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A B S T R A C T

Defossiliation of the energy system is crucial in the face of the impending
risks of climate change. Electricity generation by burning fossil fuels is be-
ing displaced by renewable energy sources like hydro, wind and solar, driven
by support schemes and falling costs from technological advances as well as
manufacturing scale effects. The unavoidable shift from flexibly dispatchable
generation to weather-dependent spatio-temporally varying generators trans-
forms the generation and distribution of electricity into highly interdependent
complex systems in multiple dimensions and disciplines:

In time, different scales, stretching from intra-day, diurnal, synoptic to sea-
sonal oscillations of the weather interact with years and decades of planning
and construction of capacity. In space, long-range correlations and local varia-
tions of weather systems as well as local bottlenecks in transmission networks
affect solutions. The investment decisions about technological mix and spatial
distribution of capacity follow economic principles, within restrictions which
adapt in social feedback loops to public opinion and lobbyist influences.

In this work, a family of self-consistent models is developed which map phys-
ical steady-state operation, capacity investments and exogeneous restrictions
of a European electricity system, in higher simultaneous spatial and temporal
detail as well as scope than has previously been computationally tractable. In-
creasing the spatial detail of the renewable resources and co-optimizing the
expansion of only a few transmission lines, reveals solutions to serve the Eu-
ropean electricity demand at about today’s electricity cost with only 5% of its
carbon-dioxide emissions; and importantly their electricity mix differs from the
findings at low spatial resolution.

As important intermediate steps,

• new algorithms for the convex optimization of electricity system infras-
tructure are derived from graph-theoretic decompositions of network
flows. Only these enable the investigation of model detail beyond pre-
vious computational limitations.

• a comprehensive European electricity network model down to individual
substations at the transmission voltage levels is built by combining and
completing data from freely available sources.

• a network reduction technique is developed to approximate the detailed
model at a sequence of spatial resolutions to investigate the role of spatial
scale, and identify a level of spatial resolution which captures all relevant
detail, but is still computationally tractable.

• a method to trace the flow of power through the network, which is related
to a vector diffusion process on a directed flow graph embedded in a net-
work, is used to analyse the resulting technology mix and its interactions
with the power network.
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The open-source nature of the model and restriction to freely available data
encourages an accessible and transparent discussion about the future European
electricity system, primarily based on renewable wind and solar resources.
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1 I N T R O D U C T I O N

1.1 climate change

Physics

The basic understanding that the temperature equilibrium at the Earth’s sur-
face depends crucially on the asymmetric absorption of thermal radiation by
the atmosphere was established in the 19th century thanks to largely Fourier,
Tyndall and Arrhenius. While the atmosphere is nearly transparent to solar
radiation at visible frequencies1, it is mostly opaque to thermal radiation from
the Earth’s surface at infrared wavelengths due to absorption by greenhouse
gases (GHG), i. e. water vapour, carbon dioxide (CO2) and other trace gases2.
Instead, the energy flux through the lower atmosphere is dominated by heat
convection and short-ranged radiative transformations (repetitive absorption
and re-emission by GHG), as was only determined by numerical radiative-
convective models (RCMs) in the 1960s. The first realistic RCMs described a
single vertical column of the troposphere (the lower 8 to 16 km of the atmo-
sphere) and found that doubling of the CO2 concentration from 300 to 600 ppm
would increase the equilibrium temperature of the Earth’s surface by 1.95 to
2.36 K [1, 2], in agreement with the current estimate of 2.2 K and a 5 to 95%
model range of 1.4 to 3.1 K [3]. Qualitatively, the additional CO2 plays a critical
role by raising the temperature in the dry – since cold – layers of the upper
troposphere and consequently the concentration of water vapour. Only by push-
ing the model complexity to 3-dimensional global circulation models (GCMs),
did it become possible to quantify the other predominant feedback loops like
the surface albedo (reflectivity of the ground) and altitude, depth and cover of
clouds [4, 5]. How the stable temperature structure to sustain atmospheric wa-
ter vapour and clouds is provided by non-condensing GHG was demonstrated
by Lacis et al. [6]. They removed the concentrations of non-condensing GHG in
a current GCM and followed it plunge, within five decades, into an ice age with
mean surface temperature at −21 ◦C.

Projections

Research in the last decades quantified and reduced uncertainties on all known
feedback loops and compiled global and regionalized projections of the im-
pending risks: Rising sea levels from expanding sea water and melting glaciers
paired with storm surges will disrupt livelihoods on several islands and coastal

1 Black body radiation is emitted from the Sun’s surface at about 5000 K with a spectrum peaking
at approximately 500 nm.

2 Methane (CH4), nitrous oxide (NO) and halo-carbons are the next important contenders.

1
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Figure 1.1: CO2 emissions as compiled by [10]. (a) Annual time-series 1970-2012 for
the largest seven emitting “regions” and the aggregated rest. (b) European
emissions 2012 split into sectors.

regions. Extreme weather events such as heat waves and heavy precipitation
are increasing in frequency and lead to water and food insecurity. They are un-
evenly distributed: risks are in general greater for disadvantaged people and
communities everywhere. Climate change has already been positively linked
to increasing human displacement and the outbreak of violent conflict [3, 7].
In view of the risks, the Paris agreement was adopted by the representatives of
196 member states of the United Nations Framework Convention on Climate
Change (UNFCCC) in December 2015. It aims to keep the mean global tempera-
ture rise relative from pre-industrial levels well below 2 ◦C; at least during the
current century [8].

Multi-model results show that upholding this limit with a probability > 66%
requires limiting cumulative anthropogenic CO2 emissions from 2011 to about
1000 GtCO2, when confining non-CO2 forcing to the RCP2.6 scenario3 (Anthro-
pogenic emissions between 1870 and 2010 add up to 1800 GtCO2). Equivalent
scenario runs by integrated assessment models (IAMs) from the database of
the Fifth assessment report by the International Panel on Climate Change
(IPCC AR5) which realize the temperature limit have emissions in the range of
750 to 1400 GtCO2 [3]. The majority of these scenarios depend crucially on
negative emission technologies (NET) like bioenergy with carbon capture and
storage (BECCS), forestry policies and direct air capture, which are not demon-
strated or invested in at scale. Holding to the cumulative carbon budget means
reducing annual CO2 emissions from current 35 GtCO2/a progressively down
by 57-83% until 2050 or even by 67-95% to not rely on NET [9].

Carbon dioxide emissions

World-wide annual CO2 emissions shown in 1.1(a) have doubled over the last
four decades largely driven by the strong economic development in China and

3 RCP2.6 is a selected representative for a stringent mitigation scenario. It fixes GHG emissions,
atmospheric concentrations, air pollutant emissions and landuse development in agreement
with keeping global warming below 2 ◦C above pre-industrial temperature levels [3].
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India, but also by the increasing international trade and mobility (emissions
by international aviation and navigation/nautical shipping). Emissions from
the other large emitters, the United States, Russia, Japan and Europe, has ap-
proximately plateaued. European emissions in 2012 make up 3.9 GtCO2 or 11%
of global emissions and are attributed mainly to electricity and heat genera-
tion, followed by road transport as presented in 1.1(b). Electricity generation
by power plants and district heating are only reported jointly as public electricity
and heat. They comprise as much as 36% of European CO2 emissions. This the-
sis implements technologically detailed optimizations demonstrating the eco-
nomic viability to supply the European electricity demand for emissions as
low as 77.5 MtCO2 (a 95% reduction from the 1990 level) based on renewable
generation.

1.2 renewable energy

In 2016, 34% of the electricity generation in Europe was from renewable sources.
Up to 2016, the well-established hydrological electricity generation dominated
the share Europe-wide from the key countries Norway and Switzerland. It pro-
vides a steady amount of about 17% of the electricity demand. But its potential
is largely saturated [11], and it is being displaced by the two fastest growing
generation sources today which are wind (9%) and photovoltaic generation
(3%) [12, 13].

Their technologies are well-understood and built in scale:

horizontal wind turbines extract up to close to 60% of the wind energy
flux through the surface spanned by the rotor blades. The energy scales
by the third power in the wind speed, up until plateauing at the generator
capacity using pitch control. In 2016 and 2017, about 50 GW have been
added each year worldwide, about 14 GW in Europe [14].

photovoltaic panels (pv) consist of several layers of semiconductors pro-
ducing an electrical current by separating photoelectron-hole-pairs with
the static electric field of a p-n-junction. They are thus able to convert
up-to a fourth of the solar irradiation into electrical power4. In 2016 and
2017, 72 and 94 GW of capacity have been built, half of it in China [14].

concentrated solar power (csp) collects and focuses solar irradiance to
heat a thermal liquid and drive a steam engine. It has higher levelized
costs and can only make use of the direct component of sunlight, but
allows on the other hand to decouple the volatile irradiation from the
generation of electrical power with heat tanks.

With the advances in renewable energy technologies in the last decade, the
discussion about the decarbonization of electricity generation and further en-
ergy sectors has shifted from arguments about the technical feasibility of re-
newable energy-based supply to the conditions of its economic viability [16],

4 In 2018, the efficiencies of average commercial modules were reported as 17% for silicon wafer
based panels and 15% for thinfilm panels, while laboratory records reached 27% and 21% re-
spectively [15]
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as well as how to efficiently address the new operational and organizational
challenges raised by fluctuating, weather-dependent availability and vanishing
marginal costs for the planning of renewable energy networks.

1.3 dimensions and scales
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Figure 1.2: Time-scales in power system analysis, due to physics of electrically cou-
pled devices, stability and economically-determined operation and capac-
ity investments according to profit expectations are compared to spectra
of the historically required demand and availability of solar and wind (DE
2011–2017 [17]).

An electrical energy network is a system of electrically coupled devices
whose purpose is to deliver power from generators to loads (consumers). Gen-
erators as well as loads have technical and economic limitations in their avail-
ability in time and space like limited ramping capabilities or the weather-
dependent availability of wind or solar generation. Hence, the time-scales in
power system analysis vary from partial cycles of the 50 Hz grid frequency to
the years required for planning and constructing new generation or transmis-
sion capacity as arranged in Fig. 1.2 and put into context with the dominant
periods in historical German time-series of demand and generation availability
of solar and wind.

Solar generation is strongly dominated by the diurnal cycle of the Earth’s ro-
tation, but also shows seasonal variations due to the eccentricity and inclination
of the Earth’s solar orbit.

Wind speed variations in space and time are governed by the migration of
high and low pressure systems in the lower troposphere. On the leading syn-
optic scale, their dynamic behaviour is approximated by the vorticity equation
with coriolis force and pressure gradient terms [18]. Empirically, the synoptic
scale is quantified by the wind correlation length of 400 to 600 km [19] and is
closely related to a time-scale of several weeks due to the slow migration speed
of these pressure systems, appearing as a broad band in the fourier spectrum
of the wind generation availability at the corresponding frequencies.

Before the advent of renewable generation with time-dependent availability
and vanishing marginal cost, the planning of electricity systems naturally “di-
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agonalized” into generation investment planning and generation and transmis-
sion adequacy evaluations: the generation capacity investment planning used
integrated assessment tools (TIMES, MARKAL, MESSAGE) to evaluate the ex-
pected profits and rough capacity requirements. The tools approximate the
operation of the electricity system by load factors (average per-unit generation)
and system stability by a reserve margin (relative capacity above the need to
meet peak demand). The load factors and required reserves were determined
in separate generation adequacy forecasts carried out by the transmission sys-
tem operators (TSOs), which went through the extra complexity to evaluate the
operation of the electricity system with higher temporal resolutions. For flex-
ibly dispatchable generating units alone, the optimal generation capacity to
serve a particular load duration curve could even be determined analytically
with so-called screening curves. As an orthogonal planning step of the TSO the
required transmission system extensions were determined from the forecasted
network flows [20–24].

Varying zero-marginal cost generation disrupts the use of load factors and
the planning according to a fixed reserve margin, since the factors of all tech-
nologies become functions of the renewable energy feed-in, which depends
on the amount of renewable generation capacities. Furthermore, many studies
evaluating high shares of renewables have identified a growing need for flexi-
bility which can be provided aside from conventional thermal peaking units by
short- and long-term storage units [25–27], additional transmission capacities
[28–31] or the incorporation and coordination of flexible demands from other
energy sectors like heating and transport [32, 33]; all of which with their own
trade-offs, but most of all requirements on model detail.

In regards to the temporal scale there is a consensus that the dimensioning
of photovoltaic capacities and short-term storage units requires resolving the
intra-diurnal load and solar feed-in on the lower end, while for long-term stor-
age the full seasonal variation of load, wind and solar should be represented
by modelling one full year or at least representative weeks [34, 35]5.

The required spatial scales are less well determined:
Previous investigations for Europe and the surrounding regions show that

strengthened interconnectors between countries are used to smooth the wind
feed-in over distances larger than the correlation length [28, 31, 36–40]. For
instance, Schlachtberger et al. demonstrate that a wind-dominated European
electricity system is about 33% cheaper to realize with strong tie-lines than as
isolated countries dependant on storage. Thus, a continent-wide scope should
be assumed as the upper bound.

On the lower end, several studies have investigated the synergies of genera-
tion and transmission capacity expansions in single countries using the areas
around the ulta-high voltage (UHV) and extra-high voltage (EHV) buses as nat-
ural scale with a specific length6 between 13 to 50 km [41]. For an investigation
on European scope, the equivalent amount of buses (≈ 6000) is not computa-
tionally tractable at the temporal scales and with the relevant technologies iden-

5 The investigation of a build-out pathway consequently requires several representative years at
5 to 10 year-steps in hourly resolution.

6 Determined as 25% and 75% quantiles of the transmission line length distribution.
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tified above. The highly resolved ELMOD by Egerer, Gerbaulet, and Lorenz
[42] was used to examine transmission expansion for the full European grid,
but their limited temporal scope to just 18 separate hours forced them to as-
sume fixed generation fleets and prevented them from evaluating storage. The
transmission benefits for a European renewable energy network were analysed
at an intermediate spatial scale of 88 buses by [30, 43] and 200 buses by [44], still
with fixed generation and storage capacities, though. Hagspiel et al. [45] used
an iterative scheme to jointly optimize generation, storage and transmission of
the European electricity system at the same scale of 200 buses, but limited the
temporal dimension again to only eight typical days.

In summary, electricity system planning with varying renewable generation
must decide about generation, transmission and storage capacities accounting
for the intra-diurnal (usually hourly) up to the seasonal time-scale to represent
all the principal frequencies (see Fig. 1.2) and the spatial scales to encompass
a continental electricity system down to an uncharted spatial resolution repre-
sented by up to 6000 buses.

1.4 approach and organization of this work

The decision about the spatial distribution of the capacities in our political and
societal framework is made by the combined actions of all investors according
to their profit expectations. In an idealized market, with enough well-endowed
independent players gifted with perfect foresight, the joint investment and op-
eration would maximize the system’s welfare according to basic market the-
ory. Since the demand in electricity systems is typically very inelastic – even
though demand-side management (DSM) aims to use it as an additional flex-
ibility provider – a techno-economic optimization which minimizes the total
system cost is able to (1) show the economic viability of an electricity system
configuration, as well as (2) approximate the simulation of its evolution. Po-
litical goals and instruments like the European emission trading system enter
the optimization either as cost adjustments or additional constraints like a CO2

cap [24, 46].
This contribution starts from the assumption that a decarbonized renewable

electricity system based on the temporally and spatially varying energy sources
wind and solar introduces complex interdependencies with the other system
components needed to provide flexibility. As long as these interdependencies
are not (yet) fully understood, they have to be evaluated from a system’s per-
spective – which can approximately be assumed with a least-cost optimization
of the spatially and temporally resolved investment and operation of the elec-
tricity system. The prominent flexibility options are continental transmission,
dispatchable hydro-electric generation, long- as well as short-term storage and
flexibly dispatchable fossil generation at low load factors. Even in its simplest
realization as a minimization of a linear cost objective under a set of linear
equality and inequality constraints, finding the solution exceeds today’s com-
putational resources. Compromises about the resolution and scope must be
made.
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In this work, we attack the the dilemma head-on. In Chapter 2, we present
new formulations of the linear optimization problem and benchmark them
against the ones in use in the literature: A formulation that draws equally from
the network graph as well as from its dual to model the Kirchhoff circuit laws
is able to minimize the number of explicit variables and constraints, while
preserving sparsity. The solution time of the electricity system optimization is
reduced by up to two orders of magnitude.

Chapter 3 builds a comprehensive European electricity model from freely
available sources: The topology of the European UHV/EHV network layers is
extracted from online data and combined with standard electrical parameters
from literature. Several incomplete public power plant databases are funnelled
into a consistent dataset. Weather-dependent availability and expansion poten-
tial of on- and offshore wind-turbines as well as PV panels in the area of each
substation is estimated from reanalysis weather data and information about
land-use. Basic validation against published aggregate values is carried out,
albeit tentatively.

Chapter 4 forms the core of this work. It applies a spatial clustering method-
ology on the detailed European model to parametrically interpolate from one-
node-per-country to many-node-per-country electricity system models. The
scaling of the cost components of the optimal system without and with trans-
mission expansion is examined. Furthermore, since every new transmission
line must be weighed against the possibility of local resistance due to land-
scape impacts, the effects from constraining the allowed expansion of the total
transmission line volume are determined.

Chapter 5 generalizes a methodology to follow the energy flows from indi-
vidual generators through the network for analysing the aggregate flows from
generation technologies or from and to regions. A transmission usage measure
is introduced for estimating the relative transmission volume used by wind
generation, solar generation and thermal generation and is demonstrated on a
118-bus test electricity model.

The final Chapter 6 gives a conclusive summary of the technical achieve-
ments and concrete modeling results. It closes by highlighting next steps for
addressing the remaining limitations.





2 L I N E A R O P T I M A L P O W E R F LO W
U S I N G C Y C L E F LO W S 1

2.1 introduction

Optimal power flow (OPF) problems can be constructed to find the welfare-
maximizing generation and consumption levels in a network given the physical
load flow equations, branch loading limits and generator cost functions. The
full load flow equations are non-linear and the resulting optimization problem
is non-convex, which makes it both challenging and computationally expensive
to find a global optimum. In transmission networks with sufficient reactive
power compensation, linearizing the load flow equations introduces only small
errors [48, 49], with the benefit that the linear OPF (LOPF) can be expressed as
a linear problem, whose convexity guarantees that a local optimum is a global
optimum.

LOPF algorithms are used to clear markets with nodal pricing [50], to deter-
mine redispatch measures in markets with zonal pricing [51], to optimize dis-
patch taking account of contingencies (security constrained LOPF (SCLOPF)) [52]
and in the long-term optimization of investment in generation and transmis-
sion assets [53]. LOPF is becoming more important with the growth of renew-
able energy, since the fluctuating feed-in has led to more frequent situations
where the network is highly loaded [54]. When large networks are optimized
over multiple representative feed-in situations, especially with discrete con-
straints on generation dispatch, the LOPF problems can take a significant time
to solve, despite the linearization of the problem. Approaches in the literature
to reducing the computational times include decomposition [55–57] and a par-
allelisable algorithm using the primal-dual interior point method [58].

In textbooks [52, 59] and major software packages such as MATPOWER [60],
PYPOWER [61] and DIgSILENT PowerFactory [62], the linearization of the re-
lations between power flows in the network and power injection at the buses
is expressed indirectly through auxiliary variables that represent the voltage
angles at the buses. Here we introduce two new formulations of the linear
equations that use the power flows directly, decomposed using graph theoretic
techniques into flows on a spanning tree and flows around closed cycles in the
network. We evaluate the computational performance of the various methods
for the LOPF problem, showing that the new formulations can solve signifi-
cantly faster than the traditional angle-based formulation.

Cycle-flow techniques have already been used in [63] to improve the calcula-
tion times of power transfer distribution factors (PTDFs) and to gain a new un-
derstanding of the propagation of line outages in networks [64]. While prepar-
ing this manuscript, another paper [65] using cycle flows for LOPF in the context

1 This chapter is published as “Linear optimal power flow using cycle flows” by Hörsch et al. [47].
Sec. 2.2 was added to provide a more detailed introduction into electrical power system models
to the uninitiated reader.

9
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Figure 2.1: Representations of a simple 3-bus electricity network as a (A) topological
network, and a (B) circuit diagram. Extracted from [66].

of optimal transmission switching was published; in contrast to that paper, here
we provide an additional new formulation and benchmark both formulations
against established formulations.

In Section 2.2, we give a short introduction into the representation of elec-
tricity networks, before in Section 2.3 the different formulations of the linear
load flow are reviewed to prepare for the introduction of the optimization in
Section 2.4. Extensions beyond the basic LOPF problem are described in Section
2.5 and the results of the performance analysis are presented in Section 2.6.

2.2 electrical model

Generators and loads are attached at buses and connected by branches, either
transmission lines or transformers. Buses and branches as nodes and edges
define the topology of a spatial graph, as illustrated in Fig. 2.1 (A) for a simple
3-bus network with two generators (1 and 3) and one load (2) connected by two
transmission lines. The electrical representation of one of the three symmetric
phases is shown in Fig. 2.1 (B): As is common in power system analysis, the
continuous impedance and capacitance of a transmission line is lumped in the
π-model to an impedance z` = (y`)−1 surrounded by two symmetric ground-
connected capacitors specified by the shunt admittance ysh

` = ib`/2 (refer also
to App. A). Similarly, a transformer is described as maintaining a constant
complex-valued ratio (magnitude and phase-shift) between the voltages of its
two terminal buses.

Power flow equations

The voltage differences from a bus to the ground and to neighbouring buses
lead to the branch current leaving bus i to bus j on branch `,

Ii→j = ysh
` Vi + y`(Vi −Vj) . (2.1)
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Variable Definition

i, j ∈ {1, . . . N} Bus labels
s ∈ {1, . . . G} Generation source labels (wind, solar, gas, etc.)
k, ` ∈ {1, . . . L} Branch labels
c, d ∈ {1, . . . L− N + 1} Cycle labels
t ∈ {1, . . . T} Snapshot / time point labels
Ii Complex nodal current through node i
Vi Complex voltage at node i
di,s Dispatch of generator at node i with source s
Di,s Available power of generator i, s
li Electrical load at node i
θi Voltage angle at node i
si Complex power injection/withdrawal at node i
pi Total active power injection
qi Total reactive power injection
θ` Voltage angle across a branch
f` Branch active power flow
g` Flow on spanning tree (zero if ` not in tree)
hc Flow around cycle c
F` Branch active power rating
x` Branch series reactance
r` Branch series resistance
Ki` N × L incidence matrix
C`c L× (L− N + 1) cycle matrix
T`i L× N tree matrix
B`k Diagonal L× L matrix of branch susceptances
Λ N × N weighted Laplacian matrix

Λ = KBKT

Table 2.1: Variable definitions

Typically the branch currents are combined to nodal currents

Ii = ∑
j

Ii→j = ∑
j

Yi,jVj (2.2)

by defining the nodal admittance matrix Y. Its off-diagonal elements Yi,j are
given by the negative admittance between the adjacent buses i and j and its
diagonal elements Yi,i hold the sum of all admittances connected to bus i in-
cluding the shunt admittance ysh

` [59]. The instantaneous power flows through
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the network connecting power injections and withdrawals si are described by
the power flow equations

si = ∑
j

si→j = ∑
j

Vi I∗i→j = Vi I∗i = ∑
j

ViY∗i,jV
∗
j . (2.3)

This set of 2N non-linear equations can be solved for all 4N quantities of the
power flow state, if two real quantities per bus are given as parameters. Usually,
one specifies (1) at buses with generators, the voltage magnitude |Vi| and active
power injection set-point of the generator pi = Re(si), while (2) at load only-
buses the full complex-valued power withdrawal si = pi + iqi must be given as
data. The distinction arises from the two simple facts that the feed-in power of a
generator is an economically determined parameter and (at least synchronous)
generators actively maintain their voltage magnitude using active voltage reg-
ulators (AVRs).

The equations are solved with Newton-Raphson2 or approximated by decou-
pling active and reactive power flow or a linearization as shown below. They
are multi-stable and the number of solutions is closely linked to the number of
cycles of the network topology3 [67].

Equation 2.3 is valid at each point in time, but does not describe the evolution
of the energy network, although the parameters si and pi vary considerably in
time and space. In the case of large-scale disturbances like transmission line
or generator contingencies, feedback mechanisms of the generators and loads
lead to complex transient network dynamics investigated with the swing equa-
tion (see also App. B) and other higher dimensional differential equations [66,
68, 69].

Linearization

For investigating the economic viability of a decarbonized electricity system,
we are interested in time-scales several orders above the typical relaxation time
in an already well-compensated high voltage network. There, the following
assumptions are typically made [48, 49, 70]:

• All voltage magnitudes are set to |Vn| = 1, meaning that there are no
voltage drops.

• Reactive power is neglected, i. e. assumed to be sufficiently provided.

• Losses are neglected, and line series reactance is much larger than the
resistance x` � r` ≈ 0, as well as the shunt admittance ysh ≈ 0, s. t. the
admittance matrix reduces to the weighted Laplacian Λ

Yi,j ≈∑
`

Ki,`(ix`)−1KT
`,j = (KBKT)i,j = Λi,j , (2.4)

2 Iterative jumps by −J−1r with the Jacobian J and residual r, until the latter is small enough.
3 Arbitrary closed loop currents are allowed. They are highly undesired, since a continuous inflow

of power must be fed into the damping.
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where the diagonal branch susceptance matrix is defined with B`,` =

(ix`)−1.

• Voltage angle differences are small, such that eiθ` ≈ 1 + iθ`.

They hold under normal working conditions and linearize the power flow
equations in (2.3) to

pi = Re(∑
j

ViY∗i,jV
∗
j ) ≈∑

j
Λi,jθj , (2.5)

f` = Re
(

Vi

(
ysh
` Vi + y`(Vi −Vj)

)∗)
≈ θ`

x`
. (2.6)

The linearized active power flow in Eqs. (2.5)-(2.6) is form invariant with
the real-valued current-voltage relations in a direct current (DC) circuit. Since
these follow from simple Kirchhoffs node and loop circuit rules, we find by
back-substitution that the linearized power flow equations are equivalent to
a Kirchhoff’s current law (KCL) for active power pi and a Kirchhoff’s voltage
law (KVL) for voltage angle θi.

In the next section, which is the starting point of the published paper [47],
we capitalized on this equivalency to reformulate the linearized power flow
using different sets of equivalent variables to speed up the solution time of the
linear optimal power flow, which will be introduced in Sec. 2.4.

2.3 linear load flow formulations

The aim of the linear load flow calculation is to calculate the active power flow
f` on each of the branches ` = 1, . . . , L in terms of the active power pi injected
or consumed at each of the nodes i = 1, . . . , N. In this section four methods are
presented for solving the linear load flow, which lead to different formulations
of the LOPF problem discussed below.

The linear approximation is valid if all branch resistances r` are negligible
compared to the branch reactances x`, r` � |x`|, reactive power flows may be
neglected, all voltage magnitudes are kept at nominal value and if all voltage
angle differences across branches θ` are small enough that we can approximate
sin θ` ∼ θ` [48, 49]. Then the real power over a transmission line ` is given by

f` =
θ`
x`

, (2.7)

where θ` is the voltage angle difference between the terminal buses of line `.
The flows f` are constrained to be physical by the two Kirchhoff circuit laws

for the current and voltage. KCL states that the current injected at each bus must
equal the current withdrawn by the branches attached to the bus. This law can
be expressed using the incidence matrix Ki`, which has non-zero values +1 if
branch ` starts on node i and −1 if branch ` ends on node i. KCL then reads

pi = ∑
`

Ki` f` ∀i = 1, . . . , N. (2.8)
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KCL directly implies power conservation ∑i pi = 0 because ∑i Ki` = 0 for all
lines `. KCL provides N linear equations for the L unknown flows f`, of which
one is linearly dependent. This is not sufficient to uniquely determine the flows
unless the network is a tree. Hence, L − N + 1 additional independent equa-
tions are needed.

The necessary equations and physicality are provided by the KVL, which
states that the sum of potential differences across branches around all cycles in
the network must sum to zero. It follows from graph theory that there are L−
N + 1 independent cycles for a connected graph [71], which provides enough
equations to constrain the f` completely. The independent cycles c ∈ {1, . . . L−
N + 1} are expressed as a directed linear combination of the branches ` in the
cycle incidence matrix

C`,c =


1 if edge ` is element of cycle c,

−1 if reversed edge ` is element of cycle c,

0 otherwise.

(2.9)

Then the KVL becomes

∑
`

C`cθ` = 0 ∀c = 1, . . . , L− N + 1. (2.10)

where θ` = θi − θj is the angle difference between the two nodes i, j which
branch ` connects. Using equation (2.7), KVL can be expressed in terms of the
power flows as

∑
`

C`cx` f` = 0 ∀c = 1, . . . , L− N + 1. (2.11)

Angle formulation

Commonly, the linear load flow problem is formulated in terms of the voltage
phase angles θi, i ∈ {1, . . . , N}. Using the incidence matrix the power flows are
expressed as

f` =
1
x`

∑
i

Ki`θi ∀` = 1, . . . , L (2.12)

If the L× L diagonal matrix B is defined with B`` =
1
x`

then the KCL equation
(2.8) becomes

pi = ∑
`,k,j

Ki`B`kKjkθj

= ∑
j

Λijθj, ∀i = 1, . . . , N, (2.13)

using the nodal susceptance matrix Λ = KBKT. In mathematical terms, Λ is a
weighted network Laplacian [72].
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The Angle formulation thus consists of two consecutive steps to calculate the
flows f`. First, equation (2.13) is solved to obtain the N voltage angles θi. The
equation provides only N − 1 independent conditions such that we typically
fix the voltage angle at a slack bus as θ0 = 0. Second, the flows are calculated
via Equation (2.12). KVL is automatically satisfied as all closed cycles are in the
kernel of the incidence matrix such that

∑
`

Ki`C`c = 0 ∀c = 1, . . . , L− N + 1. (2.14)

PTDF formulation

For the power transfer distribution factor (PTDF) formulation [52] the matrix
defining equation (2.13) is explicitly inverted to get the angles in terms of the
power injections, and the resulting expression for the angles inserted into (2.12)
to get a direct linear relation:

f` = ∑
i

PTDF`i pi ∀` = 1, . . . , L, (2.15)

where the PTDF matrix is given by PTDF = BKTΛ∗. The pseudo-inverse Λ∗ is
used because Λ contains a zero eigenvalue for a connected network. Because
KCL is no longer explicitly enforced, power conservation ∑i pi = 0 must be
added as an explicit constraint for each connected network. The need to calcu-
late the explicit pseudo-inverse of Λ makes this slow compared to the Angle
formulation for single calculations, but once the PTDF has been computed, re-
peated application involves only matrix multiplication and no equation-solving.
However, the PTDF matrix is typically dense, while Λ and K are sparse.

Kirchhoff formulation

In what we call the ‘Kirchhoff formulation’, the linear load flow is expressed as
explicit linear constraints on the flows themselves. To the N − 1 independent
equations of the KCL equation from (2.8) we add the L−N + 1 constraints of the
KVL from (2.11). Together, this provides a system of L independent equations
for the L variables f` and can therefore be solved.

Cycle formulation

In what we call the ‘Cycle formulation’ the flows f` are decomposed into flows
g` on a spanning tree of the network, which ensure KCL is satisfied, and into cy-
cle flows hc that flow around each independent cycle c in the network without
altering the power balance at any node [63]. We thus have:

f` = g` + ∑
c

C`chc. (2.16)
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The g` are only non-zero on the N− 1 edges of a chosen spanning tree of the
connected network. They are uniquely determined from the power imbalances
by a matrix T

g` = ∑
i

T`i pi. (2.17)

T is determined by fixing a slack bus and giving T`i value +1 if branch ` is in
the directed path in the spanning tree from i to the slack bus or −1 if it is in
the directed path but with reversed orientation [63]. This guarantees that KCL

is satisfied at every node given that the power is balanced, ∑i pi = 0. Note that
T only has to be calculated once for a network and is independent of the pi.
There is freedom both in the choice of spanning tree and in the choice of the
slack bus used to determine the matrix T. The remaining L− N + 1 degrees of
freedom for the cycle flows hc are fixed by the L− N + 1 additional constraints
from KVL (2.11)

∑
`

C`cx`

(
g` + ∑

d
C`dhd

)
= 0 ∀c (2.18)

Solving this equation for the hc involves solving L − N + 1 linear equations.
Power networks are not so heavily meshed, typically L− N + 1 < N − 1, such
that this method can be significantly faster than the Angle formulation [63, 64].

2.4 linear optimal power flow formulations

In this section the linear load flow methods from Section 2.3 are transposed
to the linear OPF (LOPF). In optimal power flow, power plant dispatch is opti-
mized to minimize dispatch costs, assuming that no branch flows f` exceed
their loading limits F`, i. e. | f`| ≤ F` [52].

The factors which control the speed of the solution to the LOPF problem are
now more subtle. They include: i) the number of optimization variables; ii) the
number of constraints; iii) the sparsity or density of the constraint matrix; iv)
the shape of the feasible space near the optimal point; v) the method used to
solve the linear problem. The first three factors are summarized for each of the
formulations in Table 2.2.

The objective function for the LOPF has the generic form

min
{di,s},{za}

[
∑i,s ci,sdi,s

]
(2.19)

where di,s is the dispatch of generator s at node i and ci,s is its operating cost.
The za are auxiliary variables which implement the network constraints. One
can also include the line flows f` as explicit optimization variables. The generic
optimization problem then reads

min
{di,s},{za},{ f`}

[
∑i,s ci,sdi,s

]
(2.20)
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Formulation Variables # Variables # Equ. cons. # Inequ. c. Matrices

Pure Angle di,s, θi G + N N + 1 G + 2L sparse
Angle+Flow di,s, f`, θi G + L + N L + N + 1 G + 2L sparse
Pure PTDF di,s G 1 G + 2L dense
PTDF+Flow di,s, f` G + L L + 1 G + 2L dense
Kirchhoff di,s, f` G + L L + 1 G + 2L sparse
Pure Cycle di,s, hc G + L− N + 1 L− N + 2 G + 2L semi-sparse
Cycle+Flow di,s, hc, f` G + 2L− N + 1 2L− N + 2 G + 2L semi-sparse

Table 2.2: Overview over the different formulations of the LOPF problem (N: number
of buses. L : number of transmission lines, G : number of dispatchable
generators)

All variables and their definitions are listed in Table 2.1.
The optimization must respect several constraints. First, the load li at each

bus (which is assumed to be inelastic) must always be met. The bus power
balance is the difference between generation and the electrical load li at the
bus

pi = ∑
s

dis − li . (2.21)

If pi > 0 then the node is a net exporter of power; if pi < 0 then the node is a
net importer of power. Note that pi is only used to organize the presentation of
the equations and is not an explicit optimization variable. Second, no generator
may dispatch above its available power

di,s ≤ Di,s ∀ generators . (2.22)

Third, the real power flows must remain within the loading limits of the lines

| f`| ≤ F` ∀ ` = 1, . . . , L. (2.23)

It is sometimes desirable to limit the magnitude of the voltage angle differ-
ences θ` across the branches, to maintain the sin θ` ∼ θ` approximation and
avoid voltage stability problems [73]. Since θ` = x` f`, this constraint has the
same form as the loading limit constraint (2.23), so we do not consider it fur-
ther. Note that the load at each node li, specific costs ci,s, generation upper
limits Di,s, branch loading limits F` and branch reactances x` are all exogenous
data inputs and not subject to optimization in the considerations here. In all
cases here only a single time point is considered and the network is assumed
to be connected.

Finally active power flows on each branch f` are determined by the pi and
the auxiliary variables za through the constraints

f` ≡ f`(pi, za) (2.24)
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The different formulations of the network equations presented in Section 2.3
give rise to different formulations of the linear optimal power flow. Whether
we include the flows f` and additional auxiliary variables za as optimization
variables has a significant impact on the computational resources needed to
solve the optimization task. In the following we specify the different formula-
tions of the LOPF in detail; their properties are summarized in Table 2.2. Note
that for a uniquely-defined problem, all the formulations deliver the same op-
timum.

Pure Angle formulation

In the Pure Angle formulation the optimization problem (2.19) is solved with
the voltage angles as auxiliary variables {za} = {θi} subject to the constraints
(2.22) and∣∣∑

i
(BKT)`iθi

∣∣ ≤ F` ∀ ` = 1, . . . , L,

pi = ∑
j

Λjθj ∀ i = 1, . . . , N,

θ0 = 0. (2.25)

The first equation ensures no branch overloading (note that it is sparse, inher-
iting the sparsity of K), the second equation is KCL and in the final equation
the phase angle is fixed at the reference bus, which removes an unnecessary
degree of freedom. Here and in the following the pi are used as a short-hand
notation according to equation (2.21).

The Pure Angle formulation is used in the free software tools MATPOWER
[60] and PYPOWER [61]; it is therefore used as the benchmark implementation
against which we compare all other formulations in Section 2.6.

Angle+Flow formulation

For the Angle+Flow formulation of the LOPF the flows f` are introduced as
explicit optimization variables and the voltage angles are retained as auxiliary
variables. Hence we have to solve the optimization problem (2.20) with N aux-
iliary variables, {za} = {θi} subject to the constraints (2.23) and (2.22) and the
network equations

f` = ∑
i
(BKT)`iθi ∀ ` = 1, . . . , L,

pi = ∑
`

Ki` f` ∀ i = 1, . . . , N,

θ0 = 0. (2.26)

The introduction of additional optimization variables f` might appear to be
redundant and unnecessary, but it will be shown to cause a significant speed-
up in some cases. This is because modern solvers have sophisticated algorithms
to ‘pre-solve’ solutions and remove redundancy that may not be obvious.
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Pure PTDF formulation

In the Pure PTDF formulation no auxiliary variables are used such that the
optimization problem is given by (2.19) subject to the constraints (2.22) and∣∣∑

i
PTDF`,i pi

∣∣ ≤ F` ∀ ` = 1, . . . , L.

∑ pi = 0. (2.27)

This formulation minimizes the number of optimization variables, but suffers
from the fact that the matrix PTDF is dense. This generates a large number
of dense inequalities, which may make the feasible space complicated by intro-
ducing lots of interdependencies between the variables. This formulation has
been used in the literature in, for example, [45].

PTDF+Flow formulation

The PTDF+Flow formulation does not use any auxiliary variables, but keeps the
flows as explicit optimization variables. Hence we have to solve the optimiza-
tion problem (2.20) subject to the constraints (2.23) and (2.22) and the network
equations

f` = ∑
i

PTDF`i pi ∀ ` = 1, . . . , L,

∑
i

pi = 0. (2.28)

Kirchhoff formulation

The Kirchhoff formulation is a new formulation of the LOPF which only re-
quires the flow variables f` and introduces no additional auxiliary variables.
The optimization problem is given by (2.20) subject to the constraints (2.23)
and (2.22) and the network equations

∑
`

Ki` f` = pi ∀ ` = 1, . . . , L,

∑
`

C`cx` f` = 0 ∀ c = 1, . . . , L− N + 1. (2.29)

This method implements the Kirchhoff circuit laws directly on the flow vari-
ables. It has both a small number of variables and extremely sparse constraints.
This formulation was also introduced in the recent paper [65], which appeared
while this manuscript was being prepared.

Pure Cycle formulation

The Cycle formulations of the linear load flow problem introduced in Section
(2.3) leads to new formulations of the LOPF. In the Pure Cycle formulation we
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solve the optimization problem (2.19) by adding L− N + 1 auxiliary variables
{za} = {hc} subject to the constraints (2.22) and∣∣∣∣∑

i
T`i pi + ∑

c
C`chc

∣∣∣∣ ≤ F` ∀ ` = 1, . . . , L,

∑
`

C`cx`

[
∑

i
T`i pi + ∑

c′
C`c′hc′

]
= 0

∀ c = 1, . . . , L− N + 1,

∑
i

pi = 0. (2.30)

This involves fewer constraints than the Pure Angle formulation if L < 2N,
which is typically true for power networks.

Cycle+Flow formulation

In the Cycle+Flow formulation we add auxiliary variables {za} = {hc} and in-
clude the flow variables f` as explicit optimization variables. The optimization
problem is then given by (2.20) subject to the constraints (2.23) and (2.22) and
the network equations

f` = ∑
i

T`i pi + ∑
c

C`chc ∀ ` = 1, . . . , L,

∑
`

C`cx` f` = 0 ∀ c = 1, . . . , L− N + 1,

∑
i

pi = 0. (2.31)

2.5 extensions to lopf

In this section we briefly sketch some extensions of the LOPF problem to related
problems for which the methodology also applies.

Multi-period and stochastic optimization

Inter-temporal aspects of optimal power flow, such as the operation of storage
units or power plant unit commitment, can be considered using multi-period
OPF [46, 52]. For periods labeled t with weighting πt the objective function
becomes

min
{di,s,t},{za,t},{ f`,t}

[
∑
i,s,t

πtci,sdi,s,t

]
. (2.32)

The network flow constraints repeat for each period t.
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Storage introduces inter-temporal constraints that ensure that the storage
state of charge soci,s,t stays below the maximum energy storage capacity SOCi,s:

soci,s,t = soci,s,t−1 + η1di,s,t,charge − η−1
2 di,s,t,discharge

0 ≤ soci,s,t ≤ SOCi,s ∀ i, s, t (2.33)

The efficiencies η1, η2 determine the losses during charging and discharging,
respectively.

For stochastic optimization the periods t can represent different scenarios
with probability πt [46, 74].

Generation investment optimization

For generation investment optimization, the power plant capacities Di,s are
promoted from exogenous parameters to optimization variables with capital
costs Ci,s [46]. The objective function becomes

min
{Di,s},{di,s,t},{za,t},{ f`,t}

[
∑
i,s

Ci,sDi,s + ∑
i,s,t

πtci,sdi,s,t

]
.

2.6 results

In this section we compare the computational performance of the different for-
mulations of the LOPF problem introduced in Section 2.4 for various different
test grids. All LOPF formulations are implemented in Python for Power System
Analysis (PyPSA) [75], a free software tool developed at the Frankfurt Institute
for Advanced Studies (FIAS). The formulation can be changed simply by pass-
ing a different argument ‘formulation’ to the LOPF function. Python for Power
System Analysis (PyPSA) is used to generate linear program files (in CPLEX’s
.lp format), which are then passed to a linear solver (here we use the commer-
cial software Gurobi [76]). The solver is then run using different algorithms
for the linear program (primal and dual simplex, interior point) and the total
solving time averaged over multiple runs is compared. The total solving time
includes reading in the .lp file, pre-solving the matrix system and the solution
algorithm. A computer system with 20 Intel Xeon E5-2650 cores @ 2.30GHz
each and 128 GB RAM was used for each benchmark.

Problem preparation

Six standard network topologies are considered. case1354pegase, case1951rte,
case2383wp, case2869pegase, case118 and case300 are standard IEEE cases
taken from the MATPOWER software package [60]. In addition the open data
SciGRID model of Germany’s transmission network [77] is also tested, which
has 585 nodes and 948 branches.
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Mean solution time Speed-up compared to Pure Angle
Pure Angle+ Pure PTDF+ Kirch- Pure Cycle+

mode case Angle [s] Flow PTDF Flow hoff Cycle Flow

p case118 0.20 1.13 0.24 0.53 1.27 0.76 0.98
case300 0.45 1.00 0.27 0.59 1.12 0.60 0.67
case1354pegase 1.92 1.07 0.10 0.17 0.99 0.23 0.43
case1951rte 3.21 0.22 0.14 0.27 1.30 0.32 0.55
case2383wp 9.17 0.75 0.27 0.44 1.43 0.42 0.35
case2869pegase 14.94 2.19 0.30 0.52 2.15 0.41 0.85
scigrid 2.01 1.44 0.10 0.19 1.60 0.57 1.08

r case118 0.25 0.99 0.12 0.23 1.22 0.58 0.88
case300 0.77 1.12 0.11 0.20 1.37 0.54 0.73
case1354pegase 7.58 1.38 0.06 0.10 2.55 0.42 0.87
case1951rte 11.96 0.57 0.05 0.09 2.70 0.46 0.93
case2383wp 65.17 3.40 0.13 0.24 4.31 1.13 1.55
case2869pegase 51.83 0.83 0.06 0.10 3.60 0.43 1.18
scigrid 3.60 1.62 0.06 0.12 2.44 0.75 1.14

rs case118 0.26 0.99 0.13 0.23 1.24 0.61 0.90
case300 0.77 1.11 0.11 0.19 1.38 0.55 0.73
case1354pegase 7.45 1.35 0.06 0.10 2.42 0.42 0.89
case1951rte 11.91 0.58 0.05 0.09 2.62 0.46 0.90
case2383wp 60.73 3.22 0.14 0.25 4.12 1.10 1.44
case2869pegase 52.88 0.85 0.07 0.11 3.61 0.45 1.20
scigrid 7.26 2.70 0.12 0.25 4.14 1.33 2.03

Table 2.3: Speed-up compared to the Pure Angle formulation (> 1 means faster), best
formulation marked green, worst marked red

To ensure that the timings were really testing the solution speed, the opti-
mization problems were all made large enough so that no small one-off delays
could significantly affect the timing. This was done by only considering large
networks and only considering multi-period optimization with 24 hours rep-
resented in each problem. Large problems also represent the main target of
efforts to improve computational speed.

Each test grid only has a single snapshot of the load. This was extended to
24 hours by subtracting a small fraction of normally distributed random noise
ε ∼ N (0, 0.2)

di,s,t = di,s − di,s |ε i,s,t|, (2.34)

to ensure that the problem remained feasible and the solver was unable to
reduce the problem from 24 identical problems to a single one.

The configuration of the generation was varied in three different ‘modes’:

• p: (plain): Only the conventional generators of the model are available.
There is no inter-temporal linkage between the snapshots.
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Figure 2.2: Speed-up compared to Pure Angle for total time (read + pre-solve + solve).
The violin plots give the distribution of speed-ups, while the box plots
mark the 25% and 75% quantiles and the dot marks the median.

• r: Compared to p, variable renewable generators are added to every sin-
gle node to represent decentralized generation. The time series of the
power availability of the renewable generators are taken at random from
wind and time series for Germany for the year 2011 generated using the
Aarhus Renewable Energy Atlas [78]. The renewable generators may be
curtailed such that they correspond to dispatchable generators with no
variable costs. There is no inter-temporal linkage between the snapshots.

• rs: Compared to r, storage units with a power capacity of a third of the
nodal mean load are added to the fifteen buses with the highest average
load. They provide an energy capacity of 6 hours at full power capacity
and link the snapshots. More than 15 storage units made the computation
times intractable.

For each network, mode and formulation, Gurobi was run in parallel using
the primal simplex, the dual simplex and the interior point algorithms on at
most four cores in parallel. The fastest solution was always taken. For each
case and mode combination, 100 instances (i. e. different randomizations of the
load and selections of the renewable time series) were generated and timed for
all formulations except for the Pure PTDF and the PTDF+Flow formulations.
For these only 10 instances were investigated, since the generation of a single
of their lp files took up to 6 hours. The code for running the simulations with
Snakemake [79] will be linked from the PyPSA website [75]. It was checked that
all formulations gave identical results for the same problem.

Comparing average speed-up of the different formulations

In Table 2.3 the speed-up for the different formulations for the different prob-
lems (averaged over 100 instances) are shown, compared to the standard Pure
Angle formulation.

The Kirchhoff formulation is the fastest in all cases where decentralized re-
newables are present in the network and the fastest in all but two cases for the
‘plain’ mode, where the Angle+Flow formulation is faster by a small margin.
For the Kirchhoff formulation the speed-up factor averages 1.4 in mode ‘p’, 2.6
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Figure 2.3: Kirchhoff speed-up compared to Pure Angle for total time (read + pre-
solve + solve) per network case.

in mode ‘r’ and 2.8 for mode ‘rs’. One reason the speed-up is high with renew-
ables is that the optimization has to weigh up the dispatch at every single node
and their effects on the flows. A sparser, less interdependent constraint set is a
bigger advantage than in mode ‘p’, where only a few nodes have controllable
generators. Inter-temporal storage introduces even more interdependences be-
tween variables, which again favours the sparse formulations.

The Angle+Flow formulation is the next fastest, averaging a speed improve-
ment of 1.11 in mode ‘p’, 1.42 in mode ‘r’ and 1.54 in mode ‘rs’, despite the
fact that there are more variables than the Pure Angle formulation.

The Cycle+Flow formulation is a factor 0.7 slower than the Pure Angle for-
mulation in mode ‘p’, but faster by factor 1.04 in mode ‘r’ and 1.16 in mode
‘rs’. The Pure Cycle formulation is on average slower in all modes. In particular
cases the Pure Cycle formulation is faster than Pure Angle, but in each of those
cases Cycle+Flow is faster.

The PTDF methods are slowest of all, with the Pure PTDF being the slowest.
This is primarily driven by the size of the linear programming problem file,
which takes a long time to read in by the solver. The size of the file is driven by
the dense constraints coming from the dense PTDF matrix. Once the .lp problem
is read in and pre-solved, the solving time is in some cases faster than the other
methods.

Comparing specific speed-ups of the different formulations

The average speed-ups of the different formulations in the different modes
masks considerable variations, both between the different network cases con-
sidered and within the instances for each case. Figure 2.2 shows violin plots of
all the instances and all the cases for each mode and formulation combination,
while in Figure 2.3 the different cases can be seen more clearly for the Kirchhoff
formulation.

Take the speed-up of the Kirchhoff formulation in mode ‘r’ as an example.
The average speed-up is 2.6, but this masks speed-ups for particular instances



2.7 conclusion 25

0 500 1000 1500 2000 2500 3000
N

0

1

2

3

4

5

Sp
ee
d-
up
 c
om
pa
re
d 
to
 P
ur
e 
An
gl
e Formulation

Kirchhoff
Angle+Flow
Cycle+Flow

Figure 2.4: Speed-up compared to Pure Angle per nodes, shown are the mean values
with 99% confidence interval and the result of a linear regression of all
values for the three fastest formulations in mode ‘r’.

that range from a factor 0.7 (i. e. a 30% slow-down, for an instance of case118)
to factor 20 (for an instance of case2383wp). Even within a particular case there
is significant variation for particular instances, ranging for case2383wp from
1.2 up to 20, although with a strong clustering around the mean of 4.3.

In 3% of the instances the Kirchhoff formulation in mode ‘r’ is in fact slower
than the Pure Angle formulation, and all these instances are for the cases with
a smaller number of nodes, case118 and case300. Figure 2.4 reveals that this
is part of a bigger trend: In the ‘r’ mode, the Kirchhoff formulation speed-up
grows with the size of the network, measured in terms of the number of nodes.
The increase in speed-up with network size also holds true for the ‘rs’ mode.

Of all the cases, instances and modes, the Kirchhoff formulation was fastest
in 79.3% of the problems, while the Angle+Flow was fastest in 12.5%, Angle
in 7.5% and Cycle+Flow in 0.7%. If we restrict to the modes ‘r’ and ‘rs’, then
the Kirchhoff is fastest in 91.6% of the problems, Angle+Flow in 5.9%, Angle
in 2.1% and Cycle+Flow in 0.4%.

The high level of variation of the speed-up for different cases and instances
(reflecting different load and renewable profiles) means that in practice it may
be advisable, given a particular problem, to run several formulations in parallel
and take the solution from whichever solves first, much as linear program
solvers like Gurobi can be configured to run multiple solution algorithms in
parallel, given the difficulty in predicting the runtime in advance.

2.7 conclusion

In this chapter two new formulations of the linear OPF (LOPF) problem, the
Kirchhoff formulation and the Cycle formulation, have been presented and a
comprehensive study of the numerical performance has been provided. The
new formulations both use a graph-theoretic decomposition of the network
into a spanning tree and closed cycles.



26 linear optimal power flow using cycle flows

In one formulation, the Kirchhoff formulation, which implements the two
Kirchhoff circuit laws directly on the flow variables, the LOPF is shown to per-
form considerably faster than the standard Angle formulation used in today’s
power system tools. It shows the greatest speed-up in very large networks with
decentralized generation, which are exactly the kinds of problems that are be-
coming increasingly important with the rise of distributed renewable energy. In
the Kirchhoff formulation the LOPF can solve up to 20 times faster for particular
cases, while averaging a speed-up of approx. 3 for the networks considered in
this chapter. In 92% of the problems with distributed generation, the Kirchhoff
formulation was the fastest formulation. In a very small number of specific
cases the Cycles formulation was the fastest.

Future further applications could include the transmission expansion prob-
lem and the application of graph decomposition to the full non-linear optimal
power flow problem.



3 M O D E L DATA

3.1 introduction

The energy system in Europe is undergoing a far-reaching transformation on
multiple fronts: generation from variable renewable energy sources, such as
wind and solar power, is growing due to the imperative of tackling climate
change; electricity provision has been unbundled and liberalised, raising com-
plex challenges for the efficient design and regulation of electricity markets; the
need to decarbonise heating and transport is driving electrification of these sec-
tors; and finally energy markets are being integrated across the continent [80].

To study this transformation, accurate modelling of the transmission grid is
required. The need to take account of international electricity trading and the
possibility of smoothing variable renewable feed-in over large distances (wind
generation has a typical correlation length of around 600 km [19]) mean that
models should have a continental scope. At the same time, high spatial detail
is required, since national grid bottlenecks are already hindering the uptake of
renewable energy today [81], and given persistent public acceptance problems
facing new transmission projects [82], severe grid bottlenecks will remain a
feature of the energy system for decades to come.

Currently there is no openly-available model of the full European transmis-
sion network with which researchers can investigate and compare different
approaches to the energy transformation. The transmission grid dataset pro-
vided by the European Network of Transmission System Operators for Electric-
ity (ENTSO-E) for the 2016 Ten Year Network Development Plan (TYNDP) [83] is
rendered unusable by restrictive licensing, the exclusion of Finland, Norway
and Sweden, and a lack of geographical localisation of the represented substa-
tions. The lack of geo-data means that the crucial weather system correlations
and dynamics cannot be mapped onto the network. In 2005 in [84] an openly-
available model of the continental European transmission network (i. e. exclud-
ing the UK, Ireland, Scandinavia and the Baltic states) was presented using a
manual matching of buses and lines to the raster graphic of the ENTSO-E map,
along with an open power plant database based on the Global Energy Observa-
tory [85]; this model was updated to the network of 2009 in [86]. Apart from not
covering the full ENTSO-E area, this dataset has the problem that much of the
data was extracted manually, which is potentially error-prone and hard to re-
peat as new data becomes available, the buses are missing geo-coordinates and
the power plant database is incomplete. In [87, 88] geo-coordinates and data for
wind and solar plants were added to the dataset. Open datasets based on Open-
StreetMap [89], such as the SciGRID network [77] and the osmTGmod [90] net-
work, are of high quality in Germany, where data is well organised, but are
not yet accurate for the rest of Europe. Similarly the open electricity model pro-

27



28 model data

vided by the German Institute for Economic Research (DIW), ELMOD-DE [91],
only covers Germany.

In this chapter we present a model of the European power system at the
transmission network level which remedies these many deficiencies: it is not
only open but also contains a high level of detail for the full ENTSO-E area.
Grid data is provided by an automatic extraction of the ENTSO-E grid map; a
power plant database is presented using a sophisticated algorithm that matches
records from a wide range of available sources and includes geo-data; other
data, such as time series for electrical load and wind, solar and hydro-electric
availability, and geographic potentials for the expansion of wind and solar
power, are also described. A new technique for comparing network datasets is
presented and used to validate the grid data. The dataset and all code used to
generate it from the raw data are available online [92], as a model for the PyPSA

framework version 0.9 [93].
In Section 3.2 the data sources and processing methods are presented; the

data is validated in Section 3.3; limitations of the dataset are discussed in Sec-
tion 3.4; conclusions are drawn in Section 3.5.

3.2 data sources and methods

Network topology

The network topology and geography of substations and transmission lines
have been extracted from the geographical vector data of the online ENTSO-E

Interactive Map [94] by the GridKit toolkit [95] and published at [96]. The
extract was corrected in several steps:

1. 29 alternating current (AC) lines were removed, which were identified as
inadvertent duplicates by manual comparison to the online map.

2. Three converters at the end of dangling high-voltage direct current (HVDC)
lines and at the border between Poland and Lithuania were introduced.

3. 64 transformers and 12 lines were added between buses with a distance
of less than 1 km.

4. 60 AC lines carrying circuits of two different voltage levels were identified
by inspecting the descriptive text tag and are split into several lines.

The electrical parameters are derived by assuming the standard AC line types
in Table 3.1 for the length and number of circuits. The DC line capacities are
assigned from the table in [97]. No transformer information is contained in the
map, so a single transformer of capacity 2 GW (i. e. equivalent to four 500 MW
transformers) is placed between buses of different voltage levels at the same
location, with a reactance of 0.1 per unit. The transformer capacity assumption
is on the high side to avoid introducing constraints where none exist in reality.

The restriction to buses and transmission lines of the voltage levels 220 kV,
300 kV and 380 kV in the landmass or exclusive economic zones of the Euro-
pean countries and the removal of 41 disconnected stub sub-networks (of less
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Volt. Wires Series Series ind. Shunt Current App. power
level resist. reactance capacit. therm. limit therm. limit
(kV) (Ω/km) (Ω/km) (nF/km) (A) (MVA)

220 2 0.06 0.301 12.5 1290 492
300 3 0.04 0.265 13.2 1935 1005
380 4 0.03 0.246 13.8 2580 1698

Table 3.1: Standard line types for overhead AC lines [98]

220 kV
300 kV
380 kV

Figure 3.1: Transmission network model

than 10 buses) produces the transmission network in Figure 3.1 of all current
transmission lines plus several ones which are already under or close to con-
struction (these are marked in the dataset). In total the model contains 5586
high-voltage alternating current (HVAC) lines with a volume of 241.3 TW km
(of which 11.4 TW km are still under construction), 26 HVDC lines with a vol-
ume of 3.4 TW km (of which 0.5 TW km are still under construction) and 4653
substations.

The countries are partitioned into Voronoi cells as catchment areas, each of
which is assumed to be connected to the substation by lower voltage network
layers. These Voronoi cells are used to link power plant capacities and deter-
mine feed-in by potential renewable energy generation, as well as the share of
demand drawn at the substation.
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Conventional power plants

Official sources often only report on country-wide capacity totals keyed by fuel-
type and year like the Eurostat nrg_113a database [99], the ENTSO-E net gener-
ation capacity [100] or the ENTSO-E Scenario Outlook and Adequacy Forecast
(SO&AF) [101, 102], while only seven countries1 have official power plant lists
collected and standardised by the Open Power System Data (OPSD) project [103].
This gap has been gradually closing since ENTSO-E started maintaining a power
plant list (ENTSO-E PPL) on their Transparency Platform [104]. Unfortunately,
it is still far from complete, for instance even after excluding solar and wind
generators, the total capacity represented in Germany amounts only to about
54.5 GW, while the SO&AF reports 111 GW, 109 GW of which are also covered in
the German Bundesnetzagentur (BNetzA) Kraftwerksliste [105] excluding power
plants that have been permanently shut down.

The powerplantmatching (PPM) tool and database [106] we present in this
section achieves good coverage by (1) standardising the records of several freely
available databases, (2) linking them using a deduplication and record linkage
application and (3) reducing the connected claims about fuel type, technology,
capacity and location to the most likely ones.

PPM incorporates several power plant databases that are either published
under free licenses allowing redistribution and reuse or are at least freely ac-
cessible. In the order of approximate reliability, there are OPSD [103], ENTSO-E

PPL [104], DOE Energy Storage Exchange (ESE) [107], Global Energy Observa-
tory (GEO) [85], Carbon Monitoring for Action (CARMA) from 2009 [108, 109]
and the WRI Powerwatch project [110]. All of them are brought into the stan-
dardised tabular structure outlined in Table 3.2 by explicit maps between the
various naming schemes and additional heuristics identifying common fuel-
type or technology keywords like lignite or CHP in the Name column. Further-
more, the Name column is cleaned by removing frequently occurring tokens,
power plant or block numbers, for instance.

Since OPSD, ENTSO-E PPL and ESE report individual power plant units for at
least some power plants, in a first step we use the deduplication mode of the
java application Duke to determine units of the same power plant. Duke [111]
is a free software extension of the search engine library Lucene that determines
probabilities whether pairs of records (of the same or different tables) refer to
the same entity. It computes conditional probabilities pi,j

c := P(Mi,j|xi,j
c ) for the

event Mi,j := “records i and j match” given the data xi,j
c in column c of these

records from mostly character-based similarity metrics like the Jaro distance or
the Q-gram distance [112] skewed into a configurable interval and combines
them into an overall matching probability as

pi,j := P(Mi,j| ∩c xi,j
c ) =

∏c pi,j
c

∏c pi,j
c + ∏c(1− pi,j

c )
. (3.1)

1 BE, DE, FR, HU, IE, IT, LT as listed by the Open Power System Data project at http:
//open-power-system-data.org/data-sources#23_National_sources

http://open-power-system-data.org/data-sources#23_National_sources
http://open-power-system-data.org/data-sources#23_National_sources
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Column Argument

Name Power plant name
Fueltype {Bioenergy, Geothermal, Hard Coal, Hydro, Lignite,

Nuclear, Natural Gas, Oil, Solar, Wind, Other }
Technology {CCGT, OCGT, Steam Turbine, Combustion Engine, Run-

Of-River, Pumped Storage, Reservoir }
Set {PP, CHP}
Capacity Generation capacity in MW
lat/lon Latitude and Longitude
Country {EU-27 + CH + NO (+ UK) minus Cyprus and Malta}
YearCommissioned Commissioning year
File Source file of the data record
projectID Identifier of the power plant in the original source file

Table 3.2: Standardised data structure for the power plant databases.

This formula, a simplified variant of Naive Bayesian Classification, can be de-
rived from the Bayes Theorem under the assumptions of pairwise conditional
independence of the xi,j

c and unbiased prior probabilities whether two records
match or do not, i. e. P(Mi,j) = P((Mi,j)C) = 0.5. The former assumption un-
derlies all naive bayesian classifiers and ignores for instance the correlation
between technology and capacity (run-of-the-river turbines are typical small
(20 MW), whereas nuclear power plants are typically large, with a median ca-
pacity of 2 GW). The latter assumption means literally that any two power plant
entries from two different datasets have a prior probability of 50% to refer to
the same power plant, while the real probability is less than N

N2 = 1
N , seen from

the comparison of two identical datasets of length N. To include such a more
realistic prior assumption into the matching process would require changing
several internals of the Duke library and is out of the scope of this work. Never-
theless, the model has already been successfully applied in practice [113, 114].

For the aggregation of power plant units, Duke is configured to use the
metrics and intervals described in Table 3.3 to return the probabilities pi,j >

0.985 between likely pairs i and j. In the power plant matching tool of the
authors, these are used as edges in a directed graph of records and the cliques
of this graph2 are aggregated as power plants. Note the low end of the interval
for measuring the similarity of the fuel-type chosen to prevent merging units
with different fuel-types into the same power plant.

For linking the six databases, PPM runs Duke in Record linkage mode on
every pair of databases and determines the most likely links above the thresh-
old of 0.985. These links are joined to chains by collecting the records across all
databases that match to the same plant in any database. The chains are reduced
by keeping only the longest chains, until they are consistent, i. e. each power

2 A clique in a directed graph is a subset of the nodes such that every two distinct nodes are
adjacent.
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Column Deduplication Record linkage
Comparator low high Comparator low high

Name JaroToken 0.09 0.99 JaroToken 0.09 0.99
Fueltype QGram 0.09 0.65 QGram 0.09 0.7
Country QGram 0.01 0.51 QGram 0.0 0.53
Capacity Numeric 0.49 0.51 Numeric 0.1 0.75
Geoposition Geo 0.05 0.55 Geo 0.1 0.8

Table 3.3: Duke comparison metrics and intervals for aggregation of power plant units
(deduplication) and linking different power plant tables (record linkage).
JaroToken breaks the full string into several tokens, evaluates the Jaro Win-
kler distance metric for each and returns the compound Jaccard index [112].
These parameters have been chosen by hand and plausibility, while instead
they should be tuned for a representative subset to an ideal match by Duke’s
Genetic algorithm.

plant appears only in at most one chain. This could likely be improved by join-
ing chains recursively, while keeping track of the chain probability based on a
variant of Eq. (3.1) at the expense of not being able to rely on the fast pandas
routines any more.

For the remaining chains the power plant information is aggregated by tak-
ing the most frequent Fueltype, a comma separated list of the Technology(-ies),
the mean lat/lon and the median Capacity. The latter ensures that the shutdown
or addition of a block of a power plant which is not yet reflected in a minority
of databases does not distort the final capacity.

The compound dataset, at the time of writing, contains 3465 power plants
with a total capacity of 705 GW. Less than a third of these are represented in 3
or more sources, but still account for about two third of the capacity. 2494 small
power plants with an average capacity of about 93 MW appear in only two
databases. There are a further 841 power plants with 21.7 GW capacity in the
OPSD dataset unmatched by the other free datasets and exclusively compiled
from official sources. After including these power plants the mean absolute
error from the SO&AF country-wise capacity is at 9% of the average capacity
and below a 33% deviation in each single country except for Bulgaria and
Lithuania. Refer to the companion paper for a more detailed comparison of
the free dataset with the proprietary World Electric Power Plants dataset [115].

Hydro-electric generation

Existing hydroelectric capacities ensue from the same matching process as the
conventional power plants, particularly based on the sources ESE and ENTSO-E.
The capacities are categorised into run-of-river, reservoir and pumped stor-
age. Reservoir and pumped storage have energy storage capacities that are
estimated by distributing the country-aggregated energy storage capacities re-
ported by [116, 117] in proportion to power capacity. Run-of-river as well as
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reservoir hydro capacities receive an hourly-resolved in-flow of energy. Exten-
sions to the current hydro capacities are not considered.

Renewable generation time series like hydro-electric in-flow, wind and solar
are derived from the re-analysis weather dataset CFSv2 by the US National
Oceanic Atmospheric Administration [118]. It provides wind speeds, irradia-
tion, surface-roughness, temperature and run-off on a 0.2°× 0.2° spatial raster
(x ∈ X ) in hourly resolution since 2011.

The simplified in-flow time series is generated as in [40, 116] by aggregating
the total potential energy at height hx relative to ocean level of the CFSv2 run-
off data Rx in each country c by

GH
c (t) = N ∑

x∈X (c)
hxRx(t) (3.2)

where N is chosen so that
∫

t GH
c (t)dt matches the U.S. Energy Information

Administration (EIA) annual hydroelectricity generation [119]. The in-flow is
distributed to all run-of-river and reservoir capacities in proportion to their
power capacity.

Wind generation

Following the methodology in [78], the wind speeds at 10 m above ground
u10 m

x (t) are extrapolated to turbine hub-height h using the surface roughness
z0

x with the logarithmic law

uh
x(t) = u10 m

x (t)
ln
(
h/z0

x
)

ln (10 m/z0
x)

. (3.3)

The capacity factor of each raster cell x for a wind turbine with powercurve
Pw(u) and generator capacity Pmax

w is determined as

cx,w =

〈
Pw(uh

x(t))
〉

t
Pmax

w
(3.4)

and together with the usable area Ax,w the maximally installable wind genera-
tion capacity Gmax

x,w = 0.3 · 10 MW/km2 · Ax,w is calculated, where 10 MW/km2

is the technical potential density [28] and 0.3 arises out of considering compet-
ing land use and issues of public acceptance.

The usable area is restricted by the following constraints: Onshore wind can
only be built in land use types of the CORINE Land Cover database [120]
associated to Agricultural areas and Forest and semi natural areas and furthermore
a minimum distance of 1000 m from Urban fabric and Industrial, commercial and
transport units must be respected. Offshore wind can only be constructed in
water depths up to 50 m. Additionally, all nature reserves and restricted areas
listed in the Natura2000 database [121] are excluded. The wind generation
potential in Germany is shown in Figure 3.2.

Each Voronoi cell V of a substation covers multiple cells of the re-analysis
weather grid, as described by the indicatormatrix IV,x = area(V ∩ x)/area x,
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and we distribute the wind turbine capacity according to a normed capacity
layout

Gp.u.
V,x,w =

IV,xcx,wGmax
x,w

∑x (·)
(3.5)

which prefers cells x with high capacity factor cx,w and high maximally instal-
lable capacity Gmax

x,w . The wind generation availability time-series at a substation
with Voronoi cell V is, thus,

ḡV,w(t) = GV,w
∑x Gp.u.

V,x,wPw(uh
x(t))

Pmax
w

(3.6)

for an installed capacity GV,w. This capacity is expandable until reaching Gmax
x,w

in any grid cell up to

Gmax
V,w = min

{x|IV,x>0}

IV,xGmax
x,w

Gp.u.
V,x,w

. (3.7)

The power curve of the turbine Vestas V112 with a turbine capacity of 3 MW
and a hub height 80 m is used to generate the onshore wind time-series and the
National Renewable Energy Laboratory (NREL) Reference Turbine with 5 MW
at 90 m is used for the offshore wind time-series. The accuracy of the wind
generation time-series are improved to account for effects of spatial wind speed
variations within a grid cell by smoothing the power curves with a Gaussian
kernel as

Pw(u) = η
∫ ∞

0
P0(u′′)

1√
2πσ2

0

e
− (u−u′+∆u)2

2σ2
0 du′ , (3.8)

where η = 0.95, ∆u = 1.27 m/s and σ0 = 2.29 m/s are the optimal parameters
minimising the error between the re-analysis-based time-series and a year of
Danish wind feed-in [78]. A study comparing the wind generation time-series
based on the re-analysis MERRA-2 dataset for a 20 year period to the per-
country wind feed-in and several wind park generation measurements found
non-negligible discrepancies of the optimal bias correction parameters between
different countries [122]. They will be incorporated in a future version of the
presented model.

Photovoltaic generation

The solar availability time-series and maximally installable capacity per sub-
station are like the wind generation in the previous section based on the re-
analysis weather dataset CFSv2 and we will focus on the differences.

The photovoltaic generation Px,s(t) for a panel of nominal capacity Pmax
s of a

point in time t and space resp. grid cell x is calculated from the re-analysis
short-wave radiation. A direct, a diffuse and a ground-reflected irradiation
component are derived from the clearsky model of Reindl [123] and geomet-
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Figure 3.2: Wind (l.) and solar (r.) potential power generation after landuse restrictions
for weather grid cells in Germany. The generation of all grid cells in a
Voronoi cell (also shown in black) is fed into the central substation.

ric relations of the trajectory of the sun and the tilted panel surface [124, 125].
An effective electric model by Bofinger et al. [126] determines the active power
output from the total irradiation and the ambient temperature. Implementation
details are found in the pv sub-package of the atlite package [127] are based
on the Renewable Energy Atlas developed at Aarhus University [78]. An in-
verter inefficiency reducing the solar generation by 21% is assumed to match
on average solar capacity factors reported by [128].

For each raster cell x ∈ X the capacity factor cx,s and the maximally instal-
lable capacity Gmax

x,s = 0.01 · 145 MW/km2 · Ax,s is determined as for wind, with
the difference that the high technical potential of 145 MW/km2 corresponds
to an unrealistic full surface of solar cells, which is offset by allowing only
up to 1%. The permitted CORINE land use types are Artificial surfaces, most
Agricultural areas except for those with forests and then including only few
sub-categories of Forest and semi natural areas: Scrub and/or herbaceous vegetation
associations, Bare rocks and Sparsely vegetated areas. Figure 3.2 shows the solar
generation potentials.

Equations (3.5)-(3.7) are applied analogously to generate the solar availability
time-series ḡV,s(t) and to find the solar expansion potential Gmax

V,s . The reference
solar panel is the U-EA120 type thin-film silicon panel by Kaneka. Note that
photovoltaic generation models based on satellite imaging as provided by ME-
TEOSAT have been found to recover measured feed-in time-series and capacity
factors with a higher accuracy [129, 130].

Demand

There are two classes of approaches in the literature: Most employ a top-down
approach by distributing the historical demand curves of each country to the
substations in the country according to some geographical key. [87] uses pop-
ulation, ELMOD uses a weighted convex combination of population and gross
domestic product [91], the REMIX model relies on the area of artificial land-
surface from land-cover data [28]. Hülk* et al. [131] extend this approach in two
aspects: firstly, they use a rule-based partitioning of the geographical surface
combining Voronoi cells with administrative boundaries; secondly, the electric-
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Circuit length DE EU
in 1000 km 220 kV 300 kV 380 kV 220 kV 300 kV 380 kV

ENTSO-E 13.70 0.0 20.92 117.25 9.96 146.82
PyPSA-Eur 11.04 0.0 23.76 115.63 10.00 152.55

Table 3.4: AC lines circuit lengths of the whole of Europe and Germany as an example

ity consumption for each load area is derived for each sector (residential, in-
dustrial, retail and agricultural) separately based on OpenStreetMap land use
and industrial infrastructure data as well as population density. Alternatively,
demand time-series can be compiled in a more involved bottom-up approach
by combining industrial and domestic reference profiles according to regional-
ized sectoral statistics and finally overlaid by country load profiles, as recently
attempted at the KIT [132]; unfortunately detailed documentation of the results
has not been published.

For PyPSA-Eur, the hourly electricity demand profiles of each country from
2011 to 2016 are taken from the European Network of Transmission System
Operators for Electricity (ENTSO-E) website [133]. The load time-series is dis-
tributed to the substations in each country by 60% according to the gross do-
mestic product (GDP) as a proxy for industrial demand and by 40% as resi-
dential demand according to population in a Voronoi cell. The 60-40% split is
based on a linear regression analysis of the per-country data and agrees with
values used in [91]. The two statistics are mapped from the Eurostat Regional
Economic Accounts database (nama_10-reg) for NUTS3 regions to the Voronoi
cells in proportion to their geographic overlap.

3.3 validation

Network total line lengths

In this subsection, total line circuit lengths at different voltage levels in the
model are compared with official statistics from ENTSO-E. The lengths of AC

circuits [134] per voltage level and country are compared to aggregations of line
lengths times circuits from PyPSA-Eur, so that cross-border lines are equally
attributed to both adjacent countries. In Table 3.4 the total line lengths for
the whole of Europe and Germany are presented as examples. Considering
the data for all countries, the lines in the PyPSA-Eur dataset deviate from the
ENTSO-E lengths of circuits by a mean absolute error of 14% for 220 kV, 11% for
300 kV and 9% for 380 kV lines. These deviations are accounted for by the fact
that the ENTSO-E map [94] from which the PyPSA-Eur network is derived is
only an artistic representation and does not follow the exact contours of each
transmission line. Some differences may also be due to incorrect classification
of 220 kV lines as 380 kV lines, or due to the fact that the ENTSO-E map on
which PyPSA-Eur is based is more up-to-date with regard to recent upgrades
to the transmission network.
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PyPSA­Eur osmTGmod ELMOD­DE

Figure 3.3: 80 clusters jointly identified by colour in the network topologies of the
models PyPSA-Eur, osmTGmod and ELMOD-DE.

Network topology

While the total circuit lengths might agree, it does not necessarily mean that
the lines are in the right places with the right topology. The ENTSO-E Intercon-
nected network map [94] is the source of the network topology in PyPSA-Eur, so
it naturally agrees well in visual examination. A comparison with the network
topology published with the TYNDP [83] is hindered by shortened substation
names and missing geo-locations in that dataset. Instead, in this section the
network topology of PyPSA-Eur is compared to the open network datasets
available for Germany, which are derived using a different methodology. New,
experimental algorithms are presented to compare network topologies, since
few appropriate algorithms exist in the literature. This is a difficult problem
because neither the locations nor the number of the buses and lines in the dif-
ferent models necessarily agree. Our methodology works by first establishing
a common set of aggregated buses for the different networks, then comparing
the networks once all lines and other elements have been reattached to the
aggregated buses.

More precisely, we present a new technique of applying k-means clustering
to measure the similarity of several geo-located network models, specifically
the German 220 kV and 380 kV voltage layers represented in PyPSA-Eur, osmT-
Gmod and ELMOD-DE. The buses of all networks are jointly clustered together
into k clusters by minimizing the distances in each cluster πj

D(πj) =
k

∑
j=1

∑
a∈πj

w(a) ||a−mj||2 (3.9)

from its buses a to the center mj = ∑b∈πj
w(b) b/ ∑b∈πj

w(b) with chosen bus-
weights w(b). Since Eq. (3.9) expands to a polynomial in the scalar products
〈 a, b 〉 between buses, kernel k-means allows the use of general scalar products
by evaluating them on every pair of buses [135]. In the kernel of the scalar
product we propose

Ka,b = e−||a−b||22/N + νB†
a,b (3.10)

spatial cohesion comes from the first term, a radial basis function based on the
Euclidean distance || · ||2 over the number of buses N, which favours short ge-
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Figure 3.4: Capacity connecting the same clusters in GW
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Figure 3.5: Line volume at buses in the same cluster in TWkm

ometric distances and connectedness over spatial convexity, while the pseudo
inverse of the admittance matrix B in each network induces an electrical reac-
tance distance, shown to lead to electrically cohesive clusters [136]. With the
weights w(a ∈ PyPSA-Eur/ELMOD-DE) = 5 and w(a ∈ osmTGmod) = 1
balancing the five times as many buses in osmTGmod and the relative weight
ν = 200, the clustering algorithm is able to distribute 80 clusters across the
three networks, by starting from the labels found by regular k-means and by
picking the best result from 20 runs. The networks and the associated buses
are shown in Figure 3.3.

As the clusters are the same in each network, the aggregate capacity between
every two clusters is now comparable for different networks. Unfortunately,
Figure 3.4 reveals bad agreement for the capacity between pairs of clusters,
due to its high sensitivity to errors arising from clustering topologically dis-
tinct buses; i. e. buses lying on distinct lines are inadvertently joined together.
Increasing the weight of the electrical distance ν dampens the appearance of
these associations, but worsens convergence and increasingly finds solutions in
which clusters in the electrically well connected areas as the Ruhrpott detach
from one of the three networks. With a lower number of clusters between 20 to
40, ν can be increased by an order of magnitude and the topological errors are
less important, then the aggregate capacities between large network zones can
be compared and deviations identified.

Another approach is simply to aggregate line volumes within and attached
to each cluster of buses. These are compared in Figure 3.5 and turn out to be
quite robust against topologically problematic associations and show a high
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PyPSA-Eur osmTGmod ELMOD-DE

PyPSA-Eur 1.000 0.846 0.744
osmTGmod 1.000 0.868
ELMOD-DE 1.000

Table 3.5: Pearson correlation coefficients between line volume at different buses

correlation across networks in Table 3.5. ELMOD-DE has proportionally less
line volume than osmTGmod and PyPSA-Eur, but with approximately the
same spatial distribution. osmTGmod and PyPSA-Eur agree well.

Potentials for expansion of renewables

Geographic potentials for the expansion of wind and solar power depend
strongly on technical, environmental, social and political constraints. Differ-
ent organisations offer different assessments of acceptable potentials, which
involve a complex balance between land availability, landscape impact and
species protection. In this section we compare aggregated total potentials for
Germany in the PyPSA-Eur model derived using the methodologies described
in Sections 3.2 and 3.2 with other studies.

For onshore wind, there is an installable potential of 447 GW in Germany
in the model. Assessments in the literature range from 198 GW [137] (based
on a ‘realistic’ restriction to 2% of total land area, although 8% is available
when excluding forests and protected areas) up to 1190 GW [138] (using 13.8%
of the total land area, ignoring species protection and whether locations are
economically exploitable).

For offshore wind, 86 GW of fixed-foundation capacity is available for instal-
lation in PyPSA-Eur in Germany. Estimates in the literature range from 38 to
85 GW [139, 140].

345 GW of solar photovoltaics is installable in Germany in PyPSA-Eur. The
potential depends strongly on what land areas are permitted, but typical val-
ues range from 360 GW [139] to 400 GW [140] (including roofs, facades and
railway/motorway sidings, but excluding free space).

Model validation: Linear optimal power flow

As a validation of the model at large, it is formulated within the PyPSA frame-
work [93, 141] and the linear optimal power flow of the European peak-load
hour is considered to check the feasibility of the combined network, generation
and demand data for supplying the most extreme demand. Solar- and wind
feed-in are not allowed to reduce the load, while hydro-electric installations
may be discharged at their full power capacity. European overall peak-load of
0.54 TW in the dataset happens at 17:00 on 08-02-2012 and leads to 25 GW of
load shedding in the vicinity of large agglomerations, primarily in Paris (6 GW)
and London (5.4 GW). Since there is sufficient generation capacity to cover the
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peak load, this load-shedding is due to grid bottlenecks which appear in the
model (but not in reality, since grid bottlenecks do not cause load-shedding in
today’s European network). The amount of shedding decreases considerably
by lifting capacity constraints on short lines, for example if lines shorter than
25 km are not limited in power capacity, only about 10 GW, 2%, of load has to
be shed. Similarly easing local restrictions by clustering the network using a
k-means algorithm as detailed in [142] to 1500 buses reduces shedding to 1.3%
of peak load, while clustering to 356 buses allows the whole demand to be sup-
plied. This is indicative of local assignment errors of load and supply, when
the Voronoi cells used to assign load and generators to transmission substa-
tions do not represent the true distribution grid topology at each transmission
substation, and/or an underrepresentation of inner-city underground cabling,
which is not always shown on the map. Clustering the network, so that each
bus represents a larger area, smooths out local assignment errors. Since there
are several heuristic remedies from expanding the loaded lines over rearrang-
ing the load to using clustered topologies as done manually by [84, 86], we
decided not to perform any corrections, but publish the dataset as is.

3.4 limitations

While the benefit of an openly available, functional and partially validated
model of the European transmission system is high, many approximations
have been made due to missing data. In this section we summarise the limi-
tations of the dataset, both as a warning to the user and as an encouragement
to assist in improving the approximations.

The grid data is based on a map of the ENTSO-E area [94] that is known to
contain small distortions to improve readability. Since the exact impedances
of the lines are unknown, approximations based on line lengths and standard
line parameters were made that ignore specific conductoring choices for partic-
ular lines. There is no openly available data on busbar configurations, switch
locations, transformers or reactive power compensation assets.

Using Voronoi cells to aggregate load and generator data to transmission net-
work substations ignores the topology of the underlying distribution network,
meaning that assets may be connected to the wrong substation. Assumptions
have been made about the distribution of load in each country proportional
to population and GDP that may not reflect local circumstances. Openly avail-
able data on load time series may not correspond to the true vertical load [143]
and is not spatially disaggregated; assuming, as we have done, that the load
time series shape is the same at each node within each country ignores local
differences.

Information on existing wind, solar and small hydro, geothermal, marine
and biomass power plants are excluded from the dataset because of a lack of
data availability in many countries. Approximate distributions of wind and so-
lar plants in each country can be generated that are proportional to the capacity
factor at each location.
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The database of hydro-electric power plants does not include plant-specific
energy storage information, so that blanket values based on country storage
totals have been used. Inflow time series are based on country-wide approx-
imations, ignoring local topography and basin drainage; in principle a full
hydrological model should be used. Border connections and power flows to
Russia, Belarus, Ukraine, Turkey and Morocco have not been taken into ac-
count; islands which are not connected to the main European system, such as
Malta, Crete and Cyprus, are also excluded from the model.

3.5 conclusions

In this chapter a dataset PyPSA-Eur has been presented of the full European
transmission system, including a high resolution grid model, load data, a new
geo-referenced database of conventional power plants, potentials for the ex-
pansion of wind and solar, and time series for the load and variable renewable
power availability. The model is only based on publicly available and open
datasets, and all code and data has been made available, making it the first
open model of the full European system at such high spatial resolution.

Validation results, including a new technique for validating grid data, have
been presented which demonstrate that the model is a plausible approximation
of the European power system. Further validation is desirable.

The dataset has been designed primarily for the optimisation of future in-
vestment in generation and transmission, but can also be adapted to studies
of the operation of the current power system. We hope that it will contribute
towards a transparent discussion of the future needs of the European energy
system.





4 S PAT I A L S C A L E I N O P T I M A L
R E N E W A B L E E N E R GY N E T W O R K S 1

4.1 introduction

Optimising investment in the electricity system to reduce greenhouse gas emis-
sions is computationally intensive. Transmission investment should be jointly
optimised with generation investment, so that the benefits of exploiting the
sites with the best renewable resources can be balanced against the network
expansion costs; continental-scale areas should be considered, so that synoptic-
scale weather variations (∼ 600 − 1000 km), which particularly affect wind
generation, can be balanced; at the same time, high spatial detail is required
to capture both variations in renewable resources and existing transmission
bottlenecks.

Previous studies have typically sacrificed at least one of these goals. In some
studies, only a single node per country or group of countries has been consid-
ered [28, 36, 38, 40], ignoring national transmission networks and local differ-
ences in weather conditions. Other studies consider the transmission network
in detail, but only for single countries [41, 144], neglecting the benefits of inter-
national cooperation. Other studies maintain both a pan-continental scope and
transmission network detail, but fix the generation fleet and only optimise the
transmission network [42, 44].

In this chapter it is attempted to bring a more systematic approach to the
question of spatial resolution in electricity system optimisations. A clustering
methodology called ‘k-means’ is used to successively reduce the number of
nodes in the European transmission network from its full level of spatial detail
down to a level where there is only one node per country. The effects on the
results of the optimal investments in generation and transmission are then
studied as the spatial resolution is changed. A high spatial resolution reveals
transmission bottlenecks that might either restrict welfare-enhancing transfers
or force transmission upgrades; ignoring these effects in a low resolution model
leads to an underestimate of the total costs. In a low resolution model one is
also forced to average the renewable resources over a larger area, which lowers
the average capacity factors, even with a weighting towards better sites; at high
resolution the sites with the highest capacity factors can be fully exploited,
particularly for wind.

In recent decades as large-scale optimisation has gained in importance, many
methods have been suggested in the literature to reduce the whole network to
a number of clusters, rather than focussing on a binary exterior-interior divi-
sion like the Ward or Radial-Equivalent-Independent methods [145]. Standard
clustering algorithms from complex network theory [146] have been applied

1 This chapter is published as “The role of spatial scale in joint optimisations of generation and
transmission for European highly renewable scenarios” by Hörsch and Brown [142]. It was only
slightly modified for this work.
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on the network structure, including k-means clustering [147] on electrical dis-
tance between buses [136, 148, 149] and spectral partitioning of the Laplacian
matrix [150]. Equivalents based on zonal PTDFs were considered in [151], while
a methodology based on available transfer capacities (ATC) was developed in
[152]. A more economic focus was taken in [153], where buses were clustered
based on similar average locational marginal price (LMP). The final report of
the recent e-Highways 2050 project [154] that considered network expansion
needs in Europe contains both a summary of network clustering methods and
suggestions for mixed metrics combining several characteristics to define nodal
similarity.

In the following sections we review the clustering methodology, the invest-
ment model, the data input for the European electricity system and the results
for different aggregation scales and levels of grid expansion.

4.2 methodology for network reduction

We first describe the method to derive a clustered equivalent network, with
fewer buses and lines, from a more detailed network. First, the network buses
are partitioned into clusters, then an equivalent network is constructed with
one bus per cluster and aggregated lines between the new buses.

The network reduction method used here for an equivalent network of k
buses consists of the following steps (steps 3-6 are schematically represented
in Fig. 4.1)

1. Univalent buses, i. e. network stubs or ‘dead-ends’, are aggregated to their
neighbours in an iterative process until all buses are multi-valent, since
such stubs are typically short lines, connecting single generators to the
main network.

2. The remaining buses labelled by n are assigned a weight wn proportional
to the load and today’s conventional generation capacities at the bus and
coordinates xn based on their geographical location.

3. The k-means algorithm is used to find the geographical positions of k
centroids {xc} for c = 1, . . . k by minimising the weighted sum of squared
distances from each centroid to its clustered members Nc:

min
{xc}

k

∑
c=1

∑
n∈Nc

wn||xc − xn||2 (4.1)

To lessen the risk of finding local minima the k-means algorithm is run
on 10 different starting conditions and all but the best found centroid
configuration are discarded. Further, the clustering is constrained so that
for each country and synchronous zone a number of clusters proportional
to its overall mean load is chosen.

4. A new bus c is created at each centroid xc to represent the set of clustered
nodes.
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Figure 4.1: Schematic clustering represen-
tation of steps 4-6. Detailed
buses (gray) are grouped to
clusters, so that internal dis-
tances are minimized. The clus-
ter is represented by its cen-
troid as new bus (black), to
which generators and storage
units are aggregated. Lines be-
tween clusters are replaced by
a single equivalent line.

5. All generators, storage units and loads that were connected to the orig-
inal buses in Nc are then aggregated by technology type at the equiva-
lent bus c. The maximum expansion potential of generators of the same
technology type are added for the new aggregated generator, while the
weather-dependent availability time series for renewable generators are
averaged with a weighting.

6. Lines between the clusters are replaced by a single equivalent line with
a length of 1.25 times the crow-flies-distance, whose capacity is given by
the sum of the capacity of the replaced lines, and whose impedance is
given by the equivalent impedance of the parallel lines.

Note that by focussing on the geographical distribution of the load and con-
ventional generation, this method ignores both the electrical distance between
the buses and the grid topology. Electrical distance is ignored because the net-
work clustering should be independent of existing grid capacities, given that
these capacities will be optimised later; for the optimisation, geographical dis-
tance is more important because it determines the cost of the grid expansion.
The topology is ignored because it is expected that the grid topology was de-
signed to connect major load and conventional generation centres, so that fo-
cussing on the load and generation is sufficient to capture the important con-
glomerations and the transmission corridors between them.

N-1 security is modelled by scaling down the available transmission capacity
to 0.7 times nominal capacity for high resolution networks ≥ 200 clusters and
linearly shrinking it down until reaching half the nominal values at 37 clusters
to account for cluster-internal bottlenecks.

The network model is clustered down to k = 37, 45, 64, 90, 128, 181, 256, 362
buses (see Figure 4.2 for the clusterings with 64 and 362 buses) and the different
results of the system optimisation are examined for each level of clustering in
several grid expansion scenarios.

The network reduction algorithms are implemented in the free software
PyPSA Version 0.8.0 [75, 141] which is developed at the Frankfurt Institute for
Advanced Studies (FIAS). PyPSA uses the scikit-learn Python package [155] for
the k-means clustering.



46 spatial scale in optimal renewable energy networks

4.3 model for investment optimisation

The model minimises total annual system costs, which include the variable
and fixed costs of generation, storage and transmission, given technical and
physical constraints.

To obtain a representative selection of weather and demand conditions while
keeping computation times reasonable, the model is run over every third hour
of a full historical year of weather and demand data assuming perfect foresight,
with 2012 chosen as the representative year. Each time point t is weighted by
wt = 3 in the objective function and storage constraints, to account for the fact
that it represents three hours.

The optimisation minimises total annual system costs, with objective func-
tion

min
Gn,s,F`,
gn,s,t, f`,t

[
∑
n,s

cn,sGn,s + ∑
`

c`F` + ∑
n,s,t

wton,sgn,s,t

]
(4.2)

consists of the capacities Gn,s at each bus n for generation and storage technolo-
gies s and their associated annualised fixed costs cn,s, the dispatch gn,s,t of the
unit in time t and the associated variable costs on,s, and the line capacities F`
for each line ` (including both high voltage HVAC and HVDC lines) and their
annualised fixed costs c`.

The dispatch of conventional generators gn,s,t is constrained by their capacity
Gn,s

0 ≤ gn,s,t ≤ Gn,s ∀ n, s, t (4.3)

The maximum producible power of renewable generators depends on the
weather conditions, which is expressed as an availability ḡn,s,t per unit of its
capacity:

0 ≤ gn,s,t ≤ ḡn,s,tGn,s ∀ n, s, t (4.4)

The energy levels en,s,t of all storage units have to be consistent between all
hours and are limited by the storage energy capacity En,s

en,s,t = ηwt
0 en,s,t−1 − η1wt [gn,s,t]

− + η−1
2 wt [gn,s,t]

+

+wtgn,s,t,inflow − wtgn,s,t,spillage

0 ≤ en,s,t ≤ En,s ∀ n, s, t (4.5)

Positive and negative parts of a value are denoted as [·]+ = max(·, 0), [·]− =

−min(·, 0). The storage units can have a standing loss η0, a charging efficiency
η1, a discharging efficiency η2, inflow (e. g. river inflow in a reservoir) and
spillage. The energy level is assumed to be cyclic, i. e. en,s,t=0 = en,s,t=T.
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CO2 emissions are limited by a cap CAPCO2, implemented using the specific
emissions es in CO2-tonne-per-MWh of the fuel s and the efficiency ηn,s of the
generator:

∑
n,s,t

1
ηn,s

wtgn,s,t · es ≤ CAPCO2 ↔ µCO2 (4.6)

In all simulations this cap was set at a reduction of 95% of the electricity sector
emissions from 1990.

The (inelastic) electricity demand dn,t at each bus n must be met at each time
t by either local generators and storage or by the flow f`,t from a transmission
line `

∑
s

gn,s,t − dn,t = ∑
`

Kn` f`,t ∀ n, t (4.7)

where Kn` is the incidence matrix of the network. This equation is essentially
KCL.

In this chapter it is assumed that the linear load flow is a good approxima-
tion for a well-compensated transmission network [44, 49]. To guarantee the
physicality of the network flows, in addition to KCL, KVL must be enforced in
each connected network. KVL states that the voltage differences around any
closed cycle in the network must sum to zero. If each independent cycle c is ex-
pressed as a directed combination of lines ` by a matrix C`c then KVL becomes
the constraint

∑
`

C`cx` f`,t = 0 ∀c, t (4.8)

where x` is the series inductive reactance of line `. Note that point-to-point
HVDC lines have no cycles, so there is no constraint on their flow beyond KCL.

The flows are also constrained by the line capacities F`

| f`,t| ≤ F` ∀ `, t (4.9)

Although the capacities F` are subject to optimisation, no new grid topologies
are considered.

Since line capacities F` can be continuously expanded to represent the ad-
dition of new circuits, the impedances x` of the lines would also decrease. In
principle this would introduce a bilinear coupling in equation (4.8) between the
x` and the f`,t. To keep the optimisation problem linear and therefore compu-
tationally fast, x` is left fixed in each optimisation problem, updated and then
the optimisation problem is rerun in up to 4 iterations to ensure convergence,
following the methodology of [45].

In order to investigate the interactions of spatial scale with transmission ex-
pansion, the sum of all transmission line capacities (HVAC and HVDC) multi-



48 spatial scale in optimal renewable energy networks

Quantity Overnight Unit FOM Lifetime

Cost [e] [%/a] [a]

Wind onshore 1182 kWel 3 20

Wind offshore 2506 kWel 3 20

Solar PV 600 kWel 4 20

Gas 400 kWel 4 30

Battery storage 1275 kWel 3 20

Hydrogen storage 2070 kWel 1.7 20

Transmission line 400 MWkm 2 40

Table 4.1: Investment costs

plied by their lengths l` is restricted by a line volume cap CAPtrans, which is
then varied in different simulations:

∑
`

l` · F` ≤ CAPtrans ↔ µtrans (4.10)

The caps are defined in relation to today’s line capacities Ftoday
` , i. e.

CAPtrans = x ·CAPtoday
trans = x ·∑

`

l` · F
today
` . (4.11)

The discussion in Section 4.5 starts off with the no expansion scenario, where
CAPtrans = CAPtoday

trans impedes any network expansion beyond today’s line ca-
pacities. In this scenario transmission bottlenecks restrict the exploitation of
the best renewable sites and the smoothing effects across the continent; gen-
eration is forced to be more localised and renewable variability may have to
be balanced by storage. Then, five expansion scenarios are studied by gradu-
ally easing the cap CAPtrans = x · CAPtoday

trans with x = 1.125, 1.25, 1.5, 2, 3 until
reaching three times today’s transmission volume, which is already above the
optimal value for overhead lines at high numbers of clusters, as we will discuss
in Section 4.5.

The optimisation model was also implemented in PyPSA.

4.4 data inputs

The network reduction and subsequent investment optimisation were run on a
full model of the European electricity transmission system.

The existing network capacities and topology for the ENTSO-E area (includ-
ing continental Europe, Scandinavia, the Baltic countries, Great Britain and
Ireland) were taken from the GridKit extract [96] of the online ENTSO-E Inter-
active Transmission Map [94]. The model includes all transmission lines with
voltages above 220 kV and all HVDC lines in the ENTSO-E area (see Figure 3.1).
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In total the model contains 5586 HVAC lines with a volume of 241.3 TWkm (of
which 11.4 TWkm are still under construction), 26 HVDC lines with a volume
of 3.4 TWkm (of which 0.5 TWkm are still under construction) and 4653 substa-
tions.

The hourly electricity demand profiles for each country in 2012 are taken
from the European Network of Transmission System Operators for Electricity
(ENTSO-E) website [133]. The geographical distribution of load in each country
is based on GDP and population statistics for the Nomenclature of Territorial
Units for Statistics level 3 (NUTS3) regions.

Electricity generation in the model is allowed from the following technolo-
gies: hydroelectricity, natural gas, solar PV, onshore wind and offshore wind.
Gas, solar and wind capacities may be expanded within the model constraints.

Existing hydroelectricity capacities (including run-of-river, reservoirs and
pumped storage) were compiled by matching databases CARMA [109], GEO [85],
DOE Global Energy Storage Database [107] and the PowerWatch project coor-
dinated by the World Resources Institute [110]; no expansion of existing hydro
capacities is considered in the model. The hydro energy storage capacities are
based on country-aggregated data reported by [116, 117] and the inflow time
series are provided by [116].

The only fossil fuel generators in the model are open cycle gas turbines,
whose efficiency is assumed to be 39%. Their usage is limited by the CO2 cap
in equation (4.6).

The potential generation time series for wind and solar generators are com-
puted with the Aarhus renewable energy atlas [78] from hourly historical
weather data from 2012 with a spatial resolution of 40× 40km2 provided by
the US National Oceanic and Atmospheric Administration [118].

The distribution of these generators is proportional to the quality of each
site given by the local capacity factor multiplied with the maximum installable
capacity of the site. However, protected sites as listed in Natura2000 [121] are
excluded, as well as areas with certain land use types from the Corine Land
Cover database [120], as specified by [28], to avoid building, e. g., wind tur-
bines in urban areas. The maximum water depths for offshore wind turbines
is assumed to be 50 m. The maximum installable capacity per bus and genera-
tor type is then determined by scaling these layouts until the first site reaches
a maximum installation density of 2 and 1.7 MW/km2 for wind and solar,
respectively. These maximum densities are chosen conservatively to take ac-
count of competing land use and minimum-distance regulations for onshore
wind turbines.

The model contains two extendable types of storage units: batteries and hy-
drogen storage. Their charging and discharging efficiencies, as well as cost as-
sumptions for their power and energy storage capacities are taken from [156].
It is assumed that the charging and discharging power capacities of a unit are
equal, and the energy capacity En,s = hmax,s ∗ Gn,s is proportional to this power
capacity. The factor hmax,s determines the time for charging or discharging the
storage completely at maximum power, and is set to hmax = 6 h for batteries
and to 168 h for H2 storage.
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Investment and fixed operation and maintenance (FOM) costs for all assets
are listed in Table 4.1. The costs for generating assets are based on predictions
for 2030 from DIW [157]; the costs for battery and hydrogen electricity stor-
age power capacity and energy storage capacity come from [156]. Although
the costs of lines c` are set to zero, as they are dual to the line volume cap,
these costs are added in afterwards in the results. For the annualisation of
overnight costs a discount rate of 7% is used. Gas variable costs add up to 21.6
e/MWhth[157].

4.5 results

The original European grid model has already been shown in the previous
Chapter 3 in Figure 3.1 and can be compared to two clustered networks in
Figure 4.2; the total annual system costs in the three scenarios as a function
of the number of clusters is found in Figure 4.3a and these costs are broken
down into components in Figure 4.3(b)-(d); the expansion of the transmission
network is shown in further detail in Figure 4.4; the system costs as a function
of the transmission cap are plotted in Figure 4.5; finally the shadow price of
the transmission cap can be studied in Figure 4.6. The results of the scenarios
are now discussed in detail.

Spatial scale dependence

Without any expansion of the transmission network (x = 1.0 in Figure 4.3(b)),
the total annual sytem cost remains approximately steady as the number of
clusters increases at 260 billion euros (an average of around e 82/MWh), due to
a coincidental balance of the two driving effects: (1) The sites with high capacity
factors are more finely resolved with a higher number of clusters, allowing the
model to put more capacity at the best sites. With smaller numbers of clusters,
the capacity factors are averaged with a weighting over a larger area, bringing
the capacity factors down. For example, the best cluster for onshore wind in
Germany with 362 clusters has a capacity factor of about 40 %, whereas with
one node for the whole of Germany, the weighted average capacity factor is
only 26 %. (2) As the number of clusters increases, the bottlenecks inside each
country’s network become constraining and prevent the wind generated at
high capacity factors, localised on the coastlines and offshore, to be transported
to load centres.

In panel (b) in Figure 4.3, the two effects, the increasing effective capacity fac-
tor of onshore wind combined with intra-country bottlenecks becoming more
important, lead to the considerable decrease in the built offshore wind capac-
ity, since better sited onshore wind and solar installations produce more en-
ergy closer to the load. The increasing solar generation drives an increase in
battery capacities to smooth short-term diurnal variability. Hydrogen storage,
which balances longer-term synoptic and seasonal variability, decreases gen-
tly with the number of clusters at a higher level than the other two scenarios.
Gas generation is fixed because of the CO2 constraint. The grid costs increase
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AC existing (= 5 GW)
DC existing (= 5 GW)
Capacity (= 50 GW)

windoff
windon
solar

run of river
gas

pumped hydro storage
reservoir hydro

hydrogen storage
battery storage

AC existing (= 5 GW)
DC existing (= 5 GW)
Capacity (= 50 GW)

Figure 4.2: The clusterings with 64 buses (above) and 362 buses (below). Results for
the distribution of generation capacities at each node are shown as pie
charts for the no expansion scenario (existing and planned projects only).
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Figure 4.3: System costs. (a) Total annual system costs as a function of the number of
clusters for the six scenarios including the costs for overhead transmission
lines. (b)-(d) Breakdown of the annual system costs for generation (top)
and flexibility options (bottom) as a function of the number of clusters for
the no expansion scenario and the expansion scenarios with x = 1.25 and
x = 2.

monotonically as more line capacity and line constraints are seen by the model,
but flatten out with the exponentially increasing number of clusters. This is a
good indication that the clustering is capturing the major transmission corri-
dors even with smaller numbers of clusters.

Turning back to Figure 4.3(a), the expansion of the network lifts transmission
bottlenecks and the first effect wins out, better exploitation of good sites with
higher numbers of clusters decrease the system cost. As the grid is gradually
expanded the system cost decreases in a very non-linear manner: The expan-
sion by 25% reduces the total system cost already by 30 billion euros of the 50
billion euros in cost reduction available down to 210 billion euros (an average
of e 66/MWh). Nevertheless the overall cost reduction possible by expanding
the network is a moderate 20%.

In the technology break-down in the lower panels (c) and (d) of Figure 4.3,
with the additional line volume the joint solar and battery capacities are re-
placed by offshore wind turbines. Solar is favoured with limited transmission
capacity because it can be built close to demand everywhere and reasonably
balanced during its principal short-term diurnal variation using battery stor-
age, whereas the good wind sites are concentrated in Northern Europe and
their energy cannot be transported to loads in large quantities without an ex-
pansion of the transmission grid. Wind generation additionally benefits from
expanding the transmission capacities so that the spatial variation on the con-
tinental scale is used for smoothing the temporal fluctuations on the synoptic
scale to relieve expensive hydrogen storage. The extra transmission capacity
does not offset the low significance of the transmission network cost.
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AC expansion (= 10 GW)
DC expansion (= 10 GW)
Capacity (= 25 GW)

windoff
windon
solar

run of river
gas

pumped hydro storage
reservoir hydro

hydrogen storage
battery storage

Figure 4.4: Optimal generation capacities and transmission line expansion for 256
buses in the expansion scenario with the transmission cap at x = 2.

These trends are all pronounced if the results for Germany are considered in
isolation. Transmission bottlenecks within Germany complicate transporting
offshore wind energy away from the coast with higher numbers of clusters,
forcing a dramatic substitution by solar instead, i. e. the German offshore wind
capacity falls from 40 GW to 12 GW from 37 to 362 clusters, while solar peak
capacities increase from 46 GW to 100 GW and onshore wind remains largely
unaffected despite an intermediate decrease.

The effects disappear for about 200 clusters and above, a level of resolution
above which all the results are more-or-less steady.

Transmission volume cap

After ensuring that the solutions have already stabilized at 200 clusters and
are thus, likely, a good proxy for the relations on the full network, we want to
focus in more detail on the solutions for 256 clusters while varying the allowed
overall transmission volume to find the most important lines for expansion and
estimate the benefits of a partial expansion deviating from the optimal solution,
which might be preferable vis-à-vis problems of public acceptance.

Figure 4.4 shows the optimal generation capacities and transmission expan-
sion for a challenging doubling of the existing transmission capacity (x = 2),
which was also the subject of the last panel (d) in Figure 4.3. Transmission is



54 spatial scale in optimal renewable energy networks

1.0 1.5 2.0 2.5 3.0

Transmission expansion limit CAPtrans/CAP
today
trans

0

50

100

150

200

250

S
ys

te
m

 c
os

t [
bi

lli
on

 E
U

R
/a

]

pumped hydro s.
hydrogen storage
battery storage
run of river
solar
windon
windoff
reservoir hydro
gas (marginal)
gas
transmission l.

Figure 4.5: Annual total system cost at 256 clusters for different values of the trans-
mission cap CAPtrans.
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Figure 4.6: Shadow price of the line volume constraint µtrans for different values of the
transmission cap CAPtrans for 256 clusters.

foremost expanded in the proximity of wind capacity installations forming a
wide band along the shore of the north and east sea with branches leading in-
land. This band allows synoptic-scale balancing as weather systems pass from
west to east over Europe. It provides the flexibility for the energy of large-scale
wind installations to replace a significant amount of solar capacity in South-
ern Europe and Italy in particular, which also lessens the need for short-term
battery storage.

The total system cost in respect to allowed transmission volume in Figure 4.5
decreases non-linearly as has already been observed in the detailed study in
the one-node-per-country setting by Schlachtberger et. al [40]. More than half
of the overall benefit of transmission of 50 billion EUR per year is already
locked in at an expansion by a fourth to 1.25 · CAPtoday

trans and after reaching
two times today’s line volume (x = 2) does not increase significantly anymore
(also compare the vertical slice at 256 clusters in Figure 4.3). From a system
constrained to today’s transmission capacities to the optimal solution, the cost
composition reduces the component spent on solar and battery in favour of
offshore wind and, then, also onshore wind.

Finally, the shadow price of the transmission cap, µtrans introduced in Equa-
tion (4.10) is shown in Figure 4.6. It indicates the marginal value of an increase
in line volume at each level of network expansion; it can also be interpreted
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as the transmission line cost per MWkm necessary for the optimal solution to
have the transmission line volume CAPtrans. For the assumed costs for over-
land transmission lines of 400 e/MWkm the model finds the optimal grid vol-
ume at slightly below 3 ·CAPtoday

trans . If the expansion instead were to be carried
out with underground cabling at a 4 to 8 times higher cost, the economically
optimal solution would still be to expand the line volume to between 1.25 and
1.5 times the existing volume.

4.6 critical appraisal

Although the clustering algorithm presented in Section 4.2 captures the major
transmission corridors well, it would be interesting to benchmark the different
clustering algorithms mentioned in the introduction based on comparable cri-
teria, such as their ability to capture power flows in the original unclustered
network. Results with a higher number of nodes would also be desirable, if
this is computationally possible.

Additional aspects, such as distribution grid costs, reserve power, stability
and sector-coupling, have not been considered here.

4.7 discussion and conclusions

The results of this chapter are two fold: Firstly, a network clustering method has
been demonstrated that can reduce the number of buses in a given electricity
network while maintaining the major transmission corridors for network anal-
ysis. With this network reduction method the effects of spatial resolution, i. e.
the number of clusters, on the joint optimisation of transmission and genera-
tion investment for highly renewable systems in Europe have been investigated.
Secondly, the techno-economic European model was optimised at a sufficient
level of resolution to determine the hotspots and benefits of transmission ex-
pansion.

The systems optimised to reduce CO2 emissions by 95% with no grid ex-
pansion are consistently only around 20% more expensive than systems with
grid expansion and half of that cost benefit can already be locked in with an
expansion of the line volume by a fourth, which may be a price worth paying
given public acceptance problems for new transmission lines.

One must note, though, that in the time horizon until 2050 in which the
studied reduction of emissions is to be implemented a significant amount of
the current conventional generation park will not yet have passed their lifetime
and an important next step is to confirm our greenfield results accounting for
this inertia. Further, one should be clear that the feasibility of these solutions
is based on a fully integrated European market with nodal prices, high CO2

price and optimally real-time prices for distributed generation and storage.





5 F LO W T R A C I N G I N R E N E W A B L E
E N E R GY N E T W O R K S 1

nomenclature

Indices and Labels

n, m, k Index of buses.
l, l′ Index of lines.
α, β, τ Labels of regions and technologies for grouping the power injection

and flows.

Constants, Variables and Functions

Pn(t) Net power injection at bus n (MW).
Gτ

n(t) Power generation by technology τ at bus n (MW).
Ln(t) Load at bus n (MW).
Fout

n→m(t) Power outflow from bus n in direction of bus m (MW).
Fin

n→m(t) Power inflow to bus m from bus n (MW).
Fl(t) Absolute value of the power flow on line l.
χn→m(t) Loss in the transmission line between bus n and m (MW).
qin

n,α(t) In-partition, the share of the injected power at bus n attributed
to component α.

qout
n,α(t) Out-partition, the share of the consumed power at bus n at-

tributed to component α.
ql,α(t) Line-flow partition, the share of the power flow through line l

attributed to component α.
pl(Fl) Probability for a flow Fl on line l.
pl(ql,α|Fl) Conditional probability for a share ql,α of component α in case

of a flow Fl .
hl,α(Fl) Average share of owner α on the link l for a flow Fl .
wl,α(K) Weight for the usage of the capacity increment between K and

dK attributed to owner α on the link l.
KT Transmission capacity of the network (MW).
KT

l Transmission capacity of line l (MW).
K̄T Transmission capacity of the network including length (MW km).
L̄l Length of transmission line l (km).
D̄n Average graph distance of bus n (km).
M(1...4)

α,τ Transmission network usage measures (MW km).

1 This chapter is published as “Flow tracing as a tool set for the analysis of networked large-scale
renewable electricity systems” by Hörsch et al. [158]. It was only slightly modified for this work.
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5.1 introduction

The electricity system is built up of a complex interwoven network of technolo-
gies, which provides the backbone for our modern society. In the past, this net-
work was characterized by power flows from large central power plants down-
stream through the grid to the consumers, with only very limited interactions
between different geographical regions. Today, the rising share of decentral-
ized, fluctuating renewable generation and the increasing inter-dependence of
international electricity markets has led to a more dynamical system: the power
grid has become the underlying infrastructure for a complex pattern of long-
range power flows between a heterogeneous distribution of power generation
to consumers, integrating not only dispatchable conventional generation, but
also electricity from offshore wind farms, wind and solar parks and roof-top so-
lar panels. In this context, a deeper understanding of the emerging power flow
patterns is of paramount importance on different levels: For instance, inter-
nationally integrated electricity markets need to incorporate possible network
congestion into their market design [159], whereas network expansion plans
attempt to minimize this congestion in the long run [45, 160]. Also the delevop-
ment of fair and transparent grid usage fee systems, or public discussions con-
cerning the benefit of new infrastructure projects rely strongly on insights con-
cerning the composition and dynamics of the flow pattern in the network [161,
162]. In this article we present a reformulation of a well-known method of
flow allocation, denoted as average participation or flow tracing, that is well
adapted to the challenges of the system analysis of complex modern electricity
systems. Different approaches to the problem of flow allocation in power grids
are often derived from circuit theory [163, 164] or are based on approximations
of the complex power flow equations for AC electrical networks [165, 166]. For
the application of such methods to the problem of flow allocation in large-scale
models of electricity systems, one has to factor in the potentially coarse-grained
nature of such models. Both the network buses and transmission lines might
be aggregated representations of lower level infrastructures, which cannot be
included in detail in the model due to computational limitations or lack of
data [20, 22, 167]. The method of flow tracing can be applied directly to the
overall power flow pattern in the system, and thus does not explicitly have to
take into account the underlying modeling details. By tracing what we term
in-partitions, we show how the known composition of network-injected power
generation can be followed through the grid and thus be transferred to the
power flows and composition of net consumption at the sink nodes. In this
way the location of generation of power flow can be connected to its location
of consumption, thus disentangling the complex spatio-temporal patterns of
imports and exports inherent to interconnected electricity systems with a high
share of renewable generation. We showcase the potential of this methodolog-
ical tool set by application to the Scenario 2023B of the IEEE 118-bus model
adapted by Barrios et al. at RWTH Aachen with renewable generation capaci-
ties and hourly availability for a model year as a benchmark for transmission
expansion algorithms [168].



5.2 methodology 59

After a short review of flow tracing, Sec. 5.2 introduces the reformulated flow
tracing technique and a measure of network usage. The subsequent Sec. 5.3
showcases two exemplary applications: Firstly the tracing of power flow of dif-
ferent generation types between several regions across a network model based
on the IEEE 118 bus case, and secondly a comparison of a statistical transmis-
sion capacity usage measure with several alternative allocation mechanisms.
Sec. 5.4 throws a quick glance at the usage of storage in the decarbonized sce-
narios of the European electricity system from the previous chapter. Section 5.5
concludes the chapter.

5.2 methodology

Flow tracing was introduced as a loss-allocation scheme by Bialek et al. based
on solving linear equations [169] and in parallel by Kirschen et al. as an analyt-
ical tool using a graph-based, iterative approach [170].

It was soon after proposed as a transmission-usage allocation scheme [171–
174]. Subsequently, the method was discussed to cover concrete supplementary
charge schemes for cross-border trades [175, 176], in view of the discussion
about the mechanism of inter-transmission system operator compensation in
Europe [161, 177, 178].

Of the other network-cost allocation methods – reviewed in [179] or [180],
for instance – we only want to highlight marginal participation [181] and the
related decomposition method [182], which attribute transmission capacity ac-
cording to linear sensitivities of network flows to differential bus injections as
captured by the power transfer distribution factors (PTDF) [59]. Due to its in-
fluence on the PTDF, for this method the choice of the slack bus has to be taken
into account explicitly [183], whereas for the flow tracing technique this choice
only affects the total power flow but not the allocation mechanism.

Power flow

The active power flow in an electricity system satisfies Kirchhoff’s current law.
If the net power injection at bus n from generators and loads is given by Pn,
and Fin/out

n→m are the power in- and outflows from bus n to m, then the power
flow through node n is conserved as

Pin
n + ∑

m
Fin

m→n = Pout
n + ∑

m
Fout

n→m . (5.1)

Here we use the positive and negative injections Pin
n and Pout

n at node n and
invoke the convention that all Fout

m→n and Fin
m→n are positive or zero.

Table 5.1 introduces a particular snapshot in a simple network with four
buses with generation Gn, load Ln and im-/exports In/Xn with other buses not
represented explicitly. In this example, we take the positive injection as the net
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n Gn of which in % Ln Gn − Ln In Xn

wind solar other

1 76.0 16 19 65 65.5 10.5 0.9 5.6

2 20.5 8 0 92 21.1 -0.6 0.9 0.6

3 8.5 2 13 85 8.0 0.5 0.0 1.8

4 7.3 12 6 82 7.5 -0.3 0.0 2.5

Table 5.1: Power generation and consumption of a simple four bus network with im-
/exports with external buses in GW.

Figure 5.1: Power flows and in-
jections in the simple
four bus network in-
troduced in Table 5.1
in units of GW.

surplus between generation Gn and demand Ln plus the imports In, while the
negative injection follows from the deficit and exports Xn, as

Pin
n = max{(Gn − Ln), 0}+ In , Pout

n = max{−(Gn − Ln), 0}+ Xn . (5.2)

The flows and line-losses are illustrated in Fig. 5.1. The convention means that
the line from bus 1 to bus 3 is described by Fout

1→3 = 2.2 GW, Fin
1→3 = 1.8 GW,

Fin
3→1 = 0 and Fout

3→1 = 0.
Here and in general the outflow from bus n to m, Fout

n→m, is larger than the
inflow to m, Fin

n→m due to losses in the transmission line n → m. We denote
them by χn→m = Fout

n→m − Fin
n→m.

Flow tracing

The flow tracing method by Bialek and Kirschen [169, 170] follows the power
flow from individual buses through the network and decomposes the flow
on the power lines into contributions associated to each bus. Since for large-
scale electricity systems, the injection Pin

n , in general, already contains several
constituents, we introduce an in-partition qin

n,α associating the power injection
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at each bus n to a set of components α. For the power flows of the four bus
example, we will use the components {1, 2, 3, 4, I} with the in-partition

qin
n,α =



max{Gn − Ln, 0}
Pin

n
for α = n ∧ Pin

n > 0 ,

In

Pin
n

for α = I ∧ Pin
n > 0 ,

0 else.


=


10.5
11.4 0 0 0 0.9

11.4

0 0 0 0 1

0 0 1 0 0

0 0 0 0 0


(5.3)

to differentiate the imports In entering at each bus from the power generated
there. Note that the component I is associated with injected power throughout
the network. Similarly, another in-partition for components {wind, solar, other,
imports} is able to encode the relative shares of wind, solar and other energy
generation sources from Table 5.1.

Flow tracing follows the diffusion of the different components α by assuming
conservation of the partial power flows at bus n in analogy to (5.1)

qin
n,αPin

n + ∑
m

q(m→n)
m,α Fin

m→n = q(out)
n,α Pout

n + ∑
m

q(n→m)
n,α Fout

n→m . (5.4)

In general there is a degree of freedom in relating q(out)
n,α and q(n→m)

n,α under the
boundary condition of assuring conservation of partial flows. It is nevertheless
intuitive to assume that the power contributions mix perfectly in each bus and
the partitions of the flows leaving a bus are all identical qn,α = q(out)

n,α = q(n→m)
n,α .

This assumption equally underlies the tracing by Bialek and Kirschen and is
known as proportional sharing. Bialek et. al. were able to show the propor-
tional sharing principle to coincide with the Shapley value of a stylized game
of loss attribution played by two generators feeding into the same line [184],
but it can rightfully be contested for practical purposes. For the purpose of
flow allocation in large-scale electricity models, we suggest this realization in
particular due to its intuitiveness and lack of additional parameters. With the
proportional sharing assumption Eq. (5.4) reduces to a system of N × A equa-
tions for N × A unknowns qn,α

qin
n,αPin

n + ∑
m

qm,αFin
m→n = qn,α

(
Pout

n + ∑
m

Fout
n→m

)
, (5.5)

with A denoting the number of components α, as we had already reported in
[185]. If we eliminate inert buses without any flows from the network (without
any loss of generality) and abbreviate the power leaving a bus as nodal flow
Fn := Pout

n + ∑k Fout
n→k, we can rearrange Eq. (5.5) to

qin
n,αPin

n = Fn ∑
m

[
δn,m −

Fin
m→n
Fn

]
qm,α (5.6)
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with the Kronecker delta δn,m. Finally, with the definition of the matrix

Dn,m =
Fin

m→n
Fn

(5.7)

capturing the share that the power from bus m contributes to the nodal flow
through bus n, Eq. (5.6) can be rendered in matrix notation as

diag(Pin)qin = diag(F)(1− D)q . (5.8)

For a lossless power flow, Fout
n→m = Fin

n→m, 1− D is the transpose of the down-
stream distribution matrix Ad in Bialek’s formulation and together with qin =

q = 1 the proposed method reduces to Bialek’s flow tracing. The steps from
Eq. (5.5) to Eq. (5.8) illustrate the equivalence of the two formulations of flow
tracing discussed in the literature as a linear algebra problem [169] and a graph-
based algorithm [170].

Eq. (5.8) is solved formally as

q = (1− D)−1diag(Pin/F)qin , (5.9)

where the inverse of 1 − D can be shown to exist as Neumann series (1 −
D)−1 = ∑∞

k=0 Dk, since the absolute value of each eigenvalue of D is smaller
than 1, if there is at least one bus with a positive power injection in each con-
nected component, similarly to [186]. While, therefore, the method is formally
applicable also in the presence of loop flows, the interpretation of the resulting
flow attribution still remains to be investigated.

If all power injections are attributed to a component, i. e. ∑α qin
n,α = 1, the

partial flows must add up to the total power flow, as we show in the next few
sentences: If we sum over all components α in Eq. (5.5), we obtain

Pin
n + ∑

m
QmFm→n = Qn

(
Pin

n + ∑
m

Fm→n

)
, (5.10)

where we have used the abbreviation Qm = ∑α qm,α. This equation is solved
by Qn = 1 (∀n) due to flow conservation from Eq. (5.1). The solution is also
unique, since by following the steps between Eqs. (5.5)-(5.9), one arrives at

Q = (1− D)−1diag(F−1)Pin . (5.11)

Thus, ∑α qn,α = 1 at all buses n.
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To apply flow tracing to the 4-bus example shown in Fig. 5.1 one calculates
the in-partition qin (Eq. (5.3)), nodal flows F, power injections Pin and matrix
1− D

F =
(

11.4 1.9 2.9 2.8
)

, (5.12)

Pin =
(

11.4 0.9 0.5 0
)

, (5.13)

1− D =


1 0 0 0

−1/1.9 1 0 0

−1.8/2.9 −0.6/2.9 1 0

−1.9/2.8 0 −0.9/2.8 1

 . (5.14)

By evaluation of Eq. (5.9), one then finds

q ≈


0.921 0.0 0.000 0.0 0.079

0.485 0.0 0.000 0.0 0.515

0.672 0.0 0.172 0.0 0.156

0.841 0.0 0.055 0.0 0.104

 , (5.15)

where each column corresponds to the share of each nodal flow associated with
a component, and consequently also to the share on the out-going lines. Since
buses 2 and 4 do not feed any power into the network, they do not contribute
to any flows. The shares of bus 1, which feeds all buses directly, are strongest
at bus 1 and 4, while at bus 2 a strong in-flow by imports dilutes the share of
bus 1. Power entering the network as imports is present at every bus, making
up 15.6% of the nodal flow through bus 3 and 10.4% of the nodal flow at bus 4.
The generation of bus 3 only appears at buses 3 and 4.

Since the power loss happens on the links it is natural to attribute a loss
qn,αχn→m to entity α, f.ex. imported power leads to a loss of q2,I(Fout

2→3− Fin
2→3) =

0.515 · 0.1 GW in line 2 → 3 according to flow tracing. Substituting Fout
m→n =

Fin
m→n + χm→n in Eq. (5.5)

qin
n,αP+

n + ∑
m

qm,αFin
m→n = qn,α

(
P−n + ∑

m
χn→m

)
+ qn,α ∑

m
Fin

n→m , (5.16)

reveals by comparing the structure again to Eq. (5.5) that this loss allocation
scheme is equivalent to treating a loss on line n → m as an additional load at
the out-flowing bus n combined with flow tracing on the inflows indiscrimi-
nately, the procedure Bialek introduced as net flows [169].

In summary, for a given flow pattern Fn→m and a fixed attribution of the
generated power qin

n,αPin
n to a set of components α the flow tracing algorithm

yields the attribution of all flows along the links qn,αFn→m and the attribution
of the power flowing into the consuming nodes qn,αPout

n .
Note that we are able to invert the injection pattern and flow graph con-

sistently by switching the in- and outputs Pin/out
n → Pout/in

n and the flows
Fin/out

n→m → Fout/in
m→n . This procedure allows a given out-partition to be considered
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Figure 5.2: Usage shares of generation types in a chosen transmission line in a realistic
examplary model with a high share of renewable generation (discussed in
detail in Section 5.3).

as the input for the flow tracing algorithm, which then assigns shares of the
power flow and injected power at the source node according to this partition.

A measure of transmission line usage

The flow tracing method as displayed in the last section refers to the appli-
cation to a single flow pattern. However, for the analysis of complex modern
electricity systems, one rather has to consider whole time series of fluctuating
injection and flow patterns taking place on the underlying power grid. The ap-
plication of the flow tracing method then yields a time series (Fl(t), {ql,α(t)}),
containing the power flows Fl(t) and the respective shares ql,α(t) assigned to
the components α for each link l. In order to derive the respective grid usage
over the whole time series, this information has to be integrated into a suitable
transmission capacity usage measure. Fig. 5.2 illustrates the need for such a
non-trivial measure in a realistic example: Consider, for instance, in cyan the
shares associated with onshore wind on a specific line; while the shares shown
as small dots vary strongly over time, their conditional averages,

hl,α(F) = 〈 ql,α(t) 〉{t|Fl(t)=F} , (5.17)

depend smoothly on the absolute line flow at which the average is taken. In
the presented line the power transmitted at a low line-loading is traced back
to conventional generators, while in hours with a high line-loading on- and
offshore wind contribute nearly all the power. Such a striking difference should
be accounted for as relevant information by an adequate usage measure. In the
following we briefly review such a capacity usage measure introduced in [187].

Their central idea is that the transmission line capacity of a small increment
between K and K + dK is only used by flows F(t) > K and, thus, the usage
share of a component for this capacity increment is determined only from those
as

wl,α(K) = 〈 ql,α(t) 〉{t|Fl(t)>K} . (5.18)
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Mind “>” in the subscript. The capacity of the whole line KT
l,α can then be split

for the individual components α by summing all increments to

KT
l,α =

KT
l

maxt Fl(t)

∫ maxt Fl(t)

0
〈 ql,α(t) 〉{t|Fl(t)>K} dK . (5.19)

The proportional factor in front of the integral accounts for the fact that wl,α(K)
vanishes at the maximum flow by sharing the remaining security margin KT

l,α−
maxt Fl(t) proportionally, since it is important to all users of the capacity in an
analogous way to the actually used capacity. Nevertheless, depending on the
details of the system under investigation other schemes are possible.

5.3 flow tracing applied to a 118-bus electricity
network model

For demonstrating the application of the reformulated flow tracing methodol-
ogy, we briefly introduce an electricity system model that has been developed
as a benchmark for transmission expansion methods. The IEEE 118 bus net-
work model has been geographically embedded and augmented by attaching
specific loads and conventional as well as renewable generators to the system
by Barrios et al. at RWTH Aachen [168]. The load curves and the renewable
generation availability span all hours in a model year. The geographic regions
have weather characteristics in line with the artificial TRY-Regions of the so-
called TRY reference data set of the German weather service (DWD), which
feature a higher solar capacity factor in the North-West and a higher wind ca-
pacity factor in the East, where, in addition, an offshore-wind region is located.
The network topology and generation capacities are shown in Fig. 5.3, while
the average generation and consumption of each region are included in Fig. 5.4.

We use our electricity system modeling framework PyPSA [141] to deter-
mine the linear optimal power flow (LOPF), i. e. the dispatch of the generators
is solved by a convex linear optimization minimizing the total cost based on
the marginal costs of the conventional generators and the spatially and tem-
porally fluctuating availability of renewable generation subject to meeting the
load curve and the transmission constraints in all hours. Once the generator
dispatch has been determined, the non-linear power flow is found by a stan-
dard Newton-Raphson iteration. Several key figures of the optimization are
summarized in Table 5.2.

Analyzing mean flow patterns

To adopt the flow tracing method one initially distinguishes the injections per
region by choosing an in-partition

qin
α,n = δα,n :=

1 for node n in region α,

0 else
. (5.20)



66 flow tracing in renewable energy networks

Voltage level
380 kV
220 kV

Generation type
Wind offshore
Wind onshore
Solar
Conventional

Figure 5.3: Scenario 2023B of the 118-bus transmission expansion benchmark case
with renewable generation capacities from [168]. In the background the
relative composition of the generation capacities of each region are indi-
cated.

Generation Load Loss

wind off. wind on. solar conv.

capacities 1.8 21.2 22.3 27.9 - -

mean 0.8 4.5 2.6 10.9 18.6 0.2

std 0.7 4.3 4.1 5.9 3.2 0.16

min 0 0 0 0.05 9.4 0.03

max 1.8 21.0 19.7 25.9 26.3 0.9

Table 5.2: Characteristic figures of the LOPF solution in units of GW
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Figure 5.4: Comparison of the generated energy (blue) in a region with its consump-
tion from own generation (green) and from imports (red). The inset de-
composes the energy by generation type.
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Using the flow tracing solution Eq. (5.9) we find the partition qout
α,n(t) as the

share of the energy consumed in bus n that is generated in region α, i. e.
qα,n(t)Pout

n (t). For the total amount of energy from a region α, we only need
to correct for the energy generated and consumed directly at bus n given by
Ln − Pout

n , if bus n also belongs to region a. The average inter-region flow from
region α to region β then adds up to

Eα,β = ∑
n in region β

〈
qout

α,n · Pout
n + δα,n · (Ln − Pout

n )
〉

t . (5.21)

These flows are illustrated in Fig. 5.4 and 5.5.
If you ignore the inset decomposition about renewables and focus on the

outer blocks in blue, red and green for now, Fig. 5.4 compares the net generated
energy ∑b Eα,β to the consumed energy ∑α Eα,β in each region. The consump-
tion has been decomposed into two parts which are covered by local produc-
tion and by imports. In contrast to summing up the generation independent
of flow tracing as ∑n in region α Gn, the small losses of about 5% for the energy
generated in the offshore Region 1 and about 2% for the other regions have
automatically been netted away by considering directly the consumed energy.

The full benefit of using flow tracing for the average flow statistics becomes
only clear once we distinguish also between different generation types. We use
the components

{(α, τ)|α ∈ regions, τ ∈ {windon, windoff, solar, other}} (5.22)

and extend the in-partition from Eq. (5.20) to

qin
(α,τ),n(t) = δα,nGτ

n(t)/ ∑
τ′

Gτ′
n , (5.23)

while Eq. (5.21) is adapted by substituting α → (α, τ). The resulting measure
E(α,τ),β yields the decomposition in generation types shown as inner bars in
Fig. 5.4.

Regions with only one or two types of generation capacities in the stud-
ied network model usually import a generation mix that is far more balanced.
This can be observed, for instance, in Region 5, which only generates solar and
wind energy, but consumes nevertheless more than a third of conventionally
generated energy and Region 14 with mostly conventional generation capaci-
ties importing also a significant amount of energy from renewable generation.
It is also found that the energy generated by offshore wind in Region 1 is
mainly consumed (to 56%) in the adjacent Region 9 and only a tiny amount of
5% reaches the remote Region 14.

To study the spatial pattern on imports and exports in more detail, we de-
compose the imports of each region further into the partial flows originating
from each of the other regions in Fig. 5.5. The matrix shows relative imports
Eα,β/ ∑α 6=β Eα,β. For example, the value 0.6 between Region 1 and 9 means
that 60% of the consumption from imports is covered by energy generated in
Region 1. The order of the regions is chosen from the North-East to the South-
West highlighting two local clusters between regions 1, 9, 2 and 10 and between
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Figure 5.5: Relative imports between regions (Eα,β/ ∑α 6=β Eα,β).

regions 5, 3 and 14. Region 4 has a status of its own, since it receives most of
its imports from the north-eastern cluster, while it exports to the south-western
cluster. The high-load Region 14 satisfies also about a fourth of its imports from
regions 2 and 9 outside of its own cluster. This indicates a net flow from the
North-East to the South-West not unlike the German situation of wind energy
surpluses in the North-East flowing to the load-intensive South and West.

Note that while, for simplicity, we studied the average energy flows, all the
partial flows are available as time-series retaining correlations to important net-
work characteristics. The following section uses the correlations to line-loading
for attributing transmission line capacity.

Attributing transmission capacity

In this section we will demonstrate the application of the line usage measure
reviewed in Sec. 5.2 to determine the transmission capacity that is attributed to
the four generation types on each link. Extending the investigations in [187], we
will then compare the results to several other allocation measures. In contrast
to specific cost allocation models as f.ex. Soares et al. [188] propose for pricing
distribution grid capacities, our focus lies on improving the underlying usage
measure, in particular by incorporating correlations to the absolute value of
the power flows as detailed in Sec. 5.2.

Usage shares of the transmission lines for generation types τ are captured
by the line-flow partition {ql,τ(t)} which results from flow tracing on an in-
partition

qin
n,τ(t) = Gτ

n(t)/ ∑
τ′′

(
Gτ′

n (t)
)

, (5.24)

based on the hourly energy generation mix Gτ
n(t).

These shares vary significantly with the flow on a power line, as we have al-
ready seen in Fig. 5.2. The line that was shown there carried high shares of con-
ventionally generated power only in hours with low amounts of flow. In hours
with a high line-loading this line is mainly occupied by energy traced back to
wind turbines. On another line further in the West, the usage shares presented
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Figure 5.6: Usage shares of the power line connecting Region 3 and Region 14, the
western line highlighted in Fig. 5.7.
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Figure 5.7: Line capacities K̄T
l,α attributed to the four generation types α for each link

l throughout the network of the benchmark case. The usage shares of in-
dividual snapshots for the links highlighted by a black frame have been
resolved in Figures 5.2 and 5.6.

in Fig. 5.6 exhibit similar characteristics of high shares of conventional power
at low line-loadings and only that solar power dominates at higher flows. Both
lines are highlighted in Fig. 5.7, the former connects Regions 2 and 14 in the
East, the latter is between Regions 3 and 14 in the West.

If one neglected this correlation for assessing the usage of the eastern power
line, one would find that the total amount of conventional power is about a
third higher than the amount of wind power flowing through it and, thus,
would conclude that the costs of the power line should be split in the same
proportion. Instead, the reviewed usage measure from Sec. 5.2 gives a higher
weight to the shares with high line loads. To compare attributed transmission
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capacities in line with transmission cost drivers length and capacity, we multi-
ply it by length L̄l as

K̄T
l,α =

L̄lKT
l

maxt Fl(t)

∫ maxt Fl(t)

0
〈 ql,α(t) 〉{t|Fl(t)>K} dK . (5.25)

Similarly we understand the total transmission capacity of the network to be
given by K̄T = ∑l KT

l L̄l in units of MW km. The evaluation of the measure
for the eastern line in Fig. 5.6 attributes 54% to onshore wind and only 34% to
conventionally generated power.

The attributed capacities of all the transmission lines in the network are
shown schematically in Fig. 5.7. Power from onshore wind turbines takes up
most of the capacity in the East, while power generated by solar panels is
attributed the transmission capacity in the West. This separation mirrors the
distribution of the generation capacities (cf. Fig. 5.3). Renewable generation is
attributed a share of the transmission capacity that is disproportionately high
compared to the average energy generation mix, given in Table 5.2. In Region
14, for instance, where only few renewable generation capacities are located,
significant amounts of transmission capacity are attributed to solar and wind
generation.

We finally compare the flow tracing based usage measure in Eq. (5.25) with
several alternative allocation mechanisms for transmission capacity:

Average power injection splits the transmission capacity of the network K̄T in
proportion to the amount of injected power of each generator (n, τ), i. e.

M(1)
α,τ =

(
∑n in region α

〈
Pin

n,τ
〉

t

∑m
〈

Pin
m,τ
〉

t

)
K̄T , (5.26)

where Pin
n,τ(t) is the power injected by a generation type τ at bus n. This scheme

corresponds to the widely used postage stamp pricing mechanism.
Average power injection with topological correction adjusts M(1)

α,τ with an addi-
tional factor penalizing remote locations, where the generators on average have
to send their energy farther through the network than from a central bus.

M(2)
α,τ =

(
∑n in region α

〈
Pin

n,τ
〉

t D̄n

∑m
〈

Pin
m,τ
〉

t D̄m

)
K̄T . (5.27)

D̄n is the average graph distance of the bus n, which is the mean distance to
the other buses [72].

Flow tracing mean usage weights the attributions with a distribution deter-
mined from the average line loading of each generation type and region.

M(3)
α,τ =

(
∑l 〈 ql,α,τ Fl 〉t L̄l

∑l′ 〈 Fl′ 〉t L̄l′

)
K̄T (5.28)

It is similar to previously proposed pricing schemes based on flow tracing [171,
172].
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Figure 5.8: Line capacities of the overall electricity system attributed to the generators
of each Region using four different assignment schemes.

Finally, Flow tracing usage measure distributes the capacity of each line by the
usage measure from Eq. (5.25).

M(4)
α,τ = ∑

l
K̄T

l,α,τ (5.29)

The four measures M(1)
α,τ to M(4)

α,τ for the 118-bus network model are illus-
trated in Figure 5.8.

The geometry factor which distinguishesM(2)
α,τ fromM(1)

α,τ only has a margi-
nal effect on the allocation, nevertheless it is still worth noting that the modifi-
cation is mostly in direction of the results of more elaborate measures.

For most regions and generation types the simple measures M(1/2)
α,τ agree

quite well with the flow tracing based measures M(3/4)
α,τ . Incorporating the ac-

tual shares of the line loading by flow tracing turns out to have the largest effect
for Region 14 which has a large consumption and exclusively conventional gen-
eration. Most of the power that is generated in Region 14 is consumed within
few line kilometers so that actual network transmission is kept to a minimum,
although the total power injected into the network is very high. This indicates
that an average distance to the load centers instead of to all the buses in equal
weights might be a better measure.

The capacity attributed to Region 14 is further reduced by taking the line-
loading correlations into account, since its conventional generation is mainly
dispatched in times with low renewable generation and, thus, also small overall
flows. But the most striking adjustment from M(3)

α,τ to M(4)
α,τ is that the capac-

ity attributed to the solar generation in Region 5 doubles, which is due to the
strong correlation between line-loading and solar flows already visible in the
single line usage share of Fig. 5.6. The same effect can also be seen in the usage
measure component for solar power generated in Region 3, only that the over-
all capacity for Region 4 balances out thanks to its conventionally dominated
generation mix.

Overall, we find that wind generators are strongly affected by switching
from a postage stamp pricing mechanism to a flow tracing based one, since
the volume of wind energy in the network is often disproportionately high as
a study by Brown et al., based on marginal participation, has already pointed
out [166]. Additionally taking the correlation between line-loading and usage



72 flow tracing in renewable energy networks

shares into account strongly impacts the capacities attributed to solar genera-
tion. The choice of a suitable capacity allocation measure thus depends on the
range of system properties which should be represented. Whereas a simple
postage stamp method might cover average imports and exports of the sys-
tem participants, only more elaborate techniques based on flow allocation are
able to incorporate the correlations and patterns emerging from the fluctuat-
ing imports and exports in large-scale electricity systems with a high share of
renewable generation.

5.4 storage usage in a low-carbon european elec-
tricity scenario2

In the last chapter, we noted already a strong spatial relationship of hydro-
gen storage with wind turbines and batteries with PV panels emerging from
optimization of low-carbon solutions to the European electricity system, partic-
ularly visible in Fig. 4.4.

The technology mix of the power flowing through any bus in the network can
be determined by flow tracing using the in-partition defined in Eq. (5.24). The
average mix of the power [gn,s(t)]

− charging a particular storage (n, s) at time
t follows then from correcting the out-partition by the bus-internal generation
similar to Eq. (5.21) as

[gn,s]
−

τ =

〈
[gn,s]

− ·
[gn,τ]

+ + qout
τ,nPout

n

∑τ′ [gn,τ′ ]
+ + Pout

n

〉
, (5.30)

where we used the small letter g for the power from generators and storage
and the notation [·]+,− for the positive and negative part, as in Section 4.3,
particularly Eq. 4.5.

The average storage inflow for the 64-bus network model in Fig. 5.9 confirms
that hydrogen storage is mainly utilised for wind power generation, whereas
battery storage mostly receives inflow from solar power generation. The capac-
ity distribution of pumped hydro has not been optimised but as a short-term
storage option is primarily used for power generated by PV panels, too.

5.5 conclusion and outlook

Flow tracing is a well-known method to dissect the power flows on a network
according to shares attributed to the network-injecting source nodes [169, 170].
Such an attribution of power flows and thus network usage has been proposed
as an essential component for a fair allocation of both operational (for instance
losses or stability measures) and grid infrastructure costs [161, 175, 176, 187].
In the present contribution we show how a reformulation of the flow tracing
method serves as powerful tool set to analyze the complex spatio-temporal

2 The work behind this section has been prepared as “Flow-based analysis of storage usage in a
low-carbon European electricity scenario” by Tranberg et al. [189].
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Figure 5.9: Average hourly inflow per storage technology in the 64 bus network with a
moderate transmission expansion of x = 1.5 from Chapter 4. Reproduced
from Tranberg et al. [189].

patterns of generation, consumption and power flows in interconnected large-
scale electricity systems, in particular those with a high share of renewable
generation. At the point of injection into the network, the power flow can
straightforwardly be assigned to a specific geographical location, mix of dif-
ferent generation technologies or any other attribution of interest. Following
the composition of ingoing flow from the net generators through the network,
the algorithm yields in an intuitive way the respective shares of the total power
flow and of the outflow to the net consumers.

The potential of this method is illustrated in the context of the Scenario 2023B
of the 118-bus transmission benchmark case with renewable capacities [168].
We dissect the power flows into components associated with the geographical
origin and generation technology (wind offshore/onshore, solar, conventional),
yielding a selection of measures about the respective transmission system us-
age and the corresponding import-export relations between the system nodes.
The need of incorporating relevant correlations in the aggregation procedure
from full high-dimensional results to a lower-dimensional expression is dis-
cussed by comparing different transmission capacity usage measures assigned
to the geographical regions of the benchmark network.

The discussion in the present chapter suggests future work on different lev-
els. From a technical point of view, it will be interesting to transfer the idea of
more general in-partitions to alternative methods of flow allocation [164, 179,
190]. First steps in this direction have been taken by [166] for allocation methods
based on power transfer distribution factors, but a rigorous discussion is still
lacking in the literature. In the present paper we focus on illustrating the ver-
satility of the reformulated flow tracing method by considering a well-defined
and fully open benchmark system.





6 C O N C L U S I O N S A N D O U T LO O K

In this thesis we have considered the design of the energy system for very
high shares of renewable energy. In particular we have focused on the roles the
different spatial scales play in the energy system.

The conclusions fall into two categories: (1) Physics-inspired improvement
of the methodology for energy system planning, and (2) concrete insights on
the family of cost-optimal solutions of the European electricity system.

6.1 energy system planning

The dynamics of the planning and operation of an electricity system have been
smeared over several scales by the technological advancements of wind and
solar generation: Their coupling to spatio-temporal weather correlations leads
to a dependence on external sources of flexibility, which have to be evaluated
from a systemic point of view. The hourly to yearly to decadal temporal scales,
as well as the smaller-than-country up to the continental spatial scales, are all
found to be inter-dependent for assessing the system’s evolution.

The form-invariance of the linearized power flow equations to the Kirch-
hoff’s laws for DC circuits was exploited to identify several power flow for-
mulations by transforming the complementary equations individually to the
dual graph. In the Kirchhoff formulation, the voltage law (KVL) as well as the
current law (KCL) are directly expressed in terms of the branch flow variables
by using a cycle basis, instead of the conventionally-used voltage angles. This
formulation preserves the sparseness of the system of equality constraints in
the LOPF and clarifies the coupling between the power flow constraints and the
central nodal energy balance constraint. An extensive benchmark shows that
this formulation reduces the solution time of the LOPF problem in respect to
the other formulations by up to two orders of magnitude and scales better for
larger networks and longer covered time periods. The application to the co-
optimization of generation, storage and transmission expansion as discussed
in Chapter 4 reveals that models of up to 512 buses with every third hour of
a year or alternatively in hourly resolution with 196 buses, which consistently
fail to converge with the conventional Angles formulation, become tractable for
the commercial solver Gurobi on strong compute nodes. The solution occupies
around 100 GB of memory and four processors for 20 to 24 hours (for each of
the 5-7 iteration steps).

Long-term power system analysis has been strongly impeded by the scat-
tered availability of the required data: Topology and electrical parameters of
the transmission network, the current capacities of generation and storage
units, the spatio-temporal time-series of both the electricity demand and the
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potential generation of solar and wind installations. Several projects associated
with the Open Energy Modelling Initiative like OPSD, the OEDB and SciGRID

have recently started to address this need, and the European electricity sys-
tem model PyPSA-Eur described in Chapter 3 pulls from several of them and
combines them in a semi-automated process to a complete model for the self-
developed PyPSA framework. It is freely available, easily maintainable and will
continue to be extended from within the follow-up projects.

A k-means based clustering method on the spatial configuration of the nodes
has been used to reduce the spatial complexity of the European renewable
electricity network and makes it amenable to commercial high-performance
solvers. The interpolation between the common “aggregated” one-node-per-
country electricity system models towards the highest-voltage network mod-
els1 indicates: The adverse effects of the extra transmission constraints repre-
sented in the model are approximately cancelling with the additional freedom
to distribute the renewable generation capacities, when focusing on the total
system cost. The optimal generation mix of low resolution models, though, is
skewed in favour of offshore wind and underestimates the spatially varying
potential of onshore wind generation. The solutions of the optimization fam-
ily stabilize approximately for model details corresponding to more than 200
buses for the European continent with the current transmission volume. If the
grid bottlenecks can be adressed by a small amount of expansion, solutions for
networks with 120-150 buses corresponding to specific lengths between 100 to
200 km (25%-75% quantiles) are already close to the detailed networks. This
might be an indication that the energy system models need to resolve the cor-
relation lengths of varying renewable generation, in particular of wind with
300 to 600 km. The co-optimization of generation, storage and transmission ca-
pacities in a spatially resolved electricity system model achieves a significant
cost reduction by a selective expansion of transmission corridors.

The flowtracing method, which originally segments the instantaneous power
flow in an electricity network to contributions of individual generators, has
been straightforwardly extended to the analysis of sections of the network or
flexible groupings of generators. In a realistic examplary network, the principal
flow patterns have been determined and split into wind, solar and convention-
ally generated energy. The varying generation of renewable generation, here
too, increases the importance of considering the distribution of the flow over
time: The energy mix in a link was demonstrated to be strongly dependent on
the line loading and led to a more adequate measure for transmission usage.
In the example, an above-proportional amount of the transmission volume is
attributed to wind turbines.

1 The full models have not been solved for the identified European spatial and temporal scope,
yet.
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6.2 the cost-optimal decarbonized european elec-
tricity system

The optimal geographical distribution of the renewable generation capacities
is strongly driven by resource quality: In the South PV panels generate most of
the energy. Their production is strongly correlated over large areas and has to
be shifted on diurnal time-scales to match demand using short-term storage,
batteries and the available pumped hydro storage. In these areas, the current
transmission grid is already strong enough to transport the solar energy to
the demand centers, except for the capacities at the distribution level which
can not be assessed by the current model. The energy demand in Northern
Europe is optimally fed from wind turbines in high-capacity factor regions
typically situated in coastal areas. The most cost-efficient grid is to build a high-
volume transmission band along the wind installations for averaging their feed-
in across the continent, since the synoptic scale variability needs to be buffered
by expensive hydrogen storage, otherwise.

Today’s transmission capacities with an ideal coordination of dispatchable
hydro and (CO2 emission capped) gas generation can support an energy mix
based on 35% of solar and 50% wind energy2 by the addition of 40 GWh of
batteries and 80 GW of electrolysers and fuel cells for hydrogen. Though, a
third of the hydrogen storage and two thirds of the batteries can be avoided
with a moderate 50% expansion of the transmission volume, which allows to
replace 15 percentage points of solar by offshore wind. The average system cost,
thus, reduces from 82 to 68 Eur/MWh. A further, but minor, cost decrease to
66 Eur/MWh is possible by expanding transmission to three times its current
volume and leveraging very remote high-capacity factor onshore wind poten-
tials to displace solar, as well as offshore wind energy. The additional reach for
spatial smoothing reduces the need for hydrogen converters to 30 GW, then.
Repeated delays of previously planned transmission corridors due to public
opposition may be helped by a compromise solution, though [82].

This non-linear benefit of transmission has already been observed in [31, 38].
In a simple model of the European electricity system, in which each country
installed wind and solar capacities to minimize their average local residual
load, the overall amount of energy from dispatchable thermal capacities fell
sharply with increasing capacities of the tie-lines between countries: Expand-
ing them to two times of today’s net transfer capacities (NTC) avoids already
70% of the emissions that could be saved with unconstrained power flows
at 12×NTC. In [191], the distribution of the renewable capacities was instead
chosen so as to minimize the system levelized cost of electricity (LCOE) and,
importantly, the benefit of transmission was shown to translate to a non-linear
system cost reduction by about 10%. Schlachtberger et al. [40] demonstrated
in a linear techno-economic one-node-per-country model that the cost benefit
persists even when short- and long-term storage is available and carbon-free
feed-in from hydro generation can be dispatched flexibly. The model found an

2 In respect to total demand after losses from curtailment and storage efficiency.
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expansion to about nine times the volume of today’s NTC3 to be cost-optimal,
but most of the cost reduction to an average system cost of 68 Eur/MWh would
already be available from a 4× expansion of the NTC to 125 TW km as a compro-
mise. These findings are consistent with this work, mainly because NTCs have
been deliberately constrained to a very low level to reflect country-internal
bottlenecks and the inefficient usage before installing flow-based market cou-
pling (FBMC) [192]. The analoguous volume for the cross-country transmission
lines of the detailed model in Chapter 3 adds already up to Vtoday = 83 TW km.
Using the detailed model as a reference, instead, the compromise solution is
an expansion to 1.5× Vtoday and the cost-optimal grid is 3.4× Vtoday.

In summary, by using a more detailed model that can represent regions
within each country and important intra-country bottlenecks, we have shown
that less drastic grid expansion is required than the one-node-per-country re-
sults indicate. Modelling at this level of detail was only made possible by the
reformulation of the optimal power flow problem presented in Chapter 2 and
the clustering algorithm introduced in Chapter 4. We expose low-carbon config-
urations of the European electricity system integrating high shares of varying
wind and solar sources with long- and short-term storage and flexible hydro
and gas capacities at today’s system costs, by a high CO2 price (∼ 200 Eur/tCO2)
in an integrated European electricity market.

6.3 outlook

Model extensions

Coupling electricity to other energy demand sectors, such as heating and trans-
port, and to other energy carriers, such as gas and heat, is a necessary part
of reducing GHG emissions from the use of fossil fuels in the energy system.
Since chemical and heat carriers are significantly easier to store than electri-
cal energy, they are able to replace much of the flexibility locking in up to a
fifth of the costs in the presented solutions essentially for free. Brown et al.
[193] demonstrate the cost benefit from sector coupling to be higher than the
one from transmission in a one-node-per-country setting. At the spatial scales
identified in this thesis, the large flexible demand of synthetic fuel production,
coupled with cheap thermal energy storage in the heating sector might elimi-
nate the economic benefit of transmission expansion beyond today’s capacities
altogether.

The model in this work is only able to assess the grid expansion on the
UHV and EHV levels. Meanwhile at least in studies with a German focus, the
expansion of the distribution grid added between 10% and 15% to system costs,
which could affect the optimal mix between the lower-voltage connected PV

against the medium-voltage or high-voltage connected onshore and offshore
wind. Ancillary services, like reserves for voltage and frequency, traditionally

3 Like in the models presented in this work, the assumed length of the tie-lines stretches between
country centres.
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should be controlled for with simple estimations in a post analysis to guard
against unexpected interactions [16, 41, 194–196].

Model simplifications

Especially the increase in technological scope brought by sector coupling will
strongly impact model complexity and add to the computational burden. Sev-
eral venues of simplification should be explored:

Schäfer et al. [197] found analytical scaling laws for the transmission capaci-
ties and transmission volume of a quantile transmission layout for the uncon-
strained flows arising from a simple dispatch scheme in coarse-grained renew-
able electricity networks. If these held also for an economic or transmission-
constrained dispatch, they could inform scale-dependent cost penalties lessen-
ing the effect of a low-resolution representation. Similarly, technology depen-
dent transmission line loading or underestimated resource variance could be
captured by factors derived from analysing the micro-scale statistics – like the
LCOE shifts from Becker et al. [198].

The scale thresholds for modelling do not necessarily have to be the same for
different technologies of the energy system, like we have assumed in this work.
The observed effect of better resource availability winning over constraints by
grid bottlenecks might suggest that the spatial scale available for the distribu-
tion of renewable capacities could be chosen at a finer resolution than the grid
detail. This technique has already been successfully employed in the one-node-
per-country studies of the FRESNA group, for which up to four onshore wind
turbine distributions were available within larger countries [40, 193, 199].

Final remarks

As models integrate more components, detail and interlinkages, so grows the
need for systemic analysis to understand the results. In this thesis we have
presented work that goes in both directions: we have demonstrated a method-
ology for modelling in more spatial detail, as well as presenting techniques,
such as flow tracing, to help interpret the complex results. While we have
demonstrated the necessity of spatial detail to avoid over-simplification, this
has to go hand in hand with new techniques to make the results transparent
and comprehensible. Combining complexity with comprehensibility is one of
the great challenges of the energy transition.





A T R A N S M I S S I O N L I N E M O D E L

A single transmission line is commonly modeled as a two-port network: At
each end of the transmission line current enters the cables and leaves by the
ground with a specific voltage difference. An infinitesimal length dl of the line
is characterised by four parameters as shown in Fig. A.1.

series reactance x ≈ 0.49 Ω/km (marginal energy “loss” by self induction)

series resistance r ≈ 0.05 Ω/km (energy loss by heat dissipation)

shunt susceptance b ≈ 3.4 µ/Ωkm (provides/balances reactive power)

shunt conductance g � 1 µ/Ωkm (energy loss by charge dissipation into
ground)

The specified typical values for a 50 Hz-230 kV-line have been taken from [200].
The parameters add up to a complex series impedance z = r + ix and a shunt
admittance ysh = g + ib. Note that the series impedance is several magnitudes
larger than the shunt admittance.

The response of any two-port network can also be reproduced by a simple
substitute circuit consisting of two admittances YΠ

1 , YΠ
2 connecting the upper

and the lower branches and one impedance ZΠ on the upper branch, shown in
Fig. A.2. Due to the typical arrangement of the circuit diagram this substitute
is known as a Π-equivalent circuit. To prove the equivalence one first uses the
general loop and node rules once on the equivalent circuit and then on the
dl-increment and integrates along the full length of the line [59], resulting in
two matrices relating (V1, I1) and (V2, I2). They are identical for the choice

ZΠ = ZL = Z
sinh γl

γl
≈ Z , YΠ

1,2 = YL = Y
tanh γl/2

γl/2
≈ Y (A.1)

Z = zl , Y = yl , γ =
√

zy . (A.2)

I1 I2
r x I2

g bV1 V2

[ April 25, 2018 at 22:53 – version 0.2 ]

Figure A.1: Transmission line model. The blue box describes an infinitesimal part of
the transmission line. To find the relation between the input and output
voltages Vi and currents Ii, the line has to be integrated along its length.
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1I1
ZL I2

YL/2 YL/2V1 V2

[ April 25, 2018 at 23:03 – version 0.2 ]

Figure A.2: Π-equivalent circuit of a transmission line. The shunt admittance can be
distributed at the nodes while the series impedance clumps naturally.

The approximation holds for short-/medium-length lines (. 300 e km), for
which it, thus, suffices to distribute the admittance Y at the nodes and the
impedance Z in between, both linear in the length l.



B S W I N G E Q U AT I O N

The AC power flow equation 2.3 described in Section 2.2 is valid at each point
in time, but does not describe the evolution of the energy network with time,
although the parameters Sn and Pn do vary considerably in time and space,
as we will discuss in the next section. What is even more, in the case of large-
scale disturbances like transmission line or generator contingencies, feedback
mechanisms of the generators and loads lead to complex transient network
dynamics. Considerable attention in the literature has been spent on variants
of the swing equation with the form

2Hn

ωR
δ̈n +

Dn

ωR
δ̇n = An − ∑

m=1,m 6=n
Kn,m sin (δn − δm − γn,m) . (B.1)

They essentially describe the phase (δ) dynamics of a damped (Dn) rotational
mass (∼ Hn) driven by a synchronous voltage source (∼ eiδn ) coupled to the
phases of other electrical components δm. The coupling terms Kn,m depend on
the model for the dynamic response of the load; refer to [66] for a comparison.
Depending on the specific research question, this classical 1-dimensional gen-
erator model might also have to be replaced by a two-axis generator model or
incorporate the nonlinear response of the governors for frequency and voltage
magnitude [69].
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Z U S A M M E N FA S S U N G

Die Dekarbonisierung des Energiesystems ist angesichts der erwarteten Risi-
ken der globalen Erwärmung eine der drängendsten Aufgaben unserer Zeit.
Die Erzeugung elektrischer Energie aus der Verbrennung fossiler Brennstof-
fe wird von erneuerbaren Energiequellen wie Wasserkraft, Wind und Sonne
abgelöst, unterstützt durch staatliche Steuerungsmechanismen und fallende
Kosten aus technologischem Fortschritt und Skaleneffekten in der Herstellung.
Der unvermeidliche Wechsel von flexibel einsetzbarer Erzeugung zu wetter-
abhängigen, räumlich und zeitlich fluktuierenden Kraftwerken verknüpft die
Erzeugung und Verteilung von Elektrizität zu einem eng verflochtenen kom-
plexen System in mehreren Dimensionen und Disziplinen:

• In der Zeit, hängen die langen Skalen in Jahren und Dekaden für die Pla-
nung und den Bau neuer Kapazität von den vielen Skalen des Wettersys-
tems ab. Die Strahlung der Sonne verändert sich hauptsächlich täglich
und saisonal, während Windgeschwindigkeiten von einem breiten Fre-
quenzband aus Fluktuationen mit Perioden mehrerer Wochen zu einem
Jahr gekennzeichnet sind.

• Im Raum werden die Energiesystemlösungen von den langreichweitigen
Korrelationen sowie von den lokalen Variationen des Wetters, als auch
durch lokale Engpässe in den Übertragungsnetzen, beeinflußt. Wie in
Deutschland bereits beobachtet werden kann, schränken diese Engpässe
den Energiefluß aus Offshorewindenergieanlagen in den Süden ein.

• Die Entscheidungen über Technologiemix und räumlicher Verteilung der
gebauten Kapazitäten werden in der Regel von Investoren auf Basis öko-
nomischer Prinzipien getroffen,

• innerhalb von Rahmenbedingungen die in sozialen und politischen Rück-
kopplungsschleifen aus öffentlicher Meinung und Lobbyeinflüssen gebil-
det werden.

Die vorliegende Arbeit beschreibt die Entwicklung einer selbst-konsistenten
Familie von Modellen des europäischen Elektrizitätssystems, die die Steue-
rung des physikalischen Gleichgewichtszustands im Stromnetz, Investitionen
in Infrastruktur und vereinfachte politische Rahmenbedingungen abbilden. Ge-
genüber vergleichbaren Analysen des europäischen Stromsystems konnte die
räumliche Auflösung bei gleichem zeitlichem Detail deutlich über vorherige
Rechengrenzen erhöht werden. Das höhere räumliche Detail der erneuerba-
ren Potentiale und die simultane Optimierung von Erzeugungs-, Speicher und
Übertragungskapazitäten findet Lösungen den Europäischen Elektrizitätsbe-
darf zu heutigen Kosten mit nur 5% der Kohlenstoffdioxid-Emissionen zu de-
cken; und bedeutenderweise unterscheidet sich der optimale Technologiemix
systematisch von den Ergebnissen mit geringer Auflösung.
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Kapitel 1 beginnt mit einer knappen Einführung in die Geschichte und die
Erkenntnisse der Forschung zum Klimawandel und den Vorhersagen und wahr-
scheinlichen Folgen der globalen Erwärmung, um die Notwendigkeit zu ver-
deutlichen, den Ausstoß von Klimagasen in den nächsten Jahrzenten weitge-
hend zu beenden. Die wichtigsten erneuerbaren Energiequellen Wasserkraft,
Wind und Sonne werden eingeführt und die hauptsächlichen Frequenzen ih-
rer Fluktuationen mit den Betriebs- und Planungszeitskalen heutiger Elektri-
zitätssysteme verglichen. Ergebnisse aus der Literatur zum Zusammenspiel
erneuerbarer Energien mit Kurz- und Langzeitspeichern, Übertragungsnetzka-
pazitäten und dem Energiebedarf aus anderen Energiesektoren werden knapp
umrissen, um eine tagesaufgelöste Darstellung mindestens eines Jahres des ge-
samten europäischen Elektrizitätssystems in einem techno-ökonomischen Opti-
mierungsansatz zu begründen. Ein solcher Ansatz erlaubt die wechselseitigen
Abhängigkeiten zwischen den unterschiedlichen Skalen der räumlichen und
zeitlichen Dimensionen in einem systemischen Rahmen abzubilden.

In Kapitel 2 werden die Bestimmungs-Gleichungen der elektrischen Leis-
tungsflüße durch das Stromnetz linearisiert und auf die Kirchhoffschen Kno-
ten und Maschenregeln in Gleichstromschaltkreisen zurückgeführt. Mit Hil-
fe graphen-theoretischer Zerlegungen zeigen wir, dass diese Gleichungen in
sieben zueinander äquivalenten linearen Gleichungssystemen formuliert wer-
den können. Diese Gleichungssyteme bilden die zentralen Zwangsbedingun-
gen des linearen optimalen Leistungsflußes, der den ökonomischen Kraftwerk-
seinsatz und damit auch Rentabilität und die Verteilung von Investitionen be-
stimmt. Die Lösungszeit der daraus resultierenden neuen Formulierungen ist
für viele Probleme um eine oder mehr Größenordnungen kleiner und skaliert
wesentlich besser in der Anzahl der Netzwerkknoten und -kanten als die bis-
herigen Formulierungen, die auf Phasenwinkeln oder Leistungsverteilungsfak-
toren beruhen. Für die Bestimmung der optimalen Erzeugungs- und Übertra-
gungskapazitäten in einem europäischen Netzwerk mit mehr als 200 Knoten,
um die stündlichen Lasten eines Referenzjahres mit erneuerbaren Energien,
Kurz- und Langzeitspeichern zu liefern, und Gaskraftwerken, um die letzten
Leistungsspitzen zu bedienen, wachsen die linearen Optimierungsprobleme
zu ungefähr 15 Millionen Ungleichungen für etwa 10 Millionen Variablen und
konvergieren erst in der neuen Kirchhoff-Formulierung.

Kapitel 3 beschreibt die Sammlung, Ergänzung und Zusammenfassung al-
ler Daten zu einem Modell des europäischen Elektrizitätssystems. Die Netz-
werktopologie der 220 kV und 380 kV Spannungsebenen wird aus einer On-
linekarte des Zusammenschlusses der Netzbetreiber (ENTSO-E) extrahiert und
um typische elektrische Parameter und Transformatoren zwischen den Span-
nungsebenen aus der Literatur ergänzt. Konventionelle Kraftwerkskapazitäten
werden algorithmisch aus sechs unvollständigen veröffentlichten Kraftwerks-
listen entnommen, standardisiert und mit statistischen Methoden zu einem
weitgehend konsistenten Datensatz zusammengefasst. Die zeitliche Verfügbar-
keit der Leistung erneuerbarer Energieerzeugung aus Wasserkraft, Windener-
gieanlagen und Solaranlagen wird aus einem Reanalyse-Wetterdatensatz für
das Gebiet um jeden Netzwerkknoten abgeschätzt. Ihre Ausbaupotentiale wer-
den aus Landnutzungsdaten berechnet. Der Elektrizitätsbedarf wird aus dem
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Landesverbrauch auf die einzelnen Netzwerkknoten disaggregiert. Zuletzt wer-
den die einzelnen Modellbestandteile mit veröffentlichten aggregierten Daten
verglichen und vertretbare Abweichungen gefunden.

Das Kapitel 4 ist der zentrale Teil der Arbeit. Zunächst gibt es eine kurze
Übersicht über Methoden zur Netzwerkreduktion in der Literatur. Viele Me-
thoden beziehen sich auf die Vereinfachung des Einflußes eines externen Netz-
werkteils auf ein Kerngebiet eines Elektrizitätsnetzwerkes. Dagegen ist das Ziel
dieser Arbeit grobkörnigere Näherungen des detaillierten Netzwerkmodells
aus dem vorherigen Kapitel zu erzeugen. Dies geschieht in zwei Schritten:

1. Die Netzwerkknoten jedes Landes werden mit dem sogenannten k-means
Algorithmus aus dem Feld des Maschinellen Lernens auf der Basis ihrer
räumlichen Verteilung und Gewicht im Netzwerk in eine gegebene An-
zahl an Zonen eingeteilt. Das Gewicht eines Knotens wird hierbei als
die ihm relativ zugewiesene mittlere Last und Kapazitäten thermischer
Kraftwerke angenommen.

2. Die Zonen werden zu Netzknoten eines gröberen Netzwerks aggregiert
und einzelne Kraftwerke nach Technologie zusammengefasst. Erneuer-
bare Erzeugungszeitreihen und Ausbaupotentiale müssen gewichtet ad-
diert werden. Alle Übertragungsleitungen zwischen zwei Zonen werden
mit einer einzelnen äquivalenten Leitung ersetzt, die einem Übertragungs-
korridor entspricht.

Die lineare Optimierung der Kapazitäts- und der Energiekosten des europäi-
schen Elektrizitätssystems mit Wind-, Solar- und Wasserkrafterzeugung, Lang-
und Kurzzeitspeichern und Gaskraftwerken wird für sieben unterschiedliche
Näherungsstufen gelöst, vom 37-Knoten Modell mit einem Knoten pro syn-
chroner Zone und Land, zu einem hochaufgelösten 362-Knoten Modell.

In den Ergebnissen kann man zwei gegenläufige Effekte beobachten: (1) Zum
einen erlaubt es die Abbildung von feineren räumlichen Skalen im hochaufge-
lösten Modell erneuerbare Kraftwerke gezielt an den ertragreichsten Orten zu
platzieren. Die gewichtete Mittelung mit der die Resourcen in den Modellen
mit weniger Knoten zusammengefasst werden, reduziert die vorhandenen Ka-
pazitätsfaktoren. (2) Auf der anderen Seite, sind in den Modellen mit mehr
Knoten auch mehr der Übertragungsengpässe innerhalb eines Landes vertre-
ten, die den Transport von Windstrom aus Regionen mit hohem Kapazitäts-
faktor entlang der Küsten und im Meer zu den Lastzentren im Landesinneren
verhindern. Wenn keine Übertragungskapazitäten ausgebaut werden können,
kompensieren sich die Auswirkungen der beiden Effekte auf die Systemkosten
ungefähr. Auf den optimalen Energiemix wirken sie sich aber dennoch deutlich
aus: Da Strom aus Offshore-Windanlagen schwerer ins Landesinnere zu trans-
portieren ist, und mehr und bessere lastnahe Wind und Solarerzeugung mit
höherer Auflösung zur Verfügung steht, halbiert sich der Anteil an Offshore
Windkapazitäten vom gröbsten zum feinsten Modell zugunsten der Onshore
Erzeugung.

Diese Trends werden vor allem deutlich, betrachtet man die Veränderung der
Kapazitäten im deutschen Netz: Im Modell mit nur einem Knoten werden in
Deutschland noch 40 GW Offshore-Wind und 46 GW Solarmodule gebaut. Bei



88 zusammenfassung

höheren Auflösungen stellt sich der Offshore-Wind allerdings als eine Fehlin-
vestition heraus, da die Netzengpässe innerhalb Deutschlands verhindern, dass
der Windstrom in zu den Lastzentren im Westen und Süden Deutschlands
transportiert wird. Nur 12 GW Offshore-Wind lassen sich ohne Netzausbau in
Deutschland integrieren und müssen mit zusätzlichen 50 GW Solarkapazität
ausgeglichen werden.

Ab einer Auflösung von in etwa 200 Netzknoten in Europa werden die Ver-
teilungen der Erzeugungskapazitäten stabiler und verändern sich nur noch
graduell.

Sobald eine kleine Erweiterung der vorhandenen Transmissionkapazitäten
erlaubt ist, können die Netzengpässe mit geringem Kostenaufwand gelockert
werden. Tatsächlich gilt, dass im feineren Netzwerk ein Netzengpass mit gerin-
gerem Aufwand aufgehoben werden kann. Im Resultat senken sich die System-
kosten mit einer hohen Zahl an Netzwerkknoten bereits bei geringem Netzaus-
bau. Netzausbau wurde allerdings im letzten Jahrzehnt immer wieder durch
den Protest von lokalen Organisationen und Initiativen zum Schutz von Um-
welt und Heimat verhindert, und ist trotz seiner vergleichsweise geringen In-
vestitionskosten nur eingeschränkt realisierbar. Der Netzausbau zum ökonomi-
schen Optimum auf das 3-fache Netzvolumen senkt die Systemkosten um ca.
20% auf 66 €/MWh, ist aber wahrscheinlich nicht erreichbar. Um die Bildung
eines Kompromisses zwischen sozialer Akzeptanz und den Kostenvorteilen
zu analysieren, wird der Ausbau des elektrischen Netzvolumens schrittwei-
se eingeschränkt. Es zeigt sich ein deutlich nicht-lineares Verhalten: Mehr als
die Hälfte des Kostenvorteils kann bereits mit einem Ausbau des Netzvolu-
mens um 25% erreicht werden und zwischen dem 2-fachen und dem 3-fachen
Netzvolumen verändern sich die Kosten nur noch im Promillebereich. Die Ver-
teilung der erneuerbaren Erzeugungskapazitäten verschiebt sich bei höherem
Übertragungsvolumen von PV-Panelen und Offshore-Wind zu Onshore-Wind.
Bei sehr begrenzter Übertragungskapazität wird Sonnenkraft in der Nähe von
Lastzentren gebaut und ihre täglichen Schwankungen mit Batteriespeichern
ausgeglichen, während der Windstrom aus windreichen Gegend in Nordeu-
ropa sich nicht in großen Mengen zum Strombedarf transportieren lässt. Win-
derzeugung profitiert besonders von zusätzlichen Netzkapazitäten entlang den
Küsten, die dazu genutzt werden die zeitlichen synoptischen Fluktuationen der
Windgeschwindigkeiten mit Hilfe der räumlichen Variabilität auszugleichen.
Diese Fluktuationen haben Perioden von mehreren Wochen und könnten sonst
nur mit teuren Langzeitspeichern ausgeglichen werden, die Wasserstoff oder
Gas synthetisieren, speichern und anschließend wieder unter hohen Verlusten
verstromen.

Bei ausreichend hoher räumlicher Auflösung haben die kosteneffizienten Lö-
sungen für das europäische Elektrizitätssystem eine klare an den Kapazitäts-
faktoren ausgerichtete räumliche Struktur: Der Energiebedarf im Süden wird
aus Solarstrom gedeckt, die Residuallast wird durch Batterien und Pumpspei-
cherkraftwerke und steuerbarer Wasserkraft ausgeglichen. Bereits heute be-
stehende Übertragungskapazitäten sind dafür ausreichend. Im Norden wird
Windenergie an den Küsten und Offshore erzeugt, und mit einem neuen Lei-
tungsband entlang dieser Windinstallationen ausgeglichen, um den Bedarf an
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Langzeitspeichern möglichst gering zu halten. Wird mehr Netzausbau zuge-
lassen, ist es günstiger den Windstrom weiter in den Süden zu transportieren
und damit Solarmodule und Batteriespeicher zu ersetzen.

Die Analyse des komplexen Wechselspiels der einzelnen Komponenten er-
fordert einen systemischen quantitativen Ansatz, aber auch die zusätzlichen
Schritte auf Zusammenhänge zwischen den Annahmen und Parametern, die
teilweise, wie im zentralen Fall der Kosten, nur auf Schätzungen und unsiche-
ren Extrapolationen beruhen, und den Ergebnissen zu schließen, um robuste
Erkenntnisse über das systemische Verhalten zu gewinnen. Eine zentrale Rol-
le kommt hierbei den Flüssen im Netzwerk zu, die systemisch zunächst nur
durch eine künstliche Einschränkung der Kapazität einzelner oder einer Grup-
pe von Übertragungsleitungen untersucht werden kann. Im Kapitel 5 wird aus
dieser Motivation eine Methode mit dem Namen Flowtracing weiterentwickelt,
die auf einem vektoriellen Diffusionsprozess auf dem gerichteten Flussgraph
im Netzwerk beruht. Sie zerlegt den Leistungsfluss durch das Stromnetz in ein-
zelne Energieflüsse von Quellen zu Senken und kann in der Erweiterung auch
flexibel dafür eingesetzt werden, die Energieflüsse zwischen Regionen und von
bestimmten Technologiegruppen zu untersuchen. Es wird demonstriert, dass
die synoptischen Schwankungen der Windenergieerzeugung zu langreichwei-
tigen Flüssen durch das Netzwerk bei hoher Leitungsbeladung führen. Bezieht
man diese Korrelation in ein Leitungsauslastungsmaß für verschiedene Techno-
logie ein, nehmen in einem realistischen Versuchsnetz sowohl Wind- als auch
Solarenergie mehr als doppelt soviel Leitungsvolumen ein, als sie zum Ener-
giemix beitragen. Die Bestimmung des Strommixes bei dem einzelne Speicher-
typen geladen werden, bestätigt die wechselseitige Beziehung, dass Solarstrom
durch Kurzzeitspeicher wie Batterien und Pumpspeicherkraftwerke über den
Tag verteilt werden, während die volle Ausnutzung von Windstrom in einem
defossilierten Energiesystem auf Langzeitspeichern beruht.

Die vorliegende Arbeit kombiniert Methoden der statistischen Physik, der
Physik komplexer Systeme und der komplexen Netzwerktheorie, um die Pla-
nung erneuerbarer Elektrizitätsnetzwerke an die Realität variierender wetter-
abhängiger Einspeisung und des damit verbundenen Flexibilitätsbedarfs an
Speicher, Stromnetz und flexibler Erzeugung anzupassen. Dadurch kann der
systemische Standpunkt einer techno-ökonomischen Optimierung mit hohem
CO2 Preis über die heutigen Marktgrenzen hinweg auf Skalen zwischen 100
und 200 km eingenommen werden, die die Korrelationslängen der Variation
erneuerbarer Energien auflösen, und Lösungen mit deutlich reduziertem Netz-
ausbau finden, die nur geringe Mengen an Offshore-Windenergie verwenden.

Für die Interpretation muss allerdings bedacht werden, dass ungefähr zwei
Drittel der anthropogenen Kohlenstoffdioxidemissionen nicht aus der Elektri-
zitätserzeugung sondern aus der Energieverwendung in anderen Sektoren re-
sultiert, wie in der Einleitung aufgeschlüsselt wird. Die heutige Sicht ist, dass
Sektoren, wie der Wärme- oder der Transportsektor, in der Zukunft mehr und
mehr elektrifiziert werden sollen. Zum einen wird das zu zusätzlichen Lasten
führen die hier noch nicht berücksichtigt wurden und zusätzliche Erzeugungs-
kapazitäten erfordern, zum anderen sind die Energieformen dieser zusätzli-
chen Lasten flexibel speicherbar und können damit laut aktueller Studien zur
Flexibilität im Elektrizitätssektor benutzt werden, solange diese systemisch ko-
ordiniert werden!
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