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Supplementary File 1 

 

MRI data preprocessing  

After reconstruction BOLD fMRI data were organized using the Brain Imaging Data Structure 

(BIDS; Gorgolewski et al., 2016) and preprocessed using fMRIPrep version 20.1.1  (Esteban et 

al., 2018a, 2018b; RRID:SCR_016216) which is based on Nipype 1.5.0 (Gorgolewski et al., 

2011; Gorgolewski et al., 2018; RRID:SCR_002502). Many internal operations of fMRIPrep 

use Nilearn 0.6.2 (Abraham et al., 2014; RRID:SCR_001362) mostly within the functional 

processing workflow; all other software tools used are specified below. For more details of the 

pipeline see the section corresponding to workflows in fMRIPrep’s documentation. In the 

following, preprocessing is described in more detail by text that was automatically generated 

by the fMRIPrep software and then manually edited with respect to readability. 

 

Anatomical data preprocessing 

One T1-weighted (T1w) image was found within the input BIDS dataset. The T1-weighted 

(T1w) image was corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection 

(Tustison et al., 2010) distributed with ANTs 2.2.0 (Avants et al., 2008; RRID:SCR_004757) 

and used as T1w-reference throughout the workflow. The T1w-reference was then skull-

stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs 

2.2.0) using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid 

(CSF), white-matter (WM), and gray-matter (GM) was performed on the brain-extracted T1w 

using FAST (FSL 5.0.9; RRID:SCR_002823; Zhang, Brady. & Smith, 2001). Brain surfaces 

were reconstructed using recon-all (FreeSurfer 6.0.1; RRID:SCR_001847; Dale, Fischl, & 

Sereno, 1999) and the brain mask estimated previously was refined with a custom variation of 

the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical 

gray-matter of Mindboggle (RRID:SCR_002438; Klein et al., 2017). Volume-based spatial 
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normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et al., 

2009, RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym) standard space was 

performed through nonlinear registration with antsRegistration (ANTs 2.2.0) using brain-

extracted versions of both the T1w reference and the T1w template.  

 

Functional data preprocessing 

For each subject’s BOLD run the following preprocessing was performed: First, a reference 

volume and its skull-stripped version were generated using a custom methodology of 

fMRIPrep: Head-motion parameters with respect to the BOLD reference (transformation 

matrices and six corresponding rotation and translation parameters) were estimated before any 

spatiotemporal filtering using MCFLIRT (FSL 5.0.9; Jenkinson et al., 2002). A B0-

nonuniformity map (or fieldmap) was estimated based on a phase-difference map calculated 

with a dual-echo GRE (gradient-recall echo) sequence processed with a custom workflow of 

Susceptibility Distortion Correction workFlows (SDCFlows; Markiewicz et al., 2020) inspired 

by the epidewarp.fsl script and further improvements in Human Connectome Project Pipelines 

(Glasser et al., 2013). The fieldmap was then co-registered to the target EPI (echo-planar 

imaging) reference run and converted to a displacements field map (amenable to registration 

tools such as ANTs) with FSL’s FUGUE and other SDCflows tools. Based on the estimated 

susceptibility distortion a corrected EPI (echo-planar imaging) reference was calculated for a 

more accurate co-registration with the anatomical reference. The BOLD reference was then co-

registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-

based registration (Greve & Fischl, 2009). Co-registration was configured with six degrees of 

freedom. The BOLD time-series were resampled onto FreeSurfer‘s the fsnative and fsaverage 

surfaces. The BOLD time-series were resampled onto their original native space by applying a 

single composite transform to correct for head-motion and susceptibility distortions. These 
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resampled BOLD time-series will be referred to as preprocessed BOLD in original space or 

just preprocessed BOLD.  

The BOLD time-series were resampled into standard space generating a preprocessed BOLD 

run in MNI152NLin2009cAsym space. First a reference volume and its skull-stripped version 

were generated using a custom methodology of fMRIPrep: Several confounding time-series 

were calculated based on the preprocessed BOLD, i.e., framewise displacement (FD), 

derivative of RMS variance over voxels (DVARS), and three region-wise global signals. FD 

was computed using two formulations following Power (absolute sum of relative motions; 

Power et al., 2014) and Jenkinson (relative root mean square displacement between affines; 

Jenkinson et al., 2002). FD and DVARS were calculated for the functional run using their 

implementations in Nipype (following the definitions by Power et al., 2014). The three global 

signals were extracted within the CSF, WM, and whole-brain masks. Additionally, a set of 

physiological regressors were extracted to allow for component-based noise correction 

(CompCor; Behzadi et al., 2007). Principal components are estimated after high-pass filtering 

the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off) for the two 

CompCor variants: temporal (tCompCor) and anatomical (aCompCor). TCompCor 

components are then calculated from the top 5% variable voxels within a mask covering the 

subcortical regions. This subcortical mask is obtained by heavily eroding the brain mask, which 

ensures it does not include cortical GM regions. For aCompCor, components are calculated 

within the intersection of the aforementioned mask and the union of CSF and WM masks 

calculated in T1w space after their projection to the native space of the functional run (using 

the inverse BOLD-to-T1w transformation). Components are also calculated separately within 

the WM and CSF masks. For each CompCor decomposition, the k components with the largest 

singular values are retained such that the retained components’ time series are sufficient to 

explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal). 

The remaining components are dropped from consideration. The head-motion estimates 
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calculated in the correction step were also placed within the corresponding confounds file. The 

confound time series derived from head motion estimates and global signals were expanded 

with the inclusion of temporal derivatives and quadratic terms for each (Satterthwaite et al., 

2013). All resamplings can be performed with a single interpolation step by composing all the 

pertinent transformations (i.e., head-motion transform matrices. susceptibility distortion 

correction, and co-registrations to anatomical and output spaces). Gridded (volumetric) 

resamplings were performed using antsApplyTransforms (ANTs) configured with Lanczos 

interpolation to minimize the smoothing effects of other kernels (Lanczos, 1964). Non-gridded 

(surface) resamplings were performed using mri_vol2surf (FreeSurfer). 

 

Multilayer Modularity details  

In general, community detection and node assignment can be solved algorithmically by 

maximizing the modularity quality function Q. Q allows to quantify the goodness of fit of a 

certain partition, with high values indicating high quality partitions (Furtunato, 2010). 

Following the idea that random graphs do not show a cluster structure, the quality function 

compares the number of intracommunity edges to what would be expected at random (i.e., 

under a null model), to quantify communities (Fortunato, 2010; Mucha et al., 2010). The quality 

function Q can be formalized as follows: 

 

						𝑄 = 	$%𝐴!" − 𝑃!")𝛿%𝑀! , 𝑀")						(1)
!"

 

where 𝐴!" and 𝑃!" are the observed and expected weights of the connection between node i and 

node j. Here, 𝐴!" is an element of the adjacency matrix 𝚨 and 𝑃!" refers to a specific null model. 

The Kronecker delta function 𝛿%𝑀! , 𝑀"( equals 1 if node i and j are assigned to the same module 

(M) and 0 if otherwise. Noteworthy, the modularity function suffers from a “resolution limit”, 

meaning that communities that are rather small compared to the whole graph may be 
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undetectable (Fortunato & Barthelemy, 2007). To overcome this caveat, one may introduce a 

structural resolution parameter 𝛾 that weights the null model. Optimizing 𝑄(𝛾) with large 

values of 𝛾 leads to the detection of many small communities, whereas small values of 𝛾 result 

in few large communities. Here, we used an expanded modularity function that can be used 

with multilayer networks, formalized as follows:  

 

						𝑄(𝛾, 𝜔) =	
1
2𝜇
/01𝐴!"# −	𝛾𝑠 	

𝑘𝑖𝑠𝑘𝑗𝑠
2𝑚𝑠

3 𝛿%𝑀!#, 𝑀"#( 	+ 	𝛿!" 	𝜔"#$]6 	𝛿%𝑀!#, 𝑀"$(						(2)
!"#$

 

where 𝐴!"# describes elements of 𝚨 of layer (time window) s and  %!"%#"
&'"

 denotes the Newman-

Girvan configuration null model (i.e., the expected connectivity strength at chance level, with 

k = node degree at layer s; m = sum of all edges at layer s) that is scaled by the resolution 

parameter 𝛾# of layer s, 𝛿%𝑀!#, 𝑀"#( and 𝛿%𝑀!#, 𝑀"$( = 1 if node i and node j are in the same 

module (M) or 0 if they do not belong to the same module (here 𝑀!# depicts the community 

assignment of node i in layer s;  𝜔"#$ is the interlayer coupling parameter connecting node j in 

layer s to itself in layer r, defining the similarity of communities across layers with large values 

of 𝜔"#$ leading to increased homogeneity across layers, as nodes will prefer to stay in one 

community (Vaiana & Muldoon, 2018). 

 

 

Correlation results on a nodal level without covariates. 

Figures S1 and S2 depict the correlations between brain network measures on a nodal level and 

resilience questionnaires calculated without covariates. These figures can be compared to 

Figure 4 and Figure 5 of the original manuscript, which show the same calculations with 

inclusion of covariates. Results are described in more detail in the original manuscript. 
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Figure S1. Correlations between network measures and resilience at the nodal level for the original 

(multiband) data (TR = .675 sec), calculated without covariates. Node names are depicted on the x-axis ticks; 

for a detailed list see https://bit.ly/3yvOBwz. LH = left hemisphere, RH = right hemisphere.  

 

 

 

Figure S2. Correlations between network measures and resilience at the nodal level for the down-sampled 

data (TR = 2.025 sec) without the inclusion of covariates. Node names are depicted on the x-axis ticks; for a 

detailed list see https://bit.ly/3yvOBwz. LH = left hemisphere, RH = right hemisphere.  
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Node – network assignment in the AAL, Power264 atlas 

To additionally test whether results reported here might have been driven by the specific 

parcellation we used (i.e., Schaefer 100), we repeated the pre-processing and denoising pipeline 

with two additional atlases, i.e., the AAL parcellation with 90 regions (Tzourio-Mazoyer et al., 

2002) and the atlas of (Power et al., 2011) with 264 regions, both of which had been used in the 

study by Long and colleagues (2019). For the AAL90 atlas, we referred to the node – RSN 

assignment provided by Long et al. (2019) in their Table S1. However, according to that Table, 

some nodes were assigned to multiple subnetworks (e.g., node middle frontal gyrus), which we 

avoided. Accordingly, our subnetwork assignment may vary in details from the one used in 

Long et al. (2019). Taking Long et al.’s (2019) Table S1 as a starting point, we assigned each 

node to the subnetwork which appears first in the respective column, leading to a total number 

of eight unique networks, i.e., 'Sensorimotor', 'Visual', 'Salience', 'Auditory', 'Subcortical', 

'Frontoparietal', 'Default-mode', and 'Cingulo-opercular'. 12 nodes were not assigned to any 

sub-network (i.e.,'None'), including the amygdala and hippocampus. For the Power atlas (nodes 

1, 3, 8, 9, 119, 126, 183, and 184) from further analyses, as some participants were lacking 

BOLD signal for these nodes. The remaining nodes were assigned to one of the following 

resting state networks (RSN): 'somatomotor hand', 'somatomotor mouth', 'cingulo-opercular', 

'auditory', 'default mode', 'memory retrieval', 'visual', frontoparietal', 'salience', 'subcortical', 

'ventral attention', 'dorsal attention', or ‘cerebellar’. Analogous to the AAL atlas, 21 nodes that 

could not be assigned to any of these categories were sorted into a ‘None’ category. For both 

parcellations, we again calculated partial correlations between dynamic brain measures and the 

respective resilience questionnaires on a nodal, RSN, and global scale.  

 

Effect of different intra- and interlayer parameters on measures of brain dynamics 

The community detection in multilayer networks is tuned by the intra- and inter-layer 

parameters 	𝛾 and  𝜔, respectively. Whereas the intralayer parameter 	𝛾	determines how many 
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communities will be detected (i.e., larger values leading to the detection of smaller 

communities) at a given timepoint, the interlayer resolution parameter 𝜔 scales the network 

dynamics over time, i.e., larger values leading to increased homogeneity over time and nodes 

consequently tend to switch communities less often (Vaiana & Muldoon, 2018). We here 

investigate the stability of our correlation results for neural flexibility and promiscuity 

measures, by systematically varying these parameters. In line with previous studies (e.g., 

Pedersen et al., 2018; Yin et al., 2020) we considered intralayer parameters (𝛾) from 0.8 to 1.4 

and interlayer parameters (𝜔) from 0.4 to 1.0 in steps of 0.2, while fixing the respective other 

parameter to 1 (using MB data with TR = .675 and the Schaefer100 atlas). The detection of 

smaller communities (i.e., larger values of 𝛾) led to higher nodal flexibility (see Figure S3), 

whereas it led to smaller nodal promiscuity (i.e., nodes tend to change their community 

assignments more often over time, but these interactions are not distributed across all other 

modules but appear to be rather limited to a small number of communities. The spatial similarity 

(i.e., correlations) of nodal flexibility values (range r = .52 to .92, all p < .0001) and promiscuity 

(range r = .40 to .92, all p < .0001) across the range of parameters studied suggest a moderate 

to good correspondence across values (see Figure XX). Across layers, lower values of the 

interlayer parameter 𝜔 led to increased node flexibility, whereas node promiscuity showed the 

opposite pattern, i.e., decreasing values with lower omega (see Figure S3). However, despite 

numerical changes, the spatial similarity of node flexibility (r > .95, p < .0001) and promiscuity 

(r > .96, p < .0001) for all parameters of 𝜔 was high. Both patterns suggest that nodes switch 

between communities more often over time, but that this increase is driven by a constant 

switching between a small number of communities and not a broad interaction with various 

communities (i.e., simultaneous low promiscuity with high flexibility). More generally, these 

results demonstrate relative robustness of node flexibility and node promiscuity measures 

against variations in the parameters gamma and omega.  
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Figure S3. Influence of varying the intra- (gamma) and interlayer (omega) parameter while maximizing the 

multilayer modularity. A) Node flexibility and B) node promiscuity as a function of varying gamma while 

fixing omega = 1. C) Node flexibility and D) node promiscuity as a function of varying omega while fixing 

gamma = 1.  
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Effect of different intra- and interlayer parameters on the correlation between measures 

of brain dynamics and psychological resilience 

While varying the interlayer parameter 𝛾 from 0.8 to 1.4 in steps of 0.2 and computing nodal 

flexibility and promiscuity based on the original data (TR= .675s; Schaefer100 atlas), we did 

observe one significant correlation between flexibility of a visual node (LH_Vis_7) and the 

BRS (r = .50, p = .02) when using a parameter value of 𝛾 = 1.4. For the remaining two levels 

of the intralayer parameter (note that we do not report 𝛾 = 1  here, as it refers to the initial 

analysis in the manuscript) we did not observe any significant correlations. The significant 

correlation indicates that higher flexibility is associated with higher self-reported resilience, 

which is directly opposed to what has been reported before (e.g., Long et al., 2019; Paban et 

al., 2019). Furthermore, across levels of 𝛾, there were no significant correlations between 

node promiscuity and the resilience questionnaires (all p > .35). We did not observe any 

significant correlation between node flexibility (all p > .10) or node promiscuity (all p > .11) 

and resilience while setting 𝜔 to either 0.4, 0.6, or 0.8.  
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