
Embedding the Pi-Calculus into a Concurrent Functional
Programming Language ?

Manfred Schmidt-Schauss1 and David Sabel12

1 Goethe-University, Frankfurt, Germany
2 LMU Munich, Germany

Technical Report Frank-60

Research Group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

D-60325 Frankfurt, Germany

February 12, 2019

Abstract. The synchronous pi-calculus is translated into a core language of Concurrent Haskell
extended by futures (CHF). The translation simulates the synchronous message-passing of the
pi-calculus by sending messages and adding synchronization using Concurrent Haskell’s mutable
shared-memory locations (MVars). The semantic criterion is a contextual semantics of the pi-
calculus and of CHF using may- and should-convergence as observations. The results are equivalence
with respect to the observations, full abstraction of the translation of closed processes, and adequacy
of the translation on open pocesses. The translation transports the semantics of the pi-calculus pro-
cesses under rather strong criteria, since error-free programs are translated into error-free ones, and
programs without non-deterministic error possibilities are also translated into programs without
non-deterministic error-possibilities. This investigation shows that CHF embraces the expressive
power and the concurrency capabilities of the pi-calculus.

Keywords: pi-calculus, functional programming; concurrency, adequate translations

1 Introduction

We are interested in concurrent and at the same time declarative program calculi and their
expressiveness as models for concurrent programming languages.

The well-known π-calculus [MPW92,Mil99,SW01b] is a minimal model for mobile and con-
current processes. Data-flow is possible by communication between processes, i.e. by passing
messages between them. Channel names are sent as messages, links between processes can be
dynamically created and removed, and also new processes may be created, which together makes
processes mobile. The interest in the π-calculus is not only due to the fact that it is used and
extended for a lot of applications. Examples are the Spi-calculus [AG97] for reasoning about
cryptographic protocols, the stochastic π-calculus [Pri95] with applications in molecular biol-
ogy, and the join calculus [Lan96,FG02] for distributed computing. The π-calculus also permits
the study of intrinsic principles and semantics of concurrency, of concurrent programming and
the inherent nondeterministic behavior of mobile and communicating processes.

The investigated variant of the π-calculus in this paper is the synchronous π-calculus with
replication, but without sums, matching operators, or recursion.

? The first and third authors are supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SCHM
986/11-1, and the second author is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant
SA2908/3-1.

2 M. Schmidt-Schauß and D. Sabel

Almost every programming language nowadays permits forms of parallelism, implicit, or
explicit parallelism like threads, or concurrency constructs, and process management. An is-
sue is whether the expressiveness of the π-calculus is also available in sufficiently interesting
higher-order and concurrent programming languages. An example for such a calculus and also
a programming language is Concurrent Haskell [PGF96,com19]. For our study, we will use the
language CHF [SSS11,SSS12] that is an extended variant of Concurrent Haskell and which per-
mits also futures in order to increase the declarativeness of such languages, and where studies
on the observational (contextual) semantics are available.

The contextual semantics of concurrent languages is a generalization of a black-box testing
principle of programs: the semantic equality of two (programmed) functions f, g holds, if for
all inputs n, f(n) and g(n) compute the same output. An equivalent observation is whether a
program successfully terminates (converges) or not. For processes, which are nondeterministic
programs, the patterns of behavior are usually more complex. A generalization of the black-
box testing is to compare the processes in process-contexts, and to use two observations: may-
convergence – at least one execution path terminates successfully, and should-convergence –
every intermediate state may-converges. An alternative nondeterministic observation is must-
convergence (all execution paths terminate successfully). The advantage of equivalence notions
based on should-convergence are their invariance under fairness restrictions, the preservation of
deadlock-freedom, and the equivalence of busy-wait and wait-until behavior.

An open issue that we study and solve in this paper is whether the π-calculus can be embed-
ded into CHF under strong conditions. A strong and well-behaved embedding would increase
the knowledge of concurrency and the π-calculus on one hand, and on the other, it leads to an
executable implementation with the same semantics

Our translation τ0 translates closed processes into one single thread which executes a CHF-
program. The translation uses one-place buffers (MVars) that can be empty or filled and have
a synchronization property: they block on requests to empty an empty buffer, and on filling a
full buffer. The translation will use 2 buffers per interaction, since a single buffer is insufficient
to simulate the message passing as well as the the synchronization of the π-calculus. We think
that the translation is close to being optimal. The translation into Concurrent Haskell has
been implemented and tested [Han18]. We succeeded in mathematically confirming that the
translation τ0 has strong and nice semantic properties. These results will also permit to draw
the conclusion that the expressiveness of the π-calculus is completely available in Concurrent
Haskell.

Our novel results are the definition of a translation τ0 from the π-calculus into CHF, and
full abstractness of the translation (Theorem 5.6), and adequacy of the open translation τ
(Theorem 5.7). From a technical point of view, a novelty is the comparison of the π-calculus
with a concurrent programming language using contextual semantics for may-convergence and
should-convergence in both calculi, which is technically involved since the syntactic details of
the standard reductions in both calculi have to be analyzed. The adaptation of the adequacy
and full abstraction notions (Def. 5.2) for open processes is also novel.

Related work on translations of the π-calculus into programming languages, calculi and logical
systems and investigating the properties are [BBP95], where a translation into a graph-rewriting
calculus is given and soundness and completeness w.r.t. operational behavior is proved. The
article [YRS04] shows a translation and a proof that the π-calculus is exactly operationally
represented To the best of our knowledge, there is no deep investigation into semantic properties
of a translation of the π-calculus into a programming language w.r.t. contextual semantics.

Outline. After introducing both calculi in Sects. 2 and 3, the translation is defined and
explained in Sect. 4. In Sect. 5 we analyze properties of the translation and present our results,
while the main part of the proof is given in Sect.6. We conclude in Sect. 7.

Embedding the pi-Calculus into CHF 3

2 The π-Calculus with Stop

In this section we explain the π-calculus [MPW92,Mil99,SW01b] in a variant extended with
a constant Stop [SS15], that signals successful termination of the whole π-calculus program.
The π-calculus without the constant Stop and with so-called barbed convergences [SW01a]
is equivalent w.r.t. semantic properties (see Theorem A.4 in the appendix). Thus, adding the
constant Stop is not essential, however, the treatment and the translation are easier to explain
for the π-calculus with Stop. The syntax of processes is as follows:

Definition 2.1. Let N be a countable set of (channel) names and x, y ∈ N . Then processes
P,Q ∈ ΠStop are of the form P,Q ∈ ΠStop := νx.P | x̄(y).P | x(y).P | !P | P|Q | 0 | Stop.
Free names FN (P), bound names BN (P), and α-equivalence =α in ΠStop are as usual in the
π-calculus. Let Πc

Stop denote the closed processes in ΠStop.

We briefly explain the language constructs. Name restriction νx.P restricts the scope of name x
to process P , P|Q is the parallel composition of P and Q, the process x̄(y).P waits on channel
x to output y over channel x and becoming P thereafter, the process x(y).P waits on channel x
to receive input, after receiving the input z, the process turns into P [z/y] (where P [z/y] is the
substitution of all free occurrences of name y by name z in process P), the process !P denotes
the replication of process P , i.e. it behaves like an infinite parallel combination of process P
with itself, the process 0 is the silent process that does nothing, and Stop is a process constant
that signals successful termination.

Definition 2.2. The only reduction rule of the ΠStop-calculus is the so-called interaction
ia−→

which is defined as x(y).P|x̄(z).Q
ia−→ P [z/y]|Q.

Definition 2.3. Let P,Q,R be processes and x, y channel names, then structural congruence ≡
is the least congruence satisfying the following laws:

P ≡ Q, if P =α Q
P|(Q|R) ≡ (P|Q)|R
νx.(P|Q) ≡ P|νx.Q, if x /∈ FN (P)

P|0 ≡ P
P|Q ≡ Q|P
νx.0 ≡ 0

νx.Stop ≡ Stop

νx, y.P ≡ νy, x.P
!P ≡ P|!P

The communication that sends name y over channel x and then sends u over channel y is:

(x(z).z̄(u).0|x̄(y).y(x).0)
ia−→ (z̄(u).0[y/z]|y(x).0) ≡ (ȳ(u).0|y(x).0)

ia−→ (0|0) ≡ 0

Definition 2.4. A process context C ∈ C is a process that has a a hole [·] at one process
position. They are defined by the grammar

C ∈ C := [·] | x̄(y).C | x(y).C | C|P | P|C | !C | νx.C, with x, y ∈ N

With C[P] we denote the substitution of the hole in C by process P . Reduction contexts PCtxtπ
are defined as D ∈ PCtxtπ ::= [·] | D|P | P|D | νx.D.

Definition 2.5. A standard reduction
sr−→ is the application of

ia−→ within a reduction context
(modulo structural congruence):

P ≡ D[P ′], P ′
ia−→ Q′,D[Q′] ≡ Q, and D ∈ PCtxt

P
sr−→ Q

Let
sr,n−−→ denote n standard reductions and

sr,∗−−→ denote the reflexive-transitive closure of
sr−→.

Definition 2.6. A process P ∈ ΠStop is successful, if P ≡ D[Stop] for some D ∈ PCtxtπ.

4 M. Schmidt-Schauß and D. Sabel

We are interested if the standard reduction of a process P successfully terminates. Since
reduction is nondeterministic, we define observations which test the existence of a successful
sequence (may-convergence), and which test all reduction possibilities (should-convergence):

Definition 2.7. Let P be a ΠStop-process. We say P is may-convergent (written P↓), iff there

is a successful process P ′ with P
sr,∗−−→ P ′. We say P is should-convergent (written P⇓), iff, for

all P ′: P
sr,∗−−→ P ′ implies P ′↓. If P is not may-convergent, then P is must-divergent (written

P⇑). If P is not should-convergent, then we say it is may-divergent (written P↑).

Example 2.8. The process P := νx, y.(x(z).0 | x̄(y).Stop)) is may-convergent (P↓) and should-
convergent (P⇓), since P

sr−→ 0 | Stop is the only standard reduction sequence for P . The process
P ′ := νx, y.(x(z).0 | x̄(y).0) deterministically reduces to the silent process (i.e. P ′

sr−→ 0), hence
it is may-divergent (P ′↑) and even must-divergent (P ′⇑). The process P ′′ := νx, y.(x̄(y).0 |
x(z).Stop | x(z).0) shows that may-convergence and should-convergence are different. We have
P ′′

sr−→ νx, y.(Stop | x(z).0) and P ′′
sr−→ νx, y.x(z).Stop, where the first result is successful, and

the second result is not successful. Hence P ′′ is may-convergent but not should-convergent. It is
also may-divergent, but not must-divergent.

Note that should-convergence implies may-convergence, and that must-divergence implies may-
divergence. We define general relations between processes:

Definition 2.9. For processes P and Q ∈ ΠStop and observation ξ ∈ {↓,⇓, ↑,⇑}, we define
P ≤ξ Q iff Pξ =⇒ Qξ. The ξ-contextual preorders and ξ-contextual equivalences are defined
as P ≤c,ξ Q iff ∀C ∈ C : C[P] ≤ξ C[Q], and P ∼c,ξ Q iff P ≤c,ξ Q ∧ Q ≤c,ξ P . Contextual
equivalence of ΠStop-processes is defined as P ∼c Q iff P ∼c,↓ Q ∧ P ∼c,⇓ Q.

Since applying structural congruence is highly nondeterministic, and in order to facilitate
reasoning on standard reduction sequences, we define a more restrictive use of the congruence
laws which is still nondeterministic but only applies the laws on the surface of the process.

Definition 2.10. Let
dsc−−→ be the union of the following rules, where D ∈ PCtxtπ:

(assocl) D[P1|(P2|P3)]→ D[(P1|P2)|P3]
(assocr) D[(P1|P2)|P3]→ D[P1|(P2|P3)]
(replunfold) D[!P]→ D[P|!P]

(nuup1) D[(νz.P1)|P2]→ D[νz.(P1|P2)],
if z does not occur free in P2.

(nuup2) D[νx.νz.P]→ D[νz.νx.P] if x 6= z
(commute) D[P1|P2]→ D[P2|P1]

Let
dia−−→ be the closure of

ia−→ by reduction contexts PCtxtπ and let
dsr−−→ be defined as the compo-

sition
dsc,∗−−−→ · dia−−→ · dsc,∗−−−→.

We omit the proof of the following equivalences, but it can be constructed completely anal-
ogous to the proof given in [Sab14] for barbed may- and should-testing.

Theorem 2.11. For all processes P ∈ ΠStop the following holds: i) P↓ iff P
dsr,∗−−−→ D[Stop] ii)

P↑ iff ∃P ′ such that P
dsr,∗−−−→ P ′ and P ′⇑.

The previous theorem allows us to restrict standard reduction to
dsr−−→-reduction when reasoning

on reduction sequences that witness may-convergence or may-divergence, resp.

3 The Process Calculus CHF

We recall the program calculus CHF [SSS11,SSS12] which models a core language of Concurrent
Haskell extended by futures. We assume a partitioned set of data constructors c such that each
family represents a type T and such that the data constructors of type T are cT,1, . . . , cT,|T |
where each cT,i has an arity ar(cT,i) ≥ 0. The two-layered syntax of the calculus CHF has

Embedding the pi-Calculus into CHF 5

P ∈ Proc ::= (P1|P2) | x⇐ e | νx.P | xm e | xm− | x = e

e ∈ Expr ::= x | λx.e | (e1 e2) | seq e1 e2 | c e1 . . . ear(c) | letrec x1=e1, . . . , xn=en in e
| caseT e of (cT,1 x1 . . . xar(cT,1) -> e1) . . . (cT,|T | x1 . . . xar(cT,|T |) -> e|T |) | m

m ∈ MExpr ::= return e | e >>= e′ | future e | takeMVar e | newMVar e | putMVar e e′
t ∈ Typ ::= IO t | (T t1 . . . tn) | MVar t | t1 → t2

Fig. 1. Syntax of expressions, processes, and types of CHF

P1|P2≡P2|P1

(P1|P2)|P3≡P1|(P2|P3)
(νx.P1)|P2 ≡ νx.(P1|P2) if x 6∈ FV (P2)
νx1.νx2.P ≡ νx2.νx1.P

P1≡P2 if P1 =α P2

Fig. 2. Structural congruence of CHF

D ∈ PCtxt ::= [·] | D|P | P|D | νx.D
M ∈ MCtxt ::= [·] | M >>= e

F ∈ FCtxt ::=E | (takeMVarE) | (putMVarE e)
E ∈ ECtxt ::= [·] | (E e) | (seq E e)

| (case E of alts)

Fig. 3. PCtxt-, MCtxt-, FCtxt-, ECtxt-Contexts

Monadic Computations

(lunit) y⇐M[return e1 >>= e2]
sr−→ y⇐M[e2 e1]

(tmvar) y⇐M[takeMVar x]|xm e
sr−→ y⇐M[return e]|xm−

(pmvar) y⇐M[putMVar x e]|xm− sr−→ y⇐M[return ()]|xm e

(nmvar) y⇐M[newMVar e]
sr−→ νx.(y⇐M[return x]|xm e)

(fork) y⇐M[future e]
sr−→ νz.(y⇐M[return z]|z⇐ e) where z is fresh

(unIO) y⇐ return e
sr−→ y = e if the thread is not the main-thread

Functional Evaluation

(cpce) y⇐M[F[x]]|x = e
sr−→ y⇐M[F[e]]|x = e

(mkbinds) y⇐M[F[letrec x1=e1, . . . , xn=en in e]]
sr−→ νx1 . . . xn.(y⇐M[F[e]]|x1=e1|. . .|xn=en)

(beta) y⇐M[F[((λx.e1) e2)]]
sr−→ y⇐M[F[e1[e2/x]]]

(case) y⇐M[F[caseT (c e1 . . . en) of . . . (c y1 . . . yn -> e) . . .]]
sr−→ y⇐M[F[e[e1/y1, . . . , en/yn]]]

(seq) y⇐M[F[(seq v e)]]
sr−→ y⇐M[F[e]] where v is a functional value

Closure : If P1 ≡ D[P ′
1], P2 ≡ D[P ′

2], and P ′
1
sr−→ P ′

2 then P1
sr−→ P2.

Capture avoidance: We assume capture avoiding reduction for all reduction rules.

Fig. 4. Standard reduction rules of CHF (call-by-name-version)

processes P ∈ Proc on the top-layer which may have expressions e ∈ Expr (the second layer)
as subterms. Processes and expressions are defined by the grammars in Fig. 1 where u,w, x, y, z
denote variables from a countably-infinite set of variables Var. As in the ΠStop-calculus parallel
processes are formed by parallel composition “|”. The ν-binder restricts the scope of a variable.
A concurrent thread x⇐ e evaluates the expression e and binds the result to the variable x
(called the future x). In a process there is (at most one) unique distinguished thread, called the

main thread written as x
main⇐== e. MVars are mutable variables which are empty or filled. A thread

blocks if it wants to fill a filled MVar xm e or empty an empty MVar xm−. The variable x is
called the name of the MVar. Bindings x = e model the global heap, where x is called a binding
variable. For a process P , a variable x is an introduced variable if x is a future, a name of an
MVar, or a binding variable. An introduced variable is visible to the whole process unless its
scope is restricted by a ν-binder, i.e. in Q|νx.P the scope of x is P . A process is well-formed, if

all introduced variables are pairwise distinct, and there exists at most one main thread x
main⇐== e.

Expressions Expr consist of functional expressions and monadic expressions MExpr which
model IO-operations. Functional expressions contain variables, abstractions λx.e, applications
(e1 e2), constructor applications (c e1 . . . ear(c)), letrec-expressions (letrec x1 = e1, . . . , xn =
en in e), caseT -expressions for every type T , and seq-expressions (seq e1 e2). We abbreviate
case-expressions as caseT e of alts where alts are the case-alternatives. The case-alternatives
must have exactly one alternative (cT,i x1 . . . xar(cT,i) -> ei) for every constructor cT,i of type
T , where the variables x1, . . . , xar(cT,i) (occurring in the pattern cT,i x1 . . . xar(cT,i)) are pairwise
distinct and become bound with scope ei.

6 M. Schmidt-Schauß and D. Sabel

In (letrec x1 = e1, . . . , xn = en in e) the variables x1, . . . , xn are pairwise distinct and
the bindings xi = ei are recursive, i.e. the scope of xi is e1, . . . , en and e. Monadic operators
newMVar, takeMVar, and putMVar are used to create and access MVars, the “bind”-operator >>=

implements the sequential composition of IO-operations, the future-operator performs thread
creation, and return lifts expressions to monadic expressions. Functional values are abstrac-
tions and constructor applications. A monadic expression of the form (return e), (e1 >>= e2),
(future e), (newMVar e), (takeMVar e), or (putMVar e1 e2) is called a monadic value. A value is
either a functional value or a monadic value.

Variable binders are introduced by abstractions, letrec-expressions, case-alternatives, and
νx.P . This induces free and bound variables, α-renaming, and α-equivalence =α. Let FV (P)
(FV (e), resp.) be the free variables of process P (expression e, resp.). We assume the distinct
variable convention to hold: free variables are distinct from bound variables, and bound variables
are pairwise distinct. We assume that reductions perform α-renaming to obey this convention.
In Fig. 2 structural congruence ≡ of CHF -processes is defined.

We assume that every expression and process is well-typed according to a monomorphic type
system. The syntax of types is in Fig. 1 where (IO t) stands for a monadic action with return
type t, (MVar t) stands for an MVar with content type t, and t1 → t2 is a function type. Since the
type system is standard, we omit the details, but they can be found in [SSS11].

We recall the call-by-name small-step reduction for CHF (which is semantically equivalent to
a call-by-need semantics, see [SSS11]). A context is a process or an expression with a (typed) hole
[·]. We introduce some classes of contexts in Fig. 3. On the process level there are process contexts
PCtxt, on expressions first monadic contexts MCtxt are used to find the next to-be-evaluated
monadic action in a sequence of actions. For the evaluation of (purely functional) expressions,
usual (call-by-name) expression evaluation contexts E ∈ ECtxt are used, and to enforce the
evaluation of the (first) argument of the monadic operators takeMVar and putMVar the class
of forcing contexts F ∈ FCtxt is used. A functional value is an abstraction or a constructor
application, a value is a functional value or a monadic expression in MExpr.

Definition 3.1. The call-by-name standard reduction
sr−→ is defined by the rules and the closure

in Fig. 4. We permit standard reduction only for well-formed processes.

Functional evaluation includes call-by-name β-reduction (beta), a rule (cpce) for copying shared
bindings into a needed position, rules (case) and (seq) to evaluate case- and seq-expressions,
and rule (mkbinds) to move letrec-bindings into the global set of shared bindings. For monadic
computations, rule (lunit) implements the monad by applying the first monad law to proceed a
sequence of actions. Rules (nmvar), (tmvar), and (pmvar) handle the MVar creation and access.
A takeMVar-operation can only be performed on a filled MVar, and a putMVar-operation needs
an empty MVar for being executed. Rule (fork) spawns a new concurrent thread, where the
calling thread receives the name of the thread (the future) as result. If a concurrent thread
finishes its computation, then the result is shared as a global binding and the thread is removed
(rule (unIO)).

A well-formed process P is successful, if P ≡ νx1. . . . νxn.(x
main⇐== return e|P ′). These

are the desired results of standard reduction sequences. The successful processes capture the
behavior that termination of the main-thread implies termination of the whole program. We
permit standard reductions only for well-formed processes which are not successful.

Definition 3.2. Let P be a CHF -process. Process P may-converges (written as P↓), iff it is

well-formed and reduces to a successful process, i.e. P↓ iff P is well-formed and ∃P ′ : P
sr,∗−−→

P ′ ∧ P ′ successful. If P↓ does not hold, then P must-diverges written as P⇑. Process P should-
converges (written as P⇓), iff it is well-formed and remains may-convergent under reduction,

i.e. P⇓ iff P is well-formed and ∀P ′ : P
sr,∗−−→ P ′ =⇒ P ′↓ If P is not should-convergent then

we say P may-diverges written as P↑.

Embedding the pi-Calculus into CHF 7

Note that a process P is may-divergent if there is a finite reduction sequence P
sr,∗−−→ P ′ such

that P ′⇑. Definition 3.2 implies that non-well-formed processes are always must-divergent, since
they are irreducible and never successful.

Definition 3.3. Contextual approximation ≤c and contextual equivalence ∼c on CHF -processes
are defined as ≤c:=≤c,↓ ∩ ≤c,⇓ and ∼c:=≤c ∩ ≥c where

– P1 ≤c,↓ P2 iff ∀D ∈ PCtxt : D[P1]↓ =⇒ D[P2]↓
– P1 ≤c,⇓ P2 iff ∀D ∈ PCtxt : D[P1]⇓ =⇒ D[P2]⇓

For CHF -expressions, let e1 ≤c e2 iff for all process-contexts C with a hole at expression position:
C[e1] ≤c C[e2] and e1 ∼c e2 iff e1 ≤c e2 ∧ e2 ≤c e1.

Proposition 3.4 ([SSS11]). Let P1, P2 be well-formed processes with P1 ≡ P2. Then P1 ∼c P2.

We require several correct program transformations for later reasoning. A program transfor-
mation T is a binary relation between CHF -processes.

Definition 3.5. A program transformation T is called correct, iff e1 T e2 =⇒ e1 ∼c e2.

Deterministic variants of (tmvar) and (pmvar) are (dtmvar), (dpmvar), respectively.

Proposition 3.6 ([SSS11]). The reduction rules (lunit), (nmvar), (fork), (unIO), (cpce), (mkbinds),
(beta), (case), (seq) (dtmvar), and (dpmvar) are correct program transformations, whereas (pm-
var) and (tmvar) in general are not correct as program transformations.

4 The Translation

We define a translation τ0 mapping ΠStop-processes to CHF -processes. It uses the data type
Channel, defined in Haskell-syntax as data Channel = Channel (MVar Channel) (MVar ()).
Channel is a recursive data type, which can be initialized with a ⊥-expression. In the following,
we abbreviate case e of (Channel sendx checkx -> sendx) as getsend e and case e of (Channel sendx checkx -> checkx)
as getcheck e. We use a >> b as abbreviation for a >>= (λ . b) and also use Haskell’s do-
notation as abbrevation, where do {x ← a; b} = a >>= λx.(do b), do {a; b} = a >> (do b),
and do {return e} = e.

The translation from the ΠStop-calculus is done by creating two MVars per channel, the first
one contains the (translated name) of the channel and the second is for the synchronization.

send

check

Channel xsender

y

receiver

y

Message y is sent over channel x. Initially, the MVars send
and check are empty. The receiver waits (black box) for a
message on send, until the receiver fills it with y. Now the
sender waits until check is filled, and the receiver acknowl-
edges by putting () into MVar check.

Definition 4.1. We define the translation τ0 and its inner translation τ from the ΠStop-calculus
into the CHF -calculus as follows, using the do-notation.

τ0(P) = z
main⇐== do {stop ← newMVar (); future τ(P); putMVar stop ()}

where the process P must be closed
τ(x̄(y).P) = do {putMVar (getsend x) y; takeMVar (getcheck x); τ(P)}
τ(x(y).P) = do {y ← takeMVar (getsend x); putMVar (getcheck x) (); τ(P)}
τ(P|Q) = do {future τ(Q); τ(P)}
τ(νx.P) = do {sendx ← newMVar ⊥; checkx ← newMVar (); takeMVar sendx ;

takeMVar checkx ; letrec x = Channel sendx checkx in τ(P)}
τ(0) = return ()
τ(Stop) = takeMVar stop
τ(!P) = letrec f = do {future τ(P); f} in f

8 M. Schmidt-Schauß and D. Sabel

Note that the futures (as a name of process-results) are not required for the translation. The
translation τ0 generates a main-thread and an MVar stop. The main thread is then waiting for
the MVar stop to be emptied. The inner translation τ translates the constructs and constants
of the ΠStop-calculus into CHF -expressions.

Remark 4.2. Note that a translation, without a control like the check-MVar, would produce un-
expected effects. Consider the translation ρ0 that is like τ0, (and ρ like τ), but only uses the send-
MVar, and omits the check-MVar. Consider the process P = νx.x̄y.x(z).Stop that is stuck in the
π-calculus and thus must-divergent. The translation ρ of P is: ρ(P) = do . . . ; putMVar (getsend x) y; takeMVar (getsend x) z; takeMVar stop
which first initializes the MVar sendx to be empty, and then makes a put and a get, and then
reduces to a successful process in CHF, and hence ρ0(P) is may-convergent. Thus ρ0 fails as a
translation.

The translation τ0 does not make use of the name of threads / futures. We use this to
simplify the notation by omitting the name of the future and its ν-binder, and notationally,
abbreviating the construct x⇐ e by writing ⇐ e. This leads to the following conventions. In
the usual notation, x⇐ ((future e) >> e′) reduces (in two steps) to νz.z⇐ e|x⇐ e′. In the
simplified notation, ⇐ (future e >> e′) reduces to ⇐ e|⇐ e′.

As a further example,⇐ τ(!P) is⇐ letrec f = do {future τ(P); f} in f , which sr-reduces
to νf.(⇐ f|f = do {future τ(P); f}), which reduces further to the process νf.(⇐do {future τ(P); f}|f =
do {future τ(P); f}) and then it reduces to the process νf.(⇐ f|⇐ τ(P)|f = do {future τ(P); f}).

Remark 4.3. Note that (except for the main-thread) the translation τ0 generates a Concurrent

Haskell-program, i.e. if we write τ0(P) = z
main⇐== e as main = e, we can execute the translation in

the Haskell-interpreter. Here we assume that the future-primitive is implemented as suggested
in [SSS11]. An alternative is to replace all expressions (future e) by (forkIO e) and changing
the type of these expressions from IO t to IO (). This is possible, since the translated program
never uses the resulting futures generated by future.

Note that the translation σ0, which will be defined below, does not generate a Haskell pro-
gram, since it maps to process components.

5 Properties of the Translation

In this section we define properties of translations and present our results for the translations
τ0 and τ . We defer the proof of convergence-equivalence to Sect. 6.

Definition 5.1. The context Cτout for the translation τ0 is defined as

Cτout = νf, stop.z
main⇐== do {stop ← newMVar (); future [·]; putMVar stop ()}

We define the relations ≤c,τ.0 and ∼c,τ.0 on CHF -expressions as follows:

e1 ≤c,τ.0 e2 iff ∀C such that Cτout [C[e1]], C
τ
out [C[e2]] are closed :

Cτout [C[e1]]↓ =⇒ Cτout [C[e2]]↓ and Cτout [C[e1]]⇓ =⇒ Cτout [C[e2]]⇓
e1 ∼c,τ.0 e2 iff e1 ≤c,τ.0 e2 and e1 ≤c,τ.0 e2.

For the numbered items 4,5,6 below, we adapt the view of the translation τ to a translation
from ΠStop into a slightly modified CHF -language, without an explicit initialization and where
evaluations take place in the context Cτout . Let Πc

Stop,C be the closed contexts of ΠStop.

Embedding the pi-Calculus into CHF 9

Definition 5.2. The following properties of τ0 and τ are essential (see [SSNSS08,SSNS15]) .
1. ∀P, P ′ ∈ Πc

Stop : τ0(P) ∼c τ0(P ′) =⇒ P ∼c P ′ (closed-adequacy of τ0)

2. ∀P, P ′ ∈ Πc
Stop : P ∼c P ′ ⇐⇒ τ0(P) ∼c τ0(P ′) (closed-full abstraction of τ0)

3. ∀P, P ′ ∈ Πc
Stop : P↓ ⇐⇒ τ0(P)↓ and P⇓ ⇐⇒ τ0(P)⇓ (convergence-equivalence of τ0)

4. ∀P ∈ ΠStop : ∀C ∈ Πc
Stop,C : ∀ξ ∈ {↓,⇓} :

Cτout [τ(C[P])]ξ ⇐⇒ Cτout [τ(C)[τ(P)]]ξ (compositionality of τ)
5. ∀P, P ′ ∈ ΠStop : τ(P) ∼c,τ.0 τ(P ′) =⇒ P ∼c P ′ (adequacy of τ)
6. ∀P, P ′ ∈ ΠStop : P ∼c P ′ ⇐⇒ τ(P) ∼c,τ.0 τ(P ′) (full abstraction of τ)

First we show a simple form of a context lemma:

Lemma 5.3. Let e, e′ be CHF -expressions, where the only free variable is stop. Then Cτout [e] ∼c
Cτout [e

′] iff Cτout [e]↓ ⇐⇒ Cτout [e
′]↓ and Cτout [e]⇓ ⇐⇒ Cτout [e

′]⇓.

Proof. One direction is obvious by using the empty context in the ∼c-definition. For the other
direction, assume Cτout [e]↓ ⇐⇒ Cτout [e

′]↓ and Cτout [e]⇓ ⇐⇒ Cτout [e
′]⇓. There are two cases:

1. Let D be a process-context and D[Cτout [e]]↓. Then we have to show that D[Cτout [e
′]]↓. Due

to closedness, D[Cτout [e]] ≡ PD|C
τ
out [e] and D[Cτout [e

′]] ≡ PD|C
τ
out [e

′] for some closed CHF -
process PD. Due to closedness, there is no interference between PD and Cτout [e

′], or Cτout [e],
resp. Hence Cτout [e]↓ =⇒ Cτout [e

′]↓, and thus D[Cτout [e
′]]↓.

2. Let D[Cτout [e]]↑, we have to show D[Cτout [e
′]]↑. Due to closedness, D[Cτout [e]] ≡ PD|C

τ
out [e]

and D[Cτout [e
′]] ≡ PD|C

τ
out [Q

′] and the same arguments as in item 1 show the claim. ut

Proposition 5.4. The translation τ is compositional.

Proof. Compositionality follows by checking whether the single cases of the translation τ are
independent of the surrounding context, and translate every level independently.

We state our main result, which will be proved in the subsequent section:

Theorem 5.5. Let P ∈ ΠStop be closed. Then τ0 is convergence-equivalent for ↓ and ⇓, i.e. P↓
is equivalent to τ0(P)↓. and P⇓ is equivalent to τ0(P)⇓.

Proof. This follows from Proposition 6.9 for may-convergence and from Proposition 6.12 for
should-convergence. Both propositions will be proved in Sect. 6

Theorem 5.6. The translation τ0 is an embedding, i.e. it is closed-adequate and closed-fully
abstract: for closed P1, P2 ∈ ΠStop, the relation τ0(P1) ∼c τ0(P2) holds iff P1 ∼c P2.

Proof. The implication P ∼c P ′ =⇒ τ0(P) ∼c τ0(P ′) follows from Lemma 5.3, since τ0 produces
closed processes that are in context Cout . For the other direction (closed-adequacy of τ0), we
additionally require that for all closed ΠStop-processes P, P ′, contexts C, and ξ ∈ {↓,⇓} the
implication (Pξ ⇐⇒ P ′ξ) =⇒ (C[P]ξ ⇐⇒ C[P ′]ξ) holds. This can be proved by standard
methods and the fact, that a closed ΠStop-process cannot communicate with other processes,
even if it is replicated.

We show in the following that the translation τ transports ΠStop-processes into CHF , such
that adequacy holds. This is a stronger statement than the full abstraction for closed processes,
since this shows that the translated processes also mimic the behaviour of the original ΠStop-
processes when plugged into contexts in a correct way. Also, the image of ΠStop within CHF
behaves much the same as the original ΠStop-processes.

However, this open translation is not fully abstract, which means that there are be CHF -
contexts that can see and exploit too much of the details of the translation.

Theorem 5.7. The translation τ is adequate.

10 M. Schmidt-Schauß and D. Sabel

Proof. Let P, P ′ be ΠStop-processes, such that τ(P) ≤c,τ,0 τ(P ′). We show that P ≤c P ′. Let
C be a context in ΠStop, such that C[P]↓. Then τ0(C[P]) = Cτout [τ(C[P])]. Closed convergence
equivalence shows that Cτout [τ(C[P])]↓, which is the same as Cτout [τ(C)[τ(P)]]↓ by Proposition
5.4. The assumption τ(P) ≤c,τ,0 τ(P ′) implies Cτout [τ(C)[τ(P ′)]]↓, which again is the same as
Cτout [τ(C[P ′])]↓ using Proposition 5.4. Again, closed convergence equivalence implies C[P ′]↓. The
same arguments holds for ⇓ instead of ↓. In summary, we obtain P ≤c P ′, since the computation
is possible for every ΠStop-context C.

Theorem 5.8. The translation τ is not fully abstract.

Proof. This holds, since an open translation can be closed in CHF by a context without initial-
izing the ν-bound MVars. For P = x̄y.Stop|x(z).Stop, we have P ∼c Stop in the π-calculus
(see Example A.2), but in CHF τ(P) 6∼c τ(Stop): for a process context D that does not initialize
the MVars for x (as the translation does), we have D[P]⇑, but D[Stop]⇓.

6 Proofs of the Convergence Properties of the Translation

6.1 A Top-Down Translation σ

We define a variant σ of the translation τ that generates CHF -processes and that is closer to a
direct implementation. It refers to τ for the translations parts that generate expressions. As a
further abbreviation let us write ∅ for the (useless) binding νx.x = ().

Definition 6.1. The translation σ0 is similar to τ0, but refers to σ instead of τ , and generates
processes. The translation σ also generates processes.

σ0(P) = νstop.(z
main⇐== putMVar stop ()| stop m ()| σ(P))

σ(νx.P) = νx, sendx , checkx .(sendx m−|checkx m−|x = Channel sendx checkx|σ(P))
σ(x̄(y).P) = ⇐ τ(x̄(y).P)
σ(x(y).P) = ⇐ τ(x(y).P)
σ(P|Q) = σ(P)|σ(Q)

σ(0) = ∅
σ(Stop) = ⇐ takeMVar stop
σ(!P) = νf.(⇐ f|f = do {future τ(P); f})

Definition 6.2. The context Cσout for the translation σ0 is defined as

Cσout = νf, stop.(z
main⇐== putMVar stop ()| stop m ()| f⇐ [·]).

Lemma 6.3. For all ΠStop-processes P : 1. τ0(P)
sr,∗−−→ σ0(P) and 2. ⇐ τ(P)

sr,∗−−→ σ(P).

6.2 The Translation Preserves May-Convergence

The goal of this section is to show that may-convergence of a closed ΠStop-process P implies
may-convergence of the translated process τ0(P). The main part is to show that for a single step

P
dia−−→ P ′ or P

dsc−−→ P ′ for closed ΠStop-processes P, P ′ that there are natural corresponding
reduction steps of σ0(P) in the CHF -calculus.

Lemma 6.4. Let P ∈ ΠStop be a closed process, such that P
dia−−→ P ′. Then there is a standard

reduction sequence σ0(P)
sr,∗−−→ σ0(P

′) in the CHF -calculus.

Proof. Let P = D[x(y).Pr|x̄(z).Ps] and P ′ = D[Pr[z/y]|Ps]. Since P is closed, there is a binder
νx in D, i.e. we can assume that D = D1[νx.D2[·]] for some Dπ-contexts D1, D2. Since Dπ-contexts
have no input- or output-prefix on the hole-path, this shows:

σ0(P) =Cσout [D1[νx, sendx , checkx .sendx m−|checkx m−|x = Channel sendx checkx
|D2[⇐do {putMVar (getsend x) z; takeMVar (getcheck x); τ(Ps)}
|⇐do {y ← takeMVar (getsend x); putMVar (getcheck x) (); τ(Pr)}]]]

Embedding the pi-Calculus into CHF 11

where D1, D2 are the σ-translations of D1,D2. Inspecting the translation σ shows, that D1, D2

are D-contexts. Using a sequence of
sr−→-reductions we get (see Appendix C)

σ0(P)
sr,16−−−→ Q = Cσout [D1[νx, sendx , checkx .sendx m−|checkx m−

|x=Channel sendx checkx|D2[⇐ τ(Ps)|⇐ τ(Pr)[z/y]]]]

The equation σ0(P
′) = Cσout [D1[νx, sendx , checkx .sendx m−|checkx m−

|x = Channel sendx checkx|D2[σ(Pr[z/y])|σ(Ps)]]]

and Lemma 6.3 imply Q
sr,∗−−→ σ0(P

′).

Lemma 6.5. Let P, P ′ ∈ ΠStop be closed, such that P
dsc−−→ P ′. Then σ0(P)

sr,∗−−→ σ0(P
′), if rule

(replunfold) is used, and σ0(P) ≡ σ0(P ′), otherwise. In particular, σ0(P) ∼c σ0(P ′).

Proof. For rules (assocl),(assocr), we have σ0(D[(P1|P2)|P3]) = C[(σ(P1)|σ(P2))|σ(P3)] ≡
C[σ(P1)|(σ(P2)|σ(P3))] = σ0(D[P1|(P2|P3)]) for some CHF D-context C. Hence, we have
σ0(P) ≡ σ0(P ′).

For the rule (nuup1), we have σ0(D[(νz.P1)|P2]) = C[σ(νz.P1)|σ(P2)])
= C[νz, sendz , checkz .(sendz m−|checkz m−|z = Channel sendz checkz|σ(P1))|σ(P2)]
≡ C[νz, sendz , checkz .(sendz m−|checkz m−|z = Channel sendz checkz|σ(P1)|σ(P2))]
= σ0(D[νz.(P1|P2)]) for some CHF D-context C. Thus, σ0(P) ≡ σ0(P ′).

For rule (nuup2), we have σ0(D[νz.νx.P1]) = C[σ(νz.νx.P1)]
= C[νx, sendx , checkx .(sendx m−|checkx m−|x = Channel sendx checkx

|νz, sendz , checkz .(sendz m−|checkz m−|z = Channel sendz checkz|σ(P1)))]
≡ C[νx, sendx , checkx , νz, sendz , checkz .(sendx m−|checkx m−|x = Channel sendx checkx

|sendz m−|checkz m−|z = Channel sendz checkz|σ(P1))]
≡ C[νz, sendz , checkz .(sendz m−|checkz m−|x = Channel sendz checkz

|νx, sendx , checkx .(sendx m−|checkx m−|z = Channel sendx checkx|σ(P1)))]
≡ σ0(D[νx.νz.P1]) for some CHF D-context C. Thus, we have σ0(P) ≡ σ0(P ′).

For rule (commute), we have σ0(P) ≡ σ0(P
′) since σ0(D[P1|P2]) = C[(σ(P1)|σ(P2))] ≡

C[(σ(P2)|σ(P1))] = σ0(D[P2|P1]) for some D-context C. Thus the claim holds.
For the rule (replunfold), we have:

σ0(D[!P]) = C[νf.(⇐ f|f = do {future τ(P); f})] where f 6∈ FV (P)
sr,cpce−−−−→ C[νf.(⇐do {future τ(P); f}|f = do {future τ(P); f})]
sr,fork−−−−→ sr,beta−−−−→ C[νf.(⇐ τ(P)|⇐ f|f = do {future τ(P); f})]
≡ C[⇐ τ(P)|νf.(⇐ f|f = do {future τ(P); f})]
sr,∗−−→ C[σ(P) |νf.(⇐ f|f = do {future τ(P); f})] = σ0(D[P|!P])

which shows σ0(D[!P])
sr,∗−−→ σ0(D[P|!P]), using the previous items, and Lemma 6.3 for the last

sr,∗−−→-transformation.
The equivalence σ0(P) ∼c σ0(P ′) follows from correctness of the used reduction steps.

Lemma 6.6. If a closed process P of ΠStop is successful, then σ(P)
sr,∗−−→ Q where Q is success-

ful. Moreover, σ(P)↓.

Proof. Process P must contain stop on top-level. Thus the translation generates a thread on

top-level that performs takeMVar stop. Thus Q
sr,tmvar−−−−−→ sr,pmvar−−−−−→ D[

main⇐== return ()]. For the
second part of the lemma, it suffices to observe that σ and τ do not generate a putMVar for
the MVar stop (except in the context Cσout) and thus, the MVar can always be emptied and the
main-thread thereafter can perform the putMVar-command to become successful.

Proposition 6.7. Implication of may-convergence: Let P be a closed ΠStop-process. If P↓ then
τ0(P)↓.

Proof. Lemmas 6.4, 6.5, and 6.6 imply that σ0(P)
sr,∗−−→ Q, where Q is successful, using induction

on the length of a standard reduction of P , hence σ(P)↓.

12 M. Schmidt-Schauß and D. Sabel

6.3 The Translation Reflects May-Convergence

In this section we show that may-convergence of σ0(P) for a closed ΠStop-process P implies may-
convergence of P . We show that by rearranging and extending the standard reduction sequence
to a successful process, a standard reduction sequence of σ0(P) is obtained that corresponds to a
standard reduction sequence of P in the π-calculus. There are three essentially different actions
that are executed by the standard reduction sequence of σ0(P), where the single reduction
steps may be distributed in the reduction sequence: interaction-reductions, replication of the
!P -operator, and reducing τ -images to σ-images.

The following properties are easily checked for a translated closed ΠStop-process P : τ0(P) is
closed; τ0(P) contains the variable stop only in expressions of the form ⇐ takeMVar stop, and
τ0(P) is well-formed and well-typed.

Proposition 6.8. Let P ∈ ΠStop be closed, n ∈ N and σ0(P)
sr,n−−→ Q1 such that Q1 is successful.

Then there is a standard reduction sequence P
sr,∗−−→ P1 and another standard reduction sequence

σ0(P)
sr,∗−−→ Q′1 such that Q′1 and P1 are successful and Q′1 = σ0(P1).

Proof. We show that the following diagram holds by induction on the number of all reduction
steps in Red = σ0(P)

sr,n−−→ Q1.

P

sr,∗
��

σ0 // σ0(P)

sr,∗ss
sr,n
��

P1
σ0 // σ0(P1)(succ.) Q1(succ.)

In this and the diagram below a
plain arrow means a given and a
dashed arrow means an existing re-
duction.

The base case is that σ0(P) is of the form Cσout [D[⇐ takeMVar stop]], and it standard-reduces
in two steps to a successful process. In this case, the only possible reason is that P contains
Stop in a PCtxtπ-context, and σ0 maps it to this subprocess. Then P is successful.

Now we show the induction step. A picture of the proof structure is:

P

sr,∗
��

σ0 // σ0(P)
sr,∗

tt
sr,n
��

P1

sr,∗
��

σ0 // σ0(P1)
sr,∗

ss sr,n′ n′<n��

Q1(succ.)

P2
σ0 // σ0(P2)(succ.) Q2(succ.)

By the induction hypothesis, we have P1↓, but we have to calculate the upper square for all
possibilities of actions (interaction reductions, replication, τ -to-σ-reduction) where we rearrange
the CHF -standard reduction sequence, extend it with missing reduction steps, which do not
change success, and construct a corresponding standard reduction in the π-calculus.

Abstractly, a single induction step is intended to do the following: first we identify reduction
steps that make a complete or a partial execution that performs one of the three actions. There
may be two threads affected by interaction, and otherwise only one thread is affected. We have
to identify one particular (distributed) reduction subsequence S that can be executed as a prefix;
i.e. Red can be rearranged to S; Red ′ having the same total effect. There are two possibilities:
Either there is such a full subsequence S of reduction steps, or we only identify a prefix of
such a subsequence, and the corresponding threads do not have further reduction steps (of the
action) until Q is reached. In the first case, everything is fine, and a P1 can be determined. In
the second case, the subsequence has to be extended by the missing reduction steps. Since the
thread(s) is/are stopped, these additional reduction steps are independent of all other reduction
steps. Hence these can be virtually shifted after Q1 (perhaps turning into non-sr-reductions) and
determine Q′1. We will add the extra reduction steps to the prefix of the reduction sequence,
and then obtain a complete subsequence.

Embedding the pi-Calculus into CHF 13

Since the intention of the proof is to construct a reduction sequence between images of
translation σ, this enforces that sometimes τ -translated parts have to be sr-reduced to their
σ-translation. This is treated in the same way as above.

Referring to Definition 6.1 of translation σ, there are several cases. Let us consider the case
that an image of an ia-reduction is the first action. Analyzing Red shows that, ideally, if we
only look for the (tmvar)-, (pmvar)-reductions, the reduction sequence starts as follows

(ia-1) putMVar (getsend x) y in thread a;
(ia-2) takeMVar (getsend x) in thread b (6= a);
(ia-3) putMVar (getcheck x) () in thread b;
(ia-4) takeMVar (getcheck x) in thread a.

However, there may be deviations, like interleaving of reduction steps in parallel threads, or an
incomplete subsequence. We show that modifying the reduction sequence Red results in another
reduction sequence Red ′ that starts with the ideal 4 reductions, also ends in a successful process,
such that Red ′ contains less standard-reduction steps.

Now we focus the earliest occurrence in Red of an ia-related reduction step. The (ia)-
subsequence may be complete, but there may also be incomplete ones. There will be at least
one such sub-sequence of reduction steps, which can be executed first, since the first one that
makes an MVar-access blocks all others until it is finished. If there is no MVar-access at all (for
MVar (getsend x)), then we can select an arbitrary thread for extension of the subsequence.

If there is only a proper prefix of the 4 reduction steps in Red (in fact these are 8 reduction
steps), then we insert the missing MVar-reduction steps into Red (and also the necessary other
reduction steps), immediately after the subsequence. If we shift the added subsequence after Q1,
we obtain Q′1, which also successful. We put the complete reduction sub-sequence to the front
of Red , which leads to P ′1, and it ends with the successful Q′1.

Let ⇐ (τ(Pa)) and ⇐ (τ(Pb)) be the processes that are left by the four reduction steps
that simulate the (ia). It remains to check whether ⇐ (τ(Pa)) and ⇐ (τ(Pb)) reduce to σ(Pa)
and σ(Pb), respectively. Here we use the same construction as above: The reduction steps that
are already in the sequence are shifted to the left. Since the threads are blocked if there are
missing reductions, we can add the missing reduction steps to the reduction sequence, keeping
the property that the resulting process of the whole sequence is successful. For details, we refer
to Lemma 6.3. We obtain the upper square of the diagram, where also the number of reductions
is strictly smaller for the remaining reduction sequence.

We now consider the case that the reduction is an image of a (replunfold) step. Then the

corresponding reduction is the (fork)-reduction. In fact, it is a sequence
cpce−−→ · fork−−−→ · beta−−→.

We can, following the reduction pattern in the proof of Lemma 6.5, move the reduction steps
to the front, which are corresponding to a single replication. If reduction steps are missing, we
can add the missing steps without disturbing the final success. Also, we can add the necessary
reductions that may be missing to turn the τ(Pr) into σ(Pr). Again we can construct the square
diagram, as requested, where also in this case, the process that represents the final success may
have changed.

Finally, we can apply the induction hypothesis, since the combined measure is strictly re-
duced, and we thus obtain a standard reduction in ΠStop to a successful process. ut

Propositions 6.7 and 6.8 imply:

Proposition 6.9. Let P ∈ ΠStop be closed. Then τ0 is convergence-equivalent for ↓, i.e. P↓ is
equivalent to τ0(P)↓. This also implies that P⇑ is equivalent to τ(P)⇑.

6.4 Equivalence of Should-Convergence of the Translation

We argue that the translation τ leaves should-convergence invariant, where we work with may-
divergence and where Proposition 6.9 is very useful since it is the induction base.

14 M. Schmidt-Schauß and D. Sabel

Proposition 6.10. Let P ∈ ΠStop be closed, n ∈ N and P
sr,n−−→ P1 such that P1⇑. Then there

is a standard reduction sequence σ(P)
sr,∗−−→ σ(P1) with σ(P1)⇑

Proof. The proof is similar to the implication proof for may-convergence (Proposition 6.7) with
the difference that the reduction sequence ends in a must-divergent process. Proposition 6.9
shows the base case. The induction step is almost the same as in the proof of Proposition 6.7,
with the difference that the reduction sequences end with must-divergent processes. ut

The last case is to show that σ(P)↑ =⇒ P↑. This is almost similar to the arguments for
σ(P)↓ =⇒ P↓ where some more arguments are needed to show that the final process remains
must-divergent after the rearrangements and additions to the reduction sequence.

Proposition 6.11. Let P ∈ ΠStop be closed, n ∈ N and σ0(P)
sr,n−−→ Q1 such that Q1⇑. Then

there is a standard reduction sequence P
sr,∗−−→ P1 and another standard reduction sequence

σ(P)
sr,n−−→ Q′1 such that Q′1⇑ and Q′1 = σ0(P

′
1).

Proof. It is sufficient to show the following diagram by induction on n.

P

sr,∗
��

σ0 // σ0(P)

sr,∗ss
sr,n
��

P1
σ0 // σ0(P1)⇑ Q1⇑

An additional argument is that Q⇑ and Q
∗−→ Q′ implies Q′⇑, which is required for the

rearrangement and extension of the standard reduction sequence. Using these arguments the
proof is otherwise completely analogous to the proof of Proposition 6.8. ut

Proposition 6.12. Let P ∈ ΠStop be closed. Then τ0 is convergence-equivalent for ⇓, i.e. P⇓
is equivalent to τ0(P)⇓.

7 Conclusion

We have shown that there is a translation from the π-calculus into CHF , which is an em-
bedding for closed processes w.r.t. ∼c, and preserves may-convergence behavior as well as the
should-convergence behavior. The translation is rather strong, since even for open processes, it
is adequate w.r.t. the respective contextual equivalences.

For further work, we may consider extended variants of the π-calculus. We are convinced that
adding recursion and sums can easily be built into the translation, while it might be challenging
to encode (name) matching operators.

References

AG97. Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The Spi calculus. In
Richard Graveman, Philippe A. Janson, Clifford Neumann, and Li Gong, editors, CCS ’97, pages
36–47. ACM, 1997.

BBP95. Richard Banach, J. Balázs, and George A. Papadopoulos. A translation of the pi-calculus into MON-
STR. J.UCS, 1(6):339–398, 1995.

com19. Haskell community. Haskell main website, 2019. www.haskell.org.
FG02. C. Fournet and G. Gonthier. The join calculus: A language for distributed mobile programming. In

APPSEM’00, volume 2395 of LNCS, pages 268–332. Springer, 2002.
Han18. Axel Hanczak. Untersuchung einer Übersetzung des Pi-Kalküls in die nebenläufige funktionale Pro-

grammiersprache Concurrent Haskell with Futures, english: investigating a translation of the pi-calcuus
into the concurrent functional programming language Concurrent Haskell, 2018. Goethe-University
Frankfurt, Germany, Dept. Computer Science, B.Sc. thesis, in German.

Lan96. C. Laneve. On testing equivalence: May and must testing in the join-calculus. Technical Report
UBLCS 96-04, University of Bologna, 1996.

Embedding the pi-Calculus into CHF 15

Mil99. Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge University Press,
1999.

MPW92. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I & II. Inform.
and Comput., 100(1):1–77, 1992.

PGF96. Simon L. Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell. In Proc. 23rd ACM
POPL 1996, pages 295–308. ACM, 1996.

Pri95. Corrado Priami. Stochastic pi-calculus. Comput. J., 38(7):578–589, 1995.
Sab14. David Sabel. Structural Rewriting in the pi-Calculus. In First International Workshop on Rewrit-

ing Techniques for Program Transformations and Evaluation, volume 40 of OpenAccess Series in In-
formatics (OASIcs), pages 51–62, Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

SS15. David Sabel and Manfred Schmidt-Schauß. Observing success in the pi-calculus. In 2nd WPTE 2015,
volume 46 of OASICS, pages 31–46, 2015.

SSNS15. Manfred Schmidt-Schauß, David Sabel, Joachim Niehren, and Jan Schwinghammer. Observational
program calculi and the correctness of translations. Theor. Comput. Sci., 577:98–124, 2015.

SSNSS08. Manfred Schmidt-Schauß, Joachim Niehren, Jan Schwinghammer, and David Sabel. Adequacy of
compositional translations for observational semantics. In Proc. IFIP TCS’08, volume 273 of IFIP,
pages 521–535. Springer, 2008.

SSS11. David Sabel and Manfred Schmidt-Schauß. A contextual semantics for Concurrent Haskell with futures.
In Proc. PPDP’11, pages 101–112. ACM, 2011.

SSS12. David Sabel and Manfred Schmidt-Schauß. Conservative concurrency in Haskell. In Proc. 27th IEEE
LICS 2012, pages 561–570. IEEE, 2012.

SW01a. Davide Sangiorgi and David Walker. On barbed equivalences in pi-calculus. In Proc. CONCUR 2001,
volume 2154 of LNCS, pages 292–304. Springer, 2001.

SW01b. Davide Sangiorgi and David Walker. The π-calculus: a theory of mobile processes. Cambridge university
press, 2001.

YRS04. Ping Yang, C. R. Ramakrishnan, and Scott A. Smolka. A logical encoding of the pi-calculus: model
checking mobile processes using tabled resolution. STTT, 6(1):38–66, 2004.

16 M. Schmidt-Schauß and D. Sabel

A Barbed Convergence Testing and Equivalence

In [SS15], the following Context Lemma was proved, where σ are name-to-name substitutions:

Theorem A.1 ([SS15]). For all processes P,Q ∈ ΠStop:

– If for all σ,R: σ(P)|R ≤↓ σ(Q)|R, then P ≤c,↓ Q.
– If for all σ,R: σ(P)|R ≤↓ σ(Q)|R ∧ σ(P)|R ≤⇓ σ(Q)|R, then P ≤c Q.

Example A.2. We show the equivalence x(y).Stop|x̄(z).Stop ∼c Stop. Clearly for all σ and
all processes R we have σ(Stop)|R is successful and thus σ(Stop)|R⇓ and σ(Stop)|R↓. We
also have that σ(x(y).Stop|x̄(z).Stop)|R↓, since the process reduces in one step to Stop|R.
We finally, observe that it is impossible to reduce σ(x(y).Stop|x̄(z).Stop)|R into a must-
divergent process, since the process becomes successful if one of the components σ(x(y).Stop) or
σ(x̄(y).Stop) is part of the redex, and otherwise (the interaction between these two processes is
always possible). Thus, σ(x(y).Stop|x̄(z).Stop)|R is must-convergent. Hence all preconditions
of the context lemma (Theorem A.1) hold and the equivalence holds.

For stop-free processes this notion of contextual equivalence coincides with so-called barbed
testing equivalence, which observes whether a process may- or should-reduces to a process that
has a free input on a fixed channel name (see [SS15]):

Definition A.3. Let Π be the subcalculus of ΠStop that does not have the constant Stop as
a syntactic construct. Processes, contexts, reduction, structural congruences are accordingly
adapted for Π.

Let P ∈ Π and x ∈ N . A process P has a barb on input x (written as P �x) iff P ≡
νX .(x(y).P ′|P ′′) where x 6∈ X . We write P �x iff there exists P ′ such that P

sr,∗−−→ P ′ and P ′ �x.

We write P ��x iff for all P ′ with P
sr,∗−−→ P ′ also P ′ �x holds. We write P ��x iff P �x does not

hold, and we write P �x iff P ��x does not hold.
For a name x ∈ N , barbed may- and should-testing preorder ≤c,barb and barbed may-

and should-testing equivalence ∼c,barb are defined as ≤c,barb :=≤c,�x ∩ ≤c,��x and ∼c,barb :=≤c,barb
∩(≤c,barb)−1 where for ξ ∈ {�x, ��x,�x, ��x} and P,Q ∈ Π the inequality P ≤c,ξ Q holds iff for all
contexts C ∈ Π : C[P]ξ =⇒ C[Q]ξ.

Theorem A.4 ([SS15]). For all processes P,Q ∈ Π: P ≤c,barb Q ⇐⇒ P ≤c Q, and hence
also P ∼c,barb Q ⇐⇒ P ∼c Q.

B Proof of Lemma 6.3

Lemma B.1 (This is Lemma 6.3). For all ΠStop-processes P : 1. τ0(P)
sr,∗−−→ σ0(P) and 2.

⇐ τ(P)
sr,∗−−→ σ(P).

Proof. For the first part, it suffices to verify that τ0(P) is a process that reduces as follows:

τ0(P) = z
main⇐== do {stop ← newMVar (); future τ(P); putMVar stop ()}

sr,nmvar−−−−−−→ sr,beta−−−−→ νstop.z
main⇐== do {future τ(P); putMVar stop ()}|stop m ()

sr,fork−−−−→ sr,beta−−−−→ νstop.z
main⇐== putMVar stop ()|stop m ()|⇐ τ(P)

sr,∗−−→ νstop.z
main⇐== putMVar stop ()|stop m ()|σ(P) = σ0(P)

The
sr,∗−−→-sequence is derived from the second part of the lemma, and by plugging-in the reduction

sequence in the larger context.
It remains to show the second part. We show this by induction on the size of P and by

checking all the cases.

Embedding the pi-Calculus into CHF 17

– If P starts with an input or an output prefix or is Stop, then ⇐ τ(P) = σ(P), and thus the
claim holds.

– If P is the silent process, then ⇐ τ(P) =⇐ return ()
sr,unIO−−−−−→ νx.x = x() = σ(P)

– If P is a parallel composition P1|P2, then

⇐ τ(P1|P2) =⇐do {future τ(P2); τ(P1)}
sr,fork−−−−→ sr,beta−−−−→ ⇐ τ(P2)|⇐ τ(P1)

sr,∗−−→ σ(P2)|σ(P1) = σ(P1|P2)

The final
sr,∗−−→ sequence is obtained as follows: by the induction hypothesis we have⇐ τ(Pi)

sr,∗−−→
σ(Pi) for i = 1, 2 and we combine these sr-reductions (by processing them sequentially) and

get ⇐ τ(P2)|⇐ τ(P1)
sr,∗−−→ σ(P2)|⇐ τ(P1)

sr,∗−−→ σ(P2)|σ(P1)

– If the process starts with νx, then

⇐ τ(νx.P) =⇐ do {sendx ← newMVar ⊥; checkx ← newMVar (); takeMVar sendx ;
takeMVar checkx ; letrec x = Channel sendx checkx in τ(P)}

sr,nmvar−−−−−−→ sr,beta−−−−→ sr,nmvar−−−−−−→ sr,beta−−−−→⇐ do {takeMVar sendx ; takeMVar checkx ;
letrec x = Channel sendx checkx in τ(P)}

|checkx m ()|sendx m ()
sr,tmvar−−−−−→ sr,beta−−−−→ sr,tmvar−−−−−→ sr,beta−−−−→⇐ letrec x = Channel sendx checkx in τ(P)

|checkx m−|sendx m−
sr,mkbinds−−−−−−−→⇐ τ(P)|x = Channel sendx checkx|checkx m−|sendx m−
sr,∗−−→ σ(P)|x = Channel sendx checkx|checkx m−|sendx m−

Note that the (tmvar)-reductions are deterministic (i.e. (dtmvar)-transformations), since
there is no alternative, since the names of the visibility of the MVars and the potential
accesses leave only one possibility. The final standard reduction sequence is obtained by first

applying the induction hypothesis for P to derive⇐ τ(P)
sr,∗−−→ σ(P) and then observing that

the same reduction sequence can be performed if there are more parallel components.

– If the process is a replication, then

⇐ τ(!P) =⇐ letrec f = do {future τ(P); f} in f
sr,mkbinds−−−−−−−→ νf.⇐ f|f = do {future τ(P); f} = σ(!P).

This finishes the induction proof.

Lemma 6.3 and correctness of (fork), (nmvar), (dtmvar), (beta), (cpce), and (mkbinds) imply:

Proposition B.2. For all ΠStop-processes P : 1. σ(P) ∼c ⇐ τ(P) and 2. σ0(P) ∼c τ0(P).

C Reduction Sequence for Lemma 6.4

We show that σ0(P)
sr,16−−−→ Q in Lemma 6.4:

σ0(P) =Cσout [D1[νx, sendx , checkx .sendx m−|checkx m−|x=Channel sendx checkx
|D2[⇐do {putMVar (getsend x) z; takeMVar (getcheck x); τ(Ps)}
|⇐do {y←takeMVar (getsend x); putMVar (getcheck x) (); τ(Pr)}]]]

sr,cpce−−−−→ sr,case−−−−→Cσout [D1[νx, sendx , checkx .sendx m−|checkx m−|x=Channel sendx checkx
|D2[⇐do {putMVar sendx z; takeMVar (getcheck x); τ(Ps)}
|⇐do {y←takeMVar (getsend x); putMVar (getcheck x) (); τ(Pr)}]]]

18 M. Schmidt-Schauß and D. Sabel

sr,cpce−−−−→ sr,case−−−−→Cσout [D1[νx, sendx , checkx .sendx m−|checkx m−|x=Channel sendx checkx
|D2[⇐do {putMVar sendx z; takeMVar (getcheck x); τ(Ps)}
|⇐do {y ← takeMVar (sendx); putMVar (getcheck x) (); τ(Pr)}]]]

sr,pmvar−−−−−→ sr,beta−−−→Cσout [D1[νx, sendx , checkx .sendx m z|checkx m−|x=Channel sendx checkx
|D2[⇐do {takeMVar (getcheck x); τ(Ps)}
|⇐do {y ← takeMVar (sendx); putMVar (getcheck x) (); τ(Pr)}]]]

sr,tmvar−−−−−→sr,beta−−−→Cσout [D1[νx, sendx , checkx .sendx m−|checkx m−|x=Channel sendx checkx
|D2[⇐do {takeMVar (getcheck x); τ(Ps)}
|⇐ (do {putMVar (getcheck x) (); τ(Pr)})[z/y]]]]

sr,cpce−−−−→ sr,case−−−−→Cσout [D1[νx, sendx , checkx .sendx m−|checkx m−|x=Channel sendx checkx
|D2[⇐do {takeMVar checkx ; τ(Ps)}
|⇐ (do {putMVar (getcheck x) (); τ(Pr)})[z/y]]]]

sr,cpce−−−−→ sr,case−−−−→Cσout [D1[νx, sendx , checkx .sendx m−|checkx m−|x=Channel sendx checkx
|D2[⇐do {takeMVar checkx ; τ(Ps)}
|⇐ (do {putMVar (checkx) (); τ(Pr)})[z/y]]]]

sr,pmvar−−−−−→ sr,beta−−−→Cσout [D1[νx, sendx , checkx .sendx m−|checkx m ()|x=Channel sendx checkx
|D2[⇐do {takeMVar checkx ; τ(Ps)}|⇐ τ(Pr)[z/y]]]]

sr,tmvar−−−−−→sr,beta−−−→Cσout [D1[νx, sendx , checkx .sendx m−|checkx m−|x=Channel sendx checkx
|D2[⇐ τ(Ps)|⇐ τ(Pr)[z/y]]]]

= Q

	Embedding the Pi-Calculus into a Concurrent Functional Programming Language

