D[b},]D[bis], while the
bis(7) are the (complex-valued) fields, corresponding to the coherent state represen-
tation. The total action in turn is given by
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S[b*,b f (Zb (T) N H(T)) . 4.3)

The expression H(7) is constituted by the Hamiltonian describing the system (4.1),
but with all annihilation and creation operators (lA)w /b, 13 ) replaced correspondingly
by the fields and the complex-conjugate fields (b, (7)/b} b " (7)). Let us now consider a
given site, which we will call site 0 from now on, and spht the action into three parts,
following the cavity method, as also used in the derivation of the fermionic DMFT
equations [Geo+96],

S=50+ S(O) + AS. (44)

Sp contains all terms only related to site 0, while S(g) is the remaining system exclud-
ing any terms which include site 0. The latter is commonly referred to as the cavity
system. All other terms connecting site 0 to the cavity system are included in AS.
Defining b} _b;, = n;, we thus have

B 0boo . Qo s . Us
So= [ dr ¥ (550 5% ~ rbigbus ) + 3 (557 b + Boabi) + =5 ool ).
0 . or e\ 2 2
(4.5)
AS = f dr( — (t§ibosbio +c.c)+ > Vg(i)nwngg) : (4.6)
1#0,0
Let us now define fD(O) [b*]Doy[b] = [ iz00 DIb;,]Dlbis] and [ D[b]D[bg] =

[ T, D[b5, 1D[bos], in order to 1ntroduce the CaV1ty part1t10n function Z ), as well
as the effective partition function Z% = Z/ Z 0y, which defines the effective action
S%. Thus we define

Z(0) = fD(o) "D (o)[b] exp(-S(0)), (4.7)
Z e = f D[bg]D[bo] exp(~Se) = Z/Z0). (4.8)
As Zgy = Z) [ DIbg]D[bo]exp(=5o) [ Doy [b*]1D (o) [b] exp(~S(g) — AS) we intro-

duce the cavity expectation value

J D(oy[b* 1Dy [b]z exp(-Sio))
(z)0) = 7 :
(0)

(4.9)

We thus find the following implicit definition of the effective action S%:

ngf:fD[bS]D[bOJeXP(—SO)(GXP(—A5)>(0)EfD[bS]D[bOJGXP(—SSff)- (4.10)

Defining exp(-y) = (exp(-AS)) ), we may explicitly write down the effective action
as

Sett = S0+ y- @.11)
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Due to the exponential function, y is given as a series of cavity expectation values
of AS in all its moments. This is commonly considered as an expansion in 1/z via
a rescaled hopping t7; — ffj /z [SH13], where z is the number of nearest neighbors.
Such a rescaling guarantees retaining a non-trivial mean-field description in the infi-
nite dimensional limit (2 - o). In a system with homogeneous hopping amplitudes
t7;, its value can be computed from the hopping matrix as z = ;. tf/max;zo(t3))-
For the case of the long-range interaction this implies that we consider a similarly de-
fined effective number of (nearest) neighbors zegt = Y. Vi () /max;.o(V,(i))?, when
rescaling the interaction terms V,, (i) = V,,(i)/ze. It also has a roughly linear scaling
in terms of the spatial dimension d, as long as for |r; — ro|/a > 1 (with lattice spacing
a), Vo(r) o< r(49) where ¢ > 1. The proper infinite dimensional limit d - co should
thus be obtained by simultaneously keeping ¢ fixed. For common infinite range in-
teractions, such as dipolar or Van der Waals interactions, z.¢ is greater than z, as it
is not limited to the nearest neighbors®. The expansion of y up to third order in AS
(and thus in according products of 1/z and 1/z.¢) can be derived as follows.

© (ASF) gy (~1)F !
?J:—ln(e_AS)(O) :—ln(l—kz_z1 ( >((]2!( ) )
2 3 AS)? 2 AS)3
= (AS)(O) - <AS2>(O) + <A56>(0) + < ?(0) - (AS )(0;<AS>(0) + ( ?(O) + (’)(AS4)
= (A8} - 5 (1A8%) o) - (AS))
. é ((25%) ) - 3(AS) ) (AS) ) + 2AAS Ny ) + O(ASY) (4.12)

Here we have used -in(1 - z) = Y;2; 2"/n. Within the common B-DFMT cavity
construction, one focuses on the low order correlation functions, as they contribute
in leading orders of 1/z (and 1/z.¢). These correspond to the first two terms in (4.12),

(AS)(O) = /éﬁdT( Z _(tgibga(bw)(o) +C.C.) + Z Vg(i)<nig>(0)nog). (413)

(0,i),0 i#0,0

For convenience in writing down higher order terms, we combine all components in
a vector, so for the N components o = 1,..., N we write b; = (bjo,...,b;n) and use
Nambu notation.

(850~ (88Yigy = [ [ (07 Bo(r)) M. ) (bo) 5 ()

+ (b3 () mo (7)) F(7,m) (bo(n) ()"

(4.14)

Here we have introduced the 2N x 2N matrices M(7,7n) and F(7,7). In terms of the
various bosonic species (o, ), these matrices have the following entries in Nambu
notation:

2Strong long-range interactions tend to enhance mean-field like behavior, as can be seen in the
dimensional scaling of z.¢ as discussed in App. B for various relevant cases of interaction potentials.
3Note, that the use of dipolar interactions also implies d < 3, for such a scaling to work, see App. B.
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11 () = ZtoztW ((bio (7)63 (M) 0y = bia (7)) 0 (05, (M) 0)) -
Mz, (Tﬂ7)=Ztoz~ to; ({05 (7)bjy (1) 0) = (i (7)) (0) (b (1) 0)) -
12 (T.m) = Ztm ; ({bia ()b (1)) 0y = (i (7)) 0) (b3 (1)) 0)) »
o1 (T.m) = Zt “t5; ({63 (105, (1)) 0) = (bl (7)) (0) (b3 (1) 0)) -

(4.15)

The long-range interaction leads to additional contributions, which correspond to
interaction vertices,

' (1,m) =0,
F(rm) = =2 3 Ve ()13, ({nio (7)biy (1)) 0) = (10 (7)) (0) (b (1) )0y ) »

i0,j
Fy(m,m) = -2 .%:'Vg(i)tg; ((nie (T3, (M) 0) = (1o () )0y (05 (M) 0y ) » (4.16)
Fyy'(mm) = OZ OVa(i)Vv(j) ((nio (T)155(m)) 0) = (nic (7)) 0y (niy (1)) (0 ) -
1#0,7#

In order to find a closed formulation, using only second order correlation functions*

(i.e. second order in the number of field operators), we now have to introduce an
approximation for (4.16). A common method is the Hartree ansatz’. In this approx-
imation one replaces the occupation number (operators) for every site except site 0
by their expectation values n;,(1) = (n;,(n)). Correspondingly all terms (4.16) will
vanish exactly.

The thus derived effective action (4.11) (via (4.5) and (4.12)) has a Hamiltonian
representation HS%, ;, which can be written as follows. Note that from here onwards
we omit the site index for the local impurity site (300 - 130 and g, = Ng), SO

. Q
Hily =~ Zuana+z L g (g = G5 y) + — (b*b +h.c.)

+Z[ﬁGZV( W7o ) 0) ~ (b Z t()z (0) +h.c. )]

4.17)

+
—_
Q
j=N
~—+
(=}
QM

(Vi b + Vi @bl + Wi giby + Wiy 132))-

ad
HAII\/I

Here we have introduced L bath orbitals (in ;) with corresponding bosonic cre-
ation (annihilation) operators a} (4,)°, as well as their energies ¢;. They are coupled

“These correlation functions are the single-particle Green’s functions, which we introduce in Sec. 4.3

°See App. A for considerations about the Hartree-Fock treatment, while the use of the Hartree
method is motivated in Sec. 2.2.3.

SNote the absence of a spin degree of freedom o. As the coupling terms V and W are determined
self-consistently, it is left to the solver whether they only couple one or multiple bath orbitals to each
spin component of the impurity, implicitly determining the spin structure of the bath orbitals.
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to the impurity site via normal hopping amplitudes V; , and anomalous hopping
amplitudes W ;.

4.2 Hybridization functions

We will now show how the effective Anderson impurity Hamiltonian (4.17) repro-
duces the effective action (4.11) or more precisely the matrices (4.15). As all fields
bis (1) and a;(7) are periodic in 5, we now introduce their Fourier transforms, which
works analogously for all complex fields b;,(7) and a;(7):

B 1 &
an,1 = ap(iwy) = fo dr exp(iw,7)a;(T) ai(1) = 3 exp(—iwnT)an, (4.18)
* %/ - B . * * 1 ke . *
a1 = (iwn) = ]0- drexp(—iw,7)a; (1)  a; (1) = E Z exp(zwnT)am. (4.19)

Here we have also introduced the Matsubara frequencies w,, = 2”7” (see e.g. Sec. 4.2

in [AS10]). Within this transformation let us now focus only on those contributions
to the action generated by H v in (4.17), which include the orbital fields a;(7) and
a;(7)* and call it S, ;. In the following we have to complete the square in terms of
the complex valued fields.

1 . .
S/’UM :B Z ((€l - an)amlaml

I,n

* * * * * *
+ Z (Wﬂa’n,lbnﬁ + Vvlﬂanalbn,a + Wl,Ua’n»lb_an + I/I/vl,aan,lb—n,cr))
o

1 Vie Wio
= [a;,l =S ( CA .. b_w)] (4.20)
ln

> \ € —iwp

Vi Wy
(El - Z'Wn) I:an,l + Z ( el bn,fy + Ly bin,ﬂ/)] -X
v \€&~

Wh, €] — Wy,

The remainder is incorporated into X, which we write in Nambu notation and has a
form very similar to (4.14).,

AT;(ZWn) Acly;(zwn)

1 + bn,
xR A B () e

n oy -y

Note the appearance of the prefactor 1/2, which is due to double counting of the
individual terms in this representation. We call the matrices A?” (iw,,) hybridization
functions. Their individual terms [A7 (iw,)];; = A?(iwn) are given as
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o Vi Via Wi, Wi
AJ(%wnFZ )

T\e - zwn €] + 1Wn

o . W[* VI/I,O' ‘/l Noa
AT (iwy) = Z i
1

€] — W, el + Wy,

ViV WY ) 42

€] — W, € + an
WioVigy W,JVVI,'y)

€] — W, € + W,

A({;(iwn) = Zl:
Agg(zwn) = zl: (

In the next step one solves the path integrals over all bath fields a,; and a; ; in
the partition function. Due to (4.20) all those integrals are “generalized" Gaussian
integrals, given in Matsubara frequencies where the action of a time independent
Hamiltonian is diagonal. Thus, presuming properly normalized D[a*|D[a], they
have the following form:

f Dla a]exp(-a'Aa) = det A%, (4.23)

The integrals therefore simply yield a constant factor in the partition function. So
when self-consistency has been achieved, it will hold that A7 (iwy,) = M?7(iw,,) and
(4.20) will be an exact representation of (4.14) (including the prefactor 1/2), while the
first two lines of (4.17) obviously yield (4.5) and (4.13) respectively.

To show this let us explicitly consider the relation between the individual ma-
trices A% (iw,,) and M?7(iw,,) (the Fourier transform of M?? (7 - n)). From (4.18)
and (4.19) it already follows that M(7,n) = M(7 - ). From the defining relations of
M(7,n) in (4.15) we furthermore get the relations

Mgy (1 =m) = My (7 -n)", (4.24)
Mg (1 =n) = M7 (n-7), (4.25)
M3 (T =n) = My (1 -n)", (4.26)
M) (T =n) = M{y (n-7). (4.27)

Considering the Matsubara representation, while applying the Fourier transforma-
tions (4.18) and (4.19) (also for M(7 — 1), as it is periodic in 3 in the same way the
bosonic fields are), this yields
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[P [T anbs Mz (7 b ) -

[T S ety A G

ni ng n3

== Z b MY (i) byn, (4.28)

[ [ anbo (g7 () = f ar [ o (M ()b )

= Z b MY (i) b, (4.29)
f dr / dnbs(T)MZ (7 = )b () -—Zb o (itwn)b ., (4.30)
[Car [ dnbo vz - ns o) :B;me{’;uwnm_n. (431)

Accordingly we can translate the aforementioned relations to the Matsubara fre-
quencies,

My, (iwp) = MY (iwy,)* «— AT (iwy) = AT (iwn) ™, (4.32)
M;;(zwn) Miyla( iwn) — Ag;(iwn) = A?f(_iwn)a (4.33)
Mzalv(zwn) = Mlg(zwn) — Ag?(iwn) = Atlj;(iwn)*7 (4.34)
Mf;(lwn) = M;;(_an) — A(g(zwn) = AY;(_iWn)~ (4.35)

When compared to (4.22), it is immediately apparent that all these relations are mir-
rored by the hybridisation functions. Therefore the comparison of (4.21) to (4.14)
implies that after self-consistency has been reached, we will indeed find A7 (iw,,) =
M7 (iwy,).

4.2.1 Bosonic correction of the condensate order parameter

So far we have seen, that one may tackle a lattice system with strong (local) cor-
relations, as given by (4.1), in terms of local impurity Hamiltonians (4.17). In this
representation some special care has to be taken, due to the required cavity expec-
tation values (-)(o). This expectation value is especially relevant for the condensate
order parameter in the neighborhood of the 0-site, which we aim to transform to
an effective Anderson type impurity model. But as the cavity system is missing a
neighboring site at those very sites, one might expect a substantial deviation of the
cavity expectation from its regular expectation value. Let us thus explicitly derive
the cavity expectation value of the condensate order parameter of such a site, in
order to determine the relation to its full expectation value.
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* Zl:‘]]"Y?‘];*y]
Zogi[ i J3,] = T
_ [ DI>IID) : o
_f Zo) eXp(—S[b 7b]+/d7(bj7(T)Jﬂ(T) b‘]’y(T)Jj,Y(T)))
= [ DIbIDIbo]exp(=5 - ol Ji. 77:1) (436)

First we start by generalizing the partition function (using (4.7) and (4.8)) to a gen-
erating functional, by introducing source fields S; = [ dr (b}, Jj + bj, ;) as shown
above, so we may derive the expectation value in the cavity system as follows. Note
that in the case of self-consistency, one can compute local expectation values using
the effective action (4.8).

SInZ[Jj, J7]

gy

6J7 (n)

S0 Z% [ iy, T2 ]

IV gy

(bjy(m)) = = "
J;»WJ]V"/*)O 5J]7(77)

T a0
exp(-So - y[0,0]) 0yl Jjy, I}, ]

Z% 0J7, (1)

-~ [ DIbiID[b0]

J;—WJJ'WHO

_ ( IGEER 4.37)

.Jz (n)

JJ%’Y’JjV_)O>O

In the last line we have used that for J7 , Jjy — 0, Y[ Sy, J ;7] — y, so0 we may directly
use the impurity expectation value (-)y, defined as

_ / D[b§]D[bo]z exp(-S%) ‘

0
Zeff

(T)o (4.38)

Similar to (4.12) we now also expand y[J;,,J7, ] up to second order in either of its
defining terms.

YL Jin] = = Infexp (ZAS + 5,)) o)

=(AS) ) = (S1)(0) = % (((AS - SJ)2>(0) -(AS - SJ)%O)) ...

1
=(AS) )~ (S7)(0) — 3 (AS?)0) = 2(AS5S5) 0y + (S7)(0)

=0
—(AS)%O) + Q(AS)(O)(SJ>(0) - (SJ)%O) + ...
=0
=y = (Ss)0) + ({ASS1)0) = (AS)(0)(Ss)(0)) +- -- (4.39)

Note that all but the terms of linear order in S; will give a vanishing contribution
in (4.37), so we may neglect the indicated terms. The thus remaining relevant terms
are given as
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(5500 = [ dr (5,02 () + i)y 75, () (4.40

(ASS))(0) = /0 g fo Bden< S (b (T)bio (1) + c.c.) (b2 (1) Tj (1) + c.c.)

(0,3),0

+ ), Va(i)WOJ(T)nw(T)(b},(n)Jﬂ(n)+c.c.)> .
(0)

1#0,0

(4.41)

When computing (4.37), only terms linear in J j*v need to be considered. Thus we can
derive the following relation.

oS 0
(bj(n)) = <( 523;25;)) - 577 () ({(ASS)) 0y - <AS)(0)<SJ>(0)))

waijv_’O 0
:(bﬂ)(o)
B
" 7 dr (840, (D)obio ()b (M) o) + 67 {boo (D)olbin (D) (M) o)
0,2),0
_ < Z): /Oﬁdf (634055 (1)) (bio (7)) 0y + 137 (bow (1)) (03 (7)) 0 ) (b3 (1)) 0
0,2),0
- A‘ﬁdTva(i)<n00(T)>0((niJ(T)bjfy(n)>(0) _<”i0(7))(0)<bjw(77))(0))
1#0,0
=<bm)(0)

+ ( Z} /(;B dr (t§:(b50 (7))o [ (bio (T)bj2 (1)) 0y = (bio (7)) 0y (b (1) )0y ]
0,2),0

+ 157 (0o (7))o [ (05 (T)bj (M) (0) = (b7 (1) )(0) (B (D)) ])
) i;o:(, foﬁ 7V (i) (n0o (7))o [(1io (T)biy (1)) 0y = (nie (7)) 0y (Bjr (1)) (0) ]
(4.42)
This expression can be simplified by including the sum of all nearest neighbors of

the extracted impurity site multiplied by the corresponding hopping amplitudes, as
needed for (4.17) while using (4.15) and (4.16):

Z%(bm) = Ztgj(bM)(O)
j j
/B * g g n lea g
+ /0 dr (gbOUMl;(T, 1) + ¢oo My (T,1) + _; F127(7-,17))

* oY (. o N0o -0
= Ztgj(ij>(0) +2 (¢OUM1;(an =0) + doo My, (0) + TFlzw(O)) :
7 o
(4.43)

Here we have introduced the impurity condensate order parameters ¢, = (b, )o and
®00 = (bos)o as well as the impurity occupation number ng, = (bj,boo o, all of which
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are independent of the imaginary time 7 for the time independent Hamiltonian. This
is of course equally true for the expression ¥;t).(bjy)(0)- If the Hamiltonian also
describes a homogeneous lattice, we have tzj =t7 and can simply solve for the total
cavity condensates of all NN sites. For a converged self-consistent impurity model
(bjy) = ¢j. Once again the last term of (4.43) vanishes in the Hartree limit, while it
would be retained in a Hartree-Fock type treatment. We note that due to the integral
over the whole period, all integral expressions yield the Fourier transformed values
atn = 0, so at w, = 0, and are thus independent of 7. Furthermore one can obtain
a similar relation to (4.43) for b} by taking the functional derivative with regard
to J;, instead. But as the results are simply related by a complex conjugation, the
derivation can be omitted.

4.2.2 Bosonic correction of the local occupation number

On the other hand, a similar treatment of the occupation number leads to corre-
sponding correction terms for its cavity expectation value in relation to its full ex-
pectation value. Again we first generalise the partition function to a generating func-
tional, but this time in a way to extract occupation numbers instead, by introducing
the source fields Sy = [ d7b}, bis Ni-

0 ] :Z[Nio]
Zeff[Nza] Z(O)
1 . . i
:_Z(o) /D[b ]D[b]exp (_S[b ,b]+debig(T)big(T)Nia(T))
= [ DIb;1P[bo] exp(-So - y[Nis]) (4.44)

The occupation number, as another local observable, can again be computed in the
effective action when self-consistency has been reached.

(an(T)> - 5Nz>;(7-) Niws0 B 5Ni0'(7_) N;s—0
N (P exp(=So - y[0]) 0y[Nis]
f [ 0] [ O] ngf 5NiU(T) N;c—0
__ (3l ) 445
<5Ni0(7) N,;-—01l ( | )

In the last line we have used, that for N;, - 0,y[N;,] = y, so we may once more use
the impurity expectation value (4.38). Again we expand y[N;, ] up to second order
in either of its defining terms.

Y[Nis] = - In{exp (-AS + Sn))(0)

=y — (Sn)0) + ({ASSN) (o) = (AS) (0) (SN ) (o)) + - - - (4.46)

Note that once more all but the terms of linear order in Sy will give a vanishing
contribution in (4.45). Using the notation n;s(n) = b} (n)bix(n), the relevant terms
are given as
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B
(SNn) o) = /0 d7{nic )0y Nio (7), (4.47)
(ASSN) o) = f [ drdn ( (t'gjbav(r)bﬂ(f) + C.C.) Nie (1) Nix (1)
b (4.48)

. Vw(j)now(T)nm(T)nz'a(??)Nw(Tl)> .
770 (0)

When computing (4.45), only terms of linear order in N;, need to be considered.
Thus we derive the following relation.

(Sn) 5
) = (Gt = sy (855300 - )5l

Nio“’0>0
=(nis ) (0)

"z [ an (£33405, (Mo [(B3 (Mio (7)) = (b3 (M)oy (nio (T ]
+ 137 (boy (Mo [(07 ()i (7)) 0) ~ <b;'y(77)>(0)(ni0(7—)>(0)])

> [ ()00, (0o [0 mso (7))~ (52 (D)0 o (7))
(4.49)

J#0,y

This expression can be simplified in analogy to (4.43) by considering the interac-
tion term of the Hamiltonian for the impurity site 0 with the rest of the system, as
required in (4.17) while using (4.16):

> Vo (i){nic) =3 Vo (i){bis) (o)

%0 %0

- Z[ dr (n07 22 (7777) + ¢07F1027( ,n) + ¢07F2017 T’n))

: , o b0
= Z(:)Va(z)(nig>(0) -, (nowF;;(zwn =0) + 7”1?{’;(0) + TVFZT(O) :
(ES Y
(4.50)
This time we can see that all correction terms stem from (4.16), which we neglect in
a Hartree approximation, meaning that no corrections of the occupation number will

be considered in our case, as we use a Hartree treatment. Also note that (n;,) = 1o
for a converged self-consistent impurity model.

4.3 Green’s functions

In this section we shortly introduce some basics of the many-body Green’s function
formalism with a focus on single-particle (also called two-point) Green’s functions,
as these are most relevant for the DMFT method. Given a quantum mechanical
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system described by a grand canonical Hamiltonian (e.g. (4.1) or (4.17)), the single-
particle or (more precisely) two-point causal Green’s function in imaginary time for
any two field operators a and b is defined as

G(r.0) = ~(Ten{a(m)b(n)}) = =6(7 =n){a(r)b(n)) - 6(n —7)(b(n)a(r)).  (4.51)

Here we have introduced the time ordering operator 7-,, which specifies that all
tield operators following it have to be reordered, such that their times increase from
right to left’. Regarding the time dependence of the field operators, note that their
time evolution is given similar to the definition of the Heisenberg picture:

a(r) = exp(Tﬁ)& exp(—rﬁ), Te[-5,8]. (4.52)

They are thus defined via the grand-canonical Hamiltonian H. Furthermore, note
that the imaginary-time creation operator is not simply the Hermitian conjugate of
the annihilation operator, as

(a(r)) =af(-r) zat (). (4.53)

Finally the Green’s functions are defined in terms of a quantum mechanical thermal
expectation value, which for a given observable O is defined by

(0) = %Tr (exp(—ﬁﬁ)@) , Z="Tr (exp(—ﬁﬁ)) . (4.54)

For a time-independent Hamiltonian, it holds that G(7,7) = G(7 — 7). So assuming
7 > n without loss of generality, this can be shown as follows.

G(ryn) = ~(0(r)a(0) = = 5T (exp(-BI) exp(r Abexp (-7 ) exp(niaexp(-niD))
=~ 2T (exp(-8H) exp((r — ) Abexp(~(r ~ 1) 1)a)
== (b(r = m)a(0)) = G(r =1,0) = G(r - 1) (4.55)

Furthermore one can show that G(7 - 7) is periodic in 3 thus limiting the relevant
interval to 7—n € [-f3, 3]. Here we also allow for negative values, in order for the time
ordering operator to be able to lead to both possible orders of the field operators.
However we will show, that periodicity allows us to trivially take into account what
happens for 7 < 0 via complex conjugation. To show the periodicity we may assume
that -3 < 7 < 0 in the following derivation.

"For two times only, one can easily define it in terms of the Heaviside step function 6(7), so
Trm{a(m)b(n)} = 0(T - n)a(r)b(n) +6(n - 7)b(n)a(r)
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G(7) = ~(b(0)a(r) = - e (exp(~BHbexp(rHexp(~ )

=— %Tr (exp(—ﬁﬁ) exp((7 + ﬁ)ﬁ)&eXP(_(ﬁ + 7—)]:[)?))
=~ (a(7 + $)b(0)) = G(7 + §) (4.56)

Thus the periodicity stems from the cyclic property of the trace. For the case 0 < 7 <
one can repeat the above derivation and show the similar property

G(r-B) = G(r). (4.57)

Note however that for 7 > 0 one in general has G(7+f) # G(7), but as we never need
this part of the function, we may restrict ourselves to the interval [, 3]. Due to this
j periodicity (which is specific to bosonic systems®), one can decompose the Green’s
functions via a Fourier transformation onto the discrete set of bosonic Matsubara
frequencies w,,, which guarantees the shown periodic property:

B 2
G(iwy) = f drexp(iw,7)G(T), wp = %, nelz. (4.58)
0
Using this transformation let us now derive the Lehmann representation of the bosonic
single-particle Green’s funcAtionsg. Here it is useful to introduce the eigenbasis {|n)}
of the given Hamiltonian H, so H|n) = E,|n), which yields a representation of the
identity operator 1 = ), [m )(m|.

G(iwy) = - % /(;B dr exp(iw, 1) Tr (exp(—ﬂf[) eXp(TfI)dexp(—TfI)l;)

,3 ~
== 2 5 [ dresp (i + B~ Bn)r) exp(-5 )l mfin')

(m'|afm){mlbjm")

:_% 3 xp(=fEm) — exp(=FEm)

moan! Em/ - Em + Wy,
)

_l exp(ﬁ(Em’ - Em)) -1
= E

BBt iw, exp(=BEum ) (m/|alm)(m|blm’) (4.59)

m,m/

In the second to last step we have used exp(iw,3) = exp(i2nm) = 1, which applies
due to the Matsubara frequencies. As we will be using Nambu notation and have
N bosonic species (denoted by the Greek letters o,~) in the considered system, any
local Green’s function will be a 2N x 2N matrix, which can be decomposed into the
2 x 2 Nambu matrices

s (Do) (15, (0)
&)=~ 0o i) ) (0

8For fermionic systems on additionally gets a minus sign due to the anticommutator, so
Gfermion(T) = _Gfermion (T + /B)

°Note that one obtains the connected Green’s function from this by removing the disconnected part
(see Sec. 4.3.1) from the zero frequency part. In the zero temperature limit this can also be achieved by
omitting the diagonal terms at zero frequency, when computing the Lehmann representation.
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The diagonal entries are commonly referred to as the normal Green’s functions (G"),
while the off diagonal terms are the anomalous Green’s functions (G*), which are
related to superfluid behavior. Keeping (4.53) in mind, one can easily verify the
relations

HM) =G (1) Gi(1) =Gy (-7),

() =Gy () GR(r) =G5 (). (4.61)

For completeness let us briefly consider the derivation of one of these relations,
namely G7J (1) = G37" (7). Without loss of generality we may assume 7 > 0 in the
following derlvatlon

G737 (7) = ~(Tro{bs (7)b5(0)})*
= —(b! (~0)b}(-7)) (4.62)

= ~(Tro{b3()bg (0)}) = G37 (7)

In the Matsubara representation of the Green’s functions, one can then find analo-
gous relations. To show that this is very intuitive, let us briefly consider the follow-
ing transformation.

= S5 aabinle 7 =5 5 [ (o (et i

_% /f (5(7-’ - (r+ T”))<b0(7—,)b:(7'")>d7-’d7-’/
1

= _E (bo’(T +7'”)b,>;(7'”)>d7'"

-5 [ Gem )" - G ()

(4.63)

In the last step, the cyclic property of the trace has been used. Therefore the Green’s
function matrix in Matsubara frequencies can be decomposed into 2 x 2 Nambu ma-
trices similar to (4.60):

b b* bonb
oy onYyn
G (iwy,) = (( b* b* b bom )) (4.64)

on“yn

For its matrix elements, the relations (4.61) yield the symmetry relations

GTY (iwn) = G (iwn) G (iwn) = G35 (=iwn),

4.65
G (i) = GIY (iwn) G (i) = G5 (—iton). (169
These expressions imply the further simplified relations
G1{" (iwn) = G3J (—iwy),  Gi9 (iwy) = Gof (miwy). (4.66)

From (4.66) it is immediately apparent, that at most half of the 2N x 2N functions are
actually independent expressions. (4.65) further limits this to the diagonal and all
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above diagonal terms with regard to the components. So there are at most N(é\,/ 271)

independent bosonic two point Green’s functions to be considered in a system of N
bosonic species.

4.3.1 Connected Green’s functions

The term connected implies that disconnected parts contributing to the full Green’s
function have to be extracted, while keeping in mind the sign convention (4.51), so

(4.67)

GU'yC’(T) — ( GT?(T) + ¢00¢67 GT;(T) + ¢00¢0'y ) )

G (T) + 66506, a3 (T) + P, Doy

Thus it is given by extracting the constant offset generated by the static mean-field
condensate order parameters ¢g,. In the Matsubara frequencies this simply gener-
ates a shift for the zeroth mode:

oyC — (A0 (; ¢00¢6 ¢Oo¢0’y )
G (iwy) = G (an)+5o,n5( ¢60¢6: ot b0y |’ (4.68)

4.4 Self-consistency via Dyson equations

To close the DMFT loop, the last remaining step is to derive the relevant Dyson equa-
tions, which will grant the self-consistency and reveal the primary approximation of
the DMFT method. Let us first consider the local problem in order to derive the
local Dyson equation. For this we start with the non-interacting Green’s function,
as generated by the effective impurity system (4.17) (so neglecting the various in-
teraction terms). Due to (4.20) integrating over all bath orbital fields a,,; yields the
following contributions from the non-interacting part of the local action, where we
also consider the hybridization functions (4.21):

1 . * . *
SRIM =- E Z Z [(ua + zwn)bn’abnvg + (o — zwn)b_mgb_n’g]
1n>0 oy (469)
“35 > (1066 500,06 + Hob-0,0b70 ] = X.

Note that we now only sum over all n > 0, so all terms appear only once in the
summation, which necessitates to consider the zero frequency separately. Via the
use of functional derivatives of the partition function, akin to (4.37) and (4.45), we
may now analytically derive the Green’s function corresponding to this action. To
do so we first have to introduce the source fields J},, , and J., », which for n > 0 are

tn,o
given by
J=(Tiy o din Ity I N, (4.70)
J= (ngsoos Inns Iopts oo I ) (4.71)

To avoid double counting for the case n = 0, we have to use slightly different source
terms forn =0,
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Jo=(J5q- s Jn Jots- - Jon)T /2, (4.72)
Jo= (oo Jon, TG, TGN /2 (4.73)

Thus we work in the Matsubara representation, where N is the number of bosonic
components and n corresponds to the considered Matsubara frequency. In the same
fashion, replacing the source fields .J by the physical fields b in order to define b and
b, one finds the following form for the relevant integration in (4.8), for which we
here neglect the interaction terms. So in Matsubara frequencies (see e.g. Sec. 3.2,
‘Construction of the path integral” in [AS10])

Zn[ 0y Jn] = f db,dby, exp(~b,Apby, + Jyby, +b,Jy,) = Cexp (J,4,'3,) . (4.74)

Note that this expression is only a small part of the path integral representing the
complete partition function, while the constant prefactor C' will not be relevant in
the end, as it just is a part of the bare partition function without source fields. Due
to the time independence of the Hamiltonian (4.1), the partition function factorizes
in the Matsubara frequencies, so we may focus on a single Matsubara frequency at a
time. The corresponding matrix elements of A4,, are given as

o 1 - i+ o 1
(4,177 - B(M050775i7j+2wn(—1) L0081+ AT (iwn)) = _B[ 7. (475)
(Aol = =35 (ugamcsi,j +A77(0)) = ——[AO]‘”. (4.76)

The individual terms of the Green’s functions in Matsubara representation then sim-
ply follow from functional derivatives, while we note that regular derivatives suffice
in this case. Let us derive the following example for n > 0.

) 5 5 ) -
<bn,0'b—n, > . * an ff[JmJ ] = - - nZn[JmJn]
7 6J 5 0J%, € Fod,00 OThe 015, 33,0
__4d d [ln(C’) +Inexp (.jnA_lJn)]
dJ} 5 dJ*, " 33,0

d d P

g, d, (ZJ [4:]; n) :
Jn,Jn—0

=[AM7) = -B[ AT, = -BGTC (iwn) (4.77)

In the same fashion one also finds all remaining terms of the Green’s function matrix,

G (iwn) = [AM ]S, GTIGwn) = [AM]]], G (iwn) = [AM]S) . (478)

For completeness let us also consider the case of the zeroth Matsubara frequency.
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o ) = ) ) -
{bo,6b0,7) = = =~ InZegi[Jo, o] = ————InZy[Jo, Jo]
5JOU5JO Godemo 0780 07, P
———[In(C) + Inexp (Jo 45" o) ]
dJO 7 dJ J0,J0-0
Jl 0
ngU g (Z )
Jo,Jo—0
I
2— 04 A i
dJ(;rg-dJ* ! ( 57)[ 0]12 2 ]
J8.6290 .~
=§[Aol]1’§ - [ o' 155 =-BG73(0) (4.79)

As some terms may now appear multiple times, we have written the last steps ex-
plicitly, keeping in mind the symmetry properties of the hybridisation functions (4.35),
which translates to [Ag]7, [Ao]Yg and thus to [A4;']]) = [451]]5 . Furthermore con-
sidering (4.33), which implies [A4;']] = [4;']35, we also find the remaining terms
for the zeroth Matsubara frequency,

G50 =[]y, GO =[4']]), GR0)=[45'];, (4.80)
Note: Here we have neglected all self-consistent cavity expectation values (second
line in (4.17)). By neglecting the effective shift of the chemical potentials due to the
Hartree terms, we simply move these terms into the self-energy, which will correctly
carry their effect over to the interacting Green’s function, as we will see shortly.
Furthermore disregarding the contributions from the condensate order parameters
implies that we will be using the connected Green’s functions from here onwards.
Thus for the local non-interacting problem (4.69) we obtain an analytic expression
for the connected non-interacting local Green'’s function

G (iwn) = (p® g +iwyly ® o3 + Aliws)) ", (4.81)

where the 0 specifies the non-interacting property, not the site. Here p is the diagonal
N x N matrix, given by the chemical potentials of each bosonic species and o3 is one
of the Pauli matrices.

4.4.1 Local Dyson equation

Now we extend our focus to the interacting case, in order to find the local Dyson
equation, giving the relation between the connected (interacting and non-interacting)
Green’s functions and the self-energy. The most straightforward way is to start by
considering the equation of motion for the imaginary time Heisenberg operators, in
order to derive the corresponding equation of motion for the Green’s functions,

dilTA(T) - [A,A(m)]+ ‘f”é(:).

(4.82)
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Considering (4.51), but using two general field operators a(7) and b(0) = b (which
can be any product of creation and annihilation operators), we introduce the abbre-
viated notation

Gap(7) = ~(Tro{a(r)b(0)}). (4.83)

We thus derive the following equation of motion for the two-point Green’s function
of two arbitrary field operators a(7) and b(0) = b, which can be either creation or
annihilation operators, where we have used %9(7‘) =d(7) and 0(-7) = (7).

LG5 (r) =~ (6 a(r)h(O)) + 0= ((0)a()) + {-a(r)) (H(0))

- 5(r)(a(0)b(0) - B(0)a(0)) - (9( WD 0)) + o) b00)

= =3(7){[a(0),5(0)]) = (B(7){[H,a](7)b(0)) + O(~7)(b(0)[H,a](7)))
= =3(7){[a(0),5(0)]) + G a14(T) (4.84)

Note that the time-dependence can be taken out of the commutator, as the time-
evolution operator, which defines the Heisenberg operators, commutes with the
Hamiltonian. Furthermore due to the cyclic property of the trace, the derivative
of the condensate order parameter vanishes, thus it only yields a constant shift
of the connected Green’s function with regard to the full Green’s function. By a
Fourier transformation the differential equation can be simplified to a regular equa-
tion, which leads to the Matsubara representation, as

da(:) >)

- Zexp( iwnT) (= zwn)Ga b(zwn) = —E Zexp( iwnT) [([&(0), l;(O)]) +GlHa, (an)]

~iwn avb(zw”) = —<[CL(O), b(O)]) + G[H,a],b(iwn)a
([a(0),5(0)]) = 1w, Gy (iwn) + Gz 0 p(iwn)- (4.85)

=

Note that this expression also holds for G, ;(iw, ), which can be seen by subtract-
ing iw, B¢ In order to evaluate the full Green’s function matrix (4.60) we need to
explicitly consider all Green’s functions, generated by the commutator with the (ef-
fective impurity) Hamiltonian (4.17). Regarding the two-point Green’s function we
are interested in for the DMFT loop, the relevant commutators are

(4.86)
+ 2 tOZ (0) ; (W ot VVZ A )
[FSE. b0 ] — (Umb+ blb, + b*)
7 (4.87)
- Ztm (b}, (0)+Z(W0az+Wlaal)
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Here we have used the commutators [b;1 bazb - bfy] bt ) b:;zb 00y 408 ) b:;Zb Oz~

and [b} b02,b ] = ~boyds, ., as well as the corresponding hermitian conjugate ex-

pressions. Furthermore, we have introduced the modified chemical potential /i, =

to + Dizo Vo(i)(mg)(o) = g + M((, ), which includes the self-consistent Hartree shift.

These expressions all contain a dependence on the bath orbitals, which we want to
eliminate in the end. To do so we also need to consider the commutators

[H/ifIvaA] Z(Vl sbo + Wi b! ) €ay, (4.88)
(A af] = Z( 1o by + Wi, bs) + 1] (4.89)

Also considering ([b,, bv]) = 0y, Wwe may now evaluate (4.85) for the case of the

normal Green's function,

(an +ﬂo’) Gbg,bfy =; (V G b+ + I/I/l O'Gal, ) +607'Y

0 (4.90)

A 0
+ Z( UsaGt by, it + ; Gb/\,b’;) - )Gl,bi/'
In the last term we have introduced the sum of cavity condensate order parameters
7700) = 20,0y toi (b! ) and also find a contribution by a single-point Green’s function,
which equates to

B . N
Gy = fo ¢ (~(1(r)b))dr = ~B G- (4.91)

To eliminate the contributions from the bath orbitals, we also need to consider their
corresponding equations of motion,

(ieon = 1) Gy = 2 (Vio Gt + Wio Gt )
| > (4.92)
)G, = 5 (s + W)

Inserting (4.92) into (4.90), while also considering (4.22) leads to the following form,
where the bath orbitals have been eliminated:

, ~ A A
(iwn + fio) Gbmbg =- Z ( 1 Gbx,bi/ + Al Gb;,b;) + 00,y
by

Q

N o (4.93)
2 Gm,z;;)*‘ﬁ% ®~00.m

+ Z( U)\Gb’f babo bt T

A similar expression can be obtained for the case of the anomalous Green’s function.
To do so one simply needs to replace bfy — by in (4.90) as well as in (4.92). Note that
([bs,by]) = 0 in this case. We find
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(iwn + fio) Gy, == 3 (ARG, + ARGt . )
g Oy (4.94)
+ Z (UU)‘Gb;b/\bg,b'y + TO—GbA,b»Y) + 5771(70)¢750,n-
A

In Nambu notation both (4.93) and (4.94), as well as their counterparts for nega-
tive frequencies can be combined into a single expression, which is the local Dyson
equation

(iwnly ® 03+ p® 1y + A)G - [UF + gn D ¢'6,, - MG] = 1y ® 1. (4.95)

The various matrices we have introduced here denote contributions by the chemical
potential p = diag (1, ..., ), the well known hybridization functions A [see (4.22)],
terms containing higher order Green’s functions UF, products of the condensate or-

der parameters (07 = ({”,7{"*, ... .9 nP*) and ' = (¢, do1, ... o don),
as well as the Rabi and Hartree terms, which are combined into M. We have defined

G+ G+

bt brbo,bt bt brbo,b

[]:Fa"y = § Ua')\ Q AT 7 G AT K 3 (496)
\ bl b% b, bh, bl b% b by

Qy
M7= [20(1 6,) + 00 | 1 (497)

Multiplying (4.95) by the inverse of the interacting local Green’s function from the
right and identifying (4.81), we find the local Dyson equation in its standard form,

G (iwp) = p® 1y + iy ® 03 + A(iwy,) - (iw,) = G§ (iwp) — B(iw,), (4.98)
G (iw,) = G§ ™ (iwn) — B (iwy). (4.99)
Here we introduce the (connected) local self-energy, which incorporates not only

contributions from higher order Green’s functions, but also some other terms, in
order to retain a simple form for the non-interacting local Green’s function,

X (iwn) =[UF (iwn) + 00 ¢ 60,0 ]G (iwn) - M, (4.100)
3 (iwn) =[UF (iw,) + BV " - (n® 12 + A)pep" )00, ]G (i) (4.101)
~-MGG ! (iw,).

As the local non-interacting Green’s function is known analytically (4.81) and the
local interacting Green’s function can be computed via the Lehmann representa-
tion (4.59) — given the state spectrum of the self-consistent impurity problem (4.17)
- one can thus calculate the local self-energy in a completely unperturbative fash-
ion'?.

1% Another - more direct approach - is to compute the higher order four point Green’s functions using
the corresponding Lehmann representation and directly apply (4.102) to obtain the self-energies. As
this is computationally more demanding, while (4.99) yields the same result when self-consistency has
been reached, the latter method is used in this work.
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4.4.2 Lattice Dyson equation

If we now consider the case of the full lattice problem, for a system with a total
number L of lattice sites, we have to extend the Nambu notation to real-space, by
defining

b n * *
Bi=| M Bu=(bn s Ding bilens ooy binen ). (4102)

Thus we may write down the real-space Dyson equation, determining the relation
between the connected interacting lattice Green’s function tht (iwy, ), the connected
non-interacting lattice Green’s function Ggatt(iwn) and the connected lattice self-
energy XU (iwy, ), which has the generic form

Gt (1wn) = Gt (iwn ) — i (i), (4.103)

while the connected non-interacting lattice Green’s function can be derived similar
to the local non-interacting Green’s functions (4.81), as

Gfﬁ;tlt(iwn):]1L®u®]lg+iwn]1L®]lN®ag+t®((1] 8)+t*®(8 ?) (4.104)

oy _
2,
ti; —t; 9ij, as the effect of the Rabi terms is already included in the self-energy. N]ote
that this expression also applies to systems, which have a hopping that is accompa-
nied by a phase shift, as in the presence of a gauge field, while we will only con-
sider real-valued hopping amplitudes t = t*. If the lattice self-energy were known,
we would have an exact description of the system. But as this requires an exact
solution of the correlated many-body system, this is exponentially hard in the sys-
tem size!!. On the other hand, we have already shown that local self-energies can
be obtained non-perturbatively in the DMFT-scheme. Thus we now introduce the
DMFT-approximation, by assuming that the self-energy is diagonal in its real-space
indices. Locality of the self-energy is the primary approximation of DMFT and it
implies that only local correlations are treated beyond the mean-field level.

Let us take a brief look at individual entries of these Green’s and show how to
obtain static observables. Regarding the notation, we will use the convention that,
when two lattice indices are included, we will refer to the lattice Green’s function,
while the use of a single lattice index will refer to the local Green’s function of the
corresponding site. We furthermore denote the normal and anomalous Green’s func-
tions by the letters n and a, which correspond to the diagonal and off-diagonal terms
in the Nambu notation. For example, an arbitrary normal two-point correlation can
be obtained as

Here we have introduced the hopping matrix t given by the matrix elements [t]

11Actually, even more so in a bosonic system without fixed particle number, where already the local
Hilbert space is not finite. Thus any numerical implementation requires a Fock-space truncation. For
a method to soften the truncation see Chap. 5
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(IA);TUIA)W) = h%l (76’5{13203]-7}) =— 11m Gwn(s) = — lim Ee iwn (= E)(b+ b n)
e—0~

2 L0+ io,nYjy,n

1 on . WWn € oMy, —IWn€ YOV, N ([
"3 (G;’z " iwy =0) + Y [e G " (iwn) +e Gy (zwn)]) . (4.105)

n>0

4.5 Kinetic energy and nearest neighbor fluctuations

Starting from the connected normal real-space Green’s function at equal times, with
time ordering fixed by the infinitesimal time difference € < 0, we find

Tim G5 (€, 0) = = ((b7,ibo.5) = (05,:){bo.5)) (4.106)

0o WWn €

: € Cn
ili%l*n;oo 5 G i(iwn).

for the connected Green’s functions GC -(iwy) in bosonic Matsubara frequencies.
The anomalous part is accordingly glven by

Jim GZ5,(€,0) = = ((bo.ibo.;) — (bo.i{bo.;)) (4.107)

oo WWn €

S eﬂ G4 (i)

i
=0t ) T

Thus expressing the total kinetic energy in terms of connected real-space Green’s
functions yields

Ejin = = 2, 7 (0F ;b

_ Z tl] ( 11%1+ Z e’ 5 Gg?l(zwn) - ¢;7i¢g,j) .
ijo

where ¢, ; is the local condensate order parameter of the atomic state o at lattice
site ¢. This expression can be further simplified by employing both the local [(4.108)
as in (36) of [Vas+15]] and lattice [(4.109) as in (37) of [Vas+15]] Dyson equations in
Nambu notation, as regularly used within RB-DMFT. Here we suppress the state in-
dex o, as this part of the derivation is independent of the atomic state. In Nambu no-
tation for n > 0 the real-space lattice Green’s functions are represented as G " (+iwy) =
[G%(iwn)]n and GC”( —iwy) = [Gﬂ(lwn)]gg, while the anomalous term is given by
G%“(Jriwn) [G]Z(zwn)hg = GC“( —iwy) and [G ﬂ(zwn)hg = [Go(zwn)] 51- So

G (iwn) ! = iwnos + pla + Ay (iwn) — 3 (iwn,), (4.108)
[GY (iwn) ™ ij = tijla + 6i[iwnos + pla — By (iwn) . (4.109)
where the Pauli matrix o3 is used due to Nambu notation. These equations are

given in terms of local self-energies X;(iwy), the Anderson impurity hybridization
function A;(iw,) and the local impurity Green’s function Gic(iwn) = [Gc(iwn)]ii
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(DMEFT self-consistency). Inserting ¥; (iw,,) from (4.108) in (4.109), combined with
a matrix multiplication by G (iw,,) from the right, where we are only interested in
the diagonal elements, yields

PG (iwn) 1[G (iwn) i =

J
= " [tij1a = 8 (Aiiwn) = GE (iwn) ™) ] [GE (iwn) -

Further using the self-consistency property of the impurity Green’s function leads to
the identities

S ti;1GE (iwn) 1ji = Ai(iwn) GY (iwn). (4.110)
J

of which only the diagonal parts are of interest to us. Considering the symmetries in
Nambu notation, they allow to transform the expression for Ej;, into a single sum
over all sites i as follows:

B = lim ¥ Re([A7%(1,)GI™ (iwn)], )
ﬁe_)0+ia,n20
T [A77(0)GF7(0) *
- Z [ 23 ] - Ztij%,z‘(ﬁa,j' (4.111)
io ijo

Note that both A?7 and G?°¢ are local quantities, which can be obtained for each
impurity individually. The remaining problem is due to the cutoff imposed on the
Matsubara frequencies in the numerics, which implies that the limit of equal times
is in general not simply given by setting ¢ = 0 2. One can instead account for the
cutoff by requiring that the particle number is given correctly:

| |
52 GI7C (itn )€™ + §% 160 = (AT ) arar- (4.112)

For every site and species this yields a value of € which can be used to calculate the
kinetic energy in the local representation (4.111).

4.6 Spectral functions

As DMFT is a method based on Green’s functions, it may also be used to obtain
information about the spectral properties of a given system. The spectral function
corresponding to a given (normal) two-point Green’s function is obtained via the
relation

1
A j(w) = —;Imej,b]- (w), (4.113)

?In general it depends on the convergence behavior of the limits, whether they can be exchanged.
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where i and j are different lattice sites in this case. This relation holds independently
of the use of real or imaginary frequencies, but when computing the spectral func-
tion for real frequencies one has to keep in mind the imaginary offset 7 = i0" needed
for the poles on the real axis. Thus for real frequencies one has to use the Lehmann
representation (4.59) in the following form:

_ _l exp(=BEm) — exp(-SEm)
Gap(w) = > Epy — By +w + i

Z

(nla|m){m|bln). (4.114)

The analytic continuation from the imaginary Matsubara frequencies, which are
used in the self-consistent DMFT loop where the Green’s functions are given as an-
alytic functions via the Lehmann representation, to real frequencies is thus straight-
forward. But there is a caveat when using exact diagonalization to solve the impu-
rity model. In that case we model the effective bath contribution to the interacting
local Green’s function via an Anderson impurity Hamiltonian with a finite number
of bath sites (4.17). While this yields a very high accuracy approximation in imag-
inary frequencies already for a very low number of orbitals (typically 3-4 are fine),
the discreteness of the spectrum becomes strongly apparent in real frequencies, as
shown in Fig. 4.2 for the local density of states A; ;(w) in a homogeneous Mott state
on a two-dimensional square lattice. We can furthermore see that the convergence
observed in the imaginary frequencies does not necessarily translate to an equal con-
vergence in real frequencies, also as a result of the discrete spectrum in the impurity
spectral function versus an approximately continuous spectrum on the diagonal of
the lattice spectral function. We furthermore note that 7 has to be set to a small non-
zero value, in order to obtain a smooth spectrum. Its value determines the width of
the Lorentzian broadening of the otherwise delta-shaped peaks.

Due to the relation of the spectral function to the commutator (see Sec. 6.4.2) one
finds the sum rule

f A j(w)dw = 65 5. (4.115)

Therefore integrating the local density of states should always result in the value
one. As can be seen this is only approximately the case in the DMFT result. The
deviation for the impurity model spectral function (G; in Fig. 4.2) on the one hand
stems from the broadening induced by 7, as the considered interval cuts off part of
the tail, while a direct sum of the spectral weights in the Lehmann representation
exactly fulfills the sum rule. The mismatch in case of the diagonal part of the inter-
acting Green'’s function (Gy; in Fig. 4.2) on the other hand results from the discrete
spectrum representation of the self-energy used in the lattice Dyson-equation versus
the continuous spectrum in its non-interacting part.
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FIGURE 4.2: Spectra obtained either via the quasiparticle method (GW-QP, discussed
in Chap. 6) or from a converged real-space DMFT result using an exact diagonaliza-
tion solver. For DMFT two versions of the DOS are shown: one given by the impu-
rity Green’s function G, and the other corresponding to the local part of the interact-
ing lattice Green’s function G;;. Here we use the parameters n/U = 0.01 as well as
/U = 0.4 and t/U = 0.02 within a simple single-component Bose-Hubbard model on a
two-dimensional square lattice, corresponding to an insulating Mott state with unit fill-
ing. For the DMFT result we consider two cases: 2 bath orbitals for the impurity model
in a system of 16 x 16 sites (left) where the sum-rule yields 0.9891 (blue) and 0.7792
(green), as well as 4 orbitals for the impurity in a system of 8 x 8 sites (right) where the
sum-rule yields 0.9891 (blue) and 0.8978. The quasiparticle description yields 1.0000 in
the sum rule, when using a Fock-space truncation of at least n = 10.
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Chapter 5

Truncation of the bosonic Fock
basis

Applying any diagonalization-based method to a bosonic lattice system, which is
not entirely in an insulating phase, often requires the use of a truncation scheme
for the local Hilbert space. This is most evident for methods which are based on
variational wave functions, as for example the bosonic Gutzwiller state (GS) [Gut63;
Gut64; Gut65; RK91; KCB92] [¢) = [1;|#:), because any numerical implementation
requires a finite number of variational constants, which is realized by employing a
truncation scheme. Related examples are the density matrix renormalization group
(DMRG) [Whi92; Sch05; Hal06] and derived methods such as matrix product states
[OR95; VMCO08; Sch11; Orul4], projected entangled pair states [VMC08; MVC07;
Orul4], as well as time-evolving block decimation [Vid03; Vid04; VGRC04; ZV04],
which all require a truncation of the local occupation number basis to several lowest
number states. The same is correspondingly true for bosonic single-impurity Ander-
son models [LBB10] as used in numerical renormalization-group [GI07] approaches
and dynamical mean-field theory (DMFT) [MV89; GK92; Geo+96; KV04; And+11].
DMFT relies on either mapping a correlated many-body problem onto bosonic An-
derson impurity models [HSHO09; SH13] or directly solving the action via truncation-
free stochastic methods [BV08; And+11] such as the continous-time Monte Carlo
method [Gul+11]. Nevertheless some effort has been made within DMRG, going
beyond the simple truncation, by implementing an “optimal phonon basis” [Z]W98]
which is conceptually similar to the ansatz we will discuss in this chapter.

To a varying degree, all these methods will suffer from an insufficient truncation,
while an increased basis size requires a corresponding increase in computing power.
While matrix size can be limited independent of this truncation in DMRG methods,
these usually describe states in terms of a locally truncated number basis. Therefore
the cutoff N, also determines the possible overall truncation error. Furthermore,
whenever solving a quantum impurity system by diagonalization, the correspond-
ing matrices scale as []; M?, where i represents internal degrees of freedom (IDOF)
and M; is the size of each corresponding Hilbert space requiring a truncation for
bosonic IDOF. The same relation is true for the variational GS for which 7 represents
all sites and IDOF under consideration.

As we will show for the cases of DMFT and the GS, the use of a single additional
variational basis state, which we denote as coherent-tail state (CTS), can strongly
increase the accuracy as compared to the common truncation scheme. Especially for
DMFT the CTS is highly efficient: even strongly reduced Hilbert spaces suffice to
well approximate the (quasi-)exact DMFT results obtained by using a Hilbert space
more than three times as large. Due to this reduction in computational complexity,
this scheme is accompanied by a more than tenfold increase in numerical efficiency,
as was shown in [GH17], which this chapter is based upon.
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5.1 The coherent-tail state

In any numerical second quantized method utilizing the grand canonical ensemble
of an interacting Bose gas on a lattice, at some point it becomes necessary to ap-
proximate the infinite local Fock basis in order to allow for results within a finite
algorithm. As a test case, let us consider the standard Bose-Hubbard model [GK63;
Fis+89; Jak+98]

=—t Z(i):i)]+6;Bl)+g2fll(ﬁl—1)—/12ﬁ, (51)
(6:9) i i

We use the common notation, where b; (IBI) is the annihilator (creator) of a boson at
site 7, while n; is the corresponding particle number operator n; = lSj b;. The tunneling
rate ¢t [BZ08] and the local Hubbard interaction U [BZ08] are tunable by Feshbach
resonances [Fes58; Cou+98; Ino+98], while the chemical potential p determines the
total particle number.

Numerous techniques have been applied to investigate this model, ranging from
the Gross-Pitaevskii equation [PSG02; KHS15], Bogoliubov theory [TAV07; Kol07;
HP15] and variational mean-field methods such as the GS [She+93; Buo+09] to more
advanced techniques including Monte Carlo methods [CS5+08; KK09; Pol13] and
bosonic DMFT (B-DMFT) [BV08; HSH09; SH13; And+11]. For numerical simula-
tions in any of these methods, one needs to limit the infinite local Fock basis of
bosons by a finite occupation number cutoff V.. While N, can be arbitrarily high in
principle, some methods require a comparatively low IV, in order to limit the numer-
ical effort. Let us now focus on the GS and B-DMFT, which both become exact in the
atomic limit ¢/U — 0 as well as the non-interacting limit U/t — 0. In between these
limits both are also exact in the infinite dimensional limit, while the latter method
also includes the effect of non-local fluctuations up to first order in 1/z, where z is the
number of nearest neighbor sites. In the non-interacting case, the exact ground-state
can be written as a product of coherent states over the lattice sites 7, so

= [Tles), (5.2)

which also corresponds to the macroscopic condensate wave function ¥(7) ( ‘b | 1!))
solving the Gross-Pitaevskii equation. Despite some effort [KIN11] this correspon-
dence is yet to be fully investigated.

For now we will focus on the intermediate superfluid regime, where for fixed
chemical potential an increase in ¢/U will result in an increasing mean particle num-
ber. In order to keep track of the ground-state, one would generally need to include
a proportionally increasing number of Fock states in any method that requires a V...
This is true for both GS and B-DMFT. In order to retain a small set of basis states,
one should now switch to an optimized basis set similar to [ZJW98], but we also
want to limit the computational cost. Therefore let us propose the following trun-
cation scheme, where we simply replace the highest included number state by a
variational state |ay,), given as a linear combination of all remaining Fock states.
Further requiring b|a, ) to be given as an exact linear combination of the new basis,
thus reducing “leakage” out of the basis, yields the coherent-tail state (CTS) |a, ):

oo

|och = Z (an, )n (5.3)

= 7’L.
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This is a coherent state with the lower occupation numbers projected out. In order
to act as a proper basis state it therefore has to be normalized:

-~ -1/2
lan.) = enJan.), where ey, :( >l /n!) . (5.4)
n=N¢

This state extends the finite basis of N, Fock states {0,1,2,..., N. — 1}, which in the
following we denote as N.-Fock basis, to {0,1,2,..., N. - 1,an,}. As the CTS are no
longer actually coherent, and as such not eigenstates of the annihilation operator,
they instead satisfy relations of the form

- ~ (an )N _
b|aNc) =Cn, |Nc_1>+04Nc |04Nc), N.>1; (5.5)
(N.-1)!
" (an.)Ve
bb o =cN,————|N.—-2 5.6
lan,) =en. (Nc_2)!| ) (5.6)

(an, )

|Nc_1>+OCNC |O¢NC))7 NC>2;

These expressions are necessary to calculate additional matrix elements beyond those
already given in the Fock basis. In principle one can derive these properties for any
number of annihilation operators, but as most considered systems only require two
particle terms at most, for example the system of main focus in this thesis as dis-
cussed in Sec. 3.2, let us only consider the relations above.

Note that matrix elements within this basis will be as sparse as in the original
representation, even in multi-component or cluster simulations [AKL11; Lith13]. In
the following sections we will see how this soft bosonic truncation allows for signifi-
cantly improved numerical accuracy in both GS and B-DMFT and for a dramatically
reduced calculation time at fixed accuracy within B-DMFT.

5.2 Gutzwiller mean-field state

We now consider the GS which is given by the ansatz |¢g) = [I;[¢:), where |1);)
is usually written as a linear combination of the N.-Fock basis states, while in our
case this basis will be extended by the CTS. Due to the factorized wave function the
effective Hamiltonian has the form

Hg =t (6}¢j+h.c.)+me(m-l)—uZm, (5.7)
(i.d) i i

where ¢; = (b;). It is thus a set of local many-body problems coupled by the self-
consistent fields ¢; (commonly called condensate order parameter). The ground-
state energy of this simplified Hamiltonian is found by variation of these fields. In
a homogeneous system where every site has z nearest neighbors and in the absence
of spontaneous symmetry breaking, the problem reduces to a single variable ¢, thus
further simplifying (5.7):
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Hg)cal _ —tZ(lA)-r(JS I gb*i)) + %ﬁ(ﬁ _ 1) _ Mﬁ. (58)

In general this problem can be solved in an arbitrary local basis, but any numeri-
cal implementation requires a truncation, for example to the common finite N.-Fock
basis, or in our case the CTS extended N.-Fock basis. Within this basis we utilize
the properties (5.5) and (5.6) to calculate additional matrix elements of Hg’cal. Note
that the CTS acts as the Fock state |N.) for ay, — 0. Now one only needs to find
the minimum of ES, = (va ‘chal‘ 1) by simultaneous variation of the physical pa-
rameter ¢ and the non-physical CTS-parameter ay,. Since the final result has to be
independent of the truncation scheme, a comparison for various N, and ay, at given
values of ;/U = t/U = 0.4 reveals the limited efficiency of the CTS (see Fig. 5.1). Thus
we can now tell how a CTS-extended basis with reduced cutoff compares to a large
N, -Fock basis.
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FIGURE 5.1: (a) Possible reduction of ES, = (’L/JG |HlG"C“l|wG) via variation of ay,, for
various truncations denoted by N, with ¢/U = ;/U = 0.4 and z = 6. (b) Convergence
time of the GS for various truncation schemes, as given in the legend, and /U = 1.5.

Graphs (c,d) depict the expectation values of the observables (b) and (7) for various
w=0.5,1.5,2.5,3.5 (dark to bright colors; corresponding to the Mott lobes n = 1,2,3,4)
and truncations as in legend (b).

At any truncation level, if the CTS is added to the N.-Fock basis Eg; is im-
proved in comparison to a simple additional Fock state, corresponding to an, - 0in
Fig. 5.1(a) [also consider Fig. 5.1(c,d)]. One even improves upon the mean-field Mott
transition for Mott lobes n = (1) = N, at the limit of the Fock basis with cutoff N, + 1
[see Fig. 5.1(c,d)]. But due to the necessary optimization of o, this comes at an ad-
ditional computational cost [see Fig. 5.1(b)]. The GS thus does not benefit much from
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the CTS, as far as computational effort is considered. But as we will show, within
B-DMFT the CTS truncation scheme leads to a significant speed-up paired with the
increased accuracy.

5.3 Bosonic dynamical mean-field theory

For B-DMFT the CTS extended Fock basis can be used by the impurity solver within
the self-consistent loop. Its implementation is most straightforward in the exact di-
agonalization method. In that case, the lattice Hamiltonian is mapped onto an effec-
tive Anderson impurity model [HSH09; SH13], which is an extended version of the
GS Hamiltonian (5.7) as can be seen in Sec. 4.1,

o v, . . St 5 5 5 5
Hl =50 (o = 1) — prio + Y. eaj iy —t (bg ( >, <bi)0) +bo ( > (bz)c))
l (4,0) (1,0)
+ 5" (Viafbo + V" anbf + Wianbo + Wl by) . (5.9)
;

The additional terms including the annihilation (creation) operators a; (&7) describe
effective bath orbitals which self-consistently mimic the action of the lattice sites
surrounding the given site j = 0 in the Hubbard model (5.1). They do so via the
orbital energies ¢;, normal hoppings V; and anomalous hoppings W;. For an opti-
mal representation of this action, increasing the number of bath orbitals is favorable
over increasing bath truncations. They are therefore treated as hard-core bosons.
The cavity expectation value (.) is computed in a system where the impurity site
has been removed, which is required due to the mapping onto the effective model
as discussed in Sec. 4.1. In the case of a homogeneous lattice gas, used here for
benchmarking purposes easily allowing for comparisons with truncations as high
as N, = 20, the term containing the self-consistent cavity order parameter simplifies
to ¥; (bi) = 2+ ¢c, where z is the number of nearest neighbours, and ¢ is the cavity
expectation value of the condensate order parameter.

Within this implementation, a choice of ay, to compute the ground-state of the
full system, is efficiently obtained by minimizing the energy Fam = (0/H51,,]0) for
the lowest energy eigenstate |0) of the self-consistent HSI\ ; with regard to the varia-
tional parameter o, . This yields the optimal representation for the low energy spec-
trum of H45,, which determines the interacting Green’s function in the Lehmann
representation (4.59). Another way of optimization would be the minimization of
the self-consistently converged DMFT expectation value Ei(cvy, ) = (H) in relation
to a,, where we define ERMT as this minimum. Let us emphasize that the optimal
Eiot(a,) should not depend on the choice of basis, so neither a variation in /N, nor
in ayy, should result in a significant change of its self-consistent value, as is indeed
verified exemplarily for 1/U = t/U = 0.4 in Fig. 5.2(a). Then the optimal CTS state
allows for a remarkably good approximation of the total BDMFT energy even at a
very low Fock space truncation N, [see Figs. 5.2(a) and 5.3(c)].

A further look at the convergence times reveals the numerical benefit of replacing
a large number of Fock states (all those with n > N.) by the single variational state
lan,). We have simulated the Bose-Hubbard-model (5.1) within B-DMFT using a
Bethe lattice with z = 6 for 0 < p/U < 3.5 and 0 < ¢/U < 1. The convergence times
for various truncation schemes are shown in Fig. 5.2(b) for u/U = 0.4. Note the
above 10-fold decrease in convergence times when using the CTS-extended Fock



86

Chapter 5. Truncation of the bosonic Fock basis

-15 10° :
(a) b) “e-N, =5
-2t //, Y —— N, =4 with CTS
0% 7, |-e-N.=16
b_25 —o? A \‘)\‘*vf«%«»v«r«)—fﬁj‘:*ﬂ}*
5 sl T J\ e DMFT
e 3 §10 7\
=35 e AN
100 [ N
—4F 777 ,
—4. w w -1 ‘
% 05 1 15 2 25 1095 10-1 10°
an,
e J/U
-3
5500 25 0.01
b 1.5 (d)
S§ K 3.5 s K o5 0
B e T s o = \
—~ 1 | 5 = 1.57%
E 0.5 E . 2.5 Y
a8 £ —0.01f 3.5 % !
105 2
= —0.02-
N © |- EDpmFT N
Sy LN —— Eamm S
— ' —0.03 :
0.94 0.96 0.98 1 102 104 1.06 B 01 100
an,./ay, J/U
FIGURE 5.2: (a) Reduction of E2MFT achieved by variation of the CTS via ay, for var-

ious values of N.. Shown are self-consistent BDMFT results for /U = t/U = 0.4 and
z = 6 (also used in (b,c,d)). (b) Comparison of convergence times of BDMFT for various
truncation schemes, as given in the legend and annotation, with i chosen as in (a). The
two optimization schemes described in the text are compared in (c,d). (c) depicts the
relative deviation of Eyt(an, ) from its minimum, while the value found via minimiza-
tion of Eapv is given by each marker. The corresponding simulations are performed for
t/U = 0.3162. In (d) the resulting total energies, found by minimizing either Exp or

EpMeT = EtDO{VIFT, are compared to the exact energies, as calculated for a regular cutoff

N, =20. The used values of ;1/U are given in each graph (c,d).

basis compared to the regular Fock basis with a high V., as used for the (quasi-)exact
solution. While this speed-up is only possible over the full range of parameters when
optimizing Fany, this simplified scheme leads to negligible deviations in the energy
[as shown in Figs. 5.2(c,d)]. Also note the additional time loss of the CTS scheme
compared to a truncation of equal basis size at large ¢/U, which is due to the need to
optimize ay,, by finding either the minimum of Eapy or of Eiy, while the latter also
requires multiple runs of fully converged DMFT simulations. Due to these minor
differences we now focus on results obtained via the first scheme.

Regarding physical observables, we have calculated local observables such as
the condensate order parameter ¢ = (b) and the occupation number n = (1), as well
as the non-local non-condensate fluctuations G.(t = 0) = - ((?)jlsj) - (Bj) (ZA)J)), where
i and j are nearest neighbors. This expression is more commonly denoted as the
connected Green’s function at equal times, which we can directly extract within B-
DMEFT as discussed in Sec. 4.5. Furthermore we also obtain the total energy Ei,: and
the kinetic energy £, through the connected part of the Green’s function, allowing
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for a comparison of the quality of different truncation schemes:

717 *
o= —tz ((bib;) — 0" ¢) = t2G(t = 0). (5.10)
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= N.=5 ’
31l _ N. =4 with CTS s
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FIGURE 5.3: Results from converged BDMFT simulations, obtained for various trun-
cation schemes, coded by colors and symbols shown in legend (a). Simulations were
done for p/U = 0.5,1.5,2.5,3.5 (dark to bright colors) and z = 6. Shown are the local
observables ¢ (a), n (b), the total energy per site Eyot = <I:I ) /L (c), where L is the number
of lattice sites, and the connected Green’s function G.(t = 0) (d), as discussed in the
main text (5.10). The inset of (d) shows the same data plotted on a double log-scale for
a better overview.

As is visible from the local observables as well as the total energy, replacing the
highest Fock state |N.) by the CTS |ay,) tremendously improves the results to al-
most the same accuracy as the (quasi-)exact result from the increased cutoff N, = 20
[see Figs. 5.3(a)-(c)]. Remarkably, the CTS truncation even predicts the Mott tran-
sition for the Mott lobe n = 4 (for /U = 3.5) almost exactly, as shown Fig. 5.3(a),
while the regular cutoff N, = 5 fails to do so. Both truncations also yield wrong
values for the connected Green’s function G.(t = 0) [see Fig. 5.3(d)]. Just about
where the occupation number n exceeds N, the high accuracy of local observables
is lost as well. Differences between the three cases can be seen most clearly in the
non-condensed contribution to the kinetic energy (5.10), which are due to non-local
fluctuations described by the connected Green’s function [see Fig. 5.3(d)]. These
have a monotonously decreasing tail for ¢/U — oo in the exact solution. Obviously
the ratio of these fluctuations to the condensate fluctuations of the condensate order
parameter (o< G.(t = 0)/||¢|?) vanishes in this limit. But a hard and low truncation
results in an artificially increased value of the non-local non-condensate fluctuations
beyond certain values of ¢/U, while the CTS leads to the opposite behaviour, where
the tail is damped more than in the exact result, thus suppressing non-condensate
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fluctuations early. This is likely a result of the CTS being more heavy-tailed than
the Hubbard interaction would allow [KN11]. As non-condensate fluctuations only
give a sub-leading contribution to the kinetic energy, it becomes clear why the CTS
allows for the tremendous increase in accuracy and speed-up in numerical simula-
tions compared to a simple high Fock space cutoff NV, even for large t/U.

In conclusion, we see that the introduced truncation scheme based on the CTS (5.3)
leads to an increase in the numerical accuracy and computational efficiency of GS
and B-DMFT simulations. This increase is shown to be especially pronounced in
B-DMFT. Therefore the method allows for B-DMFT simulations at much larger den-
sities, but with reasonable computational effort. It is thus also a very promising
method for accurate simulations of systems at higher filling per site. Furthermore
cluster-based methods [AKL11; Liith13] should especially benefit from this softened
truncation, since the size of their Fock basis scales as N, CL with cluster size L. The
concept of softening the hard cutoff, usually applied in the number basis, should
thus more generally benefit a wide range of numerical simulations of bosonic lattice
systems. Within this thesis it is used to reduce the local Fock space of the considered
two-component models, see Sec. 3.2.
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Chapter 6

Operator based quasiparticle
theory of quantized fluctuations

In this chapter we will derive the generalized quasiparticle theory first introduced by
Bissbort [Bis12; BBH14], which can be understood as an extension of the Bogoliubov
theory [Bog47] (also discussed in [PS03; PS08]) beyond the limit of a single band of
quasiparticle modes. It is based on linearized fluctuations of a variational many-
body ground-state wave function, which in our case will be given by a Gutzwiller
product wave function. We will show how this method can be extended to systems
with multiple bosonic components in combination with interspecies hopping aka
Rabi oscillations and long-range interactions, which also imply spontaneous break-
ing of translational symmetries, thus removing the assumption of a homogeneous
ground-state utilized in [Bis12; BBH14].

Following [Bis12] in the introduction of the method, we will show how sec-
ond order fluctuations, which are neglected in the Gutzwiller ansatz, can exactly
be represented in the eigenbasis of the local Gutzwiller Hamiltonian. While it can be
shown that this is analogous to a calculation of the linearized equations of motion
[Bis12], here we will only consider the formulation in terms of fluctuation opera-
tors. Along the way we will go beyond [Bis12], by readily including the effect of the
extended Bose-Hubbard-Hamiltonian which includes the effect of Rydberg states.
The purpose of these calculations is the derivation of a second order expansion of
the full Hamiltonian in terms of aforementioned fluctuation operators. Diagonal-
ization of this Hamiltonian reveals the spectrum of quasiparticle excitations with
the Gutzwiller ground-state as its quasi-vacuum. Due to the nature of this second
order expansion, this extended description will only include non-interacting long-
lived quasiparticles, while their zero-point energies lead to a renormalization of the
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FIGURE 6.1: Schematic depiction of the work-flow of the quasiparticle method de-

scribed in this chapter.



90 Chapter 6. Operator based quasiparticle theory of quantized fluctuations

ground-state energy.

We will furthermore discuss how any local operator and thus arbitrary combina-
tions of them can be represented in terms of the quasiparticle basis. This will allow
for the derivation of many experimentally relevant observables, including the spec-
tral function (A®) (k,w)) and the dynamic structure factor (DSF, S(k,w)), among
others. See Fig. 6.1 for a schematic depiction of the corresponding work-flow, start-
ing from the Gutzwiller ground-state and going all the way to the calculation of the
spectral functions. The various appearing quantities will be discussed throughout
this chapter.

6.1 Derivation of the quasiparticle Hamiltonian

When deriving the quasiparticle representation we should keep in mind the Hamil-
tonian we are going to investigate, especially due to the various types of sponta-
neous symmetry breaking expected to be involved. As a reminder let us once more
consider the general form of the Hamiltonian

N
H = Hopppin+ Y. (H2BHjoc + Hro+ Hint ) . (6.1)
7

The terms Hyppy correspond to the standard Bose Hubbard model for two particle
components, while the terms H rand H;,,; are extensions which introduce Rabi oscil-
lations between the two components on the one hand and long-range interaction of
the Rydberg states on the other. We assume a more general form for the interaction,
thereby including models, where the interaction is given by the effective long-range
interaction of a component far off resonantly dressed by a Rydberg state.

ﬁQBH,k:in =—1 (i);’ei)g’gl + 7’](;;266731 + hC) s (62)
(¢,0r)
& ﬁz ~g ~g e Nﬁ? ~e ~g | ~e
Hophoce =U E(ng = 1)+ Angn; +)\?(n£—1) —,u(ng +ng), (6.3)
X Qor o ey s .
Hpy =5 (BF obe,e + Y ybg.0) — ARG, (6.4)
2 1 ~ene
Hint g =5 Z ngng V (re,re). (6.5)
L+

In order to determine the Gutzwiller ground-state of such a system let us first in-
troduce the variational Gutzwiller wave function, which in the general case assumes
an arbitrary site wise factorization of the many-body ground-state:

L
We) = [Tle), with  [g) = > e [ng). (6.6)
(=4

Here the states |n/) are local Fock-states for the site ¢ with the particle number n,.
The state (6.6) is thus defined via local sets of variational parameters given by the

2
coefficients cq(f) with the additional local normalization constraint )", ‘c,(f)‘ =1.

Thus the straightforward way of finding an approximate ground-state within
this ansatz is to minimize the total many-body energy E¢ of (6.1) as given by this
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state via variation of the coefficients c(g).

= (Y| H [he) = ZEéf’ = > (el Hawe [te) - (6.7)

l l

Up to an irrelevant complex phase factor in all ) this yields a unique solution.
But in an inhomogeneous system this could require a tremendous numerical effort,
having to minimize an energy landscape of N x L dimensions, where N is the size of
the local Fock-space' and L is the number of distinct sites, each with a different local
Gutzwiller state [¢¢). Also note that minimizing the expression (6.7) implies that
each |¢y) is the lowest energy eigenstate of a local Gutzwiller eigenbasis. From here
on we switch the notation denoting the local Gutzwiller eigenstates as |i),, so [0), =
|1¢), which are the eigenstates of the individual, local and self-consistent Gutzwiller
Hamiltonians

A (b (baf U
Howp-o== ), ts ( 0P~ — D%t hee. | + > (bJrob 'ob ’ObUO)
(0,6),0 o,0’

o p (6.8)
2

+ E)V(I‘o,l‘g).

(bg Obe o+ be Obg 0) Z /.,Lo—no + Z (none +
£+0

Depending on the component o = {g,e} we have t, = {t,nt}, Uyor = 950Uy + (1 -
0,61 )Uge where U, = {U, S\U} and Uy = AU as well as pi, = {1, o + A}. We have fur-
thermore introduced the variational fields ¢, and nj which couple the local Hamil-
tonians amongst each another. These fields thus have to fulfill the self-consistency
conditions

¢o0=(bl,) and n7=(a7). (6.9)

This implies a second method for determining the variational Gutzwiller ground-
state via a simple iterative procedure. Starting with arbitrary values for ¢,, and
nj the expressions (6.9) determine updates of these values. These updates are then
repeated until a self-consistent solution is found. It can be shown that the minimiza-
tion procedure and the self-consistent updates yield equivalent results” [Bis12].

6.1.1 Gutzwiller fluctuation operators

Considering the mean-field Hamiltonian (6.8), we note that it also follows from an
expansion of the full Hamiltonian (6.1) in terms of the fluctuation operators
Obgs =bes— oy and dng =ng - ng. (6.10)

In order to obtain (6.8), in this expansion, we simply neglect terms beyond first order
in any of the fluctuation operators. This corresponds to the assumption of vanishing

!N is actually infinity for Bosons, therefore the Fock-basis has to be truncated in numerical simula-
tions, as discussed in further detail in Chap. 5.

*While the minimization procedure is easy to optimize in the homogeneous case, it becomes in-
creasingly hard in inhomogeneous systems, due to the increasing number of parameters c;, ) Thus the
self-consistent method was implemented throughout the simulations presented in this thesis.
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contributions of second order (non-local) fluctuations in the variational energy (6.7),
which in turn is the justification for the ansatz (6.6).

Furthermore keeping in mind that each local Gutzwiller mean-field Hamilto-
nian (6.8) defines a complete set of local basis states {|i),}, we will now show how
the effect of the second order fluctuations can be retained via this basis. Let us in-
terpret each lowest local eigenstate as “Gutzwiller”-vacuum. Thus we can define
transition operators, which annihilate excited Gutzwiller states aka Gutzwiller fluc-
tuations |i), with ¢ > 0, as follows:

6 =210y, (il ® [T 1o (6.11)
[2YAET

This operator only acts on site ¢ where it transfers an excited eigenstate |i), of the
local Gutzwiller basis to the local ground-state |0),. For clarity in the notation we
will omit the local unit operators 1, from here onwards. The set of all such defined

operators a( " and their hermitian adjoint operators, in combination with the unit
operator 1,, are complete in the sense that any many-body operator can be expressed
by them. It is sufficient to show this for an arbitrary local operator as any many-
body operator can readily be expressed via a linear combination of products of local
operators. Since the local Gutzwiller eigenstates constitute a complete local basis we
can expand any local operator O") in this basis:

OA(Z) = Z < |O()|] |Z 00 J| Z O |Z U (6.12)
1,520 4,720

By using this representation for the previously neglected higher order fluctuation
terms we are able to retain their effect as an expansion in the creation and annihila-

tion operators a( " and 6/) of Gutzwiller fluctuations. In total there are four qual-
itatively dlfferent cases when mapping the transition operators |i), ,(j| onto these
operators. The possibilities are as follows:

i) (0] = 58" ifi>0, (6.13)

|0}, (il = A(Z) ifi >0, (6.14)

1) 0{] = A(Z) A(J) ifi,7>0, (6.15)

10), ,(0] = 14 - Za(’) 5., (6.16)
>0

In principle one could represent the last relation (6.16) as any properly normalized

linear combination of azl) ()" , but by requiring all operators to appear in normal
order the chosen representatlon (6.16) is unique.

6.1.2 Commutation relation and control parameter

An important property of the operators a( o' and a( 2
which are easy to derive using (6.15) and (6.16).

are their commutation relations
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[ ® 60 ] =6 1600100, (0] = S0 ), il

~F .
=0;,j0¢,0r = O 0r (5” > 6, 507" ( ) 6§]) c}é’)) (6.17)

3’>0
(o069 | =[60.5] -0 (6.18)

Thus we can see that they behave approximately bosonic, but contain a local second
order correction proportional to the local number of fluctuations and a transition el-
ement, which both have to be small to justify the bosonic approximation. To make
this point more apparent we need to transform to quasimomentum space. Consider-
ing a system of L sites, one at first might be tempted to use the naive transformation

% Y, e T where r, is the position vector corresponding to site £. But as we will

discuss more thoroughly in Sec. 6.3, a more general transformation is needed for the
case of an inhomogeneous ground-state of reduced translational symmetry, which
is expected to form in the presence of sufficiently strong long-range interactions. We
thus use

() _ 1 P el 50 0 1 T el 5 0)

g = B g s s?
k,s /_LC ; l )8 L, /_ e ke k (6 19)
SO _ ik(rers) ()Y @ _ 1 —ik(ry41s) ~ (D) '
k,s /_ Z 9y 8 7 ls ~— /7 Z € Jk,s :
LC kel.BZ/

Here L. is the number of unit cells which tile the full system in a periodic pattern.
This implies that the number of independent quasimomenta is correspondingly re-
stricted to a reduced Brillouin zone (1.BZ'). This notation furthermore splits the po-
sition vector ry = r; + r, into a superlattice part r; and the relative position r, inside
each unit cell denoted by [. In that case we find the commutation relations

G So.s
[afj,),, f{l] =058t sst = “R{)(s). (6.20)
[ (’,),ﬁsz] 53),.5)] =0. (6.21)

Here we introduce the operator Rl(fli,) (s), which describes the deviation from bosonic
behavior. It is of the form

B - S (o)) o, 3ol ol))
7 5750

(6.22)

-3 ( )" 59 45, 50" 5(]”))
[k k/+k; |,s k1,5 VA [k k’+ki|,s k1,5 | *
ky€1.BZ’ 7’>0

The notation |-| describes the back folding of k to the first Brillouin zone (1.BZ),
introduced due to equivalence relations between the quasimomentum space oper-
ators (6.19) (analogous to (6.37) discussed in Sec. 6.3). Back folding is achieved by
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adding a suitable reciprocal lattice vector G, such that |k| = k + G results in a quasi-
momentum vector inside 1.BZ. The set of possible vectors G is implicitly defined
as all vectors fulfilling G - ry = 27n, where n € Z. Thus we can see that the first
term on the right hand side of (6.20) corresponds to the regular bosonic part of order
one, while the second term is of the order of the density of quasiparticles, especially
notable for k = k’. But as this factor is scaled by the system size via the prefactor

~()

L', the fluctuation operators &, are also approximately bosonic in the limit of a

small density of occupied ﬂuctuatrons. Therefore we may consider <R1(Z li,) (s))/Lc as
a set of control parameters, the maximum of which serves as a figure of merit for the
validity of the quasiparticle method.

6.1.3 Expansion in fluctuation operators

The mean-field Hamiltonian can thus be written as How = >, Yis0 E(g) (l) 5 (l)
>y Eéé) (1-Yis00, ' (Z)) So the full Hamiltonian has the form

i = How + Hs = Y ¥ (B - B?) 6 5060 4 ZE(()“ + Hy. (6.23)
£ >0

Here the term Hj includes all terms neglected in the definition of the mean-field
Hamiltonian. Thus it consists of all terms with fluctuation operators in second order:

Hi=- > t, (6b 0b, £,+5b g,ab(,g)+ Zaneang,r/(rg,m) (6.24)
(0,0 2 s

One can now use the completeness of each local Gutzwiller basis set for every site,
Ly = X720 i) o(t], in order to represent both, or more precisely any, local fluctuation
operators appearing in (6.24):

6bcr€— ol (baf 5}lgzﬁ?—”?
= 2 (lilboeli)e = Poebi) 1) o4 = 2 (ilag i), = ngdi ) lid, {3l
i,j=0 1,5=0
< B° L S o,(¢ o . .
= 3 (B = b0t ) i) o] = 3 (N7 =ngai;) li)e ol
i,j=0 i,j=0
¢ SEVAC
= > Bl il = ¥ Nl (625)
i,j=0 i5j=
We note that the matrix elements Boé ) = = ¢ and N ( ) = nj are both given by the
values of the self-consistent fields, namely the local order parameters. Accordingly

all matrix elements B, ( ) = 0and NG, (Z) = 0 vanish. Using these expansions we
can exactly rewrite the ﬂuctuatlon part of the Hamiltonian (6.24), which using the
notation ¢’ = £ + §¢ thus becomes
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2,0
) FOE) vy il @ lin)g (o]

(£,0), 11,02
Ji,J2 (z) st (626)
o, (L+ . . .
Z >V (rp,rse) 3o NTEINTE i) g (] @ i) g o (dl-
? 60+0 1,1,7,2

Ji.J2

In this expression we have introduced the following complex coefficients for the
hopping terms:

Fobl)  _ poOx pot) | poi0) goul)x (6.27)

1,82,J1,52 Jisin 2,2 11,1 7 J2,02
Due to the definition (6.25), neither of the two terms has any contributions in either

zeroth or first order of the 0/). If we now use the representations (6.13)—(6.16) we
find the full expansion of the Hamiltonian H in terms of aéi). Using Ep = Yy Eéé),

H=Ey+H® +H® + 1@, (6.28)

In this expression no approximation has been made so far. Therefore it is an exact
representation of the original Hamiltonian (6.24). The second order Hamiltonian
H?) taken by itself determines the quasiparticle structure with all quasiparticles
obtaining an infinite lifetime, while the higher order terms %) and #(*) generate
couplings between those quasiparticles, invoking decay and interaction processes,
ultimately limiting the lifetimes of the quasiparticles. These higher order terms are
given explicitly in App. C. For now the most important part is the second order term
which describes the bare quasiparticle modes. Before we write it out explicitly let us

introduce the tunneling matrix 4% which for a given particle component is given
by the corresponding hopping amplitude ¢, whenever the sites ¢ and ¢’ are nearest

neighbors (NN). Then H(?) has the following convenient form, where we have used
Fo o,(0'0) FJ,(Z,Z’)

the symmetry relation F; ;. = F, "2 "0

HO =5 500 o)

£ >0
1 e (6l _(i)f () oy (4,L) (l) () o (4L ()Jr ()
_§Zta ZI:QFZOOJ P Fongg 00 0 + F gy 0 /
L0 o 3,5>0
1 € e, (¢ Ot oG i ; Nt oot
+3 > Vi(rerse) D, Noy’i(l)Noy’](.E)[Qaé) aé,]) +0§ )aéf) +a§) aé,]) ]
1,600 1,7>0

(6.29)

This contribution to the Hamiltonian matrix is the main focus of the quasiparticle
method and it has to be diagonalized in order to extend the results beyond the
Gutzwiller level of approximation.

6.2 Hamiltonian quasiparticle matrix

Due to the second quantized form of (6.29), knowledge of its eigenmodes allows for
the direct calculation of many experimentally relevant observables. But in order to
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find the eigenmodes of (6.29) we have to find a form more suitable for diagonaliza-
tion. We therefore introduce a Nambu-type notation, which is related to the simul-
taneous appearance of all conceivable pairs of creation and annihilation operators
in (6.29), by defining the following (symplectic) vectors:

(1)

g1 g )
o=| |, where oy = : (6.30)
oy, 5‘5 Nrmax)
Here, L is the total number of lattice sites in the considered system, while Ny is the
cut-off in the Gutzwiller basis °. Before we can rewrite H(?) (6.29) in matrix form,
we first have to introduce the conjugate transposed vector

1.
A
o\ 6(1\}“‘“) 't (Nmax)* A (1) (Nimax)
(o”L) = f(l)’r :(&1 O 0y o ) (6.31)
91
(N
oL

Using these vectors the second order term H(?) (6.29) can be brought into a simple
bilinear matrix form. To obtain this form we assume exact bosonic behavior of the
Gutzwiller fluctuation operators, in contrast to (6.17) but approximately valid for
sufficiently small occupation of the fluctuation states. So H(?) is found to be of the
approximate form

.i.
1o o 1
3@ = 5 (o_.[.) Haop (O'Jr) - §Tr(h), (6.32)

the validity of which can be verified in the end, by checking the actual deviation from
bosonic behavior. The general form of the Hamiltonian quasiparticle matrix (6.32)
is independent of whether the Gutzwiller ground-state is homogeneous or not. We
find it to be of the following form:

h A
Hap = ( ¢ h*). (6.33)

In a potentially inhomogeneous system consisting of numerous inequivalent sites
for which we also consider multiple particle species, we have to differentiate these
features using a multitude of indices. Thus to reduce confusion, let us restate the
various indices used so far. We indicate the particle species using the greek letters
o,0’, while lattice sites are signified by ¢, ¢' and i, j correspond to the local excitations
of the Gutzwiller basis. With that in mind the entries of the on-diagonal and off-
diagonal blocks directly follow from (%) as given by (6.29).

*Note that in principle Nmax can be taken to vary from site to site, for example in a strongly inho-
mogeneous system.
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R0, Gy = Seedi B = Xt Frgns ) + Vie N N ™) (6.34)
o ol o (f) xro(l
Ao,y = = St FTSe ) + Ve Nt O N (6.35)

6.3 Diagonalization for inhomogeneous periodic order

From now on we assume the more general case of an inhomogeneous ground-state,
which can be described by a periodic superlattice. Therefore we introduce equiva-
lence classes of lattice sites which assign to every site index ¢ the index of its corre-
sponding equivalence class ¢(¢) within the unit cell of the superlattice. For a super-
lattice spanned by the set of Bravais vectors V; = {ay, ..., a4} in d spatial dimensions,
with each vector a; given as integer vector in units of the lattice spacings a;, the
number of equivalence classes V. is given by the length of the wedge product (cross
product) of these vectors corresponding to the size of the unit cell. In an OL with
L sites there are thus L. unit cells of size N. = L/L,.. For a given equivalence class
site index s = ¢(¢) all corresponding sites have identical local observables, which
are equal to those of the representative site s. Together they form the representa-
tive unit cell which we place at the origin. The various equivalent sites {/|s = ¢(¢)}
are reached by adding any integer linear combination of V; to the position of the
representative site.

= = N
=
€
7 T
L . I
L] d ]
T
/l} —
/ rl ]
S il J

FIGURE 6.2: Decomposition of the positional vector r,. The various sites of the OL
are given by the intersections of the grey lines. The superlattice is given by the black
lines. An exemplary unit cell, containing seven lattice sites occupied by one atom each,
is shown by the blue shaded area. r; is decomposed into a linear combination of a
superlattice vector r; and the relative vector r; of a given site s inside the unit cell.

For the transformation to the space of quasimomenta we therefore have to keep
these classes in mind. It will be useful to decompose the positional vector r; into
its superlattice part r; (an integer linear combination of V) and the relative position
r, of each representative site in the unit cell. Their relation is shown in Fig. 6.2.
Using these relations a naive ansatz for a generalized unitary transformation matrix
in analogy to the homogeneous case would be

1 e, AL
K (0 (iks) = —==0i 05 o(ry ¥t £
( f),(]k ) /LC »J ) (e)e /LC

8 0,51 1PT) = K (i1s),(jks')- (6.36)



98 Chapter 6. Operator based quasiparticle theory of quantized fluctuations

Note that this defines an only partial transformation meaning it retains some spa-
tial information for each equivalent site s. Thus we will obtain V. times the number
bands compared to the homogeneous case, as the index s simply reflects the possibil-
ity of N, times as many inequivalent Gutzwiller bases as in a homogeneous system.

At first glance is might seem as if the number of fluctuation operators in the
tirst Brillouin zone of the OL also increases by a factor of /V.. This illusion stems
from the fact that actually we only have to consider a reduced Brillouin zone given
a superlattice structure. Its reciprocal lattice vectors G, are implicitly defined via

= (i ) =(4)

G, -r; = 2mn where n € Z. So the seemingly different operators 7, . and &

k+G,,s
actually only differ by a trivial complex factor:
50 1 i+ G ) (r41s) A (D) ~(1) —iGyers
OhrG,.s = \/_L_Zz:e (erGr)riers) 58 = 50 e : (6.37)

Therefore one might be tempted to omit this phase factor in the transformation al-
together and instead define the generalized unitary transformation as K éils)(jks,) =
\/LL_C(Si,jé&Sre"k”, but due to the slightly more intuitive form (6.36) we stick to the
original definition.

Before we continue with transforming the quasiparticle matrix (6.33), let us briefly
discuss the relation of these transformations to the more common transformation
Koy, (jx) = i ;e [\/L, as used in a homogeneous system, by comparing how they

(1) _ s (

transform the Gutzwiller fluctuation operators o, = al 2 . The usual transformation
to quasimomentum space looks as follows:

S(0) _ 1§ ik 5 (6) _ K* NON ~ (i)
% \/Z ZZ: € Oy \/_ Z Z (iks), (zls)al s = Nc — k,s (6.38)

To close the circle we also have to consider the transformation back to positional
space, which is defined via the complete first Brillouin zone of the optical lattice:

NONER! ikery ~ (1) _ ~(3)
6, = — ety =6y (6.39)
¢ \/E ke%]:SZ : :
1 Zez(k’+G )(rl+rs) 1({z) <
'+Gp,s’
\/_ k’e1.BZ' G, VN G

RO ik (1) 5(8) _ 1
PO
b VL. ke%Z’ Tlos vV LeNe ke%;z

Here we have decomposed the quasimomenta k in the first Brillouin zone (1.BZ)
analogous to the real space vectors ry. So k = k’ + G, where G, is a reciprocal lat-
tice vector of the superlattice. It is chosen such that k’ lies within the first reduced
Brillouin zone (1.BZ’) as generated by the set {G, }. We have furthermore used the
translational symmetry of a( ) in the quasimomenta (6.37), which also yields a con-
venient way to retain a formulation in the original Brillouin zone (6.40).

Using the transformation relation (6.40) we can bring H®) in (6.29) into the quasi-
momentum form. To do so let us consider its individual terms one at a time.

ele(rirs) 50) (6.40)
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FIGURE 6.3: Decomposition of both positional vectors r, and r,. The sites of the under-
lying OL are given by the intersections of the grey lines, while the superlattice is given
by the black lines. In equation (6.41) the positional vectors r, and r, are decomposed
into combinations of superlattice vectors r; and r; as well as corresponding position
vectors ry and ry of the given sites s and s’ inside each unit cell. The dashed vector
marks the relative vector between the two considered sites £ and ¢'.

{20 o) 50 50)

o ©4,0,0,5 Ty
N
1 Ts—T /=Ty ,(ss) —ik- ik’ r~(l) ~(7)
=T Xt TE g e e Gy Gy (6.41)

S,8

- TE S e o),
Css kel.BZ

The two position vectors are decomposed as ry = r; + rg and ry = r; + ryy + ry, where
r;; are superlattice vectors and r,; are the positions inside of a given unit cell.
Their relation is depicted in Fig. 6.3. This allows the subsequent summation over
[ resulting in L.dy . We again use the translational symmetry to extend the sum-
mation to the original Brillouin zone, which will proof beneficial in the general case
where we consider an arbitrary superlattice. Note that the tunneling matrix ¢ can
be expressed as a function of the relative vector r;, —ry = ry — ry — ry between any
pair of sites, so t“ = o T TN o toOr,—r —ry|,1 (in units of NN lattice spacings). We
also define the expression t5)(k) = 3, toOps—r —r,|1 €Xp[—ik - (rs — 1y —17)] in or-
der to further simplify (6.41). Note that this sum in general yields a complex number
even for real valued hopping amplitudes as s and s’ are not always nearest neigh-
bors for opposite directions. We thus have to keep in mind the symmetry relations
£ (<k) = 189 (k) = ¢£>*7 (k)*, which simply follow from the definition and as-
suming real valued tunneling amplitudes.

In the same fashion we can also transform the anomalous hopping terms, for
which we find

o o (L) (z) () 1 a,(5,5) 8,8 (i) ~()
Zze;t 0,0,i,j / Nc ,FO,O,i,j k;szt( )(k) ksakjs (6.42)

Regarding the normal contributions of the interaction we once more utilize a
decomposition of the form ry = ry — rsp. At this point we furthermore restrict our
considerations to interactions of the form V(r,r’) = V(r—r’) = V(r'-r), so we obtain



100 Chapter 6. Operator based quasiparticle theory of quantized fluctuations

,é ,K 7,+A 7S ,S s,s’
2,0 Css kel.BZ

Here we have introduced the partial quasimomentum transformation of the long-
range interaction V() (k) = ¥, V(rs - ry — ;) exp[-ik - (r, — roy —1;)]. Note that
the relations V(%) (-k) = V") (k) = V() (k)* are also fulfilled by the long-range
(real valued) interaction. The reason for this is the simultaneous presence of an in-
version symmetry in the interaction on the one hand and in the unit cell tiling of the
system on the other. Correspondingly the anomalous interaction terms transform in
the same way as the hopping terms (6.42):

SV (e ) KO REE 50500 - ZNe(S)N S D159 59, (6.4
2.0 Css kel.BZ

The only remaining terms are those on the diagonal which also result in diagonal
terms of the quasimomentum representation if we assume exact bosonic commuta-
tion relations for the Gutzwiller operators.

IRONNONER.! s (@) =) | =) ~ () 1 s
ZEiaé Op° = IN EEZ Z (O-kso-ks-’-o-ks ks ) IN Z Z EZ (645)
l c s kel.BZ ¢ s kel.BZ

Note that this transformation is very similar to the homogeneous case studied in
[Bis12]. It is a first step in the diagonalization of the quasiparticle matrix, the trans-
formation of which could also be expressed via the following generalized unitary
transformation matrix

K 0
K = (0 K) (6.46)

The elements of the matrices K are given by (6.36). Under the assumption of bosonic

commutation relations, which can be checked a posteriori, for the 0'( ) in momen-

tum space and correspondingly in position space the transformat1on can thus be
expressed as

K'hK K'A*K*
t -

K HQPIC = (KTA*K KTh*Kx—) (647)
From this we can see that the transformation of the off-diagonal blocks leads to ex-
pressions that couple k < —k blocks of the size N./N x N.N for each k. The factors of
N stem from the cutoff used for the local Fock basis representation of all components
combined, while N, is the size of the unit cell. Reordering the thus coupled blocks

results in the following 2D x 2D block diagonal structure where D = N.N:

A= (205 i) (648)

Its subsequent diagonalization reveals the quasiparticle mode structure. We have
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already derived the individual terms via the direct transformation of the Gutzwiller
fluctuation operators as shown in equations (6.41)—(6.45). The resulting matrix ele-
ments are given by

i) Gy (K) = = 2 FLa w160 (k) + Nig P Ng v ) (k) + 6, 06, B, (6.49)

Aoy, Gy (K) = = S F 50 15 (k) + NE NSV ) k). (6.50)

In order to preserve the bosonic structure of the operators the final diagonaliza-
tion has to be performed on the symplectic space’, namely by diagonalizing “Hqp
where ¥ = diag(1yyr,-1xz) for the full Hamiltonian quasiparticle matrix or ¥ =
diag(1p,-1p) for the k blocks.

6.3.1 Completeness relation

As can be seen from (6.48), the quasiparticle block-matrices corresponding to pairs
of momenta k and -k are of the same general form, both in a homogeneous system
(where s = s’ = 0 in (6.49) and (6.50)) as well as in an inhomogeneous system with
periodic superlattice order. Therefore s and s’ effectively act as additional Fock base
indices. Thus the eigenvalue and eigenvector structure of a homogeneous system
is retained in our case. As has been discussed in App. (K.1.1) of [Bis12], eigenval-
ues for matrices of this form always appear in pairs wg 4 and -wy ., where v is the

(k)
quasiparticle mode index. They have corresponding eigenvectors x(&7) = (_li,(kﬁ))

KA)*
and y*&7) = (_lr(ij)i ) which are orthogonal with respect to 3. The two vectors
are furthermore linearly independent and have opposite sign in the pseudo norm
generated by ¥. Due to the nature of the quasiparticle matrix, namely that it de-
scribes non-interacting infinitely lived quasiparticle modes, we expect to only find
real eigenvalues with wy , = wy .. The appearance of imaginary eigenvalues in con-
trast implies the instability of the mean-field ground-state assumed prior to a quasi-
particle analysis.

Non-diagonalizable sub-block of the condensate

In the condensate phase there exists one eigenvalue 0 in the sub-block of k = 0 which
does not possess a conjugate pair of eigenvectors, resulting in an incomplete basis of
eigenvectors in this sub-block which therefore is non-diagonalizable. It can thus only
be transformed into Jordan normal form. As we will see, this case leads to a quali-
tatively different Hamiltonian and as such requires special treatment. The unpaired
eigenvector corresponding to the zero eigenvalue pair appearing in Hqgp(k = 0) has
the structure

1

*This is in accordance to an analogue derivation via the equation of motion as discussed in [Bis12].
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Thus its pseudo norm p'p = 0 vanishes, which corresponds to the case of x (k=07=1)
and y =071 collapsing onto one another. Therefore we normalize this special vec-
tor with respect to the euclidean norm p'p = 1. This determines p up to a complex
phase factor. Assuming no further vanishing eigenvalues exist, the remaining eigen-
vectors x(¥=07>1) and y(k=0>1) span a (2D-2)-dimensional subspace of this block.
They are mutually orthogonal and can be normalized with respect to X for all higher
mode indices v > 1.

(k=0 5 (k=0,0) _ 5y (6.52)
y(kzo,v)*zy(k:O,a) S (6.53)
x(&=0) 5y, (k=0.0) _ (6.54)

Furthermore, as they are eigenvectors of different eigenvalues, they are also orthog-
onal to p which is linearly independent of all other eigenvectors. So

p'ox(k%) -9 and ptuy®0e =g, (6.55)

Thus these vectors span almost the entire 2D-dimensional subspace corresponding
to k = 0, but with a single basis vector missing to complete the basis. We denote this
last vector by q and it can be implicitly defined via

SHop(k = 0)q = —%p. (6.56)

Here m is a mass-like real number that is not to be confused with the effective mass
of the quasiparticle modes. Its value can be determined a posteriori and is fixed by
the normalization condition. While q in principle can be any vector that is linear
indepenent to p and lies within the generalized eigenspace corresponding to the
eigenvalue zero, (6.56) determines q up to a scaling factor. In analogy to the form of
p we can choose the form

(0)
Vv
q=-1 (V(O)x—) . (6.57)

This definition is compatible with (6.56) and linear independent to p. Its ¥-norm
vanishes as q"Xq = 0. We thus normalize it via its relation to p:

q'Ep=i. (6.58)

In conclusion we now have the complete set {x*=0:7>1) y(k=02>1) 5 o1 of basis vec-
tors spanning the entire subspace corresponding to the block Hgp (k). In this basis
YHgp(k) can be transformed into Jordan normal form. Let us briefly write down
the completeness relation corresponding to the k = 0 subspace, which holds in a
condensate state:

1 (k=0) _ Z (X(k=0:’7)x(k=0ﬂ)+ _ y(k=0ﬂ)y(k=07’v)+) Yy i(qp+ _ pq+)2. (6.59)
v>1
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This representation of the unit operator can be checked by considering the orthogo-
nality relations presented above while applying the unit operator to the set of basis
vectors.

Insulator and diagonalizable sub-blocks

In case of an insulator state none of the eigenvalues vanish in any of the k-blocks.
Thus we always have a complete basis of eigenvectors {x(7) y(7)1, This structure
also applies to every k # 0 block of ¥Hgp(k) in a condensate state. Therefore the
unit operator simplifies in comparison to the k = 0 block of the condensate:

109 = 3 (xUen)xlen)’ _y ey ety 5, (6.60)

v>1

6.3.2 Quasiparticle mode operators

In order to conclude the diagonalization of the Hamiltonian quasiparticle matrix let
us finally define the Bogoliubov-type quasiparticle mode operators.

Condensate

We first consider the condensate phase, for which the k = 0 and = 1 mode has to be
treated separately:

Ba = x('y ;) —u'G 4 v, (6.61)
Bh=-y@'s ( ¢ +) =v@'g +u'6, (6.62)
PP’ (;) ] CHE L U ] (6.63)
Q=—q'% ;) = % (—ivl-(f)) 50, - el ) (6.64)

(k) —y&)*
Note that the lower half of each eigenvector x(%7) = (—i(k”) ) and y(&7) = ( 1:21(77)* )

within a given block corresponding to ¥H¢p (k) implicitly refers to the —k sector, as

v Gt Z U(k’v) ~(z)+ and u&'st = Z u(k’v) (Z

i>0,s i>0,s

(6.65)

S

Thus one has to be careful about the distinction of the upper index k as used in u(*),
representing a vector in the sub-space of the corresponding block, and its usage as a

lower index k in u( ) , which is a vector in the entire space where the indices (i, s, k)
refer to a Gutzwiller ﬂuctuat10n mode. With that in mind and assuming completely
bosonic fluctuation operators (6.20) let us briefly derive the commutation relations
of the quasiparticle mode operators. For k, k' € 1.BZ’
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k,a)* ~ (i k,a)* ~ (i)} k’, * k,
[Bea B, = ZZ[( Y0 e G0 KNGO L K50 ]

1,5 J,S

i Z (u(k,a)*u(k,'y) _ U(k,a)*v(k,w)) - 5k,k’5ow

/ 1,8 %,8 ,8 1,8
2,8
The equality in the last line stems from the orthogonality relations of x(*) and y(®).

The matrix W corresponding to the generalized transformation, which diagonal-
izes the system, is defined using the eigenvectors as column vectors:

W = [x(l),...,X(D_l),z'p,y(l),.. (D-1) zq] (6.66)

HereD = L.N.N = LN is given by the full size of the space of fluctuations as given by
the number of unit cells L., the size of the unit cells V. and the local Fock space size
N. Regarding the inverse matrix, which yields the explicit mode operators (6.61)—
(6.64), we have to keep the symplectic nature of the representation in mind. There-
fore we define

wl=wiswwis =sw's. (6.67)

The matrix 3. can be shown to have the following form, compatible with the defini-
tion of the quasiparticle mode operators introduced above:

1p_q
0 i,
-Ipy
i 0

=wtew. (6.68)

M
Il

Thus the transformation and its inverse can also be written as

B ) i B
BQ* :EW*E(;) and (;):W B% . (6.69)
P P

For completeness, we write down the explicit form of this transformation for the
individual fluctuation operators, which is given by

0 = 2 (w2 Ba — vi D BE) + D @ + o P, (6.70)
K3 * (0% (0%
0 = Y (DB - vl ) - il N @ + 0P 6.71)

67

Insulator

As there always exists a complete basis of eigenvectors in the insulator, the trans-
formation structure is significantly simpler in that case. Thus we only need to intro-
duce the quasiparticle mode creation and annihilation operators 5 and 3, as given
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in (6.61) and (6.62), which also include the (k = 0,7 = 1) mode in this case. Accord-
ingly the quasiparticle mode index may now take on any of the D possible values
and the transformation matrix W has the simplified structure

W = [X(l),...,X(D),y(l),...,y(p)]. (6.72)

So it is given via the — now complete — set of eigenvectors used as column vectors.
The transformation and its inverse in matrix notation now simplify to

(5*) -xw'ts (;) and (;) =W (5) (6.73)

In explicit form the transformation back to the Gutzwiller fluctuation basis simplifies
significantly in structure:

50 = Y (B~ 0D 8E), (6.74)
5 = 3 (e~ v Ba) (675)

«

Eigenmodes in the full space of modes

As we consider a translational invariant case in terms of a superlattice order, the
collective mode index « splits into a pair of independent quantum numbers o —
(k,~) where  takes the role of a band index. Here we have to be careful as k may
also refer to an element of a given vector when used in terms of the index set (i, s, k),
as for example used in the expression ul(i)k These two meanings should not be
confused and a minus may appear due to the generalized unitary transformation
whenever particle and hole fluctuation operators are coupled.

We now consider the case a = (k, v) resulting from a diagonalization of SHgp (k),
where we use the convention from earlier of having the k sector in the upper half

and the -k sector in the lower half. The eigenvectors in this lower dimensional sub-
- (o _ [0 e - (VY hichin
space were introduced as x'*7) = ) and y'*7) = akn | which in index

notation have the index pair (4, s) where i refers to the local Gutzwiller modes’ and
s to the unit cell sites. Thus when we consider the vectors x(®) and y(® for the full
space we have to keep in mind that their upper half vectors u®?) and ~v(*7)" lie
within the k sector, while the lower halves —v(%7) and u®")" lie within the —k sector
resepctively. This consideration implies the relations

k k
gs?c? =0k kfu( ) and v

) Z’,S

(k)

(2 is k! 6k,—k’Ui(,l;’Y) (676)

between the total and reduced sub-spaces.

Furthermore the conjugate pair of vectors x(*) and y(®) actually correspond to
eigenvectors obtained from the diagonalization of two different blocks. Let x(*) be
the full vector obtained from a positive eigenvector of Z’}:[Q p(k), then y(o‘) is its
conjugated vector obtained from a negative eigenvector of YHop(~k). Therefore

5Various particle components are implicitly contained in the Gutzwiller modes.
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the sub-vectors u*%7) and v(*%7), obtained from the diagonalization of opposing k
blocks, have to be chosen so the following relations hold:

u&") = u(*kﬁ)j (6.77)
v = (k) (6.78)

No we can finally write down the explicit transformation relations (6.70) and
(6.71), as obtained in the condensate for a system with periodic superlattice order:

50 = 2 (w7 B - v B ) b, (00 P+l Q) (6.79)
Y
Z' 1, * * . *
ar = (w7 B B ) + b, (0 Pl Q). (6.80)
Y
(k7)

In this expression u is the i-th element on the s-th unit cell site of the sub-vector

©,8
u¥7), which is the ~-th eigenvector resulting from a diagonalization of the D x D-
dimensional block labeled by the quasimomentum k. Note that for k = G, the sum
over v starts with the second mode in a condensate. In an insulating state, in con-

trast, the sum is always complete and the last two terms do not appear.

6.3.3 Jordan normal form of the quasiparticle Hamiltonian #(?)

Once more we have to consider two cases separately as the qualitative form of the
non-interacting quasiparticle Hamiltonian depends on the existence of a complete
basis of eigenvectors. While such a basis exists in the insulator it is incomplete
in the condensate®. In the latter case we therefore get an additional term reminis-
cent of the kinetic energy of a free particle. To find the expression of H(?) (6.29)
in terms of quasiparticle mode operators and the momentum-like operator P, we
multiply Hop by 1 = £¥ from the left and by the completeness relation, as given
by (6.59) and (6.60), from the right. Applying the orthogonality and eigenvector re-
lations (6.61)—(6.64) then yields the Jordan normal form of the quasiparticle Hamil-
tonian.

Condensate

In the condensate we have to use the extended completeness relation including the
conjugate vectors p and q to obtain

Hop = X (SHar)1 (6.81)
N 1
= Zkﬁ (Ex(k,v)wlwx(k7'y)+E N Zy(k,v)wkﬁy(k,v)*z) N EZPPJFE (6.82)
Here the summation ikﬁ denotes the reduced sum including all quasimomenta k

and band indices v, except for the combination (k = 0, = 1)” which is replaced by
a momentum-like term given by p. When we now use the quasiparticle operator

®The corresponding collapse of eigenvectors also happens in the limit of infinitely strong interac-
tions due to the localization of modes.
"This is related to the fact that there is no bosonic sound mode at k = 0 in the condensate.
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definitions (6.61) and (6.62) in combination with (6.63) we end up with the follow-
ing representation of the second order quasiparticle Hamiltonian (6.29), within the
assumption of exact bosonic commutations relations for the fluctuation operators:

l& + + P21
1@ §zkﬁwkﬁ (B By + BrerBrory) + o 5Tr(h) (6.83)
~ 7)2 1 /=
1.
= Dk BB + 5=+ 5 (D~ Tr(R)). (6.84)

This representation is given in terms of the generalized Bogoliubov creation (anni-
hilation) operators Bltﬁ (Bk,y) and includes the momentum-like operator P which
can be considered the generator of translations in the global phase of the condensate
mode [LY96]. By expressing the Hamiltonian with ﬂf; . and fx  in normal form we
find an additional scalar contribution proportional to ikﬁwkﬁ. Note that the two
scalar terms generate a shift of the total energy. While both contributions ikﬁwk,7
and Tr(h) would diverge individually in the limit of no truncation (N — o), even
in a finite system, in combination they yield a finite correction of the quasiparticle
ground-state energy, effectively lowering its value in relation to the Gutzwiller state
energy.

Insulator

In contrast to the condensate, the insulator always has a complete basis of eigenvec-
tors within which the quasiparticle matrix can be represented. As the same deriva-
tion applies, the Hamiltonian (6.29) can be expressed fully in terms of the general-
ized Bogoliubov operators:

1
’H(2) - Zwk,’yﬁlt,'yﬁkv’)’ + 5 (Zwkﬂ - Tr(h)) . (6.85)
k,y

k,y

Thus we see that the summation includes every mode, including the (k = 0,y = 1)
mode. The lowest two bands v € {1,2} in the regular homogeneous Mott insula-
tor represent hole and particle excitations respectively. They are fully delocalized
quasiparticles, each with a well defined quasimomentum. In the limit ¢ — 0 the
bands become flat, implying a localization of the states.

It should also be noted that the diagonal form we find here seems to be indis-
tinguishable from the homogeneous case. But we have to keep in mind, that we
actually consider more general states with periodic superlattice order. In that case
the quasimomentum summation is limited to a reduced Brillouin zone, which has
1/N. independent quasimomenta in comparison to the full Brillouin zone®. Accord-
ingly the number of possible values for the mode index + is increased by the factor
N.. Thus we can see that the total number of independent modes always remains
the same.

6.3.4 Quasiparticle ground-state

Now we have finally shown that the initial Hamiltonian (6.1) expanded up to second
order in the quasi-bosonic Gutzwiller fluctuations can approximately be rewritten in

’Quasimomenta outside the reduced Brillouin zone correspond to quasimomenta inside the re-
duced Brillouin zone, which are obtained by adding a proper reciprocal lattice vector G..
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terms of a simple non-interacting quasiparticle Hamiltonian. The main approxima-
tions made along the way were the assumption of an exact bosonic commutation
relation for the fluctuation operators and the omission of quasiparticle interactions
given by H®) and H*). The former property can be checked a posteriori, as we
will see in Sec. 6.4. Depending on the existence of a condensate fraction one either
obtains (6.84), or (6.85) when there is no condensate. Both expressions represent
approximately bosonic quasiparticles which can be described by the two quantum
numbers k (quasimomentum) and ~ (internal mode index or simply band index).
We also note the appearance of an additional scalar term denoting an energy cor-
rection proportional to the system size, which lowers the energy in relation to the
Gutzwiller state. Considering the set of quasiparticle operators, we are furthermore
able to define the quasiparticle ground-state |t)) implicitly as the state with none of
the quasiparticle modes occupied. Therefore it is annihilated by the application of
any of the operators fy .:

B,y [Yo) = 0. (6.86)

Considering the momentum-like Hermitian operator P, which appears in the quasi-
particle Hamiltonian of a condensate Gutzwiller state in the term P?/m and has a
continuous spectrum, one can further characterize the ground-state as minimizing
this energy, implying

P [to) = 0. (6.87)

We note that the operator Q is not part of #(?) while it can be shown that its time-
dependent expectation value (Q) changes linearly in time with a rate proportional to
(P) [Bis12]. As that value vanishes in the ground-state, one can choose the ground-
state such that (Q) = 0 as well.

As a final remark, any finite lowering (X , wky — Tr(h)) of the energy of the
quasiparticle state implies that the ground-state |¢y) of the quasiparticle Hamilto-
nian actually differs from the Gutzwiller state |¢)¢). This difference stems from cor-
related Gutzwiller excitations lowering the energy for any finite and non-zero ratio
ts/Us in any species o. These fluctuations are commonly called quantum fluctua-
tions, which appear in the transformed quasiparticle Hamiltonian as a shift in en-
ergy even for zero occupation of any quasiparticle state. This is reminiscent of the
zero-point energy known from the harmonic oscillator.

6.4 Operator representation in the quasiparticle basis

In order to calculate any non-trivial and thus often non-local expectation values, we
have to express a given operator in terms of the quasiparticle operators ﬂltﬂ and
Bk~ This then allows for the evaluation of expectation values, which may even rep-
resent the effect of an external perturbation, as well as the time evolution of such a
perturbation. Usually any operator in the many-body systems we consider is given
in secod quantization. Independent of whether they are given in terms of Wannier
state, momentum or quasimomentum creation and annihilation operators, one can
always express individual operators in terms of the Gutzwiller basis states, as pre-
viously shown for the operators b, ; and ng in (6.25).



6.4. Operator representation in the quasiparticle basis 109

The representation is obtained by expressing any local product of operators in
terms of |i), ,(j| and the corresponding matrix elements of the considered operator.
From these one can easily obtain any non-local operator by simple linear combina-
tion. The maximum number of BL . and f ,, which can appear in any term, is twice
as large as the number of combined on-site operators used for each term. This imme-
diately follows from the relation between |i), ,(j| and the Gutzwiller state transition

operators a( " and & (l)

A common class of operators — relevant in numerous applications — are ones
which can be expressed as a sum of local operators Oy, where each term is weighted
by an exponential phase factor which depends on a quasimomentum index k:

f S elkTe A, (6.88)

The matrix elements of the local terms are resolved in the Gutzwiller eigenbasis and
given by Ag? = ,(i|A(|j)¢. In an inhomogeneous superlattice system each conceivable
local operator is represented by a set of N, independent matrices. Using (6.13)—(6.16)

we are able to represent any local operator as a linear combination of fluctuation
operators up to at most second order. In general we obtain the form

Z ik-ry

14

J4 . V4 . .
A 10}, (01 + 3 (AL 1), o101 + AS7 10), i) + ZA“mm]

>0 4,7>0

i +
= \ /LC(;k’GTA(S)ezk-rS]l i (A(s) ~ (i l N A(S) (z)s)
\% Nc Zs: [ 0,0 g(:) 0%k

S S ~7,+ ~
SRR Rl W] RS

,7>0 k’el.BZ'

(6.89)

In the last line we have used (6.37) and (6.40). Also note that while the sum for the
quasimomentum k' only spans the reduced Brillouin zone 1.BZ', the |- |-brackets still
describe a mapping back into the full Brillouin zone 1.BZ as |k’| = G + k’ = k. This
is achived by adding a properly selected G among the set of {G} = {G|G -1y = 27n}
with n € Z, so k € 1.BZ. The two relevant sets of reciprocal lattice vectors we have
introduced up to this point are related as {G} c {G,}. Therefore one finds the
following simplifying relation:

ik (rirs) 5 (z) NONR (@)t o _ 1 MOM0)
\/—Z " l,s Uls \/L_ck ;BZ’ Jk+k2,sak2, \/_k ;BZ’ |k+k2|,s kQ,
2€l. 2€
(6.90)

In order to obtain the back folded expression, which becomes relevant for any k
close to the edge of the 1.BZ, we note that we can always write k + ks = G + k" with
G as a reciprocal lattice vector of the underlying optical lattice. Thus we have k' =

+
|k + k2 |. To conclude the last step we just have to consider that & (G?Jrk, &l(z,) elGTs =
5.1({11)+ez27rn

We can see that any operator of the type (6.88) can exactly be represented in
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the fluctuaction basis (6.89). Then it consists of three contributions of increasing or-
der in the fluctuation operators. Its lowest order term is purely scalar and stems
from the Gutzwiller ground-state. The terms in first and second order of the fluc-
tuation operators account for the depletion of the Gutzwiller state. Due to the
presence of Gutzwiller excitations in the quasiparticle ground-state the amplitude
of the Gutzwiller ground-state gets reduced. The second order depletion term is
suppressed by the system size. Inserting (6.79) and (6.80) into (6.89) we find the
representation of the operator in terms of the quasiparticle operators:

A=Y

s

\/Z s iGypr S)r (s (s A (s
( A0k a e O Y DDA + DY) TA )8k |
Y

[

1
VNe

Here we introduce the following set of coefficients for all first order quasiparticle
terms.

+DP AP+ DYIAD]Q) + O(8?) = —= 3 Axs. (6.91)

ij»)y[zus)] - ;) (AE,%)USZ”)* - Agi?vg;kf”*) (6.92)

DDA = 3 (4Gl - A7) (699

e R (694
1>

DGAW] = g 2 (45)u® - AQu") (6.95)
7>

In (6.91) we also use the notation O(3?) for any term that is of second order in any
of the products of 3, 3%, P, Q. Those terms can typically be neglected for low con-
centrations of excited quasiparticle modes, which is the case for the type of linear
response calculations we are interested in.

6.4.1 Mode characterization via order parameter response

In order to get an insight into the structure and character of individual collective
modes, we want to analyze the properties of a given quasiparticle ground-state [¢)g).
Considering a state excited with a single quasiparticle [¢)) = 8} _[¢0) one can verify
that such a state does not break the discrete translational symmetry. Thus it describes
neither a density wave nor an order parameter wave. To describe any of those, a state
corresponding to the classical limit is required, which in analogy to the harmonic
oscillator is a feature that is most pronounced in a coherent state. Therefore we
investigate the properties of states of the form

12, k, ) = e 2k ). (6.96)

These states on average contain |2|* = (2, k, 7] Bf; - Br42, k, ) quasiparticles, in anal-
ogy to any other coherent state. The specific structure and thus spatial symmetry
breaking on the other hand is given by the combined complex phase contained in
both the coherent state parameter z = |z|e!? and in the definition of BL oy
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Now we want to analyze the signatures of individual quasiparticle modes by
looking at — for now — unspecified expectation values. Having derived the quasi-
particle theory in the limit of weak quasiparticle excitations, we may thus focus on
the regime |z| « 1. Thus we may predict the lowest order response of any (local)
operator O. Considering the expectation value of O = (t|O|tho) in the quasiparti-
cle ground-state, we find a deviation from this ground-state value which in lowest
order generally scales linearly in z:

(z,k,~|0|z,k,7) = Og + O12 + O(2?). (6.97)

Thus by determining the real and imaginary linear response encoded in O; we are
able to find the response of different relevant observables for the various quasiparti-
cle modes, allowing us to give a characterization of the excitations.

Density response

Using the density operator as a first example for which to derive its response, let us
give a brief derivation of the first order term. Considering a coherent state that only
contains a very small number of excitations on average we may use the approxima-

t
tion ek = 1+ zB8 . O(2?). Thus we obtain the following expectation value for
the local density 7] = 7f , in a weakly excited quasiparticle mode up to first order in

z = |2[e®:

(z,k, 7|77 |2, k, )
~(thol (1 + 2* By )G (1 + 2B, )[tbo)
o ‘Z’ il k| -(r;+rs)—i0 ~(S)
o T (et el

In this derivation we have used the following commutation relation, which also de-
termines the ¥-normalization condition as used for the eigenvectors of the quasipar-
ticle matrix:

[ﬁg] + e_i[kJ,.(rl+rs)H‘QDEEJ/,,y[ﬁZ])

T (kva)* 4G'r‘ s (kv’Y) (k70‘)* 4G'r' s (ka) _'Gr' s
[6k+Gr,a7/3k’,'y] :(Sk,k' Z (ui,s et U s " ~Vis et Vi s et

1,8 (698)
= [ﬁk,av Bl‘:’,ry] = 5k,k’6a,7

This expression is valid for any reciprocal lattice vector G, of the extended unit cells,
while both quasimomenta k and k' have to lie within the reduced 1.BZ’. It also uses
the approximation of a vanishing control parameter R (6.20).

Thus we can see that a weak coherent excitation of any quasiparticle mode amounts
to a plane wave spatial fluctuation of the density with an amplitude that depends
on the specific mode. The phase of z determines the phase shift of this oscillation.
A proper choice of 6 will thus yield the amplitude of the fluctuations on each site
s of the unit cell. With that in mind we may also rewrite the expression using
295 = [kJ, Iy — 9, SO
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~O o |Z| i s ~ O -1 (s N

(2 koAl 2.k, 7) = nf + —2= ("Dl [f] + D, [771) + OG). - (699)
In the derivation of this expression we have introduced | k|’ = k — G,, which maps
any quasimomentum outside of the reduced Brillouin zone 1.BZ’ back to one inside
of it, using a proper reciprocal lattice vector G,

In the general case one expects both Dfii,a[ﬁj] and Dfii,a[ﬁ‘g] to be complex.
As we use the occupation operator in the present case, one has to consider the special
property that both terms are related by complex conjugation. This results from the
symmetry of N Uf N o which, when inserted in (6.92) and (6.93), always yields a
real-valued response of the density fluctuations.

Order parameter response

In order to derive the order parameter response we use b, as the considered local
operator. Therefore the response is given as

(2.2l 1) =0+ = (7D il + D, sl + OG?)

=Po0 + |2|0¢00 + O(27) (6.100)

Due to the non-hermitian nature of Bg,g, Dflii',y[i)mf] and Dfii,ﬁ[?)a’g] are not related
by a complex conjugation. Thus the condensate response will be a complex num-
ber in the general case. Without loss of generality we may consider a real-valued
condensate order parameter ¢, ¢ to begin with. In that case the imaginary response
corresponds to a phase fluctuation of the condensate, while a real response corre-
sponds to an amplitude fluctuation. These two responses are defining features for
the Goldstone mode of a superfluid and the Higgs amplitude mode respectively.
Let us now determine the amplitudes of the two possible responses of a con-
densate, considering a given quasiparticle mode. We use the abbreviated notation

b, +ib; = Dfﬁ,ﬁ[émg] and b, + ib; = Dfi}',y[i)@f] for the real and imaginary parts.

Re(5¢po.¢) = cos(9g) (b +by) +sin(9) (b; — b;)
Im(5¢g7g) = COS(ﬁg)(bi + ZN)Z) + Sin(ﬁg)(br - 57«)

Thus the amplitudes of the amplitude (r) and phase (i) response are maximal for
the following values of the phase ;.

P b IM(DE), [bee] - D), [be])
tan(ﬁy)) _ fh bi _ ~E13 il E:)J il (6.101)
brt b Re(Djy, [boe] + Dy, [0o.e])
| _ip Re(DY), [boe] - DS, [boe])
tan(ﬂ(z)) = lir br _ Lk]"y _ leJ il (6.102)
¢ (s) (s)
bi+b; Im(D [boe] + D [bo.¢])
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Judging from the response of individual quasiparticle modes we can determine the
composition of the bands, for example in order to ascertain the number of amplitude
and Goldstone modes respectively, as well as the purity of such an assignment.

6.4.2 Spectral functions

Using the commutation relations of the quasiparticle mode operators we now cal-
culate explicit expressions for various spectral functions, as obtained for the quasi-
particle ground-state |¢)p). In analogy to (4.59), the spectral representation of the
ground-state spectral function Ay (w) = -7 ' ImGy o (w) (see e.g. [AS10; Bis12])
can in general be written as

A (@) = 0(w) A} 1 (w) = 0(-w) A o (w) (6.103)
= (Y0 |©(w) b6 (H — Eg - w)b. - ©(~w)b.6 (H — Eg + w)bws| vo).

The é-function as an expression depending on an operator has to be understood as a
notation which actually is given in terms of the eigenvalues and eigenstates of that
operator:

§(H - By -w) = Y. 6(E, = Eo = w) b ) (. (6.104)

Remember that we only consider the expansion of the original Hamiltonian up to
second order in the Gutzwiller fluctuations, namely H @) = Heow + HP. Thus the
quasiparticle modes are assumed to be non-interacting. In that case we are primarily
interested in the most relevant entries, which are given by the diagonal. We therefore
define the spectral function A®) (k,w), as

A® (k,w) 2AP) (w) = 0(w) AP (k, w) - 0(-w) A (k,w) (6.105)
=(100|©(w)bkd (H® - Ey - w)bf, - ©(-w)bld (H®) - Ey + w)bliho).

As we have shown before the Bloch state creation (annihilation) operators can be
expressed in terms of the fluctuation operators and thus via the quasiparticle mode
operators. In an inhomogeneous, but still spatially periodic system with extended
unit cells, the fluctuation representation takes the following form (with the compo-
nent index suppressed):

~ 1 s ikrs s ~(i t s)* - (i
by, =—Nz[\/Lc5k,GrB(§3 e 1+Z(:]<B( : Ul(c?s +B(0) UE;ZS)
c S 1>
v ] (6.106)

s)* s)* ~(HF ~(z
\/—C”Z;O (Bi(,j) _5i:J'B((),()) ) Z (1](?+k )8 l(<’)

k’e1.BZ'

Next we use the quasiparticle mode representations (6.80) and (6.79) which yield a

representation of b in terms of the generalized Bogoliubov amplitudes v( 1) and

qu). As we are specifically interested in the ground-state we find
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Z B(s) s ypp)

rzz( B B ) oo
c s >0,y

¢— 2 (B - Byl ) Qo)
c S 1>

+TZ-Z D S N A3

s >0 k’el1.BZ'

biltho) =0k, N

(6.107)

We evaluate the last term involving products of two fluctuation operators separately,
keeping in mind that k’ € 1.BZ":

~ ~ (7 k7 * k/ k7
G i Oualo) = = 3 ol g Bt i)

V1,72

+0_|Krak), -k Zv(k, i (k’+k Mo

+ il gul) Z (KI5 )2 Qltko) 6.108)

+ 140 |k/+k], (0) Zv(k ) /8+k 'yQ‘w())
= 0k,00 |k’ +k ], ouz( s) J(OS) |tho)
+ 0k 00| k4|, oul( s) §S) Q9|o).
Summation of these terms over k' within the reduced 1.BZ' yields the expression

~( k' y1)* k'+k *
ZU(IJ(2+I( 01((’) |w0> Z Z Uz(s = U’;L i) ﬂ-[rk’+kj,72/6ik’,'y1|w0>

k' 71,72
i (Y 2
HZ( O K" @9 Y gt )

+ 0 GU() (0)* QO|vo).

7,8 ]s

(6.109)

From now on we focus on the insulating (non-condensed) case, for which a complete
basis of eigenmodes always exists, so neither Q nor P appear. Then we obtain the
state

R 1
b.lr( |1/J()> = (5k,Gr \/ECE + Z Sk,fyﬁi];’,y + — Z Z Sk’[k—k’J,"ﬂ’m/B.[rk—k’J,’yzﬁlt’,’yl) ’1/1()) .
v Ly wersz
(6.110)

The individual contributions depend on the coefficients, which are given as follows:
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(s)* R(s)
B . ;i *
og:z%e@kmzz%( S ) e

s s ,5>0 ~,kel.BZ’
B, E* _ pls)*, ()
Sk, 0 Uis Z V; s (6.112)
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Using this expression the spectral function can straightforwardly be calculated. The
greater spectral function then simply becomes

AP (K, w) = 81, 6(W)LICY? + 3 18126 (Wi y — Bo —w) + O(L7). (6.114)
Y

All terms in second order of the quasiparticle amplitudes u and v are suppressed
by the factor 1/L. So we may neglect them for large system sizes assuming a small
occupation of the quasiparticle modes, while they become relevant for small system
sizes and especially for a large occupation of quasiparticle modes. They describe
contributions from states, where adding or removing a particle generates two quasi-
particles. We also do not consider the additional terms proportional to the P and Q
operators, which only appear in the condensate regime. We justify this by arguing
that those expressions only yield a constant correction in the 1/L expansion to the
(k = 0,w = 0) spectral weight of Ag)(k,w), which itself diverges linearly in system
size whenever a condensate is present. Furthermore, as equal (divergent) terms also
appear in the lesser spectral function Ag) (k = 0,w = 0), both terms cancel in the full
spectral function due to their opposite signs.

What remains to complete a derivation of the full spectral function is the calcu-

lation of the lesser spectral function .ASQ) (k,w), which is analogous to the presented
derivation. The main differences stem from interchanging ISE and Bk in combina-
tion with an additional minus sign in the frequency, in turn leading to a complex
conjugation of the terms, while © and v switch roles.

Green’s functions

As is well known, knowledge of the spectral functions can be used to calculate
Green’s functions using the spectral representation (see e.g. [AS10; Bis12]). Thus
one obtains the time-ordered Green’s function via

(2) (w/)

e :f‘”d / kk’ ,
ke () oo Y~ w "+isgn(w’)0*

(6.115)

while the retarded (r) and advanced (a) Green’s functions are obtained via

™ oo (2),(00,)
Ghaw) = [ du L (6.116)

w—-w'+i0*’

where the sign (+) depends on the chosen Greens function (a).
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6.4.3 Single-particle density of states

The density of states DOS(w) for a given many-particle state |¢)(/N)) containing N
particles is a measure for the number of many-particle eigenstates in the energy in-
terval [w,w + dw[. It contains available states both in the (N + 1) particle subspace
(particle excitations) for positive quasiparticle energies with frequencies above the
chemical potential and in the (/V 1) particle subspace (hole excitations) for negative
quasiparticle energies with frequencies below the chemical potential. It is defined as
the trace of the spectral function:

DOS(w) = > Are(w) = >, Axk(w). (6.117)
1

kel.BZ

As such it is independent of the choice of the single particle basis and therefore a uni-
versal, frequency dependent function. Its shape and the existence of singular points
strongly depends on dimensionality, on lattice geometry and expressly on interac-
tions as well as the occurrence of spontaneous symmetry breaking (see Sec. 7.4.2 and
Sec. 8.3.2). In Fig. 4.2 an exemplary comparison of the quasiparticle density of states
with ones obtained using RB-DMFT is shown.

6.4.4 Corrections to local observables

Due to the depletion of the Gutzwiller ground-state |¢)) in favor of the quasiparticle
ground-state [y), we expect to observe corrections for the local observables in |¢g)
compared to the mean-field state. These corrections can directly be derived using
the fluctuation representation (6.13)—(6.16) of the local operators. Thus once more
omitting the component index o we find

(B) =BS) + ¥ BE (697610) (6.118)
,j>0
(s)* Bz‘(;)* N ~(z) —i(k—K')-(r;+1s)
=Bjy + Z I, Z (O)s Oprghe ’

4,7>0 k, k'e1.BZ’
(us) Né‘j)u EN(S) <g> 5y (6.119)
i,5>0

()
s N’L j Yo —i(k-k")-(r;+r
=Né’0)+ Z L:J Z <Ul(<js) ()) (k=k')-(ri+rs)
>0 e xwel Bz

The remaining expectation values in the quasiparticle ground-state can be simplified
using (6.79) and (6.80) in combination with the commutation relation of the quasi-
particle mode operators (6.66).

Z (01({])+0'(')) ~i(k—-K)-(r +15)
'e1.BZ

) (6.120)
L_ Z (Z (k,’Y) (k,’Y) + u(o) (,03)51{70<QQ>)
1.BZ

Thus we find that the correction terms in the condensate always depend on (QQ)
taking the place of the (k = 0,7 = 1) term. Unfortunately, this term does not allow
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for an exact direct calculation. Once more a possible approximation is to neglect
this term entirely. As Q and P are canonical conjugate operators corresponding to
the U(1) degree of freedom in the phase of the condensate, Q is limited to a finite
range, contrary to its behavior in the corresponding linearized equation of motion
(discussed in [Bis12]). Therefore any of its higher order expectation values actually
has to be finite, so its contribution will vanish in the limit of infinite system size

L. — oo.

6.4.5 Single-particle density matrix

The single-particle density matrix is given by the equal time Green’s function, but
can also be calculated directly in the quasiparticle basis. Let us briefly derive it
in the Wannier basis, where it depends on the two positional singleparticle indices
¢=(l,s)and ¢’ = (I',s") as well as the considered component, the index of which we
once more omit for improved readability.

ApLA

po = (bpbe) 6.121)

While the diagonal elements of the single-particle density matrix just give the on-
site density of particles for a given particle component of the lattice gas, it is the
off-diagonal elements which contain information on the off-diagonal long range or-
der (ODLRO) corresponding to the existence of a condensate fraction. As we have
already shown the calculation of the diagonal elements the previous section, we now
focus on the off-diagonal elements.

Once more we use the relations (6.13)—(6.16) in order to represent the local an-
nihilation and creation operators in the Wannier basis in terms of the Gutzwiller
fluctuations:

b, _Bés31+z(3<s> o +BY)s (Z)) > BYs () 9. (6.122)

>0 ’ 1,7>0

Thus the off-diagonal elements equate to the expression

G (

B(()i])*]l + ZE) (BZ,(B)*al(;) + Bé;)*al(;)*) D B(s) AZ(JS)*&l(ZS)]
> 1,5>0

(6.123)

S A A R e

>0 ,7>0

The advantage of evaluating the elements of the density matrix in the local Wannier
basis lies in the fact that all fluctuation operators on different sites commute exactly,
due to their original definition (6.11). In the next step we bring all terms in normal
order, while only considering terms up to second order in the fluctuation operators.
As the transformation relating the fluctuation operators ' and & to the quasiparticle
mode operators 3t and f is linear, the same order of approximation is guaranteed
in the quasiparticle basis. This furthermore implies that when evaluating the matrix
elements in the quasiparticle ground-state [¢)y), we know that all terms of first order
in 67 and & vanish exactly, due to (6.86), (6.87) as well as the relation (1| Q) = 0
which has been discussed in Sec. 6.3.4. Thus expanded up to second order, we find
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s s s it s’ s)* N
(0 o) =BSY BSY +BS S BN ) 600y + B Z BE (610 6(0)
i/,3>0 4,5>0
s)* (s tLG s)* (s ~ (3
3 [Bly B0 B B0
1,7>0
s)* (s N OM s)* (s i)' . o
+B§) BG (65,61 + B B((Lj)(ol(s) al(/),)] +O(6%).
(6.124)

In a last step we need to evaluate the individual expectation values by expressing
them in terms of the quasiparticle mode operators as well as P and Q. Using the
notation ry = r; + ry we find the following expressions:

t 3 1 -1 ry—r * *
v =g X e ”(Z v u§f?6k,o<QQ>), (6125)

1.BZ
(6 Z(IJ)I&Z(ZS)>_ L Z k(= re)(Zu(kﬁ) (k7)* +u(0) (2’)51{’0<QQ>)7 (6.126)
Le kel.BZ' ’
(Ul(,])j l(ls)*r LSS k(- r[)(zv(k”/) (ky)* +u(os),*u( )" O (QQ>)‘ (6.127)
ckel BZ'

With these we can obtain the spatial density matrix, provided a proper treatment of
(QQ) (appearing in place of the (k = 0,7 = 1) term in a condensate), which may be
done as previously discussed by neglecting it for a large system size.

Let us now briefly discuss the form of (6.124). Its first three terms all only con-
tribute in the presence of a finite (local) condensate order parameter due to the B(gsg
terms. Their independence of the indices [ and I’ shows that they yield a finite back-
ground term describing the ODLRO. The remaining terms in the square brackets,
which stem from non-local quasiparticle correlations, are always present in any con-
densate or insulating phase. We furthermore note that the diagonal of the single-
particle density matrix equates to the local occupation number (7;,), which can also

be derived directly as shown in the previous section. But as IV, (e ) and B, (s) Bl 8 are
only identical for t/U — oo the identity of (6.119) and (6.124) for any site Can p0351b1y
be used in order to obtain (QQ).

6.4.6 Quasimomentum distribution

The quasimomentum distribution is given by the diagonal elements of the single-
particle density matrix in quasimomentum space and can be obtained via a Fourier
transform of its Wannier space counterpart (6.124):

~ itz 1 i(krp-k'ry
Pr k' = (bibk’> = 7 Ze (kro-k'r, )pg,gl. (6.128)
0,0

Alternatively one can also consider the relation to the spectral function in order to
obtain the quasimomentum distribution from previous results, namely from Ag) (k,w):
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(k) = prex =(bbic) = [ AP (k,w)dw. (6.129)

We should note at this point regarding the general case of an inhomogeneous system
that also off-diagonal terms of the single-particle density matrix can be non-zero.
So the momentum distribution does not contain the full information regarding an
arbitrary single-particle measurement. In the case considered in this work, where a
reduced translational symmetry survives in terms of a superlattice of extended unit
cells, the relevant non-vanishing matrix elements are related by the set of reciprocal
lattice vectors {G, }.

6.4.7 Dynamic structure factor

By definition, the dynamic structure factor is obtained as the discrete spatial and
continuous time Fourier transform of the expectation value of the on-site density
operator 7y = 13}134 (see e.g. [Stu93; Bis12]), which for the quasiparticle ground-state
1 yields the following expression:

S(k Z[ 'QZ)O |W(t)n£, 0)|'¢ ) ik-(rpr—1y) zwtdt
EZ’

_ (wo [cd (= Ep - w)i | o)
= (0[S (B ~ Eo ~ w)ind o)

(6.130)

Owing to the inversion symmetry, which is also retained in case of a broken lattice
symmetry with periodic unit cells, we find that 7y = n_x. Thus follows the last line
of (6.130). For a quick overview of the general behavior of the dynamical structure
factor we also consider the momentum integrated dynamical structure factor

S(w) = % Zk: S(k,w). (6.131)

We do not show the explicit form of the dynamic structure factor in terms of the
quasiparticle amplitudes v and u, as the derivation is fully analogous to the spec-
tral function (6.114). One simply has to replace the B(*) and B(*) matrices by the
matrices N) and N(®) corresponding to the density operator represented in the lo-
cal Gutzwiller basis, either with or without its mean-field expectation value on the
diagonal.

Static structure factor

The static structure factor is obtained from the dynamic structure factor via a simple
frequency integration, so

S(k) = fowS(k,w)dw (6.132)

It describes the scattering patterns obtained in diffraction experiments as for exam-
ple achieved via Bragg scattering in cold atom experiments but also in noise cor-
relations (see Sec. 1.4.3) or for electron or neutron scattering as commonly used in
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condensed matter experiments. With an additional sensitivity and control over the
energy of the scattered particles, one also can access the dynamical properties of the
structure factor and thus resolve the quasiparticle band structure (see Sec. 1.4.4).
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Chapter 7

Ground-state phases for
off-resonant Rydberg excitation

In this chapter, which is based on the research published in [Li+18], we will address
the many-body equilibrium ground-state phases for off-resonant and coherent ex-
citation of the Rydberg state, commonly referred to as dressing, while the phrase
weak dressing will be used throughout this thesis, in order to distinguish it from
near-resonant driving of the transition, which we will refer to as strong dressing
(see Chap. 8). In addition we will be considering the mobility of the atoms, allowing
for a fluid component in the many-body ground-state. Interest in this regime is stim-
ulated by recent experimental advances, illustrating the realization of long-range
two-body interactions as induced via laser coupling of the atomic ground state to
Rydberg states [Zei+16; Jau+16]. We will thus discuss supersolidity (SS) of Rydberg
dressed lattice Bosons in an already experimentally relevant setup. We will consider
two-component atoms on a two-dimensional (2D) square lattice, with one compo-
nent (d) weakly dressed by a Rydberg state (r), which generates a tunable, soft-core
shape long-range two-body interaction, in addition to the common local inter- and
intraspecies interactions. The second species on the other hand will remain bare
(b), e.g. corresponding to a hyperfine electronic state that is not Rabi-coupled to a
Rydberg state, as would be the case for the dressed component (see Fig. 7.1(a)).

(b)
(a) _TA_ “|7“>
0

b—@ )

FIGURE 7.1: (a) Two electronic ground states |b) (blue) and |d) (red) in combination with
a Rydberg state |r) are considered. The states |d) and |r) are off-resonantly coupled by a
laser with Rabi frequency 2 and a detuning A. (b) Artistic depiction of a supersolid of
the bare state (corresponding to type SS1, as discussed in the text), while dressed atoms
are in a crystalline order.

After a brief introduction of the considered Hamiltonian, we will first discuss the
many-body phase diagram, as obtained using real-space bosonic dynamical mean-
field theory (RB-DMFT). In addition to Mott insulator (MI), superfluid (SF) and
ordered density wave phases (DW), especially a pronounced region of SS phases
can be found, which is stabilized by the on-site interspecies interactions. More
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specifically we will observe two types of supersolids, where the undressed (bare)
species forms supersolid phases, which are immersed in either a crystalline solid (see
Fig. 7.1(b)) or a SS of the dressed atoms. Regarding the former case we will discuss
the corresponding mechanism behind supersolidity formation, based on a simple
Bogoliubov treatment, revealing how a roton-like instability emerges due to inter-
species interactions. The operator based generalization of this method introduced in
Chap. 6 will then further allow us to study specific spectral properties of the system
in detail. We will finish by discussing the possible experimental realization of the
model using weak dressing of rubidium in an optical lattice in a two-dimensional
system.

7.1 Many-body Hamiltonian

We study a two-component bosonic mixture of atoms on a 2D optical lattice, which is
sufficiently deep, such that our system is described by a single-band, two-component
extended Bose-Hubbard model,

~ U,.r R . PN . o
H = 2 —99 Nio (nwl - (507(,/) - Z tg (bggbjg + hC) - Z HoNio + Z anidnjd.
i,00" 2 (i,5),0 1,0 i<j

(7.1)

The indices 0,0’ € {b,d} denote the internal degree of freedom, which can either
be a bare or a dressed state, while 1320(131-0) are the bosonic creation (annihilation)
operators for the two species o at site i and n;, = ZA)IO_ZA)W. Usyo specifies the local inter-
and intraspecies Hubbard interaction with J, ,» guaranteeing corret counting, while
ts and p, specify the hopping rate and chemical potential of each bosonic species.
And finally, (i, j) represents all nearest neighbor sites i, j.

We assume identical hopping rates ¢ = t;, = t, for both species, as they essentially
only differ in the hyperfine state, while the inter- and intraspecies local (on-site)
interactions can be tuned, either via state-dependent optical lattices [Gad+10], Fesh-
bach resonances [Wid+04] or a combination of both. As we now are considering the
weak dressing regime, the long-range interaction betweens sites i and j takes the
form of a soft-core potential

Optical lattice

FIGURE 7.2: Shape of the soft-core interaction potential V;; (red) in relation to a typical
optical lattice (green). The interaction couples atoms in the Rydberg dressed state |d) at
a finite distance up to the soft-core radius R., which is typically larger than the lattice
spacing a. Here R. = 2a is shown. Beyond this distance, the tail of the interaction
decreases as 1/r°, corresponding to the van der Waals interaction between pure Rydberg
atoms.
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Vij = (7.2)
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as shown in Fig. 7.2. The maximum of the soft-core interaction potential is charac-
terized by V' = C~’6 /Rg’. é@, R. and a are the effective van der Waals constant, the
soft-core radius, and lattice constant, respectively. For the following simulations we
fix the local intra-species interactions Uy, = Ugq = U, thus setting the unit of energy.
In Sec. 7.5 we will discuss these parameters in further detail, focusing on the experi-
mental realization.

RB-DMFT provides a nonperturbative method to describe many-body systems
in two and three spatial dimensions. As it is able to capture both higher order quan-
tum fluctuations and strong correlations in combination with arbitrary long-range
order in a unified framework (see Chap. 4 and e.g. [Li+11; LHH16]), it is our tool of
choice to determine the many-body ground-state phases. The details of this method
are provided in Chap. 4. We typically consider lattice sizes as large as N, = 48 x 48
sites with periodic boundary conditions and an experimentally relevant soft-core
radius R, = 3a [Zei+16]. A supersolid is characterized by a non-vanishing conden-
sate order parameter ¢;, = (EZU) in combination with crystalline order, manifest in
the real-space density distribution n;, = (7;,) of either species or in the total den-
sity n; = n; + niq. Note that a similar model based on dipolar gases has previously
been investigated numerically within the static mean-field Gutzwiller ansatz, while
also only considering the nearest-neighbor part of the dipolar interactions [WSN16].
Here we take into account the full range of the interaction potential within a self-
consistent Hartree ansatz (see Sec. 2.2.3), while we also give a comparison of the two
systems in Sec. 7.6.

7.2 Many-body ground-state phase diagram

The phase diagram shown in Fig. 7.3 summarizes the main results. Depending on
the parameters t/U, V' /U as well as the chemical potentials 1, and pq, we find five
different phases realized in the two-component system. Besides MI and SF, the long-
range interaction also stabilizes two kinds of supersolid (551 and SS2) as well as
ordered density wave phases, which are discussed later in this section. For now we
will focus on the features of the phases in the vicinity of unit filling 7, + n;q ~ 1.

Starting in the strong coupling limit, where U,, > t, the 2D system expectedly
favors MI phases with uniform total densities. On the level of the pseudo-spin states
|b) and |d), these insulating phases show a rich variety in pseudo spin order, which
can be changed by varying the two-body interactions (as given by V/U). One ex-
ample is given in Fig. 7.3(a), showing an inhomogeneous structure in the relative
densities. Furthermore, when one increases V' /U continuously, the filling fractions
fa = X;nia/Nigt of the dressed component can form a devil’s staircase structure, as
depicted in Fig. 7.4(a). As only finite system sizes with periodic boundary condi-
tions are considered, the completeness of the staircase in this 2D system remains an
open question. In 1D lattice systems on the other hand, the devil’s staircase has been
studied extensively [Bur+09; WB10; BP12], as well as its completeness for a convex
long-range repulsive interaction [BB82]. In addition to these phases there are also
very small regions, which are occupied by DW phases at non-uniform total density,
as shown in Fig. 7.5.
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FIGURE 7.3: Phase diagram of a two-component mixture of a ground-state species b
and a Rydberg dressed species d, on a square lattice in terms of hopping amplitude ¢
and Rydberg dressed interaction strength V. One can distinguish four stable phases in
the diagram: Mott insulator (MI) with spatially uniform total local density and crys-
talline density order for each species, homogeneous superfluid (SF), and two types of
supersolids (SS1 with Rydberg dressed species being in the crystalline phase, and SS2
with both species being in the supersolid). The remaining parameters of the model (7.1)
are Upg = Ugp = U, pp = 0.2U and pq = 0.7U. (a)-(d): Real-space density n; 4 and conden-
sate order parameter ¢ 4 distributions of different phases, with lattice sizes being the
square of the area of the unit cell of the Rydberg dressed species [MI, Ny, = 12 x 12(®);
MI, Njg = 16 x 16(®); SS1, Njgt = 15 x 15(®); SS2, Nigr = 20 x 20(©)], as shown by the
markers in the main figure. For @ the spectral properties of the superfluid phase are
discussed in Sec. 7.4.

Increasing the hopping rate, we observe a phase transition to a pronounced re-
gion of supersolids, starting with the SS1 phase, where the bare state is the first to
encounter a non-vanishing condensate order parameter, which is accompanied by
a finite superfluid fraction. Apart from that the dressed state remains in an insulat-
ing phase with a crystalline order (one example is depicted in Fig. 7.3(¢)). For even
larger hopping rates ¢, both species are in supersolid phases (552, with an example
shown in Fig. 7.3(d)), for which both condensate order parameters show a spatial
inhomogeneity, as does the density distribution, corresponding to a non-trivial on-
and off-diagonal long-range order. The existence of a large supersolid region indi-
cates a higher chance for directly observing these phases in realistic experiments, as
compared to the single-component case [Hen+12; Cin+14; Mat+13; Dal+15] at weak
dressing.

Considering the bare species all by itself one would only expect either a SF or MI
phase, due to the local interactions [Fis+89; Jak+98; Gre+02a]. But when immersed
in a background of the dressed species, the flow of the bare component is suppressed
by the crystalline distribution of the dressed part. As this suppression is mediated
by the local interspecies interaction, the widths of the supersolid phases SS51 and 552
will strongly depend on the interspecies interaction Uyq. This relation is depicted in
Fig. 7.4(b), showing that both phases shrink as Ujq decreases, with the SS1 eventually
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FIGURE 7.4: (a) Devil’s staircase pattern of the filling fraction fq = ¥; na/Nia: for the
Rydberg dressed species in the (frozen) zero-hopping limit. (b) Width 6t = ¢™@ — ™" of
the supersolid phases SS1 (blue) and SS2 (red), as a function of the interspecies interac-
tion Uyy/U for fixed Rydberg dressed interaction V /U = 0.1, where 2/ corresponds
to the upper/lower phase boundary of the individual SS phase.

disappearing for sufficiently small values of Ujq. For vanishing Uj,q both components
can be considered as independent sub-systems, where the long-range interacting
dressed species forms a SS all on its own, corresponding to the SS2 phase at Uy =
0. With that in mind, it is especially noteworthy that also the SS2 phase widens
as a function of U,q, which implies a stabilization of non-trivial crystalline order,
originally induced by a long-range interaction, by a simple local interaction.

A further increase in the hopping rate finally leads to a melting of any crystalline
order, resulting in a SF phase, characterized by nonzero SF order parameters for both
components, while either spatial density becomes homogeneous.

As all results so far are at approximately unit filling, we now study the stability
of the observed quantum phases for varying filling, realized by switching from fixed
chemical potentials, to fixed long-range interaction, while still varying the hopping
rate t. Considering the limit U,, > ¢, the system is found to favor either a MI
or DW phase, both with various types of crystalline order in either of the atomic
components. The DW can be observed as a phase with non-uniform total density,
breaking the lattice translational symmetry. Observed densities are n;, = 1 and n;q =
2, appearing in the green region depicted in Fig. 7.5(e). These DW further exhibit
nonzero local density fluctuations in both components, while they are limited to the
ng = 2 site in the dressed component, as is shown in Fig. 7.6(b). Quantum fluctuations
as a result of higher-order tunneling processes otherwise are weak, owing to the
strong collective long-range interactions. The DW phases of the dressed species have
furthermore been previously predicted in the single-species case [Pup+10].

In the intermediate hopping regime, away from the deep Ml regime, two types of
quantum phase transitions can be observed. The first transition is from MI to super-
solid, realized by the undressed species, exhibiting a non-zero condensate order pa-
rameter avoiding sites occupied by the Rydberg dressed species. This is followed by
the dressed species itself undergoing a transition to a supersolid. These regions ap-
pear already for relatively small long-range interactions, as shown in Fig. 7.5. Once
more we specifically observe, that the additional local interaction to a bare compo-
nent (Upq) tends to stabilize the supersolid phase, as it widens for increasing Uy, (see
Fig. 7.5(f)), while the SS1 phase clearly disappears for decreasing Up,. Additionally
we find that the long-range interaction shifts the phase transition between MI and
SS1, even though the bare species does not exhibit long-range interactions itself. As
seen in both Fig. 7.3 and Fig. 7.5, the phase boundary tends to move towards lower
hopping rates with increasing long-range interaction V.
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FIGURE 7.5: Phase diagram of the Rydberg dressed system (7.1) on a square lattice,
with dressed interaction V' /U = 0.02 and 0.2 respectively. Regions of stable supersolid
phases are denoted by the cyan (SS1) and pink color (SS2). The Mott insulating phase
(MI) exhibits spatially uniform total density, while an inhomogeneous superlattice order
appears in the dressed component, as is shown in (a)-(d) for the corresponding real-
space density distribution of ny. Lattice sizes of these are given by the square of the
area of the unit cell of the crystalline order in the dressed species [Ny = 12 x 12(®);
Niat = 15 x 15(®); Niat = 30 x 30(©); and Ny, = 34 x 34(©)]. Inset: (e) Density wave phase
(DW) with n, = 1 and nq = 2 for the respective sites filled by either of the two species,
following the crystalline order of the dressed component. The width 5t = T — tmin of
the SS phases [SS1 (blue) and SS2 (red)] is shown in (f), as a function of the interspecies
interaction Uyq/U with U = 1 for the Rydberg dressed interaction V /U = 0.2 and the
chemical potential /U = 0.4. Other parameters are /U = up/U = pq/U - 0.05 and
Upq = U is used for the phase diagrams. The spectral properties of the various phases
(for o, o and *) are discussed in Sec. 7.4.

A final quantum phase transition at even higher hopping rates in the weakly
interacting regime ends in a superfluid phase, where a uniform distribution of the
total density is found in the simulations. In this phase both components exhibit
homogeneous density distributions for the first time, meaning any superlattice order
has melted, owing to the increasingly large density fluctuations. Thus the system
only supports a superfluid of uniform density.

7.3 Supersolidity mechanism of the bare species

In this section we will develop an approximate cluster-type Bogoliubov mean-field
theory, in order to shed light on the supersolidity formation in the SS1 phase, where
the dressed species by itself has an oblique superlattice order. In that case we can
assume that the total ground-state wave function can approximately be decoupled
as [1o) ~ |[DWy) ® |1)p), where |¢);) is the wave function of the bare species and [DW,;)
is the wave function of the dressed species corresponding to the observed crystalline
structure in this component. Within this ansatz we neglect quantum fluctuations of
the density wave. Tracing out the dressed part, we can thus derive an effective
Hamiltonian H,;; as H.;; = (DW,4|H|[DW,). Omitting the component index of the
remaining bare species, we obtain the following form:
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FIGURE 7.6: Real-space density n;, ¢ and density fluctuations Ay 4 = ((ﬁbﬁd - (ﬁb,d))2> in
MI (@) and DW (b) phases. Lattice sizes of the considered system are the square of the
area of the unit cell of the crystalline distribution of the dressed atoms [N, = 15 x 15(a);
Nt = 20 x 20(b)]. Other parameters are t/U = 0.03, V/U = 0.3, Upq = U, 113/U = 0.2 and
w1q/U = 0.7 (a), and t/U = 0.0023, V/U = 0.02, Upqg = U, pp/U = 0.98 and pq/U = 1.03 (b)
respectively.

eff_ Zt(ber +hc)+—2nz(n2—1) Z,unl+U12nz (7.3)
(3,3) {3}

Here we introduce the notation {i}, denoting every lattice site occupied by dressed
atoms and U; = ngUpq with g the lattice average of ng4. The last term stems from the
interspecies interaction, where the mean particle number of the dressed atoms has
been used explicitly for each occupied site as 4 = 1, in accordance to the numerical
results in the considered regime. Furthermore, C' = (DWy| ¥, ; Vijnian;q|DWa), a
constant term, denoting the long-range interaction energy, can be neglected in the
effective Hamiltonian.

Interspecies interactions imprint the spatially periodic superlattice structure of
the dressed atoms onto the undressed atoms, thus also breaking the discrete lattice
symmetry of the optical lattice in the undressed component. We will now show that
this mechanism is manifest in the emergence of a roton-like instability in the effective
Hamiltonian. As an example, we consider parameters corresponding to Fig. 7.3(c).
In that case the dressed component forms an oblique lattice, depicted in Fig. 7.7(a).
As can be seen, the unit cell of this lattice is larger compared to the optical lattice.
The example has a; = (1,4) and a = (4, 1) as its primitive lattice vectors. From these
we obtain an area of A = |a; x ag| = 15 sites of the underlying lattice.

Via Fourier transformation we find the effective Hamiltonian in its momentum
space representation. Due to the truncated summation, one has to be especially
careful about the last term,

> i Z Zel(k K)ript by = =4 Z 8, k1 Db (7.4)
kk' {

{i} k K

In this expression N is the total number of sites, V; is the number of unit cells and
G, is a reciprocal lattice vector, implicitly defined via G, - r; = 27n, with n € Z and
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FIGURE 7.7: (a) Density distribution of the dressed (red) and bare species (blue). The
distribution of the dressed atoms follows an oblique lattice with lattice vectors a; and as.
This structure corresponds to the configuration shown in Fig. 7.3(¢). (b) The first Bril-
louin zone of both, the optical lattice (green) and the oblique lattice (red) of the dressed
atoms, also referred to in the text as the reduced Brillouin zone. As the length of the
lattice vectors exceeds the lattice parameter (|a;| > a for j = 1,2), both shape and size of
the reduced Brillouin zone significantly differ from the square reciprocal lattice of the
underlying optical lattice structure. (c) Roton instability of the bare species in the ap-
proximate Bogoliubov model (7.10). Interspecies interactions Usq significantly modify
the dispersion relation (shown along the k,-axis) of phonons in the SS1 phase. When
Uyq is increased, a roton-like instability emerges, which induces an instability in the SF
ground-state phase, leading to SS order. The shown graphs correspond to Upa/U =0
(dotted,black), Upq/U = 0.45 (dashed,blue) and Uy /U = 1 (solid,red). Further parameters
are k, =0,V /U =0.4 and t/U = 0.04.

i € {i}. The size of the unit cell is thus given by L; = N/Ny, so the lattice average
density of dressed atoms in our case is 4 = n4/Lg. Following the generalized ansatz
of the Fourier transformation introduced in Sec. 6.3, we now consider the operators

BL $ = N;l/ ’y iy exp(ik - (r; + r,))b! , where s denotes the relative site index inside a

1,87

given unit cell specified by i. For these operators we find the relations

. 1 -
by, = N > bl (7.5)
611-(+G7«,s = BL,seiGT.rs' (76)

Using these relations we can rewrite (7.4), by splitting the momenta k = |k| + G,
into a linear combination of a reciprocal lattice vector G, and a remainder, such that
| k| lies within the first Brillouin zone generated by the G, vectors, thus defining the
reduced Brillouin zone marked red in Fig. 7.7(b). The reduced size of this BZ is a
reflection of the increased area A of the unit cell compared to the optical lattice, with
the corresponding BZ shown in green in Fig. 7.7(b). Obviously they only overlap in
a region of small absolute momentum. We represent the set of all momenta inside
this reduced BZ by {k}. Thus

Ny NI 1 N N
v o G, 11 kb = — 06, -0k Dhra, vy (7.7)
k,k’ d {k X'} GG
1 . .
=2 2 biue,beay (7.8)
d {k} G,,G..

As momenta inside the reduced Brillouin zone cannot differ by a non-zero G, by
definition, we only need to consider G, = 0 for the delta symbol. Inserting both (7.5)
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and (7.6) into the last expression yields further simplifications, so

1 oy 2 1 ito7 i(Grrs+Gl oy it .
=2 2 haebear =130, X bl b€ (Gr TG ) = 5 b o = - i
d {k} G,G!. d {k} a,.c/ {k} {i}

s,s’

(7.9)

The truncated spatial sum };, thus leads to the introduction of cluster momentum

states, annihilated by the by , operators. We approximate these operators by the full
lattice momentum operators, keeping the crucial truncated momentum sum, to find
a simple approximate form of the Hamiltonian in momentum space:

- .y U pnp n R .
Happ. = = > [+ 2t(cos kya + cos kya) ] bby + o o bEbl b qbie—q + U1 Y bl by
k q.kk’ {k}
(7.10)

In a next step we consider the expansion of this Hamiltonian in the vicinity of |k| =
0, which in the presence of a condensate is occupied macroscopically, so we may
replace b} _, bx-o ~ \/No, and only keep terms up to quadratic order in the operators:

I:Iapp v By — > [+ 2t(cos kya + cos kya) — 2U ) by by

k+0
= R . e (7.11)
AL (bichore + D14 BE) + U7 S blbe.
k+0 {k=0}
Here we introduce Ey = —-UNZ/2N, which is the energy of the condensed atoms,

where Nj is their total number. Furthermore the chemical potential is now fixed
to p = -4t + Uny, + Uy, while the mean occupation number of the condensed atoms
is p = No/N. Most notably, the interspecies interaction only contributes in the low
momentum regions, corresponding to the reduced BZ, which only partially overlaps
with the full BZ, see Fig. 7.7(b). Therefore we have two different forms of the ap-
proximate Hamiltonian, for momenta inside and outside of the reduced BZ. Explic-
itly substituting u, the approximate Hamiltonian can be separated into sub-blocks,
which in the reduced BZ take the form

3 e o Ufp -~ - .
Happ (ke {k}) » 3 [(esk+Uﬁb)bZkbsk+Tb(bskb_skwtbiskbzk)]. (7.12)

s=+1

With Uy = n4Usg, the corresponding Bogoliubov spectrum is given by

S(k) = \/Ek(6k+2Uﬁb), (7.13)

where e = —2t(cos kya + cos kya — 2). This part of the spectrum is similar to that of
a weakly interacting Bose gas in a square lattice. Momenta outside the reduced BZ
yield a different form of the Hamiltonian sub-blocks,



130 Chapter 7. Ground-state phases for off-resonant Rydberg excitation

3 e e Ub o~ - .
H@p&ﬁ{kbazz:kgk+Um—LﬁM;mk+jf%@ﬁgk+ﬁgﬁ;ﬂ. (7.14)

s=+1

The corresponding Bogoliubov spectrum is given by

e(k) = \/(ex — 1qUsq) (ex — 1aUpqg +2UTy), (7.15)

which only is non-zero for large momenta outside the reduced BZ. Given the system
parameters and the mean populations 7y, (74) of the bare (dressed) species, we thus
find a dispersion that is only continuous when either the interspecies interaction
Usq or the dressed population 7, vanishes. Otherwise a discontinuity emerges at
the boundary of the reduced BZ. We plot the corresponding dispersion relations
in Fig. 7.7(c) along the k,-axis for various values of U,q. An extended region of
momenta can be observed, where the mode frequency becomes complex at Uy = U,
which is a roton-like instability. It indicates that the formation of the supersolid in
this regime is induced by the strong interspecies interaction.

The roton-like instability occurs precisely for momenta just outside of the re-
duced BZ. In that region the spectrum (7.15) becomes complex when e < 7qUsq.
From this we can determine a critical value for the tunneling rate,

nqUpq
2 (2 — oS kg(cb)a — Cos kggb)a)

te= (7.16)

Here the superscript (b) indicates that values of the momentum at the boundary of
the reduced BZ have to be considered.

As the explicit structure of the oblique lattice is strongly affected by the soft-core
interaction, we expect ¢, to change as the interaction V' changes. Furthermore, due
to the mostly irregular shape of the reduced BZ (compare Fig. 7.7(b)), a range of

kg(cb) and k‘éb) has to be considered, leading to a range of critical values for t.. As
an example we evaluate critical values of ¢, for a few test cases. We use the crys-
talline structure of dressed atoms at the S51-S52 phase boundary, as obtained in the
numerical DMFT calculations. For V' = 0.3U we then find that ¢. lies in the range
[0.087U,0.094U]. Increasing the long-range interaction, we find an increase in the
range of t., so for V = 0.4U we find ¢, € [0.085U,0.11U] while for V' = 0.5U we
find t. € [0.073U,0.13U]. Although these values roughly follow the tendency of
the numerical calculations, they are obviously unfit to determine the phase bound-
aries accurately within the presented approximate Bogoliubov calculation. This also
should not come as too much of a suprise, considering that the presented type of
instability (crystalline structure of dressed atoms and bare atoms in a homogeneous
superfluid), does not correspond to any situation in the vicinity of the actually ob-
served phase boundaries (MI-SS1-552-SF).

A further limitation of this calculation stems from the observation, that the unit
cell size of the crystalline structure tends to shrink for weak V. In that case long-
range correlations become important in determining the ground-state phase dia-
gram, preventing us from decoupling the total wave function in two parts. Therefore
the presented Bogoliubov calculation is expected to fail in capturing the many-body
physics in that limit.
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7.4 Spectral properties in quasiparticle picture

In order to further our understanding of the instabilities driving the various phase
transitions, leading to supersolid order, we now analyse various spectral properties
of the dressed limit. Obviously the long-range interaction is the primary cause be-
hind the appearance of phases with broken lattice symmetry. Therefore we start our
discussion by considering the properties of this interaction.

Due to its soft-core shape (7.2), the long-range interaction possesses a length
scale, given by R., which is in contrast to the pure van der Waals potential o< 1/ 7S,
it is based on. As it corresponds to the only long-range term in the Hamiltonian, we
expect that this length scale plays a crucial role in emergent crystalline phases. This
conjecture is reinforced, when we consider the Fourier transform Vi of the long-
range interaction. As is shown in Fig. 7.8, the long-range potential possesses an
attractive minimum in momentum-space. The momentum of this minimum is ap-
proximately at ko = [k|  m/R.. We therefore expect a finite momentum instability
to appear at this momentum for a finite interaction strength V'/U, while the system
resides in a homogeneous phase.
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FIGURE 7.8: Fourier transform of the long-range soft-core interaction (7.2), with R, = 3a.
We consider both a 1-dimensional (dashed line on the left) and a 2-dimensional system
(solid line on the left and right). Although the soft-core potential is always repulsive in
real-space, its Fourier transform has attractive regions for |k| > k.. In 1 dimension, the
sign change happens at about 7/R. » k., while the actual minimum of either potential
is at a slightly larger momentum [k|.

Indeed, if we consider a system close to the SF-SS2 transition, approaching it
from the homogeneous superfluid, this instability shows up in the momentum dis-
tribution of the dressed component (see Fig. 7.9), as well as its static structure factor
(shown in Fig. 7.10). While the momentum distribution of the undressed atoms cor-
responds to that of a homogeneous superfluid, where the k = 0 momentum state is
populated macroscopically, this central peak is surrounded by a second local max-
imum in the shape of a ring at ko # 0, corresponding to the minimum of Vi. The
same ring structure can equally be observed in the static structure factor shown in
Fig. 7.10. Another measure of instability is the overlap of the Gutzwiller mean-field
state |[¢¢) (6.6) and the quasiparticle ground-state |¢)) (6.86), both defined in Chap. 6.
|(¥cl)|* quantifies the quality of the Gutzwiller result and is related to the deviation
of the quasiparticle commutator from exact bosonic behavior. Close to the transition
this deviation grows to 20% on the superfluid side, hinting at an increased instabil-
ity of the static mean-field solution. We further note, that this quantity also serves
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FIGURE 7.9: Momentum distribution n(k) of the bare (left) and dressed states (right)
in the homogeneous superfluid ground-state of (7.1), in a system of 27 x 27 sites with
periodic boundary conditions. The long-range interaction of the dressed component
induces the occupation of finite momentum states in the dressed component, while
the peaks at zero momentum signifiy the macroscopic occupation of the (ungapped)
zero momentum state, as expected in a superfluid state. Parameters are the same as in
Fig. 7.3(@), with V//U = 0.3 and t/U = 0.09.

as an upper bound for the control parameter of the quasiparticle method, denot-
ing the deviation from bosonic commutation relations for the Gutzwiller fluctuation
operators (6.13)-(6.16).
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FIGURE 7.10: Static structure factor of the bare (left) and dressed states (right) in the
homogeneous superfluid ground-state of (7.1), in a system of 2 x 27 sites with periodic
boundary conditions. Dotted lines correspond to |k| = n/R., while the dashed lines
are given by |k| = ko, where k¢ is the momentum, for which the Fourier transformation
of the dressed soft-core potential has its minimum value (see Fig. 7.8). In addition to
the central (forward-scattering) peak, a second ring shaped maximum appears in the
dressed component for momenta k close to ky ~ |k|. Parameters are the same as in
Fig. 7.3(@), with V//U = 0.3 and t/U = 0.09.

7.4.1 Band composition

The nature of the instability is better understood by considering the band composi-
tion in terms of order parameter responses within the various contributing quasipar-
ticle bands, as introduced in (6.97), describing fluctuations O in local observables
O induced by the quasiparticle states. In this section we will consider amplitude
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FIGURE 7.11: Order parameter responses in a two-component superfluid close to the
SF-SS2 transition at a high dressed fraction n. = 0.05. Shown are the amplitude Re(d¢)
(left), phase Im(d¢) (center) and occupation number response on (right) of the bare (top
row) and dressed (bottom row) components. Parameters are the same as in Fig. 7.3(2),
with V//U = 0.3 and t/U = 0.09.

Red¢ and phase response Imd¢, as well as the particle number fluctuation én in first
order (O in (6.97)) of the fluctuation operators, under a weak coherent excitation of
individual quasiparticle states (6.96).

As a first example we consider the two-component superfluid with strong long-
range interactions and a large fraction of dressed atoms corresponding to the pa-
rameters V /U = 0.3 and t/U = 0.09, with the remaining parameters the same as
in Fig. 7.3. The corresponding many-body ground-state is close to unit filling, as
n=np+ng=0.9.

In the vicinity of the quasiparticle ground-state we find six relevant bands in the
limit of non-interacting quasiparticles, shown in Fig. 7.11. As the two bosonic com-
ponents of the considered system only exhibit local density interactions but cannot
exchange roles, two gapless Nambu-Goldstone modes are found, corresponding to
the two separate condensate fractions of either component. Both have a vanish-
ing amplitude response accompanied by a maximum in the phase response. While
one of the gapless bands, which primarily constitutes phase fluctuations of the bare
species condensate order parameter, strongly resembles that of a weakly interacting
lattice gas in a Bogoliubov description, the other is strongly deformed at small mo-
menta, exhibiting a roton-minimum due to the soft-core potential. For all momenta
at the roton minimum and beyond, we furthermore observe a pronounced ampli-
tude response, in contrast to the behavior in the (dominantly) bare gapless band.
Both gapless bands also constitute the largest fluctuations in the total density én in
each component, when compared to the other bands.

In the second set of bands, both with a gap of O(U), each primarily corresponds
to the generation of amplitude fluctuations with very uniform amplitudes, which
conforms to the behavior of a Higgs amplitude mode, albeit not at unit filling in this
case. While none of the bands yields a pure response in a single component only,
which is due to the local interspecies interaction, differences between the bands still
allow for an assignment of a dominant role for each band. Thus we find that the
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dominantly dressed state band of Higgs-type has a band-width that is slightly re-
duced in comparison to the bare species, which only differs in the absence of a long-
range interaction. This bandwidth suppression is thus a signature of the localizing
effect the long-range interaction imprints on the dressed species.

The remaining two bands almost fall on top of each other and have a gap of
O(3U). This gap points at the primary involvement of local n = 3 Fock-states,
which is in accordance to considerations about higher bands discussed in [SEW15].
Again the dominantly dressed species has a reduced bandwidth compared to the
undressed component, while both bands are very flat as a result of the dominating
interactions.

As a comparison let us now consider the case of a reduced fraction of dressed
atoms, which is of more relevance to experimental realizations, due to the limited
lifetime of Rydberg states. Thus we now consider the case corresponding to Fig. 7.5,
where V/U = 0.2, /U = 0.4 and t/U = 0.055, which corresponds to a state at almost
unit filling, as n = ny + ng = 1.005, where ng = 7.5 x 1073,
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FIGURE 7.12: Order parameter responses in a two-component superfluid close to the
SF-SS2 transition at a low dressed fraction ng = 7.5 x 1072 Shown are the amplitude
Re(d¢) (left), phase Im(d¢) (center) and occupation number response on (right) of the
bare (top row) and dressed (bottom row) components. Parameters are the same as in
Fig. 7.5(c), with V/U = 0.2, /U = 0.4 and ¢/U = 0.055.

Considering the various responses in the amplitude and phase of the dressed
and undressed condensate order parameter as well as the occupation number fluc-
tuations, all shown in Fig. 7.12, we can conclude that the band composition remains
the same for a reduced dressed state fraction, while the primary difference lies in the
significantly reduced bandwidth of the gapless modes of the dressed species and
only a weak signature of a roton-minimum (see inset for the amplitude response of
the dressed component, top left in Fig. 7.12).

7.4.2 Spectral functions

Keeping the typical band composition in mind, we now discuss the spectral prop-
erties of the different quantum phases with non-vanishing condensate fractions.
Starting from the homogeneous superfluid, as given for V /U = 0.2, u/U = 0.4 and
t/U = 0.055, with the remaining parameters the same as in Fig. 7.5, we subsequently
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FIGURE 7.13: Density of states and spectral function along high symmetry points of
the bare (left) and dressed component (right), in the two component homogeneous
superfluid ground-state. The spectral functions are plotted with a logarithmic col-
orscale o [log, [A(k,w)]| normalized to a lower cutoff, while a blue hue corresponds
to negative spectral weights and red corresponds to positive weights. Parameters are
V/IU = 0.2, /U = 0.4 and t/U = 0.055 with the remaining parameters the same as in
Fig. 7.5.

progress to the supersolid phases SS2 and SS1, by reducing the hopping rate to
t/U = 0.052 and t/U = 0.045 respectively. As we will see, the spontaneously bro-
ken lattice symmetry induces a back folding of modes to a reduced Brillouin zone
and avoided crossings of the quasiparticle bands.

All spectral functions A(k,w) and the derived density of states DOS(w) are ob-
tained in the quasiparticle description leading to (6.114). In the presentation of nu-
merical data, delta-functions in the energy are usually broadened as Gaussian func-
tions with the same peak area, unless specified otherwise. The peak width ¢ is usu-
ally set such that the density of states becomes smooth at the considered energy
resolution and is typically on the order of o 5 0.01U.

Homogeneous two-component superfluid

In the numerical simulations a finite system of 27 x 27 sites with periodic boundary
conditions was assumed. Therefore we represent the finite sum of delta-peaks in
the spectral function via a Lorentzian broadening with a linewidth o, such that the
density of states becomes smooth at the chosen resolution. Here we have o < 0.01U.

As can be seen in Fig. 7.13, the bare state spectral function barely deviates from
the behavior of a regular interacting lattice-superfluid. Dominantly there are two
quasiparticle and -hole branches. On the particle site we also observe contributions
from the strongly localized third band. The local interspecies interaction leads to
very weak contributions from the particle branches of the dressed species to the bare
component modes. This behavior is mirrored by the particle branches of the dressed
component, while corresponding hole excitations only follow the bare species dis-
persion, which is a result of the small dressed state density, and thus also of a very
small dressed species condensate fraction. The difference between filling fractions
also leads to different energy scales, such that the roton-like feature is barely visible
in the spectral function.
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Supersolid of type SS2
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FIGURE 7.14: Momentum (a,b) and real-space condensate order parameter distribu-
tion [(c,d), showing a few unit cells] of bare (a,c) and dressed species (b, d) in the SS2
phase. A logarithmic color scale is used in the momentum distributions, due to the
peaks, which signify condensation in a finite number of momentum states, leading to
a macroscopic occupation of these states and thus to significantly different orders of
magnitude.

Reducing the hopping rate (e.g. to t/U = 0.052 for the case considered here)
leads to a spontaneous breaking of numerous discrete translational and rotational
symmetries of the optical lattice, which is best illustrated in the momentum distri-
butions of both components, as shown in Fig. 7.14 for a system of 60 x 60 sites with
periodic boundary conditions. The peaks at non-zero momentum are a signature
of supersolid order. Their positions are the reciprocal lattice, given by the spatial
order of the dressed atoms, which is spanned by unit cells of 30 sites, as shown in
Fig. 7.14(c). The magnitude of the peaks scales with the system size, as can be seen
in the mean-field contribution (6.111). The peak values at non-zero momentum on
the other hand stem from the spatial fluctuation in the condensate order parameter.
From this we can also see that the bare component condensate is extended, due to
the dominant role of the zero momentum peak, while the peaks of the dressed state
barely differ in magnitude, implying localized bubbles of dressed state condensate
(in accordance to previous predictions in systems with a soft-core potential, see e.g.
[Pup+10; Hen+12]). Indeed, the real-space distribution of either component, shown
in Fig. 7.14 behaves exactly as described.

Let us now consider the spectral functions, as shown in Fig. 7.15. For the bare
component we can observe that the principal structure of excitations is retained in
the SS2 phase, while there are significant changes in the dressed component. The
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broken lattice symmetry manifests itself in numerous momenta, where the band gap
closes in addition to k = 0. Furthermore, the increased unit cell leads to a back fold-
ing and avoided crossings of the original bands, which can be observed in both com-
ponents. We note that the dressed species is almost entirely gapped, with most of
the hole excitations shifted to lower energies, while the low lying particle excitations
are split into two (nearly flat) bands at increased energies. In contrast we observe a
slight increase in low energy excitations of the bare component, induced by the local
interspecies interaction, which couples to the additional phonon cones at non-zero
momenta.

5 0 -5 X r M X %
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FIGURE 7.15: Density of states and spectral function along high symmetry points of the
bare (left) and dressed component (right), in the two-component supersolid SS2 phase.
The spectral functions are plotted with a logarithmic colorscale o< [log, [A(k,w)]| nor-
malized to a lower cutoff, while a blue hue corresponds to negative spectral weights
and red corresponds to positive weights. Parameters are V/U = 0.2, u/U = 0.4 and
t/U = 0.052, with the remaining parameters the same as in Fig. 7.5.

Supersolid of type SS1

A further reduction in the hopping rate (e.g. to t/U = 0.045 for the case considered
here) leads to a further localization of the dressed component, which suppresses the
condensate fraction of the dressed atoms, which marks the transition to the super-
solid of type SS1. Thus the condensate peaks of the dressed species disappear in the
corresponding momentum distribution shown in Fig. 7.16.

As a result of the vanishing dressed state condensation, the corresponding spec-
trum becomes fully gapped, with most of the excitations almost fully localized and
therefore flat, as shown in Fig. 7.17. The bare component excitations on the other
hand undergo only minor changes. Most significantly the gap of the amplitude
mode excitations starts to close at zero momentum, as the bare atoms approach the
tip of the Mott-lobe, while the back-folded excitations further deform the density of
states at low energies.
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FIGURE 7.16: Real-space condensate order parameter of the bare species [(a), showing

a few unit cells], and momentum distributions of bare (b) and dressed species (c¢) in the
SS1 phase.
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FIGURE 7.17: Density of states and spectral function along high symmetry points of the
bare (left) and dressed component (right), in the spin-wave-supersolid SS1 phase. The
spectral functions are plotted with a logarithmic colorscale o< [log,,[A(k,w)]| normal-
ized to a lower cutoff, while a blue hue corresponds to negative spectral weights and red
corresponds to positive weights. Parameters are V /U = 0.2, u/U = 0.4 and ¢/U = 0.045,
with the remaining parameters the same as in Fig. 7.5.

7.4.3 Structure factors

We end our discussion of spectral properties with an analysis of the dynamic and
static structure factors, which are observables relevant for Bragg spectroscopy.

Homogeneous two-component superfluid

Due to the presence of the condensate in the two-component superfluid, the struc-
ture factor is dominated by the condensate peak at k = 0. In the vicinity of the SS2
phase, we can see that the bare state dynamic structure factor has contributions from
all four lowest gapped and gapless bands, while one of the gapped bands (i.e. the
one which is dominated by the dressed component) contributes the least. For the
dressed component we almost only observe contributions from the corresponding
bands in addition to the zero momentum peak. We also recover an extended circu-
lar local maximum in the static structure factor of the dressed component at |k| = k.
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FIGURE 7.18: Dynamic (a,b, c¢,d) and static structure factor (e, f) for the bare (a,c,e)
and dressed component (b,d, f), in the two component homogeneous superfluid
ground-state. The dynamic structure factors are plotted with a logarithmic colorscale
o< [log,,[S(k,w)]|, normalized to a lower cutoff. Furthermore a Lorentzian broadening
is used, which leads to the pronounced feature at the I'-point due to the macroscopic
weight of the condensate at k = 0 and w = 0. Parameters are V /U = 0.2, /U = 0.4 and
t/U = 0.055, with the remaining parameters the same as in Fig. 7.5.

o B N W & O

[

-

1)

w,

qp'
DSF [a.u.]

o
N
N

& I S C

"1 05 0 0.5 1
[ e 0 0.2 0.4 0.6 0.8
k [r/a]
w_[Q x
ap

FIGURE 7.19: Dynamic (a,b,c,d) and static structure factor (e, f) for the bare (a,c,e)
and dressed component (b, d, f), in the two component SS2 phase. The dynamic struc-
ture factors are plotted with a logarithmic color scale o [log, ,[S(k,w)]| normalized to a
lower cutoff. Parameters are V//U = 0.2, u/U = 0.4 and ¢/U = 0.052, with the remaining
parameters the same as in Fig. 7.5.

Supersolid of type SS2

While the dynamic structure factor of the bare species resolves most of the phase
and amplitude excitations in the lattice symmetry breaking SS2 phase, almost only
the lowest (nearly localized) gapped band is visible in the dynamic structure factor
of the dressed species. In addition to the recovered multitude of back folded bands,
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the most remarkable features in the static structure factor are the additional peaks
for momenta corresponding to the reduced reciprocal lattice of the oblique unit cell.
These are associated to gapless modes. Their existence, in addition to the k = 0 peak
in the momentum distribution, is a signature of supersolid order.

Supersolid of type SS1
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FIGURE 7.20: Dynamic [(a, ), for bare species] and static structure factor (c,d) for the
bare (¢) and dressed component (d), in the two component spin-wave SS1 phase. The
dynamic structure factors are plotted with a logarithmic color scale o [log,,[S(k,w)]|
normalized to a lower cutoff. Parameters are V/U = 0.2, 4/U = 0.4 and t/U = 0.045, with
the remaining parameters the same as in Fig. 7.5.

In the SS1 phase the dynamic structure factor of the dressed species vanishes for
all w > 0 in the first order fluctuation expansion, which we consider in the quasipar-
ticle method. While the bands of the bare component are resolved in the correspond-
ing dynamic structure factor, only the peaks corresponding to the reduced reciprocal
lattice can be observed in the dressed atoms. The peak values in the static structure
factor of the dressed component is easily explained, as the lattice we consider con-
sists of 60 x 60 sites, while the unit cells consist of 30 sites containing only one dressed
atom each, localized at one lattice site. Thus we expect a value of 60 - 60/30 = 120 at
every momentum corresponding to the reciprocal lattice.

7.5 Interaction potentials of Rydberg dressed potentials

In this section we will discuss the parameters of the long-range interaction poten-
tial, in order to relate our results to current experimental conditions. Considering
the level structure shown in Fig. 7.1(a), our main ingredient is the inclusion of a
species |d), which is coupled to a Rydberg state |r) by an off-resonant laser with
Rabi-frequency 2 and detuning A. Interactions between Rydberg atoms are of van
der Waals type Vyaw = Cs/ r0, with the respective dispersion coefficient Cis, which
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FIGURE 7.21: The value of the lattice depth V;/E, determines the value of both hopping
rate ¢ and on-site interaction U simultaneously, resulting in parameter pairs along the
black curve. Changing V;/E,, one can thus advance through the phases discussed in
Sec. 7.2. The individual changes of t/U (e) and V /U (x) as a function of V;/E, are shown
in the inset. All relevant parameters are given by A = 1064nm, as = 5.2nm, A = TMHz
and Q = 0.44MHz

has a strong dependence on the principal quantum number of the Rydberg level
Cs o< n'l. Due to |A| > Q, we are in the regime of (weak) Rydberg dressing, re-
sulting in a soft-core interaction potential V;; for the dressed component, with an
effective dispersion coefficient C = (Q/A)*Cs and soft-core radius R, = (Cs/2A)/5.
R, therefore varies with the Rydberg state and detuning, while the core potential V/
is a function of only the laser parameters {2 and A (not of (). For example let us
consider n = 30 — 36 Rydberg nS states of 'Rb atoms (e.g. with Cg = 241.6MHz pm5
for 365) in an optical lattice with a = 532nm. For A = TMHz, this leads to a range
of R. ~ 2 — 3a. For furthermore fixed detuning A, the strength of the long-range
interaction solely depends on the (two-photon) Rabi frequency €.

In order to probe the different phases shown in Fig. 7.3 and Fig. 7.5, one needs
to change the parameters V, U and ¢ — preferable individually — over certain ranges.
A natural control parameter in optical lattices is the lattice potential depth 1}, which
usually is considered in relation to the recoil energy E, = h?/2mA?, where \ = 2a
is the wavelength of the lattice potential and m is the mass of the atoms. The on-
site interaction U and the hopping rate ¢t both depend on the lattice depth via the
relations [Zwe03]

2 1\3
U= \/ElmE(?) (‘;—0) , (7.17)
T T T

é Vi
t= %E () eV, 7.18)
i T

which hold for sufficiently deep lattices (Vp, V5") » E,, while more shallow lattices
demand a more rigorous treatment, as discussed in Sec. 3.1.4 (see [Bis12]). For V- >
Vo the geometry is effectively two dimensional as the perpendicular tunneling is
suppressed exponentially. In these expressions k = 27/\ is the wave vector of the
lattice potential and a, is the s-wave scattering length. Varying V;/E, and keeping
the remaining parameters fixed lead to a continuous and simultaneous change in the
ratios t/U and V' /U. We give an example in Fig. 7.21, showing that one can cross the
various phases presented in Sec. 7.2 in an experimentally relevant parameter regime.



142 Chapter 7. Ground-state phases for off-resonant Rydberg excitation

FIGURE 7.22: Phase diagram for a nondipolar-dipolar mixture, corresponding to b and d
in (7.1), but with a dipolar interaction V;; = V/|r;—r;|* for dipoles aligned perpendicular
to the lattice plane. A square lattice is considered, while V'/U = 0.1. This system exhibits
pronounced regions of supersolid phases, which are marked by cyan (SS1) and light
red (S52) shaded areas. In contrast to the simplified nearest-neighbor case [WSN16],
various types of crystalline orders of the real-space distribution of the dipolar species
are observed, as shown in a)-c). In the strong interacting limit either a MI phase is
found, where the total density distributes spatially uniform, or a DW develops (marked
in green), where the total density distributes spatially nonuniform. Furthermore phase
separation (PS) is observed in the MI region with total filling n; + nq = 1, while suffi-
ciently large ¢ leads to melting of any crystalline order, resulting in a spatially uniform
superfluid. Remaining parameters are given by U,q = 0.9U and p/q = p.

7.6 Dipolar system

So far we have studied emergent crystalline order in Rydberg dressed optical lat-
tice systems. However for the sake of completeness it should be noted that the
physics of the observed competing orders can also be exhibited in dipolar optical
lattice systems, following the quick developments in cooling and trapping of mag-
netic atoms (see e.g. [Gri+05]) and diatomic molecules (see e.g. [Ni+08]). Based on
these developments, a recent study presents a Gutzwiller mean-field phase diagram
of a binary Bose mixture on a square lattice, where one species possesses a signifi-
cant dipole moment [WSN16]. Despite their model being similar to (7.1), only the
nearest-neighbor part of the dipolar interaction was studied by them. Thus to fur-
ther the understanding of the Rydberg dressed system in relation to similar models,
we briefly study a mixture of dipolar and nondipolar bosons on a square lattice, con-
sidering actual long-range interactions beyond NN approximations while assuming
that the dipoles are aligned perpendicular to the lattice plane.

Using RB-DMFT, which can be considered a higher-order expansion of Gutzwiller
mean-field theory taking into account quantum fluctuations in a non-perturbative
way, we find the phase diagram shown in Fig. 7.22. In this model we also find five
phases, which in addition to the well known SE, MI, and DW are two types of su-
persolid (SS1 and SS2). In comparison to the nearest-neighbor approximated static
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mean-field treatment [WSN16], we observe two major differences. Firstly, rich spin
patterns appear, as depicted in Fig. 7.22 a)-c), resulting in a filling factor of the dipo-
lar component equal to 1/3, 1/4 and 1/8 respectively. Secondly the observed region
of supersolid phases is altered in relation to the static mean-field results, while we
recover the mean-field phase diagram with NN interactions within Gutzwiller ap-
proximations, as obtained in [WSN16].
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Chapter 8

Ground-state phases for
near-resonant Rydberg excitation

In this chapter, which is based on the re-

search for the publications [GVH17; BGH18; _ ‘ ) e
GBH18], we will address the many-body A An e ar‘ >
equilibrium ground-state phases in the ... ) SR

regime of near-resonant and coherent exci-
tation of the Rydberg state, while also con-

sidering itinerant behavior of the bosonic ‘Anear‘ = O(Q)
atoms on a square lattice. Previous theo-
retical work in this regime has only con- \
( ‘;
sidered either the NN limit of the van der ‘g >

Waals ir}teraction in a Gutzwiller mea.n—field FIGURE 8.1 Reduced two-level scheme
calculation [SS514], or the frozen limit of ¢ 1.0 extended Bose-Hubbard model for
a one-dimensional system [WB10; PDLI0; near resonant excitation of the Rydberg
Sch+10a], predicting a series of lattice state. The two components are given by
incommensurate ordered phases (devil’s the ground state |g) (blue) and the Ryd-
staircase), but also the effect of tunneling in- berg state |?> (green), which is addressed
duced spin-exchange [SPG11] has been con- DY the Rabi process.

sidered, so far. Furthermore, in frozen two-

dimensional systems, the cluster formation [LG14] and crystallization of Rydberg ex-
citations [Ver+15] has been predicted and already observed in experiments [Sch+15].
Below we will discuss the ground-state phase diagram as obtained in dynamical
mean-field theory. The combination of a frozen-limit model and a real-space exten-
sion of bosonic dynamical mean-field theory (RB-DMFT), introduced in Chap. 4, al-
lows for an efficient quantitative analysis of the phase diagram for an arbitrary range
of the interaction. We will first introduce the extended two-species Bose-Hubbard
model describing the system, which includes the long-range VAW interaction via
the Rydberg state, as shown schematically in Fig. 8.1. We will further discuss the
Hartree-approximation used for the long-range interaction, especially in the frozen
limit, where it yields relevant spatial configurations for the dynamical mean-field
simulations, presented in the following sections. Finally, we will discuss the ob-
tained quantum phases and the different types of long-range order predicted in an
itinerant lattice gas, with a focus on spectral properties obtained in RB-DMFT as well
as the quasiparticle expansion of the static mean-field result, presented in Chap. 6.
Although the RB-DMFT results can be expected to be of limited quality, due to the
discrete spectrum of the impurity model used in the DMFT-loop and because of the
incapability of DMFT to represent the long-wavelength Nambu-Goldstone-modes
as of its limited consideration of non-local correlations, we will see that both results
agree remarkably well.
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Let us briefly reiterate the model which we are going to investigate. We con-
sider a two-component system of ground state |g) and Rydberg excited |e) atoms
(see Chap. 2 and Fig. 8.1) in second quantization, so the full grand canonical Hamil-
tonian H can be written in terms of bosonic annihilation (creation) operators bm
(b zm)' for the two species o = g, ¢, acting on site ¢ of a square OL:

N
H=Hoprpin+ Y, (HopH 100 + Hri + Hoaw,i) , (8.1)
i
where 7] is the usual occupation number operator. With the kinetic energy given
by the hopping amplitudes ¢ and 1t between all pairs of NN sites, denoted by the
expression (i, j), we have

Hoppiin =t Y, (b} :bgj + bl ibej +h.c.). (8.2)
(i.3)

Furthermore, the local Hubbard interaction terms for a two-component Bose-Hubbard
are given by

~9g ~e
Hopirioei =U (%(ng — 1) + RS + )\%(ﬁf - 1)) - (A +nf). (8.3)

Here U, \U and AU are the amplitudes of the three possible intra- and inter-species
Hubbard interaction terms and p is the chemical potential determining the total par-
ticle number 3, ;17 .

The excited electronic (Rydberg) states of the atoms are populated via coherent
driving, which leads to Rabi oscillations between ground and Rydberg states. Note
that we will neglect the effect of the finite life time of Rydberg states in the discussed
many-body ground-state simulations, which is valid for states that can be prepared
on a sufficiently small time scales and with a small total Rydberg fraction, discussed
in Sec. 2.2.2. As introduced in Sec. 2.2.1, for each lattice site this Rabi process takes
the following form in the rotating wave approximation, where we, at least for now,
consider a homogeneous laser driving and thus a homogeneous beam profile, so

A QO . o~ AL A
Hpi=5 (bf ibe,i +bF ibg.i) — AR, (8.4)

In addition we also consider the non-local van der Waals (vdW) interaction between
Rydberg states. At distances relevant in OLs, it is dominated by its long-range tail.
Thus for atoms at sites i and j

(8.5)

where V, gy = Cg/a®, with the vdW coefficient Cg and the lattice parameter a. This
model has previously been investigated in the limit of NN interactions only, by ap-
plying Gutzwiller mean-field theory [SSS14]. In our study we go beyond this ap-
proximation and show that the phase diagram is far richer as previously predicted.
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8.1 Frozen-limit model
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FIGURE 8.2: (Al) Spanning vectors (ai,as) define the Bravais cell of a superlattice for
the underlying OL (gray). Black solid circles correspond to occupied sites, while re-
maining sites are empty. (A2) Possible checkerboard generalizations of (Al), where
spanning vectors connect two different sublattices (solid and empty circles). Mapping
to the striped versions (I and II) is explained in the text. In (B) and (C) different crys-

talline phases of the frozen-limit model can be distinguished by AS;S?;) (explained in

the text). (B) shows devil's staircases (for values of the long-range interaction, increasing
from bottom to top, as given in the legend) for the logarithmic approach to A/Q = -3/4
at po/Q2 = —1/4 [solid lines in (C1) and (C2)]. Phases above white lines in (C1) and (C2)
correspond to two-sublattice order with canted state orientation.

Due to the many possible spatial crystalline orderings, an efficient method to dis-
tinguish them is needed. Therefore we first analyze the frozen limit, where all spatial
hopping terms are set to zero (¢ = 0). This allows for a simple analytical investiga-
tion of the ground-state manifold with few approximations. Moreover, it makes for
a useful exact starting point for considering finite hopping (¢ # 0), which we simulate
within RB-DMFT. Assuming a mean lattice filling n < 1, where n = ¥, ,(7 )/ N, only
empty or singly occupied sites are to be expected. We may also assume that such a
system always has a spatially periodic ground-state. For such crystalline order, we
consequently only need to consider those sites i of the full Hamiltonian which are
nonempty in order to calculate the energy:

QO e n PSRN ~e
Hi =5 (bfibei + L by ) - AR

AChe (8.6)
S (i i) ¢ Ay
2 -l

Any periodic superlattice structure can be constructed from a set of spanning
vectors [one per spatial dimension, Fig. 8.2(A1)], which in our case are restricted
to the discrete set of points given by the OL. Applying the Hartree approximation
for a given set of spanning vectors (ai,a) (given in units of lattice spacings a),
the Hamiltonian reduces to a set of self-consistent single-site problems with at most

A((;st?;? different self consistent values n§ = (7f), where Agqustajg is the area (in units of

lattice sites) spanned by the given vectors. Due to low filling 7 < 1 we consider only
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two values (n%,n%), where each corresponds to one of the two sublattices defined
by their sets of sites A and B [indicated by open and solid circles in Fig. 8.2(A2)] of
a checkerboard version of the spanned superlattice.

In Fig. 8.2(A2) two further versions are indicated by I and II for the given vectors
(a1,a2), where one of the two transformations a; j, — af jp = 12 + @z Was applied.
This allows for energy optimization via canted state orientation, which is equivalent
to canted Ising antiferromagnetic (CIAF) order and becomes important for increased
lattice fillings. Generally, frozen states — within the Hartree approximation — can be
written as

L .
() = HH(COS¢i|i>¢+€w" sing; 1)), (8.7)

C ieC

where the state of the full system is given by a product over a lattice of unit cells C
containing L sites each, with an internal structure given by the set of ¢; € [0,7/2]
and 6; € [0,27] fori = 1,..., L. Setting at least one ¢; ¢ {0, 7/2} yields CIAF order.
In case of the Mott-like frozen limit, the not yet specified quasispin states can, in
principle, be any set of two bosonic Fock states, including the empty vacuum state
InY = 0,n° = 0). Note that the use of different particle numbers for the states at a
site i, for example, the combination of an empty site with any allowed Fock state
on this site, implies ¢; = 0,7/2. Also note that #; = 7 combined with ({,1) = (g,¢)
corresponds to a dark state, as is used for an s-state to s-state transition (required for
isotropically interacting "Rb Rydberg states) to suppress decay via the intermediary
p-state. An example of CIAF order is schematically shown in Fig. 8.3, where the two
sublattices correspond to the A and B sites.

FIGURE 8.3: Schematic representation of a one dimensional CIAF state in an optical lat-
tice. Colored circles correspond to the ground (blue, bottom row) and excited (red, top
row) Fock-states, and the opacity is related to the amplitudes in the local linear com-
binations (8.7). A complete polarization of the state is suppressed by the Rabi process
induced by the incident light field (small black waves and arrows).

For the interaction energy for each sublattice within Hartree approximation we
obtain (A4 < B)

artree A e ne ne

Hymwse = VoawdS | > ( .gl> +y ( .(Jf) : (8.8)
jeANO J jeB J

where j points from a given site (0) of A to any site of both A and B. Thus the

site-averaged grand canonical potential f is simply given by f = >, (H;) /AE?JS?;) =

YI=AB U;—”%, with the vdW interaction evaluated by (8.8).

Minimizing f with respect to a set V, of spanning vectors then yields the many-
body ground-state phase diagram in the frozen limit for 7 < 1, as shown in Figs. 8.2(B)
and 8.2(C). For this variational minimization it is useful to represent the remaining

sums over the sublattices A and B as functions of the spanning vectors
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FIGURE 8.4: Each colored marker represents a pair of tested spanning vectors (each in
units of lattice spacing a) from the set V,. Their coordinates are given by the larger
vector, after a combined scaling and rotation of both vectors, so that the smaller vector
is mapped onto (0,1). They can thus only appear outside of the unit circle (thick black
line). Their color and size corresponds to the area of each crystal unit cell. In addition,

also some contour lines for Rggf)) are shown. Crossed markers correspond to crystal

structures actually appearing as ground-states of the atomic limit model in the blue
detuned regime for V, g < 10*Q.
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for which we define the convenient expression
R = R3? = max(Vy?, W32) /min(V3?, W3?), (8.9)

as the crystal-structure-dependent ratio of the long-range interaction sums. The de-
pendence of R3? on the spanning vectors is shown by the contour lines in Fig. 8.4.
It should be noted that there is no dependence on the actual form of the interaction,
as we use a scale-free long-range interaction in the present case. In order to per-
form the minimization procedure, we generate a set V, (as shown in Fig. 8.4), which
needs to at least represent the whole range of superlattices, which can in principle
be expected in the regime under consideration. In our frozen model (8.6) the on-site
interaction U is neglected for n < 1. With Q) as the energy scale, only V,,qw, A and 1
remain as tunable parameters, defining the region to be investigated.

Especially, V,,qw is important for the choice of V;, as it defines the blockade radius
Ry, = (Cs /)Y for Rydberg excitations, which corresponds to a radius of up to 5 OL
sites for Vg < 10*Q2. On a square lattice this would correspond to a volume of up
to 25 lattice sites. In order to allow for even lower fillings, enabled by the chemical
potential or the detuning, we will consider volumes of up to 12 x 12 lattice sites. The
complete set V; of spanning vectors used here is shown in Fig. 8.4, modulo similarity
transformations for each pair.

If we then also define V' = V,,giymin(V;2, W32) and use the Rabi frequency 2 as
the energy scale, the self-consistency conditions for n% /B = (n% / ) in the many-body
ground-state are given by

51
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The solutions of this effective model, where R is just the the ratio of any inter-
and intra-sublattice interactions, are shown in Fig. 8.5 for some relevant values of
R (compare Fig. 8.4).
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FIGURE 8.5: Various solutions of the effective frozen model (8.10) for R = 2,7,14. Shown
are the Rydberg fractions n. for each of the two sublattices, which are respectively in-
dexed by whether the sublattice with high or low Rydberg fraction is considered. Cant-
ing appears if nl°” # n"%9" and at least one of them is not equal to unity.
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As f = YianB @ﬁ within these limits and approximations, its minimization
with respect to our set V, yields the many-body ground-state phase diagram in the
atomic limit and for n < 1, as is shown in Figs. 8.2 (B) and 8.2(C). In the comparison of
all lattice structures from the set Vs, as shown in Fig. 8.4, the configurations of mini-
mal energy anywhere in the analyzed parameter region [see Figs. 8.2 (B) and 8.2(C)
for parameter ranges] are marked by crosses. Those points primarily accumulate
where they correspond to either triangular order, as = (v/3/2,1/2), or a square lat-
tice, az = (1,0). Points with increased R > 10, on the other hand, are more susceptible
to the formation of CIAF order, as can be seen in Fig. 8.5. If one then considers only
one of the two sublattices, for example, the one with the increased Rydberg frac-
tion, it again resembles triangular order more closely, as would be possible without
canted order, while keeping the lattice filling constant. On the other hand, no span-
ning vectors with minimal energy are to be found beyond a radius of 2; in particular
the point (2,0) is the most distant, as shown in Fig. 8.4), which rules out stripe-like
order.

From (8.6) in the Hartree approximation it furthermore follows that the chemical
potential p, determining the transition to the vacuum state, is given by

A+VQ2+ A2

5 (8.11)

Ho ==
Approaching this limit by varying either y, A or Q2 yields a devil’s staircase of frac-
tional lattice commensurate fillings [see Fig. 8.2(B)], stabilized by the long-range in-
teractions. Note that our ansatz allows only for fillings of the form }L with n € N (see
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also [LMF12; Rad+13]).

8.2 Dynamical mean-field theory

We now use the frozen-limit results as an exact starting point for our RB-DMFT sim-
ulations since both models map to each other in Hartree approximation for vanish-
ing t and n < 1. However, for nonzero ¢t we cannot expect the crystal symmetry to al-
ways be given by the frozen-limit results. Therefore other crystalline structures cor-
responding to similar mean inter-atom distances are also simulated. Furthermore,
RB-DMFT requires a truncation of the local Fock-space. Since a hard cutoff, using
only the first N, Fock states, strongly restricts the maximum observable local parti-
cle number in a condensate, we instead use a soft cutoff utilizing the coherent-tail
state oc 307 \’}—:7 In) [GH17], discussed in Chap. 5, where N, = 4, leading to a neg-
ligible error in the calculated observables, which is maximal for values of ¢/2 > 0.1,
where it is on the order of a few percent (< 3%, see App.D). The ground-state is
then found by comparing the resulting lattice-averaged grand canonical potentials
f= (fI )/ Aciuster, for each of the considered crystal structures. In order to allow
for checkerboard order on all cluster types, even those of odd-valued volume, we
always simulate clusters generated by the spanning vectors (2-aj,2 - a»).

Calculating f is not straightforward within RB-DMFT, as the total kinetic energy
Erin = (ﬁg BH,kin) 1S given in terms of nonlocal expectation values (B;ii)m), which
therefore cannot directly be calculated from the self-consistent local Anderson im-
purity models used by RB-DMFT. But as we have shown in Sec. 4.5, presuming RB-
DMFT self-consistency conditions, E};,, can also be written in terms of the connected
local Green’s functions G7°¢ (4.68) and Anderson impurity hybridization functions
A7

Bin % lim 3 Re([A77(iwn)G7 (iwn)];, )
A +io,n20

Tr [A77(0)G{7C(0)] (8.12)

- Z 28 - Ztijﬁb;i%,j-

s 1jo

8.2.1 Periodic system

Minimizing f, as calculated in the described RB-DMFT scheme, with respect to the
relevant crystal orders yields the ground-state phase diagram shown by the lines
in Fig. 8.6(E). In Fig. 8.7 we additionally give a comparison to results obtained in
a static Gutzwiller mean-field ansatz (6.6) [BGH18]. Overall, one can observe a re-
markable good match between both results, while there are some pronounced differ-
ences in the crossover region between low and high Rydberg fractions near A/ 2 0,
where fluctuations are more relevant. Also note the differences in the insulating
density wave (DW) regime, which stem from the consideration of fluctuations of
the non-condensed particles in DMFT, while these are absent in the static mean-
field. For selected points in Fig. 8.6 also the spatial distributions of important local
observables are shown, such as the occupation numbers n?, squared condensate or-
der parameters ]¢§’\2, and (IA);Z-IAJE,Z), with the latter related to in-plane magnetization
of the pseudospin. The phase boundaries are obtained from kinks (second-order)
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FIGURE 8.6: Lines in (E) show the phase diagram of the two-species extended Bose-
Hubbard model with vdW-interacting excited Rydberg species (8.1). Shown is the de-
pendence of the average GS Rydberg fraction 7. on detuning A and hopping ¢, while
the fixed parameters of the model are given in the inset (see App. D for a motivation
of 7 = 0). The occurrence of a finite condensate order parameter at finite ¢ is marked
by the green line with dots. Transitions between different phases of supersolid (SS)
order above this line, as well as between density wave (DW) ordered phases below,
are separated by black lines (circles for second-order, points for first-order). As it has
the simplest order beyond a homogeneous superfluid (SF), we specifically label the
checkerboard supersolid (CB-SS) in the diagram. All DMFT results in the region be-
tween the red line without dots and vacuum have lattice-averaged grand-canonical po-
tentials f > 0. (E) shows the lattice-averaged Rydberg fraction 7. (with the smallest
values for A/€2 < 0), which is strongly related to the effective lifetime of Rydberg states
[JR10]. (A)-(D), the inset in (E), and (F)-(I) show depictions of the spatial distribution
of specified local observables. These plots correspond to different points indicated in
the phase diagram in (E). If mentioned in a diagram, the values for excited states are
rescaled by the indicated factor. The markers (®,®, ®, ©) specify phases where spectral

properties are analyzed in Sec. 8.3.

and jumps (first-order) in the spa-
tially averaged observable n. =
Si(ag)/AB22) [see Fig. 8.6(E)],

which acfsl,ugée;n order parameter.
Thus we find various ground-
state phases, starting with the
well-known homogeneous super-
fluid (SF) and the devil’s staircase
in the DW regime at small hop-
ping, separated by a peculiar series
of supersolids (SS). We can distin-
guish two distinct regimes of super-
solids, dominated by either weak
or strong Rydberg dressing, arising
due to two competing effects. One
is the melting, induced by a large

AMF MF
e

4 a
A/Q A/Q

FIGURE 8.7: Comparison of the RB-DMFT result to
the static mean-field results obtained in [BGH18].
Shown are the spatial averages ¢'" and nM*, ob-
tained for the ground-state of the Gutzwiller static
mean-field ansatz (6.6), while the overlaid lines are
given by the RB-DMFT results. Parameters of both
simulations are identical to those given in Fig. 8.6.

hopping amplitude ¢, while the other is the crystallizing effect of the detuning A.
Since blue detuning facilitates Rydberg crystallization at higher densities, as well as
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a higher Rydberg fraction in general, the latter effect is easily understood.

Traversing the phase diagram in the supersolid regime, starting at high A [see
Fig. 8.6(E), inset] and reducing its value continuously, one first finds a series of GS su-
persolids with growing wavelength, until there is a sudden drop in the wavelength,
accompanied by a rising Rydberg condensate and a fast drop of the Rydberg fraction
for the sites with the highest admixture of the Rydberg state [Figs. 8.6(A)-(D)]. Con-
trary to the devil’s staircase in the DW regime, the staircase in the SS regime does
not end in an empty or homogeneous system, but instead with short-wavelength
supersolids, most notably the checkerboard supersolid (CB-SS) [see also Figs. 8.6(C)
and 8.6(D)], which is the only previously predicted SS phase [SSS514]. The compe-
tition between crystallizing and melting effects becomes especially evident in the
two cases where two supersolids meet, which both have the same number of sites
in their unit cells, while their spanning vectors differ [compare Figs. 8.6(C) and (D),
and Figs. 8.6(H) and (I)]. In this regime, the crystallizing effect dominates for small
hopping, as the excitations minimize interaction energy by maximizing their NN
distances. For increased hopping the system then prefers the configuration with
slightly reduced NN distances while restoring a spatial order commensurate with
the OL. Additionally, the eight-site unit cells are almost degenerate, while the unit
cell less favored by V4 has a transition into SF at lower ¢. Regarding the two dis-
tinct SS regimes with strong and weak dressing, the narrow phase dominated by a
long-range order with a unit cell of 32 sites [Fig. 8.6(A)] implies crossover behavior.
This phase marks the boundary between the two regimes, as it consists mostly of
CB-SS with the CB order strongly visible in (B;Z-ZA)W), interspersed by a low density
of strongly dressed (impurity) atoms suppressing the short-range CB order.

Another noteworthy configuration appears in a band with a width A/Q ~ 0.2,
starting slightly above resonance [Fig. 8.6(B)]. There the ground-state condensate
and the nearly Fock-state Rydberg excited atoms are spatially separated from one
another, as is the case for most of the interaction-dominated part of the SS regime.
But in addition, the excitations are aligned in a triangular lattice, while the conden-
sate is arranged on its dual honeycomb lattice, at least as much as possible on a
square lattice.

Finally, since the effective total decay rate of excitations is directly proportional to
the fraction n. of their occupation [JR10], this quantity, shown in Fig. 8.6(E), implies
that the region with low Rydberg occupation should be most suitable for experi-
ment, especially in a setup where the avalanche effect can effectively be neglected
or suppressed (see Sec. 2.2.2). Even at detunings A > 0, Rydberg blockade causes a
value of 7, which is nearly two orders of magnitude less than the full resonant exci-
tation of single atoms, thus increasing the feasibility of realizing the corresponding
supersolids. We further note that the Rydberg fraction also yields another limitation
to the validity of the results, which is related to the single-band assumption for the
Bose-Hubbard model (see Sec. 3.1.2). For the supersolid phases at large positive de-
tuning the interaction energy among nearest neighbors at a distance of about two
lattice spacings is on the order of about 100t for ¢ = 0.1, which roughly marks the
edge of validity for the single-band approximation.

In conclusion, while dressed models break down close to resonant Rydberg dress-
ing, the combined effort of an analytically solvable frozen-limit model and RB-DMFT
simulations at finite hopping allows for the analysis of the rich phase diagram of (8.1).
In particular we find two distinct regimes of supersolid order dominated by either
weak or strong dressing reminiscent of the bistable behavior in nonitinerant dissi-
pative systems [LHC12; Car+13; Mar+14]. Due to our limitation to periodic systems
with finite unit cells, the behavior at the crossover remains an open question. It
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FIGURE 8.8: Here we show the different averaged order parameters one may use to dis-
tinguish the different supersolid phases as explained in the text. (a) and (b) are the spa-
tially averaged condensate order parameters |¢,| = ¥, |¢7|/A. Averages are normalized
by the size A of the system simulated within RB-DMFT. Both species have opposite but
spatially constant phases, as one might expect from a dark state. (c) Difference quotient
A f/At of the mean grand canonical potential f by the hopping amplitude ¢. (d) Spatial
average of the local fluctuations <Bz7lf)€,i) induced by the Rabi term (8.4) of the Hamil-
tonian (8.1). A non-zero value is related to in-plane magnetization of the pseudo-spins
o = {g,e}, while its magnitude grows near resonance and with total particle number.

(e) and (f) show the spatial variance Var(|¢,|) = |qb‘,|2 - |<;5[,|2 of the condensate order pa-
rameters. Note that for the excited state the maximum is close to A/Q ~ 0, while in the
ground-state A/Q > 1 leads to the largest values. Lines correspond to those shown in
Fig. 8.6(E), where circles represent second-order transitions, simple lines represent first-
order transitions, and the line with crosses signifies the regime of f > 0, as explained in
Fig. 8.6(E).

should also be noted that the Rabi frequency was taken to be in the range of a few
megahertz, while so far realized values of hopping amplitudes reach only a fraction
of this. But considering the phase diagram of the Bose-Hubbard-model, the transi-
tion to supersolid phases can be expected at strongly reduced hopping for values of
i close to zero where the assumption of low filling 7 < 1 breaks down, leaving this
regime open for further research.

8.2.2 Additional observables

The phase boundaries for finite hopping ¢, shown in Fig. 8.6(E), were obtained via
the spatially averaged values of the local observables, which act as order parame-
ters of the system. As can be seen in Fig. 8.8, they exhibit either jumps or kinks at
certain points in the phase diagram, allowing us to determine the phase boundaries
as well as the order of the phase transitions. As the Rydberg fraction n. exhibits the
most prominent changes [see Fig. 8.6(E)], it was used to obtain the phase boundaries
between the various SS and DW phases.

Due to the complex nature of the model (8.1), additional observables allow for
further characterization of its ground-state phases. While nonzero condensate order
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FIGURE 8.9: (a) and (b) depict averaged occupation numbers 71, = Y; ny /A, where A
is the normalization due to the considered number of sites. Note that A/Q > 0 favors
fie over fiy in the DW phases. (c) The inverse of the average lattice filling becomes an
integer in the DW regime. The values of these integers correspond to the area defined by
the spanning vectors introduced earlier (e.g., equal to 12 in the lower left; compare also
Fig. 8.2). Lines correspond to those shown in Fig. 8.6(E), where circles represent second-
order transitions, simple lines represent first-order transitions and the line with crosses
signifies the regime of f > 0, as explained in Fig. 8.6 (E). The dashed lines represent the
case of resonant detuning A = 0.

parameters ¢ = (501) determine the occurrence of a superfluid (SF) [see Figs. 8.8(a)

and 8.8(b)], the suppression of the spatial average |¢.| at large A/Q is a result of the
dominant interactions. The spatial variance Var(|¢,|) = |¢,|* - %2 of the conden-
sate order parameters [see Figs. 8.8(e) and 8.8(f)] further extends and justifies the
picture of two supersolid regimes due to the distinct behavior at small and large
A/ A vanishing value of these variances marks the loss of crystalline order and
thus the transition from SS to a homogeneous SF. The large spatial variances in ¢7,
on the other hand, are due to suppressed condensation on sites occupied by atoms
strongly dressed with a Rydberg state. At the crossover between the two SS regimes,
the observable related to the Rabi process (8.4), (8;72.86,1-), also undergoes a significant
change in behavior [see Fig. 8.8(d)]. Regarding the transitions between the vari-
ous supersolid phases, we want to point out that divergences of A f/At (see (c) in
Fig. 8.8) are almost absent in between SS phases and remarkably also at the SS-SF
transition.

Note that in the region where the ground state contribution 7, vanishes [see
Fig. 8.9(a)], the Rydberg states become almost pure number states [compare Figs. 8.9(b)
and 8.9(c)]. As the corresponding property, namely, that 7, nearly equals 1, where
q is the area of the unit cell corresponding to the inverse of the mean lattice filling
at a vanishing condensate fraction, also extends into the region with a finite con-
densate, the Rydberg state can be understood to remain in a Fock state even for
increased hopping amplitudes. Condensation then happens purely in the ground
state species, which implies that the condensate part spatially separates from the
long-range interacting part of the system.

8.2.3 Finite systems

The presence of blackbody radiation and spontaneous decay both can drive tran-
sitions to nearby Rydberg p-states for the considered s-state Rydberg excitations.
Note that for these states exists an important dissipative channel, which generates
a strong global loss of coherence and atoms due to incoherent s-p-dipole scattering,
referred to as Forster processes discussed in Sec. 2.2.2 (see also [Gol+16; Ama+16;
Zei+16]). The important figure of merit in this context is the time 7 until creation of
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the first contaminant p-state. As it is a global process, we have to consider the cre-
ation of such a state anywhere in the system, implying an integration of the Rydberg
fraction over all sites, so

% - 5T (). (8.13)

The term b denotes the branching ratio of the decay into detrimental states, with a
typical value of b 2 20% at room temperature, and I’y is the full natural decay rate,
for example, I'y! = 79 2 30us for the 365 state of 5"Rb [Bou+17]. While this expression
obviously diverges with the system size for any nonzero average Rydberg fraction,
it is possible to limit its value in a finite system. We note that in the far detuned
regime (7¢) is given by the ratio (2/2A)? = n®, as the detuning in this regime does
not exhibit a mean-field shift due to many-body effects. As can be seen from the pa-
rameters considered in Chap. 7, there the local Rydberg fraction amounts to ~ 0.1%
per dressed atom. Considering that in the SS1 phase we typically have one dressed
atom per unit cell and for a proper (micro) crystal one might arguably require at least
about 5 x 5 unit cells for the system size, this implies a collective Rydberg fraction of
~ 2.5% and thus a time-scale of up to 7 » 6ms.

Note that it is also possible at near-resonant excitation of Rydberg states to obtain
a local Rydberg fraction of < 0.1% in the bulk of the system, as shown in Fig. 8.6(E).
But as this value is achieved via many-body correlations induced by the strong long-
range interactions, one has to be careful at the boundary, which is either given by
the edge of the cloud and can be controlled by the shape of the external optical trap,
or the intensity beam-profile of the Rabi laser. For a sufficiently sharp boundary,
it significantly differs from the bulk via a reduced number of neighbors which get
excited to the Rydberg states, most notably resulting in a reduced local mean-field
shift of the detuning at site 7,

€

Alpise = Voaw (8.14)

s 167
j=i i -l
Thus the effective Rabi process becomes increasingly near-resonant at the edge of the
system, leading to a strong increase in the Rydberg fraction. In that case one easily
observes local Rydberg fractions on the order of 0.5, expected for the on-resonant
coherent driving of the Rydberg excitation. So the numerous excitations that form
at the edge, as observed in [Sch+12], for example, quickly induce the avalanche on a
time scale, which is well approximated by the bare lifetime of about 7y = 30us in the
above mentioned example. Itinerant physics are therefore out of reach in this limit.

Let us now consider a system with parameters as given in Tab. 8.1, with one
minor change regarding the geometry of the system. We consider a finite system of
21 x 21 sites with periodic boundary conditions, but no longer assume a spatially
constant value for €2 and instead consider a Rabi laser which results in a beam-waist
with the shape of a “4th-power” Gaussian,

Q(r) = Qexp(-rt/xh), (8.15)

where r is the distance from the center of the system and we set « = 8.5a. This beam
waist separates the system into three parts: the center with roughly constant Rabi
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FIGURE 8.10: Supersolid formation in a finite system illuminated by a Rabi-laser with a
beam-waist of about 15 lattice sites in diameter. Shown are the real-space distributions
of (a) the ground state density n¢, (b) the excited state density (local Rydberg fraction)
(n°), and the condensate order parameter of the ground state ¢¢ in a flat dimple trap,
generated using a 4th-power Gaussian beam-waist for the Rabi laser. Density of the
ground (a) and excited (b) state, condensate parameter of the ground state (c) are shown
respectively.

frequency Q(r) » Q, the edge with roughly constant Rabi frequency €2(r) = 0, which
can just as well be considered as the center of a system without Rydberg excitations,
and the crossover region between those two regions, which can be considered as a
soft edge. All other parameters are given in Tab. 8.1.

U U\N UM t tn L A Q Vw
3x103 5 100 3x10% 3x10* 3x10* -0.2 0.2 10%

TABLE 8.1: Model parameters of (8.1) used for the finite system discussed in this section.
Using natural units, all values are given in units of MHz.

The idea behind this setup is to counteract the overshoot of the Rydberg fraction
at a hard edge, such that we can obtain an overall more smooth distribution of the
Rydberg fraction, which is much closer to the bulk value, as can be seen in Fig. 8.10.
We therefore get a system with a 4-site-supersolid order at the center of the beam
with a local Rydberg fraction n¢ < 2 x 107®. Note that we also have a very low
total Rydberg fraction Y;n{ = 0.1062, which via (8.13) implies a timescale of 7 »
1.4ms. This is on the same order of magnitude as the tunneling time, so we can
expect to observe this phase in experiments, especially with the additional aid of
post-selecting for results without avalanches [Zei+16].

As this real-space simulation naturally describes the crossover between a homo-
geneous superfluid and the supersolid, we can use this opportunity to analyze the
evolution between the two phases. In Fig. 8.11 we show the radial dependence of
local density of states (DOS) from RB-DMFT, averaged over rings with a width of
two lattice sites. One can nicely observe the transition from the supersolid bulk to
the surrounding superfluid. The most remarkable features are a broadening of the
particle modes, as well as the separation of a very narrow gapped hole mode for
the ground state component. From a comparison with quasiparticle results we can
further observe a very good match between the results, both in the supersolid phase
and in the superfluid. The observed discrepancies either stem from the inherently
discretized nature of the DMFT spectrum due to the discrete nature of the considered
impurity models, or they are due to the incapability of DMFT to properly describe
long-wavelength Goldstone modes, which are always gapped in DMFT. The reason
for this is the limitation of DMFT to the lowest order non-local correlations.
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FIGURE 8.11: Spectral properties of the finite supersolid. (a) Assumed radial shape
of the Rabi-laser beam, with a FWHM of about 15 lattice spacings a. (b) Average lo-
cal DOS of the ground state component as a function of the distance from the beam
center, obtained from the local terms of the self-consistent RB-DMFT result for the in-
teracting lattice Green's function. (c¢) and (d) show comparisons of the local DOS of the
ground state component calculated in RB-DMFT, either from the local terms of the lat-
tice Green'’s function G;; (w) or from the local interacting Green’s functions, obtained for
the individual Anderson impurity models, with the result of the quasiparticle method
applied to a system with periodic boundary conditions and 27 x 27 lattice sites. Here,
either the center (c¢) with r/a = 0.5 or the edge (d) with r/a = 12.5 is considered. All
shown DOS fulfill the sum rule, [ A(k,w)dw = 1, to within 3%, while the quasiparticle
result is the closest and the result from the lattice Green’s function deviates most. For
all shown results a Lorentzian broadening of 0.3kHz was considered.

8.3 Spectral properties in quasiparticle picture

In the preceding section we have seen that spectral data from the quasiparticle method
matches well with results obtained in the supersolid regime via RB-DMFT. Thus
we will now give a detailed discussion of the spectral properties , including the
band composition, momentum distribution, and dynamic and static structure fac-
tor. For all discussed quasiparticle results in this section a systems size of 27 x 27
sites with periodic boundary conditions was used. We focus on four points of the
phase diagram Fig. 8.6, respectively given by A/Q = {-1.3,-0.25,-0.1,-0.2} and
/€2 ={0.06,0.06,0.06,0.045}.

8.3.1 Band composition

In the case of near-resonant Rydberg excitation considered here, the two components
of the system are strongly mixed by the Rabi driving. Therefore we do not expect
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FIGURE 8.12: Band composition in the homogeneous superfluid [corresponding to ® in
Fig. 8.6(E)] and checkerboard supersolid phases [corresponding to ® in Fig. 8.6(E)] in
the vicinity of structural phase transitions. Each of the columns gives the first-order re-
sponse of different observables upon a weak coherent excitation of a given quasiparticle
mode. Left to right: Amplitude response of the ground state Re(d¢, ), phase response of
the Rydberg state Im(d¢, ), amplitude response of the Rydberg state Re(d¢. ) and phase
response of the Rydberg state Im(d¢, ).

to have a separate condensation in each component. Indeed, we only find a single
gapless mode, corresponding to the Nambu-Goldstone-mode of a single condensate.

Altogether, there are three relevant bands in the homogeneous superfluid [see
Fig. 8.12, with parameters corresponding to ® and © in Fig. 8.6(E)]. In subsequent
structural phase transitions, induced via an increase in A/(2, the size of the unit cell
increases, such that the bands exhibit back-folding and avoided crossings, as can be
seen in Fig. 8.12. The lowest band always remains gapless, due to the presence of
a condensate. Depending on the broken lattice symmetry, additional phonon cones
appear at nonzero momenta, corresponding to the reciprocal lattice of the new su-
perlattice. Modes in the vicinity of the gapless cones almost purely generate phase
fluctuations in both condensates. The remainder of the lowest band, as well as the
remaining two gapped bands predominantly yield amplitude fluctuations in either
condensate order parameter.

In the ungapped band we can also observe the emergence of roton-minima. As
the bare van der Waals interaction does not have a length scale of its own, we can-
not explain the position of the roton minimum via the long-range interaction alone,
but instead the optical lattice provides the length-scale, as the first roton minimum
appears at the edge of the Brillouin zone at k = (7/a,7/a). In the CB-SS phase we
observe a subsequent roton at the edge of the reduced Brillouin zone, corresponding
to the X-point in the original Brillouin zone. In the vicinity of each roton we observe
a pronounced amplitude response of the Rydberg condensate, as expected for an
instability related to the formation of a supersolid.

The lower of the two gapped bands corresponds to the first gapped band which
can be found in a single component Bose-Hubbard model. At unitary filling it con-
tains the Higgs amplitude mode. In our case it predominantly yields amplitude
fluctuations in the ground state. The remaining gapped band has very different en-
ergy scales and a bandwidth > 42, while it mainly contains phase and amplitude
fluctuations in the Rydberg part of the condensate.

In the supersolid phases beyond the checkerboard case, high-lying bands be-
come less relevant (see Fig. 8.13). Due to the back-folding induced by the increased
unit cells, individual bands become collections of bands in the more complex phases.
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FIGURE 8.13: Band composition in two different supersolid phases [corresponding to
® and e in Fig. 8.6(E)]. Shown is the first-order response of various observables upon
a weak coherent excitation of a given quasiparticle mode. Left to right: Amplitude re-
sponse of the ground state Re(d¢,), phase response of the Rydberg state Im(d¢,), am-
plitude response of the Rydberg state Re(d¢.) and phase response of the Rydberg state

Im(dpg).

But still there is only a single ungapped band, containing multiple gapless cones at
momenta corresponding to the reciprocal lattice of the associated superlattice. Each
cone yields Nambu-Goldstone-type phase excitations of the condensate. All remain-
ing gapped bands primarily provide amplitude fluctuations to a varying degree.
Note that a remnant of the roton-minimum still is visible in the first gapped band
of the (®)-supersolid in Fig. 8.13. Indeed the roton minima tend to close the gap
at a phase transition and retract in the first gapped band afterwards. An exact gap
closing has only been observed in the simulations at second-order phase transitions,
where changes in the order parameters as well as the excitation spectrum happen
continuously.

8.3.2 Spectral functions

When considering the spectral weights we observe that the gapless and the first
gapped (set of) band(s) contribute almost solely to the spectral function of the ground
state component. While the Rydberg component also gets contributions from the
gapless band, it has its major contributions in the high-lying gapped band, which
has a shape that strongly depends on the supersolid state. We note that all spectral
functions discussed in this section satisfy the sum rule to within 1%, while the devi-
ation systematically lies below the rule and is a result of the Fock-space truncation.
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group). The symbols (®, ®, @, ©) at the center of each group of four plots signify the phase

it corresponds to, as shown in Fig. 8.6(E).
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For the ground state component the energy range of excitations barely changes
throughout the various supersolid phases. Instead the band structure changes tremen-
dously, resulting in various gaps and Van-Hove-singularities in the density of states.
The high lying bands, constituting most of the excited state spectral weights, change
significantly between phases. This is best illustrated comparing the CB-SS case (©
in Fig. 8.14) to the 4-site SS (@ in Fig. 8.14), which the former evolves into, when in-
creasing the detuning A. As a result of the strong long-range interaction, this band
exhibits a strong avoided crossing after the back-folding of modes at the phase tran-
sition. Subsequently, most of the spectral weight migrates to the lower branch of
the — now doubled — bands. As a result the energy scale of the relevant modes is
significantly reduced.
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FIGURE 8.15: Momentum distributions of ground (top row) and Rydberg state (bottom
row). The symbols (®, ©, ®, ©) signify the phase of each plot [compare Fig. 8.6(E)].

Throughout the various supersolid phases, one can observe the appearance of
sharp peaks at quasimomenta corresponding to the reciprocal lattice of emergent
superlattice structures (see Fig. 8.15). These macroscopic maxima show the conden-
sation in certain momentum states, starting with a single peak at k = 0, as expected
in the homogeneous superfluid. Due to the Rydberg fraction of usually no more
than 1%, the peaks in the Rydberg component are reduced proportionally. Also note
that the k = 0 peak always dominates.

Additional pronounced local maxima emerge in the Rydberg component when
approaching a structural phase transition, which only have minor counterparts in
the ground state component. These maxima peak at momenta where a roton mode
exists in the lowest band. As these roton minima are a result of the long-range
Rydberg-Rydberg interaction, the local maxima in the momentum distribution pre-
dominantely appear in the Rydberg species.

8.3.3 Structure factors

Bragg scattering experiments allow for the measurement of the dynamic as well as
the static structure factor. Thus one can map the band structure, as well as observe
signatures of crystallization in experiment. In this section, we give an overview
of the signatures of supersolid order one might observe in experiments. Note that
the ground state structure factors are more accessible in experiments, as suitable
laser setups are already commonplace, while the level structure in the vicinity of a
Rydberg state would necessitate additional considerations in order to realize a Bragg
experiment.
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FIGURE 8.16: Dynamic structure factor integrated over the momenta DSF = S(w) and
along high symmetry points for ground (top row of each group) and Rydberg state (bot-
tom row of each group). The symbols (®, ®, &, ©) at the center of each group of four plots
signify the phase it corresponds to, as shown in Fig. 8.6(E).
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Dynamic structure factor

Contributions of the individual bands to the dynamic structure factor of either com-
ponent are distributed very similar to the spectral function: the gapless and first
gapped band(s) provide(s) most of the contributions for the ground state compo-
nent. In the Rydberg component we observe contributions from the gapless band,
mostly in the vicinity of roton minima, as well as major contributions from the high-
lying gapped band(s). This picture changes close to the insulator transition, as for
example in the quasi-triangular supersolid (e in Fig. 8.16). There the high-lying
gapped bands no longer contribute to the dynamic structure factor of the Rydberg
species, while small contributions survive for the ground state component.

Static structure factor
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FIGURE 8.17: Static structure factor of ground (top row) and Rydberg state (bottom row).
The symbols (®, ®, ®, ©) signify the phase of each plot [compare Fig. 8.6(E)].

We end our discussion of the near resonant Rydberg dressing with the static
structure factor (see Fig. 8.17). In the homogeneous superfluid the condensation of
a macroscopic part into the zero momentum state yields a strong peak in the static
structure factor at k = 0 in both species (®). As the considered superfluid is in the
vicinity of the SF-SS transition, pronounced local maxima can be observed at the
edge of the Brillouin zone, especially in the Rydberg component, as it carries the
long-range interaction. The Brillouin zone gets reduced as the unit cell of a super-
solid contains more than one site, and the maxima transform into peaks as a result
of the condensation in the finite momentum states. Then new instabilities emerge at
the edge of the reduced Brillouin zone, as A is increased further, giving rise to new
local maxima of the static structure factor. This can be observed in each supersolid
phase (for the Rydberg component ©, ®, © in Fig. 8.17). Only when the condensate
fraction is vastly reduced, due to the vicinity to the insulating state, one can also
observe the local maxima in the ground state component (see © in Fig. 8.17).
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Appendix A

Hartree-Fock generalization of
B-DMFT

In the main part we have derived the RB-DMFT equations for a system with long-
range interactions, using the Hartee approximation only. The obtained effective cav-
ity action was shown to depend on three and four-point correlations, which were
subsequently treated using the Hartree approximation. In this section we briefly
discuss a Hartree-Fock type treatment of the relevant terms, implying the need for a
slightly more general form of the effective impurity Hamiltonian. Furthermore the
generalized Hartree-Fock treatment is not limited to the impurity, but also extends to
the used Dyson equation, which is required to close the self-consistent DMFT-loop.

A.1 Effective impurity action

In the main part we have defined an expression for the effective action (4.11), which
is of the following form.

ngf = S() +vy (Al)

Its first term is given by the local contributions of a given site, referred to by the
index 0.

B * ab [ * * * UO'
So = fo dry; (bOUa_j_ - MabOUboJ) + (Qav(bwbm +boobgy) + f!b00\2|50w!2)

ay
(A.2)

The second term is given by an expansion in various orders of Green’s functions,
depending in leading order (in an expansion in the inverse number of neighbors)
on the quantities M (7,7) (4.15) and F(7,n) (4.16), which are to be determined self-
consistently.

B
Yy :A dT( Z _(tgibgg<bia>(0) +C.C.) + Z Vo’(i70)<nig)(0)n00) (A3)
(0,i),0

1#0,0

- % fo lar fo dn ((b5 () bo(r)) M(7,m) (bo(n) b (n))" (A4)

+ (b3 (r)mo(7)) F(7,m) (bo(n) mo(m))") (A5)
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Regarding the implementation of a Hartree-Fock treatment, we only have to con-
sider the last term (A.5).

Fﬁy(T,n) =0
Fy (r,m) = =2 3" t6:Vi(5,0) ((bi (7)) (1)) 0) = (bie (7)) 0) (50 (1) )0y

1,j#0
B (ron) = =2 32 72,0) (Mg (D)) = (D) A0
iy (r) = 53 Vali0Vold.0) (i m)mge () = (min(7)oy (30 (D))

Let us now formulate a Hartree-Fock type approximation of these terms. To do so,
we extend the known Hartree approximation (as discussed in section 4.1 following
equation (4.16)), by also including off-diagonal terms when forming contractions of
the terms with three of four field variables'. Merging the various variables, position,
component and imaginary time, using Latin letters ((¢, 1, 7)=a,b, ...), we may thus
expand the correlation functions appearing in (A.5), by representing every field as a
sum of its fluctuations J; and the expectation value ¢; = (bi)(o), S0 b; = ¢; + 6;.

{babybo) 0y = Palbybb) (0) + @b (babb) (0) + Pb(baby ) (0) = 200y B + (dady db)
= a{bybi) (0yc + D1 (babi)(0yc + Pr{baby ) 0y + Pa®p b + (3ady b) (0)
Here we have introduced the connected two-point correlation function, as the two-

point function, from which the disconnected contributions are excluded, thereby it
is the correlation function of the fluctuations of all fields.

(A7)

(baby)c = (babs) = (ba)(bb) = (0ade) (A.8)

As a generalization thus follows from (A.7) the definition of the connected three-
point correlation function. Also note that the definition of the connected correlations
does not depend on the explicit type of the average.

(babyby)c = (0a0y 0p) = (babyby) — (Pa(bybr)c + dp (babb)c + Pp(baby ) + Padydp) (A9)

The fourth order term can thus be represented as

(b2baby by ) 0y = Dy Pu(baba) (0)c + PaPalbybb)0)c + Db Palbabs)(0)c
+ G Bu{bpba) (0)c + PaPb(baby ) (0)c + Pad (babb) (0)c
+ ¢a{babybi) (0yc + Palbabyby)(0yc (A.10)
+ ¢ (0ababy) (0yc + Pu{bababy ) (0)c:
+ GaPaP b + (bababybo) (o)
Here we have used (bbb, by)c = (0,040, 0p). The last remaining step is an approx-

imation for the third and fourth order terms which still appear in this expression,
as they represent contributions from higher order (connected) Green’s functions,

"Note that nj, (1) = b, (1)bjw(n)
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which we aim to neglect within DMFT. In order to retain as much as possible from
these terms, we therefore assume a factorization, as implied by the Wick-theorem, so
(b2babyby)c = (brba)c(bpby) o + (bhby) (b ba)c + (b3by ) {babs)c. That way all third or-
der terms vanish, while the contributions from the fourth order term remain, which
are the only terms also relevant in a normal state (with vanishing condensate frac-
tion). We thus obtain the following approximation of (A.5).

F (ryn) = =2 32 ,V.(3.0) ({5 ()85, (D) 00 @S (1) + (bin(P)bs (M) 0y 8%y (0) )
1,)%
= [F (rm)]
Fy(r) = 3 Va0V, (i.0) (=08 ()8l ()65 ()6 (m)
1#0,9#
(b3, ()b (1) 0) (05, ()bis (1) 0) + (B (15, (1) 0) (s ()i (1)) o))

These terms imply that an extended impurity system is required, in comparison
to (4.17), for a proper representation of the impurity action.

(A.11)

A.2 Green’s functions

Another part of the DMFT-loop, where a Hartree-Fock type treatment demands a
generalization, is at the level of the connected interacting lattice Green’s functions.
For this derivation we follow Lii et al.[LPS14], where the derivation is presented for
purely local interactions (and without anomalous terms). Let us start by considering
the corresponding Dyson’s equation.

Gi, i (11 —T2) = G(21,22) = Go(x1,22) + ji Go(21,20)E(n, Tm) G(@m, x2)drpdry,
(A12)

Here we use a combined notation by defining x,, = (I,,, 7,), where [,, is the position
in the lattice and 7, is the imaginary time. The Green’s matrices on the other hand
are 2 x 2 matrices corresponding to the Nambu notation as introduced in (4.14). Fur-
thermore the interaction picture is used in this derivation, where for our purposes
the non-interacting part of the original Hamiltonian (e.g. (4.1)) is considered to con-
sist of all local terms (including the interacting ones) as well as all non-interacting
non-local terms (i.e. the hopping terms).

Hy = Hyqw — Ho = H - Hy (A.13)

Thus the operators in the interaction picture are given as follows.

B(T) = eXp(TI:IO)I;exp(—TI:IO) 13+(T) = exp(THo)lA)Jr exp(—TI:IO) Te[-5,8] (A.14)

In this representation, the normal connected interacting Green'’s function of the Ry-
dberg (dressed) states in a periodic lattice system has the following form.

Gl - - (T{l;(a:i)l;+(xj) exp (— JA ’ dTHI(T))}>C (A.15)
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This expression can be evaluated by expanding the exponential up to first order in
the interaction term.

GY = —(T{I;(:Ui)if(xj) (1 -3 V’;’" f b (20)b(20)b (@m0 (2 )8 (T -Tm)dTndTm)}>

(A.16)
Note that z,, = (n,7,) and z,, = (m, 7;,,) share the same time 7,, = 73, due to the in-
stantaneous nature of the interaction (also because the original Hamiltonian is time
independent). This expression is further simplified by evaluating the four possible
contractions for each of the external fields with any of the fields which are integrated
over. Contractions involving connected Green'’s function beyond two-point correla-
tors are neglected as we want to implement this expansion in a DMFT-loop where
only two-point Green’s functions are considered.

C

(T {b(2)b" (2))b" (@) b(2n)b" (21)b(2m) }) .
=(T{b(z)b" (2n) Do [(TL0(n) (25) 1 e (T (2m)b(am) o
HT{b(@n)b(zm) A TLD (2m)b (2) }e + (T {b(@n)b" (2m) e T{b(zm )b (25) }) ]
+(T{b(x)b(zn) Vo [(TL6 ()b (2) A T (2m)b(am) o
HT{D () b(@m) DA TLO (@) (25) }e + (T ()b () e T{b(m)b (2) })c ]
+ (T{b(@:)b" (wn)})o [0 = m] + (T{b(2:)b(xm)})c [n <> m]
(A.17)

By definition the connected bare lattice Green’s functions (for the interacting com-
ponent) are given as follows.

() = (T{b(mz)b+(a¢j)}) (T{b(a:z)b(%m

Inserting the definitions (A.18) into (A.17) yields a simplified form of the Hartree-
Fock expansion terms.

1] _ ] nm nj mj mj
Gy =Gro- /f 1.0 G11 0G220+G12 0G210 + GGy} 0]
TL

+ Z175,0 [GZ{ 0G320 + G3( 0G21 0+ Gap' oG o] (A.19)
+ Gifo[n —m]
+ GZEO [n«— m]) (Tn — T ) dTndT,

These terms can be reordered so one obtains two seperate expressions, where one
can be identified as the Hartree term while the other is the Fock term.
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G” = 1131 0 [/ Z Vim G330 0 [ Zﬁ,oG?{,o + Zfﬁ,oGg{,o] 6(Ty = T ) dTndTim,
=—n0(m)
- ﬂ Z Vnm Z Gl’lﬁ,OGZ '1 ()5(7-71 Tm)dTndTm
n,m a,af

(A.20)

Here ng(m) is the non-interacting occupation number at site m. Similar derivations
g P

yield the remaining elements of the Nambu of Green’s functions >. By comparison

with the Dyson equation (A.12), we can fianlly extract the (one-loop) contribution to
the self-energy.

S0 (Tn = Tm) = 0(Tn = T ) Snm2 Y, 10(5) Vg = 6 (7o = T ) GG™ (Tn = Ton) Ve (AL21)
J

Hartree Fock

The last term is readily included in RB-DMFT via the self-energy of the local Ander-
son impurity models, as it is included there in the form of a local shift in the chemical
potential for the excited states. But in the RB-DMFT loop, the occupation number is
calculated in the effective Anderson impurity model, which already includes inter-
action effects, thus the interacting occupation number n has to be used in place of the
non-interacting ng. One should therefore also use the interacting Green’s function
when computing the second term (the Fock term), in order to compute the lattice
Green’s function on equal footing, when using the irreducible self-energy 3. This
way the complete Hartree-Fock limit can be obtained. As both contributions are di-
agonal in 7, the transformation to Matsubara frequencies is straightforward and the
Hartree-Fock terms of the self-energy are as follows.

B
XHF (wy,) = /(; dre"mTE"(T) = dpm, Z n(§)Vnj = G"™ (1 = 0) Vo, (A.22)
J

Hartree Fock

We further note that this form demands knowledge of the instantaneous and off-
diagonal terms G (0) = - lim.,o- G™"(¢) = —% limeo+ Y, exp(iw,€) G™ (iwy,). For
methods realizing the DMFT self-consistency on the imaginary axis this implies the
need for analytic continuation in order to obtain the Fock terms. That is especially
noteworthy, as the kinetic energy trick (4.112) as used for (4.111) cannot be used here
to circumvent the need to calculate G™™ (7 = 0).

2G§j2 is the only missing independent element, due to the well known symmetries for a time inde-
pendent Hamiltonian. It can also be obtained from (A.20) by replacing each appearence G , - G o
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Appendix B

Coordination number scaling of
the long-range interaction

In Sec. 4.1, when discussing the DMFT cavity action, we introduce a scaling of the
long-range interaction using zef = Y.;.0 V (1) /max;.0(V (7)) as an effective coordina-
tion number, on which we impose for any |r; — ro| > R./a (where R, > 0 is some
finite length scale in units of the lattice spacing, e.g. the length scale of the dressed
soft-core potential) such that V (r) oc r|~(4+) with fixed € > 0 for a given dimension
d of the system, as this always guarantees a convergent and thus finite z.

In order to investigate the dimensional scaling of z, let us first consider the re-
quired summation for a given dimension d. To do so we define max;+(V (7)) = Vinax
and introduce a d-dimensional vector £ for each of the sites of a hypercubic lattice,
while the corresponding spatial vectors are given as af, where a is the lattice spac-
ing. As we are only counting the number of neighboring site weighted by relative
interaction strength, we can simply disregard energy and length scale units:

1

Zeff =, Vo (i) /maxizo (Vi (7)) = > V(e (B.1)

10 Vinax £+0

For high dimensional systems, this summation becomes increasingly hard to com-
pute numerically. Therefore we try to focus on the dominant summation terms. Let
us start by considering the general form of

0= (l1,...,0p). (B.2)

Due to the isotropic nature of the interactions in the main part, we may restrict the
summation without loss of generality to those £, which have their entries sorted
starting from the largest value, while we also only consider values ¢,, > 0 for n > 1
and ¢; > 0:

0<ly2ly>...20312042>20 — Zfz‘>0. (B3)

In that case we have to consider a multiplicative factor for each summation term con-
sidered. Due to the possible binary choice of the sign for any nonzero element there
is a factor of 2", where M = ¥, 0(¢; - 0.5). Furthermore any nonzero element may
appear multiple times. Therefore we define 7, as the number of times a given integer
¢ appears in a vector £, so each 7, > 0, while at least one is nonzero. Thus, noting that
there is no sign choice for zero, we have another way to write the exponent
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M:

NgK

Ne- (B.4)

(=1

The number of ways one can distribute the various (multiple) integers within a given
vector £ is given as the multinomial

d!
T152, ne!(d - M)V

The norm of each of these vectors has the value

je] = \} net2. (B.6)
(=1

Combining all these expressions we obtain an optimized summation for z, as

1 & e ! -
el 2 14 el | (B7)
e VmaX {ng}g{o} H£=l Ug'(d — M)' ZZZI

Note that we exclude the case where all 7, are zero, as this corresponds to a local
interaction, which we do not consider in the scaling of the coordination number. In
practice we can limit the set {n,} (especially when considering a numerical calcu-
lation), using only a finite set {n,...,7,, }. The choice of ¢,, depends on the con-
vergence behavior of the sum, which depends on the tail of the interaction, thus ¢,,
can typically be taken to be small for large €. A similar consideration is also possible
for the multiplicities 7, particularly considering that each 7, < d in any case. Thus
convergence with regard to a given 7, can easily be inferred. For any 7, one simply
increases its value step by step up to 7", keeping all previous 7, with ¢’ < ¢ fixed,
until the additional summed contributions converge. This procedure is exemplified
in Fig. B.1

(B.5)
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FIGURE B.1: Convergence behavior of the partial sums of ze(d) for a bare power law
interaction potential (B.8) for two distinct values of € = (0.5, 2) up to a maximally consid-
ered ¢,,, which is increased from 1 to 3 (top to bottomn), while in each case a comparison
is made for increasing maximum multiplicities 7;", for the value of ¢, considered. The
denoted arrays specify the values n;" for ¢ < ¢, used in each graph, corresponding to
values where all lower orders are considered as converged.

B.1 Power law potential

Let us now consider the case of a power law potential, for example the van der
Waals potential as in the main part of this thesis, where we have simulated a two-
dimensional square lattice system (so d = 2). In that case we would have € = 4. This
case can be compared to others with reduced power laws, such as dipole-dipole
interactions for example. For any of those cases let us consider the following simple
interaction potential V'(r), where r = |£|:

V(r) =

(B.8)

pd+e’
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Here d is the dimension of the considered system while ¢ is determined by the actual
interaction, so € = 1, for example, corresponds to isotropic dipole-dipole interactions
in a two-dimensional system.

[ €=0.5 50

[ 40
40}

[ 30
30

Zeff
Zeff

20} 20

10

10 15 20 25 0

w
w

10 15 20 25

d d

FIGURE B.2: Convergence behavior of z(d) for increasing values of ¢, up to 8 sites.
Various cases for the power law scaling of the interaction are considered via the choice
of € as specified in each graph. The case € = 1 e.g. corresponds to dipolar interactions in
a two-dimensional lattice, while the case € = 4 corresponds to van der Waals interactions
in a two-dimensional system. In each graph the greatest multiplicities of each ¢ are set
to the following values: ™ = {8,5,3,3,2,2,2,1}

As can be seen in Fig. B.2, the long-range interaction unsuprisingly is dominated
by nearest neighbours for power laws with ¢ > 1, which follows from the almost
linear dependence of z¢(d) on the dimension d in that case. For the cases ¢ ~» 1 and
¢ < 1 on the other hand there is a strong increase of z.(d) for d < 8 far beyond a
simple linear increase. Note that the behavior of z.¢(d) always becomes linear for
large dimensions, even for € < 1. This behavior should remain for all € > 0 and
clearly signifies that only nearest neighbors matter in the infinite dimensional limit,
for which mean-field descriptions become exact.

B.2 Rydberg dressed potential

For far red-detuned Rydberg dressed atoms with repulsive van der Waals interac-
tions, one has to consider a dressed interaction potential (2.14) of the form

Réte 11

V(T) = Rél+e+rd+e’

(B.9)
which we already normalized to its largest value. As our focus is on two-dimensional
systems in this thesis, we consider d = 2 and € = 4 here. Due to the plateau shape of
the interaction, within its soft-core range R., we expect a strong increase in z.(d)
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when compared to the bare interaction, which indeed we find for dimensions d < 20
for the considered values of R.. Note that we still observe a return back to the linear
(mean-field type) behavior for even higher dimensions.

50 e=4,R,=1.5

Zeff

da da

FIGURE B.3: Convergence behaviour of z.(d) for increasing values of £,,, up to 8 sites.
Two different cases of the soft-core radius are considered, with R. = 1.5 and R, = 2,
while the long-range tail decays as a power law in d+¢, V(1) =o< 1/r4*¢. We consider the
long-range soft-core interaction, as induced via weak Rydberg dressing of the ground
state, which hasa 1/ r% behavior, so € = 4 in a two-dimensional system. In each graph the
greatest multiplicities of each / are set to the following values: {n™} = {8,3,2,1,1,1,1,1}

B.3 Conclusion

On the one hand, we can conclude that the use of an effective coordination number
zeff for the long-range interaction terms in DMFT is well defined for any dimension
and depends linearly on the dimension in the limit of large dimensions, just in the
same way as the regular number of nearest neighbors. However on the other hand,
Zeff grows much faster then linearly in low dimensional systems, for certain types
of interactions which we investigate in the main part of this thesis. This implies
an increased accuracy for mean-field methods (both static and dynamic) and mean-
field approximations, for example the Hartree decoupling used in both DMFT and
the quasiparticle scheme.

We furthermore note that the obtained values for z.4 can be considered as a lower
bound in the context of the near-resonant Rydberg excitation discussed in Chap. 8.
This is due to an interaction induced mean-field red-shift of the detuning of the
Rabi process in the vicinity of Rydberg dressed atoms, which is a realization of the
Rydberg blockade effect. As a result the interaction energy is vastly reduced for
nearest neighbors, which can be interpreted as a reduced Vinax and thus an increased
Zeff, implying a correspondingly increased validity of mean-field approximations for
the long-range interaction.
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Appendix C

Third and fourth order terms of the
fluctuation expansion

In Sec. 6.1.3 the Gutzwiller fluctuation expansion of a multicomponent extended
Bose-Hubbard model with long-range interactions is introduced. The so far ne-
glected third order term is given by

~ / . 12 N . .
HO -2 T g, T [Foxu) o525 00) | polll) ()T (i2) (i)

. L 0,11,82,i3 7 £’ 11,0,42,i3 "~ £
o, (€,0)  i1,i2,i3>0

LEeey ()f )t (), poel) U(n)*agz)*a(ig)]

i1,i2,0,i3° ¢ v v 11,92,43,07 £
’ +

+—Z SV () 3 [ NGO N E=te0) 5 i) 5 00) () (C.1)

¢ 64+0 21,82,13>0

y + + +

+N“’(zi)Ngz(f) (1) (12)‘715/@3)+N21 (Of)NZUQ(li) (1) (12) (Zs)
+N?7(€)NU(Z’) (11) (,Z:J,)‘]-O_éw)jl7

11,22 7/3:

while the fourth order term has the form

=0, (4,0 . . . .

HO == 3ty 3 FTGS) il @ liz)y ol
o (0,0y  11,12>0
j17j2>0

7£ U L+64 . . .

+—Z > Virers) ) 21(]1) Z2(j2+ i)y ot @ liz)p o o]
£ 64+0 11,12>(())
J1,J2>

C2

SRR D S i A GOl U Rl (C2)

inizagg2%0 0 v
Uv“v”) i.l’i.2>0
J1,52>0
0,(£) xyo,(£+5¢ 21)+ 22)+ J1) (32)
>3 Virnrs) Y NPONZE0,0) 507 :
l

- 11,51 7 12,52
60+0 Z1,ZA2>0
J1,J2>0

Y
2

As mentioned in the the main text, they lead to a finite lifetime of quasiparticles as
they introduce non-numberconserving and interacting terms.
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Appendix D

Approximations in RB-DMFT

In Chap. 8 certain approximations are made with regard to the Rydberg state tun-
neling, which was set to zero, and the truncation used for the bosonic Fock-basis,
which was set to N, = 4 in the context of the coherent-tail state truncation proce-
dure introduced in Chap. 5. Let us therefore briefly discuss the validity of these two
approximations.

D.1 Influence of Rydberg hopping

To probe our assumption, that we can limit itinerant behavior to the |g) component,
namely, by setting 7 = 0, we compare the results discussed in Sec. 8.2.1 to selected
simulations with = 1. As can be seen in the comparison of the average Rydberg
fraction 7., shown in Fig. D.1, hopping of Rydberg states has only a minor influ-
ence on the phases observed in Chap. 8. It primarily leads to changes in parameter
regions, where given phases are almost degenerate. This can be seen as one of the
four-site-unit-cells vanishes for the chosen parameters, leading to one less step in
Figs. D.1(c) and D.1(d). Otherwise, there are only small deformations of the bound-
aries.
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FIGURE D.1: (a), (¢) and (d) depict averaged Rydberg-state occupation numbers n. =
n. of (mostly) converged RB-DMFT simulations for parameters as given in Fig. 8.6,
except for 1, which is given in the legend, with (a) A/Q = -1, (¢) -0.415, and (d) —0.303.
The dashed lines in (a) mark J./Q where f changes sign, so results at low J/ have a
higher energy as the vacuum state [n? = 0,n° = 0). (b) The position of the sign change

corresponds to a kink in the logarithmic plot | f].
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D.2 Coherent-tail state truncation

In order to benchmark the choice of the Fock-space truncation, where we used a soft
cutoff scheme, which replaces the highest Fock-state IV, by the coherent-tail state o<
N, O‘TZ introduced in Chap. 5, we probe the influence of a changed truncation, as
given by a variation of V., on the observables and especially on the lattice-averaged
grand-canonical potential f. We do this in a parameter region where the largest
deviations are expected. As the lattice filling increases above 3 atoms per site, which
is close to the used cutoff V. = 4, for small A and large hopping [see Fig. 8.9(a)],
we chose A/Q2 = -0.8 and J/€ > 0.05 for the benchmark. Figs. D.2(a)-(c) depict the

observables ¢., 7. and (B}?)e), which have the largest deviations. As can be seen,
changing IV, from 4 (used for all the main results) to 5 barely has any influence on
these observables. The most pronounced changes appear for J/2 > 0.1, with only
minor numerical changes in the values of the observables, while the transition SF <
CB-SS is shifted only very slightly. This can be seen from the kink in 7., as shown
in Fig. D.2(b) and its inset. f also experiences only minor deviations, which have
a maximum around J/) ~ 1.3, as shown in the inset of Fig. D.2(d). We therefore
conclude that our results can be considered as converged with respect to the Fock-
space cutoff.

g X 1073 (bhbe)
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g N —0.
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FIGURE D.2: The lattice averaged observables (a) ¢., (b) fi., and (c) (3;36) as functions of
J/Q for A2 = —0.8, with the remaining parameters as in Fig. 8.6 and with a truncation
scheme as given in the legends. (d) The lattice-averaged grand-canonical potential f.
All the insets depict each deviation for the two truncation schemes, N. = 5 and N, = 4
(the latter subtracted from the former).
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