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The Gribov mode in hot QCD
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Abstract. In this proceedings, I summarize recent findings of a novel massless mode,
dubbed as "Gribov mode", generated by the (chromo)magnetic scale g2T in hot QCD.
The Gribov mode is a genuine non-Abelian mode inducing effects such as positivity
violation.

1 Introduction

Gauge fixing is a mathematical procedure for removing redundant degrees of freedom in the field
variables of gauge theories. A popular gauge-fixing procedure was invented by Faddeev and Popov [1]
that leads to satisfactory results for Abelian gauge theories. However in the seminal work of Ref. [2],
Gribov pointed out that there are still residue redundant degrees of freedom – namely the Gribov
copies – after the Faddeev-Popov procedure. The Gribov copies reside in the IR of the non-Abelian
gauge fields, and they are intimately related to the confinement of color charges. Later on, Zwanziger
generalized Gribov’s semi-classical approach to all orders that gave birth to the Gribov-Zwanziger
action [3]. The Gribov-Zwanziger scenario has stimulated flourishing developments in the study of
color confinement (see Refs. [4, 5] for reviews).

Since the last decade, there has been an increasing effort in generalizing the Gribov-Zwanziger
scenario to finite temperature stimulated by the Linde problem that invalids conventional thermal
perturbation theory at the (chromo)magnetic scale g2T [6, 7]. The non-perturbative nature of the
magnetic scale is intimately relathard-thermal-looped to the confining property of the dimensionally
reduced Yang-Mills theory at high temperature. This suggests the need of incorporating a confinement
mechanism in perturbative expansions even when dealing with the deconfined quark-gluon plasma
phase. The Gribov-Zwanziger action provides an ideal framework for this purpose. It regulates the IR
behavior of QCD by fixing the Gribov copies that remain after applying the Faddeev-Popov procedure.
The Gribov-Zwanziger action is renormalizable, therefore it provides a systematic framework for
perturbative calculations (i.e., g � 1) incorporating confinement effects. The gluon propagator in
general covariant gauge reads

Dµν(P) =
[
δµν − (1 − ξ) PµPν

P2

]
P2

P4 + γ4
G

, (1)

where ξ is the gauge parameter. The Gribov parameter γG is solved self-consistently from a gap equa-
tion that is defined to infinite loop orders. The Gribov-Zwanziger gluon propagator is IR suppressed,
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manifesting confinement effects, and it is a significant improvement over the one from the Faddeev-
Popov quantization which forms the basis of conventional perturbative calculations. The gap equation
at one-loop order can be solved analytically at asymptotically high temperatures and gives [8]

γG =
D − 1

D
Nc

4
√

2π
g2T , (2)

where D is the space-time dimensions and Nc is the number of colors. Eq. (2) provides a fundamental
IR cutoff at the magnetic scale for the finite-temperature Gribov-Zwanziger action. In this way, the
magnetic scale is intrinsically embedded in the Gribov-Zwanziger action.

2 Results and discussions

Self-energies of quarks and gluons are important measures for the collective behavior of the quark-
gluon plasma, since thermal masses, dispersion relations, and spectral functions of collective excita-
tions are derived from them. The Euclidean one-loop quark self-energy reads

Σ(P) = (ig)2CF
∑∫
{K}
γµS (K)γνDµν(P − K) , (3)

where S (P) is the quark propagator and Dµν(P) is the gluon propagator taken from Eq. (1). It is worth
noting that there have been similar studies for the quark self-energy with non-perturbative gluons at
finite density [9, 10] and in strong magnetic fields [11].

At g � 1 (i.e., high temperatures), we may apply the hard-thermal-loop systematics [13] in
analyzing Eq. (3). As a result, the gauge-invariant contribution to Eq. (3) reads [12]

Σ(P) � −(ig)2CF

∑
±

∫ ∞
0

dk
2π2 k2

∫
dΩ
4π

ñ±(k, γG)
4E0
±

×


iγ0 + k̂ · γ

iP0 + k − E0
± +

p·k
E0
±

+
iγ0 − k̂ · γ

iP0 − k + E0
± − p·k

E0
±

 , (4)

where k̂ = k/k with k = |k|, E0
± =
√

k2 ± iγ2
G, ñ±(k, γG) ≡ nB(

√
k2 ± iγ2

G) + nF(k) with nB and nF the
Bose-Einstein and Fermi-Dirac distributions, and

∫
dΩ =

∫ 2π
0 dφ

∫ π
0 d cos θ.

The quark thermal mass incorporating effects from g2T reads

m2
q(γG) =

g2CF

4π2

∑
±

∫ ∞
0

dk
k2ñ±(k, γG)

E0
±

. (5)

It reduces to the conventional hard-thermal-loop one, m2
q(0) = CFg

2T 2/8, when setting γG = 0. m2
q(γG)

receives negative contributions from γG, which is a manifestation of anti-screening effects generated
by g2T (see Fig. 1 in Ref. [12] for details). This is a profound signal of the build-up of long-range
correlations in the system.

The dispersion relation is obtained by analytically continuing the self-energy (4) to Minkowski
space and then solving the poles in the corresponding quark propagator iS −1(P) = /P − Σ(P) = 0. In
contrast to the conventional hard-thermal-loop case, there are three poles in the propagator (see Fig. 2
in Ref. [12] for details). Firstly, the screened quasi-particle excitations are recovered,

ω = ω+(p; γG) , ω = ω−(p; γG) , (6)
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CONF12

which are the so-called particle ω+ and plasmino ω− modes, with ω±(0; γG) = mq(γG) as expected.
Both ω±/mq(γG) and their residues Z± are g-independent in the studied range. This property is identi-
cal to the conventional hard-thermal-loop case, which provides a non-trivial consistency check of the
setup. Furthermore, there exists a novel excitation named Gribov pole as in Ref. [12],

ω = ωG(p; γG) . (7)

It describes massless fermionic excitations in the quark-gluon plasma with dispersion relation ω = vs p
at small momenta, with vs ≈ 1/

√
3 (speed of sound) independent of g for the studied range. The

Gribov mode “grows” in the (ω, p)-plane while increasing the magnetic scale, and this effectively
introduces a new magnetic scaling behavior to the non-Abelian plasma. At larger momenta than
the permitted ones for each coupling, we hit branch cuts and Landau damping consequently takes
place. The Gribov pole goes along with a residue ZG(p) < 0 that induces positivity violation in the
corresponding spectral functions in the region of space-like momenta. These novel features are direct
manifestations of long-range confinement effects surviving at finite T in the non-Abelian plasma.
The results reflect common features of Gribov-like approaches [2, 3, 14], though the calculation was
done via the Gribov-Zwanziger action. It is tempting to explore the impact of the setup to heavy-ion
phenomenology [15–18]. It is also interesting to understand whether there are any relations between
the Gribov mode and the QCD transition.
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