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Multi-step planning of eye 
movements in visual search
David Hoppe1,2 & Constantin A. Rothkopf1,2,3

The capability of directing gaze to relevant parts in the environment is crucial for our survival. 
Computational models have proposed quantitative accounts of human gaze selection in a range of 
visual search tasks. Initially, models suggested that gaze is directed to the locations in a visual scene 
at which some criterion such as the probability of target location, the reduction of uncertainty or the 
maximization of reward appear to be maximal. But subsequent studies established, that in some 
tasks humans instead direct their gaze to locations, such that after the single next look the criterion 
is expected to become maximal. However, in tasks going beyond a single action, the entire action 
sequence may determine future rewards thereby necessitating planning beyond a single next gaze 
shift. While previous empirical studies have suggested that human gaze sequences are planned, 
quantitative evidence for whether the human visual system is capable of finding optimal eye movement 
sequences according to probabilistic planning is missing. Here we employ a series of computational 
models to investigate whether humans are capable of looking ahead more than the next single eye 
movement. We found clear evidence that subjects’ behavior was better explained by the model of a 
planning observer compared to a myopic, greedy observer, which selects only a single saccade at a time. 
In particular, the location of our subjects’ first fixation differed depending on the stimulus and the time 
available for the search, which was well predicted quantitatively by a probabilistic planning model. 
Overall, our results are the first evidence that the human visual system’s gaze selection agrees with 
optimal planning under uncertainty.

Actively deciding where to direct our eyes is an essential ability in fundamental tasks, which rely on acquiring 
visual information for survival such as gathering food, avoiding predators, making tools, and social interaction. 
As we can only perceive a small proportion of our surroundings at any moment in time due to the spatial dis-
tribution of our retinal receptor cells1, we are constantly forced to actively target our visual apparatus towards 
relevant parts of the visual scene using eye movements2. Thus, vision is a sequential process of active decisions3. 
Perceptually, these decisions have been characterized in terms of targeting gaze towards locations that are most 
salient4, maximizing knowledge about the environment5–7, or optimizing performance in the ongoing task8–12. 
Much less research has investigated, how the visual system selects sequential decisions in these tasks.

The sequential nature of eye movements raises the question, how each subsequent action is selected to achieve 
the task goal. This question can only be answered quantitatively with reference to a computational model. Several 
models have been proposed to describe possible strategies differing with respect to how future rewards influ-
ence the selection of the next action. The most naive strategy suggests that the visual system selects the loca-
tion at which the task relevant criterion such as information about the search target or immediate reward is 
maximal4–7,13. This corresponds to always moving to the location, which currently is believed to be the most 
likely location of the target. E.g., saliency models posit that the visual system maintains an internal relevance 
map and that the next saccade moves gaze to the location currently having highest saliency4. Similarly, the 
‘maximum-a-posteriori-searcher’13,14 moves to the location with the highest probability of containing the target. 
Empirical studies have found partial support for humans adopting this strategy in a number of tasks4–7. A more 
sophisticated strategy has been proposed by a number of other models, according to which the visual system 
selects a target, such that the criterion of the search task is expected to be maximal after having carried out the sin-
gle next gaze shift8–10,12. E.g., the ‘ideal-searcher’ by Najemnik and Geisler8 will saccade in between two potential 
targets, which helps maximally in deciding, which one of the two potential targets is the correct target.
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For tasks that require only a single action, the ‘ideal searcher’8 behaves optimally. However, many real world 
tasks involve more than a single isolated action. For sequences of eye movements, delayed rewards obtained only 
after a sequence of actions can play a crucial role. Thus, what strategy should the visual system employ to select 
several actions in sequence? The answer to this question leads to the third strategy, which is readily available 
within the artificial intelligence, machine learning, optimal control, and reinforcement learning literature15–17: 
the optimal sequence of actions in general involves planning. Behavioral sequences are planned when “deciding 
on a course of action by considering possible future situations before they are actually experienced” (p. 9 of ref.16). 
Hence, planning is defined as taking future rewards into consideration during current action selection. In con-
trast, a policy is called “myopic” or “greedy”, if only the immediate reward is taken into account (p. 632 in ref.15).

A classic example from the optimal control and reinforcement learning literature is the mountain car problem, 
in which a car is located in the valley between two hills. Possible actions for the driver are to accelerate forward or 
backward and the goal is to reach the top of one of the mountains. However, the mountain is too steep to conquer 
from the valley. Instead, momentum has to be built by going in the opposite direction first. So, the car first has to 
move away from the target to build up momentum to later reach it16. Hence, the next action associated with the 
maximum immediate reward r0 (‘get closer to the target’) is not necessarily the action that yields the maximum 
reward for the whole action sequence r0 + r1 + 



 + rn. As a consequence, optimal action selection for sequential 
behavior depends on the horizon n, i.e., the number of future rewards that are incorporated into the selection of 
the next action. Thus, if two actions are considered, the horizon is two and planning needs to consider the out-
come of the first and second action to select both decisions.

Surprisingly, all of the reviewed computational models for eye movement selection are myopic, i.e. they choose 
actions that maximize the immediate reward8,10–14,18,19, either by moving gaze to the currently most likely target or 
to the target that promises to reveal the most likely target after a single next eye movement. In this case, the hori-
zon equals to one as only the next reward is used for action selection. In practice, the problem of delayed rewards 
is circumvented by either investigating only single saccades or by choosing tasks where both policies, myopic 
and planned, may lead to similar solutions. To our knowledge, there exist neither computational models nor 
empirical data investigating whether humans are capable of planning eye movements. This is even more surpris-
ing considering the results of behavioral investigations which have interpreted a variety of empirical findings as 
evidence for human gaze planning20–23. These studies have shown that the latency of the first saccade was higher 
for longer sequences of saccades21. Also, discrimination performance was enhanced at multiple locations within 
an instructed sequence of saccades22. Furthermore, if an eye movement sequence was interrupted by additional 
information midway the execution of the second saccade was delayed23. While these results suggest that a scan-
path of at least two saccades is internally prepared before execution, it is unclear whether multiple future fixation 
locations are jointly chosen to maximize performance in a task, which is a computational signature of planning.

In the present study, we devised computational models for the three search strategies described above, i.e 
selecting the location of highest target probability (the ‘maximum-a-posteriori searcher’13,14), selecting the target 
that will lead to best disambiguation after the next gaze shift (ideal-observer based searcher8), and selecting a 
sequence of gaze targets to maximize overall task performance (a probabilistic planning based searcher). All three 
strategies were formalized within the framework of partially observable Markov decision processes15–17. Using 
these models, we implemented a visual search task to investigate, whether the human visual system is capable of 
planning. Because myopic policies such as the ‘maximum-a-posteriori searcher’13 or the ‘ideal searcher’8 choose 
the next gaze target only based on the immediate reward while ignoring future rewards, actions selected by these 
models do not depend on the length of the entire action sequence. By contrast, an action within a planned policy 
depends on the entire sequence15–17. This fundamental difference can be used to derive an experimental design for 
testing the planning capabilities of the visual system. We formalized these three strategies within the framework 
of partially observable Markov decision processes15–17 and then derived algorithms for all three strategies. These 
models were employed to generate and select stimuli, for which the models predict a significant difference in 
strategies, such that the two potential models (planned or myopic) led to different gaze sequences. Crucially, we 
also selected stimuli for which the myopic and planning strategies did not differ substantially. The reason is, that 
this should not only further validate the proposed planning model but also reconcile the present study with previ-
ous empirical investigations, which had found evidence that human gaze strategies are well described by an ‘ideal 
searcher’ in some tasks. Using behavioral analyses and Bayesian model comparison we found strong evidence that 
the human visual system is capable of planning gaze sequences.

Results
In our task, subjects searched for a hidden target within irregularly bounded shapes (Fig. 1a). Using a gaze con-
tingent paradigm the hidden target only became visible if a fixation landed close enough. This search area was 
made explicit by showing the shape’s texture for all points closer than 6.5° to the fixation location. If a target was 
located in the search area, it became visible to the participant after a delay of 130 ms. Targets were easily detectable 
once they became visible (detection proportion: 98.2%). Overall, all shapes contained a target in half the trials, 
respectively. We used two durations as search intervals: a short interval (250 ms) providing enough time for a sin-
gle saccade and a long interval (550 ms) providing enough time for two saccades. Trials were presented in blocks 
either containing only short intervals or long intervals, respectively. The procedure for a single trial is shown in 
Fig. 1b. By using a blocked design of 100 consecutive trials with the same interval length subjects knew about the 
upcoming trial duration (short or long).

Computational models for action selection in visual search.  Given the observer has formed a belief 
about the location of the target in the visual search task, how should gaze targets be selected? We derived models 
for the myopic observer πmyopic and the planning observer πplanned for our visual search task based on the frame-
work of partially observable Markov decision processes (see Methods). In our experiment, participants directed 
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their gaze to suitable locations within a shape. Subsequently, they indicated whether the shape contained a target 
or not through a button press. The quality of this decision depends on the fixated locations and improves if the 
fixation locations are chosen strategically to cover more area. Also, the probability of making a correct statement 
is proportional to the probability of finding the target. Depending on the search time, the action sequence in our 
task comprised one ((x1, y1); short condition) or two ((x1, y1, x2, y2); long condition) fixation locations.

For the short condition, a single fixation location (x1, y1) was selected. In this case, both strategies lead to the 
same action, because for both models only the consequences of a single gaze shift need to be taken into account. 
Hence, the maximal horizon of the sequence is 1, leading to:

π π= = |P x yargmax (correct , )
(1)x y

myopic planned
( , )

1 1
1 1

where P(correct| x1, y1) is the probability of finding the target when fixating (x1, y1), which is proportional to the 
amount of the shape covered by the search area (see Methods, for how this is computed). The action selection for 
the short search interval is depicted in the left panel of Fig. 2a.

For the long condition, a sequence of two fixation locations (x1, y1, x2, y2) was chosen resulting in a maximum 
horizon of two. In this case, the two strategies differ. First, the myopic observer uses the uncertainty of the current 
observation to select only the next gaze target such that the probability of detecting the location of the target will 
be maximal after each single saccade. Thus, the myopic observer sequentially chooses the fixation location with 
the maximum expected immediate reward resulting in the policy:

π =





| |






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where xn, yn are the coordinates of nth fixation location and P(correct | xn, yn) denotes the probability of deciding 
correctly whether a target is present after the nth fixation.

By contrast, the planning observer uses the uncertainty of the current observation to select the upcoming 
gaze targets such that the probability of detecting the location of the target is expected to be maximal after the 
sequence of two saccades. Thus, the planning observer incorporates the whole sequence in the selection of all 
actions:

π =





| |






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( , )
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where P(correct | x1, y1, x2, y2) is the probability of a correct decision when fixating location (x1, y1) followed by 
(x2, y2).

Figure 1.  Experimental design. (a) Gaze contingent visual search paradigm. Targets were only visible in close 
proximity to the current fixation location (i.e., inside the search area). (b) Procedure for a single trial. Subjects 
fixated a fixation cross either shown on the left or the right side, respectively. After 1 s the shape was shown 
in the center of the screen, thus subjects were given access to peripheral information about the shape. Shapes 
were mirrored if necessary yielding equal distances for left and right starting points. After 750 ms the fixation 
cross disappeared and participants could initiate the search for the target. The search time was initiated by the 
participants’ gaze crossing the dotted line. The line, however, was not visible to the subjects. After the search 
interval was over the shape disappeared and participants were asked, whether it contained a target. Depending 
on the condition (short or long) subjects were able to perform one or two fixations inside the shape. (c) Raw 
gaze data is shown for a trial with short search time and initial fixation on the right side (upper panel) and 
for a trial with long search time and initial fixation on the left side (lower panel). Shapes were mirrored in a 
counterbalanced design to ensure equal orientation with respect to the initial fixation cross.
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Figure 2 illustrates the difference between the two computational strategies for the two conditions, i.e. the 
short search interval, allowing a single gaze shift, and the long search interval, allowing a maximum of two gaze 
shifts. The action selection for both the myopic and the planning observer for the long condition is shown in the 
right panel of Fig. 2a. Accordingly, three testable hypothesis can be derived from the computational models: H1: 
If eye movements are planned, we expect a difference in the location of the first fixation depending on the search 
interval for some stimuli. H2: We expect fixation locations to be better explained by the planning observer com-
pared to the myopic observer. H3: The differences between the myopic and the planning observers also depend on 
the search shape, such that the gaze targets may coincide for the two models (Fig. 2b).

Behavioral and model results.  The computational models were utilized to automatically generate a vari-
ety of shapes such that four stimuli could be selected to maximize the discriminative power of the subsequent 
experiments. As shown in Fig. 2b, two of the four shapes were predicted by our models to elicit indistinguishable 
first fixation locations whereas two other shapes were predicted to result in different first fixation locations for 
the myopic and planning observers (see Methods). The mean fixation location for each participant separately 
for all shapes and conditions is shown in the left panel of Fig. 3a. To test whether eye movements were planned, 
we compared the first fixation location in the short condition to the first fixation location in the long condition 
for all shapes in accordance with hypothesis H1. If subjects are capable of performing planning, we expected a 
difference in the first fixation location for Shape S3 and S4 (H3). We used the Hotelling’s T-test to compare the 
bivariate landing positions of the first saccade between the two search intervals (Supplementary Table 1). Indeed, 
mean target locations for the first saccade were different in Shape S3 and S4. No significant differences, however, 
were found in shapes S1 and S2. These results are in agreement with our computational models of the myopic and 
planning observers.

Visual inspection suggests, that the behavioral data is closer resembled by the results of the planning observer 
(H2). Indeed, only the planning observer but not the myopic observer predicted a difference in fixation locations 
between the short and long search interval conditions. Furthermore, the direction of the spatial difference of 
the first fixation location between the search interval conditions followed the course suggested by our planning 
observer (Fig. 3b). Because the magnitude of the human spatial difference of the first fixation location was slightly 
smaller than the magnitude predicted by the planning observer, we extended both the myopic observer as well 
as the planning observer based on known facts about the visual system. The additional modeling components 
yielded progressively more realistic models of human visual search behavior by incorporating biological con-
straints leading to a bounded actor (see Methods). Specifically, we included additive costs for longer saccade 
amplitude (as they lead to longer scanpath durations24 and higher endpoint variability25, which humans have been 
shown to minimize26), used foveated versions of the shapes to account for the decline of visual acuity in peripheral 
vision27, and accounted for the often reported fact, that human saccades undershoot their target28,29.

Figure 2.  Computational models for visual search. (a) Illustration of optimal scanpaths for both models 
depending on the search time. For the short search interval (left side, one fixation) both models show the same 
behavior. For the long search interval (right side, two fixations), the myopic observer and the planning observer 
differ with respect to the scanpath. While the myopic observer’s next fixation is chosen to maximize the 
immediate reward (better performance after the first fixation, bottom row), the planning observer’s scanpath is 
chosen to maximize performance after two fixations (see also Supplementary Fig. 6). Computational complexity 
(depicted as decision trees) is higher for the planning observer as in the condition with long search intervals 
all two-fixation sequences are evaluated in order to maximize performance. Note that the second action in the 
long search interval is only necessary, if the target was not detected after the first saccade. (b) Shapes used in our 
visual search experiment. For each shape the optimal policy is shown for the myopic observer (pink) and the 
planning observer (green). Whether these models lead to different strategies depends on the particular shape. 
Scanpaths are the same for Shapes S1 and S2, but differ for S3 and S4.
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To obtain a quantitative evaluation of the computational models, we employed model selection using the 
Bayesian information criterion (BIC). The two free parameters in the models, i.e. the magnitude of additive costs 
for saccade length and the magnitude of the undershot, were estimated using Maximum Likelihood with bivariate 
Gaussian error terms on subjects’ empirical data. We also estimated the covariance matrices for the models’ pre-
dictions and the behavioral gaze data to compute the BIC for each model. Figure 3c shows the difference in BIC of 
all models compared to the best model. The lower bound was derived by computing the mean fixation locations 
directly from the data for each of the four shapes as well as for each of the three fixation locations. The difference 
in BIC values between two models is an approximation for the log-Bayes factor and a difference ΔBIC > 4.6 is 
considered to be decisive30. Results clearly favor the planning observer over the myopic observer (ΔBIC = 139). 
Crucially, the planning observer without any parameter fitting still provided a better description of our human 
data than the myopic observer with all extensions (ΔBIC = 59). Further, costs for saccade amplitudes and fove-
ation did not only improve our model fit for the planning observer but were also favored by model selection, 
suggesting that they are needed for better describing the eye movement data in our experiment. For the saccadic 
undershot model comparison was less decisive but still in favor of the full model (ΔBIC = 3 between planning 
observer with all extensions and planning observer without undershot). We also applied the MAP searcher (see 
Supplementary Fig. 5) but the predictions deviated severely from the data we observed.

Parameter estimates for the saccadic undershot were similar for the myopic observer (2.9%) and the planning 
observer (3.2%). The influence of the costs for longer saccades was higher for the myopic observer (0.69 DP/Deg) 
compared to the planning observer (0.34 DP/Deg). The unit of the costs is detection performance (DP in %) per 
degree (Deg) and states, how much performance subjects were willing to give up to shorten saccade amplitudes 
by one visual degree. It is important to note, that both factors, costs and saccadic undershot, represent distinct 
computational concepts. The influence of the costs does not depend on the amplitude of the saccade directly, 
but on the reward structure of different potential landing locations. Hence, for two different shapes the same 
costs can have very different effects on where to target gaze. On the other hand, the undershot is relative to and 
only depends on the amplitude of the saccade and does not depend on the reward structure and therefore the 
shape. We also estimated the radius of the circular gaze contingent search shape centered at the current fixation. 
Parameter estimation yielded values very close to the true radius and did not improve model quality for neither 
the planning observer nor the myopic observer.

Figure 3.  Main behavioral and model results. (a) Mean human scanpaths for both conditions (solid lines 
correspond to long search intervals, dashed lines correspond to short search intervals) are shown in the left 
column. Colors refer to the condition and the position within the scanpath (red: short search interval, green: 
first fixation in the long search interval, and blue: second fixation in long search interval). Dots depict mean 
fixation locations aggregated for each subject individually, error bars show the standard deviation for the 
fixation location aggregated over all data. The scanpaths suggested by the best fitting models for the planning 
observer and the myopic observer are shown in the center and the right column, respectively. Again, solid lines 
depict the strategy for the long search interval, dashed lines for the short search interval. Global means of the 
human data are also shown for reference (red, green, and blue). (b) Actual and predicted spatial relation of first 
saccades for all four shapes. Graphs are centered at the fixation location in the short search interval condition. 
Arrows depict the displacement of the first fixation location in the long search interval relative to the short 
interval. Arrow color corresponds to the data source. For the myopic observer, the first fixation location is the 
same for both conditions (indicated by the square centered at (0, 0)). (c) Difference in BIC between all tested 
models. The lower bound corresponds to a model directly estimating the mean fixation locations for each shape 
and condition from the data.
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Discussion
Considerable previous research has investigated perceptual determinants of human gaze targets but much less 
is known about how the visual system uses perceptual beliefs to select gaze targets in sequential behavior. Thus, 
it has been unclear, whether sequences of human eye movements are planned ahead. Prior studies indicated 
that multiple saccadic targets are jointly prepared as a scanpath and that cueing new targets during execution of 
eye movements results in longer execution times21–23. However, it has been unclear whether eye movements are 
chosen by considering more than a single gaze shift ahead into the future. Instead, paradigms modeling human 
eye movements as sequential greedy decisions10,12,18,19 including the MAP searcher13 and the ideal searcher8, have 
been the predominant approach. Computationally, if a task requires multiple gaze shifts in sequence, the norma-
tive, i.e. optimal solution in general involves planning the sequence of gaze shifts jointly.

The present study investigated, whether human gaze shifts are well described by a greedy selection of targets 
or whether they are better described by a probabilistic planning strategy. Therefore, we contrasted a myopic 
observer with a planning observer that was formalized within the framework of Markov Decision Processes15,16 
with partially observable states17. We derived policies for myopic observers including the ‘maximum-a-posteriori 
searcher’13 and the ideal-observer based searcher8, which only consider the immediate reward for action selec-
tion, and we also derived the policy for the planning observer, which also considers future rewards. Next, we 
determined the specific circumstances under which the models produce different gaze sequences. Ultimately, we 
used these insights to automatically manufacture stimuli that maximized the behavioral differences elicited by 
the different gaze strategies and also obtained stimuli that show very similar strategies. Thus, the resulting stimuli 
were highly suitable for examining which gaze strategy was adopted by our subjects.

We developed a visual search task where we expected different behavioral sequences depending on the gaze 
strategy of our subjects. In particular, we investigated whether subjects adjust their scanpath during visual search 
dependent on the duration of the search interval. Therefore, we controlled the length of the saccadic sequence. 
The short search interval allowed subjects to execute a single saccade, while in the long search interval subjects 
were able to fixate two locations. The gaze contingent paradigm allowed efficient computation of all strategies 
including the planning strategy of gaze targets. Moreover, the gaze contingent paradigm with a search interval 
allowing for two saccades provides the possibility for comparing spatial gaze targets, as the well known interindi-
vidual and intradindividual variability of gaze targets for longer gaze sequences would render such comparisons 
computationally very difficult.

Our results suggest that eye movements are indeed planned according to probabilistic planning. Subjects’ 
scanpath was very well predicted by the planning observer while showing severe deviations from the scanpath 
proposed by the myopic observer. We found fixation locations to be different depending on the duration of the 
search interval. This difference is only expected under the planning observer and can not be explained by the 
myopic observer. Finally, model comparison favored the planning observer and its extensions over the myopic 
observer by a large margin. Furthermore, extending our planning observer model with action costs, we found 
evidence that subjects traded off task performance and saccade amplitude. Including additive costs for saccades 
with great amplitude into the planning observer and accounting for saccadic undershot and foveation was best 
capable of explaining our data further.

A possible limitation of the current experiments lies in the specific use of the gaze contingent experimental 
paradigm. Considerable previous research has utilized gaze contingent setups31 and some of these investigations 
have quantified its influence on performance in visual search for targets with low visibility32. In the present exper-
iments, the target was only detectable within a circular area with a diameter of 13° of visual angle around the 
fixation point. While peripheral processing was not impaired, as the contour of the shape was always visible, the 
visibility of the target was controlled by the gaze contingent design. This is different from naturalistic search tasks. 
While this may not affect the target of the first fixation, it is conceivable that this may have affected the selection 
of the second gaze target in idiosynchratic ways. However, the current quantitative analyses are all based on trials 
in which the target was not present. Thus, the peripheral visual information acquired during the first fixation 
would not have given indications of the target’s position, even with visibility extending beyond 13° of visual 
angle because of the high visibility of targets used in our search task. Nevertheless, future work needs to address, 
whether the results reported here extend to experimental paradigms with full peripheral visibility.

The current experiments also do not speak to the applicability of the probabilistic planning model to other 
search tasks or more naturalistic visual and visuomotor tasks3,33. Computationally, probabilistic planning is the 
optimal solution to control tasks with uncertainty in general15,16 and evidence for human motor behavior being 
explainable in these terms has been provided in the past17,26,34. But it is currently unclear, whether the planning 
used in the current study can also explain sequential behavior in other visual and visuomotor tasks. Potentially, 
subjects may have adopted a gaze target strategy which was particularly elicited by the current experimental 
setup. Note however, that subjects readily adopted the reported strategy without extensive practice. Only about a 
minute of familiarization with the gaze contingent setup was sufficient for subjects to target gaze at the locations 
predicted by the planning observer model. Overall, it is an empirical question for future work whether the proba-
bilistic planning model reported here is able to successfully account for human gaze behavior in other visuomtor 
tasks.

A further limitation of the current study is that it does not disambiguate between open-loop and closed-loop 
planning15. The distinction between these two types of planning lies in the way future observations are utilized 
within the planning process. While open-loop algorithms plan a sequence of actions but disregard the outcome 
of future observations, closed-loop algorithms are much more sophisticated by taking all possible future obser-
vations after each action in the entire sequence into account within the planning process. As such, closed-loop 
planning is even more demanding computationally than open-loop planning. The current experiments cannot 
disambiguate whether human behavior is better explained by either of these two planning algorithms, because for 
the second fixation in the long search interval condition the belief after the first fixation only depends on whether 
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the target was found. Thus, subjects terminating the search in the long search interval condition after finding the 
target after the first fixation may be the only support for closed-loop control in our experiments. Note that both 
these planning algorithms are very different from myopic action selection and the MAP searcher. Future work 
will need to address, which of these two types of planning better describes human gaze selection.

Finding and executing near optimal gaze sequences is crucial for many extended sequential every-day tasks3,33. 
The capability of humans to plan behavioral sequences gives further insights into why we can solve so many tasks 
with ease, which are extremely difficult from a computational perspective. In many visuomotor tasks coordinated 
action sequences are needed rather than single isolated actions35. This leads to delayed rewards and thus a com-
plex policy is required rather than an action that directly maximizes the performance after the next single gaze 
switch. Additionally, our findings have implications for future models of human eye movements. While numerous 
influential past models have not taken planning into consideration8,10,11,14,18, our results indicate that in the case of 
visual search humans are capable of including future states into the selection of a suitable scan path. Thus, percep-
tion and action are not repeatedly carried out sequentially but intertwined through planning.

Nevertheless, our results also open up the possibility to reevaluate previous studies, which have interpreted 
deviations from an ideal observer based search strategy as evidence for a suboptimal strategy36–39. The current 
study points towards a potential explanation of these results, as subjects may have carried out a planning strategy, 
which can differ from a myopic ideal observer based strategy. Given that for some stimuli in our search task the 
gaze sequences for the two strategies differ, future work needs to carefully reevaluate myopic and planning strat-
egies for these tasks and stimuli, in which suboptimality was established with respect to a myopic ideal observer 
model. The current results furthermore suggest, that this reevaluation may need to be extend to previous studies, 
which have interpreted behavioral results as support for a myopic strategy8,10–14,18,19, as for some tasks and stimuli, 
the strategies lead to indistinguishable gaze targets.

The broader significance of the present results beyond the understanding of eye movements lies in the fact that 
human behavior in our experiment was best described by a computational model that implements probabilistic 
planning under perceptual uncertainty and accounts for multiple costs. In this framework, sensory measure-
ments and goal directed actions are inseparably intertwined40,41. So far, the predominant approach to probabilistic 
models in perception has been the ideal observer42,43, which can be formalized in the Bayesian framework44,45 as 
inferring latent causes in the environment giving rise to sensory observations. Models of eye movements selec-
tion have so far used ideal observers8,10,11 without planning. Probabilistic, Bayesian formulations of optimality 
in perceptual tasks46,47, cognitive tasks48,49, reasoning50, motorcontrol34, learning51, and planning52 have lead to 
a better understanding of human behavior and the quest to unravel, how the brain could implement these com-
putations53–55, which are known in general to be intractable56. Our result extends the current understanding by 
demonstrating that planning under perceptual uncertainty is also part of the repertoire of human visual behav-
iors and this opens up the possibility to understand recent neurophysiological results57 within the framework of 
planning under uncertainty.

In the current work, we applied the computational concept of planning drawn from the field of AI to the 
literature of empirical eye movement studies. In particular, we connected the experimental paradigm of visual 
search to a solid mathematical foundation and for the first time systematically studied the very general connec-
tion between delayed rewards, horizon, and action selection in human eye movements. Overall, we layed out the 
groundwork that instantly reveals several clear implication for future studies (1) to investigate eye movement 
planning in different tasks, (2) to study the extent of the human planning capabilities, and (3) to revisit classic 
influential models as they may work only in a subset of situations.

Methods
Participants.  Overall, 16 subjects (6 female) participated in the experiment. The subjects’ age ranged from 
18 to 30 years (M = 21.8, SD = 3.1). Participants either received monetary compensation or course credit for par-
ticipation. All subjects had normal or corrected to normal vision (four wore contact lenses). One subject stated 
to have dyschromatopsia, which had no influence on the experiment. Sufficient eye tracking quality was ensured 
for all data entering the analysis. In each trial a single fixation location (short search interval) or a sequence of 
two fixation locations (long search interval) entered the analysis. Further, informed consent was obtained from 
all participants, all experimental procedures were approved by the ethics committee of the Darmstadt University 
of Technology, and all methods employed were in accordance with the guidelines provided by the German 
Psychological Association (DGPs).

Procedure.  After signing a consent form the eye tracker (SMI Red, 250 Hz) was calibrated using a 3 point cali-
bration procedure. Subsequently, subjects completed three to five short training trials (about 1 minute duration 
in total) as part of the experiment instruction. During these training trials it was ensured that the search time was 
sufficiently long for each subject to carry out a single saccade in the short condition and two fixations in the long 
condition, respectively. If necessary, the search time was adjusted (between 500 ms and 580 ms, for the long search 
interval). Participants were encouraged to ask questions, if anything was unclear. After training, participants 
answered ten questions from a checklist to ensure that they understood the task properly (e.g.: “When does the 
search interval start and how many targets can be found at most?”). Incorrect answers were documented and the 
correct answers were discussed. After successfully finishing the training, four blocks each containing 100 trials 
were performed. Thereby, the order of the blocks was either SSLL (two blocks with short search time followed 
by two blocks with long search time) or LLSS. Participants were randomly assigned to one of the two orders. 
Participants’ heads were supported using a chin rest leading to a constant viewing distance of 55 cm. Eye tracking 
calibration was renewed before each block. Trials in which the first saccade was made while the fixation cross was 
still visible were dismissed and had to be repeated.



www.nature.com/scientificreports/

8SCIenTIFIC REPOrTS |           (2019) 9:144  | DOI:10.1038/s41598-018-37536-0

Materials.  The derived and implemented computational models enabled us to specifically select shapes that 
facilitate testing our hypothesis. In particular, stimuli were identified that triggered different policies for the 
myopic observer and planning observer. First, multiple candidates shapes were generated automatically using the 
following approach: Five points were drawn uniformly in a bounded area (23.24 × 23.24 of visual angle). Next, a 
B-spline was fitted to the random points. Finally, the shapes bounded by the splines using the fitted parameters 
were filled with a white noise texture. Both models were applied to the resulting shapes to identify those shapes 
that lead to maximally different or most similar policies. Overall, four different shapes were used in the experi-
ment (see Fig. 2b). Two shapes were chosen where optimal behavior requires planning (S3 and S4) and two where 
planning is not necessary (S1 and S2), i.e. where the sequence of eye movements of the myopic observer and the 
planning observer coincide. For both categories we selected two shapes by visual inspection ensuring that they 
were similar with respect to the area covered. For display during the experiment the shapes were upscaled with 
a factor of 1.5 and centered on the monitor such that the center of the shape’s bounding box matched the center 
of the screen.

Foveated versions of the stimuli.  In order to account for the decline of visual acuity that affects the 
visibility of the shape boundaries, we created foveated versions of the experimental stimuli (see Supplementary 
Fig. 4). Foveated versions of the stimuli were created by using the approach described in ref.58. The contrast sensi-
tivity function describing the decline of accuracy with increasing eccentricity is computed as

=CS f e
CT f e

( , ) 1
( , )

,
(4)

which can be used to assign a cut-off frequency at each eccentricity. The contrast threshold is computed as:

α=





+ 



.CT f e CT f e e

e
( , ) exp

(5)
0

2

2

where f is the spatial frequency, e is the retinal eccentricity, and α, CT0, e2 are empirical values set to 0.106, 1/75, 
and 2.3, respectively. These values have been shown to provide a good fit to empirical data (see ref.27). We only 
needed to account for peripheral vision at the level of deciding where to make an eye movement to. The decline of 
visual acuity leads to deteriorated perception of the outline of the shape. Hence, our model needs to incorporate 
the foveated shapes. For the first fixation, we used the initial location at the beginning of the trial. This was the 
same for all trials. In the two saccade condition we used the empirical mean landing location of our participants 
to compute the foveated shape prior to the second saccade. While this is an approximation as landing locations 
showed variation, we did so to reduce the computational burden of the numerical optimization.

The target was a circular grating stimulus (0.87° of visual angle in diameter). Background was Gaussian white 
noise. Contrast was set in a way that the target was easily detected if it was within the visible search radius of the 
current fixation (detection proportion: 98.2%). The target’s position was generated by randomly choosing a loca-
tion within the shape.

Probability of finding the target.  Next, we derive the probability of a correct detection given a sequence 
of fixation locations since both proposed policies depend on the performance in the task, i.e., the detection prob-
ability. The probability of correctly judging the presence of a target is proportional to the area covered by the 
search. This can be computed as:

∑∑| ∝ |P x y P x y P x y x y(correct , ) ( , ) ( , , )
(6)

n n
x y

T O n n

where PT(x, y) is the probability that the target is located at (x, y) and PO(x, y|xn, yn) is the probability that the 
location (x, y) is covered by the search given that the saccade was targeted at (xn, yn). The former is 1/N if (x, y) lies 
within the shape and zero otherwise, where N is the number of possible target locations. The latter depends on the 
distance between the saccadic target (xn, yn) and the target location (x, y). Therefore:

| =





− − <P x y x y x x y y
else

( , , ) 1 if [ , ] threshold
0 (7)

O n n
n n

T

where the threshold is equal to the radius of the search area (6.5° of visual angle).

Perception.  Visual perception can be described as inference of latent causes based on sensory signals44,45. 
Bayesian inference provides the mathematical tools to use sensory data D to infer unknown properties of the state 
s of the environment. For example, s could be indicating whether there is a predator hiding behind a bush, and by 
directing gaze to the bush visual data D about the latent variable describing the true state s of the environment is 
obtained. This information can be incorporated into what is known about s using Bayes’ theorem 

| = |P s D P D s P s P D( ) ( ) ( )/ ( ). Hence, this mechanism combines prior knowledge P(s) and sensory information 
P(D|s) to form an updated posterior belief about environmental states relevant to the specific task.

Action.  However, performing sensory inference by itself does not prescribe an action, i.e. information about s 
in the end needs to be used to decide for an appropriate action, e.g. whether to flee. The costs and benefits for the 
potential outcomes of the action can be very different, e.g., not to flee if a predator is present is more costly than an 
unnecessary flight. They can be captured computationally by a reward function R(s, a) assigning a value to each 
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state action pair. In the past, different approaches have been proposed to choose an action given the current belief 
b(s) = P(s|D) drawn from perception and the reward function R(s, a).

The MAP model only takes into account the maximum of the posterior for action selection. This corresponds 
to taking the action

π = = |R a s max P s Darg max ( , arg ( )) (8)a s
MAP

that gives maximum reward given that the true state is the maximum of the posterior. For visual search arg maxs 
P(s|D) corresponds to the most likely location of the target and therefore the reward is maximal if the eye move-
ment a is targeted towards this location.

The ideal observer model has been used successfully to understand how humans choose locations for the next 
saccade. Specifically, human eye movements use the current posterior and target the location where they expect 
uncertainty about task relevant variables to be reduced most after having acquired new data from that location 
in situations such as visual search8, face recognition10, and temporal event detection11. Hence, different potential 
outcomes of s are weighted with the reward function R(s, a) to determine the action with highest expected reward:

∫π = = | . r R a s P s D dsarg max [ ] argmax ( , ) ( ) (9)a a s
ideal observer 0

Thus, it may be better to flee, even when one is not absolutely certain that a predator is hiding behind a bush, 
because the consequences may be particularly harmful. Interestingly, within this framework, the optimal action 
targets the location where the next fixation will reduce uncertainty the most and not the location that currently 
looks like the most probable target location. Indeed, both explicit monetary rewards19 and implicit behavioral 
costs11 in experimental settings have been shown to influence eye movement choices.

The ideal planner model extends the ideal observer model to action sequences. While ideal observers based on 
Bayesian decision theory constitute the optimal solution to selecting a single action, repeatedly taking the action 
with the maximum immediate reward may fail in tasks with longer action sequences and delayed rewards 
depending on the specific task structure. In these cases, a planning observer based on the more powerful frame-
work of belief MDPs, which contains the ideal observer as special case, is needed to find the optimal strategy. A 
Markov Decision Process (MDP)16,59 is a tuple (S, A, T, R, γ), where S is a set of states, A is a set of actions, 

= ′|T P s s a( , ) contains the probabilities of transitioning from one state to another, R represents the reward, and 
finally, γ denotes the discount factor. In a belief MDP only partial information about the current state s is availa-
ble, therefore a probability distribution over states is kept as a belief state = |b s P s D( ) ( )17. The expected reward 
associated with performing action a in a belief state b(s) is denoted by the action-value function Q b s a( ( ), ). How 
should the actor decide where to look next according to this framework? A policy π is a sequence of actions and 
the optimal policy π* comprises actions that maximize the expected reward



∫

π γ γ

γ

= + + … + =

= ′ | ′ + ′ ′ .
′

⁎

r r r Q b s a
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a b s
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where V* (b(s′)) is the expected future reward gained from the next belief state b(s′). In tasks comprising 
sequences of actions, the optimal strategy, the planning observer, incorporates rewards associated with future 
actions (V* (b(s′))) into action selection. Essentially, what this means is that the value of an action based on the 
current belief is a combination of the immediate reward and the long term expected reward, weighted by how 
likely the next belief is under the action. Thus, as the belief about the state of task relevant quantities depends on 
uncertain observations, actions are influenced both by obtaining rewards and obtaining more evidence about the 
state of the environment.

Action selection in visual search.  To apply the different models to our visual search task we first need to 
specify the relevant quantities describing the task, i.e. the state representation and the reward function. In our 
visual search task (Fig. 1), a suitable candidate for a state representation is the target location and the current 
location of gaze. However, in general, the exact location of the target is unknown. Instead, we formalize the 
probability distribution over potential target location as a belief state that can be inferred from observations. The 
action space comprises potential fixation locations and with each action we receive information about the target, 
update our belief and transition to the next belief state. The reward function is an intuitive mapping between the 
belief state, which comprises the knowledge about the location of a potential target, and the probability of finding 
the target.

For a sequence comprising two actions (a0, a1), the myopic observer (horizon = 1, repeated application of the 
ideal observer) selects the action with the maximum expected reward in each step

 π =










r rargmax [ ], argmax [ ] ,
(11)a a

myopic 0 1
0 1

which corresponds to using Equation 9 at each state of the sequence. The planning observer (horizon = 2) con-
siders the total sum of rewards
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 π =




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planned 0 1 0 1
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which corresponds to using Equation 10 at each state of the sequence. Whether πmyopic and π ⁎
planned lead to the 

same action sequence depends on the specific nature of the task. However, in general:

π π≠⁎
(13)planned myopic

as can be seen in Fig. 2. Ideal-observer approaches only lead to optimal actions if future rewards do not play a role, 
for example, if only a single action is concerned. It is apparent that for a single action the myopic observer and the 
planning observer lead to the same action as Equation 10 simplifies to

∫= ′ | ′ ′
′

Q b s a P b s b s a R b s a db s( ( ), ) ( ( ) ( ), ) ( ( ), ) ( )
(14)b s( )

where ′ |P b s b s a( ( ) ( ), ) is the posterior over relevant quantities in the task and ′R b s a( ( ), ) is the reward function.

Model fitting.  To take into account known cognitive and biological constraints we incorporated several well 
known characteristics of the human visual system. We introduced costs on the saccade amplitude thus favoring 
smaller eye movements, which humans have shown to do60. As was shown by prior research, greater ampli-
tudes lead to higher endpoint variability25 and longer saccade duration24. It has further been shown that humans 
attempt to minimize endpoint variability when execution eye movements26. Therefore, we hypothesized that sub-
jects show a preference for smaller saccade amplitudes. Computationally, we obtain the total reward as a combi-
nation of performance and saccade amplitude

α α= | −r P x y x y( ) (correct , ) c( , ) (15)n n n n n

where c is a linear cost function returning the amplitude of the saccade. The parameter α determines how much 
detection probability a subject is willing to give up in order to decrease saccade amplitude11. It was estimated from 
the mean fixation locations of our participants using Maximum Likelihood.

Next, the human visual system does not have access to visual content at all locations in the field of view with 
unlimited precision. We accounted for the decline of visual acuity at peripheral locations. Therefore, foveated 
versions of the shapes were generated using the known human contrast sensitivity function (see refs8,10,27, for 
example). For the first fixation foveation was computed using the initial fixation location of the trial. As it was 
not computationally tractable to compute foveated images corresponding to the exact location of the first landing 
position, we approximated it by using the mean fixation location of our subjects instead.

Finally, prior studies have shown that saccades undershot target locations29. Initial landing positions are closer 
to the start location of a saccade. The final target is reached using subsequent corrective saccades. However, in our 
experiment there is no visible fixation target, therefore corrective saccades might not be present. To account for 
that we estimated the undershot from our data.

Preprocessing.  First, fixations were extracted from the raw gaze signal using the software of the eye tracking 
device. Overall, 6400 trials (16 participants × 4 blocks × 100 trials per block) entered the preprocessing. 15 trials 
(0.23%) were dismissed because the subjects failed to target gaze towards the shape. In these trials, subjects trig-
gered the beginning of the trial by crossing the boundary, however did not engage in visual search. While search 
time was adjusted to enable subjects to perform a single saccade in the short condition and two saccades in the 
long condition, respectively, in 17% of the trials subjects failed to do so. Since we are only interested in comparing 
the difference between strategies consisting of one or two targeted locations we only used the remaining 5288 tri-
als. Next, we excluded trials where the target was present, regardless of whether it was found, leaving 2589 trials. 
Clearly, behavior after successfully finding the target is confounded and does no longer provide valid information 
about the search strategy. Also, trials in which a target was shown but not found are biased as they are more likely 
to occur in the context of inferior eye movement strategies.

Our analysis and our estimated model parameters rely on mean landing positions aggregated within subjects. 
Therefore, we need to make sure that the variation in landing positions arises due to saccadic endpoint variability 
or uncertainties the subject might have about the shape, but not from qualitatively different strategies. Shapes 
S1 and S2 consist of two separate parts, as a consequence the reward distribution is no longer unimodal across 
potential gaze targets (see Supplementary Fig. 1a). Indeed, qualitatively different strategies in the short condition 
were found for these stimuli (see Supplementary Fig. 1b). Using mean gaze locations therefore would have lead 
to misleading results as it implicitly implied unimodal variability in landing positions while the real data showed 
clear multi-modality. To further analyze the gaze targets of our participants, we first identified the strategy for 
each trial using a Gaussian mixture model. We only considered the most frequent strategy (see Supplementary 
Fig. 1c) for both shapes and discarded trials (10.6%) deviating from the chosen strategy. However, our findings do 
not depend on the particular choice of strategy as shapes that revealed differences between the myopic observer 
and the planning observer (S3 and S4) did not elicit different strategies. The remaining 2313 trials were used for 
our analysis.

Code Availability Statement.  The code used in this study is available from the corresponding author on 
request.
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Data Availability Statement
The data that support the findings of this study are available from https://github.com/RothkopfLab/spatial_gaze_
planning.
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