
Brownian Dynamics Simulations of Protein Equilibria
in the Presence of a Charged Surface

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich Physik
der Johann Wolfgang Goethe - Universität

in Frankfurt am Main

von
Christian Gorba

aus Dinslaken

Frankfurt 2004



vom Fachbereich Physik der
Johann Wolfgang Goethe-Universität als Dissertation angenommen.

Dekan: Prof. Dr. Wolf Aßmus

Gutachter: Prof. Dr. Werner Mäntele

Prof. Dr. Volkhard Helms

Datum der Disputation: 3.11.2004







Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Brownschen Dynamik von Proteinen in der Nähe

einer homogen geladenen ebenen Membran. Letztere kann neben der homogenen Ladung
auch noch an beliebigen Stellen Ladungs- und van der Waals-Domänen enthalten. Die Dy-

namik der Teilchen wird hier mit Hilfe von Computersimulationen untersucht. Beispiele für
solche Phänomene finden sich in der Natur in großer Zahl. Die Photosynthese, in der Sauer-
stoff aus Kohlendioxid erzeugt wird, war Hauptmotivation für die vorliegende Arbeit. Sie ist

einer der wichtigsten Naturvorgänge in bezug auf die Entstehung von Leben auf der Erde.
Die Umgebung, in der die photosynthetischen Vorgänge ablaufen, entspricht im wesentlichen

dem oben beschriebenen System aus diffundierenden Teilchen und geladener Membran.
Diese geladene Wand wäre somit z.B. die Lipidmembran des Teils eines Bakteriums, der

für die Photosynthese zuständig ist, die Ladungs- und van der Waals-Domänen entsprächen
beispielsweise den Membranproteinenkomplexen, wie den lichtabsorbierenden Komplexen

(Light Harvesting Complexes, kurz LHC), dem Reaktionszentrum, sowie dem sogenann-
ten Cytochrom bc1-Komplex. Die Brownschen Teilchen schließlich stellten jene Moleküle

(Cytochrom c Proteine, kurz cyt c) dar, welche den bei der Photosynthese notwendigen
Elektronentransfer vom bc1-Komplex zum Reaktionszentrum (Reaction Center, kurz RC)

übernehmen. Die internen Vorgänge der Photosynthese wie Lichtabsorption, Ladungstrenn-
ung usw. sind hier nicht Gegenstand der Untersuchung, sondern einzig die Dynamik der

cyt c Moleküle oberhalb der Lipidmembran und deren Annäherung an das RC und den bc1-
Komplex (Elektronenabgabe bzw. -aufnahme). In bisherigen Untersuchungen wurde eine

solche Assoziation nur jeweils paarweise studiert, d.h. mit einem diffundierenden Protein
und z.B. einem bc1-Komplex. Im sogenannten Periplasma über der Membran gibt es aller-

dings eine Vielzahl von Molekülen, die sich entsprechend gegenseitig beinflussen. Es han-
delt sich also um Mehr-Teilchen-Systeme. Daher wird in dieser Arbeit eine Vielzahl (max.

O(100)) von diffundierenden cyt c betrachtet. Neu an diesem Ansatz ist also die Berück-
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sichtigung der Möglichkeit, daß nicht nur ein einzelnes cyt c nahe der Membranproteine
lediglich zwischen RC und bc1-Komplex hin- und herdiffundiert, sondern auch zurück in
Lösung gehen kann. Dort kann es dann mit weiteren cyt c Molekülen wechselwirken, und

schließlich kann ein anderes cyt c an die Membranoberfläche gelangen und dort den Elek-
tronentransfer bewerkstelligen. Dies hat vermutlich einen großen Einfluß auf die Häufigkeit

der Elektronentransfers.

Da es bisher kein in der Literatur bekanntes Software-Werkzeug gibt, das Simulationen,

wie sie in dieser Arbeit beschrieben werden, erlaubt, musste zunächst ein geeignetes Pro-
gramm entworfen und entwickelt werden. Hierzu wurde C++ benutzt, weil diese Sprache

einerseits schnell ist und andererseits objektorientiertes Programmieren erlaubt, wodurch
der Source Code leichter zu warten und erweiterbar wird. Um den Rechenaufwand bewälti-

gen zu können, war eine vereinfachende Systemmodellierung notwendig. Daher werden
die cyt c Moleküle in dieser Arbeit als sphärische Teilchen mit einem Monopol- und einem

Dipolmoment beschrieben. Die Bewegung der Teilchen wird mittels Brownscher Dynamik
berechnet. D.h., erstens werden Zeitskalen betrachtet, auf denen sich die Teilchen im ther-

mischen (Geschwindigkeits-) Gleichgewicht mit dem Solvens befinden, und zweitens wird
der Solvens selbst nicht explizit modelliert. Die Membran wird als starre, geladene Ober-

fläche beschrieben, und Membranproteine können als geladene van der Waals-Kugeln in die
Oberfläche eingebettet werden. Damit schließt sich sozusagen der Kreis zum einleitenden
Satz: es wurde ein Programm zur Untersuchung der Brownschen Dynamik von Proteinen in

der Nähe einer homogen geladenen ebenen Wand entwickelt. Dieses recht allgemeine Mo-
dellsystem kann auf verschiedene biologische Systeme angewandt werden, wobei es in der

vorliegenden Arbeit ausschließlich um eine Beschreibung der Gleichgewichtsdynamik von
cyt c über einer Membran geht.

Bevor im letzten Kapitel Ergebnisse von Rechnungen inklusive Membranproteinen be-
schrieben werden, liegt das Hauptaugenmerk auf der Untersuchung von Konzentrationspro-

filen in der Simulationsbox mit strukturloser, geladener Membran. Damit ist die Verteilung
der Modellproteine im Simulationsvolumen oberhalb der Membran gemeint. Diese Pro-

teinverteilung ist naturgemäß stark abhängig von der Art der Wechselwirkungen sowohl der
Teilchen untereinander als auch von der Art der Wechselwirkungen mit der Wand. Es werden

elektrostatische und van der Waals Wechselwirkungen zwischen den Brownschen Partikeln,
sowie ebenso elektrostatische und van der Waals Kräfte zwischen Brownschen Teilchen und

Membran berücksichtigt. Im folgenden wird auf die wichtigsten Teile der einzelnen Kapitel
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näher eingegangen.

Im Einführungskapitel 1 werden zunächst grundsätzliche Bemerkungen über das Wechs-
elspiel zwischen Theorie, Experiment und Computersimulation gemacht. Die Simulation ist

demnach eine nützliche Schnittstelle zwischen den anderen beiden „Disziplinen”. Im An-
schluß daran wird in Abschnitt 1.1 erklärt, was mit Brownscher Bewegung gemeint ist und

welche immense Bedeutung sie für viele Prozesse in biologischen Zellen hat. Weiter geht
es mit kurzen Beschreibungen der wichtigsten zwei „Referenzsysteme” für die vorliegende

Arbeit in den Abschnitten 1.2 und 1.3. Neben der schon mehrfach erwähnten Photosyn-
these gehört auch die Atmungskette dazu. Der darauffolgende Abschnitt 1.4 beschreibt

das in allen Simulationen als Brownsches Teilchen benutzte Protein cyt c. Eine bekannte
3D-Kristallstruktur (stellvertretend aus Pferdeherz) wird dargestellt und gezeigt, daß die

Ladungsverteilung tatsächlich gut durch einen Monopol- und einen Dipolterm beschrieben
werden kann. Es folgt mit den Abschnitten 1.5 und 1.6 eine Einführung in den Aufbau bio-

logischer Membranen, und es werden wichtige Experimente zur Bindung von cyt c an Mem-
branen vorgestellt. Danach werden in Abschnitt 1.7 zwei wichtige Simulationstechniken

gegenübergestellt. Dies sind die Moleküldynamik und die Brownsche Dynamik. Warum,
wie schon zuvor gesagt, letztere in dieser Arbeit benutzt wird, wird dort ausführlicher er-

läutert.

Im Kapitel 2 werden die (mathematischen) Methoden zur Beschreibung der zu simul-
ierenden Systeme und die Behandlung der Randbedingungen erläutert. Die Brownsche Dy-

namik und ihre statistische Natur wird ausführlich in Abschnitt 2.1 erklärt. In Unterab-
schnitt 2.1.2 findet man die Bewegungsgleichungen (Langevin Gleichungen) sowie deren

Lösung. Die Wechselwirkungsterme, die in die Bewegungsgleichungen einfließen, wer-
den im Abschnitt 2.2 hergeleitet (siehe auch: C. Gorba and V. Helms. Diffusional dy-

namics of cytochrome c molecules in the presence of a charged surface. Soft Materials,
1:187, 2003). Dazu gehört die hydrodynamische Wechselwirkung, welche durch den Sol-

vens vermittelt wird und durch Matrizen beschrieben werden kann (Unterabschnitt 2.2.1).
Ferner gibt es die durch Ladungen hervorgerufenen elektrostatischen Kräfte (Unterabschnitt

2.2.2) und die bei geringen Abständen dominierenden van der Waals Kräfte. Letztere sind
quantenmechanischer Natur und werden hier durch empirische Potentiale beschrieben (Un-

terabschnitt 2.2.3). Eine Beschreibung des Simulationssystems und der Randbedingungen
findet man im Abschnitt 2.3. Benutzt werden sowohl eine Kombination aus reflektierenden

und 2-dimensionalen periodischen Randbedingungen (Unterabschnitt 2.3.2), als auch eine
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Kombination aus reflektierenden Rändern und einer offenen Wand (Unterabschnitt 2.3.3).
Durch diese können Brownsche Teilchen in die Simulationsbox herein- oder aus ihr her-
ausfließen. Diese als Schnittstelle zwischen Simulationsbox und Gebieten mit freier Dif-

fusion fungierende offene Wand wird mittels eines neuentwickelten Einfügungsalgorithmus
realisiert (siehe auch: T. Geyer, C. Gorba and V. Helms. Interfacing Brownian dynamics

simulations. J. Chem. Phys., 120:4573, 2004).

Das Kapitel 3 beschreibt Details des entwickelten Computerprogramms. Es werden
die entwickelten Klassen, welche die Eigenschaften und Funktionalitäten der verschied-

enen Teilobjekte des Simulationssystems, wie z.B. des Objektes „Protein”, modellieren,
vorgestellt. Außerdem findet man eine Analyse der Programmperformance, d.h. Aussagen

darüber, welche Teilberechnungen während einer Simulation wieviel CPU-Zeit verbrauchen.

Danach geht es schließlich zu den einzelnen Simulationen und deren Ergebnissen. Als

erstes behandelt Kapitel 4 Simulationen mit geschlossener Wand oberhalb der Membran.
D.h., Teilchen können die Simulationsbox weder verlassen, noch können neue Teilchen

hinzukommen. Diese Form der Randbedingungen war im Laufe des Projektes als erstes
verfügbar und dienten im wesentlichen als Test für verschiedene Szenarien. Im Abschnitt

4.1 wird ein einfacher Test des Source Codes vorgestellt, mit dem geprüft wird, ob der Algo-
rithmus zur Lösung der Langevin Gleichungen richtig implementiert wurde. Dabei handelt

es sich um die freie Brownsche Bewegung zweier Teilchen. Es folgt die Auswertung einiger
Rechnungen mit und ohne hydrodynamische Wechselwirkung in Abschnitt 4.2. Es werden

hier Diffusionskoeffizienten und Konzentrationsprofile ermittelt. Der Vergleich liefert Aus-
sagen über den Einfluß der verwendeten Standardhydrodynamik. Der nächste Abschnitt 4.3

befasst sich mit dem Phänomen des „molecular crowding”. Biologische Zellen sind in der
Regel sehr stark von allen möglichen Molekülen bevölkert. Man sollte daher erwarten, daß
es häufig einen indirekten Einfluß von nicht direkt an den betrachteten Prozessen beteiligten

Teilchen gibt. Dem wird hier in einem vorsichtigen ersten Schritt dadurch Rechnung getra-
gen, daß zusätzliche Brownsche Teilchen in die Box gepackt werden, die ungeladen sind

und somit nicht an der elektrostatischen Wechselwirkung mit der Membran teilnehmen.
Allein durch ihre Teilnahme an der hydrodynamischen und an den van der Waals Wechs-

elwirkungen verändern sie das Diffusionsverhalten der hier interessierenden cyt c Moleküle
und deren Verteilung oberhalb der Membran.

Kapitel 5 basiert auf den Ausführungen in „C. Gorba, T. Geyer and V. Helms. Brownian

dynamics simulations of simplified cytochrome c molecules in the presence of a charged sur-
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face. J. Chem. Phys., 121:457”. Dort werden nun mit Hilfe des weiter oben schon erwähnten
Einfügungsalgorithmus Teilchenfluktuationen zugelassen. Auf diese Weise ist es möglich,
den interessierenden Bereich nahe der Wand von einem Bereich freier Diffusion (bulk) zu

entkoppeln und damit u.a. Rechenzeit zu sparen. Mit Simulationen, die dieses neue Ver-
fahren benutzen, ist es gelungen, experimentelle Ergebnisse zum Bindungsverhalten von cyt

c an Lipidmembranen qualitativ zu reproduzieren [1]. Es geht hier im wesentlichen um
das Sättigungsverhalten der sogenannten Bindungsisotherme (u.a. Abschnitt 5.3). Diese

beschreiben den Anteil der an die Membran gebundenen cyt c Moleküle in Abhängigkeit
von der Gesamtkonzentration. Nachdem in Abschnitt 5.4 gezeigt wird, wie man durch

Verwendung einer effektiven Simulationsbox periodische Randbedingungen umgehen kann,
wird in Abschnitt 5.5 ein erster Schritt in Richtung Einbeziehung von Membranproteinen

unternommen. Bisher wurde ja nur eine strukturlose Oberfläche benutzt. Bevor diese sehr
einfachen als Punktladungen realisierten Reaktionszentren in Unterabschnitt 5.5.2 eingebaut

werden, beschreibt Unterabschnitt 5.5.1 den Einfluß der van der Waals Wechselwirkung der
Membran mit den Brownschen Teilchen. Dieser erweist sich als recht gering. Die Reaktions-

zentren bewirken eine effektive Verringerung der zur Verfügung stehenden Membranfläche
und damit das Einsetzen der cyt c-Sättigung bei kleineren Konzentrationen als ohne diese

zusätzlichen Ladungen.

Im Kapitel 6 werden dann schließlich vereinfachende Modelle für ein Photosystem vor-
gestellt. Anhand mittlerweile bekannter 3D-Strukturen wurde die Geometrie der beteiligten

Membranproteine und deren Ladung abgeschätzt und auf das Simulationssystem angewandt.
Wesentliche Bestandteile dieses Modells sind die Reaktionszentren innerhalb eines Rings

aus Lichtsammlerkomplexen (LHC). Es zeigt sich, daß die Verteilung von cyt c, welches
mit diesen Membrankomplexen wechselwirkt, deren Struktur in etwa abbildet. Ein Elek-

tronentransfer kann nur stattfinden, wenn cyt c auch tatsächlich die Möglichkeit besitzt,
das Reaktionszentrum einer photosynthetischen Einheit zu erreichen, um dort sein Elektron

abzugeben. Die farbcodierten Verteilungsdiagramme zeigen aber für unsere Modelle eine
vernachlässigbare Dichte. Cyt c kommt also gar nicht durch den Wall von Lichtsammelkom-

plexen mit seiner ringformigen Struktur hindurch und damit auch nicht nahe genug an das
Reaktionszentrum heran. Die Schlußfolgerung ist, daß die benutzten Modelle für solche

Photosysteme offensichtlich nicht ausreichen. Es ist möglich, daß diese Art der Modellier-
ung der photosynthetischen Einheiten prinzipiell zu ungenau ist. Es läßt sich aber auch die

Hypothese aufstellen, daß der Ring aus Lichtsammelkomplexen in Wirklichkeit nicht voll-
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ständig geschlossen ist, sondern an einer Stelle eine „Lücke” aufweist. Durch diese könnten
sich die cyt c Moleküle hindurchbewegen und zum Reaktionszentrum gelangen. Das gegen-
wärtig in der Literatur diskutierte PufX Polypeptid an einer Stelle des Ringes, wo eigentlich

ein Lichtsammlerkomplex zu erwarten wäre, könnte dafür verantwortlich sein, daß an dieser
Stelle genug Platz für cyt c bliebe, um den Ring zu „durchtunneln”.

Es folgt dann in Kapitel 7 die Zusammenfassung der Arbeit mit den Schlußfolgerungen
und einem Ausblick auf die Forschung, die mit Hilfe der vorliegenden Ergebnisse und des

Source Codes möglich sein sollte. Der Anhang gibt dann noch einen Überblick über die
benutzten Systemparameter in den verschiedenen Simulationen und zeigt einige Details der

Ein- und Ausgabe des vorgestellten Programms.

vi



Contents

1 Introduction 5
1.1 Brownian motion in biological cells . . . . . . . . . . . . . . . . . . . . . 5

1.2 Respiratory chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Photosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Horse heart cytochrome c . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Biological membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Binding of cyt c to membranes . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7 Molecular simulation techniques . . . . . . . . . . . . . . . . . . . . . . . 18

1.7.1 Molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7.2 Brownian dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Brownian dynamics methods 25
2.1 Brownian dynamics (BD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Equations of motion and their solution . . . . . . . . . . . . . . . . 27

2.2 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Hydrodynamic interaction . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Electrostatic interaction . . . . . . . . . . . . . . . . . . . . . . . 34

Interaction between two cyt c molecules: dipolar sphere model . . 34

Poisson-Boltzmann equation . . . . . . . . . . . . . . . . . . . . . 35

Interaction between cyt c and a charged planar surface . . . . . . . 35

2.2.3 Van der Waals interaction . . . . . . . . . . . . . . . . . . . . . . 37

Interaction between two cyt c molecules . . . . . . . . . . . . . . 37

Interaction between cyt c and a planar surface . . . . . . . . . . . . 38

1



2 CONTENTS

2.3 Simulation system and boundary conditions . . . . . . . . . . . . . . . . . 40

2.3.1 Reflecting boundary conditions . . . . . . . . . . . . . . . . . . . 41

2.3.2 2-dimensional periodic boundary conditions in xy-direction. . . . . 42

2.3.3 Dynamic particle insertion algorithm . . . . . . . . . . . . . . . . 43

3 Implementation 45
3.1 Structure of CESIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Computational performance . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Simulations and results for N=const. 51
4.1 A simple test of the source code . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 The influence of hydrodynamic interactions . . . . . . . . . . . . . . . . . 54

4.3 A first step towards macromolecular crowding . . . . . . . . . . . . . . . . 59

5 Simulations and results for N6=const. 65
5.1 Equilibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Concentration profiles and bond length . . . . . . . . . . . . . . . . . . . . 66

5.3 Binding isotherms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Effective membrane area . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Towards membrane proteins . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5.1 Influence of the van der Waals potential depth and the surface charge

of the membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5.2 Reaction centres . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Simulations and results including a simple model for photosynthetic units 79

7 Summary, conclusions and outlook 87
7.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A System parameters 93

B Input files 101

C Output files 105



CONTENTS 3

Bibliography 109



4 CONTENTS



Chapter 1

Introduction

This thesis presents results from computer simulations for the Brownian motion of cy-

tochrome c (cyt c) molecules in the presence of a charged surface. These were obtained
with a program called CESIP (Cellular Simulation Package) which was especially devel-

oped by the author for that purpose. The motivation for studying Brownian motion of these
molecules is the diversity of biological processes in which cyt c is involved, especially in

photosynthesis and in the respiratory chain. Furthermore, in almost all biological systems
membranes and thus, charged surfaces, are present. In this thesis the underlying methods,

the way they are implemented (shortly) and the results of various simulations using the code
are presented. At this point it is instructive to point out the role that simulations play in natu-

ral sciences. Figure 1.1 illustrates their dual role: simulations are supposed to build a bridge
between models and theoretical predictions on the one hand, and between models and ex-

perimental results on the other [2]. Thus, simulations are some kind of hybrid of theory and
experiment. Because of this connecting role and the way in which simulations are conducted

and analysed, these techniques are often referred to as “computer experiments”.

1.1 Brownian motion in biological cells

Brownian motion is named after the Botanist Robert Brown. In 1827 he observed the irreg-

ular motion of pollen grains in water [3]. The origins of that motion are collisions of these
grains with the water molecules. In more general terms, Brownian motion is a unique form

of random motion of “large molecules” in solution powered by thermal energy, i.e., by ran-
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Figure 1.1: The connection between experiment, theory and computer simulation (from ref.
[2]).



1.1 Brownian motion in biological cells 7

dom collisions with the solvent molecules. These “large molecules” are called colloidal or
Brownian particles. It has to be explained what is meant by “large molecules”. The quota-
tion marks hint that it is quite a wide range of system sizes that can be handled by Brownian

dynamics techniques. This is very well explained in an introductory section in ref. [4]:

“[...] Colloidal systems are thus solutions of ’large molecules’. The large molecules
are the colloidal or Brownian particles. These should be large compared to the solvent

molecules, but still small enough to exhibit thermal motion (in the present context more
commonly referred to as Brownian motion). Particles in solution are colloidal particles when

’they are large, but not too large’. The lower and upper limits for the size of a particle to be
classified as a colloidal particle are not sharply defined.

The minimum size of a colloidal particle is set by the requirement that the structure of
the solvent on the molecular length scale enters the interaction of the colloidal particle with

the solvent molecules only in an averaged way. Many solvent molecules are supposed to
interact simultaneously with the surface of a single colloidal particle. The interaction of the

colloidal particle and the solvent molecules can then be described by macroscopic equations
of motion for the fluid, with boundary conditions for the solvent flow on the surface of the

colloidal particle. Brownian motion is then characterised through macroscopic properties
of the solvent (such as its viscosity and temperature). This is feasible when the size of the

colloidal particle is at least about ten times the linear dimension of a solvent molecule. The
minimum size of a Brownian particle is therefore ' 1 nm.

The maximum size of a colloidal particle is set by the requirement that it behaves as ’a
large molecule’, that is, when it shows vivid thermal motion (=Brownian motion). Thermal

motion is relevant only when thermal displacements are a sizable fraction of the linear di-
mension of the particle during typical experimental time ranges. A brick in water (before

it sunk to the bottom of the container) shows thermal motion also, but the displacements
relative to its own size on a typical experimental time scale are extremely small. Thermal

motion of bricks in water is irrelevant to the processes in such systems. As soon as thermal
motion is of importance to processes in solutions of large objects, these objects are classified

as colloidal or Brownian particles. This limits the size of colloidal particles to ' 10µm.
Besides the very small thermal excursions of the position of a brick due to thermal colli-

sions with solvent molecules, it also moves to the bottom of a container in a relatively short
time. This may also happen for smaller objects then a brick (and is then referred to as sedi-

mentation) in a time span that does not allow for decent experimentation on, for example,
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Brownian displacements. This provides a more practical definition of the upper limit on the
size of an object to be classified as a Brownian particle: displacements under the action of
the earth’s gravitational field should be limited to an extent that allows for experimentation

on processes for which Brownian motion is relevant. For practical systems this sets the upper
size limit again to about ' 10µm, and sometimes less, depending on the kind of experiment

one whishes to perform [...] Clearly, without a gravitational field being present, the latter
definition of the upper limit for the colloidal size is redundant...”

As mentioned above, Brownian motion plays an important role in many processes in

biological cells. Apart from photosynthesis and the respiratory chain which are the systems
that are addressed in this work, Brownian motion is vital for the functioning of many “motor”

proteins [5]. E.g., new research suggests that random motion of such “motors” plays the
major role in moving enzymes and other chemicals inside cells. Kinesin is such a protein:

within a cell these molecules work like “cellular tow trucks” which pull small packages of
chemicals along pathways called microtubules. The common explanation is that this motion

is a deliberate one along the microtubule paths, supplied by energy from ATP (adenosine
triphosphate): the kinesins are widely believed to use their two leg-like “heads” to walk

along the microtubules. In ref. [6], however, the authors argue that the same motion is really
random motion constrained by chemical switching carried out by ATP. They call that kind of

motion rectified motion. The authors’ conclusion goes as far as saying: “We’re arguing that
Brown really had discovered the secret of life.”

Another example for Brownian motion in cells is the aggregation and segregation of
photosystems in higher plant thylakoid membranes [7]. The Brownian motion in that case is

the lateral movement of the photosystems within the membrane plane.

Especially association processes between proteins are governed by Brownian dynamics.
It should be noted that many kinds of forces are involved in Brownian dynamics. The random

nature of Brownian motion without any external forces always leads to a zero displacement
on average and Brownian processes would therefore never have a direction. Any direction-

ality observed is always caused by interparticle and external forces. In association kinetics,
e.g., electrostatics is the most important force as long as particles are not too close.

As already mentioned, Brownian motion is also an important part of the machineries of

respiratory and photosynthesis, the two processes that initially gave the motivation for the
work presented in this thesis. The role that Brownian motion plays there is described in the

next two sections.
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1.2 Respiratory chain

Respiration is a fundamental process in molecular bioenergetics, in which food molecules are

oxidised to carbon dioxide and water [8]. The released energy is stored in ATP (adenosine
triphosphate) and can be used for many activities of the cell. The respiratory chain consists

of three membrane enzyme complexes which are connected by two mobile electron-carriers.
The integral membrane proteins are the NADH reductase, cytochrome c reductase and cy-

tochrome c oxidase. The electron-carriers are ubiquinone and cyt c. The latter is the molecule
of interest in this work. This will become clearer in the next section. Since the systems are

very similar, the connection to Brownian motion will be explained in the following section
about photosynthesis.

1.3 Photosynthesis

Photosynthesis is the second fundamental process in molecular bioenergetics forming the ba-
sis for life on earth together with respiration [9, 10]. Briefly, in photosynthesis energy from

sunlight is transformed into chemical energy. That chemical energy is stored in carbohy-
drates and other organic molecules. The whole machinery includes photoexcitation, transfer

of electrons and protons, and various chemical reactions. All these steps take place in several
large integral membrane proteins, characterised over the past 15 years by X-ray and electron

diffraction.
The following is based on comments in the textbooks of refs. [9] and [10]. About 3.5

billion years ago a new type of prokaryote bacteria appeared on earth that were able to
do photosynthesis by using electrons from water. The overall reaction in photosynthesis of

plants and the aforementioned cyanobacteria is the production of carbohydrates together with
molecular oxygen which can be considered as a waste product; obviously a waste product

with extraordinary consequences. The light induced reaction can be written in the following
form:

CO2 +H2O + light −→ (CH2O) +O2. (1.1)

More generally, one has to write

CO2 + 2H2B + light −→ (CH2O) + 2H2O + 2B, (1.2)
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where H2B is a reduced reactant and B an oxidised product like sulfur S, e.g., because
purple bacteria do not produce molecular oxygen from water as electron source.

Figure 1.2 illustrates the machinery for the photosynthesis of purple bacteria and repre-

sents the major membrane proteins involved. The diffusion of the cyt c molecules (green
rectangle) is the subprocess which is addressed in this thesis. In other words, the topic
is the dynamics in the periplasm above the membrane.

The organisation of the photosynthetic apparatus of the purple non-sulfur bacterium Rho-

dobacter sphaeroides was elucidated in 1999 by electron microscopy [12]. It is the reference
system used to build the simulation model for this thesis: the photosynthetic machinery is lo-

cated in tubular membranes that are subcompartments of spheroplasts within the cell. These
spheroplasts have a diameter of about 3.5µm. Figure 1.3 shows an electron micrograph of

such a spheroplast. The tubular membranes within the spheroplasts were obtained by freeze-
drying. One single tube is depicted in Figure 1.4. From their experiments Jungas et al.

derived a model for the photosynthetic units and their distribution on the tubular membranes.
From 1.4 one might already guess a regular, grid-like, pattern of photosynthetic units on the

tubular membrane surface. The proposed pattern and the suggested model for the units are
shown in Figs. 1.5 and 1.6, respectively. From the dimensions shown in Figures 1.5 and 1.6

the minimum size of a simulation box can be derived. That is the box volume which should
be available for properly simulating diffusional behaviour of cyt c molecules in such a sys-

tem. The length of a photosynthetic unit is roughly x ' 20 nm, its width about y ' 12 nm.
Therefore the membrane area should not be smaller than that. Furthermore, the minimum

height of the box can be estimated from the diameter of cyt c which is 2R = 3.32 nm. It
should not be smaller than a couple of molecule diameters. For that reason a typical box size

used in our simulations is 20 nm × 20 nm × 20 nm (see later). Of course the real geometry
is more complicated than a simple rectangular box, but on the desired level of approximation
(namely learning about the overall diffusional behaviour) this should be a good choice.
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Figure 1.2: Overview of photosynthetic processes as they occur in purple bacteria (from
ref. [11]). The photon energy (yellow arrows) is captured by the bacteriochlorophyll a (Bchla)
pigments (labelled B800 and B850 to indicate the approximate wavelength in nanometres of
maximal absorption) in the antenna light harvesting complex 2 (LH2) (cyan). It is then passed
to the LH1 Bchla (B880, red, which also acts as a light-harvester), and then to a pair of Bchla
molecules (not shown) in the reaction centre (RC). The direction of the electron flow (red ar-
rows) across the photosynthetic membrane is from Bchla, which is oxidised, to a primary elec-
tron acceptor, ubiquinone (UQA, not shown), which is reduced. Subsequently, the electron is
transferred from UQA to the secondary electron acceptor ubiquinone UQB (shown here as QB).
A second RC turnover results in the complete reduction of UQ−B to UQBH2. The fully reduced
UQBH2 is replaced in the RC with an oxidised ubiquinone (shown as Q) and passes its electrons
to the next redox component in the cyclic electron transport path, the cytochrome bc1 complex
(blue). The electrons (e−) are returned to the RC through cyt c (dark green). A transmembrane
proton gradient is established which drives ATP synthase (brown), producing ATP (ADP + Pi,
adenosine diphosphate and inorganic phosphate).
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Figure 1.3: Electron micrograph of a spheroplast of Rhodobacter sphaeroides (from ref. [12]).

Figure 1.4: Tubular membrane of Rhodobacter sphaeroides (from ref. [12]).
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Figure 1.5: Projection map at 2 nm resolution of the tubular flat membrane from Rhodobacter

sphaeroides. The unit cell (a = 19.8 nm, b = 12.0 nm and γ = 103◦) is outlined in black.
Positive density representing the protein is shown as solid lines and negative density as dotted
lines (from ref. [12]).

Figure 1.6: Proposed model of the photosynthetic unit of Rhodobacter sphaeroides. The photo-
synthetic unit is viewed from above the membrane. The projection structure of the RC of Rho-

dobacter sphaeroides [13] and the projection map of 3/4 of LH1 of Rhodospirillum rubrum [14]
are shown in red and green, respectively (from ref. [12]).
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Figure 1.7: Surface representation of horse heart cyt c (elucidated by X-ray diffraction, resolu-
tion 0.19 nm, PDB (Protein Data Bank at http://www.rcsb.org/pdb/) code 1HRC [15]). Colours
are chosen according to the residue types. Basic (positively charged) residues are coloured in
blue, acidic (negatively charged) residues are coloured in red. Green is chosen for polar and
white for non-polar residues.

1.4 Horse heart cytochrome c

In this section the main characteristics of the Brownian molecule of interest in this work are
briefly resumed. Cyt c is essentially a spherical protein. Figures 1.7 and 1.8 show two rep-

resentations from different perspectives of horse heart cyt c to get an idea of its approximate
geometry and its secondary structure. Though photosynthesis was already mentioned very

often, in the following we refer to cyt c from horse heart which is very well known. Cyt c

molecules from different species are usually very similar in their structures (homologous)

and on the level of approximation used here the use of the physical properties of horse heart
cyt c should be sufficient. In ref. [16] it was shown that the charges in cyt c are distributed

asymmetrically. The conclusion is that besides a monopole it also has a dipole moment. Fig-
ure 1.9 shows the equipotential lines around horse ferrocytochrome c in one parallel section

perpendicular to the y-axis and the projection of the resulting dipole axis. From that the so-
called dipolar sphere model (DSM) was developed [17]. In this work we assume a spherical

protein of radius R = 1.66 nm with a net monopole of q ' +7.3 e0 and a dipole moment of
µ = 250 Debye.
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Figure 1.8: Cartoon representation of horse heart cyt c including the heme complex (PDB code
1HRC [15]).

Figure 1.9: Equipotential lines around horse ferrocytochrome c in a parallel section perpendic-
ular to the y-axis which contains the heme and the centre of mass M. The potentials are given
in units of kBT /e0. Only charges (+,−) and α-carbons (.) of amino acids between y + 2 Å
and y − 2 Å are indicated. The following abbreviations are used: D (aspartic acid), E (glutamic
acid), K (lysine), R (arginine), P (centre of positive charge), N (centre of negative charge), M
(centre of mass). The projection of the dipole axis on the plane y = 0 is represented by the
dashed line (from ref. [16]).
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Figure 1.10: A typical phospholipid bilayer with its transmembrane and integral membrane
proteins. This picture is taken from the internet resource at http://biology-pages.info.

1.5 Biological membranes

Biological membranes consist of lipid bilayers usually interspersed with a variety of mem-

brane proteins. Figure 1.10 shows a schematic picture of a typical membrane. The lipid
bilayers themselves are essentially made of phospholipids. Figure 1.11 shows their basic
components. Phospholipids consist of two fatty acids (one saturated and one unsaturated)

and a head group. The head is hydrophilic and the fatty acid tails are hydrophobic. There is
a “special” region of the head group that differs between various phospholipids.

Such membranes are of course not static, immobile structures. But the processes that are
supposed to be studied here (namely the overall behaviour of the surrounding Brownian par-

ticles) do not necessarily need to include the dynamics of the bilayer (this would actually be
a very costly task with regard to the necessary computer power). Thus, in our coarse-grained

description the bilayer is modelled as flat, immobile and homogeneously charged. The sur-
face charge of a membrane therefore mostly depends on the charge of the head groups and it

can be estimated as follows. Consider a membrane only consisting of a homogeneous distri-
bution of dioleoyl phosphatidylglycerol (DOPG). The head of DOPG is negatively charged

(q = −1 e0) and at room temperature it has an average surface area of 0.77 nm2 [18]. This
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Figure 1.11: Chemical and geometric structure of phospholipids. This picture is taken from the
Web Cell Biology Course at the University of Minnesota at http://www.cbc.umn.edu/.

yields a surface charge density of σ = −1.3 e0/nm2. The value can then be used for evaluat-

ing the electrostatic potential of the membrane as described in subsection 2.2.2.

1.6 Binding of cyt c to membranes

The ultimate test for both theories and computer simulations is always the experiment.

In their work Heimburg et al. focussed on the binding of cyt c to mixed lipid membranes

composed of the negatively charged dioleoyl phosphatidylglycerol (DOPG) and of the neu-
tral dioleoyl phosphatidylcholine (DOPC) [1]. So-called binding isotherms were measured

for the association of horse heart cyt c with the aforementioned bilayer membranes. These
curves represent the amount of bound cyt c depending on the total concentration in the test

tube. Since the simulation box in this work also contains cyt c as well as a membrane sur-
face, these measurements are ideal for comparison with simulation results. Both for testing
the model and for tuning the free parameters necessary for the computer experiments, these

measurements serve as a reference. Figure 1.12 shows the measured cyt c binding isotherms
at ionic strength cNa+ = 90 mM.

Membrane association and detachment of cyt c in the millisecond to second time domain
was also investigated using stopped-flow fluorescence spectroscopy [19]. It was found that

the speed of cyt c dissociation is very sensitive to the amount of acidic phospholipid in the
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Figure 1.12: Measured cytochrome c-binding isotherms for various mixed lipid membranes
[1]. Results for ionic strength [Na+]= 90 mM and four different DOPG:DOPC (mol/mol)
compositions are shown. The solid and dashed lines are theoretical curves developed in ref. [1].

membrane. Unfortunately, the large dissociation times in the millisecond range can still not
be simulated properly because this time scale is not accessible even by Brownian dynamics.

Another problem is the variation of the diffusion coefficient when considering lateral dif-

fusion. In ref. [20] lateral diffusion coefficients for cyt c in membranes of giant mitoplasts
using the technique of fluorescence redistribution after photobleaching (FRAP) were mea-

sured. Very small values of 3.5 − 7 × 10−14 m2/s depending on the assay medium were
determined. This is more than four orders of magnitude smaller than the free diffusion coef-

ficient utilised for our simulations.

1.7 Molecular simulation techniques

The following two sections outline two successful computer simulation techniques. From
that survey it will become clear why Brownian dynamics is the method of choice for handling

the aforementioned model system.
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1.7.1 Molecular dynamics

Experimental values of physical quantities of a many-particle system can be determined by
ensemble averaging over all the accessible states of that system. However, most experi-

mental systems are so large that it is impossible to find the ensemble average by summing
over all states in a computer. The idea to solve this problem is to find a method which is

able to calculate physical quantities from statistical averages over a restricted set of states.
Two such techniques are molecular dynamics (MD) and Monte Carlo (MC) [21]. Basically,

one generates a conformational ensemble consisting of a big number of correlated system
configurations which are determined successively from each other.

MD is preferentially used for studying classical many-particle systems. Since essentially
the equations of motion are solved numerically, MD represents the system as it evolves in

time. Besides evaluating statical physical quantities MD is also useful for studying dynami-
cal phenomena far from equilibrium.

Now consider a system consisting of N classical particles interacting with each other
located in a rectangular box of volume V = L1 × L2 × L3. Their positions are denoted

~r1, ~r2, ..., ~rN . In many cases the total force ~Fi on one of the particles i can be written as
a sum over pair forces F (|~ri − ~rj|). The magnitude of those only depends on the relative

distance between the particles:

~Fi (~r1, ~r2, ..., ~rN) =
N∑

j=1,j 6=i
F (|~ri − ~rj|)

~rij
|~ri − ~rj|

. (1.3)

In practical situations there are also always external forces present. In the situations de-
scribed above such a force would be the force exerted by the membrane on the cyt c molecules,

e.g. However, for simplicity, in this subsection it is assumed that there are no external forces.
The equations of motion can then be written as

d2~ri (t)

dt2
=

~Fi (~r1, ~r2, ..., ~rN)

mi

, (1.4)

which is Newton’s second law. The approximate character of MD becomes clear if one
considers the following points. First of all, the systems are treated classically though in

principle they are of course quantum mechanically by nature. Secondly, the forces are not
known exactly. They are usually given in parametrised forms which are derived from ab

initio calculations or by fitting simulation results to experimental data. The third point is



20 Chapter 1 Introduction

the finiteness of a system or in other words the small systems size in simulations compared
to experimental systems. The presence of a boundary has to be considered because it leads
to side effects. The usual procedure is the use of periodic boundary conditions (PBC): one

assumes that for these boundary conditions the system behaviour is very similar to one that
is embedded in an infinite system. In periodic boundary conditions the central simulation

box (the “system”) is surrounded by exact copies of that box including the complete particle
configurations. This includes entering and leaving the box of particles that pass over one of

the six box boundaries. Figure 1.13 illustrates the use of these boundary conditions. Since
every particle has an infinite number of interaction partners one can write the total force

between two particles i and j as

~FPBC (~ri − ~rj) =
∞∑

n1,n2,n3=−∞

~F

(∣∣∣∣∣~ri − ~rj +
3∑

µ=1

~Lµnµ

∣∣∣∣∣

)
. (1.5)

~Lµ are vectors along the box edges as indicated in figure 1.13 and nµ are integer coefficients.
In practice the sum needs only to be calculated until it converges. One possibility is the

use of the so-called minimum image convention, where only the nearest image neighbours
of each particle are considered in the force calculation. The fourth remark concerning the

approximate character of MD simulations is about the finite accuracy of the numerical inte-
gration algorithm. The computed trajectories will therefore always deviate from the ones a

system would follow in reality. A standard MD simulation for studying equilibrium systems
consists of three steps:

• Initialisation

• starting the simulation and waiting for equilibration

• continuing simulation and storing results

Details can be found in many textbooks on MD, e.g., in ref. [22]. To get an idea just one
possible integration algorithm is mentioned here: a special form of the so-called Verlet algo-

rithm, namely the leap-frog algorithm. The positions ~r after one time step h are iteratively
evaluated from the positions at the beginning of the time step. The idea is now to evaluate

the velocities ~v at time steps in between those at which the positions are evaluated:

~v (t + h/2) = ~v (t− h/2) + h~F [~r (t)] /m (1.6)
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y
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L2

Figure 1.13: 2-dimensional periodic boundary conditions in computer simulations (3 dimen-
sions is straightforward). Every particle inside the central box interacts with every particle in
the periodically repeated surrounding box copies. The interactions of the white particle with its
next neighbours only are indicated by arrows.

and

~r (t + h) = ~r (t) + h~v (t+ h/2) . (1.7)

A survey of the origin and early uses of biomolecular simulations is given in ref. [23]. Ex-
amples for systems that can be studied by MD simulations are the following:

• Protein stability [24]

• Protein folding and conformational changes [25]

• Molecular recognition: proteins, DNA, membranes, complexes [26]

• Ion transport in biological systems [27]

MD is also used as a tool for drug design [28] and structure determination [29]. Typical time

scales that can be reached by MD are a few picoseconds up to ∼ 100 ns for systems with
thousands up to one hundred thousands of atoms [23] in simulation boxes of about (1..10

nm)3.
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1.7.2 Brownian dynamics

The discussion above indicates that systems like the ones that are supposed to be studied here

with dimensions of more than 1000 nm3 and tens to hundreds (even simplified) molecules
cannot be handled by MD if one is really interested in large time scales.

The method of choice is the Brownian dynamics (BD) technique as already partly dis-
cussed in section 1.1. If one is interested only in processes with time scales larger than the

solvent relaxation time of about 10−14 s an important approximation can be made: instead of
filling the simulation box with explicit solvent (mostly water) molecules which largely con-

tributes to the number of atoms that have to be kept track of during a simulation, an implicit
solvent approach is possible. In fact, this is the basic idea of BD. Thus, BD is a statistical

method which reduces the computational costs immensely.
A comprehensive review on theoretical simulations of protein-protein interactions can be

found in [30]. Especially protein association kinetics can be studied using the BD method.
It has been applied, e.g., to the association and the electron transfer between horse ferricy-
tochrome c and bovine ferrocytochrome b5 in [17]. An important BD package is UHBD

(University of Houston Brownian Dynamics Program) which can be used to compute pK(a)s
of ionisable groups in proteins [31]. Protein association studies of two proteins have also

been made using the SDA (Simulation of Diffusional Association of Proteins) package by
Gabdoulline (see, e.g., refs. [32], [33]). Common to all these studies is the small number of

molecules (mostly two). These can be modelled atomistically and only simulation times of
several µs are reached.

In this work, however, the motion of several (tens to hundreds) particles needs to be
examined. Therefore, besides using BD instead of atomistic MD, a second approximation

has to be made concerning the model of the participating molecules. To summarise, one
can say that for the purposes here a coarse-grained BD is necessary. Figure 1.14 shows the

simulation box as it is used in this work. It contains the Brownian particles and the membrane
surface at the bottom. The model is explained in detail in the method sections.
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Figure 1.14: The simulation box and a snapshot of a simulation output of the program CESIP
(cf. Chapter 3). The spherical particles represent the simplified cyt c molecules that are dif-
fusing above the charged membrane surface at the bottom. Cyt c’s dipole charges are shown
in red (negative) and green (positive). The filled circles in red represent additional simplified
membrane proteins with negative net charge. The box dimension is 30× 30× 20 nm3.
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Chapter 2

Brownian dynamics methods

This chapter is partly based on a paper published by Gorba and Helms [34] where the basic
techniques going along with simple test simulations are described. Additionally, section

2.3.3 is taken from a publication by Geyer, Gorba and Helms [35] where a new particle
insertion algorithm is explained. As discussed in the previous sections, the systems under
study in this work contain many, i.e., typically two up to about 200 particles. They can

therefore be considered as multi-protein systems. The method of choice for such systems
is Brownian dynamics. In this chapter the equations of motion, the interactions and the

simulation system with its boundary conditions are presented.

2.1 Brownian dynamics (BD)

2.1.1 Introduction

As explained in the introductory section 1.1 Brownian motion is powered by random forces
due to collisions with solvent molecules. These random collision forces ~fran fluctuate on

the so called solvent time scale of about 10−14s and as a consequence a Brownian particle
attains an equilibrium velocity ~v = ~p/m, with m the mass of the Brownian particle and ~p

its momentum. This equilibrium motion leads to systematic collisions with the solvent and
therefore to a friction force ~ffri. For not too large velocities (small Reynolds number, cf.

subsection 2.2.1, eq. (2.17)) it is proportional to ~v:

~ffri = −γ~p/m. (2.1)

25
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This is Stoke’s friction law. γ is the friction coefficient which is proportional to the radius a
of a macroscopically large sphere:

γ = 6πηa, (2.2)

where η is the solvent’s viscosity. Using the two force contributions Newton‘s equation of

motion for a free Brownian particle can be written as [4]

d~p/dt = ~fran + ~ffri = ~fran (t)− γ~p/m. (2.3)

The (ensemble) average of the random forces ~fran vanishes and, since in BD one is only
interested in a description of times large with respect to the solvent time scale, one can

assume that there is no correlation between random forces ~fran at different times t and t′.
Mathematically, this is described by a delta correlation. Hence, the two statistical properties

of the fluctuating forces ~fran are 〈
~fran (t)

〉
= 0 (2.4)

and1

〈
~fran (t) ~fran (t′)

〉
= Gδ (t− t′) , (2.5)

where G is a 3 × 3 matrix representing the strength of the fluctuating force. According to
the fluctuation-dissipation theorem G is given by

G = 2γkBT I, (2.6)

where kB is Boltzmann’s constant, T the temperature and I the 3× 3 unit matrix. The deter-

ministic eq. (2.3) together with the statistical eqs. (2.4) and (2.5) is called a Langevin equa-
tion. The Langevin equation is only valid for time scales much larger than the solvent time

scale. More precisely, for t� m/γ one finds 〈~p (t) ~p (t)〉 = const and
〈
|~r (t)− ~r (0)|2

〉
∝ t.

This is the so-called Diffusive, Smoluchowski or Brownian time scale (BTS). To summarise,
on the BTS the mean squared displacement of the Brownian particles increases linearly with

time and their momenta are relaxed to equilibrium with the solvent. Thus, one can drop mo-
mentum coordinates in such a description which reduces computational costs significantly.

In the following the full Langevin equation for a many particle system and its solution is
explained.

1Note that the following product of vectors is a dyadic product resulting in a matrix. For two vectors ~a and
~b it is defined as

(
~a~b
)
ij

:= aibj . A scalar product or a product of a matrix and a vector will be denoted by a

dot explicitly.
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2.1.2 Equations of motion and their solution

The equations of Brownian motion of N particles can be written as 6N Langevin equations,

3N each for translation and for rotation [36]:

mi
d~vi
dt

= −
N∑

j=1

[
ΓT
ij · ~vj + ΓTR

ij · ~ωj
]

+ ~Fi +

6N∑

j=1

fj~αij (2.7)

and

Ii
d~ωi
dt

= −
N∑

j=1

[
ΓRT
ij · ~vj + ΓR

ij · ~ωj
]

+ ~Ti +
6N∑

j=1

fj~α(i+N)j , (2.8)

with 1 ≤ i ≤ N . ~vi = d~ri
dt

is the velocity vector of particle i with position ~ri and ~ωi = d~ϕi
dt

is the angular velocity of particle i with rotation angle vector ~ϕi. The mass of particle i

is denoted by mi and Ii is its momentum of inertia. ΓT
ij is a 3 × 3 matrix describing the

translational hydrodynamic interaction between particles i and j. It is therefore called the

translational friction matrix. Analogously, ΓR
ij is the rotational and Γ

TR(RT)
ij the coupling

translational-rotational (rotational-translational) friction matrix. These four matrices can be

interpreted as sub-matrices of a 6N × 6N grand friction matrix2:

Γ =

(
ΓT ΓTR

ΓRT ΓR

)
. (2.9)

~Fi is the external force vector and ~Ti the torque on particle i. The terms fj~αij describe forces
and torques due to random collisions of fluid molecules with the particles. The 6N numbers

fj are Gaussian variables with mean value 〈fj〉 = 0 and covariance 〈fi(0)fj(t)〉 = 2δijδ(t).
Finally, the column vectors ~αij =

(
α(3i−2)j , α(3i−1)j , α(3i)j

)T are composed of the 6N × 6N

elements of a matrix α connected to the elements of the grand friction matrix by Γij =

β
∑6N

l=1 αil · αjl, with β = 1/kBT .

Starting from the translational Langevin equation, Ermak and McCammon derived an
iteration algorithm for the spatial coordinates of the particles which is valid for time steps

∆t � βmD0 [37]. D0 is the free diffusion coefficient of a single sphere with radius a. It is
defined as the inverse of the friction coefficient from eq. (2.2) multiplied by kBT :

D0 = kBT/γ = kBT/6πηa. (2.10)

2For a detailed description and the connection between friction and diffusion matrices, see subsection 2.2.1.
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The time interval ∆t� βmD0 characterises the Brownian regime which is much larger than
the momentum relaxation time (BTS, see previous subsection). Thus, the algorithm gives the
position displacements after each time step ∆t:

~ri = ~r 0
i + ∆t

N∑

j=1

DT,0
ij ·
←−∇~rj + β∆t

N∑

j=1

DT,0
ij · ~F 0

j + ~Ri

(
DT,0,∆t

)
. (2.11)

The superscript 0 indicates variables to be evaluated at the beginning of each time step.

DT
ij is the 3 × 3 translational diffusion matrix2 for the hydrodynamic interaction between

particles i and j.
←−∇~rj is the column vector of derivatives acting on the variable to the left

with respect to the space coordinates of particle j:
←−∇~rj =

(←−
∂ /∂xj,

←−
∂ /∂yj,

←−
∂ /∂zj

)T
.

~Ri

(
DT,0,∆t

)
is the 3−component random displacement vector for particle i according to

the last term in the translational Langevin equation. It depends on the full translational
diffusion matrix DT evaluated at each time step and on the time step ∆t. Its ensemble

average value is
〈
~Ri

〉
= 0 and its variance-covariance is

〈
~Ri
~Rj

〉
= 2DT,0

ij ∆t. Based on this
approach a generalised algorithm also taking into account the coupling between translational

and rotational movement was developed in ref. [36]:

~ri = ~r 0
i +∆t

N∑

j=1

DT,0
ij ·
←−∇~rj + ∆t

N∑

j=1

DTR,0
ij · ←−∇ ~ϕj (2.12)

+β∆t

N∑

j=1

DT,0
ij · ~F 0

j + β∆t

N∑

j=1

DTR,0
ij · ~T 0

j + ~Ri

(
D0,∆t

)

and

~ϕi = ~ϕi
0 +∆t

N∑

j=1

DRT,0
ij · ←−∇~rj + ∆t

N∑

j=1

DR,0
ij ·
←−∇ ~ϕj (2.13)

+β∆t
N∑

j=1

DRT,0
ij · ~F 0

j + β∆t
N∑

j=1

DR,0
ij · ~T 0

j + ~Ri+N

(
D0,∆t

)
.

Analogous to the space derivatives
←−∇~rj ,

←−∇ ~ϕj denotes the column vector of derivatives with

respect to the angular coordinates3:
←−∇ ~ϕj =

(←−
∂ /∂ϕx,j,

←−
∂ /∂ϕy,j ,

←−
∂ /∂ϕz,j

)T
. These two

3The arrow to the left is necessary because of the matrix notation. The product in the sums of eqs. (2.11),
(2.12) and (2.13) requires the order matrix, column vector, if a column vector shall be the result.
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equations can be written in the following compact form by using the generalised 6N dimen-
sional vectors

~y = (~r1, ..., ~rN , ~ϕ1, ..., ~ϕN)T (2.14)

and
~F =

(
~F1, ..., ~FN , ~T1, ..., ~TN

)T
, (2.15)

yielding

~y = ~y 0 + ∆tD0 · ←−∇ + β∆tD0 · ~F 0 + ~R
(
D0,∆t

)
. (2.16)

D is the 6N × 6N grand diffusion matrix consisting of the 4 sub-matrices DT, DTR, DRT

and DR from eqs. 2.12 and 2.13 (for details, see subsection 2.2.1).
←−∇ =

(←−∇~r1, ...,
←−∇~rN ,

←−∇ ~ϕ1 , ...,
←−∇ ~ϕN

)T
is the 6N -dimensional gradient vector. The 6N -

dimensional random displacements have mean values
〈
~R
〉

= 0 and variance-covariance
〈
~R~R
〉

= 2D0∆t.

2.2 Interactions

There are basically three different kinds of interactions that have to be modelled in order
to simulate a biological system. There are direct interactions between molecules, namely

electrostatics and van der Waals interactions. Furthermore, since in such systems there is
always a solvent present, also indirect interactions mediated by the fluid occur. We start by

describing these indirect interactions, the so-called hydrodynamic interactions.

2.2.1 Hydrodynamic interaction

A moving particle in a fluid induces a fluid flow in the solvent. The fluid flow propagates

through the solvent and encounters other particles. The motion of these is then subsequently
affected by the incoming waves. This is the origin of the so-called hydrodynamic interactions

[4]. Provided that the particles are macroscopic bodies, these interactions can be described
on the basis of the Navier-Stokes equation.

A general scheme to evaluate diffusion tensors of an arbitrary number of spheres, im-
mersed in a viscous fluid, is presented in [38]. Here, only the basic ideas are summarised.

Consider N spherical particles of masses mi and radii ai immersed in an incompressible
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fluid. The particle centres are located at ~ri (t) at time t. The motion of an incompressible
fluid (infinite propagation velocity of sound waves) obeys the Navier-Stokes equation. This
equation can be written in a form so that the so-called Reynolds number occurs:

Re :=
ρaiv

η
. (2.17)

ρ denotes the fluid’s constant mass density and η is its viscosity. A typical fluid flow velocity
is the velocity v of the immersed particles. For small Reynolds numbers and on the BTS

the Navier-Stokes equation can be linearised. The result is the so-called Creeping4 Flow
equations:

∇ ·P (~r, t) = 0,

∇ · ~v (~r, t) = 0

}
for all |~r − ~ri (t)| > ai, (2.18)

with
Pαβ = pδαβ − η

(
∂vβ
∂rα

+
∂vα
∂rβ

)
, (2.19)

being the elements of the pressure tensor P. ~v is the fluid’s velocity field, p the hydrostatic
pressure and η its viscosity. Here, greek indices run from 1 to 3 and the sphere labels i

run from 1 to N . Assuming no external forces on the particles (only hydrodynamics in this
subsection) the equations of motion for particle i with velocity ~ui (t) and angular velocity

~ωi (t) can be written as

mi
d~ui (t)

dt
= −

∫

Si(t)

P (~r, t) · n̂i dS =: ~Ki (t) , (2.20)

Ii
d~ωi (t)

dt
= −

∫

Si(t)

[~r − ~ri (t)]×P (~r, t) · n̂i dS =: ~Ti (t) . (2.21)

~Ki and ~Ti are the force and torque exerted on particle i, respectively, defined by the integrals

over the particle’s surface Si (t) at time t. n̂i is a unit vector perpendicular to this surface
pointing outwards. Assuming a homogeneous mass distribution within sphere i, its moment

of inertia is Ii = 2mia
2
i /5. As boundary conditions for the set of equations above so-called

stick conditions are assumed here, meaning that the fluid velocity is equal to the particle

velocity on the particle’s surface: the fluid sticks to the spheres so that

~v (~r, t) = ~ui (t) + ~ωi (t)× [~r − ~ri (t)] for |~r − ~ri (t)| = ai. (2.22)
4“Creeping” refers to the fact that the Reynolds numbers are small when the typical fluid flow velocity is

small [4].
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In the so-called method of induced forces the eqs. (2.18) are extended to the inside of the
spheres:

∇ ·P (~r, t) =
∑N

j=1
~Fj (~r, t) ,

∇ · ~v (~r, t) = 0

}
for all~r, (2.23)

with ~Fj (~r, t) = 0 outside sphere j, i.e., for |~r − ~rj (t)| > aj . The conditions for the extension

of the fluid field inside the spheres are

~v (~r, t) = ~ui (t) + ~ωi (t)× [~r − ~ri (t)] for |~r − ~ri (t)| ≤ ai (2.24)

and

p (~r, t) = 0 for |~r − ~ri (t)| < ai. (2.25)

Due to discontinuities of the pressure tensor (zero inside the spheres, non-zero outside) the
induced force density must have the form of a delta-function:

~Fi (~r, t) = a−2
i fi (n̂i, t) δ (|~r − ~ri (t)| − ai) . (2.26)

Using the pressure tensor from eqs. (2.23) the force ~Ki (t) and the torque ~Ti (t) exerted on

sphere i by the fluid can be expressed in terms of the induced force density:

~Ki (t) = −
∫

Si(t)

P (~r, t)·n̂i dS = −
∫

|~r−~ri(t)|≤ai
∇·P (~r, t) d3r = −

∫
~Fi (~r, t) d

3r, (2.27)

~Ti (t) = −
∫

Si(t)

[~r − ~ri (t)]×P (~r, t) · n̂i dS = −
∫

[~r − ~ri (t)]× ~Fi (~r, t) d
3r. (2.28)

By introducing the Fourier transforms of the velocity ~v
(
~k
)

=
∫
~v (~r) e−i

~k·~rd3r, of the pres-

sure p
(
~k
)

=
∫
p (~r) e−i

~k·~rd3r and of the induced force density

~Fi

(
~k
)

=
∫
~Fi (~r) e

−i~k·(~r−~ri)d3r, the fluid eqs. (2.23), together with the pressure tensor in

eq. (2.19) become in wavevector representation

ηk2~v
(
~k
)

= −i~kp
(
~k
)

+

N∑

j=1

e−i
~k·~rj ~Fj

(
~k
)
, (2.29)

with
~k · ~v

(
~k
)

= 0. (2.30)
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By applying the operator 1− ~k~k/k2 to both sides of eq. (2.29) one obtains together with eq.
(2.30)

ηk2~v
(
~k
)

=
N∑

j=1

e−i
~k·~rj
(
1− ~k~k/k2

)
· ~Fj

(
~k
)
. (2.31)

The formal solution for that equation is

~v
(
~k
)

= ~v 0
(
~k
)

+
N∑

j=1

η−1k−2e−i
~k·~rj
(
1− ~k~k/k2

)
· ~Fj

(
~k
)
, (2.32)

where ~v 0
(
~k
)

is the unperturbed fluid velocity field and the solution of eq. (2.29). In the
linear regime the relation between forces and velocities on the one hand and torques and

angular velocities on the other hand can be written as a set of coupled linear equations of the
form

~ui = −
∑

j

µTT
ij · ~Kj −

∑

j

µTR
ij · ~Tj, (2.33)

~ωi = −
∑

j

µRT
ij · ~Kj −

∑

j

µRR
ij · ~Tj. (2.34)

Eq. (2.32) is the starting point for the calculation of the forces and torques that act on the N

spheres in the fluid. After having obtained these forces and torques, one can then construct
the mobility tensors µ by comparison with the set of eqs. (2.33) and (2.34). The actual

calculation of the forces and torques, leading to expressions for the mobility tensors, is not
presented here because it is very difficult and lengthy. Several slightly different definitions

of the mobility tensor exist5. Sometimes it is called mobility tensor µ, in some publications
it is the diffusion tensor D. Also friction matrices Γ are used very often. The connection

between these is simply D = β−1µ = β−1Γ−1. Here, we only use diffusion matrices D as
in ref. [4]. The grand diffusion matrix D contains 4 sub-matrices DT (translation-translation

coupling), DTR (translation-rotation coupling), DRT (rotation-translation coupling), DR

(rotation-rotation coupling), and each of these is a 3N × 3N matrix containing N 2 3 × 3

“sub-sub-matrices”. Thus, D itself is a 6N × 6N matrix:

D =

(
DT DTR

DRT DR

)
. (2.35)

5Since tensors can be represented by matrices, both of these two terms are used in this work.
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To clarify the convention used here, e.g., DR without any indices denotes the 3N ×3N rota-
tional diffusion matrix, so that DR

ij with (i, j) ∈ [1, N ] is its (i, j)-th 3× 3 sub-matrix which
determines the hydrodynamic (rotational) coupling between particles i and j. Eqs. (2.32),

(2.33) and (2.34) describe the general hydrodynamic interaction of N particles immersed
in a fluid in the creeping flow approximation. But there exists no general solution to these

equations and one therfore needs to solve eq. (2.32) iteratively by calculating the correction
to ~v 0 from ~v 0 itself using this solution to start the next iteration. For small particle densities,

or correspondingly interparticle distances much larger than their radii, the first order already
captures the main features of the hydrodynamic interaction. Two such approximations are

known from literature: the very simple Oseen- and the Rotne-Prager approximation which
takes the iteration one step further [4]. The corresponding entries of the mobility or diffusion

tensors according to eqs. (2.33) and (2.34) have the following forms:

Translation DT (Rotne-Prager tensor approximation) :

DT
ij =





D0I for i = j,

D0

[
3
4
a
rij

(I + r̂ij r̂ij) + 1
2

(
a
rij

)3

(I− 3r̂ij r̂ij)

]
for i 6= j.

(2.36)

Rotation DR :

DR
ij =





D0
3

4a2 I for i = j,

D0
3a

8r3
ij

[3r̂ij r̂ij − I] for i 6= j.

(2.37)

Translation-Rotation DTR and DRT:

DTR
ij = DRT

ij





0 for i = j,

−D0
3a

4r2
ij
ε · r̂ij for i 6= j.

(2.38)

Here, rij = |~rij| is the distance between particles i and j and r̂ij = ~rij/ |~rij| is their

unit separation vector. The product r̂ij r̂ij is the dyadic product explained in footnote 1. ε
is the total antisymmetric 3rd rank tensor defined by εlmn := −→e l · (−→e m × −→e n), where −→e l
is the unit vector in direction of axis l (here, (l, m, n) ∈ [1, 3] ). The product of ε and r̂ij
is defined as a matrix with elements (k, l) ∈ [1, 3]: (ε · r̂ij)kl :=

∑3
m=1 εklm (r̂ij)m. D0 =

kBT/6πηa is the free diffusion coefficient of a single sphere with radius a. A consequence of
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the leading term 1/rij in eq. (2.36) is that hydrodynamics is a long-range interaction. As can
be seen from eq. (2.36), in the Rotne-Prager approximation interactions due to interparticle
distances up to to order r−3 are taken into account. Only pair-interactions are considered.

The computational cost using this approximate approach is still maintainable but anything
beyond this description, e.g., considering three body interactions would be too costly. In

the wide field of polymer physics hydrodynamics is very often simulated on a grid using
the lattice Boltzmann method (see, e.g., ref. [39]). This method is not utilised here and the

correct way to include this interaction into simulations on large systems like ours is still being
investigated. Nevertheless, some results using the approximate method described above are

presented and discussed in Chapter 4.

Two kinds of external forces on the proteins are applied in the simulations: a protein
experiences the sum of electrostatic and van der Waals forces both from the other molecules

in the simulation box and from the charged membrane. These interactions are discussed in
the following subsections.

2.2.2 Electrostatic interaction

Interaction between two cyt c molecules: dipolar sphere model

The electrostatic interaction between the diffusing proteins is approximated by the dipolar
sphere model (DSM) [30]: a horse heart cyt c model molecule is represented as a sphere of

radius R = 1.66 nm containing a monopole charge q ' +7 e0 in the centre and two charges
of q = ±1.7 e0 forming a dipole. The dipole charges are embedded bi = 0.15 nm into the

sphere from the surface. The choice of these two charges at these positions inside the sphere
is made in order to reproduce the appropriate dipole moment calculated from the molecule’s

coordinate set [16]. The interaction potential between two such spheres with these three
charges each is then given by the following screened Coulomb/Debye potential:

W12 =
1

4πεε0

3∑

i=1

3∑

j=1

qiqj
e−κ(rij−Bij)

(1 + κBij) rij
, (2.39)

where rij is the distance between charge i of protein 1 and charge j of protein 2. ε0 and

ε are the dielectric constants for vacuum and the solvent, respectively. Bij = bi + bj is an
empirical distance shifting factor taking into account the finite ion size of the surrounding

fluid [17]. The exponential screening of the interactions between the charges due to counter
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ions is not modelled explicitly but it is described by the Debye length lD = 1/κ. κ is defined
in the following subsection.

Poisson-Boltzmann equation

Electrostatic interactions between diffusing particles and the charged membrane surface also

need to be considered. To derive the potential φ of a flat charged surface with charge density
σ one has to start from Poisson’s equation [40]:

4φ = − 1

ε0ε
ρ. (2.40)

A solvent usually contains positive and negative salt ions which, according to the boundary

conditions, form the space charge density ρ. Boltzmann’s theorem states that the average ion
concentration at a certain point in space can be calculated from the electrostatic potential at

that point:

n± = n exp (∓v±e0βφ) , (2.41)

where n is the number of ions per volume element in the region where φ = 0. v+ and v−
are the valencies of the positive and negative ions, respectively. In a symmetrical electrolyte

(v+ = v− = v) the space charge density is thus

ρ = ve0 (n+ − n−) = −2nve0 sinh (ve0βφ) . (2.42)

Inserting this into Poisson’s eq. (2.40) one yields the so-called Poisson-Boltzmann equation:

4φ = −2nve0

ε0ε
sinh (ve0βφ) . (2.43)

This equation governs all electrostatic effects in a solvent and therefore has to be solved if
one needs the space dependent electrostatic potential.

Interaction between cyt c and a charged planar surface

In the case of a flat membrane surface as studied here, eq. (2.43) can be transformed into a

simpler form [40]. For symmetry reasons the potential only depends on the normal coordi-
nate z with respect to the planar surface at z = 0. By introducing the substitutions

y := ve0βφ, (2.44)
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y0 := ve0βφ0,

κ2 :=
2ne2

0v
2β

ε0ε
,

ξ := κz,

the Poisson-Boltzmann equation takes on the following simple form:

d2y

dξ2
= sinh y. (2.45)

Using the boundary conditions y = 0 and dy/dξ = 0 for ξ =∞ and y = y0 for ξ = 0 (fixed

surface potential φ (z = 0) = φ0), one finds after integrating twice:

ey/2 =
ez/2 + 1 +

(
ez/2 − 1

)
e−ξ

ez/2 + 1− (ez/2 − 1) e−ξ
. (2.46)

After solving this equation for y, using c := ve0β/2 and reinserting the substitutions (2.44),

one finally gets the electrostatic potential φ of the model surface with charge density σ sur-
rounded by a fluid with dielectric constant ε and Debye length lD=1/κ at a vertical distance

z from the plane:

φ (z) =
1

c
ln

[
ecφ0 + 1 +

(
ecφ0 − 1

)
e−κz

ecφ0 + 1− (ecφ0 − 1) e−κz

]
=

2

c
artanh

(
tanh

( c
2
φ0

)
e−κz

)
. (2.47)

The relation between the surface charge density σ and the surface potential φ0 is determined

by Poisson’s eq. (2.40): integration of the space charge density along the normal coordinate,
i.e., σ = −

∫∞
0
ρdz = ε0ε

∫∞
0

d2φ
dz2 dz = −ε0ε

(
dφ
dz

)
z=0

finally yields

φ0 =
1

c
ln


 cσ

ε0εκ
+

√(
cσ

ε0εκ

)2

+ 1


 . (2.48)

It should be noted that the Poisson-Boltzmann equation can be linearised for small surface

potentials y0 � 1. In this case the potential function takes on a simple exponential form.
This special solution is the so-called Gouy-Chapman law:

φ = φ0e
−κz. (2.49)
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2.2.3 Van der Waals interaction

Interaction between two cyt c molecules

For achieving a realistic behaviour in situations in which particles come very close to each

other or when they get into the vicinity of the membrane surface, attractive and repulsive
van der Waals potentials are included. The mathematical expressions are derived in this

subsection. After a couple of test simulations the well-depth of both particle-particle and
particle-surface interactions was set to Emin,vdW = −1 kBT which equals the thermal en-

ergy of the fluid that drives the free Brownian motion6. For numerical reasons the repulsive
potentials are linearised (constant forces) at short distances. By doing so, one avoids very

high repulsive forces when the particles are about to penetrate the membrane surface or each
other. To speed up the calculations it is possible to only consider interactions between parti-

cles closer than an adjustable cutoff distance.

Hamaker [41] derived formulas for the interaction energy between two spherical particles

with radii R1, R2 and constant atom densities ρ1, ρ2 and also for the interaction of a sphere
with a planar surface. He assumed an attractive interaction potential proportional to r−6

between each pair of atoms in the particles. In this work Hamaker’s integration method
was also used to find formulas for a short-ranged repulsive potential proportional to r−12.

Generally, for potentials r−n the energy is

E = −
∫

V1

∫

V2

Cr−ndV1dV2, (2.50)

where C is a constant depending essentially on the particle atom densities, Vi is the volume

of sphere i and r is the distance between dV1 and dV2. For particles at a separation distance
d = R− R1 − R2 Hamaker obtained

En=6
sp−sp(x) = −A2 1

12

[
y

x2 + xy + x
+

y

x2 + xy + x + y
(2.51)

+ 2 ln

(
x2 + xy + x

x2 + xy + x+ y

)]
,

using the definitions x := d
2R1

and y := R2

R1
(see Figure 2.1). A is an empirical parameter

which determines the strength of the attractive forces between two spheres. In the same

6In some simulations slightly different values were used. See detailed listing of parameters in Tables A.1,
A.2, A.3, A.4, A.5 and A.6.
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d

R1
R1

d
R2

Figure 2.1: Definition of contact distance d between a sphere and a planar surface and two
spheres.

way, for the purposes in this work an analogous equation for the repulsive r−12 interatomic

potential was derived:

En=12
sp−sp(x) =

B2

1260R6
1

1

1 + y + 2x
× (2.52)

[
1

160

(
1

(1 + y + x)5 −
1

(1 + x)5 −
1

(y + x)5 +
1

x5

)

− 1

384
(−5 + y + 2x)

(
1

(1 + y + x)6 −
1

(1 + x)6

)

+
1

384
(7 + y + 2x)

(
1

(y + x)6 −
1

x6

)

+
1

128
(2 + y + 2x)

(
− 1

(1 + y + x)7 +
1

(1 + x)7

)

− 1

128
(y + 2x)

(
1

(y + x)7 −
1

x7

)]
.

The empirical parameter B determines the strength of the repulsive forces between two
spheres.

Interaction between cyt c and a planar surface

The interaction between a sphere (sp) and a planar surface (pl) immediately follows from
eqs. (2.51) and (2.52) by making sphere 2 infinitely large (y → ∞), because a sphere with

infinite radius is equivalent to an infinite non-curved surface. The attractive energy function
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becomes
En=6
sp−pl(x) = −AÃ 1

12

[
1

x
+

1

x+ 1
+ 2 ln

(
x

x+ 1

)]
. (2.53)

The corresponding equation for the repulsive energy (r−12 interatomic potential) is given by

En=12
sp−pl =

BB̃

161280R6
1

[
1

3 (1 + x)6 −
1

3x6
+

1

(1 + x)7 +
1

x7

]
. (2.54)

Ã and B̃ are empirical parameters which determine the strength of the attractive and repulsive

forces between a sphere and a plane.
Similar formulas were derived by Bicout and Field (although not given in their paper) and

were fitted for convenience by cubic splines [42]. Figure 2.2 shows the energy curves for the
van der Waals interactions in comparison with a simple Lennard-Jones 12-6 pair potential

which can be written as

ELJ(x) = 4ELJ
0

[(σ
x

)12

−
(σ
x

)6
]
, (2.55)

where ELJ
0 denotes the well-depth and σ characterises the steeply rising repulsive wall at

distances less than x ∼ σ [2]. The derived potentials are slightly less steep and have a longer

range than the Lennard-Jones potential.
Note that the derivation of the preceding equations only considers interatomic forces.

However, since the strength of the interactions is given by adjustable parameters, we assume
that interactions like hydrophobic interactions can be included into these expressions via A,

B, Ã and B̃. Thus, the term van der Waals is used in a more general way throughout this
work than is usually done.



40 Chapter 2 Brownian dynamics methods

0 0.2 0.4 0.6 0.8 1
x [d/2R]

-1

0

1

2

3

po
te

nt
ia

l e
ne

rg
y 

[k
T

] van der Waals interaction sphere-sphere
van der Waals interaction sphere-membrane
Lennard-Jones 12-6 potential

Figure 2.2: Distance dependence of the van der Waals interaction between two spheres (solid
line) and between a sphere and the surface (dashed line). The dotted line illustrates the run of a
simple Lennard-Jones 12-6 pair potential for the same energy minimum.

2.3 Simulation system and boundary conditions

The simulation system with its different boundary conditions is sketched in Figures 2.3, 2.4

and 2.5. In any case the actual simulation box is rectangular with the origin at the lower
left corner and the membrane surface located at z = 0. In all simulations except the ones in

Chapter 6 it is x0 = y0.

Besides the integration algorithm one also needs to specify the boundary conditions for

actually solving the equations of motion. Three different boundary conditions can be applied
using the Brownian dynamics package CESIP. Firstly, the system can be finite assuming that

all walls except the membrane are reflecting. Secondly, the system can be infinitely large
by applying 2-dimensional periodic boundary conditions on the side walls and reflecting

boundary conditions on the upper wall. Thirdly, the upper wall at z = z0 can be assumed
to be an interface to a continuous bulk region using a particle insertion algorithm. In this

case the side walls are reflecting ones. The boundary conditions are described in detail in the
following subsections 2.3.1, 2.3.2 and 2.3.3. The simulation parameters are summarised in

Tables A.1, A.2, A.3, A.4, A.5 and A.6. The parameters for the moving particles are taken
from ref. [17] and mimic horse heart cyt c molecules. A Debye length of 1 nm corresponds to

an ionic strength of 90 mM [1]. The membrane surface charge density of σ = −1.3 e0/nm2
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y

y0

for small distances
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x x0membrane surface z=0

van der Waals repulsion with surface
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b

a: particle leaves simulation box

b: particle reflected 
back into simulation box
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a

Figure 2.3: Sketch of the simulation box with reflecting boundary conditions. The particles,
denoted by the grey spheres, are simulated explicitly between z = 0 and z = z0 and simply
reflected from the walls except from the membrane at z = 0.

corresponds to a lipid layer composed to 100 % of negatively charged DOPG lipids with a
surface per lipid headgroup of A ' 0.77 nm2 [18].

2.3.1 Reflecting boundary conditions

The simplest boundary conditions are reflecting boundaries as illustrated in Figure 2.3. The

box walls at x = 0, x = x0, y = 0, y = y0 and z = z0 serve as reflecting borders. In practice,
the particles are simply mirrored back into the box when they try to penetrate the walls. It

is also possible to reflect the particles from the walls using small random displacements. As
to the membrane at z = 0, the van der Waals repulsion described in the previous section

prevents particles from leaving the box through the membrane surface at z = 0. Thus, no
particles can leave the simulation box and their number remains constant: N = const. These

boundary conditions were applied in simulations from our initial work [34]. For the simu-
lations presented in this thesis, however, they were not utilised because one has to use very

large boxes in order not to have too strong side effects. As a consequence very long simu-
lation times are necessary so that the particles are able to sample the whole space available

properly.



42 Chapter 2 Brownian dynamics methods
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Figure 2.4: Sketch of the simulation box with 2-dimensional periodic boundary conditions. The
dotted lines indicate the box copies in x- and y-directions. The particles, denoted by the grey
spheres, are simulated explicitly between z = 0 and z = z0 and are reinserted on the opposite
side if they are about to leave the box through one of the side walls. The upper wall at z = z0 is
again a reflecting border like in Figure 2.3.

2.3.2 2-dimensional periodic boundary conditions in xy-direction.

One of the major characteristics in the simulations presented is the membrane surface at z =

0. Thus, periodic boundary conditions in all directions would imply periodically repeated
membranes in z-direction. Therefore, a different approach is chosen. The wall at z = z0 is

again reflecting like in subsection 2.3.1 but the system is assumed to be infinitely large in
xy-direction. The system consists of exact periodic copies in two dimensions as indicated

by the dotted lines in Figure 2.4. Particles are simulated explicitly only in the central box
(the actual simulation box). Particles trying to penetrate one of the side walls are simply

reinserted on the opposite side (see also Figure 1.13 in section 1.7). With these boundary
conditions the minimum image convention can be used. Particle-particle interactions are

only considered for distances smaller than half the box width (here it is x0 = y0). As a
consequence an interaction cutoff with maximum radius rcutoff,max = x0/2 must be applied.

Since as many particles leave the simulation box as are reinserted, the number of particles
remains constant: N = const. Simulations using these boundary conditions are presented in

Chapter 4.
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2.3.3 Dynamic particle insertion algorithm

Due to the fixed finite height of the simulation box no independent bulk concentration can be
established in simulations using boundary conditions like in 2.3.1 and 2.3.2. This problem is

alleviated by using constant density boundary conditions that are explained in detail in [35].
As shown in Figure 2.5 a continuous bulk region, indicated by grey zigzag lines, begins at

z = z0. In that region it is assumed that the molecules can diffusive freely and only particles
between the membrane at z = 0 and the interface at z = z0 are simulated explicitly. The

side walls in this case are reflecting borders like in subsection 2.3.1. As a result, the amount
of particle in the simulation box varies: N 6= const. In the following a short derivation of

the insertion algorithm is presented. Briefly, one starts with a system composed of a region
close to the membrane surface, where particle-membrane interactions are important and an

infinite non-interaction region, where these interactions are negligible. In this bulk region
we have a constant density of particles that behave like non-interacting Brownian particles.

The conditional probability for a Brownian particle with position ~r ′ at time t = 0 to move to
a new position ~r in the time interval τ is given by a Gaussian distribution [4]:

P
(
~r, τ | ~r ′ , 0

)
=

1

π
3
2a3

0

exp

[
−(r − r′)2

a2
0

]
, (2.56)

where a0 =
√

4D0τ is a typical step size of the Brownian motion with the free diffusion

coefficient D0 (cf. subsection 2.1.2). From P (~r, τ |~r ′, 0) the particle flux through the surface
z = z0 is easily calculated: the probability of finding a particle at a position ~r with z < z0

after one time step τ is given by

ρ (z, τ) =

∫

z′>z0

P
(
~r, τ | ~r ′ , 0

)
ρ
(
~r
′
)
d3r′. (2.57)

After integration one finds that this is proportional to the complementary error function
erfc (z) = 2√

π

∫∞
z
e−ξ

2
dξ:

ρ (z, τ) =
ρ0

2
erfc

(
z0 − z
a0

)
. (2.58)

According to this formula, a Monte Carlo algorithm was added to the program package

CESIP. This algorithm decides if a particle is added to the simulation next to z ≤ z0 or
not. Particles crossing the interface at z0 in opposite direction (away from the membrane)

are simply removed from the simulation box. The program CESIP is described in the next
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Figure 2.5: Sketch of the simulation box. The particles, denoted by the grey spheres, are
simulated explicitly between z = 0 and z = z0. The bulk is indicated by the grey zigzag lines.
With the particle insertion algorithm only reflecting side walls are available in CESIP.

chapter. Simulations using particle insertion/deletion together with reflecting side walls are

presented in Chapters 5 and 6.



Chapter 3

Implementation

3.1 Structure of CESIP

The Brownian dynamics package CESIP (Cellular Simulation Package) was developed and
used for the simulations presented in Chapters 4, 5 and 6. It is written in C++ and consists

of about 7000 lines of code. It can be compiled using the GNU compiler g++ (version 2.96)
using a makefile coming along with the package. An object-oriented approach was chosen in

order to alleviate maintenance and upgradeability. For object-oriented programming (OOP)
the so-called Unified Modelling Language (UML) is available - a collection of graphical

symbols and rules for connecting these symbols in order to describe the source code [43,44].
In OOP modules are called classes which represent basic entities of a model on which a pro-

gram is based. E.g., in this work such a basic entity is a Protein. This indicates that one such
basic class would be a Protein class. Figure 3.1 illustrates the classes assumed for the present

implementation of our Brownian dynamics package. There are seven classes which together
build up the simulation systems. The most important class is Protein which contains a

protein’s attributes like its position, its charges etc. Such class attributes are always shown
below the class name. Below the attributes one finds possible operations or methods avail-

able for that class. Since a protein has a force field (which can contain various interactions)
a method forceField() is necessary. The program distinguishes between “static” pro-

teins (like membrane proteins) and such that can move. Thus, a class MovingProtein is
derived from the parent class Protein. MovingProtein is a child class and contains all

of Protein’s features plus the ability to move in space. The membrane is represented by

45



46 Chapter 3 Implementation

   ...

        of
compute valuesinherits

is composed of is composed of

   

needs

needs

      Membrane

    surfaceChargeDensity      

...

MovingProtein

Protein MovingProtein

...

DiffusionTensor RandomGenerator

gaussNumber()
           ...

Periplasm

      Engine

       ...

...

...

Protein

...

forceField()

...

temperature 
viscosity

dielectricConstant

...
forceField()

...

matrix
...

...

diffusionTensor()
choleskyDecomp()
randomNumbers()

force()

checkConstraints()

addParticles()

writeData()

rotationAngle

force()charges
mass
radius
position move()

Figure 3.1: UML representation of the classes used in the Brownian dynamics package CESIP.
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Membrane. As one would expect a membrane has attributes like a surface charge density
and can contain membrane proteins. As a consequence Membrane can contain instances
of the Protein class. Furthermore, due to the surface charges, e.g., it also creates a force

field which acts on molecules present. The Periplasm class models the environment in
which the molecules are embedded and thus contains instances of MovingProtein. Ad-

ditionally, it has attributes like temperature, viscosity and electric permeability. The main
class of the package is Engine. This class contains all the methods for computing the

trajectories of the moving proteins according to eq. (2.16) and it uses the helper classes
DiffusionTensor and RandomGenerator which can determine the diffusion tensor

and the random numbers for the Brownian motion. The methods shown in Engine repre-
sent the sequence of calculations as they occur in the program’s main loop. I.e., at first the

diffusion tensor is calculated by the method diffusionTensor() from the N particle
positions. The resulting matrix is then decomposed (both only in case hydrodynamics is

included) in choleskyDecomp() in order to subsequently compute the Gaussian random
numbers in randomNumbers() [45]. After that the interparticle and external forces are

evaluated in method force(). All these ingredients are then used by move() to move
the Brownian particles to their new positions. The new positions need to be consistent

with the boundary conditions which are controlled in checkConstraints(). If, e.g.,
a Brownian particle reaches the box walls it will be handled either according to reflecting

or periodic boundary conditions. In the case of simulations using the interfacing algorithm
checkConstraints() also serves as particle annihilator, i.e., a Brownian particle is re-

moved from the simulation box if it reaches the upper box wall at z = z0. The creation of
particles according to eq. (2.58) is handled in method addParticles(). Finally, when

all the new positions fulfilling the boundary conditions are determined, the coordinates for
that time step are written into the output file by the method writeData(). Figure 3.2
illustrates the aforementioned by means of a flow chart.

3.2 Computational performance

The CPU time needed for the computation of the particle trajectories mostly depends on the

number N of particles in the simulation box. Particle-particle interactions involve N(N−1)
2

calculations per time step for electrostatic and van der Waals forces and torques each. The

interaction of the Brownian particles with the membrane only scales linearly: N calculations
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Figure 3.2: Flow chart of the Brownian dynamics program CESIP. The condition #ifdef

HYDRO is a preprocessor directive. That means, that this condition is checked by the
compiler only while creating the executable but not during runtime. The functions
diffusionTensor() and choleskyDecomposition() are only invoked if the exe-
cutable was created for the use with hydrodynamic interaction. Analogously, particles can only
be added (particle flux enabled) if the executable was created with the FLUX directive set. In
that case checkConstraints() also serves as particle annihilator and contains additional
code for removing particles if they reach the upper box wall.
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are necessary for both the electrostatic and van der Waals forces and torques. The calculation
of the random displacements is straightforward in the case that no hydrodynamics is consid-
ered: 6N uniform random numbers using one of the “ran” functions described in ref. [45] are

computed and then transformed into Gaussian numbers using the Box-Muller method [45].
However, if hydrodynamic interaction is considered it becomes more expensive. Besides the

computational cost for the evaluation of the diffusion matrix which scales quadratically like
the particle-particle interactions mentioned above, hydrodynamics also influences the cost

for the calculation of the random displacements. Actually, the Gaussian random numbers
are now taken from a different ensemble. As described in ref. [45], it is necessary to de-

compose the diffusion matrix (Cholesky decomposition) at each time step. The Gaussian
random numbers are then weighted with the decomposed matrix. The Cholesky decompo-

sition is very expensive. It involves (6N)3 /6 operations per time step. The cubic scaling
of this decomposition makes standard hydrodynamics a very unpleasant feature for large

particle numbers.
In the following Tables 3.1 and 3.2 the amount of time needed by the different main

functions is listed for a couple of test simulations (simulation time Tsim ) in a 30× 30× 30

nm3 box. These simulations were performed on single nodes of a Dell Linux Cluster with 1

GB memory and two Intel XEON 2.8 GHz processors each. A profile was created using the
program gprof. The differences between the total measured CPU time Treal,cpu and the time

measured by gprof Tgprof are due to the fact that gprof does not take into account the time
needed for the execution of system libraries. The times measured for the different functions

are therefore calculated with respect to Tgprof . As shown in Table 3.1 the average time per
time step Tav/step is of course largest for the 50 particle simulation including hydrodynam-

ics. Without hydrodynamics the calculation of the electrostatic and van der Waals forces
almost consumes the whole time measured, whereas with hydrodynamics included the ran-
dom number computation and thus the Cholesky decomposition become expensive as well.

Table 3.2 illustrates how CPU time scales with the number of particles in the box. As already
mentioned, the Cholesky decomposition involves aboutN 3 computational steps and thus the

difference factor between a 22 and 50 particle simulation using hydrodynamics should be
(50/22)3 ' 11.74. In this case the measured values agree very well with the theoretical

value. For the computation of the diffusion tensor and the forces the scaling is a bit worse
than the theoretical quadratic scaling (50(50 − 1)/(22(22 − 1)) ' 5.3) which is probably

due to the larger amount of memory needed.
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number of particles 22 (no HI) 50 (no HI) 22 (HI) 50 (HI)

Tsim (µs) 1.0 1.0 0.5 0.5

Treal,cpu(s) 1899.79 8453.06 1237.07 6301.16

Tav/step (s) 0.019 0.085 0.025 0.126

Tgprof (s) 364.40 1931.11 261.76 1888.45

Ti [% of Tgprof ] for i =

1: diffusionTensor() – – 11.2 11.3

2: randomNumbers() 0.9 0.4 18.6 28.3

[3: choleskyDecomposition()] – – 16.5 26.7

4: force() 96.3 98.4 64.9 57.3

5: move() 2.5 1.1 5.1 3.0

6: checkConstraints() 0.1 0.1 0.1 0.0

7: writeData() 0.0 0.0 0.0 0.0

Table 3.1: Performance test: comparison between times needed for simulations with and with-
out hydrodynamics and for two different particle numbers (boundary conditions as in subsection
2.3.2: reflecting and 2-dimensional periodic boundary conditions). Data were written after 50
time steps each.

50p/22p 50p/22p

no HI HI

sim. theo. sim. theo.

i = T50p,i/T22p,i T50p,i/T22p,i T50p,i/T22p,i T50p,i/T22p,i

1: diffusionTensor() — — 7.28 5.30

2: randomNumbers() 2.36 2.27 — —

[ 3: choleskyDecomposition()] — — 11.67 11.74

4: force() 5.41 5.30 6.37 5.30

Table 3.2: Comparison between the measured and theoretical scaling of times needed for the
most important main functions for the simulations from Table 3.1. Without hydrodynamics the
agreement is very good. E.g., the expected linear scaling for the calculation of random numbers
agrees almost exactly with the measurement.
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Simulations and results for N=const.

In this chapter results from simulations with a constant number N of particles are presented.

In x- and y-directions 2-dimensional periodic boundary conditions were applied, whereas
the wall at z = z0 was assumed to be a reflecting boundary (see subsection 2.3.2).

4.1 A simple test of the source code

To test the code, especially with respect to the implementation of hydrodynamic interac-
tions, a simple test simulation from ref. [36] was repeated. Two spheres with radius a were
positioned with their centre at coordinates (−a, 0, 0) (particle 1) and (a, 0, 0) (particle 2),

i.e., with their surfaces touching each other. Using this initial configuration, 106 Brow-
nian displacements, i.e., 106 single-step simulations were made. From the displacements

∆y = yi − y0
i (see eq. (2.16)) normalised correlation factors Cij of the form

Cij =
〈∆yi∆yj〉√
〈∆y2

i 〉
〈
∆y2

j

〉 , with 1 ≤ (i, j) ≤ 12, (4.1)

were calculated. For the translational diffusion matrix only the Oseen approximation (first

term of the Rotne-Prager tensor in eq. (2.36)) was used here. The grand diffusion tensor for
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a 2-particle system is a 12× 12 matrix:
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, (4.2)

with the following sub-matrices:
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In the test case of close-touching spheres rij = 2a. The grand diffusion matrix is positive
definite and symmetric. In this special case this can be verified easily by looking at the grand

diffusion matrix after putting all the sub-matrices into eq. (4.2). Using the iteration algorithm
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(a) ∆x ∆y ∆z ∆ϕx ∆ϕy ∆ϕz

∆x 0.75 0 0 0 0 0

∆y 0 0.375 0 0 0 −0.2165

∆z 0 0 0.375 0 0.2165 0

∆ϕx 0 0 0 0.125 0 0

∆ϕy 0 0 −0.2165 0 −0.0625 0

∆ϕz 0 0.2165 0 0 0 −0.0625

(b) ∆x ∆y ∆z ∆ϕx ∆ϕy ∆ϕz

∆x 0.7509 −0.0001 −0.0012 0.0008 0.0016 0.0004

∆y 0.0012 0.3760 0.0009 −0.0011 −0.0011 −0.2168

∆z −0.0011 −0.0002 0.3739 −0.0011 0.2167 0.0005

∆ϕx 0.0009 −0.0001 0.0000 0.1246 −0.0004 0.0003

∆ϕy 0.0003 −0.0006 −0.2166 −0.0010 −0.0621 0.0004

∆ϕz −0.0008 0.2173 −0.0007 −0.0004 0.0005 −0.0630

Table 4.1: Components of the correlation factors Cij for translational and rotational displace-
ments of two spherical particles with radii a positioned at coordinates (−a, 0, 0) (particle 1) and
(a, 0, 0) (particle 2): (a) theoretical values, (b) results according to eq. (4.9), calculated from
106 single-step simulations. Columns correspond to particle 1 and rows correspond to particle
2.

eq. (2.16), the cross-correlation factors from eq. (4.1), i.e., the sub set of Cij for different

particles translate into

CT
kl =

(
DT

12

)
kl
/
(
DT

11

)
kk
, (4.9)
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(
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12

)
kl
/
√

(DT
11)kk (DR

11)kk and

CR
kl =

(
DR

12

)
kl
/
(
DR

11

)
kk
, with 1 ≤ (k, l) ≤ 3.

The theoretical values computed from eqs. (4.9) for the example discussed above are
shown in Table 4.1 (a). Comparison with the corresponding values calculated with eq. (4.1)

from the simulation shows very good agreement (cf. Table 4.1 (b)). It should be emphasised
that this is meant only as a test for the correctness of the code developed for this work.

As mentioned in ref. [36], in the case of close-touching spheres, i.e. strong hydrodynamic
coupling, the asymptotic expansions of the diffusion tensor are not valid and one would

expect all the non-zero coefficients in Table 4.1 to equal unity.
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4.2 The influence of hydrodynamic interactions

An important point before starting more detailed simulations is to check the influence of stan-

dard hydrodynamics. For that purpose several simulations with and without hydrodynamics
for different concentrations were performed. A possible influence should then manifest in

different diffusion coefficients and also in different particle distributions in the simulation
box.

In computer experiments diffusion coefficients are usually measured by using the Ein-
stein relation

D(t) =
1

6Nt

〈
N∑

i=1

(−→ri (t)− −→ri (0))
2

〉
, (4.10)

for various time intervals ∆t = t and N particles. The measurement of diffusion coeffi-
cients only makes sense in an infinite system. That is the reason why we assumed periodic

boundary conditions in x- and y-directions, reflecting boundary conditions at the upper wall
and the usual membrane at z = 0. With these boundary conditions diffusion parallel to the

membrane surface is determined as

D‖(t) =
1

4Nt

〈
N∑

i=1

(
(x (t)− x (0))2 + (y (t)− y (0))2)

〉
. (4.11)

We investigated two different regimes separately, a low and medium and a large concen-

tration regime. Technically, this was achieved by simulating in two different boxes. The
low and medium concentration calculations were performed in a 30× 30× 30 nm3 box and

the large concentrations were achieved by using a 20 × 20 × 20 nm3 box. All these sim-
ulations were performed both with and without standard hydrodynamics which were then

compared to each other. It has to be mentioned that due to the periodic boundaries in x-
and y-directions the next-neighbour image procedure was used for all kinds of interactions,

i.e., a cutoff-radius of half the box width. On the other hand, due to the leading 1/r terms
in the Rotne-Prager matrix hydrodynamic interaction must be considered as long-ranged.

That would suggest the use of Ewald summation [46]. But the use of a cutoff can be jus-
tified in the following way: consider the velocity of sound waves in water which is about

1400 m/s. During one Brownian time step of 10 ps such a wave would cover a distance
of about 15 nm which is half of the box length used above. Consequently, in the common

Rotne-Prager creeping flow picture hydrodynamic interaction cannot be mediated between
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Figure 4.1: Diffusion coefficients D‖ parallel to the membrane surface in the small/medium
particle concentration regime. Since data were usually written to file after 50 time steps of 10

ps each, we chose ∆t = 0.5 ns in eq. (4.11) for all diffusion measurements presented.

particles at larger distances than 15 nm anyway. Thus, Ewald summation would not make

any sense within one time step.

Figure 4.1 shows the diffusion coefficients computed using eq. (4.11) for small and

medium concentrations. For very dilute solutions the particles diffuse almost freely in both
cases with and without hydrodynamic interaction. With growing particle concentration the

diffusion coefficients decrease only slightly. For ccyt ' 3700µM the difference between free
diffusion and diffusion with hydrodynamics is only about 0.9%. Without hydrodynamics

that difference accounts to 1.4%. Figure 4.2 illustrates the progression of the diffusion coeffi-
cients in the large particle concentration regime. As expected, diffusion becomes slower with

growing concentrations in both cases with and without hydrodynamics. But after reaching
minima at about ccyt = 7500µM without and at about ccyt = 9000µM with hydrodynamics,

diffusion becomes faster.

The slight decrease of diffusional speed in the low concentration regime is what one

would expect. The more particles are present the slower they get because there is less space.
As a consequence the friction coefficient increases and the diffusion coefficient (its inverse)

decreases. This effect could also be shown using mean-field-hydrodynamics Brownian dy-
namics which yielded good agreement with experimental results [47, 48]. The decreasing

free space is illustrated by the particle density profiles which show how many particles
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Figure 4.2: Diffusion coefficients D‖ parallel to the membrane surface in the high particle
concentration regime.

are to be found at a certain distance from the membrane. Figure 4.3 shows the profiles in
z−direction for three different small/medium concentrations, ccyt ' 148µM, ccyt = 741µM

and ccyt = 2222µM. The differences between the hydrodynamic and non-hydrodynamic
situations are negligible. The peaks close to the membrane surface due to the electrostatic

and van der Waals attraction of the membrane are higher for larger densities. Consequently,
the free space close to the membrane becomes smaller and thus the diffusion coefficient

decreases.

A hint why the effect of increasing diffusion coefficients occurs in the large concentration
regime is given again by the according density profiles. The high concentration regime is

represented by ccyt = 4000µM, ccyt = 7500µM and ccyt = 10000µM and is shown in
Figure 4.4. Because of the larger amount of particles that are attracted by the membrane,

the peaks are higher than for smaller particle densities. Also important is the fact that the
side-effect from the reflecting wall at z = z0 = 20 nm becomes larger: the box is slowly

getting full. In the regions close to the membrane and in the vicinity of the upper wall, where
the densities are high the particles cannot move properly anymore. Due to the high repulsive

van der Waals forces at close distances a particle in these regions does quite long jumps
from one interaction partner to the other. This results in larger values of the mean squared

displacements. The growing, unphysical side-effects will become more distinct in the next
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Figure 4.3: Left panel: cyt c distribution along the z−axis for three different low/medium con-
centrations, each with and without hydrodynamics. z is the particles’ centre-of-mass distance
from the membrane surface. For this analysis the box was divided into 600 bins of volume
∆V = 30 × 30 × 0.05 nm3 each. cav is the average concentration per bin in moles per litre.
Right panel: cyt c distribution from the left panel zoomed in on the vicinity of the membrane
surface.

section for even larger particle densities.

Before moving towards macromolecular crowding in the next section, the orientation of

the particle dipole and the influence of the van der Waals interaction between cyt c and the
membrane are briefly examined. Figure 4.5 shows the average cosine of the rotation angle as

illustrated in the inset. Far from the membrane, i.e., for z ≥ 6 nm the values fluctuate around
zero with very small amplitudes. This means that on average the dipoles of the N particles

in that region can have all possible orientations with respect to the membrane. The closer the
Brownian particles get to the negatively charged surface the more do the dipole angles shift
towards values larger than α = 90◦. The positive dipole charges are thus orienting towards

the negative surface charge at short distances. Hydrodynamics does not have an influence on
that.

Figure 4.6 shows the density profiles from two simulations without hydrodynamics. The
first simulation is the one studied also in Figure 4.5 (surface charge density σ = −1.3

e0/nm2). The second one is the same except that it excludes electrostatic interaction be-
tween cyt c and the membrane, i.e., σ = 0. The profile for the uncharged membrane shows

a smaller peak and a larger tail (particle number must be the same in total). The particle
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Figure 4.4: Left panel: cyt c distribution along the z−axis for three different large concen-
trations, each with and without hydrodynamics. z is the particles’ centre-of-mass distance
from the membrane surface. For this analysis the box was divided into 400 bins of volume
∆V = 20× 20× 0.05 nm3 each. Right panel: cyt c distribution from the left panel zoomed in
on the vicinity of the membrane surface.
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Figure 4.5: Average of the cosine of the dipole orientation as illustrated in the inset for two
simulations with and without hydrodynamic interaction. The average is computed with respect
to bins of length ∆z = 0.01 nm. The angle trajectories from two simulations which were also
analysed in Figure 4.4 are used for this analysis (box dimension: 20× 20× 20 nm3).
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Figure 4.6: Comparison between cyt c distributions along the z−axis for simulations with
charged and uncharged membrane surface. For this analysis the box was divided into 400 bins
of volume ∆V = 20× 20× 0.05 nm3 each (box dimension: 20× 20× 20 nm3).

attraction is only a result of the van der Waals interaction and therefore much weaker. From
the fact that the peak for the charged membrane is about 7 times higher one can conclude

that “binding” to the membrane is only about 14% due to van der Waals interaction.

4.3 A first step towards macromolecular crowding

As discussed in ref. [49] macromolecular crowding apparently plays an important role in
many cellular processes. The last section already addressed this problem partially by varying

the concentrations of one particle species. But crowding also implies the existence of various
different molecules. A first step towards crowding in this work is to put additional spherical

molecules into the simulation box. These particles are supposed to interact only via van der
Waals and hydrodynamic forces with the cyt c molecules.

Again, we split the analysis into small/medium and high concentration regimes and

compare the diffusional behaviour and the resulting particle distributions between hydro-
dynamic and non-hydrodynamic situation. The small density simulations were performed

in a 30 × 30 × 30 nm3 box with 20 additional dummy particles of the same size as cyt
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Figure 4.7: Diffusion coefficients D‖ parallel to the membrane surface in the small/medium
particle concentration regime with additional dummy particles (box dimension: 30 × 30 × 30

nm3).

c (radius R = 1.66 nm), i.e., cdummy ' 1481µM. Considering their van der Waals radii,
these particles occupy only 2% of the box volume. The effect due to the additional parti-

cles should be negligible. Because of the higher computational cost for extra dummies, the
large concentration simulations were carried out in a 15 × 15 × 15 nm3 box with the same

amount of dummy particles. So, in this case the dummies occupy 15% of the box volume
and cdummy ' 11852µM. In this case one would expect an influence of the extra particles.

Figures 4.7 and 4.8 show the resulting cyt c diffusion coefficients Dcyt
‖ for the two con-

centration regimes in the presence of additional dummy particles. Like in the situation with-
out dummies the diffusion coefficients for cyt c are at first decreasing with growing concen-

trations in the small/medium density regime but on a much lower level. In fact, the diffusion
is almost the same like for free diffusion. The slight decrease indicates that the dummies

simply hinder the motion of the cyt c molecules a little bit in this density regime. The results
are nearly equal for simulations with and without hydrodynamics and in both cases diffusion

is slower than for free particles but the differences are almost negligible.

That changes drastically for higher densities. In that regime the diffusion coefficients at

first rise up to more than two orders of magnitude at ccyt ' 3500µM without hydrodynamics.
The increase using hydrodynamics is slower but the same peak at D‖ ' 190× 10−10 m2/s is

reached at ccyt ' 6000µM. For even higher concentrations the diffusion decreases again with
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Figure 4.8: Diffusion coefficients D‖ parallel to the membrane surface in the high particle
concentration regime with additional dummy particles (box dimension: 15× 15× 15 nm3).

hydrodynamics and apparently approaches free diffusion. Without hydrodynamics, however,
the diffusional speed remains constant at the “saturation” diffusion coefficient ofD‖ ' 190×
10−10 m2/s.

In order to understand these effects we have again a look at the particle distribution
profiles for the small/medium and high density regimes. The small/medium regime is again

characterised by very distinct peaks close to the membrane without significant side effects
close to the reflecting wall at z = z0 = 30 nm as is shown in Figure 4.9. The situation is

very similar to the one without additional particles where the slight decrease of the diffusion
coefficients also occurred. In the large density regime growing side-effects occur. Figure

4.10 and the according distributions of the dummy particles in Figure 4.11 illustrate that.
Larger cyt c concentrations do not result in higher peaks close to the membrane because

many particles stick more or less to the reflecting border at z = z0 = 15 nm and do not
reach the membrane (Figure 4.10). There is an additional problem both for cyt c and dummy

particles: the region z ≤ 2 nm which used to be free of particles shows a non-vanishing
particle density now. The reason is that the box is getting too crowded. Due to the high

densities close to the membrane it can happen that particles jump to z ≤ 0. In such cases
CESIP simply reflects the particles back into the box. Unfortunately, one has to conclude

that these high concentration simulations do not make sense physically: the large diffusion
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Figure 4.9: Left panel: cyt c distributions in z−direction in the presence of additional dummy
particles of radii Rdummy = 1.66 nm for three different small/medium cyt c densities each with
and without hydrodynamics (small/medium concentration regime, box dimension: 30×30×30

nm3, bin length ∆z = 0.05 nm). Right panel: cyt c distributions from the left panel zoomed in
on the vicinity of the membrane surface.

coefficients shown in Figure 4.8 can again be attributed to “jumping” particles close to the

membrane and close to the reflecting wall. But interestingly, the effect is less dramatic
with hydrodynamics close to the membrane. Hydrodynamics weakens the effect of particles

crossing the membrane as can be seen from the profiles.



4.3 A first step towards macromolecular crowding 63

0 5 10 15
z [nm]

0.1

0.2

pa
rt

ic
le

s 
pe

r b
inccyt=1185 µM, HI incl.

ccyt=1185 µM, HI excl.
ccyt=3556 µM, HI incl.
ccyt=3556 µM, HI excl.

10000

20000

30000

c av
 [µ

M
]

0 1 2 3 4 5
z [nm]

0.1

0.2

pa
rt

ic
le

s 
pe

r b
in

ccyt=1185 µM, HI incl.

ccyt=1185 µM, HI excl.

ccyt=3556 µM, HI incl.

ccyt=3556 µM, HI excl.

10000

20000

30000

c av
 [µ

M
]

Figure 4.10: Left panel: cyt c distributions in z−direction in the presence of additional dummy
particles of radii Rdummy = 1.66 nm for two different large cyt c densities each with and
without hydrodynamics (high concentration regime, box dimension: 15 × 15 × 15 nm3, bin
length ∆z = 0.05 nm). Right panel: cyt c distributions from the left panel zoomed in on the
vicinity of the membrane surface.
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Figure 4.11: Left panel: dummy distributions in z−direction for two different large cyt c den-
sities each with and without hydrodynamics. The dummies’ radius is Rdummy = 1.66 nm and
the density is cdummy = 11852µM (high concentration regime, box dimension: 15× 15× 15

nm3, bin length ∆z = 0.05 nm). Right panel: dummy distribution from the left panel zoomed
in on the vicinity of the membrane surface.



64 Chapter 4 Simulations and results for N=const.



Chapter 5

Simulations and results for N6=const.

This chapter mainly presents results recently accepted for publication [50]. The new particle
insertion algorithm combined with reflecting boundaries as described in subsection 2.3.3

is utilised and thus, the number N of particles in the simulation box is not constant. The
analysis focusses on concentration profiles calculated from the particle trajectories. These

allow a comparison between the simulations and experiments in which binding isotherms
for the association of horse heart cyt c with dioleoyl phosphatidylglycerol (DOPG)/dioleoyl

phosphatidylcholine (DOPC) membranes were measured [1].

5.1 Equilibration

A priori we do not know the equilibrium state of the simulated system - or there would be
no need for any simulation. We therefore have to guess an initial (nonequilibrium) setup

and then let the system relax into its stationary state. In simulations with a fixed number of
proteins (N = const.), i.e., without the interfacing algorithm of subsection 2.3.3, we ini-

tially distribute the proteins randomly throughout the simulation volume. With the insertion
algorithm it is more convenient to start from an empty box which is then filled with particles
by the simulation algorithm. Figure 5.1 shows a typical example: starting from an empty

box, the number of particles first increases linearly. Apparently all particles that are inserted
at z0 diffuse to the membrane and bind there. The system equilibrates to the externally given

density of c0 = ρ0 = 7500µM1 when after about 105 time steps of 10 ps enough proteins
1Note that in the following discussion the interface densities (concentrations) are denoted by c instead of

ρ. The reason is that in many publications like in ref. [1] concentrations are denoted by c and given in units of

65
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Figure 5.1: Equilibration of the particle number: plot of the total number of particles in a
simulation in a 302 × 20 nm3 box with an interface density c0 = 7500µM. After about 1µs
(vertical broken line) the system can be considered as equilibrated and the total number of
particles fluctuates around a constant value of∼ 56 proteins.

have bound to the wall. This relaxation time of∼ 1µs corresponds to the free diffusion time
TD =

z2
0

2D0
= 1.3µs through the height z0 of the simulation volume. After a time TD the total

number of particles in the simulation box fluctuates around a constant average value. The
analysis of the simulation only starts after the equilibration phase, i.e., at t ∼ 1µs in Figure

5.1. The total simulation times of the various simulations presented here vary in the range
between 10µs and 1 ms.2

5.2 Concentration profiles and bond length

In order to compare the measured binding isotherms of ref. [1] to our computer simula-

tions, we need a criterion to decide when a protein is bound to the membrane. To extract
this parameter we deduce concentration profiles from the computed particle trajectories as

moles of solute per litre of solution (molarity).
2In most plots in this work no error bars are shown because they are very small for long simulation times.

For N 6= const it is assumed that the standard deviation of the number of particles N is proportional to its
square root

√
N . Using this assumption, all standard deviations are calculated according to the error law of

Gauss.
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Figure 5.2: Comparison of concentration profiles for simulations with and without particle
insertion for c0 = 3000µM. The simulation box has dimensions 202 × 20 nm3. cav is the
average concentration per bin. A bin length of ∆z = 0.1 nm was used (as for all distribution
analyses in this chapter) which corresponds to a bin volume of ∆V = 202 × 0.1 nm3 here.

was already done in Chapter 4 for constant particle simulations. These profiles show the

probabilities of finding particles at a given distance from the surface.

At first we compare simulations with a fixed number of particles to simulations using the
insertion algorithm. With a fixed particle number, the equilibration phase takes much longer.

Apart from that, the resulting density profiles are equal, as shown in Figure 5.2. To facilitate
comparison, the external density for the insertion algorithm was set to the equilibrium density

that had developed in the fixed number simulation far above the membrane, i.e., at z > 10

nm. The density profiles consist of a very sharp peak of particles close to the membrane

followed by a rapid decrease to the bulk density. The distance where c blends into the bulk
density is considered as bond length zb. In all cases shown here we use a value of zb = 4 nm.

It should be noted that the results vary only slightly with the exact value of zb.
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Figure 5.3: Comparison of binding isotherms for different box sizes. For determining the bound
concentration a value of zb = 4 nm was used that was estimated from the concentration profiles
(see, e.g., Figure 5.2). The interface concentrations c0 correspond to an average number of
8...90 particles in the simulation box.

5.3 Binding isotherms

As shown in Figure 5.2 there is an inaccessible volume for 0 < z < zmin = 2 nm due to the
van der Waals repulsion of the membrane. The integrated density of particles between the

minimal distance of zmin from the membrane and the previously determined bond length zb
gives the amount of bound particles or, correspondingly, the bound concentration cb. This

reduced volume has to be taken into account when determining bound concentrations. By
calculating cb for simulations with different interface densities c0 and plotting cb vs. c0 one

can derive binding isotherms which show how many molecules are actually bound to the
charged surface. The binding isotherms deduced from the concentration profiles are shown
in Figure 5.3 for three different box sizes. Considering only the van der Waals radius of the

particles, the maximal geometric saturation of the membrane surface equals cb ' 39000µM,
corresponding to 64 particles bound to a 302 nm2 membrane. The difference between this

value and our results can be attributed to the electrostatic repulsion between the proteins.
This value is also the limit for the bulk density c0.

In the experiment of ref. [1] bound concentrations are related to the total bulk volume

which we do not specify and simulate explicitly. This difference between the bound con-
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centrations computed here and the ones given in ref. [1] does not change the shape of the
binding isotherms but only their absolute values.

5.4 Effective membrane area

The binding isotherms of Figure 5.3 are not independent of the box size: those for the two

simulations with the same membrane size (202 nm2) but different box heights coincide, but
the result with the bigger membrane (302 nm2) is remarkably smaller. In order to check the

influence of the xy-boundaries (the “side walls”: reflecting boundaries in x- and y- direc-
tions) several box dimensions were tested.

Generally, for wider boxes the membrane concentrations are smaller. The effect increases
with the total concentration. This indicates an increasing influence of the box walls where
the particles are simply reflected. With periodic boundary conditions the density distribution

parallel to the membrane is flat which is also the case for noninteracting particles between
reflecting walls. In fact for noninteracting particles both boundary conditions are equivalent.

The effect of the particle-particle interaction can be seen in the concentration profiles
parallel to the membrane, i.e., in x- and y-directions. In Figure 5.4 this profile is compared

to the density perpendicular to the membrane (cf. Figure 5.2). In the central part of the
simulation volume both concentration profiles are the same, as should be, since the influence

of the boundaries is minimal. The system is more or less isotropic in that region. A closer
look at the profile parallel to the membrane (inset of Figure 5.4) shows that the walls’ effect

extends up to about 5 nm from the box walls. The peaks close to the box walls result from
a net pressure towards the walls from the overall repulsion between the proteins. Only in
the central part of the box the profile is constant as expected. Thus, an effective box size is

defined as that inner part of the membrane area, where the average particle number in the
x- and y-directions is constant. In the above example the effective box width is weff =

(30− 2× 5) nm = 20 nm.

The influence of the actual effective box width is shown in Figure 5.5. In both x- and y-

directions b nm are removed from the box volume, i.e., weff = (w−2∗b) nm. In the range of
about weff = 5...20 nm in a box of width w = x0 = y0 = 30 nm the bound concentrations

do not change. Again it becomes clear that the smaller the densities the smaller the side-
effects from the walls. E.g., for c0 = 2100µM the bound concentrations are almost constant

over the whole range of possible effective box widths.
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Figure 5.4: Comparison between particle profiles parallel, i.e., in y-direction and perpendicular
(z) to the membrane in a box of dimensions 302× 20 nm3 for c0 = 3000µM. cav is the average
density per bin. Inset: magnified profiles in y-direction.
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Figure 5.6: Using effective box sizes: comparison between effective binding isotherms for
different box sizes. Again zb = 4 nm was used. After examining the profiles parallel to the
membrane the box size was reduced by 2 × 5 nm in both directions and only particles in that
volume were considered.

Using effective box sizes, i.e., only particles from the central region, the analysis of
Figure 5.3 was repeated. The results are shown in Figure 5.6. The difference between the

bound concentrations is becoming smaller. Only for very large concentrations there is still a
considerable difference. The box width is therefore no longer important, as long as it is not

getting too small or, equivalently, as long as concentrations are not too large.

Besides the fact that the influence of the box walls can now be handled in an easy way, the
main result here is that a saturation effect for large cyt c concentrations was found. Yet it is

only a qualitative correspondence with the experiments of ref. [1], since there the saturation
was already found for much smaller bulk concentrations. In the following section we show

that the absolute values of the initial slope and the onset of saturation are very sensitive to
the details of the protein-membrane interaction.

5.5 Towards membrane proteins

The membrane model used up to now is structureless. The interaction with the proteins is
modelled by Coulomb and van der Waals potentials. The Coulomb potential is determined

by the lipids’ net charges and the ionic strength, whereas the van der Waals interaction was
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Figure 5.7: Comparison of binding isotherms for three different membrane van der Waals min-
ima.

only estimated (see subsection 2.2.3). That is why we have to check its importance now
before studying the influence of simplified membrane proteins.

5.5.1 Influence of the van der Waals potential depth and the surface
charge of the membrane

Since the value for the depth of the van der Waals minimum of Emin,vdW = −1 kBT is just

an estimate, it is necessary to check its influence on the binding isotherms. Figure 5.7 shows
two additional binding isotherms for simulations with different well-depths compared to the

results discussed earlier. A stronger van der Waals attraction (Emin,vdW = −1.5 kBT ) results
in a slightly steeper slope at small concentrations. But in all cases the isotherms converge for

higher bulk densities to the same geometrically defined saturation density. Consequently, the
choice of the van der Waals depth is not critical, it has only a minor effect on the results. For
more accurate values one might perform Molecular Dynamics simulations of a single cyt c

molecule close to a lipid membrane, both modelled in atomistic detail.

It is clear that besides the influence of the van der Waals parameters a different mem-

brane surface charge density would also change the binding isotherms. A change in the ratio
of the membrane’s DOPG:DOPC composition is equivalent to a change in the surface charge

density. Thus, we also performed several simulations using σ = −0.52 e0/nm2 which corre-
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Figure 5.8: Comparison of binding isotherms for two different surface charge densities of the
membrane. Note: for both sets of simulations Emin,vdW = −1.0 kBT was used. The black
circles correspond to the black circles in Figure 5.7.

sponds to a lipid layer composed to 40 % of negatively charged DOPG and to 60 % of neutral

DOPC. The comparison between the results for σ = −1.3 e0/nm2 and σ = −0.52 e0/nm2

is shown in Figure 5.8. The differences are surprisingly small. The maximum difference is

found for c0 = 7500µM, where the bound concentration is still only about 13 % smaller in
the case of a 40:60 DOPG:DOPC ratio.

The simulations performed in this context did not consider the rotational degrees of free-
dom so far. The dipole was always held fixed in parallel direction to the membrane surface.

Therefore, simulations using a fixed vertical alignment with the positive dipole charge at
the bottom of the spheres and also simulations with full rotational motion were performed.

Figure 5.9 shows the results in comparison with the parallel dipole binding isotherm (red
squares in Figure 5.8) for σ = −0.52 e0/nm2. In the case that the dipole is oriented towards

the surface (perpendicular dipole) there is of course a stronger attraction due to the interac-
tion of the positive dipole charge with the negatively charged membrane. Consequently, the

bound concentrations are larger than for a parallel dipole. In the case that rotation is allowed
one would expect a similar isotherm as for a perpendicular dipole because it would try to

orient towards the membrane surface with its positive charge. This orientation effect was
already shown in Figure 4.5 for σ = −1.3 e0/nm2. The same analysis was therefore done for

one of the simulations with σ = −0.52 e0/nm2 from Figure 5.9. The result in comparison
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Figure 5.9: Comparison of binding isotherms for three different dipole alignments: dipole
parallel, dipole perpendicular to membrane surface and free dipole rotation. The charge density
of the membrane is σ = −0.52 e0/nm2. Note: the red squares correspond to the red data squares
in Figure 5.8.

with the one for σ = −1.3 e0/nm2 from Figure 4.5 is shown in Figure 5.10. In both cases the

orientation does only start for distances z ≤ 5 nm (the region where the densities are high-
est). For the smaller surface charge density the orientation effect is smaller than for the larger

charge density by about 17%. Thus, the electrostatic interaction with the membrane is quite
weak for σ = −0.52 e0/nm2 which explains the difference between the binding isotherms
for a perpendicular and a rotating dipole in Figure 5.9.

5.5.2 Reaction centres

As a step towards modelling a structured biological membrane with embedded membrane

proteins, simplified reaction centres were added to the surface. This was done by adding a
grid of negative charges to the membrane. A value of−6 e0 for all charges was chosen, since

this roughly corresponds to the net charge of the solvent-facing surface for the reaction centre
of Rhodobacter sphaeroides 1PCR [13]. In contrast to other, more complicated membrane

proteins such as cytochrome c oxidase with large external domains, the reaction centres are
fully embedded into the lipid membrane. Therefore, as a first step, it appears reasonable to

model them as flat disks with one central charge, as is done here. Three different grids with
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Figure 5.10: Average of the cosine of the dipole orientation as illustrated in Figure 4.5 for two
different surface charge densities in the vicinity of the membrane. The curve for σ = −1.3

e0/nm2 is the one from Figure 4.5 without hydrodynamics at ccyt = 4000µM (no particle
insertion). For σ = −0.52 e0/nm2 the simulation including rotation from Figure 5.9 for the
corresponding interface density c0 = 4000µM was analysed. Note that the box dimensions are
different but in both cases the box length is z0 = 20 nm.

3 × 3, 4 × 4 and 5 × 5 charges were used in order to study the influence of the number of
reaction centres on the membrane. Figure 5.11 shows the profiles parallel to the membrane

for a typical simulation with 5 × 5 additional charges. No effective box size is needed for
analysis here because the very high peaks due to the new binding sites outweigh by far

the walls’ side-effects. We emphasise that these additional charges modify the total surface
charge density only slightly. With the highest number of additional charges used, i.e., 25

charges with −6 e0 each, they contribute an additional surface charge density of σgrid '
−0.17 e0/nm2 which is about 13 % of the initial charge density. The binding isotherms for

these simulations are depicted in Figure 5.12. At small concentrations up to about c0 =

3000µM, the “membrane proteins” are the main binding sites and, as a consequence, the

saturation already occurs for much lower concentrations of about 500µM. This is two orders
of magnitude closer to the experimental results than without the binding sites, though their

influence on the net surface charge is small. The simulation is very sensitive to the geometric
details of the model reaction centres. For very large interface densities the bound densities

converge. The reason is that, especially with the small 3× 3 grid, there is still enough space
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in the gaps between the “binding sites”, where the molecules can be forced into when the
density above the membrane is high enough.
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Figure 5.11: Influence of additional charges of−6 e0 at the membrane surface: density profiles
parallel to the membrane in x-direction. 25 charges of −6 e0 each were positioned as a 5 × 5

square grid with a spacing of 6 nm. The box dimension is 302×20 nm3 and the interface density
is c0 = 500µM.
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Chapter 6

Simulations and results including a
simple model for photosynthetic units

In a coarse-grained simulation approach like the one used in this thesis it is crucial to apply

care when modelling complex systems. Hence, before modelling the very complex system
of the photosynthetic units as described in the introduction, the single point charge approach

for reaction centres was tested in the previous sections. The curve progression in Figure 5.11
maps the particle distribution of the point reaction centres on the membrane very well and

the high concentration peaks indicate that these point charges are the preferential binding
sites. A real reaction centre and an entire photosynthetic unit (PU) of course also have a

volume extension which is totally neglected by a single point approach. Consequently, the
next step is to take the systems topology into account as well. The computer code used for

the simulations in this work can imitate the spatial extension of a molecule by using van der
Waals spheres. On this level of approximation a PU would then consist of several van der

Waals spheres containing point charges. In the following simulation hydrodynamics is not
included. However, the particles’ rotational degrees of freedom are considered because the

dipole needs to be able to orient towards the oppositely charged membrane proteins.

As described in the introduction and shown in Figure 1.5 the PUs are regularly arranged

on a grid in nature. The simulations presented in the following were performed with two
times two such units placed in the membrane of a 60×40×40 nm3 rectangular box. In order

to be able to focus on the interaction between cyt c and PU the membrane surface is chosen
to be uncharged and therefore only exerts short-ranged van der Waals interactions on the

Brownian particles. The overall dimensions were derived approximately from Figures 1.5
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and 1.6 [12]. Information about the complexes’ dimensions and their electrostatic charges
was extracted from various publications. E.g., Kühlbrandt et al. presented the structure
of the light-harvesting chlorophyll a/b-protein complex, determined at 3.4 Å by electron

crystallography [51,52]. The ring structure of LHCs resolved by atomic force microscopy is
described in ref. [53] and there also exists a Protein Data Bank entry 1LGH for the crystal

structure of LHCII of Rhodospirillum molischianum [54]. For modelling the bc1 complex
the data base entry 1KYO was used. This is the crystal structure of the yeast cytochrome

bc1 complex with bound cyt c [55]. Finally, Michel et al. published the structure of the
photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution [13]. The

according data base entry 1PCR was used for the models presented here.

Three test models were constructed from the aforementioned sources and simulations

were performed using particle insertion with reflecting side walls as described in 2.3.3.
Model 1 includes a bc1 complex whereas models 2 and 3 do not. These two differ in the

z positions of their RCs as described below. The reason why two models excluding a bc1

complex are investigated is that Siebert et al. raised the question of its location in ref. [56].

No detectable amounts of bc1 and thus only RC-LH1-PufX complexes could be found in
their tubular membrane probes. PufX is a polypeptide which is suggested to be localised

within the ring of LHCs. It may act as a portal for quinol export from the RC to the
quinone pool, prior to reducing the bc1 complex [57]. This single polypeptide affects the
membrane morphology and is currently discussed in many publications like refs. [56], [57]

or [58]. However, the authors of ref. [56] emphasise that their data do not prove that RC-
LH1-PufX-cytochrome bc1 complexes do not exist, only that they are not to be found in

tubular membranes. Since the localisation is not yet clear, no model for PufX is included in
our simulations.

Figure 6.1 shows the positions of the point charges assigned to each complex of four
PUs. For the sake of clarity the van der Waals spheres surrounding each of the point charges

are not shown here. Each LHC is modelled as a van der Waals sphere of radius rLHC = 1

nm with its centre positioned at z = 0, i.e., exactly on the membrane surface so that a 1

nm hemisphere peaks out of the surface. Each of these spheres carries a point charge of
qLHC = −4 e0 placed on its north pole. The RCs are modelled as spheres of radii rRC = 3

nm with their centres positioned at z = −2 nm. Each RC is assigned a charge of qRC = −6

e0. In model 1 and 2 these charges are placed at z = 0, i.e., at 1 nm below the north pole

whereas in model 3 they are put at z = 1 nm, i.e. directly on the north pole. The additional
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Figure 6.1: Position of the point charges assigned to the various complexes of four photosyn-
thetic units. Each model photosynthetic unit (PU) consists of 16 light harvesting complexes
(LHC) and 2 reaction centres (RC). Not shown here are the positions of the bc1 complexes
which are located in-between the two RCs of one PU each (cf. Figure 6.2).

bc1 complexes between the two RCs in model 1 consists of two overlapping spheres of radii

rbc1,left = rbc1,right = 2.5 nm with their centres at z = 1 nm. Both are assigned charges
of qbc1,left = qbc1,right = −10 e0 at z = 3 nm. Figure 6.2 illustrates the sphere and charge

positions and dimensions of the different parts of one PU.

Figure 6.3 shows the concentration profiles in z-direction obtained for the three different
models. The first significant difference in comparison with the profiles in Figure 5.2 is the

shifting of the peak from zmax ' 2.3 nm to zmax ' 3.2 nm. This is due to the extension
of the LHC and RC van der Waals spheres and their charges into the periplasm. The second

noticeable difference is the small peak at z ' 5.6 nm in model 1 because of the extension
of the bc1 complex. As a consequence, the binding length in these simulations is defined as

zb = 6 nm. It is important to mention that the geometric complexes’ radii as shown in Figure
6.2 do not equal their van der Waals radii. Analogously to the cyt c-cyt c interaction, the

van der Waals minimum was chosen to be located at xmin = d/2r = 0.1 as defined already
in subsection 2.2.3. Here, r denotes the complex radii. As a consequence, according to the

geometric radius of the bc1 complex rbc1,left = rbc1,right = 2.5 nm, the actual van der Waals
radius is rvdWbc1,left

= rvdWbc1,right
= 2.75 nm. That is the reason why the small peak in Figure

6.3 is a bit farer away from the membrane than one would expect from the geometries in
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Figure 6.2: Side view of the geometries of the different model parts of one photosynthetic unit
embedded into the membrane.

Figure 6.2. For the sake of completeness also effective binding isotherms are calculated like
in section 5.4. These are depicted in Figure 6.4. Since there is no overall membrane surface

charge, the amount of bound particles is smaller than in 5.6. The saturation effect does not
become visible because the interface densities are too small.

The structure of the various membrane proteins should become visible in profiles parallel

to the membrane. Figure 6.5 shows concentration plots for the same simulations as in Figure
6.3 and additionally for one higher density for model 3. It can be seen that the large extension

of the model bc1 complex into the periplasm prevents cyt c to enter the space in-between the
two rings of the LHC in model 1 (upper left). Therefore, only the LHC ring is mapped

on this plot approximately. In models 2 and 3 (upper right and lower left), however, the
Brownian cyt c particles are able to pass through the free space in-between the two rings.

The largest particle concentrations are to be found around the LHCs, in the space between
the PUs and additional peaks can be seen between two RCs. The plot in the lower right panel

equals the one in the lower left panel except that due to the higher particle interface density
the free membrane space shows accordingly higher densities just like the PUs themselves.

It should be noted that there is a slight asymmetry as can be seen from the peaks between
the RCs. There are peaks at (x, y) ' (23, 25) nm, (x, y) ' (44, 25) nm, (x, y) ' (20, 16)

nm and (x, y) ' (42, 16) nm. These should also to be found at (x, y) ' (22, 22) nm,
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Figure 6.3: Comparison of concentration profiles between three different models including
photosynthetic units for c0 = 600µM. The simulation box has dimensions 60× 40× 40 nm3.
cav is the average concentration per bin. The values from z = 20 nm up to z = 40 nm are not
shown here for the sake of clarity because the curve does not change between z ' 6 nm up to
z = 40 nm. A bin length of ∆z = 0.1 nm was used which corresponds to a bin volume of
∆V = 60× 40× 0.1 nm3.
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Figure 6.4: Comparison between effective binding isotherms for three different models includ-
ing photosynthetic units. A binding length of zb = 6 nm was used. After examining the profiles
parallel to the membrane the box size was reduced by 2 × 5 nm in both directions and only
particles in that volume were considered.
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Figure 6.5: xy-concentration plots for simulations including photosynthetic units like in Figure
6.3. Upper left: model 1 for c0 = 600µM, upper right: model 2 for c0 = 600µM, lower left:
model 3 for c0 = 600µM and lower right: model 3 for c0 = 2000µM. The c0 = 600µM
profiles are computed from simulations of about 100µs length. The c0 = 2000µM profile is
extracted from a simulation of only 30µs length.
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(x, y) ' (42, 22) nm, (x, y) ' (17, 10) nm and (x, y) ' (38, 10) nm, but they are not
there. The reason is that because of the high computational cost the simulations probably
did not run long enough to sample the entire box volume and as a consequence certain areas

might be spared by the particles. The number of particles against the simulation time is
shown in Figure 6.6. An equilibrium is reached after t ' 30µs with an average of about

40 particles. But the large fluctuations and the trend of the curve towards the end of the
simulation indicate that there might be oscillations in the particle number with a certain

wavelength. The simulation was simply not long enough to cover many periods and therefore
produced insufficient statistics.

A negative result is the fact that in none of these simulations there is a peak at the posi-
tion of the RCs. Thus, cyt c does not get into contact with these and therefore is not able to

perform an electron transfer. There are several possible reasons for these deviations. It might
be that the charges and thus the electrostatic interactions are wrong. In our simulations, the

electric field of the rings of LHCs probably prevents the particles to enter the space inside
the ring and then to access the RC. Also the dimensions of the van der Waals spheres and

the functional form of the van der Waals interaction might be incorrect. In other words, the
model is probably not detailed enough. Interestingly, the fact that in the presented simula-

tions there is almost no access to the RCs gives rise to the alternative idea that an additional
PufX polypeptide inside the LHC rings could function as a gate for cyt c and as a conse-

quence allows binding to the RCs. Figure 6.7 shows a hypothetical schematic representation
of the components of the RC-LH1-PufX dimer as suggested in ref. [56]. But anyway, a more

accurate model of the PUs is desirable. This line will be addressed by future projects in our
group based on these preliminary results.
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Figure 6.6: Plot of the total number of particles in model 1 for an interface density c0 =

600µM.

Figure 6.7: Representation of the RC-LH1-PufX dimer components in PufX+ tubes as sug-
gested in ref. [56]. The typical direction of the longitudinal tube axis relative to the unit cell is
indicated by the arrow. The elliptical ring of LH1s is represented in green and the location of
the PufX polypeptide is proposed by the red circle. The blue ellipse indicates the RCs. Yellow
indicates the approximate location of the QB site and the Qy transition dipoles of the special pair
bacteriochlorophylls are shown in red. (from ref. [56]).



Chapter 7

Summary, conclusions and outlook

7.1 Summary and conclusions

Results were presented from Brownian dynamics simulations for cyt c molecules approxi-
mated as spherical particles with diameter 2R ' 3.3 nm interacting with a charged planar

membrane surface. Using the well-known Ermak-McCammon algorithm of ref. [36, 37] for
solving the Langevin equations (see Chapter 2), a new computer program in C++ was de-

veloped. An overview of the way it is implemented is given in Chapter 3. The program in
its current state is able to compute the trajectories (translation and rotation) of hundreds of

spherical particles in systems with typical dimensions of 103 − 1003 nm3. As explained in
the introductory Chapter 1 the motivation for studying the dynamics of cyt c molecules in

such systems came from the progress in the research of photosynthetic bacteria, e.g. While
the internal processes of energy transduction (light harvesting, channelling to RC, charge

separation) are quite well understood, the dynamics of soluble cyt c as an electron trans-
porter in this context is not yet clear. In many textbooks one can find illustrations where

a single cyt c is responsible for the electron transport between two integral membrane pro-
teins (the reaction centre RC and the bc1 complex). But as pointed out in publications like

refs. [49], [59], [60], [61] or [62] biological cells are crowded with different molecules.
Consequently, one can assume that the electron transport between two integral membrane

proteins is not simply taken on by one single cyt c molecule. Instead it is likely that many
of these particles are located in a cyt c pool above the membrane and that they perform the

electron transport in turns. Thus, it is desirable to have a simulation package that is able
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to compute the trajectories of many proteins. Note that the detailed processes of electron
transfer and binding to membrane proteins are not modelled here. The details of these pro-
cesses are quite complicated so that we refrained from including them in the coarse-grained

simulations. Here, the actual binding is simply defined by a particle distance zb from the
membrane which marks the beginning of the attractive potential.

The particles interact with each other and with the membrane via electrostatics and van
der Waals forces. Both reflecting and 2-dimensional periodic boundary conditions can be ap-
plied. Also solvent mediated hydrodynamic interactions can be included. Actually, the limit

in the amount of particles is mostly due to computational limits if these forces are included.
The standard hydrodynamics is described by diffusion matrices and the computational costs

for the necessary Cholesky decomposition (cf. section 3.2) scale at least cubically with the
particle number.

The influence of standard hydrodynamics was tested:

As described in Chapter 4 the impact of hydrodynamic interaction using macroscopic for-

mulations as the Oseen or Rotne-Prager tensor is difficult to understand and probably too
inaccurate to yield useful results for complex molecules like proteins. Solvent mediated in-

teractions between system walls (membranes) and particles should have an influence on the
particles’ motion as well. This is beyond the scope of this thesis. Because the focus of this

work is on the dynamics of cyt c particles in quite large systems compared to typical systems
in polymer science where periodic boundaries are essential, we believe that hydrodynamic

interaction can be neglected as a first approximation. Consequently this is done in Chapters
5 and 6. To summarise, the simulations presented in Chapter 4 need to be considered as

test cases (especially for hydrodynamic interaction) after the source code development had
been finished. Apart from measuring diffusion coefficients, concentration profiles were de-

termined in this chapter. E.g., the accumulation of the positively charged particles close to
the membrane coincides with what one would expect for an attractive (negatively charged)

surface.
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CESIP allows to create equilibrated cyt c distributions in large boxes of 103− 1003 nm3

dimensions up to milliseconds simulation time:

Having real biological systems in mind, a new kind of boundary conditions instead of peri-
odic ones is favoured in subsequent simulations in Chapter 5. Besides the use of reflecting

side walls a new particle insertion algorithm is utilised [35]. It allows to separate a sim-
ulation into regions where molecules can be considered as free Brownian particles and an

interaction region. This region of “interest” is the actual simulation box. There the particles
do not only interact with each other but also with the membrane surface and possible mem-

brane proteins. The interface between these two regions is characterised by a fixed particle
density. According to the insertion algorithm there is a flow out of and into the simulation
box keeping the interface density constant. A big advantage is the existence of a particle

bulk in the interface region. Also smaller boxes can be simulated because the box height
(z−direction) is now adjustable easily. Using constant particle conditions and a reflecting

boundary at the upper box wall, one needs to simulate in very high boxes (large z) in order
to avoid a too disturbing influence of the reflections at that wall. To summarise, by using

the new method it is easy to create equilibrated particle distributions above the membrane.
Using these boundary conditions a step by step approach towards systems with membrane

proteins was pursued. Binding of cyt c to membranes was investigated by Heimburg et al.

experimentally [1]. Our simulations could reproduce the saturation effect qualitatively for a

homogeneously charged but otherwise structureless membrane. Additional “binding sites”
in form of additional point charges on the negatively charged membrane were the next step

towards photosynthetic units in the previous chapter. These additional point charges have
the effect that the effective space for binding to the surface is decreased. As a result, the sat-

uration occurs for smaller interface densities than for a structureless membrane. Note that in
contrast to the electrostatic interactions which are based on the dipolar sphere model and the

Poisson-Boltzmann equation with quite realistic parameters, the van der Waals interaction is
pretty arbitrary in this work. It is just assumed that typical van der Waals minima of about

−1 kBT should exist at very close distances smaller than the particles’ radii. At least small
variations in the van der Waals interactions between cyt c and the membrane surface were

investigated and did not yield significant differences (cf. Figure 5.7).
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A first step towards simulating multi-cyt c dynamics in photosynthesis, i.e., in the pres-
ence of photosynthetic units was undertaken:

In the previous Chapter 6 models for a photosynthetic unit on a membrane are presented.
From additional membrane charges we proceed to membrane proteins in form of additional

charges surrounded by van der Waals spheres. In this coarse-grained picture these spheres
take the spatial extension of the participating membrane protein complexes like reaction

centres (RCs), light harvesting complexes (LHC) and bc1 complexes into account. Analysis
of the cyt c trajectories showed that their average distribution is mostly along the ring of

LHCs. No significant amount of cyt c can be found inside the ring and thus there is no
association to the RCs. But in photosynthesis it is crucial that cyt c can get into close vicinity

of a RC in order to deliver its electron. Consequently, the model of the photosynthetic units
is too inaccurate. It might be that the charges of the LHCs are too strong and thus prevent

cyt c from entering the ring. Another explanation which is discussed in the literature is the
existence of the so-called PufX polypeptide at one position where we assumed a LHC. This

polypeptide might work as a gate to the RC.

7.2 Outlook

Developing software for biological applications is a very challenging task. On the one hand

one has to find a suitable model for the system to be investigated but on the other hand there
are computational limits which have to be tackled. Very often this leads to the compro-

mise of using coarse-grained models. The work presented here is based on such a software
project. In its current state it can successfully be applied to systems where a coarse-grained

modelling is possible. Nevertheless it is desirable to have more detailed knowledge of the
interactions involved, especially the short-ranged van der Waals interactions and hydrody-

namics for small particle-particle and particle-membrane distances. The non-physiological
bound concentrations in the binding isotherms might be due to the inaccurate van der Waals

forces between cyt c and the surface. At this point we want to emphasise the importance of
the van der Waals interaction for short distances. Developing of more elaborate interactions,

e.g., including hydrophobic effects will be necessary in future work based on the work pre-
sented in this thesis. The difficult task of including improved many-particle hydrodynamics

into biological simulations is currently being worked on in our group by T. Geyer.
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As to the electrostatic interaction between the Brownian particles it should be possible
to increase the accuracy by applying the idea of effective charges. Using the program ECM
(Effective Charges for Macromolecules in Solvent) it is possible to determine a point charge

distribution of 10 − 30 effective charges from a molecule’s PDB data base file [63]. These
charges reproduce the molecule’s electrostatic potential quite well. Consequently, the use

of effective charges would give more accurate results. Although the current source code is
already able to include any number of effective charges inside a spherical particle, the dipolar

sphere model was favoured here due to its higher computational efficiency. However, in
future work effective charges could be tested.

Particularly, the new interfacing (particle insertion) algorithm is a very promising feature.
One can in principal create all sorts of (even curved) geometries as compositions of explicit

Brownian dynamics regions and regions where it suffices to solve the diffusion equation on
a grid.

As discussed, it is not possible to simulate details of molecule encounters with the model
interactions used here. Therefore, it is desirable to have better energy functions for small

distances, especially between a molecule and the membrane surface or a membrane protein.
Then it would make sense, e.g., to consider the actual electron transfer between cyt c, the RC

and the bc1 complex by means of dynamically increasing and decreasing cyt c’s charge. From
such simulations electron transfer rates could be derived and compared with experimental

results. But how can one get these energy functions? One can select small parts of the large
system, e.g., a membrane embedded bc1 complex and model it in atomistic detail. Diffusion

up to the distance of the so-called encounter complex (approximately 1 nm separation of
surfaces) may be treated by Brownian dynamics simulations using atomistic details, as was

done in D. Flöck’s thesis [64,65]. From this point onwards, molecular dynamics simulations
of the binding event between cyt c and the membrane protein need to be performed. It should
then be possible to extract information about the detailed interactions. This information can

be used to adjust the parameters from the coarse-grained approach so that the results from
these detailed simulations can approximately be reproduced. Similarly, future experimental

results could be utilised to adjust the force fields. In any case, by improving the accuracy of
the simulations, a tool will be available which can help to understand the dynamics in parts

of big systems like photosynthetic bacteria.
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Appendix A

System parameters

Tables A.1, A.2, A.3, A.4, A.5 and A.6 summarise the simulation parameters and assigns
them to the data used for the various figures in this thesis. In all simulations the trajectories

were written to the output file after 50 time steps each. PBC denotes 2-dimensional peri-
odic boundary conditions as explained in subsection 2.3.2. In the case of PBC interparticle

cutoffs of half the box width were used. For the van der Waals interaction with the mem-
brane surface a cutoff of z = 3 nm (distance from the membrane) was used. RBC denotes

reflecting boundary conditions together with particle insertion/deletion as explained in sub-
section 2.3.3. With RBC no cutoffs were used. Typically, simulation times of 0.1 ms could

be reached. For small particle densities also milliseconds were possible.
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Figs. 4.1,4.3,Tabs. 3.1,3.2 Figs.4.2,4.4,4.5

general:

particle insertion: no no

boundary conditions PBC PBC

time step ∆t [ps] 10 10

membrane area [nm]×[nm] 30× 30 20× 20

box length [nm] 30 20

Brownian particles:
cyt c:

hydrodynamic interaction see fig. see fig.

rotation yes yes

number part. or interf. concentration c0 see fig. see fig.

radius R [nm] 1.66 1.66

monopole charge q [e0] +7.25 +7.25

dipole moment p [e0 nm] 5.2 5.2

dipole orient. w. r. to membrane: — —

Ecyt−cytmin,vdW [kBT ] -0.91 -0.91

rcyt−cytmin,vdW [nm] 3.652 3.652

vdW energy linearised for rcyt−cytlin < 3.635 3.635

Ecyt−memmin,vdW [kBT ] -1.0 -1.0

rcyt−memmin,vdW [nm] 2.324 2.324

vdW energy linearised for rcyt−memlin < 2.025 2.025

free diffusion coefficient D0 [m2/s] 1.477 × 10−10 1.477 × 10−10

dummy spheres (= cyt c except q = p = 0):

number of dummies — —

solvent:

temperature T [K] 298 298

viscosity η [kg/ms] 0.89 × 10−3 0.89 × 10−3

dielectric constant ε 78 78

ionic strength Na+, Cl− [mM] 90 90

Debye length lD [nm] 1.01 1.01

membrane:

surface charge density σ [e0/nm2] -1.3 -1.3

Table A.1: Parameters used for the simulations presented in Chapter 4.
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Fig. 4.6 Figs.4.7,4.9 Figs. 4.8,4.10,4.11

general:

particle insertion: no no no

boundary conditions PBC PBC PBC

time step ∆t [ps] 10 10 10

membrane area [nm]×[nm] 20× 20 30× 30 15× 15

box length [nm] 20 30 15

Brownian particles:
cyt c:

hydrodynamic interaction no see fig. see fig.

rotation yes yes yes

number part. or interf. concentration c0 16 particles see fig. see fig.

radius R [nm] 1.66 1.66 1.66

monopole charge q [e0] +7.25 +7.25 +7.25

dipole moment p [e0 nm] 5.2 5.2 5.2

dipole orient. w. r. to membrane: — — —

Ecyt−cytmin,vdW [kBT ] -0.91 -0.91 -0.91

rcyt−cytmin,vdW [nm] 3.652 3.652 3.652

vdW energy linearised for rcyt−cytlin < 3.635 3.635 3.635

Ecyt−memmin,vdW [kBT ] -1.0 -1.0 -1.0

rcyt−memmin,vdW [nm] 2.324 2.324 2.324

vdW energy linearised for rcyt−memlin < 2.025 2.025 2.025

free diffusion coefficient D0 [m2/s] 1.477 × 10−10 1.477 × 10−10 1.477 × 10−10

dummy spheres (= cyt c except q = p = 0):

number of dummies — 20 20

solvent:

temperature T [K] 298 298 298

viscosity η [kg/ms] 0.89 × 10−3 0.89 × 10−3 0.89 × 10−3

dielectric constant ε 78 78 78

ionic strength Na+, Cl− [mM] 90 90 90

Debye length lD [nm] 1.01 1.01 1.01

membrane:

surface charge density σ [e0/nm2] see fig. -1.3 -1.3

Table A.2: Parameters used for the simulations presented in Chapter 4.
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Fig.5.1 Fig.5.2 Figs. 5.3,5.6

general:

particle insertion: yes see fig yes

boundary conditions RBC RBC RBC

time step ∆t [ps] 10 10 10

membrane area [nm]×[nm] 30× 30 20× 20 see fig.

box length [nm] 20 20 see fig.

Brownian particles:
cyt c:

hydrodynamic interaction no no no

rotation no no no

number part. or interf. concentration c0 7500 µM 3000 µM see fig.

radius R [nm] 1.66 1.66 1.66

monopole charge q [e0] +7.25 +7.25 +7.25

dipole moment p [e0 nm] 5.2 5.2 5.2

dipole orient. w. r. to membrane: − −→ + − −→ + − −→ +

Ecyt−cytmin,vdW [kBT ] -1.0 -1.0 -1.0

rcyt−cytmin,vdW [nm] 3.652 3.652 3.652

vdW energy linearised for rcyt−cytlin < 3.635 3.635 3.635

Ecyt−memmin,vdW [kBT ] -1.0 -1.0 -1.0

rcyt−memmin,vdW [nm] 2.324 2.324 2.324

vdW energy linearised for rcyt−memlin < 2.025 2.025 2.025

free diffusion coefficient D0 [m2/s] 1.477 × 10−10 1.477 × 10−10 1.477 × 10−10

dummy spheres (= cyt c except q = p = 0):

number of dummies — — —

solvent:

temperature T [K] 298 298 298

viscosity η [kg/ms] 0.89 × 10−3 0.89 × 10−3 0.89 × 10−3

dielectric constant ε 78 78 78

ionic strength Na+, Cl− [mM] 90 90 90

Debye length lD [nm] 1.01 1.01 1.01

membrane:

surface charge density σ [e0/nm2] -1.3 -1.3 -1.3

Table A.3: Parameters used for the simulations presented in Chapter 5.
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Figs. 5.4, 5.5 Fig. 5.7 Fig. 5.8

general:

particle insertion: yes yes yes

boundary conditions RBC RBC RBC

time step ∆t [ps] 10 10 10

membrane area [nm]×[nm] 30× 30 30× 30 30× 30

box length [nm] 20 20 20

Brownian particles:
cyt c:

hydrodynamic interaction no no no

rotation no no no

number part. or interf. concentration c0 see fig. see fig. see fig.

radius R [nm] 1.66 1.66 1.66

monopole charge q [e0] +7.25 +7.25 +7.25

dipole moment p [e0 nm] 5.2 5.2 5.2

dipole orient. w. r. to membrane: − −→ + − −→ + − −→ +

Ecyt−cytmin,vdW [kBT ] -1.0 -1.0 -1.0

rcyt−cytmin,vdW [nm] 3.652 3.652 3.652

vdW energy linearised for rcyt−cytlin < 3.635 3.635 3.635

Ecyt−memmin,vdW [kBT ] -1.0 see fig. -1.0

rcyt−memmin,vdW [nm] 2.324 2.324 2.324

vdW energy linearised for rcyt−memlin < 2.025 2.025 2.025

free diffusion coefficient D0 [m2/s] 1.477 × 10−10 1.477 × 10−10 1.477 × 10−10

dummy spheres (= cyt c except q = p = 0):

number of dummies — — —

solvent:

temperature T [K] 298 298 298

viscosity η [kg/ms] 0.89 × 10−3 0.89 × 10−3 0.89 × 10−3

dielectric constant ε 78 78 78

ionic strength Na+, Cl− [mM] 90 90 90

Debye length lD [nm] 1.01 1.01 1.01

membrane:

surface charge density σ [e0/nm2] -1.3 -1.3 see fig.

Table A.4: Parameters used for the simulations presented in Chapter 5.
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Fig. 5.9 Fig. 5.10 Figs. 5.11, 5.12

general:

particle insertion: yes see fig. yes

boundary conditions RBC see fig. RBC

time step ∆t [ps] 10 10 10

membrane area [nm]×[nm] 30× 30 20 × 20/30 × 30 30× 30

box length [nm] 20 20 20

Brownian particles:
cyt c:

hydrodynamic interaction no no no

rotation see fig. yes no

number part. or interf. concentration c0 see fig. 4000µM see fig.

radius R [nm] 1.66 1.66 1.66

monopole charge q [e0] +7.25 +7.25 +7.25

dipole moment p [e0 nm] 5.2 5.2 5.2

dipole orient. w. r. to membrane: see fig. — − −→ +

Ecyt−cytmin,vdW [kBT ] -1.0 -0.91/-1.0 -1.0

rcyt−cytmin,vdW [nm] 3.652 3.652 3.652

vdW energy linearised for rcyt−cytlin < 3.635 3.653 3.635

Ecyt−memmin,vdW [kBT ] -1.0 -1.0 -1.0

rcyt−memmin,vdW [nm] 2.324 2.324 2.324

vdW energy linearised for rcyt−memlin < 2.025 2.025 2.025

free diffusion coefficient D0 [m2/s] 1.477 × 10−10 1.477 × 10−10 1.477 × 10−10

dummy spheres (= cyt c except q = p = 0):

number of dummies — — —

solvent:

temperature T [K] 298 298 298

viscosity η [kg/ms] 0.89 × 10−3 0.89 × 10−3 0.89 × 10−3

dielectric constant ε 78 78 78

ionic strength Na+, Cl− [mM] 90 90 90

Debye length lD [nm] 1.01 1.01 1.01

membrane:

surface charge density σ [e0/nm2] -0.52 -0.52/-1.3 -1.3

additional membrane charges — — yes (see fig.)

Table A.5: Parameters used for the simulations presented in Chapter 5.
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Figs. 6.3,6.4, 6.5, 6.6

general:

particle insertion: yes

boundary conditions RBC

time step ∆t [ps] 10

membrane area [nm]×[nm] 60× 40

box length [nm] 40

Brownian particles:
cyt c:

hydrodynamic interaction no

rotation yes

number part. or interf. concentration c0 see fig.

radius R [nm] 1.66

monopole charge q [e0] +7.25

dipole moment p [e0 nm] 5.2

dipole orient. w. r. to membrane: —

Ecyt−cytmin,vdW [kBT ] -1.0

rcyt−cytmin,vdW [nm] 3.652

vdW energy linearised for rcyt−cytlin < 3.635

Ecyt−memmin,vdW [kBT ] -1.0

rcyt−memmin,vdW [nm] 2.324

vdW energy linearised for rcyt−memlin < 2.025

free diffusion coefficient D0 [m2/s] 1.477 × 10−10

dummy spheres (= cyt c except q = p = 0):

number of dummies —

solvent:

temperature T [K] 298

viscosity η [kg/ms] 0.89 × 10−3

dielectric constant ε 78

ionic strength Na+, Cl− [mM] 90

Debye length lD [nm] 1.01

membrane:

surface charge density σ [e0/nm2] 0.0

additional membrane proteins see figures and text

Table A.6: Parameters used for the simulations presented in Chapter 6.
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Appendix B

Input files

A typical input file (called “simulation_parameters”) for the Brownian dynamics package
CESIP is shown in Tables B.1 and B.2. Additionally, there are two input files for compiling

the program. One is the file “OUTPUTFLAGS” where the compiler finds information about
the output format to be used. Another file called “COMPUTATIONFLAGS” contains com-

piler flags which determine whether the compiler creates an executable using, e.g., reflecting
boundaries, the insertion algorithm, rotation or hydrodynamics.
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Number of input parameters ( lines -1 ): number_input = 55

Number of steps: number_steps = 100000000

Time step [ns]: delta_t = 0.01

Write data after every write_steps step: write_steps = 50

Temperature [K]: T = 298

Fluid viscosity [kg/(m*s)]: eta = 0.89e-03

Dielectric constant of fluid: epsilon = 78

Debye length [A]: debye_length = 10.1

Simulation box side length xy [A]: box_length_xy = 300

Simulation box side length z [A]: box_length_z = 200

Charge density of membrane surface [e0/A**2]: charge_density = -0.013

Number of additional membrane units: number_units = 5

Radius of membrane units [A]: unit_radius = 15.0

Mass of a membrane unit [kD]: unit_mass = 5988.02

Distance of neighbouring membrane units [A]: unit_distance = 60.0

Electrostatic cutoff membrane units [box_length_xy]: el_cutoff_units = 3.0

Lennard-Jones cutoff membrane units [box_length_xy]: lj_cutoff_units = 3.0

Density at upper box wall [mu mol]: rho_0 = 2100.0

Number of different particle groups in solvent: number_groups = 1

Maximum number of particles in solvent: max_number_movers = 600

Depth for adding particles [a_0]: z_test = 100.0

Number of main moving particles: number_main_movers = 1

Radius of main particles [A]: radius_main_movers = 16.6

Mass of a main moving particles [kD]: mass_main_movers = 12.5

Displacement according to repulsion from walls [radius_particle]: inf_disp = 0.045

Electrostatic cutoff movers [box_length_xy]: el_cutoff_movers = 3.0

Hydrodynamic cutoff movers [box_length_xy]: hy_cutoff_movers = 3.0

Lennard-Jones cutoff movers [box_length_xy]: lj_cutoff_movers = 0.1

Lennard-Jones cutoff mover-membrane [box_length_z]: lj_cutoff_mover_surface = 0.1

LJ repulsion cutoff mover-mover [distance/(2*radius_movers)]: LJ_rep_cutoff_mover_mover = 0.095

LJ repulsion cutoff mover-membrane [distance/(2*radius_movers)]: LJ_rep_cutoff_mover_surface = 0.11

LJ repulsion cutoff mover-membrane unit [distance/(2*radius_movers)]: LJ_rep_cutoff_mover_membrane_unit = 0.095

Table B.1: Input file for one simulation from Figure 5.12 (c0 = 2100µM).
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Dispersive LJ parameter of membrane: parm_disp_mem = 1.49e-10

Repulsive LJ parameter of membrane: parm_rep_mem = 1.32e-36

Dispersive LJ parameter of membrane units: parm_disp_mem_prot = 0.0

Repulsive LJ parameter of membrane units: parm_rep_mem_prot = 0.0

Dispersive LJ parameter of movers: parm_disp_mov_prot = 1.88e-10

Repulsive LJ parameter of movers: parm_rep_mov_prot = 4.02e-38

Number of charges in a membrane unit: number_unit_charges = 1

charge 0 [e0] = -6.0

its x coordinate in cms-frame [A] = 0

its y coordinate in cms-frame [A] = 0

its z coordinate in cms-frame [A] = 0

Number of charges in a moving particle: number_mover_charges = 3

charge 0 [e0] = +7.25

its x coordinate in cms-frame [A] = 0

its y coordinate in cms-frame [A] = 0

its z coordinate in cms-frame [A] = 0

charge 1 [e0] = +1.725

its x coordinate in cms-frame [A] = 15.1

its y coordinate in cms-frame [A] = 0

its z coordinate in cms-frame [A] = 0

charge 2 [e0] = -1.725

its x coordinate in cms-frame [A] = -15.1

its y coordinate in cms-frame [A] = 0

its z coordinate in cms-frame [A] = 0

Table B.2: Input file for one simulation from Figure 5.12 (c0 = 2100µM) continued.
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Appendix C

Output files

Part of the output for a particle trajectory is shown in Figure C.1. The corresponding output
for particle charges is shown in Figure C.2. Since charges are fixed with respect to a particle’s

centre of mass, the total charge positions include information about the overall rotation of
a particle. The coordinates from these two files are then used for further analysis like the

computation of the presented concentration profiles. For that purpose several scripts written
in Perl are available in CESIP.
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box size x, y, z [nm]

particle 1 x, y, z [nm]

step i+2

step i+1

step i+3

step i+4

particle 3 x, y, z [nm]

particle 2 x, y, z [nm]

step i

number of particles in the box
at current time step 

particle 4 x, y, z [nm]

Figure C.1: Part of a particle trajectory. All coordinates are chosen with respect to the origin of
the simulation box.
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   30.000000   30.000000   20.000000  100.000000  298.000000    1.000000
    0    0   15      0.000000000000
  27.290   9.506   7.602  26.109   8.567   7.656
  28.472  10.445   7.549  16.102  27.497  17.208
  15.232  26.267  17.320  16.972  28.726  17.097
   8.977  11.775  18.690   8.548  11.659  20.133
   9.406  11.891  17.247   0.570  27.823  17.474
  -0.068  26.455  17.458   1.208  29.192  17.490
  21.369  22.041  19.594  20.363  21.272  18.772
  22.375  22.810  20.417
   30.000000   30.000000   20.000000  100.000000  298.000000    1.000000
    0    0   12      0.000000000000
  28.039   9.501   8.096  26.806   8.661   8.329
  29.272  10.340   7.863  16.539  26.768  16.905
  15.793  25.463  16.757  17.286  28.072  17.053
   9.475  11.079  18.896   8.812  11.073  20.253
  10.138  11.085  17.540   0.437  27.993  16.914
  -0.077  26.591  17.139   0.951  29.394  16.688
   30.000000   30.000000   20.000000  100.000000  298.000000    1.000000
    0    0   15      0.000000000000
  28.334   9.510   7.393  27.017   8.942   7.866
  29.651  10.078   6.920  16.576  26.293  16.863
  16.047  24.879  16.869  17.104  27.708  16.858
   9.588  10.979  18.425   8.890  11.373  19.704
  10.287  10.585  17.145   0.217  28.161  17.149
  -0.260  26.857  17.741   0.694  29.466  16.557
   9.341  26.639  19.634   7.934  26.186  19.940
  10.748  27.093  19.327
   30.000000   30.000000   20.000000  100.000000  298.000000    1.000000
    0    0   18      0.000000000000
  28.430   9.407   6.868  27.174   8.573   6.955
  29.685  10.241   6.782  17.520  26.623  17.537
  16.838  25.337  17.940  18.202  27.908  17.134
   8.937  11.578  19.348   8.301  11.906  20.678
   9.572  11.251  18.018   0.516  28.288  17.290
   0.051  27.097  18.093   0.981  29.480  16.487
   8.996  26.243  19.149   7.509  25.982  19.117
  10.483  26.504  19.181  29.373   1.376  19.995
  28.118   0.542  20.081  30.629   2.211  19.909
   30.000000   30.000000   20.000000  100.000000  298.000000    1.000000
    0    0   21      0.000000000000
  27.879   8.895   6.611  26.437   8.447   6.599
  29.320   9.344   6.624  17.865  26.215  18.151
  17.243  24.851  18.332  18.486  27.580  17.970
   9.363  11.317  19.756   8.891  11.273  21.190
   9.836  11.362  18.323   0.211  28.147  16.911
  -0.425  26.936  17.551   0.847  29.357  16.271
   9.222  26.131  19.502   7.747  26.303  19.777
  10.697  25.958  19.228  15.798  17.054  19.219
  14.536  16.239  19.070  17.060  17.870  19.367
  26.131   1.003  19.927  24.698   0.554  19.770
  27.564   1.452  20.083

Figure C.2: Part of the output for all particle charges corresponding to the output in Figure C.1.
The numbers have the same meaning and units like in Figure C.1 except that there are 3 charges
per particle. The corresponding order of coordinates is: particle 1 (charge 1 (x, y, z), charge 2
(x, y, z), charge 3 (x, y, z)), particle 2 (charge 1 (x, y, z), charge 2 (x, y, z), charge 3 (x, y, z)),
etc.
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