
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
In this interesting work, Stevner and colleagues reanalyzed previously acquired EEG/fMRI data of 
wakefulness and NREM sleep. They applied a hidden Markov model (HMM) to the fMRI data, which 
incorporates both activity and connectivity information in a temporally sensitive manner. The fMRI 
data were extracted with a predefined anatomical atlas and the amount of HMM states was set to 
19. A hierarchical grouping of the 19 HMM states showed a good overlap with wakefulness and the 
NREM stages. The authors reported relevant characteristics for these states (e.g., sensitivity, 
specificity, switching) and provided an intriguing matrix representing the likelihood of transitioning 
from one state to another. The authors conclude they discovered a significant decrease in whole 
brain dynamics during consolidated stages of NREM sleep, that fMRI activity/connectivity doesn't 
map well onto N1 and that the default mode network (DMN) could serve a "gate-function" for the 
entry into NREM sleep, among others. The paper makes for an interesting read on a timely topic, 
but some issues need addressing, particularly on the stability of the analyses and to what extent 
the findings go beyond our current understanding of sleep.  
 
Introduction  
 
- The rationale for applying HMM to these fMRI data needs more explanation. Why this model and 
not multivariate autoregressive or other kinds of models? Could the authors discuss the conditions 
for this model, and if and how these differ from other Markov based processes regarding long 
range temporal dependence? This should preferably be related to the authors' own work on non-
Markovianity in resting-state EEG and a reduction of long range temporal dependence in sleep in 
various fMRI networks in a previous analysis of these data (Tagliazucchi et al., 2013; von Wegner 
et al., 2017).  
 
Results  
 
- The number of states was set to 19, which was not due to some formal criterion like minimal free 
energy. Yet the authors' line of reasoning can be followed, although it doesn't fully tackle the 
relative arbitrariness of the chosen solution. If we go with this setting, some of the states turn out 
to have very similar anatomical maps. For instance, the states 4 and 15 that were more N1-related 
seem to be the inverted map of each other, with some minor differences. If the analysis would 
have been set to a lower number, would these states still be recognized as different states or 
would they morph into the same state? Or in other words, are these states different enough to be 
labelled different or is that a consequence of the setting? This could also be relevant for some of 
the other findings, e.g. the exclusivity of transitioning from state 8 to 15 at sleep onset – is this 
still visible with a higher numbers of states for the analyses?  
 
- The triangulation pattern observed among two N2 states and the one N3 state is due to states 3 
and 6 in N2, with state 6 showing some overlap with sleep spindle related activity and connectivity 
as in previous work, which is also noted by the authors in the discussion. This implies that the N3 
state can be preceded from N2 sleep with and without spindles, which can be seen in visually 
scored polysomnographic recordings. This now leads to the possibility that the HMM findings still 
represent the neural correlates of classical EEG states and events throughout sleep. Since the 
authors claim that their analysis goes beyond PSG, they have to show that the states do not 
merely reflect specific EEG events and states. The authors already state that "future work should 
address more specifically the relationship between data-driven, HMM-identified networks and EEG-
defined spindles as well as other graphoelements such as K-complexes", but they can and should 
do this themselves since it is central to their claim that their analysis expands the classical 
understanding of sleep. This applies not just to spindles or K-complexes, but also to N1 
phenomena (reduction in posterior alpha) or EEG-based vigilance fluctuations within wakefulness 
(e.g., Olbrich et al., 2009). Also, the authors need to discuss whether the move beyond PSG 



staging cannot be done by EEG itself, since it allows a much more fine-grained temporal dissection 
even though the PSG stage labelling itself is rather analogue.  
 
Discussion/Conclusions  
 
- In the title the authors and throughout the paper the authors claim the "discovery of key whole-
brain transitions and dynamics underlying the human sleep cycle". But without REM sleep, they are 
studying the NREM part of the sleep cycle.  
 
- One main conclusion is that N1 sleep did not correspond to any single state or a group of states 
identified by the HMM, which is in line with the notion that N1 is not a consolidated sleep stage but 
a transition stage between wakefulness and sleep. Note that this does not go against the current 
consensus in sleep research. For instance in the textbook for sleep, the Principles and Practice of 
Sleep Medicine (5th ed), Carskadon & Dement write that sleep stage 1 is a "wake-to-sleep 
transition" stage, and that it "occurs as a transitional stage throughout the night" (Carskadon & 
Dement, 2011). Furthermore, there is a whole line of research on ERPs in stage 1 sleep, which is 
in line with the notion that sleep stage 1 is a transition stage and not a straightforward sleep 
stage. The authors should incorporate such previous work and common notions on N1.  
 
- Do the authors have any data on mentations the subjects reported at awakening? If not, the 
authors may want to attenuate their speculations on mental content and the dynamic state regime 
in N1.  
 
- Another main conclusion focuses on the observed differences between pre- to post-sleep 
wakefulness, about which the authors write that PSG does not differentiate between both and the 
"neural underpinnings remain scarcely explored". Here it would be helpful to cite the early 
EEG/PET work on pre- to post-sleep wakefulness differences (e.g., Braun et al., 1997); a careful 
comparison with this work would be informative.  
 
Methods  
 
- The images were smoothed early in the process. It is not exactly clear from which images the 
regional data were extracted, this needs to be clarified. I presume for now they used the error 
images from the analyses in which noise components and motion parameters were "regressed out 
of the signals", and that these error images were then temporally filtered. This would mean that 
the regional data were extracted from images that were smoothed with an 8 mm FWHM kernel, 
which creates artificial dependencies between the regional time-courses. If that is the case, please 
re-run the analysis on the images that were not smoothed.  
 
- The stability of the analyses could be strengthened by using different atlases, for instance based 
on functional connectivity, and applying the same pipeline. It would be useful to know if this again 
leads to 19 states, if the same transition matrix can be observed and if they are anatomically 
similar to the current states.  
 
- In the fMRI paragraph, the 2nd sentence "MRI and pulse artefact correction were applied on the 
average artefact subtraction method ..." describes a method used to clean the EEG.  
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Reviewer #2 (Remarks to the Author):  
 
The authors describe the use of a data driven method to study the spatiotemporal structure of 
previously acquired fMRI data with the goal of characterizing changes in across the sleep-wake 
cycle. This is an interesting topic as it is a relatively unexplored area, in part due to the sleep 
adverse conditions of the MRI scanner. The approach is based on a Markov model of the fMRI 
signal and allows classification of brain activity in a set of prototypical patterns whose occurrence 
and intensity may vary with arousal state. This potentially allows a better characterization of sleep 
than previous fMRI studies based on polysomnography (PSG) sleep staging or correlations with 
EEG events such as K-complexes and spindles. The authors, limiting their analysis to non-REM 
sleep, identify a number of fMRI activity patterns (“states”) that preferentially occur during wake 
and each of three EEG-defined sleep stages, and quantify transition probabilities between these 
states. Based on this, they conclude that the results provide a novel and more complete 
characterization of sleep than conventional PSG-based sleep staging, that the default-mode 
network serves as a “gate” for the transition into non-REM sleep, and that there is a decrease in 
“whole brain dynamics during consolidated stages of non-REM sleep”.  
 
Overall I believe this is a valuable study presenting a more rigorous way for the analysis of fMRI 
sleep data than previously presented. The identified spatiotemporal patterns are interesting and 
may provide more insight into the nature of sleep. I do have a number of reservations though 
about both the methodology, and the presentation of the results:  
 
 
- Throughout the manuscript, PSG based sleep staging is being used as straw man to contrast with 
the authors’ method. This is not appropriate, as the purpose of PSG is not to comprehensively 
characterize sleep and its activity patterns, rather than discriminating between various depths of 
sleep (arousal thresholds). At the same time, numerous other methods have been used to study 
sleep, including EEG, MEG, ECoG, and even PET and fMRI (the former 3 distinguishing microstates, 
the latter 2 exploring e.g. the PET or fMRI correlate of K-complexes and spindles). This literature 
should be discussed. In addition, it should be mentioned that PSG can be used on single subjects, 
rather than requiring the large dataset analyzed here.  
- The hidden Markov model (HMM) approach to perform data-driven analysis is interesting but by 
itself does not guarantee the identification of neuro-scientifically relevant patterns of brain activity. 
Like a number of previously presented approaches (co-activation pattern based analysis, temporal 
functional modes, point-process analysis etc. etc), it allows extraction of statistically different 
patterns of fMRI activity but provides little understanding of what these patterns relate to or mean. 
Specific problems I see with the implementation here is the quite arbitrary choice of the number of 
states (see minor comments as well), and the use of an unequal distribution of data over the 
different PSG stages. This could affect the fMRI patterns of the individual states, and the 
conclusion about what these patterns may mean. Regarding the conclusion that fewer states were 
found during the deepest PSG sleep stage, this could be simply due to the fact that there was only 
10% of deep sleep in the 57 subjects studies. To this point, HMM state 16 that was the only state 
found for N3 sleep was only specific to N3 in 4 (out of 57!) subjects. Similarly on page 21, the 
authors say they “provide direct evidence of a higher state repertoire” during wakefulness. Again, 
much more data was collected during wake, potentially biasing the number of wake vs sleep 
states. In addition, more states found across subject does not mean more states WITHIN subjects, 



while the latter would be the more interesting finding. I would not be surprised if different people 
were thinking about different things during wake! (see also below).  
- The conclusion that the default-mode network serves as a “gate” for the transition into non-REM 
sleep appears based on the higher transition probability between state 8 (with high DMN activity) 
and state 15. This seems unwarranted, as there are a significant number of transitions between 
state 2 (low DMN activity) and state 15 as well.  
- The authors comment on the variety of states occurring during each EEG sleep stage but this is a 
bit misleading as this was a group-based determination. It is possible that some each subject 
exhibits a smaller repertoire of states. Similarly, talking about a “higher state repertoire” during 
wake may be valid across subjects, but authors have not demonstrated this to be the case in 
individual subjects.  
- As physiological changes are known to be prominent across sleep (in fact, they are increasingly 
being used to perform sleep staging), the authors should comments on how much they believe 
RETROICOR removes systemic physiological effects from the fMRI data, as well as the potential 
remaining confounds.  
- The abstract is vague and somewhat speculative. Terms like “top-down defined sleep stages” and 
“comprehensive image of brain states” are uninformative. “going beyond PSG, HMM allowed …” is 
misleading. PSG is not meant to characterize the spatiotemporal patterns of brain activity, merely 
provide a surrogate marker of arousal threshold. Also, likely other (non HMM) analysis methods 
will allow this characterization, so I feel the important new thing here is the data driven aspect, 
not the specific analysis method used. Lastly, the authors should list here the specific neuro-
scientific findings of their work.  
 
Minor comments:  
 
1) Several times the authors mention the study subjects “Across the sleep wake cycle”. This is not 
correct as REM sleep was not analyzed.  
2) Page 1, Line 1: Is "underlying" the best word for the title? Perhaps not, but there may be a 
better way to signal to potential readers that the analysis was performed across the conventional 
sleep stages. Maybe "Discovery of whole-brain transitions and dynamics across the conventional 
human sleep stages."  
3) Page 1, Line -14: The first phrase of the abstract is true but unnecessary, distantly related to 
the specific sleep neuroscience topic under study  
4) Page 2, Line -2: Was polysomnography ever indicated in the clinical evaluation of insomnia?  
5) It is stated at the bottom of page 2 that PSG is poor for studying insomnia. Are the authors 
proposing that fMRI is better?  
6) Top page 3; are predictions by the listed theories captured by states found by authors?  
7) Page 3, Line 12: Are the text and references on brain activity during wakefulness necessary? It 
may be prudent to delete the text between "wakefulness" and "however"?  
8) Page 3, Line 19: The authors exhibit intellectual honesty by including their publications in the 
list of publications that they, in the next sentence, carefully suggest has a key limitation.  
9) Page 3, Line -7: I do not understand why Reference 54 is unique. Does it not have the same 
limitation of a top-down constraint of the conventional sleep stages as the above references? It 
seems out of place here. Should it be moved and grouped with those publications at the beginning 
of the preceding paragraph? The same questions apply to the text associated with it at the initial 
two points in the Discussion section where it is specifically mentioned.  
10) Page 4, Line 1: The different sample sizes used throughout the manuscript is confusing. It 
would be worthwhile to add some unambiguous text here and in the Participants subsection in the 
Methods section.  
11) Page 4, Line 7: The subsample of the 33 wakefulness-after-sleep-onset subjects should be 
added to Table S1.  
12) Why are some states not represented in Fig.4 (e.g. state14 which seems to have substantial 
fractional occupancy)  
13) Neuro-electrical activity such as K-complexes and spindles are known to be prevalent during 
sleep stages N1 and N2. Do the authors expect these activities to be represented in specific HHM 



states? Please Comment.  
14) The color bar in Fig. 5 needs to be labeled  
15) Page 18. “Looking through glass, darkly” is awkward language.  
16) Page 18: “other studies have taken PSG as ground truth”. To some extent, this is what the 
authors do as well! (e.g. in grouping of states in sleep stages in figs 4, 5,7 amd the conclusions 
that flow from that.  
17) Page 6, Line -12: Incorporating Reference 54 in this justification is awkward and unnecessary. 
This justification stands on its own quite well without the introductory phrase.  
18) Page 11, Line 5: Perhaps I missed it, but how was the threshold determined?  
19) Page 11, Line -12: The attempt to extend states across the conventional sleep stages is a very 
novel and important part of the manuscript. The above validation steps are nice, but this is where 
we will actually learn something new about sleep neuroscience. Indeed, that is exactly what 
happened when the authors separated wakefulness and wakefulness after sleep onset.  
20) Page 11, Line -12: Perhaps Figure S3 should be moved to the main text. The statistically 
significant sensitivity differences in opposite directions for states 2, 8, and 10 (wakefulness is 
higher) versus states 5, 17, and 18 (wakefulness after sleep onset is higher) is very compelling.  
21) Page 19, Line 1: The authors may want to begin this paragraph by briefly discussing how 
others have attempted to subdivide the conventional sleep stages with more-sophisticated 
analyses of EEG data (e.g., Reference 7 and Borbely, Baumann, Brandeis, Strauch, & Lehmann, 
1981).  
22) Page 19, Line 4: Does Figure 7 add information that is not available in the text?  
23) Page 20, Line 9: The authors may want to review a PET study on post-sleep wakefulness 
(Balkin et al., 2002) and determine whether it is worth including here.  
24) Page 20, Line 17: Reference 86 did not examine N1.  
25) Page 21, Line 14: How dependent is this interpretation on the number of states initially chosen 
for the analysis?  
26) Page 22, Line -12: The differences between wakefulness and wakefulness after sleep onset 
should receive greater attention. They are the most novel, interesting, and exciting part of the 
manuscript. They should be cited as an example of how the approach and other similar approaches 
can be used to make truly new discoveries in sleep neuroscience.  
27) Page 22, Line -12: Related to the previous comment, the authors may want to discuss other 
attempts to subdivide the conventional sleep stages with fMRI (Picchioni et al., 2008; Watanabe et 
al., 2014).  
28) Page 22, Line -9: I appreciate how the authors make a call for the inclusion of other important 
brain processes. One that they might consider mentioning are behavioral measures of sleep such 
as eyelid closure, which has been applied to fMRI data during fluctuations of arousal (Chang et al., 
2016), and arousal threshold, which forms the most important component of the original 
behavioral definition of sleep.  
29) Page 22, Line -9: Related to the previous comment, when going beyond the conventional sleep 
stages, it may be worthwhile to mention that pre- versus postsleep adaptive brain processes 
related to the function of sleep (e.g., memory consolidation) should also be included.  
30) Page 22, Line -3: Is discussing the application to other altered states of consciousness too 
loosely linked to the current study? Perhaps this sentence should be deleted.  
31) Page 26, Line -5: The terms "more robust" and "potential noisy" are vague. It is not clear to 
the reader why principal component analysis was performed. Why was it performed here and not 
in the authors' prior publication (Reference 34)?  
32) Page 26, Line -2: Figure S1 is not necessary in general and is included as a panel in Figure 1.  
33) Page 27, Line 11: More details on what exactly minimum free energy is measuring may be 
warranted.  
34) Page 27, Line 16: Why did minimum free energy fail as the method for choosing the number of 
states? What is unique about these data that triggered this deviation from standard practice?  
35) Page 27, Line -8: The authors used how well the states related to the conventional nonrapid 
eye movement sleep stages here to help them determine how many states to use. Does this not 
defeat the purpose of analyzing the fMRI data independently of the conventional sleep stages?  
36) Page 29, Line 1: The AASM manual defines wakefulness after sleep onset as wakefulness after 



having reached any stage. Why did the authors choose to deviate from this standard?  
37) Supplementary Material Page 5, Line 1: The authors should consider simplifying this figure 
further by also excluding the bars representing N1 and N2. The key question is whether W and 
WASO differ.  
38) Supplementary Material Page 5, Line 1: "Including" may not be the best word. Is "separating" 
better?  
39) The justification for choosing the number of HMM states is not sound. E.g. in caption of Fig. S2 
it says: that the “median fractional occupancy stagnates around K=19” to make the point that that 
higher K did not split states. These issues are not directly related though.  
40) I found Figure 7 quite speculative, with several statements that are questionable in the light of 
my major comments (unequal amount of data in various sleep stages, states present in some 
subject but not in others, multiple pathways for the transition of wake to sleep etc.  
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Reviewer #3 (Remarks to the Author):  
 
My commits will mainly focus on the HMM part.  
 
When applying Gaussian HMM on fMRI analysis, some papers assume the mean vector is zero and 
only study the covariance matrix as a functional connectivity matrix. Some papers assume the 
covariance matrix to be identity matrix and only focus on the mean vector as a mean activation 
pattern. In this paper, there seem to be no constraints on mean vector or covariance matrix; 
therefore, the state is represented by a mean activation pattern and a covariance matrix. In this 
case, substrating/averaging two/multiple covariance matrices from different brain states may be 
problematic (Figure S5 and S6), because this ignores the fact that these brain states has a 
different baseline activation pattern.  
 
If we look at the 19 covariance matrices in Figure S4, most part of them is positive. Even for the 
negative part, the values are relatively low compared with the positive part (-0.2 vs. +1.2). I am 



wondering whether this is due to the lack of global signal regression or it is because each of the 
covariance matrices is associated with a mean vector and that makes it different from the 
conventional FC matrix.  
 
I suspect the temporal features (e.g. mean life time (around 10-20s), switching frequency) will be 
highly influenced by the temporal filter (0.01-0.1Hz). It would be nice to prove that at least their 
relative relationship will not change by using a different temporal filter.  
 
My biggest concern about these results is their reproducibility. As far as I know, methods like HMM 
are sensitive to its initialization. Training the model twice with different initialization may give you 
different results. Some states may appear slightly differently and some states may disappear. The 
temporal features of the model, including life time and transition matrix, may also change. 
Therefore, which part of the results is actually reproducible (insensitive to initialization)?  
 
In page 5, please use multiplication symbol instead of letter "x" in the dimension of the matrix.  
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Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
In this interesting work, Stevner and colleagues reanalyzed previously acquired EEG/fMRI data of 
wakefulness and NREM sleep. They applied a hidden Markov model (HMM) to the fMRI data, 
which incorporates both activity and connectivity information in a temporally sensitive manner. The 
fMRI data were extracted with a predefined anatomical atlas and the amount of HMM states was 
set to 19. A hierarchical grouping of the 19 HMM states showed a good overlap with wakefulness 
and the NREM stages. The authors reported relevant characteristics for these states (e.g., 
sensitivity, specificity, switching) and provided an intriguing matrix representing the likelihood of 
transitioning from one state to another. The authors conclude they discovered a significant 
decrease in whole brain dynamics during consolidated stages of NREM sleep, that fMRI 
activity/connectivity doesn't map well onto N1 and that the default mode network (DMN) could 
serve a "gate-function" for the entry into NREM sleep, among others. The paper makes for an 
interesting read on a timely topic, but some issues need addressing, particularly on the stability of 
the analyses and to what extent the findings go beyond our current understanding of sleep. 
 
We thank the reviewer for the kind words. 
 
Introduction 
1 - The rationale for applying HMM to these fMRI data needs more explanation. Why this model 
and not multivariate autoregressive or other kinds of models? Could the authors discuss the 
conditions for this model, and if and how these differ from other Markov based processes regarding 
long range temporal dependence? This should preferably be related to the authors' own work on 
non-Markovianity in resting-state EEG and a reduction of long range temporal dependence in sleep 
in various fMRI networks in a previous analysis of these data (Tagliazucchi et al., 2013; von 
Wegner et al., 2017).  
 
We thank the reviewer for giving us the opportunity to expand on the rationale for using HMM to 
study sleep. HMM is of course only one of several methods that can be used to decompose 
multivariate data into temporally defined states. Yet, it is exactly the data-driven, temporal 
segmentation which is the strength of the HMM, that is key to our study, since we wanted to get an 
unbiased, data-driven estimate of the state changes involved in normal human sleep. This also 
allowed us to assess how well traditional sleep staging is reflected in the large-scale patterns found 
in fMRI BOLD activity.  
 
Compared to other methods such as cluster-based approaches, the HMM explicitly models the 
transition probabilities between states, which in turn gives a clear and concise description of the 
related state dynamics, which must be fundamental for understanding the sleep cycle. It is true that 
multivariate autoregressive models can provide a more complex description of the entire data set, 
rather than a partition into less complex models (which, in the case of the HMM, are 
state probability distributions). However, this may in turn make the comparison to traditional sleep 
staging less straightforward and render results more difficult to interpret. One could also have used 
sliding window-approaches to dynamic FC, but these are likely to perform worse given their lower 
temporal resolution and inability to access the fastest scales, as well as statistical issues (see 
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(Hindriks et al., 2015)). The HMM, on the contrary, provides high temporal resolution (up to the 
limitations inherent to the BOLD signal). 
 
We have updated the revised ms to include this clarification. 
 
Page 4, paragraph 3: 
“Compared to other methods for extracting dynamic FC (Preti et al., 2016), the HMM framework 
explicitly models the transition probabilities between its inferred states. We show that this 
information can be used to discover new whole-brain aspects of sleep, complementing the 
traditional segmentation of brain activity offered by PSG.” 
 
Page 26, paragraph 2: 
“It should be noted that the HMM framework was chosen over other methods for extracting 
dynamic states from multivariate neuroimaging datasets, such as sliding-window clustering (Allen 
et al., 2014, Hindriks et al., 2015, Haimovici et al., 2017), point-process analysis (Tagliazucchi et 
al., 2012a), co-activation pattern analysis (Liu and Duyn, 2013, Karahanoğlu and Ville, 2015) (for 
reviews, see (Calhoun et al., 2014, Preti et al., 2016)). The HMM was particularly suitable for our 
purpose by virtue of its explicit modelling of temporal dynamics, resulting in states that repeat in a 
predictable way. Although the HMM is not a mechanistic model of brain activity (a limitation 
shared with the approaches mentioned above) we have shown how the explicitly modelled HMM 
transition matrix was fundamental to suggest new partitions of dynamic whole-brain states, which 
future mechanistic frameworks of NREM sleep and wakefulness should take into account.” 
 
With regards to the choice of the specific settings of the HMM, we chose to use the Gaussian 
distribution because 1) it has been validated in previous work on fMRI (Vidaurre et al., 2017b), 2) it 
provides a description of both the mean activation and functional connectivity which were both the 
target of our analysis, and 3) it links more straightforwardly than other state distributions to 
standard fMRI analysis of BOLD activation and functional connectivity.  
 
The link to the reported non-Markovianity in resting-state EEG by von Wegner et al. 2017 and the 
potential link to a reduction of long-range temporal dependence in sleep in various fMRI networks 
across the NREM sleep stages found in Tagliazucchi et al. 2013 are very relevant. We have updated 
the revised ms to include a discussion. 
 
Page 26, paragraph 3: 
“There is growing evidence that neuroimaging timecourses contain long-range temporal 
dependencies (Maxim et al., 2005, He, 2011, Ciuciu et al., 2012), i.e. they are non-Markovian (von 
Wegner et al., 2017). The HMM used here follows the Markovian assumption in the sense that the 
probability of a state transition at a given time point depends only on the state that is active at the 
preceding time point, and hence it does not model long-range temporal dependencies 
parametrically. Importantly, however, it does not preclude them either. That means that the HMM 
state time courses can exhibit non-Markovian dynamics and long-term dependencies; see e.g. 
(Vidaurre et al., 2017b). Notably, our finding of HMM states grouping into modules of transitions 
represents an analysis that goes beyond Markovianity, and demonstrates non-Markovian dynamics 
(i.e. long-term dependencies) at the system level of the HMM states. In light of this, our finding that 
N3 sleep was modelled almost exclusively by a single HMM state, while several states grouped into 
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modules during wakefulness, is in line with the study by Tagliazucchi and colleagues, showing that 
long-range temporal dependencies in fMRI signals decreases from wakefulness to N3 sleep 
(Tagliazucchi et al., 2013b).”. 
 
Results 
2 - The number of states was set to 19, which was not due to some formal criterion like minimal free 
energy. Yet the authors' line of reasoning can be followed, although it doesn't fully tackle the 
relative arbitrariness of the chosen solution. If we go with this setting, some of the states turn out to 
have very similar anatomical maps. For instance, the states 4 and 15 that were more N1-related 
seem to be the inverted map of each other, with some minor differences. If the analysis would have 
been set to a lower number, would these states still be recognized as different states or would they 
morph into the same state? Or in other words, are these states different enough to be labelled 
different or is that a consequence of the setting? This could also be relevant for some of the other 
findings, e.g. the exclusivity of transitioning from state 8 to 15 at sleep onset – is this still visible 
with a higher numbers of states for the analyses? 
 
We thank the reviewer for these comments. The lack of a formal criterion for determining the 
dimensionality of our analysis is a limitation shared with all known decompositions of continuous 
neuroimaging data. Whereas the free energy is a reasonable criterion, its biological validity is 
unclear in so as far as the HMM is not a biophysical model. However we agree with the reviewer 
that it is fundamental to demonstrate the robustness of our findings across different numbers of 
states. We are now showing the full results of using 15, 17, 21 and 23 states in 8 new figures in the 
supplementary material of the revised ms. Irrespective of the number of states chosen the results are 
very similar in terms of the main messages of the paper. This includes HMM states expressing 
sensitivity and specificity to the stages in the sleep cycle (Figures S7A-B to S10A-B). Similarly, the 
differences of HMM switching and range dynamics (Figures S7D-E to S10D-E) across sleep stages 
remain highly significant. 
 
We point the reader to these analyses in the Discussion: 
 
Page 26, paragraph 1: 
“Acknowledging the potential limitation of manually choosing the number of states, we have re-
produced the main result figures for different number of states (K = [15, 17, 21, 23]) in the 
Supplementary Materials (see Choice of number of HMM states and Figure S8 to S15). These 
figures demonstrate the robustness of our main conclusions.” 
 
And we provide a summary of these supplementary findings in the Methods: 
 
Page 33, paragraph 2: 
“In appreciation of the potential limitations related to choosing the number of HMM states with no 
strict, formal criterion, we include the results of using different numbers of HMM states. In Figures 
S7 to S10 we have reproduced Figure 3 of the main text with HMM results using 15, 17, 21, and 23 
states respectively. Demonstrating the robustness of our HMM findings, the conclusions of the main 
text using 19 states are also found in Figures S7 to S10. Specifically Figures S7A-B to S10A-B 
show how select HMM states expressed high sensitivity and specificity for different PSG stages. In 
line with the results for K = 19 states, the HMM with lower and higher K identified states with high 
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sensitivity and specificity for wakefulness, N2, and N3 sleep, but not for N1 sleep. Figures S7D-E 
to S10D-E quantify the dynamics of HMM states within PSG stages. The relative differences 
between PSG stages are conserved and highly stable across numbers of HMM states. Interestingly, 
the absolute values of switching between and range of HMM states within PSG stages were in fact 
also quite preserved across numbers of HMM states. This is likely caused by the fact that the main 
effect of changing the number of HMM states is an addition of non-recurring, ‘sporadic’, states that 
modelled very (participant-) specific periods of the fMRI data (see above).” 
 
The question regarding the potential inversion of the mainly N1-related states 4 and 15 is 
interesting. However, from a methods point of view, opposite polarities are represented by 
completely different Gaussian distributions (i.e. having significantly different mean activities), and 
hence will not morph at lower numbers of states.  
 
Further motivated by the reviewer’s comment, we have made an effort to find a principled way of 
exploring the transition dynamics of the HMM. This was needed to compare the results related to 
the HMM transition map when using different numbers of states. In the revised ms we now consider 
the transition matrix of the HMM as a directed graph, which we submit to a modularity analysis, 
allowing us to extract sub-groups of HMM states with strong transitions within them compared to 
transitions to other sub-groups. As shown in the revised Figures 4-7, this new illustration method 
yields the same overall structure shown in the original ms, yet reveals more of the intricate 
dynamics and in particular provides a principled way to group HMM states into modules (transition 
modules in Figure 4C and D). These modules lend important support to our interpretations of the 
HMM states’ relationship to PSG stages. Furthermore we can use this principled grouping of HMM 
states to compare transition maps across HMM solutions with different numbers of states as shown 
for K = 15, 17, 21, 23 in the new Figure S11 to S14 in the Supplementary Material of the revised 
ms. Importantly, we are able to show that the principles of the HMM transition map when using 19 
states, as presented in the main text, translate to HMM solution with different numbers of states. 
The identified transition modules and the discussion they facilitate, are therefore not contingent on 
the chosen number of states for the HMM.  
 
We explain this method in the Results section of the revised ms: 
 
Page 12, paragraph 2: 
“The whole-brain network states organised into a transition map. This is presented in Figure 4, 
where the 19 × 19 transition matrix, as returned by the HMM (see Figure 4A), has been submitted 
to a modularity analysis (see Methods). By considering the most frequent transitions between the 
HMM states that were consistent across participants (see Figure 4B), the thresholded transition 
matrix organised into four partitions or transition modules (see Figure 4C, and Methods). When 
these most consistent transitions are presented as a transition map, and each whole-brain network 
state is represented by a circle plot indicating its specificity for each of the four PSG stages, it is 
clear that these modules represent a meaningful organisation of the HMM states (see Figure 4D).” 
 
And in the Methods: 
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Page 34, paragraph 3: 
“The matrix of transition probabilities, which were explicitly modelled by the HMM, contained a 
clear organisation, in which sub-networks of HMM states expressed more frequent transitions 
within each other than to states outside. In other words, the transition matrix represented a directed 
graph with modular organisation. We demonstrated this by submitting the transition matrix (shown 
in Figure 4A) to a modularity analysis, using Matlab functions from the Brain Connectivity 
Toolbox (https://sites.google.com/site/bctnet/Home)(Rubinov and Sporns, 2010), based on 
Newman’s spectral community detection (Leicht and Newman, 2008). Prior to running the 
modularity algorithm, we excluded the transitions of the HMM states that did not occur consistently 
across participants, i.e. sporadic states (see Methods, Choice of number of states, and Figure 4B), 
and thresholded the remaining transition matrix to include the strongest elements. The choice of this 
latter threshold was done for visualisation purposes (for the results shown in the main text using 19 
states we included the 21% strongest transitions), however different thresholds resulted in highly 
similar module partitions. The modular organisation is presented in a reordered matrix (Figure 4C) 
and as a map (Figure 4D).” 
 
And we summarise these additional analyses in the Methods, explaining how HMM across different 
number of states group into consistent modules: 
 
Page 33, paragraph 3: 
“Another main result of this study is presented in the transition map of the HMM states (see Figure 
4 of the main text). Again we have re-produced equivalent figures for K = 15, 17, 21, and 23 HMM 
states (Figures S11 to S14). Our modularity analysis (see below) of the resulting transition matrices 
illustrates how the four modules from the HMM with 19 states can be identified in the solutions 
with different numbers of states. This was true for K = 17, 21, and 23. For K = 15, the white and 
blue modules appear to have merged together. The overall structure of the transition map was 
therefore robust across the chosen numbers of HMM states. A separate transition module for 
wakefulness after sleep onset (WASO) was found consistently across all of these values of K, while 
the intercalated module between wakefulness and consolidated sleep (N2/N3) were found for all but 
one value of K (K = 15).  
 Whereas these overall configurations of the HMM transitions were found robust to the chosen 
number of states, the more fine-grained details of the transition map appeared more variable. The 
gateway-like quality of a DMN-like configuration of brain activity was thus particularly clear for 
the originally chosen 19 states.” 
 
While these additional analyses demonstrate the robustness of the majority of our findings, it is also 
clear, as described in the excerpt above, that our claim of exclusive transitioning from state 8 to 15 
at sleep onset has to be tempered when using different number HMM states. Our new method still 
clearly shows the importance of transitioning from a DMN-like configuration in wakefulness (state 
8) to a sleep transition state (state 15) for 19 HMM states, and across numbers of states there are 
clearly gateway states that govern the sleep onset process, but the exact transitions that this is 
operated through are less obvious.  
 
3 - The triangulation pattern observed among two N2 states and the one N3 state is due to states 3 
and 6 in N2, with state 6 showing some overlap with sleep spindle related activity and connectivity 
as in previous work, which is also noted by the authors in the discussion. This implies that the N3 
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state can be preceded from N2 sleep with and without spindles, which can be seen in visually 
scored polysomnographic recordings. This now leads to the possibility that the HMM findings still 
represent the neural correlates of classical EEG states and events throughout sleep. Since the 
authors claim that their analysis goes beyond PSG, they have to show that the states do not merely 
reflect specific EEG events and states. The authors already state that "future work should address 
more specifically the relationship between data-driven, HMM-identified networks and EEG-defined 
spindles as well as other graphoelements such as K-complexes", but they can and should do this 
themselves since it is central to their claim that their analysis expands the classical understanding 
of sleep. this also relates to other PSG N1 phenomena (reduction in posterior alpha) or EEG-based 
vigilance fluctuations within wakefulness (e.g., Olbrich et al., 2009). 
 
The reviewer’s point hinges on the relationship between our data-drivenly identified fMRI 
networks and more traditional partly subjective and manually scored PSG and its features, such as 
K-complexes and sleep spindles. In the revised version of the ms, we have stressed that the results 
are not taking sides for or against PSG. Rather, we show that our HMM results are complementing 
those of PSG. When the HMM results match those obtained via PSG/AASM-based scoring, this 
supports the reliability of either approach while the HMM adds additional spatial information. In 
other cases, where the HMM appears to agree less with PSG (such as further characterising N1), 
these findings offer a novel perspective and potential for improving sleep categorisation in the 
future. We have made this more clear in the revised ms:  
 
Page 4, paragraph 2: 
“Rather than constraining analyses by traditional descriptions of sleep stages, we propose to use 
novel data-driven analysis methods to elucidate whole-brain networks that can complement and 
potentially expand the classical understanding of sleep.” 
 
Page 11, paragraph 5: 
“Up until this point, we have used the traditional PSG stages to organise and evaluate the 
temporally resolved whole-brain network states, in terms of the MANOVA results, PSG-sensitivity, 
PSG-specificity, and dynamics within PSG stages. Yet, the data-driven nature of the HMM also 
allowed us to reverse the inference, and consider the results, in particular the temporal progression 
of HMM states, in their own right. This way we were able to ask if the high-resolution, fMRI-based 
HMM, was able to reveal new aspects of the wake-NREM sleep cycle, hidden from the EEG-based 
PSG. For this purpose it was informative to examine the transition probabilities of the HMM states. 
Specifically, we could use these to extract modules of HMM states that transitioned more often 
between each other than to other states. While agreeing to a certain extent with the PSG staging, the 
organisation of transition modules and their involved whole-brain network states also demonstrate 
how this data-driven approach can be used to more fully describe the spatiotemporal complexity of 
large-scale brain activity across the NREM sleep cycle.” 
 
Page 21, paragraph 2: 
“Below we begin by linking our HMM results to existing neuroimaging evidence of PSG stages. 
This is used to characterise the ways in which the HMM agreed with PSG and establish that the 
HMM generally inferred meaningful features from the fMRI data. It is on the basis of this general 
agreement with PSG that we may then move on to a close examination of the new insights with 
relation to sleep that can be gained from the data-driven HMM.” 
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Page 23, paragraph 2: 
“In the aspects where PSG and the HMM decomposition conformed in time, the HMM lends 
important support to PSG, while still offering new perspectives in terms of transitions and 
dynamics. In other cases, the HMM suggests new segmentations of large-scale brain activity that 
cannot be resolved when following traditional PSG staging.” 
 
We have however refrained from correlating our HMM results to specific graphoelements because 
the relationship between the fMRI-based HMM states and EEG graphoelements is not at all 
straightforward to assess, and we feel it falls out of the scope of the present work. A proper 
investigation would for instance have to deal with the mounting evidence distinguishing between 
local and global occurrences of sleep spindles and K-complexes (Dehghani et al., 2010a, Dehghani 
et al., 2010b, Andrillon et al., 2011, Nir et al., 2011, Bonjean et al., 2012, Johnson et al., 2012, 
Mak-McCully et al., 2015, Piantoni et al., 2016a, b). Methodologically, the commonly observed 
temporal proximity of sleep spindles and K-complexes cannot be teased apart with the limited 
temporal resolution of the BOLD signal. We are very interested in embracing these challenges in 
future studies. For properly addressing the relationship between EEG graphoelements and whole-
brain HMM states, source-reconstructed MEG will be a much more appropriate basis for an HMM 
analysis for this particular purpose (Baker et al., 2014, Vidaurre et al., 2016, Vidaurre et al., 2017a). 
We have made these points in the revised ms as follows:   
 
Page 25, paragraph 4: 
“Finally, there is scope for an even more detailed examination of sleep within the HMM 
framework, given that BOLD data is not the most temporally sensitive modality available. Recently 
developed methods combining source-reconstructed MEG data with the HMM framework could 
prove capable of providing an even more fine-grained picture of sleep’s evolution in whole-brain 
networks, and allow for an examination of microstructural EEG elements of sleep, such as spindles 
and K-complexes (Baker et al., 2014, Vidaurre et al., 2016, Vidaurre et al., 2017a), as well as EEG-
markers of vigilance fluctuations during wakefulness (Olbrich et al., 2009).” 
 
Also, the authors need to discuss whether the move beyond PSG staging cannot be done by EEG 
itself, since it allows a much more fine-grained temporal dissection even though the PSG stage 
labelling itself is rather analogue.  
 
We agree that the future of sleep staging is of course not limited to fMRI, and must take into 
account the relative strengths of EEG and fMRI, as well as MEG, and would again like to refer the 
reviewer to:  
 
Page 25, paragraph 4: 
“Finally, there is scope for an even more detailed examination of sleep within the HMM 
framework, given that BOLD data is not the most temporally sensitive modality available. Recently 
developed methods combining source-reconstructed MEG data with the HMM framework could 
prove capable of providing an even more fine-grained picture of sleep’s evolution in whole-brain 
networks, and allow for an examination of microstructural EEG elements of sleep, such as spindles 
and K-complexes (Baker et al., 2014, Vidaurre et al., 2016, Vidaurre et al., 2017a), as well as EEG-
markers of vigilance fluctuations during wakefulness (Olbrich et al., 2009).” 
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Discussion/Conclusions 
 
4 - In the title the authors and throughout the paper the authors claim the "discovery of key whole-
brain transitions and dynamics underlying the human sleep cycle". But without REM sleep, they are 
studying the NREM part of the sleep cycle. 
 
We agree and have reworded throughout.  
 
5 - One main conclusion is that N1 sleep did not correspond to any single state or a group of states 
identified by the HMM, which is in line with the notion that N1 is not a consolidated sleep stage but 
a transition stage between wakefulness and sleep. Note that this does not go against the current 
consensus in sleep research. For instance in the textbook for sleep, the Principles and Practice of 
Sleep Medicine (5th ed), Carskadon & Dement write that sleep stage 1 is a "wake-to-sleep 
transition" stage, and that it "occurs as a transitional stage throughout the night" (Carskadon & 
Dement, 2011). Furthermore, there is a whole line of research on ERPs in stage 1 sleep, which is in 
line with the notion that sleep stage 1 is a transition stage and not a straightforward sleep stage. 
The authors should incorporate such previous work and common notions on N1. 
 
We agree and have incorporated these suggestions in the revised ms: 
 
Page 24, paragraph 2: 
“The two main incongruities between the temporal segmentation suggested by the HMM and the 
PSG scoring concerned N1 sleep and WASO. N1 sleep did not correspond to any single state or any 
group of states identified by the HMM. This is likely related to the current consensus that PSG-
defined N1 does not represent a clear-cut sleep stage (Carskadon and Dement, 2011), but rather an 
ill-understood mix of wakefulness and sleep. This is supported by several lines of evidence. 
Compared to N2 and N3 sleep with their well-defined EEG spectral properties, such as K-
complexes, spindles, and slow waves, N1 remains the most vaguely defined sleep stage within PSG. 
A recent report by the American Academy of Sleep Medicine (AASM) shows that staging of N1 is 
associated with the highest inter-rater scoring uncertainty of all PSG stages (Rosenberg and Van 
Hout, 2013). Furthermore, N1 sleep has proven the most difficult PSG stage to classify from fMRI 
FC information in machine-learning studies (Tagliazucchi and Laufs, 2014, Altmann et al., 2016). 
Addressing the microstructure of N1, a line of evoked response potential-studies have demonstrated 
a high degree of variability in the cortical processing of external stimuli during early NREM sleep 
(for reviews, see (Ogilvie, 2001, Colrain and Campbell, 2007)). Phenomenologically, the sleep 
onset period is known to be rather complex, with varying mental content and responsiveness to 
sensory stimuli (Ogilvie, 2001, Goupil and Bekinschtein, 2012), and authors have long advocated 
against the assumed homogeneity found in PSG definitions of N1 sleep, an opposition exemplified 
by Hori’s proposed nine stages of early sleep (Hori et al., 2001). If PSG-defined N1 does in fact 
represent a mix of wakefulness and sleep, this would explain why we found the highest range of 
whole-brain states during this PSG stage. While this primarily serves to underline the common 
notion that N1 is unlikely to be a reliable demarcation between wakefulness and sleep, our data-
driven identification of a transition module of whole-brain states occurring between wakefulness 
and consolidated sleep (N2 and N3) suggests that an improved and principled categorisation of 
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early sleep can be achieved, when the high spatiotemporal resolution of neuroimaging is explored in 
full.”  
 
6 - Do the authors have any data on mentations the subjects reported at awakening? If not, the 
authors may want to attenuate their speculations on mental content and the dynamic state regime in 
N1.  
 
This is an interesting suggestion, but we do not have the appropriate data. As seen from the excerpt 
immediately above, we have attenuated our speculations on the relationship between our findings 
and the mental content of N1. Instead we have updated the Perspectives section of the discussion: 
 
Page 25, paragraph 2: 
“The presented findings point ahead to a research agenda making hypothesis-driven assessments of 
how the alternative, data-driven, temporal segmentations and dynamics of whole-brain networks 
across the NREM sleep cycle relate to sleep behaviour and cognition, when measured 
independently of PSG. Features identified by the HMM could prove to essential supplements to 
PSG and other conventional methods when trying to understand phenomena like the subjective 
perception of sleep (Bonnet and Moore, 1982, Ogilvie and Wilkinson, 1984), mental content during 
sleep (Nobili et al., 2012, Siclari et al., 2017), such as the hypnagogic or even hallucinogenic 
character of sleep onset (Hori et al., 1994, Goupil and Bekinschtein, 2012), sleep inertia of the 
awakening process (Tassi and Muzet, 2000), sleep-dependent processes related to memory and 
learning (Diekelmann and Born, 2010), and disordered sleep, like insomnia (Wei et al., 2017). Such 
studies should explore the theoretical potential of applying the current HMM, parameterised on the 
present sleep data, to identify the presence of the same dynamical whole-brain network states and 
transition modules in data from different cohorts, potentially even at the individual level. This new 
data could then be linked to behaviour and cognition through sophisticated measures of arousal, 
such as eyelid-closure (Chang et al., 2016), sleep mentation (Siclari et al., 2017), post-sleep 
memory- and learning performance (Stickgold, 2005), and careful clinical examination of sleep 
disorders (Edinger et al., 2013).”  
 
7 - Another main conclusion focuses on the observed differences between pre- to post-sleep 
wakefulness, about which the authors write that PSG does not differentiate between both and the 
"neural underpinnings remain scarcely explored". Here it would be helpful to cite the early 
EEG/PET work on pre- to post-sleep wakefulness differences (e.g., Braun et al., 1997); a careful 
comparison with this work would be informative.  
 
We have added this reference, and thank the reviewer for reminding us. 
 
Methods 
 
8 - The images were smoothed early in the process. It is not exactly clear from which images the 
regional data were extracted, this needs to be clarified. I presume for now they used the error 
images from the analyses in which noise components and motion parameters were "regressed out of 
the signals", and that these error images were then temporally filtered. This would mean that the 
regional data were extracted from images that were smoothed with an 8 mm FWHM kernel, which 
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creates artificial dependencies between the regional time-courses. If that is the case, please re-run 
the analysis on the images that were not smoothed.  
 
We thank the reviewer for this comment. As stated in the Methods, we chose to use the exact same 
preprocessing of the EPI data as in the previous studies on this dataset by Tagliazucchi and Laufs  
(e.g. (Tagliazucchi and Laufs, 2014)) for ease of comparison. While the settings used here for 
smoothing, i.e. FHWM 8mm, has some support in the literature (see e.g. (Mikl et al., 2008), we 
agree with the reviewer that there is a risk of creating artificial dependencies between voxel 
timecourses. However we do not expect these effects to influence our level of analysis for the 
following reasons: (i) our goal was grand, whole-brain analysis, with limited focus on fine spatial 
details, (ii) the HMM is in itself a form of dimensionality reduction, and therefore, when run at the 
whole-brain level, it is less sensitive to local variability (iii) smoothing will primarily create 
stationary dependencies (i.e. stationary over time), whereas the HMM specialised in finding relative 
changes within the time series, (iv) the AAL parcellation consists of ROIs that are large compared 
to the smoothing parameter, and (v) spatial smoothing was performed with no consideration of the 
PSG structure of the data. Hence, our findings of relative differences between the various PSG 
stages should not be much affected by smoothing. For these reasons, and also because of the 
already very large number of figures in the present ms, we feel that the comparison between 
different levels of smoothing (or no smoothing at all) should be subject of future work, where we 
will analyse specific local features driving sleep transition.  
 
 
9 - The stability of the analyses could be strengthened by using different atlases, for instance based 
on functional connectivity, and applying the same pipeline. It would be useful to know if this again 
leads to 19 states, if the same transition matrix can be observed and if they are anatomically similar 
to the current states. 
 
In their recent review of the literature on the topographic organisation of the brain, Eickhoff and 
colleagues conclude that it is currently unclear which is the best spatial parcellation of the human 
brain (Eickhoff et al., 2018). We chose to use the AAL parcellation given that it is based on 
anatomical information and is the most used parcellation in the literature on functional connectivity 
in sleep (Spoormaker et al., 2010, Spoormaker et al., 2012a, Tagliazucchi et al., 2013a, 
Tagliazucchi and Laufs, 2014, Altmann et al., 2016, Haimovici et al., 2017) (and wakefulness). As 
we discuss in the revised ms, using a parcellation based on functional connectivity could be rather 
problematic given the established variation of FC between wakefulness and non-REM sleep stages 
(Tagliazucchi and Laufs, 2014, Altmann et al., 2016). In any case, given that our results were robust 
to different levels of temporal granularity (expressed through different numbers of states), we 
expect that these would be robust also to different levels of spatial granularity (expressed through 
different parcellations). A rigorous assessment of this point will be subject of future investigations, 
as it also relates to important research questions (i.e. the extent to which local activity is informative 
to sleep compared to grand, whole-brain activity).  
 
Page 30, paragraph 6: 
“We chose the AAL over other possible parcellations because it is the most frequently used in 
previous fMRI studies of FC during NREM sleep (Spoormaker et al., 2010, Spoormaker et al., 
2012b, Tagliazucchi et al., 2013a, Tagliazucchi and Laufs, 2014, Altmann et al., 2016, Haimovici et 
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al., 2017). Alternative parcellation, such as those derived from FC configurations in the data, could 
be problematic, since FC has been shown to robustly vary across the sleep cycle (Tagliazucchi and 
Laufs, 2014, Altmann et al., 2016). Being anatomically defined the AAL is essentially agnostic to 
potentially changing FC configurations within the data.” 
 
10 - In the fMRI paragraph, the 2nd sentence "MRI and pulse artefact correction were applied on 
the average artefact subtraction method ..." describes a method used to clean the EEG. 
 
We thank the reviewer, and have corrected this in the revised ms. 
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Reviewer #2 (Remarks to the Author): 
 
The authors describe the use of a data driven method to study the spatiotemporal structure of 
previously acquired fMRI data with the goal of characterizing changes in across the sleep-wake 
cycle. This is an interesting topic as it is a relatively unexplored area, in part due to the sleep 
adverse conditions of the MRI scanner. The approach is based on a Markov model of the fMRI 
signal and allows classification of brain activity in a set of prototypical patterns whose occurrence 
and intensity may vary with arousal state. This potentially allows a better characterization of sleep 
than previous fMRI studies based on polysomnography (PSG) sleep staging or correlations with 
EEG events such as K-complexes and spindles. The authors, limiting their analysis to non-REM 
sleep, identify a number of fMRI activity patterns (“states”) that preferentially occur during wake 
and each of three EEG-defined sleep stages, and quantify transition probabilities between these 
states. Based on this, they conclude that the results provide a novel and more complete 
characterization of sleep than conventional PSG-based sleep staging, that the default-mode 
network serves as a “gate” for the transition into non-REM sleep, and that there is a decrease in 
“whole brain dynamics during consolidated stages of non-REM sleep”. 
 
Overall I believe this is a valuable study presenting a more rigorous way for the analysis of fMRI 
sleep data than previously presented. The identified spatiotemporal patterns are interesting and 
may provide more insight into the nature of sleep.  
 
We thank the reviewer for the positive comments. 
 
I do have a number of reservations though about both the methodology, and the presentation of the 
results: 
 
1 - Throughout the manuscript, PSG based sleep staging is being used as straw man to contrast 
with the authors’ method. This is not appropriate, as the purpose of PSG is not to comprehensively 
characterize sleep and its activity patterns, rather than discriminating between various depths of 
sleep (arousal thresholds).  
 
We agree and have updated ms accordingly: 
 
Page 3, paragraph 3: 
“PSG has been vital in the development of modern sleep research, and remains undoubtedly the 
quickest and easiest way to establish arousal levels in individuals. Indeed the PSG-defined sleep 
stages were originally devised from EEG as surrogate markers of arousal thresholds, yet over time 
many have come to see them as a more or less exhaustive set of intrinsic canonical states that cover 
the full repertoire of brain activity during sleep. However, from a neurobiological perspective, the 
use of fixed scoring windows of 30 seconds and only a few EEG electrodes means that PSG 
involves considerable averaging of brain activity in both time and space (Himanen and Hasan, 
2000). This is necessarily an incomplete representation of brain activity, which for instance does 
not accommodate intracortical evidence showing that slow oscillations, sleep spindles, and K-
complexes are not inevitably global phenomena, but can occur locally throughout the cortex (Nir et 
al., 2011, Vyazovskiy et al., 2011, Piantoni et al., 2017).” 
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Page 11, paragraph 5: 
“Up until this point, we have used the traditional PSG stages to organise and evaluate the 
temporally resolved whole-brain network states, in terms of the MANOVA results, PSG-sensitivity, 
PSG-specificity, and dynamics within PSG stages. Yet, the data-driven nature of the HMM also 
allowed us to reverse the inference, and consider the results, in particular the temporal progression 
of HMM states, in their own right. This way we were able to ask if the high-resolution, fMRI-based 
HMM, was able to reveal new aspects of the wake-NREM sleep cycle, hidden from the EEG-based 
PSG. For this purpose it was informative to examine the transition probabilities of the HMM states. 
Specifically, we could use these to extract modules of HMM states that transitioned more often 
between each other than to other states. While agreeing to a certain extent with the PSG staging, the 
organisation of transition modules and their involved whole-brain network states also demonstrate 
how this data-driven approach can be used to more fully describe the spatiotemporal complexity of 
large-scale brain activity across the NREM sleep cycle.” 
 
Page 20, paragraph 1: 
“Comparing the temporal evolution of the HMM-derived whole-brain network states with the 
independently obtained EEG-based PSG scoring, we have discovered a rich repertoire of brain 
dynamics during the traditional PSG stages. Importantly, the temporal resolution of the HMM 
solution identified state lifetimes on the order of seconds, providing a temporally fine-grained 
description of the traditional PSG stages. Meanwhile, a close examination of the HMM transition 
map offers a credible account of the aspects where PSG does not fully capture the complexity of 
large-scale network changes, and lead to propositions of new and potentially improved 
categorisations of brain activity.” 
 
Page 21, paragraph 2: 
“Below we begin by linking our HMM results to existing neuroimaging evidence of PSG stages. 
This is used to characterise the ways in which the HMM agreed with PSG and establish that the 
HMM generally inferred meaningful features from the fMRI data. It is on the basis of this general 
agreement with PSG that we may then move on to a close examination of the new insights with 
relation to sleep that can be gained from the data-driven HMM.” 
 
Page 23, paragraph 2: 
“In the aspects where PSG and the HMM decomposition conformed in time, the HMM lends 
important support to PSG, while still offering new perspectives in terms of transitions and 
dynamics. In other cases, the HMM suggests new segmentations of large-scale brain activity that 
cannot be resolved when following traditional PSG staging.” 
 
 
At the same time, numerous other methods have been used to study sleep, including EEG, MEG, 
ECoG, and even PET and fMRI (the former 3 distinguishing microstates, the latter 2 exploring e.g. 
the PET or fMRI correlate of K-complexes and spindles). This literature should be discussed. In 
addition, it should be mentioned that PSG can be used on single subjects, rather than requiring the 
large dataset analyzed here. 
 
We have added these important points to the Introduction and Discussion. 
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On previously used methods to study sleep: 
 
Page 4, paragraph 2: 
“Large-scale brain activity has been extensively investigated during wakefulness (Biswal et al., 
1995, Shulman et al., 1997, Raichle et al., 2001, Beckmann et al., 2005, Fox et al., 2005, Bressler 
and Menon, 2010, Brookes et al., 2011, Hipp et al., 2012, Baker et al., 2014, Gonzalez-Castillo et 
al., 2015, Smith et al., 2015, Cabral et al., 2017, Vidaurre et al., 2017b). When applied to sleep 
recordings, however, whole-brain analyses have commonly used PSG staging as a ‘gold standard’, 
regressing PSG stages onto functional brain data. This approach has yielded whole-brain correlates 
of PSG stages and sleep graphoelements, in terms of activation maps (Maquet, 2000, Dang-Vu et 
al., 2010), FC patterns (Horovitz et al., 2009, Larson-Prior et al., 2009, Spoormaker et al., 2010, 
Sämann et al., 2011, Tagliazucchi and Laufs, 2014, Altmann et al., 2016), graph-theoretical 
measures (Boly et al., 2012, Tagliazucchi et al., 2013a), and EEG-microstates (Brodbeck et al., 
2012). However, this top-down constraint by the low-resolution and subjective manual PSG scoring 
comes at the cost of exploring only a small fraction of the information available in the high-
resolution neuroimaging data.” 
 
Page 21, paragraph 3: 
“The HMM was sensitive to changes in both mean BOLD activity and FC, and the overall 
reflection of PSG stages in the whole-brain network states suggest that these two features of brain 
activity changed reliably with PSG stages. This is in line with previous PET (Braun et al., 1997, 
Hofle et al., 1997, Maquet, 2000, Kjaer et al., 2002) and fMRI (Laufs et al., 2006, Dang-Vu et al., 
2008, Horovitz et al., 2008) studies that have used PSG as gold standard to show differences 
between individual PSG stages in metabolic and BOLD activity, an EEG study showing PSG-
dependent changes in EEG microstates (Brodbeck et al., 2012), as well as demonstrations that 
machine-learning can be used to classify fMRI recordings into PSG stages based only on FC 
patterns (Tagliazucchi and Laufs, 2014, Altmann et al., 2016). Further to this, the recent study by 
Haimovici and colleagues demonstrated that PSG stages could be identified as individual states of 
dynamic FC (Haimovici et al., 2017).” 
 
Page 22, paragraph 4: 
“Two HMM states were clearly specific to periods of N2 sleep as two whole-brain network states. 
The corresponding mean activation maps showed either increases or decreases in areas consistently 
identified in a number of studies as fMRI-correlates of sleep spindles (Schabus et al., 2007, 
Andrade et al., 2011, Caporro et al., 2012). It is likely that the HMM was sensitive to the signal 
changes caused by spindles, and future work should address more specifically the relationship 
between data-driven, HMM-identified networks and EEG-defined spindles as well as other 
graphoelements such as K-complexes.” 
 
Page 23, paragraph 1: 
“These frontal decreases are consistent with previous PET findings of decreased metabolism in 
these areas during N3 sleep, which in turn are believed to reflect the high, localised concentration of 
slow-wave activity (Werth et al., 1997). Slow waves may also underlie the relative increases in 
frontal FC that we observed for this whole-brain network state (Murphy et al., 2009).” 
 



 15 

On the use of PSG and potentially HMM on single subjects: 
 
Page 3, paragraph 3: 
“PSG has been vital in the development of modern sleep research, and remains undoubtedly the 
quickest and easiest way to establish arousal levels in individuals.” 
 
Page 25, paragraph 2: 
“The presented findings point ahead to a research agenda making hypothesis-driven assessments of 
how the alternative, data-driven, temporal segmentations and dynamics of whole-brain networks 
across the NREM sleep cycle relate to sleep behaviour and cognition, when measured 
independently of PSG. Features identified by the HMM could prove to essential supplements to 
PSG and other conventional methods when trying to understand phenomena like the subjective 
perception of sleep (Bonnet and Moore, 1982, Ogilvie and Wilkinson, 1984), mental content during 
sleep (Nobili et al., 2012, Siclari et al., 2017), such as the hypnagogic or even hallucinogenic 
character of sleep onset (Hori et al., 1994, Goupil and Bekinschtein, 2012), sleep inertia of the 
awakening process (Tassi and Muzet, 2000), sleep-dependent processes related to memory and 
learning (Diekelmann and Born, 2010), and disordered sleep, like insomnia (Wei et al., 2017). Such 
studies should explore the theoretical potential of applying the current HMM, parameterised on the 
present sleep data, to identify the presence of the same dynamical whole-brain network states and 
transition modules in data from different cohorts, potentially even at the individual level. This new 
data could then be linked to behaviour and cognition through sophisticated measures of arousal, 
such as eyelid-closure (Chang et al., 2016), sleep mentation (Siclari et al., 2017), post-sleep 
memory- and learning performance (Stickgold, 2005), and careful clinical examination of sleep 
disorders (Edinger et al., 2013).” 
 
2 - The hidden Markov model (HMM) approach to perform data-driven analysis is interesting but 
by itself does not guarantee the identification of neuro-scientifically relevant patterns of brain 
activity. Like a number of previously presented approaches (co-activation pattern based analysis, 
temporal functional modes, point-process analysis etc. etc), it allows extraction of statistically 
different patterns of fMRI activity but provides little understanding of what these patterns relate to 
or mean.  
 
It is correct that HMM does not provide mechanistic information on the mechanisms underlying 
sleep, yet this is true of all analysis methods that do not have a clear biophysical basis. We have 
clarified this important limitation shared with all existing methods for extracting dynamic patterns 
of brain activity. Notwithstanding, the HMM does offer novel spatiotemporal information on 
NREM sleep cycle, which may be useful for future whole-brain computational modelling studies. 
We have updated the revised ms to include this important perspective: 
 
Page 26, paragraph 3: 
“It should be noted that the HMM framework was chosen over other methods for extracting 
dynamic states from multivariate neuroimaging datasets, such as sliding-window clustering (Allen 
et al., 2014, Hindriks et al., 2015, Haimovici et al., 2017), point-process analysis (Tagliazucchi et 
al., 2012a), co-activation pattern analysis (Liu and Duyn, 2013, Karahanoğlu and Ville, 2015) (for 
reviews, see (Calhoun et al., 2014, Preti et al., 2016)). The HMM was particularly suitable for our 
purpose by virtue of its explicit modelling of temporal dynamics, resulting in states that repeat in a 
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predictable way. Although the HMM is not a mechanistic model of brain activity (a limitation 
shared with the approaches mentioned above) we have shown how the explicitly modelled HMM 
transition matrix was fundamental to suggest new partitions of dynamic whole-brain states, which 
future mechanistic frameworks of NREM sleep and wakefulness should take into account.” 
 
Specific problems I see with the implementation here is the quite arbitrary choice of the number of 
states (see minor comments as well), 
 
This is a very important point. Please see our response to Reviewer 1 above, where we explore the 
robustness of the results with regards to the number of HMM states. 
 
and the use of an unequal distribution of data over the different PSG stages.  
 
This could affect the fMRI patterns of the individual states, and the conclusion about what these 
patterns may mean. Regarding the conclusion that fewer states were found during the deepest PSG 
sleep stage, this could be simply due to the fact that there was only 10% of deep sleep in the 57 
subjects studies.  
 
To this point, HMM state 16 that was the only state found for N3 sleep was only specific to N3 in 4 
(out of 57!) subjects. Similarly on page 21, the authors say they “provide direct evidence of a 
higher state repertoire” during wakefulness. Again, much more data was collected during wake, 
potentially biasing the number of wake vs sleep states. In addition, more states found across subject 
does not mean more states WITHIN subjects, while the latter would be the more interesting finding. 
I would not be surprised if different people were thinking about different things during wake! (see 
also below).  
 
The reviewer raises another important point. Note that throughout the ms we only refer to a given 
HMM state as modelling any given PSG stage, if it showed both sensitivity and specificity for this 
PSG stage, and if it did so consistently across participants. While the HMM is estimated on the full 
data from 57 participants, where there are indeed a larger amount of wakefulness (47.82% as shown 
in Table S1), all of the statistics linked to the statement about state repertoire have been carried out 
in the 18 participants with all four PSG stages. In these 18 participants, wakefulness only takes up 
23.72% of the data, while N3 accounts for 31.78%, ie more of the data (see Table S1). In addition, 
the relevant measures for a higher state repertoire (switching and range of states) were both 
normalised by the time spent in a state within a participant (Figure 3D and 3E). In general, all 
statistical comparisons were made using paired t-tests and the non-parametric permutations of the 
PSG scoring were made within participants, hence taking into the account the participant level. 
Overall, this gives us confidence that the results in fact as interesting as the reviewer is suggesting. 
Also, please note that we are not making specific claims about the cognition during wakefulness.  
 
Of note, further balancing the distributions of PSG stages is not straightforward since this would 
imply severe cutting of data segments, effectively destroying the natural progression between 
stages. As may be seen in Figure 3 the HMM was highly sensitive to even rapid switching between 
PSG stages, and hence we see this natural order of the data as crucial proof-of-concept for our 
method.   
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With regards to the reviewer’s specific comments on HMM state 16, we are not quite sure where 
this information has been gathered. All figures in the main text are based on the data from 18 
participants who include all four PSG arousal levels. The results shown in Figure 2 show the state 
timecourse of each HMM state and the association to PSG for the 18 participants with number 17 
and 52 shown in extra detail. The timecourse of HMM state 16 is shown as the fourth line from the 
top. As can be seen, this state is present in all 18 participants and quite selectively for PSG defined 
N3 (highlighted as green periods). The specificity of HMM state 16 to N3 sleep is quantified in 
Figure 3B with a mean across participants of around 80% and a small error bar (across 
participants).  
 
We have updated the revised ms to emphasise that our statistics take into account within-participant 
differences, and that the measures for the HMM state dynamics were normalised by time.  
 
Page 5, paragraph 4: 
“When comparing the HMM output to the PSG scoring we considered the subset of the HMM 
output that corresponded to the data from the 18 participants that reached all four PSG stages 
(wakefulness, N1, N2, and N3, see Table S1). This was necessary to allow for within-participant 
testing (see Methods), when comparing the sensitivity and specificity of individual HMM states to 
(as well as the dynamics of the HMM states within) the various PSG stages.”   
 
Page 11, paragraph 3: 
“The changes in mean lifetimes across PSG stages were further reflected in the dynamics of the 
whole-brain network states during the individual PSG stages, for which we present two summary 
measures: i) the amount of switching defined as the average number of transitions between HMM 
states during a given PSG stage divided by the total time a participant spent in this PSG stage 
(shown in Figure 3D), and ii) the range of HMM states defined as the number of unique states 
visited during the given PSG stage divided by the total time a participant spent in this PSG stage 
(shown in Figure 3E). Both measures were estimated for each PSG stage, within each of the 18 
participants that included all four PSG stages, and normalised by time.” 
 
Page 34, paragraph 1: 
“Please note that the use of paired t-tests ensured that the identified differences were consistent 
within participants, and not merely as a group effect.” 
 
3 - The conclusion that the default-mode network serves as a “gate” for the transition into non-
REM sleep appears based on the higher transition probability between state 8 (with high DMN 
activity) and state 15. This seems unwarranted, as there are a significant number of transitions 
between state 2 (low DMN activity) and state 15 as well.  
 
This is a fair point. As stated in our reply to reviewer 1, we have devised a new method for 
visualising and characterising transition maps. This new method allowed us to extract modules of 
strong transitions between HMM states. Importantly, these transition modules helped us compare 
the transition map from different HMM solution with varying numbers of states, which was crucial 
to show the robustness of our main findings. As can be seen from the new Figure 4C, state 8 is not 
the only pathway from wakefulness to white module related to N1 sleep, yet still remains the most 
important, since it represented the strongest transition from the red module to HMM state 15. 
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However, we have tempered our claims of the exclusivity of the state 8 as a gateway in the revised 
ms. 
 
Page 13, paragraph 2: 
“Although the transition map suggests multiple pathways from wakefulness (red module) to the 
white module of NREM sleep, it is interesting to note that HMM state 8 has direct access to HMM 
state 15, which in turn guards the transition to the blue module of N2/N3 sleep.” 
 
4 - The authors comment on the variety of states occurring during each EEG sleep stage but this is 
a bit misleading as this was a group-based determination. It is possible that some each subject 
exhibits a smaller repertoire of states. Similarly, talking about a “higher state repertoire” during 
wake may be valid across subjects, but authors have not demonstrated this to be the case in 
individual subjects. 
 
Again, we have clarified our description of Figure 2, which shows HMM timecourses for the 
individual PSG staging for the 18 participants with all four sleep stages. Please see above in our 
reply to comment 2 for further explanation. 
 
5 - As physiological changes are known to be prominent across sleep (in fact, they are increasingly 
being used to perform sleep staging), the authors should comments on how much they believe 
RETROICOR removes systemic physiological effects from the fMRI data, as well as the potential 
remaining confounds. 
 
This is an important point. We now emphasise the findings of Tagliazucchi and colleagues 
(Tagliazucchi et al., 2012b), comparing sleep staging via SVM with and without prior 
RETROICOR-based noise regression to conclude: "Sleep staging performance was improved in the 
datasets without noise removal." Hence, we do believe that noise removal does reduce systemic 
physiological effects, which, however, indeed seem to vary systematically between sleep stages: 
 
Page 29, paragraph 5: 
“As shown by Tagliazucchi and colleagues, the use of RETROICOR effectively removes sleep-
dependent physiological interference from the fMRI signals (Tagliazucchi et al., 2012b).” 
 
6 - The abstract is vague and somewhat speculative. Terms like “top-down defined sleep stages” 
and “comprehensive image of brain states” are uninformative. “going beyond PSG, HMM allowed 
…” is misleading. PSG is not meant to characterize the spatiotemporal patterns of brain activity, 
merely provide a surrogate marker of arousal threshold. Also, likely other (non HMM) analysis 
methods will allow this characterization, so I feel the important new thing here is the data driven 
aspect, not the specific analysis method used. 
 
We have updated the abstract accordingly, aiming to make it more specific.  
 
“The modern era of sleep research relies on measurements of brain activity, yet the mapping of 
whole-brain activity during human sleep leaves much to be desired and progress has been slow. 
Here we aimed to move significantly beyond the current state-of-the-art description of sleep, and in 
particular characterise the spatiotemporal complexity of whole-brain networks and state transitions 



 19 

during sleep. In order to obtain the most unbiased estimate of how whole-brain network states 
evolve through the human sleep cycle, we used a Markovian data-driven analysis of continuous 
neuroimaging data from 57 healthy participants falling asleep during simultaneous functional 
magnetic resonance imaging and electroencephalography (EEG). This Hidden Markov Model 
(HMM) facilitated discovery of the dynamic choreography between different whole-brain networks 
across the wake-non-REM sleep cycle. Notably, our results reveal key trajectories to switch within 
and between EEG-based sleep stages, while highlighting the heterogeneity of N1 sleep and 
wakefulness before and after sleep.” 
 
Lastly, the authors should list here the specific neuro-scientific findings of their work. 
 
We have added more on the neuroscientific importance in the abstract. Please see immediately 
above. 
 
Minor comments: 
 
1) Several times the authors mention the study subjects “Across the sleep wake cycle”. This is not 
correct as REM sleep was not analyzed. 
 
We completely agree, and have updated the revised ms accordingly.  
  
2) Page 1, Line 1: Is "underlying" the best word for the title? Perhaps not, but there may be a better 
way to signal to potential readers that the analysis was performed across the conventional sleep 
stages. Maybe "Discovery of whole-brain transitions and dynamics across the conventional human 
sleep stages." 
 
We agree with the reviewer that the wording of the title is crucial for appropriately conveying to 
potential readers the nature of the analyses and results. Please note that we have updated the title of 
the revised ms when addressing a comment from Reviewer 1 (see above). The updated title is 
“Discovery of key whole-brain transitions and dynamics during the human non-REM sleep cycle”. 
We think that this new and improved title signals that our study concerns conventional sleep stages   
 
3) Page 1, Line -14: The first phrase of the abstract is true but unnecessary, distantly related to the 
specific sleep neuroscience topic under study 
 
We have completely updated the abstract in the revised ms.  
 
4) Page 2, Line -2: Was polysomnography ever indicated in the clinical evaluation of insomnia? 
 
As concisely reviewed by Edinger et al. 2013, polysomnographic parameters such as sleep onset 
latency, wake time during sleep, and total sleep time have been commonly used for subject 
selection for clinical trials on sleep medication. Edinger et al. 2013 moreover demonstrate that 
many people suffering from insomnia will be missed by such procedure. 
 
5) It is stated at the bottom of page 2 that PSG is poor for studying insomnia. Are the authors 
proposing that fMRI is better? 
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We may have been imprecise in our formulation. We meant to convey that the standard 
polysomnographic parameters have not been to helpful in discriminating cases with insomnia from 
controls, nor in understanding underlying mechanisms. Whereas it is unlikely that fMRI will 
develop to be a method that is feasible enough to support a diagnosis of insomnia, we consider it 
likely that probabilities of states and their transitions could provide new insights in underlying 
mechanisms (see e.g. Wei et al 2017).  
 
Page 25, paragraph 2: 
“The presented findings point ahead to a research agenda making hypothesis-driven assessments of 
how the alternative, data-driven, temporal segmentations and dynamics of whole-brain networks 
across the NREM sleep cycle relate to sleep behaviour and cognition, when measured 
independently of PSG. Features identified by the HMM could prove to essential supplements to 
PSG and other conventional methods when trying to understand phenomena like the subjective 
perception of sleep (Bonnet and Moore, 1982, Ogilvie and Wilkinson, 1984), mental content during 
sleep (Nobili et al., 2012, Siclari et al., 2017), such as the hypnagogic or even hallucinogenic 
character of sleep onset (Hori et al., 1994, Goupil and Bekinschtein, 2012), sleep inertia of the 
awakening process (Tassi and Muzet, 2000), sleep-dependent processes related to memory and 
learning (Diekelmann and Born, 2010), and disordered sleep, like insomnia (Wei et al., 2017). Such 
studies should explore the theoretical potential of applying the current HMM, parameterised on the 
present sleep data, to identify the presence of the same dynamical whole-brain network states and 
transition modules in data from different cohorts, potentially even at the individual level. This new 
data could then be linked to behaviour and cognition through sophisticated measures of arousal, 
such as eyelid-closure (Chang et al., 2016), sleep mentation (Siclari et al., 2017), post-sleep 
memory- and learning performance (Stickgold, 2005), and careful clinical examination of sleep 
disorders (Edinger et al., 2013).” 
 
6) Top page 3; are predictions by the listed theories captured by states found by authors? 
 
While acknowledging that our analysis was fundamentally exploratory, and not devised to test any 
specific predictions from any particular theoretical framework, we would like to draw the 
reviewer’s attention to the following excerpt from the Discussion: 
 
Page 23, paragraph 3: 
“The classical, PSG-defined wakefulness, N2, and N3 sleep each corresponded well to specific 
collections of whole-brain network states. However, through the HMM we gained access to the 
large-scale brain dynamics, showing that the state repertoire, when estimated as amount of 
switching and range of states visited, is higher in wakefulness than in both N2 and N3 sleep. From 
theoretical frameworks, such as the Integrated Information Theory (Tononi, 2008) and the dynamic 
core hypothesis (Tononi and Edelman, 1998), it follows that a higher and more complex state 
repertoire is important for the brain to support wakeful consciousness (Marshall et al., 2016). This 
has received empirical support from a series of combined TMS and EEG studies (Massimini et al., 
2005, Casali et al., 2013). From a large-scale network perspective fMRI has been used to show how 
an enhanced state repertoire is associated with an “expanded” consciousness during the psychedelic 
experience (Carhart-Harris et al., 2014, Tagliazucchi et al., 2014). In the context of sleep, however, 
the large-scale network evidence is mainly represented by static FC studies suggesting decreased 
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information integration during N2 and N3 sleep using graph theory (Boly et al., 2012, Tagliazucchi 
et al., 2013a), as well as a higher exploration of the structural connectome during wakefulness 
(Tagliazucchi et al., 2016). With the present work we provide more direct evidence of a higher state 
repertoire in whole-brain dynamics during wakefulness.” 
   
7) Page 3, Line 12: Are the text and references on brain activity during wakefulness necessary? It 
may be prudent to delete the text between "wakefulness" and "however"? 
 
According to the reviewer’s suggestion, we have updated the manuscript to make the text more 
focussed. 
  
8) Page 3, Line 19: The authors exhibit intellectual honesty by including their publications in the 
list of publications that they, in the next sentence, carefully suggest has a key limitation. 
 
We thank the reviewer for acknowledging this. 
 
9) Page 3, Line -7: I do not understand why Reference 54 is unique. Does it not have the same 
limitation of a top-down constraint of the conventional sleep stages as the above references? It 
seems out of place here. Should it be moved and grouped with those publications at the beginning 
of the preceding paragraph? The same questions apply to the text associated with it at the initial 
two points in the Discussion section where it is specifically mentioned. 
 
We thank the reviewer for the opportunity to clarify why this reference is unique in the context of 
the current study. The study by Haimovici and colleagues (Haimovici et al., 2017) hold a special 
position in that the analysis does not involve any prior assumptions about the sleep structure of the 
fMRI data. The sliding-window-based clustering is used directly on the full data set, and the 
resulting states of dynamic functional connectivity are then compared to the sleep scoring. In this 
sense the approach to the PSG-scored fMRI data in Haimovici et al. 2017 is closely related to the 
work in the present study. The important difference lies in the motivation and aim of the respective 
analyses. Whereas Haimovici and colleagues were aiming to find one dynamic FC state for each 
traditional sleep stage, we have increased the number of states with the HMM, and leveraged the 
transition matrix output by the HMM to investigate the finer temporal details of the traditional sleep 
stages. Still, to our knowledge, Haimovici et al. (2017) is the first study to approach fMRI data of 
sleep without a strict constraint on the analysis from PSG, and that is why we feel it deserves 
special mention in our ms. We have updated the revised manuscript to make this more clear in the 
text. 
 
Page 4, paragraph 3: 
“A recent study showed, for the first time, that individual PSG stages can be extracted from fMRI 
recordings in a data-driven way as states of dynamic FC in a sliding-window analysis (Haimovici et 
al., 2017).” 
 
10) Page 4, Line 1: The different sample sizes used throughout the manuscript is confusing. It 
would be worthwhile to add some unambiguous text here and in the Participants subsection in the 
Methods section.  
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We thank the reviewer for pointing this out. We have eamphasised the use of a subset of the HMM 
solution throughout the revised ms:  
 
 
Page 5, paragraph 4: 
“When comparing the HMM output to the PSG scoring we considered the subset of the HMM 
output that corresponded to the data from the 18 participants that reached all four PSG stages 
(wakefulness, N1, N2, and N3, see Table S1). This was necessary to allow for within-participant 
testing (see Methods), when comparing the sensitivity and specificity of individual HMM states to 
(as well as the dynamics of the HMM states within) the various PSG stages.” 
 
Page 7, paragraph 2: 
“The temporal association is apparent when comparing the HMM state timecourses and the PSG 
scoring, as illustrated in Figure 2A, where data are plotted for the 18 participants that included all 
four PSG stages.” 
 
Page 9, paragraph 2: 
“For each of the 18 participants that included all four PSG stages, we defined the sensitivity of each 
HMM state as the proportion of total time spent in a PSG stage, in which this HMM state was 
active. Within the same 18 participants, the specificity was defined for each HMM state as the 
likelihood of finding this HMM state active during a given PSG stage..” 
 
Page 11, paragraph 1: 
“Having the whole-brain network states defined in time allowed us to investigate the large-scale 
brain dynamics of the traditionally defined PSG stages in the 18 participants that reached all PSG 
stages during their recordings.” 
 
Page 11, paragraph 3: 
“Both measures were estimated for each PSG stage, within each of the 18 participants that included 
all four PSG stages, and normalised by time.” 
 
Page 30, paragraph 5: 
“Following the HMM decomposition, two different subsets of the solution were used for post-hoc 
evaluation of the HMM. The first corresponded to the 18 participants that reached all four stages of 
PSG, and the second corresponded to the 31 participants that woke up after having reached 
consolidated sleep.” 
 
11) Page 4, Line 7: The subsample of the 33 wakefulness-after-sleep-onset subjects should be added 
to Table S1. 
 
We have added a table with PSG stage distributions for the 31 participants that woke up after 
having reached N2 sleep. Please also note that ‘33’ was a typo of the first ms, and we have updated 
this to the correct number of 31 participants, throughout the revised ms.  
 
12) Why are some states not represented in Fig.4 (e.g. state14 which seems to have substantial 
fractional occupancy) 
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As we have clarified in our response to Reviewer 1 (please see above), a small number of the HMM 
states appeared to model participant-specific periods of the fMRI data, and were consequently non-
recurring. HMM state 14 represents one of these states, which we refer to as ‘sporadic’. This lack of 
recurrence across participants is quantified in Figure S7 B of the original ms, from which it is clear 
that HMM state 14 did not occur in 80 % of the participants. While the fractional occupancy of 
HMM state 14 plotted in Figure 3A of the original ms may appear non-negligible, it is also evident 
that the error bars (indicating the standard error across participants) are very large on this 
estimation. This is again a sign that the fractional occupancy was high only for a small sub-set of 
participants. In order to address one of Reviewer 1’s comments (please see above), we have updated 
and improved our method for visualising the transition map of the HMM in Figure 4 of the revised 
ms. As a step in this new method we exclude HMM states which occur in less than 75 % of the 18 
participants with all four PSG stages. 
 
13) Neuro-electrical activity such as K-complexes and spindles are known to be prevalent during 
sleep stages N1 and N2. Do the authors expect these activities to be represented in specific HHM 
states? Please Comment. 
 
This is an interesting question. In our discussion of the mean activity maps identified by the HMM 
during N2 sleep, we note the visible overlap with areas identified as correlated with EEG-defined 
spindles in previous fMRI work. Please also see our reply to Reviewer 1 above.  
 
Page 16, paragraph 2: 
“N2 sleep was dominated by HMM states 3 and 6, and the mean activation maps of these whole-
brain network states are shown in Figure 6B. The supplementary motor area was involved in both of 
these states; in HMM state 3 as increases in concert with the bilateral precuneus and primary motor 
cortices; and in HMM state 6 as decreases together with the bilateral thalamus, middle cingulate, 
supramarginal cortex, and the rolandic operculum. Interestingly, these configurations overlap 
considerably with those previously reported in studies mapping fMRI-correlates of sleep spindles 
(Laufs et al., 2007, Schabus et al., 2007, Andrade et al., 2011, Caporro et al., 2012), which represent 
a defining EEG-feature of N2 sleep.” 
 
Page 22, paragraph 4: 
“Two HMM states were clearly specific to periods of N2 sleep as two whole-brain network states. 
The corresponding mean activation maps showed either increases or decreases in areas consistently 
identified in a number of studies as fMRI-correlates of sleep spindles (Schabus et al., 2007, 
Andrade et al., 2011, Caporro et al., 2012). It is likely that the HMM was sensitive to the signal 
changes caused by spindles, and future work should address more specifically the relationship 
between data-driven, HMM-identified networks and EEG-defined spindles as well as other 
graphoelements such as K-complexes.” 
 
14) The color bar in Fig. 5 needs to be labelled 
 
We thank the reviewer for pointing this out, and we have corrected this in the revised ms.  
 
15) Page 18. “Looking through glass, darkly” is awkward language. 
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We rather like the use of the biblical phrase from 1 Corinthians 13:12 as an image of the message of 
the study. 
 
16) Page 18: “other studies have taken PSG as ground truth”. To some extent, this is what the 
authors do as well! (e.g. in grouping of states in sleep stages in figs 4, 5,7 and the conclusions that 
flow from that.  
 
This is a fair question. The HMM is completely data-driven and thus independent of PSG or any 
other partitioning of sleep, yet in order to make sense of the data, we compare the HMM findings to 
PSG. Thus the argumentation of the ms includes a silver lining in terms of the use of PSG as ground 
truth. As it is true for most exploratory studies, there is a need for some referential concepts in order 
to disclose new features in data. For the most part we use the PSG scoring to make sense of the 
completely data-driven HMM segmentation of the data. The result may be interpreted as a 
probabilistic representation of PSG stages in the space of the HMM states. As we point out 
throughout the ms, there are certain aspects where the HMM states align well with PSG, in the 
sense that either groups of HMM states (in wakefulness and N2 sleep) or a single HMM state (in 
N3 sleep) closely models PSG stages. In other cases, such as N1 sleep, the HMM appears to suggest 
alternative groupings of data. Here the comparison between PSG and the HMM solution leads to a 
novel synthesis, pointing to a new and more robust way of defining transitory brain states of light 
sleep and the sleep onset process. Similarly, had we used PSG as the ground truth in a strict sense, 
and e.g. informed the HMM of the PSG scoring, we would have missed the independent module of 
transitions that appear to model wakefulness after sleep onset (WASO). However there are also 
parts of the results that consider PSG stages in their own right, such as when we compare the 
dynamics of the HMM states within the various PSG stages. We have updated the revised ms to 
make this more clear: 
 
Page 11, paragraph 5: 
“Up until this point, we have used the traditional PSG stages to organise and evaluate the 
temporally resolved whole-brain network states, in terms of the MANOVA results, PSG-sensitivity, 
PSG-specificity, and dynamics within PSG stages. Yet, the data-driven nature of the HMM also 
allowed us to reverse the inference, and consider the results, in particular the temporal progression 
of HMM states, in their own right. This way we were able to ask if the high-resolution, fMRI-based 
HMM, was able to reveal new aspects of the wake-NREM sleep cycle, hidden from the EEG-based 
PSG. For this purpose it was informative to examine the transition probabilities of the HMM states. 
Specifically, we could use these to extract modules of HMM states that transitioned more often 
between each other than to other states. While agreeing to a certain extent with the PSG staging, the 
organisation of transition modules and their involved whole-brain network states also demonstrate 
how this data-driven approach can be used to more fully describe the spatiotemporal complexity of 
large-scale brain activity across the NREM sleep cycle.” 
 
Page 20, paragraph 1: 
“Importantly, the temporal resolution of the HMM solution identified state lifetimes on the order of 
seconds, providing a temporally fine-grained description of the traditional PSG stages. Meanwhile, 
a close examination of the HMM transition map offers a credible account of the aspects where PSG 
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does not fully capture the complexity of large-scale network changes, and lead to propositions of 
new and potentially improved categorisations of brain activity.” 
 
Page 21, paragraph 2: 
“Below we begin by linking our HMM results to existing neuroimaging evidence of PSG stages. 
This is used to characterise the ways in which the HMM agreed with PSG and establish that the 
HMM generally inferred meaningful features from the fMRI data. It is on the basis of this general 
agreement with PSG that we may then move on to a close examination of the new insights with 
relation to sleep that can be gained from the data-driven HMM.” 
 
Page 23, paragraph 2: 
“In the aspects where PSG and the HMM decomposition conformed in time, the HMM lends 
important support to PSG, while still offering new perspectives in terms of transitions and 
dynamics. In other cases, the HMM suggests new segmentations of large-scale brain activity that 
cannot be resolved when following traditional PSG staging.” 
 
 
17) Page 6, Line -12: Incorporating Reference 54 in this justification is awkward and unnecessary. 
This justification stands on its own quite well without the introductory phrase. 
 
We thank the reviewer for this suggestion, and agree that the text reads better without the reference.  
 
18) Page 11, Line 5: Perhaps I missed it, but how was the threshold determined? 
 
The thresholding of the transition matrix was performed heuristically for visualisation purposes. As 
you will see in our various replies, we have developed a novel method for visualising the HMM 
transition map. This new methods still includes thresholding of the transitions, also chosen solely 
for visualisation purposes. This is included in the revised ms. 
 
Page 34, paragraph 3: 
“The matrix of transition probabilities, which were explicitly modelled by the HMM, contained a 
clear organisation, in which sub-networks of HMM states expressed more frequent transitions 
within each other than to states outside. In other words, the transition matrix represented a directed 
graph with modular organisation. We demonstrated this by submitting the transition matrix (shown 
in Figure 4A) to a modularity analysis, using Matlab functions from the Brain Connectivity 
Toolbox (https://sites.google.com/site/bctnet/Home)(Rubinov and Sporns, 2010), based on 
Newman’s spectral community detection (Leicht and Newman, 2008). Prior to running the 
modularity algorithm, we excluded the transitions of the HMM states that did not occur consistently 
across participants, i.e. sporadic states (see Methods, Choice of number of states, and Figure 4B), 
and thresholded the remaining transition matrix to include the strongest elements. The choice of this 
latter threshold was done for visualisation purposes (for the results shown in the main text using 19 
states we included the 21% strongest transitions), however different thresholds resulted in highly 
similar module partitions. The modular organisation is presented in a reordered matrix (Figure 4C) 
and as a map (Figure 4D).” 
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19) Page 11, Line -12: The attempt to extend states across the conventional sleep stages is a very 
novel and important part of the manuscript. The above validation steps are nice, but this is where 
we will actually learn something new about sleep neuroscience. Indeed, that is exactly what 
happened when the authors separated wakefulness and wakefulness after sleep onset. 
 
We fully agree with the reviewer that this is one of the most novel aspects of the current study and 
have tried to emphasise this in the revised ms. Our updated modularity-based analysis of the 
transition map (shown in Figure 4 of the revised ms) provides an even more rigid procedure for 
evaluating data-driven organisation of brain activity, resulting in the present case in a discovery of 
wakefulness after sleep onset and alternative identifications of light sleep.  
 
Page 11, paragraph 5: 
“Up until this point, we have used the traditional PSG stages to organise and evaluate the 
temporally resolved whole-brain network states, in terms of the MANOVA results, PSG-sensitivity, 
PSG-specificity, and dynamics within PSG stages. Yet, the data-driven nature of the HMM also 
allowed us to reverse the inference, and consider the results, in particular the temporal progression 
of HMM states, in their own right. This way we were able to ask if the high-resolution, fMRI-based 
HMM, was able to reveal new aspects of the wake-NREM sleep cycle, hidden from the EEG-based 
PSG. For this purpose it was informative to examine the transition probabilities of the HMM states. 
Specifically, we could use these to extract modules of HMM states that transitioned more often 
between each other than to other states. While agreeing to a certain extent with the PSG staging, the 
organisation of transition modules and their involved whole-brain network states also demonstrate 
how this data-driven approach can be used to more fully describe the spatiotemporal complexity of 
large-scale brain activity across the NREM sleep cycle.” 
  
Page 20, paragraph 1: 
“Meanwhile, a close examination of the HMM transition map offers a credible account of the 
aspects where PSG does not fully capture the complexity of large-scale network changes, and lead 
to propositions of new and potentially improved categorisations of brain activity.” 
 
Page 21, paragraph 1: 
“Agreements as well as disagreements between the PSG scoring and the independent HMM 
decomposition were made particularly clear in this transition map, visualising the most likely 
transitions between the whole-brain network states.” 
 
Page 24, paragraph 2: 
“If PSG-defined N1 does in fact represent a mix of wakefulness and sleep, this would explain why 
we found the highest range of whole-brain states during this PSG stage. While this primarily serves 
to underline the common notion that N1 is unlikely to be a reliable demarcation between 
wakefulness and sleep, our data-driven identification of a transition module of whole-brain states 
occurring between wakefulness and consolidated sleep (N2 and N3) suggests that an improved and 
principled categorisation of early sleep can be achieved, when the high spatiotemporal resolution of 
neuroimaging is explored in full.” 
 
Page 24, paragraph 3: 
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“Like the N1-related findings discussed above, this too serves as a prime example of how 
information-rich neuroimaging data, when treated in a data-driven way, can be carefully evaluated 
in light of established knowledge (PSG in this case) to make new discoveries from, and 
categorisations of, brain activity.” 
 
20) Page 11, Line -12: Perhaps Figure S3 should be moved to the main text. The statistically 
significant sensitivity differences in opposite directions for states 2, 8, and 10 (wakefulness is 
higher) versus states 5, 17, and 18 (wakefulness after sleep onset is higher) is very compelling. 
 
We would be happy to do so but, given the number of existing figures, we would like guidance 
from the editor. 
 
21) Page 19, Line 1: The authors may want to begin this paragraph by briefly discussing how 
others have attempted to subdivide the conventional sleep stages with more-sophisticated analyses 
of EEG data (e.g., Reference 7 and Borbely, Baumann, Brandeis, Strauch, & Lehmann, 1981). 
 
We thank the reviewer for this excellent suggestion, and have used it to update the revised ms. 
 
Page 20, paragraph 3: 
“The description of brain activity offered by PSG has for long been acknowledged as incomplete 
for scientific purposes, and attempts have been made to harvest more information from scalp EEG 
in a search for features relevant for sleep, overlooked by PSG (Borbély et al., 1981, Hori et al., 
2001, Terzano et al., 2001, Olbrich and Achermann, 2005, Abeysuriya and Robinson, 2016). Our 
work shares this ambition, but includes an important incorporation of whole-brain spatial detail 
from fMRI data.” 
 
22) Page 19, Line 4: Does Figure 7 add information that is not available in the text? 
 
We feel this figure is useful for clarification purposes, but again we are happy to be guided by the 
editor. 
 
23) Page 20, Line 9: The authors may want to review a PET study on post-sleep wakefulness 
(Balkin et al., 2002) and determine whether it is worth including here. 
 
We thank the reviewer for reminding us of this pioneering study, which nicely corroborates our 
WASO-specific findings of mean activity increases in frontal cortices, and we have used it as a 
reference in this regard in the revised ms 
 
24) Page 20, Line 17: Reference 86 did not examine N1. 
 
The reviewer is correct. We have updated the revised ms.  
 
25) Page 21, Line 14: How dependent is this interpretation on the number of states initially chosen 
for the analysis? 
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As we have shown in the result figures added to the supplementary material of the revised ms 
(Figure S7 to S10), the dynamics estimated within PSG stages were very robust across the numbers 
of states chosen for the HMM. Please see also our response to Reviewer 1.  
 
Page 33, paragraph 2: 
“In appreciation of the potential limitations related to choosing the number of HMM states with no 
strict, formal criterion, we include the results of using different numbers of HMM states. In Figures 
S7 to S10 we have reproduced Figure 3 of the main text with HMM results using 15, 17, 21, and 23 
states respectively. Demonstrating the robustness of our HMM findings, the conclusions of the main 
text using 19 states are also found in Figures S7 to S10. Specifically Figures S7A-B to S10A-B 
show how select HMM states expressed high sensitivity and specificity for different PSG stages. In 
line with the results for K = 19 states, the HMM with lower and higher K identified states with high 
sensitivity and specificity for wakefulness, N2, and N3 sleep, but not for N1 sleep. Figures S7D-E 
to S10D-E quantify the dynamics of HMM states within PSG stages. The relative differences 
between PSG stages are conserved and highly stable across numbers of HMM states. Interestingly, 
the absolute values of switching between and range of HMM states within PSG stages were in fact 
also quite preserved across numbers of HMM states. This is likely caused by the fact that the main 
effect of changing the number of HMM states is an addition of non-recurring, ‘sporadic’, states that 
modelled very (participant-) specific periods of the fMRI data (see above).” 
 
26) Page 22, Line -12: The differences between wakefulness and wakefulness after sleep onset 
should receive greater attention. They are the most novel, interesting, and exciting part of the 
manuscript. They should be cited as an example of how the approach and other similar approaches 
can be used to make truly new discoveries in sleep neuroscience. 
 
We agree with the reviewer, and have highlighted this in the revised ms. 
 
Page 24, paragraph 3: 
“Like the N1-related findings discussed above, this too serves as a prime example of how 
information-rich neuroimaging data, when treated in a data-driven way, can be carefully evaluated 
in light of established knowledge (PSG in this case) to make new discoveries from, and 
categorisations of, brain activity.” 
 
Page 25, paragraph 2: 
“The presented findings point ahead to a research agenda making hypothesis-driven assessments of 
how the alternative, data-driven, temporal segmentations and dynamics of whole-brain networks 
across the NREM sleep cycle relate to sleep behaviour and cognition, when measured 
independently of PSG. Features identified by the HMM could prove to essential supplements to 
PSG and other conventional methods when trying to understand phenomena like the subjective 
perception of sleep (Bonnet and Moore, 1982, Ogilvie and Wilkinson, 1984), mental content during 
sleep (Nobili et al., 2012, Siclari et al., 2017), such as the hypnagogic or even hallucinogenic 
character of sleep onset (Hori et al., 1994, Goupil and Bekinschtein, 2012), sleep inertia of the 
awakening process (Tassi and Muzet, 2000), sleep-dependent processes related to memory and 
learning (Diekelmann and Born, 2010), and disordered sleep, like insomnia (Wei et al., 2017). Such 
studies should explore the theoretical potential of applying the current HMM, parameterised on the 
present sleep data, to identify the presence of the same dynamical whole-brain network states and 
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transition modules in data from different cohorts, potentially even at the individual level. This new 
data could then be linked to behaviour and cognition through sophisticated measures of arousal, 
such as eyelid-closure (Chang et al., 2016), sleep mentation (Siclari et al., 2017), post-sleep 
memory- and learning performance (Stickgold, 2005), and careful clinical examination of sleep 
disorders (Edinger et al., 2013).” 
  
27) Page 22, Line -12: Related to the previous comment, the authors may want to discuss other 
attempts to subdivide the conventional sleep stages with fMRI (Picchioni et al., 2008; Watanabe et 
al., 2014). 
 
We thank the reviewer for the suggestion, which has been followed in the revised ms. 
 
Page 20, paragraph 3: 
“The description of brain activity offered by PSG has for long been acknowledged as incomplete 
for scientific purposes, and attempts have been made to harvest more information from scalp EEG 
in a search for features relevant for sleep, overlooked by PSG (Borbély et al., 1981, Hori et al., 
2001, Terzano et al., 2001, Olbrich and Achermann, 2005, Abeysuriya and Robinson, 2016). Our 
work shares this ambition, but includes an important incorporation of whole-brain spatial detail 
from fMRI data. Previous studies have indicated that fMRI can be used to identify dynamic re-
configurations of large-scale brain activity during conventional, EEG-based sleep stages, either in 
form of voxel-wise changes in activity (Picchioni et al., 2008), changes in connection strengths in 
resting-state networks (Watanabe et al., 2014), or through long-range temporal dependencies in the 
BOLD signal (Tagliazucchi et al., 2013b). To our knowledge, however, there are no existing reports 
on how this information in fMRI data can be explored in a principled and data-driven way to 
suggest new categorisations of brain activity during human wake-NREM sleep cycle.” 
 
28) Page 22, Line -9: I appreciate how the authors make a call for the inclusion of other important 
brain processes. One that they might consider mentioning are behavioral measures of sleep such as 
eyelid closure, which has been applied to fMRI data during fluctuations of arousal (Chang et al., 
2016), and arousal threshold, which forms the most important component of the original behavioral 
definition of sleep. 
29) Page 22, Line -9: Related to the previous comment, when going beyond the conventional sleep 
stages, it may be worthwhile to mention that pre- versus postsleep adaptive brain processes related 
to the function of sleep (e.g., memory consolidation) should also be included. 
 
We thank the reviewer for the important suggestions of the two comments above and now include 
in the Discussion section of the revised ms:  
 
Page 25, paragraph 2: 
“The presented findings point ahead to a research agenda making hypothesis-driven assessments of 
how the alternative, data-driven, temporal segmentations and dynamics of whole-brain networks 
across the NREM sleep cycle relate to sleep behaviour and cognition, when measured 
independently of PSG. Features identified by the HMM could prove to essential supplements to 
PSG and other conventional methods when trying to understand phenomena like the subjective 
perception of sleep (Bonnet and Moore, 1982, Ogilvie and Wilkinson, 1984), mental content during 
sleep (Nobili et al., 2012, Siclari et al., 2017), such as the hypnagogic or even hallucinogenic 
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character of sleep onset (Hori et al., 1994, Goupil and Bekinschtein, 2012), sleep inertia of the 
awakening process (Tassi and Muzet, 2000), sleep-dependent processes related to memory and 
learning (Diekelmann and Born, 2010), and disordered sleep, like insomnia (Wei et al., 2017). Such 
studies should explore the theoretical potential of applying the current HMM, parameterised on the 
present sleep data, to identify the presence of the same dynamical whole-brain network states and 
transition modules in data from different cohorts, potentially even at the individual level. This new 
data could then be linked to behaviour and cognition through sophisticated measures of arousal, 
such as eyelid-closure (Chang et al., 2016), sleep mentation (Siclari et al., 2017), post-sleep 
memory- and learning performance (Stickgold, 2005), and careful clinical examination of sleep 
disorders (Edinger et al., 2013).  
 The wake-NREM sleep cycle merely represents a sub-part of a continuum of activities that the 
brain supports. Other important brain processes should be sought integrated with the presented 
transition map, most obviously including REM sleep, but also other altered states of consciousness, 
such as anaesthesia (Ni Mhuircheartaigh et al., 2013, Uhrig et al., 2014, Barttfeld et al., 2015), the 
psychedelic experience (Carhart-Harris et al., 2014), and even different contents of consciousness 
during wakefulness (Dehaene et al., 2014).” 
 
30) Page 22, Line -3: Is discussing the application to other altered states of consciousness too 
loosely linked to the current study? Perhaps this sentence should be deleted. 
 
Following the reviewer’s suggestion, we have tempered the sentence. 
 
Page 25, paragraph 3: 
“The wake-NREM sleep cycle merely represents a sub-part of a continuum of activities that the 
brain supports. Other important brain processes should be sought integrated with the presented 
transition map, most obviously including REM sleep, but also other altered states of consciousness, 
such as anaesthesia (Ni Mhuircheartaigh et al., 2013, Uhrig et al., 2014, Barttfeld et al., 2015), the 
psychedelic experience (Carhart-Harris et al., 2014), and even different contents of consciousness 
during wakefulness (Dehaene et al., 2014).” 
 
31) Page 26, Line -5: The terms "more robust" and "potential noisy" are vague. It is not clear to the 
reader why principal component analysis was performed. Why was it performed here and not in the 
authors' prior publication (Reference 34)? 
 
The HMM is a decomposition that intrinsically implies a dimensionality reduction. Because of its 
robustness and its capacity to filter out high-frequency noise, PCA is often used prior to other 
dimensionality reductions such as ICA. In (Vidaurre et al., 2017b), the authors ran the HMM on 
ICA components. In that case, given the huge spatial dimensionality of the data, PCA necessarily 
preceded ICA, and thus the HMM. In this case, we bypassed ICA by using an anatomical 
parcellation. Although not strictly necessary here, PCA is however convenient as it increases the 
signal-to-noise ratio, reduces the number of parameters estimated by the HMM and improves the 
robustness of the result. In this case, robustness refers to the statistical sense, i.e. less prone to 
estimation variability. 
 
The revised ms has been updated: 
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Page 31, paragraph 1: 
“The HMM represents a tool for decomposing multivariate data into fewer dimensions. Given the 
high spatial dimensionality of fMRI, it is common to use principal component analysis (PCA) to 
reduce the number of parameters to be estimated in the decomposition, increasing the signal-to-
noise ratio of the data and improving the robustness of the results (Baker et al., 2014, Vidaurre et 
al., 2017b). Accordingly, we submitted the demeaned, standardised, and concatenated BOLD 
timecourses to PCA prior to the HMM inference.” 
 
32) Page 26, Line -2: Figure S1 is not necessary in general and is included as a panel in Figure 1. 
 
We agree with the reviewer and have removed the figure from the revised ms. 
 
33) Page 27, Line 11: More details on what exactly minimum free energy is measuring may be 
warranted. 
 
Page 31, paragraph 3: 
“The free energy is the statistical measure that is minimised during the (variational inference) 
Bayesian optimisation process. Technically speaking, it is an approximation of the model evidence, 
and includes two terms: how well the model fits the data, and the complexity of the model 
(measured as how much it departs from the prior distribution).”  
  
34) Page 27, Line 16: Why did minimum free energy fail as the method for choosing the number of 
states? What is unique about these data that triggered this deviation from standard practice? 
 
As we note in our reply to Reviewer 1 above:  
 
Whereas the free energy is a reasonable criterion, its biological validity is unclear as far as the 
HMM is not a biophysical model. As we already note in the Discussion section of the original ms, it 
remains “difficult to determine the ‘correct’ number of states, when decomposing continuous 
recordings of brain activity”. Ultimately, the question boils down to find an appropriate trade-off 
between richness and complexity of the model, and the appropriate number depends on the research 
question at hand. Similar to our case, furthermore, Baker et al. 2014 found minimum free energy to 
be non-informative for the purpose of choosing the number of states. 
 
Page 32, paragraph 1: 
“Whereas the free energy is a reasonable criterion for choosing the ideal number of states for the 
HMM, its biological validity remains unclear in so far as the HMM does not represent a biophysical 
model. As apparent from the plot in Figure S1A, the minimum free energy was monotonically 
decreasing over the large range of tested numbers of states, showing no negative peaks. Hence, like 
in previous applications of the HMM (Baker et al., 2014, Vidaurre et al., 2017b), the free energy 
was not informative for choosing the number of states in our case.” 
 
35) Page 27, Line -8: The authors used how well the states related to the conventional nonrapid eye 
movement sleep stages here to help them determine how many states to use. Does this not defeat the 
purpose of analyzing the fMRI data independently of the conventional sleep stages? 
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Please see our response to minor comment 16. 
 
36) Page 29, Line 1: The AASM manual defines wakefulness after sleep onset as wakefulness after 
having reached any stage. Why did the authors choose to deviate from this standard? 
 
We agree with the reviewer that should be clarified. In line with inter-rater studies, cited in our ms, 
our results demonstrate PSG-defined N1 as the least reliable sleep stage to estimate. In order to stay 
consistent with our own findings we chose to examine wakefulness after consolidated sleep 
(N2/N3), which is also in line with previous studies investigating post-sleep wakefulness (Balkin et 
al., 2002). 
 
Page 12, paragraph 4: 
“Given the poor correspondence between the HMM states and the general uncertainty associated 
with the staging of PSG-defined N1 sleep (see Discussion), we chose to define WASO as PSG-
staged wakefulness, which followed after visits to N2 sleep (Balkin et al., 2002).” 
 
37) Supplementary Material Page 5, Line 1: The authors should consider simplifying this figure 
further by also excluding the bars representing N1 and N2. The key question is whether W and 
WASO differ. 
 
We agree with the reviewer and have updated the figure in the revised ms. 
 
38) Supplementary Material Page 5, Line 1: "Including" may not be the best word. Is "separating" 
better? 
 
We thank the reviewer for this suggestion and have updated the revised ms accordingly. 
  
39) The justification for choosing the number of HMM states is not sound. E.g. in caption of Fig. S2 
it says: that the “median fractional occupancy stagnates around K=19” to make the point that that 
higher K did not split states. These issues are not directly related though.  
 
The reviewer raises an important point, which is related to the minor comments 25 and 34, as well 
as a comment from Reviewer 1 (please see above). Appreciating that no formal criterion can be 
used to determine the ideal number of states for the HMM, we opted for a solution that could 
contribute with as high temporal detail as possible. The median fractional occupancy is related to 
this, since the rationale for increasing the number of states would be to model the data with more 
states. This should distribute the data across more states, and theoretically lead to lower median 
fractional occupancies of the resulting HMM states. However this is not what we observed when 
increasing the number of states above 19. When using K > 19 states, we found that the extra states 
modelled very specific periods of the data, often “specialising” in only one, or a few, participants. 
We illustrated this in Figure S7 of the original manuscript, where we plot the proportion of 
participants including all HMM states against the number of states inferred by the HMM. The very 
same phenomenon is responsible for the stagnation of the median fractional occupancy shown in in 
the original Figure S2.  
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40) I found Figure 7 quite speculative, with several statements that are questionable in the light of 
my major comments (unequal amount of data in various sleep stages, states present in some subject 
but not in others, multiple pathways for the transition of wake to sleep etc.  
 
Following the reviewer’s comments, we have revised the ms, clarifying why the statements of 
Figure 7 are sound. 
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Reviewer #3 (Remarks to the Author): 
 
1 - My commits will mainly focus on the HMM part. When applying Gaussian HMM on fMRI 
analysis, some papers assume the mean vector is zero and only study the covariance matrix as a 
functional connectivity matrix. Some papers assume the covariance matrix to be identity matrix and 
only focus on the mean vector as a mean activation pattern. In this paper, there seem to be no 
constraints on mean vector or covariance matrix; therefore, the state is represented by a mean 
activation pattern and a covariance matrix.  
 
The reviewer is correct in pointing this out. Our choice of a full Gaussian distribution was based on 
an agnostic view of the data. We preferred to be as data-driven as possible in determining whether it 
is the functional connectivity or the signed amplitude (the mean of the distribution), which drive the 
segmentation. A more hypothesis-driven analysis can be done by suppressing either of these two 
elements, and is an interesting perspective for future investigations. 
 
In this case, subtracting/averaging two/multiple covariance matrices from different brain states 
may be problematic (Figure S5 and S6), because this ignores the fact that these brain states has a 
different baseline activation pattern. 
 
This is an excellent point. We interpret the covariance as representative of how the ROI timecourses 
co-fluctuate after the mean vector has accounted for their respective mean activities, which are 
different between the states. Note, however, that comparing (subtracting or averaging) functional 
connectivity matrices (either in the form of covariance or correlation) between different data sets –
with different baselines – is relatively common in practice; see Danaher, Wang and Witten’s The 
joint graphical lasso for inverse covariance estimation across multiple classes for a principled 
example (Danaher et al., 2013).  
 
To address the reviewer’s concern, we sought to verify that our results were robust by using the 
cosine similarity instead of Pearson’s correlation as a measure of functional connectivity. The 
difference between these two metrics is that the cosine similarity does not demean the time series, 
and, therefore, the differences in baselines are accounted for. As observed, the results are very 
similar between these approaches.  
 
Page 35, paragraph 3: 
“To make sure that the differential FC maps were not biased by the effect of the HMM states 
having different baseline mean activation patterns (as modelled by the mean vector of the Gaussian 
distribution), we produced equivalent maps using the cosine similarity instead of the covariance 
matrices outputted by the HMM. Unlike Pearson’s correlation, the cosine similarity does not 
demean the time series, and, therefore, the differences in baselines are accounted for. These maps 
are shown in Figures S17 and S18. This analysis yielded 19 matrices of 90 × 90 cosine similarity 
values. By taking each cosine similarity matrix and subtracting from it the average of the remaining 
18 cosine similarity matrices, we obtained maps equivalent to the differential FC maps, which were 
based on the covariance information modelled directly by the HMM. As may be seen, when 
comparing Figure S4 to Figure S17, and Figure S5 to Figure S18, the maps are highly similar.” 
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2 - If we look at the 19 covariance matrices in Figure S4, most part of them is positive. Even for the 
negative part, the values are relatively low compared with the positive part (-0.2 vs. +1.2). I am 
wondering whether this is due to the lack of global signal regression or it is because each of the 
covariance matrices is associated with a mean vector and that makes it different from the 
conventional FC matrix.  
 
We thank the reviewer for pointing this out. As explained above, please note that the FC matrices 
shown in Figure S3 were/are based on correlations. We have added a histogram to the revised 
Figure S3, showing the distribution of super-diagonal elements of the static FC matrices computed 
as the time-averaged Pearson’s correlation between the original ROI timecourses within the four 
PSG stages across participants. These values are independent of the HMM and the histogram 
demonstrates that the positively skewed FC values were a feature of the fMRI data, and not the 
HMM.  
 As the reviewer points out, this is most likely a result of omitting global signal regression. The 
use of global signal regression as a preprocessing step for fMRI connectivity analysis is 
controverial (Murphy and Fox, 2016). In the context of vigilance fluctuations, it has been shown 
that the global signal may in fact carry physiological information, by varying across PSG stages 
(Wong et al., 2013). For these reasons we chose not to perform global signal regression.  
 
3 - I suspect the temporal features (e.g. mean life time (around 10-20s), switching frequency) will 
be highly influenced by the temporal filter (0.01-0.1Hz). It would be nice to prove that at least their 
relative relationship will not change by using a different temporal filter. 
 
The reviewer is correct. Omitting the use of the temporal filter does lead to increases in mean life 
times of the HMM states. We have added Figure S16, which demonstrates that the relative 
differences between PSG stages are effectively unchanged.  
 
Figure text of Figure S16: 
“All plots are were computed in the same way as for Figure 4, using an HMM with 19 states. The 
only difference was that the BOLD data was not temporally filtered. Note in A and B how, similarly 
to the results of the main text, select HMM states were sensitive and specific for certain PSG stages 
(although not for N1 sleep). In C the overall mean life time of the HMM states is decreased 
compared to the results using a low-pass temporal filter (compare with Figure 4). As a consequence, 
D shows increased switching frequencies within all of the four PSG stages. Importantly, the relative 
differences between the PSG stages were effectively unchanged (even if the significant difference 
between ‘Wake’ and ‘N2’ was no longer evident). Interestingly, in E, the number of unique HMM 
states visited per unit time were numerically quite stable with or without the use of temporal filter.” 
 
4 - My biggest concern about these results is their reproducibility. As far as I know, methods like 
HMM are sensitive to its initialization. Training the model twice with different initialization may 
give you different results. Some states may appear slightly differently and some states may 
disappear. The temporal features of the model, including life time and transition matrix, may also 
change. Therefore, which part of the results is actually reproducible (insensitive to initialization)? 
 
This is a good point and we have carried out a thorough analysis of the reproducibility.  
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Page 26, paragraph 2: 
“Another potential caveat of our analyses pertains to the initialisation of the HMM, which is not 
deterministic. In the Supplementary Materials, we provide a summary analysis showing that the 
HMM infers consistent states across independent initialisations and splits of data (see Figure S16).” 
 
Page 36, paragraph 1: 
“The initialisation of the HMM includes a stochastic element. To make sure that the states inferred 
by the HMM were not contingent on the initialisation, we ran the HMM with 19 states an additional 
four times on the full dataset (N = 57), and five times on each of the two half-splits of the data (N = 
29 and N = 28). The 19 resulting states of each HMM repetition were matched to the states of the 
original HMM. Each state of a repetition was thus paired to an original HMM state, based on the 
similarity between their respective Gaussian distributions. The similarity was estimated using the 
Bhattacharyya distance (Bhattacharyya, 1943), and the matching of states across repetitions were 
carried out using the Munkres algorithm (Munkres, 1957).  
 Following the pairing of states, all resulting states were compared in an all-to-all manner, again 
using the Bhattacharyya distance as a measure of similarity. The resulting matrix [(Ndataset + Nstates + 
Nrepetitions) × (Ndataset + Nstates + Nrepetitions)] is shown in Figure S15A. The common pattern in the data-
set-specific sub-matrices indicates that consistent HMM-state distributions were inferred across 
initialisation repetitions and data-splits.  
 Following the matching of the HMM Gaussian distributions from independent initialisations, we 
tested the temporal correspondence between the original HMM states and their counterparts from 
the repetition runs. This was done by comparing the corresponding state timecourses. For a pair of 
HMM states (one original and one from a repetition run) the temporal correspondence was 
quantified as the ratio between time points of overlap (simultaneous activity or inactivity) and time 
points of misses (off-sets of activity or inactivity). In Figure S15B are plotted the mean values and 
standard deviations within data-splits, and it is clear that temporal overlaps outweighed misses for 
all runs of the HMM. This is an important indication that the evaluations of the HMM dynamics 
presented in the main text would be highly similar for other initialisations.” 
   
5 - In page 5, please use multiplication symbol instead of letter "x" in the dimension of the matrix. 
 
We have changed throughout the revised ms.  
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Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
The authors provided a very detailed response and addressed most of my concerns. I appreciate 
the effort and fairness in reporting (e.g. about the default mode network gateway that turned out 
to be threshold-specific). A few issues remain:  
 
The new title is somewhat confusing as there is no NREM sleep cycle, although sleep cycles contain 
a NREM part.  
 
Re comment #3  
My question tried to address the conceptual advancement of the paper rather than making a case 
for or against PSG. It's interesting that there is a good overlap between manually scored PSG and 
a data-driven fMRI approach, but that's a methodological feat not necessarily a conceptual 
advancement. The question is to what extent does the paper go beyond that and in my reading, 
there seem to be three main issues: the multiple states of N1, the transition matrix and the pre-
/post-sleep wakefulness differences.  
As the authors now also clearly describe in the revised version, the higher state repertoire in N1 is 
fully in line with the current consensus on N1 being a mixed stage with features of wakefulness 
and sleep. That post-sleep wakefulness is different from pre-sleep wakefulness is also to be 
expected given the earlier EEG/PET work that is now included in the revised version - and various 
studies on sleep inertia, for instance employing EEG or cognitive tests. If you ask sleep 
researchers whether they expect that brain activity in the first 10-15 min after awakening is the 
same as pre-sleep brain activity, not many would say yes. But that there are multiple ways in 
which sleep progresses and brain states transition, that is very novel and a clear advancement of 
our concept of sleep. A good illustration of this is the 'strong triangular transition structure within 
the blue module between the N2-speicifc whole-brain network states (HMM states 3 and 6) and the 
N3-modelling HMM state 16' (page 13, small typo in the sentence). However, when it turns out 
that such a transition matrix is just reflecting some basic EEG patterns, this would reduce the 
conceptual advancement. After all, N3 could follow N2 sleep with a relative high incidence of 
specific N2-events versus N2 sleep with no (or different) N2-events.  
Examining this does not require a temporal dissection of such events at the millisecond level and 
examining global-local differences of certain events is not needed initially. The authors just have to 
show that these HMM states do not merely reflect such basic sleep EEG events, which is easiest 
and most conclusive to do for the N2 states initially. If the EEG recordings of these states do not 
yield any differences (expressed in effect size due to the relatively low power) in for instance 
spindle and K-complex incidence, or fast versus slow spindles, and/or there is no temporal 
correlation between HMM states and EEG events, that will strengthen the impact of the findings 
considerably. Since the authors have both the HMM time-courses and the EEG recordings, 
computing such differences and/or correlations (or some better measures the authors might 
propose) should be straightforward.  
 
Re comment #8  
I agree with the authors that the effect of smoothing (i.e. creating artificial dependencies between 
regions) should be relatively minor and I can live with the authors not analyzing this given the 
ratio between amount of effort and expected benefits. Yet a discussion of this limitation as done in 
their reply to this comment would improve the paper, I thought particularly the authors' second 
argument was persuasive. The other arguments were not as convincing:  
(i) one could say that creating artificial dependencies could still result in systemic biases at the 
whole brain level;  
(iii) do the authors assume that all voxel signals are stationary over time, say for instance the 
BOLD signal from the CSF (affected by physiological noise), that may get smoothed into the 
thalamus time-course?  
(iv) the AAL also contains smaller regions that may play a disproportionate role;  



(v) artificial dependencies could increase or decrease or the overlap with PSG.  
 
Re comment #9  
The authors compellingly argue that a functional atlas derived from the data might not be that 
appropriate for their data, although I had a functional hotspot atlas in mind that has already been 
published (not derived from the data itself). But going with this line of reasoning, I also expect as 
the authors state that their results 'would be robust to different levels of spatial granularity 
(expressed through different parcellations)'. Moreover, in their answer to comment #8 the authors 
argued that 'the HMM is in itself a form of dimensionality reduction, and therefore, when run at the 
whole-brain level, it is less sensitive to local variability'. Showing instead of expecting this would 
be helpful at this stage, otherwise it remains unclear if the results are atlas-specific (and for 
instance the consequence of atlas-specific artefacts).  
 
 
 
 
 
 
Reviewer #2 (Remarks to the Author):  
 
The authors have done a commendable job addressing my critique/questions and the manuscript 
appears improved. Two of my critique points however were unsatisfactorily answered in my view.  
 
- My previous point 2: The number of HMM states and their brain distribution were determined on 
57 subjects, where there was only 10% deep sleep. Given the limit on the total number of states, 
this biases the analysis toward finding more states during stages that are more prevalently 
represented in the data. This affects the states found in the final analysis on 18 subjects, and the 
conclusion on how “diverse” each sleep stage is in terms of number of HMM states. This should be 
acknowledged by the authors and the description in the paper should reflect this.  
- My previous point 5: Contrary to what the authors claim, Tagliazucchi 2012b does not show that 
RETROICOR effectively removes heart beat and respiratory effects. Rather, it shows that sleep 
characterization with fMRI suffers from removal of these physiological signals. To be clear, 
RETROICOR by no means allows comprehensive removal of these signals, and in fact was not 
designed to do that: for example it does not remove cardiac rate effects. Thus, it is obvious that 
physiological effects remain in the data and that these, at least in part, affect the fMRI-based sleep 
staging and sleep -specific “networks”. In this regard, it is important to realize that currently a 
number of wrist-worn devices exists that allow sleep staging based on physiological signals alone 
and this has in fact a long history. So I think it quite naïve to think that the fMRI data analyzed in 
this work is free of physiological effects and these would not in part affect the HMM states. At a 
minimum, the potential (an likelihood) of these signal affecting the data and results should be 
made clear in the discussion.  
 
 
 
 
 
Reviewer #3 (Remarks to the Author):  
 
Thank you for showing the reproducibility and the robustness of these results. That makes the 
foundation of your claims even more solid.  
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Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
The authors provided a very detailed response and addressed most of my concerns. I appreciate the 
effort and fairness in reporting (e.g. about the default mode network gateway that turned out to be 
threshold-specific). A few issues remain: 
 
We thank the Reviewer. We have put a lot of effort into making sure that our reporting of our 
results is fair and balanced. 
 
The new title is somewhat confusing as there is no NREM sleep cycle, although sleep cycles contain 
a NREM part. 
 
We thank the Reviewer for pointing this out and have updated the title of the revised ms: 
“Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM 
sleep”. 
 
Re comment #3 
My question tried to address the conceptual advancement of the paper rather than making a case 
for or against PSG. It's interesting that there is a good overlap between manually scored PSG and 
a data-driven fMRI approach, but that's a methodological feat not necessarily a conceptual 
advancement. The question is to what extent does the paper go beyond that and in my reading, there 
seem to be three main issues: the multiple states of N1, the transition matrix and the pre-/post-sleep 
wakefulness differences.  
As the authors now also clearly describe in the revised version, the higher state repertoire in N1 is 
fully in line with the current consensus on N1 being a mixed stage with features of wakefulness and 
sleep. That post-sleep wakefulness is different from pre-sleep wakefulness is also to be expected 
given the earlier EEG/PET work that is now included in the revised version - and various studies on 
sleep inertia, for instance employing EEG or cognitive tests. If you ask sleep researchers whether 
they expect that brain activity in the first 10-15 min after awakening is the same as pre-sleep brain 
activity, not many would say yes. But that there are multiple ways in which sleep progresses and 
brain states transition, that is very novel and a clear advancement of our concept of sleep. A good 
illustration of this is the 'strong triangular transition structure within the blue module between the 
N2-speicifc whole-brain network states (HMM states 3 and 6) and the N3-modelling HMM state 16' 
(page 13, small typo in the sentence). However, when it turns out that such a transition matrix is 
just reflecting some basic EEG patterns, this would reduce the conceptual advancement. After all, 
N3 could follow N2 sleep with a relative high incidence of specific N2-events versus N2 sleep with 
no (or different) N2-events. 
Examining this does not require a temporal dissection of such events at the millisecond level and 
examining global-local differences of certain events is not needed initially. The authors just have to 
show that these HMM states do not merely reflect such basic sleep EEG events, which is easiest and 
most conclusive to do for the N2 states initially. If the EEG recordings of these states do not yield 
any differences (expressed in effect size due to the relatively low power) in for instance spindle and 
K-complex incidence, or fast versus slow spindles, and/or there is no temporal correlation between 
HMM states and EEG events, that will strengthen the impact of the findings considerably. Since the 
authors have both the HMM time-courses and the EEG recordings, computing such differences 
and/or correlations (or some better measures the authors might propose) should be 
straightforward. 
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We thank the Reviewer for these helpful and important insights (and have corrected the typo on 
page 13). In order to further ascertain the validity of our findings, we have carried out the analysis 
comparing HMM states with EEG events. As may be seen from the new Figures S19, S20 and S21, 
the results show no significant differences between either sleep spindles or K-complexes and the 
N2-specific HMM states. This finding provides valuable information to the understanding of the 
inferred HMM states, as we note in the description of the added analysis: 
 
p. 22, paragraph 4: 
“We tested the temporal relationships between the data-driven HMM states and the occurrence of 
sleep spindles, as identified in the EEG (see Figures S19–S20 and Methods), and indeed we found 
HMM states 3 and 6 to account for the majority of time where sleep spindles were present. 
However, the same was true for K-complexes. When identifying K-complexes from the EEG and 
comparing their occurrences with the HMM states, we once again found HMM states 3 and 6 
accounting for the majority (see Figures S19 and S21). While HMM states 3 and 6 correlated more 
with, and expressed higher specificity to, both sleep spindles and K-complexes than the other HMM 
states, the numeric values of both correlation and specificity were low (see Figures S20–S21). This 
may seem surprising, since both types of graphoelements have previously been shown to be reliably 
represented as distinct event-related patterns in the BOLD signal 63, 64, 65, 95. Here it is important to 
note that unlike event-related analyses, our HMM analysis did not include any convolution of the 
hemodynamic response according to the sleep graphoelements. We followed the AASM criteria to 
identify the sleep graphoelements, thus employing a homogenous categorisation of both spindles 
and K-complexes. There is, however, growing evidence that these electrophysiological events may 
in fact be more heterogeneous than previously thought; in the spatial sense as illustrated by 
descriptions of local and more widespread spindles 6, 8 and K-complexes 96, and in the temporal 
sense in the distinction between slow and fast spindles 63, 97. Furthermore, the low correlation and 
specificity values of the data-driven HMM states could be explained by a potential presence of 
spindles and K-complexes that were not detected due to sources too deep or at “blind” angles to the 
EEG electrodes. Finally, it is worth appreciating the possibility that the HMM is in fact suggesting 
an alternative state-description for N2 sleep that do not depend crucially on the presence of sleep 
graphoelements.” 
 
p. 37, paragraph 4: 
“Relationship between HMM states and sleep graphoelements 
In order to determine the effect of micro-structural features in the sleep EEG (sleep 
graphoelements) on the HMM states we used information on the occurrence of sleep spindles and 
K-complexes during the fMRI recordings. The procedure for obtaining this information from the 
EEG for the present data has previously been described in Jahnke et al. 140. Briefly, sleep 
graphoelements were manually identified according to the criteria set out in the AASM guidelines 3. 
This included the use of an EEG montage with frontal, central, and occipital electrodes re-
referenced to the contra-lateral mastoid electrodes (TP9, TP10). The resulting temporal markings of 
sleep spindles and K-complexes were re-sampled to the sampling frequency of the fMRI acquisition 
(TR = 2.08 seconds) and collected in the variables SS-timecourse and KC-timecourse (for 
illustration of the SS- and KC-timecourse in an example participant, see Figure S19). Specifically, 
SS-timecourse and KC-timecourse were binary and of the same length as the fMRI data, with ones 
representing the fMRI samples during which the respective graphoelement occurred. We evaluated 
in turn the temporal association of each HMM activity timecourse to both sleep spindles and K-
complexes. Three summary measures of association were used: i) Pearson’s correlation was 
computed between each of the HMM state timecourses and the SS- and KC-timecourses within the 
set of participants that included the given graphoelement (see Table S3 for an overview of the 
occurrence of sleep spindles and K-complexes). ii) Sensitivity to sleep spindles/K-complexes was 
quantified for each HMM state as the proportion of sleep spindles/K-complexes occurring during 
that given HMM state. iii) Specificity for sleep spindles/K-complexes was defined for each HMM 
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state as the likelihood of finding that given HMM state active during an instance of the given 
graphoelement. The distributions across participants of these three summary measures are plotted in 
Figures S20 (for sleep spindles) and S21 (for K-complexes).  
 To test if any HMM states expressed higher association with the sleep graphoelements than 
others, we used t-tests comparing each combination of the 19 HMM states (ncomparisons = [19×19 – 
19]  ⁄ 2 = 171). To establish a chance level we compared the original summary measures 
(correlation, sensitivity, and specificity) to surrogate data created by permuting the HMM state 
timecourses 1000 times, and re-calculating the summary measures for each permutation. Each 
permutation consisted in a random switching of the labels of each instance of an HMM state, 
keeping the number of occurrences of each HMM state and state transition times constant within 
participants (see Figure S19 for an illustration of the permutation principle). “ 
 
Supplementary materials, p. 1: 
“ 

Sleep 
graphoelement 

Mean count 
(for participants with count > 0) 

Number of participants with 
count > 0 (% of 57) 

Sleep spindles 29.42 (S.D. 29.36) 33 (57.89 %) 

K-complexes 32.73 (S.D. 29.19) 37 (64.91 %) 
Table S 3 Summary statistics of sleep graphoelements in dataset The EEG acquired simultaneously with the fMRI 
was used to identify sleep graphoelements. This scoring information was re-sampled to the fMRI, such that volumes 
during which either a sleep spindle or a K-complex occurred were marked. The first column of the table shows the 
mean number of occurrences of each sleep graphoelement after this re-sampling. The mean value is calculated within 
the participants that included at least one of the given graphoelement. The number of participants including at least on 
sleep spindle or K-complex is shown in the first and second row, respectively, of the second column of the table. 

” 
 
Supplementary materials, p. 33: 
“ 
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Figure S 19  Presence of sleep graphoelements in example participant. A) Plotted together are the 19 HMM state 
timecourses, the markers of sleep spindles and K-complexes (SS-timecourse and KC-timecourse), and the PSG scoring 
for an example participant. The SS- and KC-timecourses were based on AASM scoring of sleep graphoelements in the 
EEG data. Specifically, SS-timecourse and KC-timecourse were binary and of the same length as the fMRI data, with 
ones representing the fMRI samples during which the respective graphoelement occurred B) The same information for 
the same participant is plotted again, however this time the HMM state timecourses have been randomly permuted. 
Each permutation consisted in a random switching of the labels of each instance of an HMM state, keeping the number 
of occurrences of each HMM state and state transition times constant within participants. This was done 1000 times for 
the purpose of comparing correlation, sensitivity, and specificity of the HMM states to the presence of sleep 
graphoelements (see Figures S20 and S21).  

A 

B 
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Figure S 20 Relationship between the 19 HMM states and the presence of sleep spindles. A) The violin plot shows 
the distribution of Pearson’s correlation values computed between the timecourse of each HMM state and the 
timecourse of sleep spindles for each of the 57 participants that included sleep spindles (see Table S3 for summary 
statistics of sleep spindles). The black crosses denote the means across participants. B) The sub-diagonal part of the 
19×19 matrix includes the t-statistics resulting from paired t-tests on the correlation values between each pair of the 19 
HMM states. A ‘*’ in the center of an entry (x, y) denotes a significant difference between the corresponding pair of 
HMM state X and Y as evaluated through 1000 random permutations of the HMM state timecourses, at a significance 
level that has been Bonferroni-corrected for the multiple comparisons between pairs of HMM states. C) Distributions of 
sensitivity of each of the 19 HMM states to sleep spindles across participants. Sensitivity was defined as the proportion 
of sleep spindles that occurred within a given HMM state. D) The 19×19 matrix shows the t-statistics resulting from 
paired t-tests between sensitivity scores of each pair of HMM states. Significant differences were again evaluated 
through random permutations of the HMM state timecourses and Bonferroni-correction. E) Distributions of the 19 
HMM states’ specificity for sleep spindles across participants. Specificity was defined as the likelihood of finding a 
given HMM state active during a spindle, i.e. the ratio of an HMM state’s occurrences taking place during spindles. F) 
19×19 matrix showing the t-statistics resulting from paired t-tests, this time between specificity values of each pair of 
HMM states. Significant differences were again evaluated through random permutations of the HMM state timecourses 
and Bonferroni-correction. G) For reference are included the circle plots, used throughout the manuscript, indicating the 
specificity of each HMM state to the sleep stages, calculated for the 18 participants that included all sleep stages. It is 
clear that sleep spindles correlated higher with the HMM states with high specificity for N2 sleep. HMM states 3 and 6 
were thus found to correlate significantly higher with spindles than most of other HMM states, while no significant 
difference were found between the two. HMM states 3 and 6 also accounted for the majority of spindle occurrences, as 
quantified through their sensitivity. Given the generally low specificity values, it is also clear that no HMM state 
occurred exclusively during spindles.  
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Figure S 21 Relationship between the 19 HMM states and the presence of K-complexes. A) The violin plot shows the 
distribution of Pearson’s correlation values computed between the timecourse of each HMM state and the timecourse of 
K-complexes for each of the 57 participants that included K-complexes (see Table S3 for summary statistics of K-
complexes). The black crosses denote the means across participants. B) The sub-diagonal part of the 19×19 matrix 
includes the t-statistics resulting from paired t-tests on the correlation values between each pair of the 19 HMM states. 
A ‘*’ in the center of an entry (x, y) denotes a significant difference between the corresponding pair of HMM state X 
and Y as evaluated through 1000 random permutations of the HMM state timecourses, at a significance level that has 
been Bonferroni-corrected for the multiple comparisons between pairs of HMM states. C) Distributions of sensitivity of 
each of the 19 HMM states to K-complexes across participants. Sensitivity was defined as the proportion of K-
complexes that occurred within a given HMM state. D) The 19×19 matrix shows the t-statistics resulting from paired t-
tests between sensitivity scores of each pair of HMM states. Significant differences were again evaluated through 
random permutations of the HMM state timecourses and Bonferroni-correction. E) Distributions of the 19 HMM states’ 
specificity for K-complexes across participants. Specificity was defined as the likelihood of finding a given HMM state 
active during a K-complex, i.e. the ratio of an HMM state’s occurrences taking place during K-complexes. F) 19×19 
matrix showing the t-statistics resulting from paired t-tests, this time between specificity values of each pair of HMM 
states. Significant differences were again evaluated through random permutations of the HMM state timecourses and 
Bonferroni-correction. G) For reference are included the circle plots, used throughout the manuscript, indicating the 
specificity of each HMM state to the sleep stages, calculated for the 18 participants that included all sleep stages. It is 
clear that the HMM states relate to K-complexes in a fashion highly similar to that of spindles, presented in Figure 19. 
K-complexes correlated higher with the HMM states with high specificity for N2 sleep. HMM states 3 and 6 were thus 
found to correlate significantly higher with K-complexes than most of other HMM states, while no significant 
difference were found between the two. HMM states 3 and 6 also accounted for the majority of spindle occurrences, as 
quantified through their sensitivity. Given the generally low specificity values, it is also clear that no HMM state 
occurred exclusively during K-complexes.  “ 
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Re comment #8 
I agree with the authors that the effect of smoothing (i.e. creating artificial dependencies between 
regions) should be relatively minor and I can live with the authors not analyzing this given the ratio 
between amount of effort and expected benefits. Yet a discussion of this limitation as done in their 
reply to this comment would improve the paper, I thought particularly the authors' second 
argument was persuasive. The other arguments were not as convincing: 
(i) one could say that creating artificial dependencies could still result in systemic biases at the 
whole brain level; 
(iii) do the authors assume that all voxel signals are stationary over time, say for instance the 
BOLD signal from the CSF (affected by physiological noise), that may get smoothed into the 
thalamus time-course? 
(iv) the AAL also contains smaller regions that may play a disproportionate role; 
(v) artificial dependencies could increase or decrease or the overlap with PSG. 
 
We have added the following caveat about the potential limitations of smoothing to the Discussion 
under Methodological considerations: 
 
“In addition, it should be noted that there could be potentially confounding effects of spatially 
smoothing the fMRI data, which can create artificial dependencies between regions of interest. In 
the context of HMM, which focuses on the aspects of the data that represent more variance, this 
confound is likely to be minor.” 
 
 
Re comment #9 
The authors compellingly argue that a functional atlas derived from the data might not be that 
appropriate for their data, although I had a functional hotspot atlas in mind that has already been 
published (not derived from the data itself). But going with this line of reasoning, I also expect as 
the authors state that their results 'would be robust to different levels of spatial granularity 
(expressed through different parcellations)'. Moreover, in their answer to comment #8 the authors 
argued that 'the HMM is in itself a form of dimensionality reduction, and therefore, when run at the 
whole-brain level, it is less sensitive to local variability'. Showing instead of expecting this would be 
helpful at this stage, otherwise it remains unclear if the results are atlas-specific (and for instance 
the consequence of atlas-specific artefacts).  
 
We agree with the Reviewer that it is important to confirm the robustness of our results across 
different levels of spatial granularity. We have carried out further analyses to test the HMM in a 
different parcellation. This is summarised in the text and the Figures S22, S23, S24 and S25. 
Overall, we now show that the results are highly comparable with an atlas of finer spatial detail (the 
Brainnetome atlas with 246 regions). As we report in the revised ms, this increase in spatial 
resolution requires a very minor compensation in the HMM pipeline and particular in the level of 
PCA preprocessing (keeping 85% as opposed to 90% of the variance). Our interpretation of this is 
that the increased spatial detail leads to a decrease in signal-to-noise ratio, which can be 
counterbalanced by keeping less of the variance from the PCA. 
 
 
p. 31, final paragraph: 
“Alternative parcellations, such as those derived from FC configurations in the data, could be 
problematic, since FC has been shown to robustly vary across the sleep cycle 49, 50, however please 
see Robustness across different parcellations for a demonstration of the robustness of our results 
using an alternative parcellation.” 
 
p. 38, paragraph 3: 
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“Robustness across different parcellations 
In order to make sure that the use of the HMM generalises to different levels of spatial granularity 
and that the interpretation following from our results were not specific to the use of the AAL atlas, 
we re-ran the HMM with a different parcellation. While the field of proposed parcellations for 
large-scale neuroimaging is rapidly expanding 141, we opted for the Brainnetome atlas originally 
published by Fan and colleagues 142. Unlike many of the most popular parcellation schemes, the 
Brainnetome is not solely derived from fMRI functional connectivity (FC), but also depends on 
structural connectivity information for its partitioning of the brain volume. As alluded to in the 
section HMM general overview, the use of an FC-derived atlas could bias results, since FC has a 
well-established dependence on vigilance. Another advantage of the Brainnetome is that it, like the 
AAL, includes sub-cortical regions, which, as shown in the Results and Discussion, undergo 
important changes in activity across NREM sleep. Finally, the 246 regions of the Brainnetome atlas 
compared to the 90 regions of the AAL provides a good test for the robustness of the HMM across 
different levels of spatial granularity.  
 We followed exactly the same steps as explained above, but extracted ROI timecourses from the 
Brainnetome atlas instead of the AAL. It became clear that the increase in spatial detail, going from 
the AAL to the Brainnetome, had an impact on the ability of the HMM to track the sleep scoring. 
As such, when using 90% of the variance from the PCA on the Brainnetome ROI timecourses (step 
ii in Figure 1), the performance of the HMM, as quantified through MANOVA between the 
resulting HMM state timecourses and the sleep scoring, was inferior to the original results using the 
AAL (see Figure S22). However, a slightly stronger regularisation of the ROI timecourses, using 
only 85% of the variance, made the results from the Brainnetome highly comparable to the original 
results using the AAL. At 85% of the variance the HMM on the Brainnetome data performed in a 
very similar fashion to the HMM on the 90% of the AAL data, in terms of MANOVA and the 
development of median fractional occupancy across number of HMM states (see Figure S22B and 
C). The difference between using 90% and 85% of the variance was importantly also evident in the 
number of HMM states that were consistent across participants for a given HMM solution (K = 19, 
see Figure S22D). For 90% of the variance, only 6 HMM states occurred in more than 25% of the 
participants, whereas this number increased to 12, when 85% of the variance was used. In Figure 
S23 we have re-constructed Figure 3 of the main text, but with the results using 19 HMM states on 
85% of the variance of the Brainnetome data. The results are highly consistent, with individual 
HMM states showing sensitivity and specificity to different sleep stages, and in terms of the 
differences in dynamics found between sleep stages. Regarding the spatial configuration of the 
HMM states resulting from the Brainnetome data, these were also highly consistent with the 
original HMM states using the AAL. This is illustrated in Figures S24 and S25, where we have 
matched HMM states from the Brainnetome to the original HMM states, based on their specificity 
profiles to sleep stages and spatial patterns. 
 Overall, the above analysis shows that increasing the spatial granularity by introducing a 
different parcellation comes at the cost at decreasing the signal-to-noise ratio on the HMM 
estimation. However when this is controlled through PCA, results can be brought to convergence.” 
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Supplementary materials, p. 37: 
 

 
Figure S 22 Performance of HMM using the Brainnetome atlas A) Curve showing the cumulative percentage of 
variance represented by the components of the PCA performed on the ROI timecourses extracted from the Brainnetome 
atlas (see Figure 1B for an equivalent plot for the AAL data). The blue and the red dashed lines show the two cases 
analysed; 40 PC’s ~ 85% and 70 PC’s ~ 90%, respectively. B) Plot showing the development across HMM model 
orders (from 5 to 45 states) of the MANOVA performance of the HMM when compared to the EEG-based sleep 
scoring for the 18 participants that included all PSG stages (see Figure S 1B for an equivalent plot for the AAL data). 
Going from 90% of the variance (red) to 85% of the variance (blue) had a significant effect on how well the HMM 
states related to the PSG scoring. Notice how the red line rarely goes below the zone representing the permuted, random 
cases, whereas the blue line emulates the original analysis on the AAL data (see curve in Figure S 1B). C) Tracking of 
the median fractional occupancy of the HMM states across model orders, within the 18 participants that included all 

A 

B 

C 

D 
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four PSG stages. In blue is shown the curve for 40 PC’s ~ 85%, while the result using 70 PC’s ~ 90% is shown in red 
(An equivalent plot for the AAL data may be found in Figure S 1C). The fact that the red line is consistently lower than 
the blue suggests that using the higher percentage of variance implied a high occurrence of ‘sporadic’ HMM states that 
accounted for only small portions of the data. This is also evident in D) where the HMM solution using 19 states are 
shown in more detail, for 40 PC’s on the left and for 70 PC’s on the right. These plots are equivalent to that of Figure S 
6B, which pertains to the original HMM on the AAL data, and show the percentage of participants that did not include 
each of the 19 HMM states. Using 40 PC’s ~ 85 % of variance produced a result more similar to the original HMM on 
the AAL, with 12 HMM states being included in more than 25% of the participants, whereas including 70 PC’s ~ 90% 
meant that only 6 HMM states were represented in more than 25% of the participants.         
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Figure S 23 Robustness of HMM results when using an alternative parcellation (Brainnetome) (Equivalent to Figure 
3 but for the HMM run on 40 PC’s ~ 85% of the variance of the Brainnetome ROI timecourses with 19 states) A) Select 
HMM states account for the majority of different PSG stages as quantified through their fractional occupancies. B) In 
the same way as for the original analysis on the AAL data there is an overlap between the HMM states with high 
sensitivity for a given PSG stage and the HMM states with high specificity for the same PSG stage. C) HMM states 
with high specificity for N3 sleep expressed higher mean life times, as was the case for the original analysis. D) The 
relative as well as the absolute values of switching were very similar to those of the original analysis on the AAL data. 
E) Similarly to the switching dynamics in E, the ranges of unique HMM states visited within each PSG stage were 
similar to the original analysis. Please note that all plots were calculated from the 18 participants that included all PSG 
stages, and that significant differences between HMM states or PSG stages were calculated in the same way as for 
Figure 3.   
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Figure S 24 Spatial correspondence between HMM states from AAL and Brainnetome in wakefulness-related HMM 
states. (Brain plots from the Brainnetome data are extracted from the HMM solution with 19 states on the 40 PC’s ~ 
85% of the variance). To demonstrate the correspondence between the original HMM solution on the AAL data and the 
HMM solution on the Brainnetome data, the original brain plots of mean activation distributions (from Figure 5) are 
shown together with brain plots from the HMM on Brainnetome. These have been matched based on visual similarity 
between the spatial maps and their specificity profiles for PSG stages, represented in pie plots. A) The original wake-
related HMM states from the AAL together with HMM states from the Brainnetome. Notice the high correspondence 
not only in spatial distribution but also in the PSG-specificity. The original HMM state 8 appeared to show similarity to 
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two HMM states from the Brainnetome analysis (HMM states 16 and 3). B) The original three WASO-related HMM 
states appeared to have two equivalents in the Brainnetome solution.  
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Figure S 25 Spatial correspondence between HMM states from AAL and Brainnetome in N1-, N2-, and N3-related 
HMM states. Equivalent to Figure S 24, but for N1-, N2-, and N3-sleep. A) The original N1-related HMM states found 
two equivalents from the Brainnetome HMM states. B) Each of the three original N2-related HMM states had 
equivalents from the Brainnetome HMM, which was also the case for the original N3-related HMM state shown in C.  
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Reviewer #2 (Remarks to the Author): 
 
The authors have done a commendable job addressing my critique/questions and the manuscript 
appears improved.  
 
We thank the Reviewer and agree that the ms has improved. 
 
Two of my critique points however were unsatisfactorily answered in my view. 
 
- My previous point 2: The number of HMM states and their brain distribution were determined on 
57 subjects, where there was only 10% deep sleep. Given the limit on the total number of states, this 
biases the analysis toward finding more states during stages that are more prevalently represented 
in the data. This affects the states found in the final analysis on 18 subjects, and the conclusion on 
how “diverse” each sleep stage is in terms of number of HMM states. This should be acknowledged 
by the authors and the description in the paper should reflect this. 
 
We agree with the Reviewer that the unevenness of PSG stages could lead to PSG-stage-specific 
increases in signal-to-noise ratios, which in turn could affect the HMM states assigned to ‘similar’ 
periods of fMRI data (where we in this regard may define ‘similar’ as belonging to the same PSG 
stage). We prefer to think of it as differences in confidence on the estimation between the PSG 
stages. Quantifying this difference is difficult however, since the signal-to-noise ratio may differ 
inherently between each of the PSG stages. We do not believe that the effect of increasing the 
amount of data from one PSG stage is simply to increase the number of HMM states assigned to 
this stage. Had this been the case then we would have expected to find the highest diversity of states 
in wakefulness, since this PSG stage was by far the most frequently represented in the full dataset 
of 57 participants. Yet in fact it turned out that N1 showed the highest HMM state diversity of the 
included PSG stages. 
 
We have added the following discussion to our Methodological considerations: 
 
p. 26, final paragraph: 
“For the HMM analysis we chose to make use of the full dataset of 57 participants, when inferring 
the states. Subsequently we analysed the part of the HMM solution that corresponded to the 18 
participants that included all PSG stages. We chose to include as much data as possible for the 
initial inference in order to maximise the signal-to-noise ratio and amount of evidence for the HMM 
parameter estimation. Yet, as it is clear from Table S1, the full dataset included rather uneven 
distributions of PSG stages. While PSG stages are more evenly distributed in the subset of 18 
participants, and we diligently made sure to normalise the relevant summary measures by number 
of samples of PSG stages within participants, there still exists a possibility that the HMM could be 
biased by having more data available from certain PSG stages than others, even if the HMM 
remained uninformed of the PSG staging. For instance, one could imagine that more data from a 
certain PSG stage would lead to more HMM states per time being assigned to data from that PSG 
stage. Such an effect is not immediately present in our results, however, since for instance we found 
both switching and range of HMM states to be higher in N1 sleep, even though the original full 
dataset included more than twice as much data from wakefulness (see Table S1 and Figure 3D–E).” 
 
- My previous point 5: Contrary to what the authors claim, Tagliazucchi 2012b does not show that 
RETROICOR effectively removes heart beat and respiratory effects. Rather, it shows that sleep 
characterization with fMRI suffers from removal of these physiological signals. To be clear, 
RETROICOR by no means allows comprehensive removal of these signals, and in fact was not 
designed to do that: for example it does not remove cardiac rate effects. Thus, it is obvious that 
physiological effects remain in the data and that these, at least in part, affect the fMRI-based sleep 
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staging and sleep -specific “networks”. In this regard, it is important to realize that currently a 
number of wrist-worn devices exists that allow sleep staging based on physiological signals alone 
and this has in fact a long history. So I think it quite naïve to think that the fMRI data analyzed in 
this work is free of physiological effects and these would not in part affect the HMM states. At a 
minimum, the potential (an likelihood) of these signal affecting the data and results should be made 
clear in the discussion.  
 
We thank the Reviewer for this comment, and have now added the following to our Methodological 
considerations (and clarified in the Methods): 
 
“Sleep is of course a process associated with profound physiological changes, not merely those 
reflected in brain activity. Despite our use of the RETROICOR method to reduce the effects on the 
fMRI data of cardiac and respiratory signals (see Methods), it is currently not possible to 
completely isolate the neural effects of sleep in fMRI. Our results hence share the limitation with 
other neuroimaging studies of sleep of being potentially being influenced by physiological changes 
not directly linked to brain activity. On the other hand, certain sleep-dependent peripheral changes 
such as those of the autonomic nervous system will also induce genuine activities in the brain, 
which in future studies would be important to investigate and with the proper recordings could 
potentially be evaluated within an HMM framework.” 
 
 
Reviewer #3 (Remarks to the Author): 
 
Thank you for showing the reproducibility and the robustness of these results. That makes the 
foundation of your claims even more solid. 
 
We thank the Reviewer for the highly constructive feedback.  



Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
I'd like to thank the authors for addressing my concerns in such an extensive and professional 
manner. I have one last question and one last recommendation.  
 
The answer on the overlap between HMM state timecourses and N2 events was highly informative, 
but one thing seemed to be missing: why were the HMM state timecourses correlated to the actual 
electrophysiological events and not (additionally) to the HRF-convolved spindle and K-complex 
timecourses? Even though the goal is to go beyond EEG events and the authors provide convincing 
arguments in favor of that, it is not that convincing if there is a low correlation between an EEG 
event and the BOLD signal of the same volume, since there is a delay in the BOLD response to 
these neurophysiological events. I'm not sure why the authors decided to provide only these direct 
temporal correlations, but please provide the ones with the HRF-convolved timecourses as well. I 
don't think it'd be problematic if the correlations (or sensitivity/specificity) turn out to be higher, 
as long as there are no clear differences between the HMM states most strongly correlated to the 
N2-events. One bad outcome would be, for instance, that N2 HMM state X is more strongly 
correlated to one event, N2 HMM state Y to the other, and N2 HMM state Z to N2 sleep without 
such events. It appears from the data that this is not the case (e.g. the authors report no 
differences in spindle and K-complex occurrence between two of the N2 states). This should be 
shown with the HRF-convolved spindle and K-complex timecourses in a comparison among the N2 
states. For excluding a difference, i.e. ensuring there are no differences among the states, a 
multiple-test corrected threshold is unnecessary.  
 
My recommendation is that the authors might not want to lean too heavily on local versus global 
differences or temporal dissection of events in their interpretation (p22, paragraph 4). Sleep 
spindles are typically understood as thalamocortical events and their frequency could be subject-
specific. It might be helpful to interpret these data more in the light of the notion that there seems 
to be much more going on than the scalp EEG suggests, without whether this 'deep' brain activity 
is bound to the same events, albeit at a more local level or with varying temporal characteristics.  
 
 
 
 
Reviewer #2 (Remarks to the Author):  
 
The authors have satisfactorily addressed my critiques.  
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Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
I'd like to thank the authors for addressing my concerns in such an extensive and professional 
manner. I have one last question and one last recommendation. 
 
We would like to thank the reviewer for many insightful inputs. 
 
The answer on the overlap between HMM state timecourses and N2 events was highly informative, 
but one thing seemed to be missing: why were the HMM state timecourses correlated to the actual 
electrophysiological events and not (additionally) to the HRF-convolved spindle and K-complex 
timecourses? Even though the goal is to go beyond EEG events and the authors provide convincing 
arguments in favor of that, it is not that convincing if there is a low correlation between an EEG 
event and the BOLD signal of the same volume, since there is a delay in the BOLD response to 
these neurophysiological events. I'm not sure why the authors decided to provide only these direct 
temporal correlations, but please provide the ones with the HRF-convolved timecourses as well. I 
don't think it'd be problematic if the correlations (or sensitivity/specificity) turn out to be higher, as 
long as there are no clear differences between the HMM states most strongly correlated to the N2-
events. One bad outcome would be, for instance, that N2 HMM state X is more strongly correlated 
to one event, N2 HMM state Y to the other, and N2 HMM state Z to N2 sleep without such events. It 
appears from the data that this is not the case (e.g. the authors report no differences in spindle and 
K-complex occurrence between two of the N2 states). This should be shown with the HRF-
convolved spindle and K-complex timecourses in a comparison among the N2 states. For excluding 
a difference, i.e. ensuring there are no differences among the states, a multiple-test corrected 
threshold is unnecessary. 
 
My recommendation is that the authors might not want to lean too heavily on local versus global 
differences or temporal dissection of events in their interpretation (p22, paragraph 4). Sleep 
spindles are typically understood as thalamocortical events and their frequency could be subject-
specific. It might be helpful to interpret these data more in the light of the notion that there seems to 
be much more going on than the scalp EEG suggests, without whether this 'deep' brain activity is 
bound to the same events, albeit at a more local level or with varying temporal characteristics. 
 
We thank the reviewer for alluding to this. We agree that the addition of an analysis convolving the 
sleep spindles and K-complexes with the HRF makes for a more comprehensive investigation of 
this question. We have now performed this analysis, which as it turns out provides results that are 
very much in line with the initial analysis using the raw spindle and K-complex timecourses. As the 
reviewer predicted the overall values of correlation and specificity increased slightly when applying 
the HRF convolution. Importantly, however, this was true for both HMM state 3 and HMM state 6, 
which are the two states accounting for the majority of N2 sleep. Hence the differences between 
HMM states 3 and 6 remain non-significant when correcting for multiple comparisons. The 
reviewer requests the non-corrected p-values on the tests comparing HMM states 3 and 6; for both 
sleep spindles and K-complexes HMM state 3 tended to show higher values than state 6 in 
correlation and specificity at a significance level of p < 0.05, non-corrected. Crucially this did not 
depend on the use of the HRF, but was also true in our initial analysis using the raw spindle and K-
complex timecourses. Furthermore, this means that one state tended to be more selective for both 
graphoelements, and the results does therefore not follow “the bad outcome” posited by the 
reviewer, where one HMM state would simply reflect sleep spindles and the other K-complexes. On 
the contrary the values of correlation, sensitivity, and specificity that we now report with and 
without HRF convolution strongly suggest that both graphoelements are included without real signs 
of exclusivity in both HMM state 3 and HMM state 6. 
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 We report these findings and address the reviewer’s points more specifically in the revised ms: 
 
Page 22, paragraph 4: 
“Two HMM states were clearly specific to periods of N2 sleep as two whole-brain network states. 
The corresponding mean activation maps showed either increases or decreases in areas consistently 
identified in a number of studies as fMRI-correlates of sleep spindles 63, 64, 65. We tested the 
temporal relationships between the data-driven HMM states and the occurrence of sleep spindles, as 
identified in the EEG (see Figures S19–S20 and Methods), and indeed we found HMM states 3 and 
6 to account for the majority of time where sleep spindles were present. However, the same was 
true for K-complexes. When identifying K-complexes from the EEG and comparing their 
occurrences with the HMM states, we once again found HMM states 3 and 6 accounting for the 
majority (see Figures S19 and S21). In line with previous studies investigating the effects of 
spindles and K-complexes on the BOLD signal 63, 65, 95 we also looked at the temporal relationships 
to the HMM states after convolving the sleep graphoelements with the canonical hemodynamic 
response function (HRF, see Methods and Figure S19 for illustration). This led to an increase in the 
correlation and specificity values of the HMM states, but overall did not change the differences on 
these scores between the states. HMM states 3 and 6 still accounted for the majority of the HRF-
convolved sleep spindles and K-complexes. Within HMM states 3 and 6 we did not find marked 
differences in their relationship to the graphoelements. Both with and without the HRF convolution 
HMM state 3 tended to show higher correlation and specificity values than HMM state 6 for both 
spindles and K-complexes, although these differences did not survive correction for multiple 
comparisons, as shown in Figures S20 and S21. The theoretical scenario that the two HMM states 
(3 and 6), accounting for the majority of N2 sleep, might represent direct reflections of different 
sleep graphoelements does thus not seem to be supported. Rather, both of these HMM states 
included each of their share of both spindles and K-complexes. In light of previous event-related 
demonstrations of robust effects of sleep graphoelements on the BOLD signal 63, 64, 65, 95 as well as 
the similarity between these event-related patterns and the mean activation maps of HMM states 3 
and 6 it seems unlikely that spindles and K-complexes did not influence the HMM state description, 
however this did not result in any HMM state coding exclusively for one or the other 
graphoelement. There is of course the possibility that HMM states 3 and 6 are suggesting a 
categorisation of spindles and K-complexes beyond what the scalp EEG is able to resolve, or at 
least beyond the classical interpretation of these graphoelements. Future mapping of the spectral 
and spatial properties of these graphoelements at higher resolutions than the AASM criteria, that 
were used here, could bring more insights in this regard, as could a combination or comparison with 
intracortical evidence 6, 8, 96.” 
 
We have updated the methods to include our analysis using the HRF convolution: 
 
Page 39, line 1: 
“To account for the delay in the BOLD response, we also created versions of the SS- and KC-
timecourses convoluted with the canonical hemodynamic response function (HRF). We used the 
HRF included in the SPM12 function spm_hrf.m (http://www.fil.ion.ucl.ac.uk/spm/). Specifically, 
SS-timecourse and KC-timecourse were binary and of the same length as the fMRI data, with ones 
representing the fMRI samples during which the respective graphoelement occurred, while the 
HRF-convolved versions were scaled between 0 and 1 with the canonical delays and undershoots 
(an example of the HRF-convolved timecourses is provided in Figure S19C).” 
 
In the supplementary materials we have updated the relevant figures and legends: 
 
Page 32: 



 3 

“

 

Figure S 1 Presence of sleep graphoelements in example participant. A) Plotted together are the 19 HMM state 
timecourses, the markers of sleep spindles and K-complexes (SS-timecourse and KC-timecourse), and the PSG scoring 
for an example participant. The SS- and KC-timecourses were based on AASM scoring of sleep graphoelements in the 
EEG data. Specifically, SS-timecourse and KC-timecourse were binary and of the same length as the fMRI data, with 
ones representing the fMRI samples during which the respective graphoelement occurred B) The same information for 
the same participant is plotted again, however this time the HMM state timecourses have been randomly permuted. 
Each permutation consisted in a random switching of the labels of each instance of an HMM state, keeping the number 
of occurrences of each HMM state and state transition times constant within participants. This was done 1000 times for 
the purpose of comparing correlation, sensitivity, and specificity of the HMM states to the presence of sleep 
graphoelements (see Figures S20 and S21). C) The analyses were also performed after convolution of the SS- and KC-
timecourses with the canonical hemodynamic response function (HRF). An illustration of the convolution is shown in 
an enlarged view of the SS- and KC-timecourses from ~500 to ~ 2000 seconds. The red timecourses with characteristic 
delays and undershoots represent the HRF-convoluted SS- and KC-timecourses for this example participant.  

” 
 
Page 33: 

A 

B 

C 
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“

 

Figure S 2 Relationship between the 19 HMM states and the presence of sleep spindles. A) The grey violin plot 
shows the distribution of Pearson’s correlation values computed between the timecourse of each HMM state and the 
raw timecourse of sleep spindles for each of the 57 participants that included sleep spindles (see Table S3 for summary 
statistics of sleep spindles). The black crosses denote the means across participants. In red are shown the outlines of an 
equivalent violin plot when considering HRF-convolved versions of the spindle timecourses. B) The sub-diagonal part 
of the 19×19 matrix includes the t-statistics resulting from paired t-tests on the correlation values between each pair of 
the 19 HMM states. The super-diagonal part includes the t-stats considering the HRF-convolved versions of the spindle 
timecourses. A ‘*’ in the center of an entry (x, y) denotes a significant difference between the corresponding pair of 
HMM state X and Y as evaluated through 1000 random permutations of the HMM state timecourses, at a significance 
level that has been Bonferroni-corrected for the multiple comparisons between pairs of HMM states. C) Distributions of 
sensitivity of each of the 19 HMM states to sleep spindles across participants for raw spindle timecourses (grey) and 
HRF convolved spindles (red). Sensitivity was defined as the proportion of sleep spindles that occurred within a given 
HMM state. D) Equivalent to B but for sensitivity values. E) Distributions of the 19 HMM states’ specificity for sleep 
spindles across participants for raw spindle timecourses (grey) and HRF convolved spindles (red). Specificity was 
defined as the likelihood of finding a given HMM state active during a spindle, i.e. the ratio of an HMM state’s 
occurrences taking place during spindles. F) Equivalent to B and D but for specificity values. G) For reference are 
included the circle plots, used throughout the manuscript, indicating the specificity of each HMM state to the sleep 
stages, calculated for the 18 participants that included all sleep stages. It is clear that sleep spindles correlated higher 
with the HMM states with high specificity for N2 sleep. HMM states 3 and 6 were thus found to correlate significantly 
higher with spindles than most of the other HMM states, while no significant difference were found between the two. 
This was true regardless of HRF convolution of the spindles. HMM states 3 and 6 also accounted for the majority of 
spindle occurrences, as quantified through their sensitivity. Given the generally low specificity values, it is also clear 
that no HMM state occurred exclusively during spindles. 

” 
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Page 34: 
“

 
Figure S 3 Relationship between the 19 HMM states and the presence of K-complexes. A) The grey violin plot shows 
the distribution of Pearson’s correlation values computed between the timecourse of each HMM state and the raw 
timecourse of K-complexes for each of the 57 participants that included K-complexes (see Table S3 for summary 
statistics of K-complexes). The black crosses denote the means across participants. In red are shown the outlines of an 
equivalent violin plot when considering HRF-convolved versions of the KC-timecourses. B) The sub-diagonal part of 
the 19×19 matrix includes the t-statistics resulting from paired t-tests on the correlation values between each pair of the 
19 HMM states. The super-diagonal part includes the t-stats considering the HRF-convolved versions of the KC-
timecourses. A ‘*’ in the center of an entry (x, y) denotes a significant difference between the corresponding pair of 
HMM state X and Y as evaluated through 1000 random permutations of the HMM state timecourses, at a significance 
level that has been Bonferroni-corrected for the multiple comparisons between pairs of HMM states. C) Distributions of 
sensitivity of each of the 19 HMM states to K-complexes across participants for raw KC-timecourses (grey) and HRF 
convolved K-complexes (red). Sensitivity was defined as the proportion of K-complexes that occurred within a given 
HMM state. D) Equivalent to B but for sensitivity values. E) Distributions of the 19 HMM states’ specificity for K-
complexes across participants for raw KC-timecourses (grey) and HRF convolved K-complexes (red). Specificity was 
defined as the likelihood of finding a given HMM state active during a K-complex, i.e. the ratio of an HMM state’s 
occurrences taking place during K-complexes. F) Equivalent to B and D but for specificity values. G) For reference are 
included the circle plots, used throughout the manuscript, indicating the specificity of each HMM state to the sleep 
stages, calculated for the 18 participants that included all sleep stages. It is clear that the HMM states relate to K-
complexes in a fashion highly similar to that of spindles, presented in Figure 19. K-complexes correlated higher with 
the HMM states with high specificity for N2 sleep. HMM states 3 and 6 were thus found to correlate significantly 
higher with K-complexes than most of other HMM states, while no significant difference were found between the two. 
HMM states 3 and 6 also accounted for the majority of K-complex occurrences, as quantified through their sensitivity. 
Given the generally low specificity values, it is also clear that no HMM state occurred exclusively during K-complexes. 

”



 6 

Reviewer #2 (Remarks to the Author): 
 
The authors have satisfactorily addressed my critiques. 
 
We thank the reviewer for the helpful comments and questions. 
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