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Summary

With the discovery of light beyond human visibility, scientists strove to extend the range
of observation to invisible parts of the light’s spectrum. Realising that light of all fre-
quencies is part the same physical phenomenon, brought a leap in understanding about
electromagnetic waves. With the development of more advanced technology, detectors
with higher sensitivity for adjacent frequencies to the visible were built. From this, with
each new observable wavelength, more insight into otherwise invisible processes and phe-
nomenons were observed. Hand in hand with this went the enhancement of the output
power of corresponding sources. This has lead to higher sensitivity setups throughout the
spectrum, leading to observations which have given a deeper understanding in various
fields of science. Nowadays, detectors and emitters in many different regions of the invis-
ible electro magnetic spectrum have found their way in our every day life. Innovations in
technology has lead to practical applications such as X-rays in medicine, motion sensors
and remote controls using infrared light, distance sensors and data transmission using
radar and radio devices. The frequency regions above infrared are optically generated
and below radar can be produced using electric methods. There is no straight line that
separates these frequencies. There rather is a whole intermediate region known as the
terahertz (THz) regime. Due to the lack of sensitive detectors and efficient sources, the
THz frequency region has not been exploited for application use on a widespread basis
so far. It combines properties from the surrounding frequency ranges which make it an
ideal spectrum for various applications. Consequently, THz radiation and THz imaging
are active fields of research.

The work presented in this thesis consists of the development and testing of novel THz
imaging concepts, which uses a THz antenna coupled field effect transistor (TeraFET)
detector. Two detection principles are applied using two different optical setups. The first
uses a pulsed optical parametric oscillator (OPO) THz source where the optical output
power is detected. The source relies on a nonlinear effect of a lithium niobate crystal to
generate tunable THz pulses from a Q-switched pump laser. The THz signal is detected
and amplified by a double stage operational amplifier for monitoring the real time 20 ns
pulses on an oscilloscope where a signal to noise ratio (SNR) of ∼ 25 at a frequency
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range from 0.75 to 1.1 THz is reached. Imaging of the area of interest with a resolution
of 1.2 mm is achieved through raster scanning of the THz pulses. Also spectroscopy
with a frequency resolution of ∼ 50 GHz is demonstrated using a para-aminobenzoic acid
sample. The second setup utilises two synchronised electronic multiplier chain sources
where their output is mixed on the detector. To form a heterodyne detection setup, the
intermediate frequency is fed to a lock-in amplifier which then amplifies the so called
beat signal from the TeraFET detector. One source is fixed relative to the detector even
through scanning to ensure a stable signal. This detection method allows for amplitude
and phase detection for every scanning position, making numerical light field propagation
and object reconstruction possible. Numerical focussing is a key feature achieving a lateral
resolution of the input transmittance of ≈ 2 mm.
After the introduction, the second chapter describes the setup, measurement results

and challenges which arise using a TeraFET together with the pulsed THz source “Firefly-
THz”. In the description of the setup, special attention is given to the shielding of the
detector and the electronics. General findings discuss first the overall performance and
later spectroscopy and imaging as application examples. Another subsection continues
with potential noise sources before the chapter is concluded. Chapter three expands on
the topic of Fourier optics from a theoretical point of view. First, parts of the theory of the
Fourier Transform (FT) are set out for the reader and how the Fast Fourier Transform
(FFT) results from the Discrete Fourier Transform (DFT). This approach is used for
theoretical considerations and the implementation of a Fourier optic script that allows
for numerical investigations on electro magnetic field propagation through an optical
system. The boundary conditions are chosen to be practical relevant to make predictions
on measurements presented in chapter four. The following fourth chapter describes the
realisation of a heterodyne THz detection setup. Before the measurement results are
presented, the setup and its electric configuration are shown. The results come close to
the analytical predictions so that the same algorithm which propagates the field from an
object to the Fourier plane is used to propagate the measured field back to the object.
The influence of phase noise on the measurement results are discussed before simulation
and measurement is compared. The last chapter in this thesis concludes on the findings in
the pulsed THz detection and the heterodyne THz Fourier imaging and gives an outlook
for both configurations.
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Zusammenfassung

Mit demWissen von Licht jenseits der menschlichen Sichtbarkeit versuchten Wissenschaftler
den beobachtbaren Bereich auf unsichtbare Teile des Lichtspektrums auszuweiten. Die
Erkenntniss, dass Licht aller Frequenzen das gleiche physikalische Phänomen ist, brachte
das Verständnis der elektromagnetischen Wellen weiter voran. Mit dem Fortschritt von
Technologie wurden immer empfindlichere Detektoren für die an die sichtbar angrenzen-
den Frequenzen gebaut und man erhielt mehr Einsicht in andernfalls unsichtbare Prozesse
und Phänomene. Die Verbesserung hinsichtlich der Ausgangsleistung zugehöriger Quellen
verlief dazu Hand in Hand. Dies führte zu sensitiveren Messaufbauten über das gesamte
Spektrum, was wiederum Untersuchungen zu tieferen Einblicken und Verständnis ver-
half. Heutzutage haben viele Detektoren und Quellen in vielen verschiedenen Regionen
des elektromagnetischen Spektrums ihren Weg in unseren Alltag gefunden. Von Rönt-
genstrahlen in Sicherheitsanwendungen und der Medizin über Kameras im sichtbarem
Bereich, einschließlich Infrarot in Bewegungsmeldern und Fernbedienungen. Noch lang-
welliger sind Radarwellen, die in Abstandssensoren und Datenübertragung genutzt wer-
den bis zu Radiowellen, mit der täglich Rundfunk übertragen wird. Wie angedeutet gibt
es zwei Bereiche, die sich in der Art und Weise der Strahlungserzeugung unterscheiden
lassen. Dabei gibt es keine scharfe Trennung zwischen der niedrigen Infrarotstrahlung
und der hochfrequenten Radarwellen. Es ist vielmehr ein ganzer Bereich, den wir heute
als terahertz (THz) Strahlung kennen. Wegen mangelnder sensitiver Detektoren und
effizienten Quellen, hat die THz Frequenz noch nicht ihren Weg in Anwendungen un-
seres alltäglichen Lebens gefunden. Obwohl sie, durch die Kombination der Eigenschaften
angrenzender Frequenzbereiche, für viele Anwendungen interessant ist.

Da die Abbildung von THz Strahlung ein aktives Forschungsfeld ist, gibt es zahlre-
iche unterschiedliche Ansätze für Messaufbauten. Bis sich für diese jungen Disziplin der
THz Forschung eine Lösung als die “Beste” etabliert hat, ist es erstrebenswert möglichst
viele verschiedene Umsetzungen zu studieren. Bis zum Beginn dieser Arbeit gab es keine
veröffentlichte Forschung von Feld Effekt Transistoren (FET) als Detektoren zusammen
mit einer optisch parametrischen Oszillator (OPO) THz Quelle. Auch der Ansatz der
THz Fourier Bildgebung wurde bisher ebenfalls kaum verfolgt. Die vorliegende Arbeit
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studiert diese zwei sehr unterschiedlichen Setups, bei denen jeweils ein THz Antennen
gekoppelter Feld Effekt Transistor (TeraFET) zum Einsatz kommt. TeraFETs sind als
empfindliche Detektoren bekannt und finden meist Anwendung mit modolierten (mecha-
nisch oder elektronisch) Dauerstrich Quellen und einem Lock-In-Verstärker. Somit ist die
Verwendung von TeraFETs für die Echtzeitmessung von Einzelpulsen und den Einsatz in
heterodyner Detektion weitestgehend unerforscht. Folgende Studie trägt dazu bei weitere
Schritte auf dem Weg der kommerziellen THz Abbildung zu gehen indem sie das Potential
von TeraFETs zusammen mit der kommerziellen OPO THz Quelle “Firefly-THz” und in
Heterodynedetektion in der Anwendung tested.

Nach der Einleitung behandelt das zweite Kapitel den Aufbau der gepulsten hochin-
tensitäts THz Quelle. Hier detektiert der TeraFET ähnlich wie ein Photodetektor die
Leistung des Ausgangssignals. Die komerzielle Quelle “Firefly-THz” beruht auf einen inter
kavitären OPO. Der nichtlineare Effekt im Lithiumniobat Kristall lässt sich ausnutzen,
um Frequenz einstellbare ∼ 20 ns THz-Pulse aus einem gepulsten Neodym-dotierter
Yttrium-Aluminium-Granat-Lasers (Nd:YAG-Laser) zu generieren. Zur Detektion wird
das Ausgangssignal des Detektors in zwei Stufen mit rauscharmen Operationsverstärkern
zu einem mit dem Oszilloskop messbarem Signal verstärkt. Der Güteschalter der Kavität
wird mit Hochspannung betrieben und generiert ein Spannungssignal, das in sämtlichen
Kabeln des Messaufbaus Rauschen verursachen kann. Da die THz Generierung zeitgle-
ich mit der Güteschaltung stattfindet, kann das THz Signal nicht von dem Schaltprozess
getrennt werden. Ohne ausreichende Abschirmung ist dieser Güteschalter Signalschatten
um Größenordnungen stärker als das eigentliche THz Signal. Die Abschirmung des De-
tektors, Verstärker und beider Spannungversorgungen stellt einen maßgeblichen Schritt
zum erfolgreichen Einsatz dieses Messaufbaus dar. Besonders wichtig sind Kabel, die
elektrisch vor dem Eingang des Verstärkers liegen. Bei erfolgreicher Abschirmung werden
Einzelpulse ohne Mittelung mit einem Signal zu Rausch Verhältnis (SNR) und Dynamik
von > 20 bzw. > 300 bei 0.8 THz aufgenommen. Im Einsatz des TeraFET Detektors
mit dem “Firefly-THz” zeigt sich, dass die Austrittsleistung hoch genug ist den Detektor
in Sättigung zu treiben, was vielversprechend für potentielle Multidetektion und Kam-
eraanwendungen ist. Die Pulsbandbreite von ∼ 50 GHz der Quelle lässt die Aufnahme
eines Spektrums zu, wodurch Karakteristiken von unterschiedlichen Materialien zwischen
0.7 THz und 2 THz detektiert werden können. Am Beispiel von para-Aminobenzoesäure
PABA ist das Absorptionsspektrum aufgenommen. Im gleichen Kapitel wird die Bildge-
bung in Transmission anhand einer Leiterplatte demonstriert, bei der eine Auflösung von
∼ 1.2 mm erreicht wird. Schließlich wird genauer auf die Auswirkungen des Güteschal-
ters und potentielle Kaskardeneffekte im optischen parametrischen Oszillator thematisiert.
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Während die Auswirkungen des Hochspannungssignals weitestgehend unterdrückt werden
können, sorgen diese Kaskardeneffekte dafür, dass die strikte Korellation von THz Signal
und Infrarot Signal beeinträchtigt ist. Insbesondere für Frequenzen hoher Austrittsleistung
ist die Korrelation nicht gegeben.

Ein weiterer Hauptteil der Arbeit umfasst theoretische Untersuchungen zur Fourier
Bildgebung. Zunächst wird das grundlegende Prinzip und die mathematischen Eigen-
schaften der Fouriertransformation erleutert. Aus dem Fresnel Integral und der Phasen
Transformation einer Linse wird eine Formel zur Propagation eines Lichtfeldes zur Focus
Ebene einer Linse aufgestellt. Mit Hilfe von numerischen Algrorithmen werden Eigen-
schaften dieser Propagationsformel untersucht. Die resultierende komplexe Amplitude
(Intensität und Phase) in der Fourier Ebene von unterschiedlichern Objekten wird berech-
net und nach gezielten Modifikationen dieser mit der invertierten Propagationsformel
numerisch zurück propagiert. Entgegen der gewöhnlichen Bildgebung, bestimmt die Au-
flösung in der Fourier Ebene den Abbildungsbereich der Objektebene und der Detektions-
bereich in der Fourier Ebene bestimmt die Auflösung in der Objektebene. Dies ist direkt
auf die Eigenschaft der Fourier Transformation zurück zu führen und insbesondere für Mes-
sungen relevant. Während ein unveränderter Datensatz (Inensität und Phase) in einem
genauen Abbild der Eingabe Transmittät resultiert, erzeugt Beschnitt, Rauschen oder ab-
weichende Parameter der Gleichung Veränderungen des Abbildes der Eingabe. Zufälliges
Rauschen in Intensität und Phase wirkt sich unterschiedlich stark auf die Berechnung der
Eingabe aus. Während relatives Rauschen der Intensität einen eher geringen Effekt hat,
ist ein Rauschen der Phase als deutlich kritischer für eine klare Abbildung einzustufen. Ein
Beschnitt der Raumfrequenzen in der Fourier Ebene führt zur reduzierten Auflösung des
zurück gerechneten Objektes, kann aber auch gezielt für die Auswahl bestimmter Raum-
frequenzen und damit Merkmale des Objektes genutzt werden. Die genaue Kenntnis über
die Frequenz der verwendeten Strahlung, der Brennweite der Linse und die Distanz von
Objekt zur Linse spielen ebenfalls eine entscheidende Rolle. Bei der Wahl einer Distanz
für die zurück Propagierung, kommt es nur zu einer scharfen Abbildung, wenn diese der
tatsächlichen Distanz der Eingangstransmission zur Linse ist. Dies sorgt für einen weiteren
Parameter, der bei einer Messung berücksichtigt werden muss. Allerdings bedeutet dieser
Zusammenhang auch, dass mit einem Bild in der Fourier Ebene zusätzlich zur lateralen
Abbildung ebenfalls ein Tiefeneindruck generiert werden kann. Dies zeigt sich in einer
Simulationsreihe, bei der die virtuelle Distanz variiert wird und nur dann eine scharfe Ab-
bildung durch die Rekonstruktion erreicht wird, wenn die benutzte und virtuelle Distanz
übereinstimmen.
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Im zweiten hier vorgestellten Messaufbau findet wieder ein TeraFET als Detektor An-
wendung. In diesem Fall aber, wird durch heterodyne Detektion die Messung der kom-
plexen Amplitude (Intensität und Phase) ermöglicht. Dazu kommen zwei elektronische
300 GHz Vervielfacher Quellen zum Einsatz, deren Austrittsstrahlung auf dem Detek-
tor gemischt wird. Eine der Quellen ist dabei relativ zum Detektor fixiert und dient als
Lokaloszillator. Sie ist über einen Strahlteiler oder in einer späteren Konfiguration von
der Luft aus direkt auf den Detektor fokussiert. Die zweite Quelle oder auch Signalquelle
sitzt auf einer drei dimensionalen Verschiebeeinheit. Zur Erzeugung eines Bildes wird die
gesamte Verschiebeeinheit über den zu untersuchenden Bereich zweidimensional gescannt
während der Detektor in der Fokusebene der Linse steht. Wie in der theoretischen Be-
trachtung wurden unterschiedliche Objekte studiert. Da die Messungen den numerischen
Untersuchungen nachempfunden sind, lassen sich viele Ergebnisse aus der Simulation in
der realen Messung wieder finden. So lässt sich mit Intensität und Phase der Fourier
Ebene über den gleichen Algorythmus das Objekt mit einer Auflösung von ∼ 2 mm
rekonstruieren. Hier zeigt sich vor allem, dass die Gaussische Intensitätsverteilung der
Signalquelle und die Limitierung der Detektionsfläche zum Teil großen Einfluss auf das
berechnete Objekt haben. Da dies in der Simulation bereits antizipiert wurde, lassen
sich in der Messung im direkten Vergleich mit äquivalenten Simulationen eine Korrela-
tion von bis zu 73% nachweisen. Auch die Sensitivität der Entfernung des Objekts zur
fokussierenden Linse kann in einer Messreihe bestätigt werden. Während die Abbildung
mehrerer Objekte hintereinander noch eine Herausvorderung darstellt, werden im Weiteren
störende Effekte und Rauschen analysiert. Wie bereits in den Simulationen dargestellt,
wird auch hier das Rauschen der Phase als kritischer eingestuft als das der Intensität.
Außerdem kommt es in der Messung zu stehenden Wellen, die durch koherente Reflektio-
nen verursacht werden. Dadurch ergibt sich nicht nur in der Intensität sondern auch in der
Phase ein Rauschen, was die Rekonstruktion stark beeinflussen kann. In der Diskussion
dieses Kapitels werden beiden Konfigurationen (mit Strahlteiler und ohne Strahlteiler)
des verwendeten heterodyne Messaufbaus eine ähnliche Leistungsfähigkeit zugeschrieben.
Allerdings wird der einfachere, lineare Messaufbau, der keinen Strahlungsteiler benötigt,
als dieser mit höherem Potential eingestuft.

Die vorliegende Arbeit ist wie folgt strukturiert. Die Einleitung gibt einen Einstieg in
das Thema der THz Bildgebung. Nach der Einleitung beschreibt das zweite Kapitel den
Aufbau, Messergebnisse und Herausvorderungen, die aus dem Einsatz eines TeraFET De-
tektor mit der gepulsten THz Quelle “Firefly-THz” resultierten. Während der Erläuterung
des Aufbaus wird besonderes Augenmerk auf die Abschirmung des Detektors und der Elek-
tronik gelegt. Ergebnisse der Messung gehen zunächst auf die allgemeine Performance
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des Messaufbaus ein, während im Weiteren Spektroskopie und Bildgebung als Anwen-
dungsbeispiele beleuchtet werden. Ein weiteres Unterkapitel greift potentielle Störquellen
auf, bevor das Kapitel mit einem Fazit endet. Kapitel drei greift das Thema der Fourier
Optik in einer theoretisch basierten Betrachtungsweise auf. Zunächst werden Teile der
Fourier Transformationstheorie dargelegt und wie die Diskrete- aus der Schnellen Fourier
Transformation resultiert. Dieser Ansatz wird für theoretische Überlegungen und die Im-
plementierung eines Fourier Optik Skripts benutzt, das numerisch die Propagation von
elektromagnetischen Feldern durch ein optisches System untersucht. Dabei wird bei der
Wahl der untersuchten Objekte großen Wert auf Praxisnähe gelegt, um Vorhersagen für
die in Kapitel vier vorgestellten Messungen machen zu können. Das folgende Kapitel
vier befasst sich dann mit der Realisierung eines heterodyne THz Detektionsaufbaus. Vor
der Präsentation der Messergebnisse wird die besondere Anordnung der zwei elektronis-
chen Vervielfacher-Quellen in der Setup Beschreibung zum Thema gemacht, wobei die
Wichtigkeit der elektronischen Anordnung nicht zu unterschätzen ist. Die Resultate der
Messung sind so nahe an der analytischen Vorhersage, dass die selben Algorithmen, die
schon in Kapitel drei genutzt werden um ein elektrisches Feld vom Objekt zur Fourier
Ebene zu propagieren, auch dazu genutzt werden können die Felder aus den Messdaten
zurück zum Objekt zu verfolgen. Da die Phase ein essenzieller Parameter ist, hat dessen
Rauschen einen großen Einfluss auf die Rekonstruktionsqualität des Objektes. Abweichun-
gen können mit Phasenrauschen unterschiedlicher Ursprünge begründet werden. Dies
wird erörtert, bevor der nächste Abschnitt die Ergebnisse von Simulation und Messung
vergleicht und evaluiert. Das letzte Kapitel fasst die Befunde der Aufbauten gepulster
THz Detektion mit Echtzeit Abbildungspotential und hetorodyn THz Fourier Bildgebung
zusammen und gibt einen Ausblick in zukünftige Untersuchungen.
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1 Introduction

Processing visual data has been vital for survival of the human race. Therefore, it is not

surprising that evolution equipped humans with a brain capable of super efficient image

processing. Through the centuries, countless discoveries and findings have been driven

by the observation abilities with the naked eye and later with various optical instruments

like telescopes and microscopes. With the discovery of radiation beyond the visible spec-

trum [1, 2], studies were undertaken to detect these frequencies with higher and higher

sensitivity. Following this, it was discovered that not only the short wavelength of X-rays

but also radio frequencies are all manifestations of the same physical phenomenon [3].

Detectors extended the range in which humanity gathers information about nature and

its characteristics [2, 4, 5]. As a result, systems with imaging capabilities were developed

to present captured data in one of the most natural ways – through visualisation. For

example X-ray imaging is of major importance for medical and security purposes, infrared

based night vision cameras are commercially available for police surveillance, military and

natural science. Also radiation in the radar frequency band is imaged with modern tech-

nology for weather screening, topography investigations or military use. Radar radiation

is produced electrically and therefore not counted to the optical regime, although it is just

a lower frequency.

The regime in between radar and infrared frequencies is called the THz regime where

both, electrical and optical methods face challenges to produce and/or detect radiation.

It is also known as the “THz-gap”, because of the lack of a source or detector for this

radiation. Nowadays, there are enough methods to fill the gap, however sources and

detectors lack output power or sensitivity compared to microwave and radar frequencies.

The THz radiation bridges the gap between the adjacent radio and infrared frequencies

1
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Figure 1.1: Typical output power of various THz sources as a funciton of frequency.
MMIC stands for microwave monolithic integrated circuit, TUNNET
stands for tunnel injection transit time, IMPATT stands for impact
ionisation avalanche transit-time diode, DFG stands for difference fre-
quency generation, Gunn stands for Gunn diodes, UTC-PD stands for
uni-travelling-carrier photodiode, Multiplier for frequency multiplier, op
THz laser stands for optical pumped THz laser and QCL for quantum
cascade laser [6–8].

featuring characteristics of both. Hence, mirrors and lenses for THz radiation have a

manageable size to guide the beam and to form reflective and refractive optics for setups

like any other optical regime. Additionally, materials like paper, cardboard, plastics and

clothing are transparent which allows insight into packaging, boxes and clothing. The

photon energy is too small to ionise atoms and thus unharmful to living cells in contrast

to X-rays. Consequently, THz radiation is an active research field with growing interest

especially in THz imaging. Spectroscopy and imaging with THz radiation holds the

potential to be used in many different application fields such as from medical diagnostics,

imaging material properties to security screening [9]. For this purpose, desirable THz

sources often have a (quasi-) continuous wave THz radiation output. Various classes

of different sources have been developed over the past years. Figure 1.1 shows a few
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different approaches where THz frequencies of > 1 THz can be reached with cooled

quantum-cascade lasers or difference frequency generation and p-Ge laser. Below 0.7 THz,

electronic emitters based on multiplier chains are widespread. Both frequency ranges can

be covered by photoconductive mixers (not displayed), which down converts the radiation

of near-infrared lasers down to THz frequencies, with the drawback of limited beam power

[10]. Optical pumped THz lasers are an attractive alternative which present a tunable

table top solution which operate at room temperature.

For any measurement setup, the detector is just as important as the source. Without a

responsive detector, even high output power cannot be detected. There are various types

of detectors based on different which can be sensitive to THz radiation. For example,

the broad class of bolometers where the energy carried by the THz radiation is deposited

and detected in the system. Prominent solutions are hot electron bolometers, micro

bolometers or the “Golay Cell” [11–16]. While those detectors are most often sensitive for

a broad range of THz radiation, other detector types like Schottky barrier diodes or field

effect transistors (FET) are designed for a certain selected frequency range. Coupled

with a THz antenna, the latter achieve a noise equivalent power (NEP) of < 20 nW in

video mode at 25 Hz frame rate [8].

The main goal for this work is to investigate two new detector source setups, and

evaluate their performance for THz imaging. The first setup combines a FET detector

to a pulsed low repetition Q-switched optical parametric oscillator (OPO) THz source.

The second setup presented in this work studies the possibility of heterodyne detection in

a Fourier imaging setup in the THz regime, mixing the output of two electronic multiplier

chain THz sources. These two approaches on THz imaging broadens the application area

of known sources as well as detectors.
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2 Pulsed terahertz detection

Table-top THz sources with enabled tunability tend to lack in output power which leads to

a lower signal to noise ratio (SNR) in imaging solutions (see (2.1)). A Q-switched optical

parametric oscillator (OPO), considering its size and room temperature operation, can

emit large output powers. It produces frequency tunable nanosecond long pulse trains at

a low repetition rate [17, 18]. As a result, the OPO is able to generate high pulse energies

with high peak power. A commercially available implementation of an OPO is used for

the study presented in this work [19]. This technique has been demonstrated with success

for various different detection schemes [20, 21]. Another alternative detection method is

represented by the THz antenna coupled field effect transistor (TeraFET) power detec-

tors, which are based on antenna coupled field-effect transistors. They have already been

proven to be competitive power detectors for THz radiation [22–25]. The fabrication

of these devices is exclusively done by a standard microelectronic foundry process and

therefore relatively cheap in mass production. The regime with the highest responsivity

can be designed to be anywhere between gigahertz frequencies and beyond 10 THz [26–

28]. This chapter starts with a step wise description of the setup, followed by a section

about the measurements presenting general findings and demonstration of application in

spectroscopy and imaging. A discussion of limitations and possible improvements of the

SNR closes the chapter.

2.1 Setup of pulsed terahertz detection

As mentioned above, the measurements presented in this chapter are done with a com-

mercial available Q-switched OPO named “Firefly-THz” developed by M Squared Lasers
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2 Pulsed terahertz detection

as a source and an antenna coupled field effect transistor detector. Figure 2.1 shows

a sketch and a photograph of the setup on the left and the right side, respectively. It

consists of the detector, the sample, a linear xyz-translation stage, a parabolic mirror and

the Firefly-THz source. Not displayed is the amplifier, the 40 MHz digital oscilloscope

and the computer which controls the translation stage as well as the oscilloscope and the

Firefly-THz. The radiation pulse trains with a frequency between 0.7 and 2.5 THz leave

the output window of the Firefly-THz (see section 2.1.1) nearly collimated and hit the

parabolic mirror. The four inch mirror focuses the radiation onto the sample which can

be scanned with the translation stage through the focus and the transmitted radiation is

collected by the shortly after mounted detector (see section 2.1.2). Directly connected to

the detector is the double stage amplifier (see section 2.1.3) which amplifies the signal and

passes it to the oscilloscope. This is used to digitise the analogue output of the amplifiers

and transfer the acquired data with an optional pulse integration to the computer where

it is stored for evaluation and post processing.

(a) Sketch of the used setup (b) Picture of the used setup

Figure 2.1: (a) Sketch of the setup with detector, sample, xyz-translation stage,
parabolic mirror (PM) and the Firefly-THz source. (b) Image of the
major part of the used setup. 1

Two of the most important characteristics of any measurement setup are the SNR and

the dynamic range (DR). They are used to determine the performance of a setup and

1Reprinted by permission from Springer Nature: Springer JIMT, “Imaging and Spectroscopic Sens-
ing with Low-Repetition-Rate Terahertz Pulses and GaN TeraFET Detectors”, Daniel Voß et al.,
2018
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2.1 Setup of pulsed terahertz detection

are directly linked to the ability of measuring small deviations as well as a big range of

signal strength. Those two values are mainly influenced by the source and the detector

characteristics as well as the integration time over which the signal is averaged. Both

important values can be calculated following the approach of [29]. The SNR can be

calculated with,

SNR =
Smean
Sstd

, (2.1)

where Smean is the average peak signal of the detector and Sstd the standard deviation

of the peak detector signal defined as,

Smean =
1

N

N∑
i=1

xi, and (2.2)

Sstd =

√√√√ 1

N

N∑
i=1

(xi − Smean)2, (2.3)

where N stands for the total number of measurements and xi the value of the ith

measurement. Note, xi can be an averaged value itself. The DR can be easily calculated

as well,

DR =
Smean
Nrms

, (2.4)

where Smean stands again for the signals average peak signal and Nrms stands for the

root mean square of the noise floor (without signal) calculated by,

Nrms =

√√√√ 1

N

N∑
i=1

x2
noise,i . (2.5)

2.1.1 Firefly-THz source

The commercial available THz source “Firefly-THz” from M Squared Lasers Ltd is an

optical parametric oscillator (OPO) which consists of a Q-switched Nd:YAG laser with

its cavity between mirror M1 and M2 (see Fig. 2.2) [18]. The Nd:YAG crystal (LG) is

pumped by a temperature controlled laser diode. The Nd:YAG laser provides the near-IR

pulses for the nonlinear optical parametric process inside the lithium niobate crystal (LN)
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2 Pulsed terahertz detection

which is also placed inside a secondary cavity consisting of mirror M3 and M4. The THz

radiation is coupled out by silicon prisms. The OPO gains frequency tunablility by rotating

the LN crystal together with the hole secondary cavity arm relative to the main cavity

axis. During the optical parametric oscillator process one pump photon ~kp is split in a

Figure 2.2: Schematic of the Q-switched OPO “Firefly-THz”. Printed are the Laser
Diode, the four cavity mirrors M1-M4, the Nd:YAG crystal (LG), the
Q-switch and the nonlinear lithium niobate crystal (LN).

signal photon with wave vector ~ks and an idler photon with the wave vector ~ki. Energy

conservation has to be satisfied so that (see Fig. 2.3),

~kp = ~ks + ~ki. (2.6)

~kp

~ks ~ki

Figure 2.3: Photon energy down conversion

The pulses which leave the output window under an angle of ∼ 30◦ (slightly dependent

on the output frequency) to the normal axis are ∼ 25 ns long, each [18]. The pulses can

be triggered externally within a rather low repetition range from 20 to 90 Hz which leaves

the pulse energy constant at > 10 nJ [18]. Whereby, the maximum output energy is only

reached at 1.3 THz in the center of the frequency tune window between 0.7 and 2.5 THz

(see Fig. 2.7a). The pulses are narrowband with a spectral width ≈ 50 GHz. The output

radiation is detected by a TeraFET described below.
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2.1 Setup of pulsed terahertz detection

(a) Picture of the detector box (b) Detector chip

Figure 2.4: (a) Shown is a photograph of the amplifier box (left), detector (center)
and its gate voltage supply (right). (b) The detector chip with two bow-
tie atennas (bottom left and top right), a spiral antenna (middle) and a
dipol (bottom right) and disk (top left) antenna.

2.1.2 Field effect transistor detector

The antenna coupled field effect transistor (TeraFET) detection principle is based on

resistive mixing [30, 31]. For higher frequencies higher than the transit-time frequency, its

behaviour is altered and plasmonic effects in the channel become notable [25]. TeraFETs

in CMOS technology have been used to implement on-chip focal plane arrays and THz

cameras [32–35]. With respect to the high output power of the Firefly-THz and the

thread of degenerating the buffer layer in the CMOS device, one decided in favour for

the more robust [36] AlGaN/GaN high-electron-mobility transistor (HEMT) technology

[37–39]. The present detector is coupled with a bow-tie antenna (see Fig. 2.4b) featuring

an optical noise-equivalent power (NEP) of ≤ 31pW/
√
Hz obtained in a frequency range

of maximal sensitivity from 0.49 to 0.65 THz [37].

For the experiments, the detector is housed in a metal box, which only leaves one

opening for the substrate mounted hyperhemispherical silicon lens with a diameter of

12 mm [40, 41]. The metal box is grounded to minimise the influence of the Q-switch

induced high electromagnetic pulsed field. The required −1.7 V gate voltage is provided

by a potential divider hooked up to a usual 9 V battery. This is necessary to keep cables

as short as possible in order to reduce noise picked up by these cables.
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2 Pulsed terahertz detection

2.1.3 Double stage amplifier

Usually, the above described TeraFET detector is used together with a lock-in amplifier

and a chopped (electrical or mechanical) THz source. A typical repetition rate would be

in the order of 1 kHz with an integration time of several milliseconds. Since the repetition

rate of the Firefly-THz is low (see above), a different approach is chosen. The chosen

solution is a double stage amplifier (10× each) whose input is directly connected (without

intermediate cable) to the detector. Figure 2.5 shows the electrical circuit. R1, R2 and

R3 are resistors whose resistance can be adjusted for different amplification factors. In

the case of two 10× amplification, R1, R2 and R3 are chosen to be 470 Ω, 47 Ω and

470 Ω, respectively. A first version of this circuit is soldered by hand in order to be

able to investigate on appropriate operational amplifiers and amplification factors. After

the circuit was established, PCB amplifiers are produced and utilised in a more compact

version double stage amplifier. In order to reduce the before mentioned Q-switch influence,

the amplifier is housed in a metal box with batteries as the power supply also included

in the housing (see 2.4a). Due to capacities within the circuit (connections and others),

the output pulse is broadened to ∼ 250 ns full width at half maximum (see Sec. 2.2.1)

compared to the original THz pulse of 25 ns. The output pulse of the amplifier circuit

is without integration directly connected to the digital oscilloscope which is triggered to

show the signals voltage pulse.

Figure 2.5: Sketch of the used double stage amplifier circuit. Resistors R1, R2 and
R3 are variable to tune the amplification factor.
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2.2 Experimental results

2.2 Experimental results

In order to estimate the full system potential, the setup presented above is used for

different measurements. First, some general findings of the system like signal pulse shape,

frequency response, SNR and DR are presented. Afterwards, spectroscopy and imaging

as potential applications are discussed in more detail.

2.2.1 General characteristics of the setup

TeraFET detectors have not been paired with Q-switched OPO THz sources in previous

research. As such, preliminary investigations into the basic interaction properties of the

source and detector must be undertaken first. Since the pulsed source has a repetition

rate < 90 Hz, a lock-in amplifier would have to integrate over a big fraction of a second

to provide reasonable data. As described before, a double stage amplifier circuit is used

to amplify the output’s signal. However, the Q-switch of the OPO uses a high voltage

to switch the high power Nd:YAG laser. This voltage spike on the power supply can be

picked up by any cable. This has to be avoided for the measurement since the Q-switch

induced voltage peak masks the actual THz signal of the detector (see section 2.3.1).

Figure 2.6 shows an example THz signal pulse (black) and the corresponding (of the

non-linear process) IR pulse (red). The 0.8 THz pulse is recorded with the detector and

amplified by the double stage amplifier and digitalised with the oscilloscope before being

transmitted to the computer. The red pulse is the corresponding IR pulse created in the

OPO process and measured with a commercially available photo diode also connected to

the oscilloscope.

Because of the Firefly-THz sources tuning range from 0.7 THz to 2.6 THz, it is pos-

sible to measure a corresponding output spectrum (see Fig. 2.7a). This measurement is

performed in a normal laboratory environment. Therefore, one can identify water absorp-

tion lines in the spectrum measured with the Golay Cell (red). Unfortunately, the design

frequency of the TeraFET detector lies outside of the tuning range of the source. This

can be seen by the signal dropping over the entire frequency range. Even though the max-

imum output (according to the Golay Cell) is at 1.3 THz, the signal of the GaN/AlGaN
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Figure 2.6: THz pulse example (black), measured with the TeraFET detector and
amplified by the double stage amplifier with its corresponding IR pulse
(red), measured with a photo diode.2

detector at this frequency falls down to one quarter of the signals strength at 0.8 THz.

Note that the y-axis of the GaN/AlGaN detector is on the left side in black and the y-axis

for the Golay cell on the right in red. Each data point represents an integration over 128

pulses done internally on the oscilloscope.

In order to determine the SNR and DR of the setup using the GaN/AlGaN detector,

equations (2.1) and (2.4) are used with N , the number of measurements being 1000 for

each frequency point, where the maximum of each pulse is taken as xi in the formulas.

The noise root mean square (Nrms) is calculated again with 1000 samples but since the

noise floor is invariant with the frequency it is just taken for one frequency and applied

to all others. Both graphs, SNR and DR against frequency, are shown in figure 2.7b.

Note that the y-axis for the SNR is on the left in black while the y-axis for the DR is

shown on the right. If one compares the trend of the DR with the trend of the frequency

spectrum, it can be seen that the DR follows the slope of the maximum signal in the

spectrum decreasing from > 350 at 0.75 THz down to 40 at 1.3 THz. This is expected

since the definition of the dynamic range is the signals magnitude divided by the noise’s

2Reprinted by permission from Springer Nature: Springer JIMT, “Imaging and Spectroscopic Sens-
ing with Low-Repetition-Rate Terahertz Pulses and GaN TeraFET Detectors”, Daniel Voß et al.,
2018
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Figure 2.7: (a) Frequency sweep measured with the Golay Cell (red) and the GaN
TeraFET detector (black). (b) Obtained signal to noise ratio (SNR) and
dynamic range (DR) as a function of tuning frequency.3

root mean square Nrms, with the latter being constant over frequency and several orders

lower than the signal but dominated by the Q-switch noise (even when reduced by the

shielding measures). The green dashed line at 0.91 THz indicates a small readjustment of

the detectors position which is necessary since the output angle and therefore the position

of the focus shows a small drift as a function of output frequency [18]. This caused the

DR and SNR to increase slightly after the readjustment. The frequency dependence of

the SNR shows different behaviour. It rises shortly after the lower end of the tuning range

to ∼ 25 and stays nearly constant up to 1.2 THz. The relatively low value of the SNR is

a consequence of the high pulse to pulse fluctuations of the laser source, increasing the

standard deviation of the signal Sstd. The fact that the SNR stays constant till 1.1 THz

results from the similar frequency behaviour of Smean and Sstd over a frequency range of

nearly 0.4 THz. This is not surprising, since the detector is operated in the linear response

regime. The reason why the SNR drops after 1.1 THz is not clear. Water absorption

lines can be taken out of consideration since unless the humidity changed quickly during

3Reprinted by permission from Springer Nature: Springer JIMT, “Imaging and Spectroscopic Sens-
ing with Low-Repetition-Rate Terahertz Pulses and GaN TeraFET Detectors”, Daniel Voß et al.,
2018
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2 Pulsed terahertz detection

measurement of one frequency point, a general signal reduction should keep the ratio

between Smean and Sstd constant. An explanation for the SNR behaviour could be the

additional non-linear effects during THz generation which is discussed in section 2.3.2.

2.2.2 Linearity measurements

Another important characteristic is the detector’s response, which is most often preferred

to be linear. This is tested by the highest value of each averaged (64 pulses) signal from

the oscilloscope as a function of beam power. The detector is placed in the focus of the

parabolic mirror without any sample. Post-it sticky notes are used to gradually attenuate

the signal. This is done to have an equal staying attenuation step per post-it, which is

roughly 0.5 dB per note paper. The exact value is dependent on the humidity of each

note as well as the frequency. Figure 2.8 shows a selection of three frequencies (0.9, 1.0

and 1.1 THz). Each frequency graph is normalised to its individual power maximum with
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Figure 2.8: Gradually attenuation with post-it sticky note paper of the THz signal
at frequencies 0.9, 1.0 and 1.1 THz measured with the bow-tie antenna
detector. For each frequency the signal strength is normalised to the full
signal for each frequency.4
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no post-its inserted in the beam path. The graphs show a linear behaviour between the

measured signal and the output power for the majority of the laser output power. They

also show that the detector can be driven in saturation at frequencies below 1.0 THz.

This is visible in a changing slope towards the number of post-its being < 20 for 0.9 THz

and < 10 for 1.0 THz, respectively, because the responsivity for lower frequencies is higher

(due to the bow-tie antenna). The saturation is more pronounced at 0.9 THz since it is

closer to the responsivity peak where the saturation is most dominant [42]. The estimated

field strength in air of unattenuated radiation is as high as several hundred V/cm in the

focus. More specifically, one can assume 550 V/cm given a focus area of 1 mm2, a pulse

energy of 10 nJ and a pulse duration of 25 ns. This indicates that the Firefly-THz provides

enough THz output power to distribute the radiation over multiple pixels for simultaneous

detection 5. In order to have an optimal imaging and spectroscopic setup, the detector is

operated in the linear regime.

2.2.3 Spectroscopy

Earlier in this chapter, the tunability of the THz frequency output of the source is demon-

strated with a frequency bandwith of ≈ 50 GHz [18]. As a next step, two different

samples are used to illustrate the spectroscopy capabillities of the setup. Both samples

are prepared from powder mulls pressed to discs with a thickness of 1.5 mm and a diam-

eter of 2 cm. One sample is 100% potassium bromide (KBr) while the other has 10%

weight of para-aminobenzoic acid (PABA) added to the potassium bromide matrix. Fig-

ure 2.9 shows the THz transmission spectra measured by the GaN detector from 0.7 to

0.95 THz of both, the pellet with 10% PABA content and the pure KBr pellet [43]. For

each point in either spectrum, the digital oscilloscope averages over 128 THz pulses and

sends the resulting time trace to the computer where the maximum value is determined

and stored with the corresponding frequency. PABA/KBr and KBr spectra are plotted as

4Reprinted by permission from Springer Nature: Springer JIMT, “Imaging and Spectroscopic Sens-
ing with Low-Repetition-Rate Terahertz Pulses and GaN TeraFET Detectors”, Daniel Voß et al.,
2018

5During the time of this study, a five detector line array was implemented and used to take a THz
picture of a cell phone which can be seen in figure A.2.
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2 Pulsed terahertz detection

Figure 2.9: Transmission spectra of a KBr pellet (red squares and curve) and with
10% weight added PABA (black dots and curve) from 0.7 to 0.95 THz.
The inset shows a published spectrum from Ref. [44]. The second inset on
the bottom left shows the structural formula of a PABA (4-aminobenzoic
acid) molecule.6

they are recorded without any normalisation to show the decrease of the signal to higher

frequencies where both spectra should be featureless. They do show a clear divergence at

0.8 THz where PABA has an absorption line (see insert of Fig. 2.9). The decrease of the

THz signal in both spectra towards higher frequencies can be explained by the general

decay of the measured signal due to the detector responsivity itself (see Fig. 2.7a). This

shows that the system itself is capable of spectroscopy applications.

6Reprinted by permission from Springer Nature: Springer JIMT, “Imaging and Spectroscopic Sens-
ing with Low-Repetition-Rate Terahertz Pulses and GaN TeraFET Detectors”, Daniel Voß et al.,
2018
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2.2.4 Imaging

Utilising the setup presented in figure 2.1, a step-scan image can be created where the

transmission of each point of the sample is measured. Figure 2.10 shows such a step-scan

image of a printed circuit board object. It is chosen because it’s transparent holes and

opaque rest have a high contrast. The top part is an optical image of the PCB next to

a ruler to give an idea of it’s dimensions. The images in the center and the bottom are

two examples of a step-scan image generated from a simple shadow configuration where

no other optical elements are required. In both cases, the chosen frequency is 0.8 THz,

the pixel pitch is 0.25 mm and the covered area is 50 × 25 mm2 (200 × 100 pixels).

Considering this, both images are oversampled since the wavelength equals 0.375 mm. At

each position of the center image, only one pulse is transmitted to the computer where

the maximum value corresponds directly to the shown pixel colour. In comparison, the

pixels of the bottom image are the maximum of 64 averaged time trace pulses. Both

images show the same features of the object. The holes in the second row are clearly

distinguishable and have a diameter and pitch of 1.2 mm and 6 mm, respectively. The

bottom row holes with a diameter of 1.0 mm and a pitch of 2.5 mm, however, are not

resolved in either picture. This is not surprising, since for 0.8 THz, the Rayleigh criterion

is estimated to be 0.84 mm. Also astigmatism caused by non-spherical components lead

to a lower resolution than the theory would predict.

The scan of the center image has no pulse integration resulting in a higher granularity.

This can be traced back to the relatively high pulse to pulse fluctuation resulting in a

low SNR mentioned earlier (see section 2.2.1). Splitting a part of the radiation to use

that as a reference could improve the SNR with the drawback of sacrificing beam power.

Attempts to refer the detected signal of the bow-tie antenna with the optical output of

the Firefly-THz measured by a photo diode (see Fig. 2.6) to improve the SNR show no

success. Unfortunately, only a small range of the spectrum around 0.8 THz shows a high

correlation with the measured THz signal which makes referencing impractical. The next

section takes up this finding and discusses a possible reason why it could be challenging

as well as other noise sources influencing the measurement.
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2 Pulsed terahertz detection

a)

b)

c)

Figure 2.10: a) Photograph of the imaging test object, a metallic printed circuit
board. b) Image taken at 0.8 THz with a single pulse per pixel. c)
Image taken at 0.8 THz with each pixel averaged over 64 pulses.7

2.3 Noise origins

In order to take meaningful data, one has to consider two noise sources or influences

to minimise their effect on the measurements. First discussed is the source, which is

the most prominent and essential to suppress, namely the earlier mentioned Q-switch

noise which is an accompanying effect of the THz generation of this source. The second

disturbance is more subtle but also should not be neglected. Especially regarding the

efforts of increasing the SNR through correlation of THz signal and pump or idler signal,

the side effects of the optical parametric oscillator play a major role.

7Reprinted by permission from Springer Nature: Springer JIMT, “Imaging and Spectroscopic Sens-
ing with Low-Repetition-Rate Terahertz Pulses and GaN TeraFET Detectors”, Daniel Voß et al.,
2018
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2.3 Noise origins

2.3.1 High voltage quality switch

The THz source “Firefly-THz” is based on an OPO process where the non-linear lithium

niobate crystal is placed inside the cavity of a Q-switched Nd:YAG laser (see section

2.1). The Q-switch, however, is operated with a very high voltage leading to strong

electro magnetic fields in the presence of the operating system. Every wire could act

as an antenna for this radiation. Since the switching process in the laser occurs to the

same time as the THz generation, one cannot separate these two peaks in time. In fact,

the picked up Q-switch noise could completely cloak the amplified THz signal coming

from the detector. To tackle this issue, one has to keep all wires as short as possible.

Especially those going towards the detector and amplifier, since noise at the input of the

amplifier is amplified. Therefore, every connection including the detector and amplifier

are revised. First of all, the gate voltage supply for the detector is changed to be a battery

with potentiometer (for adjustable voltage between 0 and −3 V) directly connected to

the input of the gate voltage at the detector box (see Fig. 2.4a). Secondly, the metal

housing of the detector as well as housing the amplifier circuit improves the situation.

Using batteries as the power supply for the amplifier circuit and including those in the

housing brought down the Q-switch noise to a level where the DR is > 300 for lower

frequencies (see Fig. 2.7).

2.3.2 Parasitic side effects in the optical parametric oscillator

By correlating not only the maximum but each value of the THz signal time trace to

the maximum of the IR signal, a new time trace is obtained. Figure 2.11 shows such

a correlation against time for frequencies between 0.7 and 1.4 THz. There is a high

correlation observable between 0.7 and 0.9 THz at 40 ns after the trigger point. Those

frequencies are at the lower end of the frequency tuning spectrum of the “Firefly-THz”

(see Fig. 2.7a). Interestingly, the correlation strength is reduced and oscillates for higher

frequencies where the THz output power of the source is increased.

The non-linear process which occurs in the lithium niobate crystal is well understood.

However, it is also known that this process often induces some unwanted, hard to control
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Figure 2.11: The correlation for different frequencies between 0.7 and 1.4 THz at each
time position of the THz signal and the maximum of the photo diode
output.

side effects which might lead to creation of radiation with other than the desired frequency

underlying the main frequency [45, 46]. Especially in the range where more beam power

is available, an IR photon is down converted multiple times to generate multiple THz

photons from one IR photon. Even though this increases the efficiency of the source

and enhances the THz output power, a reduced correlation between THz signal and IR

signal is measured. Figure 2.12 shows the spectra from the pump and signal output of

the Firefly-THz measured with a spectrum analyser with the THz output frequency set to

0.9 THz. Between the maximum of the pump spectrum and signal spectrum are 3.44 nm

difference in wavelength which corresponds to a frequency difference and therefore output

frequency of 0.897 THz. A second peak in the pump spectrum is visible, exactly two times

the wavelength difference between signal and pump maximum value. This indicates that

a cascade process takes place at 0.9 THz already.

Also, internal reflections may cause some frequencies to be unintentionally coupled out.

At one side of the output window of the Firefly-THz, a spot through an IR viewer can

be seen for some frequencies in the tuning range of the Firefly-THz. The IR radiation

only marginally overlaps with the THz radiation and is therefore externally blocked (see

Fig. A.1).
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Figure 2.12: The figure shows the pump and idler output intensity of the Firefly-THz
recorded by the spectrum analyser with a THz output frequency set to
be 0.9 THz.

2.4 Discussion and conclusions

Imaging and spectroscopy is demonstrated using a Q-switched OPO THz source together

with a TeraFET detector based on GaN/AlGaN technology for the first time. This tech-

nology proves to be more robust than CMOS based detectors, enabling its operation under

the influence of high electric fields – THz signal or otherwise. By enclosing the detector

in a metal box and providing the gate voltage through a battery and keeping all cables as

short as possible, the setup reaches a SNR of > 20 and DR of > 300 at 0.8 THz for single

pulse detection. To quantify the spectroscopy ability of the Firefly-THz, sample pallets of

10% para-aminobenzoic acid (PABA) and 90% potassium bromide (KBr) were produced

and measured in a transmission configuration. The characteristic absorption dip of PABA

at 0.8 THz in the spectrum is identified by direct comparison with the pure featureless

KBr reference sample. Even though the tuning range of the Firefly-THz is quite wide, one

should be able to cover the hole range of this THz source using two detectors with suffi-

cient sensitivity, when their antennas are designed appropiately [47]. The source provides

enough THz power to spread the signal over a larger area to enable multi-pixel detection

or even a THz camera. GaN/AlGaN are produced in a stepper process. This process

is cheaper for small number production whearese the mass production in the standard

process makes CMOS cheaper for high quantities [35, 48]. TeraFETs have a fast intrinsic

speed which enables single pulse detection making fast imaging a natural application of
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2 Pulsed terahertz detection

this setup. Even without averaging, the achieved resolution is approximately 1.2 mm

with a high contrast object. After all investigations, it is still not clear where exactly the

pulse-to-pulse fluctuations come from. A possible explanation is multi down conversion

of optical photons which lead to an inconsistent number of THz photons per photon of

the pump beam [45, 46]. Due to that inconsistency, there is only a weak correlation

between THz signal and IR-signal or pump signal, which makes a pulse wise referencing

challenging. Another option is to split the THz signal and reference the probing signal by

its unaltered counter part. Although this is not a preferred solution, an increase in SNR

of one order of magnitude could be obtained using referencing, making this setup even

more interesting for potential applications.
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3 Fourier optics simulations

In conventional imaging, the phase of the source is not of general interest since the image

is solely created by the intensity. In Fourier optics, however, the objects are not directly

observed. Instead of placing the detector in the image plane of the focussing lens, the

field is measured with the amplitude and phase in the focus plane of a lens. It is also

called the Fourier plane, because the field in the focus plane is the Fourier transform of the

object with – in general – an additional phase factor (see section 3.2). To determine the

input in front of the focussing lens, numerical calculations are needed to back propagate

the measured field. The phase, contains information of the electromagnetic field and as

such plays a key role in Fourier optics. In the following chapter, the basics of Fourier

transformation are presented and formulas are derived to theoretically investigate Fourier

optics. The implementation of the formulas is considered in more detail, before a closer

look is taken on the role of the intensity and phase. The chapter finishes with further

simulation results focussing on experimental boundary conditions.

3.1 Fourier analysis

Waves and vibrations are ubiquitous phenomenons in physics. Most fields in physical

science have to consider them in various manifestations. Either as a carrier of required

information in interferometry, spectroscopy, electro engineering, optics, acoustics etc. or

an unwanted effect in mechanical movements, electronics etc. which adds noise and/or

instability to the system. In all these fields, the vibrations or signals, regardless if it

is wanted or not, generally consist of a spectrum of frequencies. In fact, any signal

can be associated with a superposition of interfering sine waves. The Fourier analysis
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utilises the Fourier transform in order to determine those different frequencies and their

amplitude. In the following section, the Fourier transform is briefly introduced, continuing

with the Discrete Fourier transform (DFT) and the related, more efficient Fast Fourier

transform (FFT), before the Fourier transform is extended to two dimensions. The

Fresnel approximation is derived from the Huygens-Fresnel principle leading together with

the phase transform of a lens to the formula used throughout the Fourier optics simulation

and the Fourier THz imaging chapter.

3.1.1 Fourier transform

This work follows the definition of [49–51] were the Fourier transform of a general complex

function g(x) in space domain x, represented by F{g(x)}, is defined as

F{g(x)} =

+∞∫
−∞

g(x)e−i2πxudx = g̃(u), (3.1)

where u is the spacial frequency. The inverse Fourier transformation of a function g̃(u),

is correspondingly represented by F−1{g̃(u)},

F−1{g̃(u)} =

+∞∫
−∞

g̃(u)ei2πxudu = g(x). (3.2)

For this definition, the Fourier transformation and the inverse Fourier transformation are

very similar and differ only by the sign of the exponent in the integral. The existence of

the Fourier transform of g(x) is determined by the conditions [50],

1. The integral of |g(x)| is finite on the interval from −∞ to +∞

2. The number of minima, maxima and discontinuities is finite in any finite interval

3. All discontinuities have to be finite

Bracewell states that the Fourier transform of a function exists if the function is physically

possible [50], which is sufficient for our purpose. Sometimes, it is practical to use a non
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3.1 Fourier analysis

physical function to approximate a real situation. For example the Dirac δ function is

used to represent a very short pulse, even though it does not fulfil condition 3. since its

discontinuity is not finite.

Given that the Fourier transform exists and g̃(u), g(x) are a Fourier pair, its most

important properties are listed below [50].

1. Fourier integral theorem

By performing successive the Fourier transformation and the inverse Fourier trans-

formation, one obtains the original function g(x),

g(x) = F−1{F{g}} =

+∞∫
−∞

 +∞∫
−∞

g(x)e−i2πxudx

 ei2πxudu . (3.3)

2. Linearity theorem

The transformation of a weighted sum of two functions g and h can be calculated

by the weighted sum of the individual transformed functions,

F{αg(x) + βh(x)} = αF{g(x)}+ βF{h(x)}. (3.4)

3. Similarity theorem

A scaling in the space domain results in an inversely proportional scaling in the

frequency domain as well as a change in the overall amplitude of the spectrum,

F{g(ax)} =
1

|a|
g̃
(u
a

)
. (3.5)

4. Shift theorem

A displacement of a in the space domain results in a linear phase shift exp [−i2πau]

in the frequency domain,

F{g(x− a)} = g̃{u} exp [−i2πau]. (3.6)
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5. Rayleigh’s theorem

The absolute value of g(x) squared corresponds to the energy density, hence the

integral over the complete space corresponds to the total energy in space domain.

Since the energy must be conserved, it is equal to the energy in the frequency

domain,
+∞∫
−∞

|g(x)|2dx =

+∞∫
−∞

|g̃(u)|2du . (3.7)

6. Convolution theorem

Let h̃(u) be the Fourier transform of another complex function h(x), then the

convolution of g and h in space domain equals the inverse Fourier transform of the

product of g̃ and h̃ in frequency domain,

+∞∫
−∞

g(ξ)h(x− ξ)dξ = F−1
{
g̃(u)h̃(u)

}
. (3.8)

Fourier transforms can also be used to determine the frequency components of a sig-

nal. Figure 3.1a shows three sine waves with the amplitudes 0.8, 0.3, 0.5 and frequencies

0.25, 0.5, 1, respectively. The sum of those sine waves as well as the constant offset of

0.5 result in a superposition which is shown in Fig. 3.1b. By Fourier transforming the

superposition1, a frequency spectrum is obtained shown in Fig. 3.1c. Note that the graph

is mirrored with the lower frequencies located in the center. Also, each peak’s hight

corresponds to the amplitude of the sine wave with the respective frequency.

Most functions are made up by a continuous number of frequencies which results in a

new function in the Fourier spectrum. Figure 3.2 shows two example Fourier pairs. On

the top left, (Fig. 3.2a) one can see a ‘top-hat’ or rect function,

h(x) = rectw(x) =

1, if |x| ≤ w/2

0, if |x| > w/2,

(3.9)

1A Fast Fourier transform algorithm was previously used (see chapter 3.1.3).
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Figure 3.1: (a) Sine waves with different frequencies and amplitudes and offset. (b)
Superposition of sine waves shown in figure (a). (c) Fourier transform of
the superposition.

with height 1 and width w. It’s Fourier transform is a sinc function

h̃(u) = w sinc(πuw) = w
sin(πuw)

πuw
(3.10)

which is plotted underneath with zero points at |u| = 1/w, 2/w, 3/w.... This can be
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Figure 3.2: (a) The rectangle function and its Fourier transform, a sinc function. (b)
A gaussian function with its Fourier transform, a gaussian function.

found by Fourier transforming h(x) [52],

h̃(u) =

+∞∫
−∞

rectw(x)e−i2πxudu =

+w/2∫
−w/2

e−i2πxudu

=
−1

i2πu

[
e−iπwu − eiπwu

]
=

1

πu

eiπwu − e−iπwu

2i
= w

sin(πwu)

wπu

= w sinc(πwu) , (3.11)

where the definition sinc(x) = sin(x)
x

is used in the last step. The top right shows a

Gaussian function (Fig.3.2b) defined as,

g(x) = a exp

(
−x2

2c2

)
. (3.12)

Its Fourier transform is also a Gaussian function and can be obtained by Fourier transfor-

mation (similar to the Fourier transform of Eq. 3.11),

g̃(u) = a
√

2πc2 exp
(
−2π2c2u2

)
. (3.13)

28



3.1 Fourier analysis

The full width at half maximum (FWHM) is obtained by solving the equation for the

position xfwhm for which the half height h0 is reached,

1

2
h0 = a exp

(
−x2

fwhm

2c2

)
⇒ xfwhm = ±

√
2 ln(2)c , (3.14)

where h0 = a which results in a FWHM of w = 2
√

2 ln(2)c ≈ 2.355c. Performing

the equivalent steps for the Fourier transformed function g̃(u), the FWHM is calculate

with w =

√
2 ln(2)

πc
≈ 0.375

c
. Even though the Fourier pair are two Gaussian functions,

the FWHM of the Fourier transform is antiproportional to the FWHM of g(x) and has

a different amplitude. The factor c appears as a scaling factor inside of the exponential

function as well as a factor in the amplitude which is just what is expected regarding the

similarity property of the Fourier transform (see Eq. 3.5).

Another common function to consider is the Dirac delta-function δ(x), defined as

δ(x) =

∞, if x = 0

0, if x 6= 0

1 =

+∞∫
−∞

δ(x)d(x). (3.15)

As mentioned earlier, this function does not fulfil the finite discontinuities criteria but still

has a Fourier transform. It can be regarded as a Gaussian function which gets narrower

and higher with its Fourier transform being also a Gaussian function with amplitude one

getting wider and wider with the limit being one for all frequencies,

F {δ(x)} = 1. (3.16)

The next section will make use of the called Dirac comb X,

Xa(x) =
∞∑

n=−∞

δ(x− na), (3.17)
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where a represents the spacing between the Dirac delta-functions. As can be seen from

the definition, X is a set of equally spaced Dirac functions with its Fourier transform

being also a Dirac comb with spacing 1
a
and equal height 1

a
,

F {Xa} =
1

a
X 1

a
(u). (3.18)

3.1.2 Discrete Fourier transform

The Fourier transform can be analytically performed by integration. However, in practice

the data most often is presented as a set of discrete points which require a separate

integration for each point. With such data sets, the DFT is needed and defined as [52],

FD{g(xk)} =
N−1∑
k=0

g(xk)e
−i2πxkuk/N = g̃(uk) k = 0, 1, 2, ..., N − 1. (3.19)

This is very similar to the familiar Fourier transform (see Eq. 3.1) with continuous space

variable x and spacial frequency u changed to discrete positions xk and spacial frequencies

uk, as well as the integral being replaced by a summation over discrete positions. It can

be shown that by multiplying the continuous function g(x) by a Dirac comb, the Fourier

transform of g(x) yields the DFT from above [52],

+∞∫
−∞

N−1∑
k=0

δ(x− ak)g(x)e−i2πxudx = FD{g(xk)}. (3.20)

The integral over x collapses with the Dirac function and leaves the sum over N − 1

discrete values. Note that a finite Dirac comb with N Dirac delta functions replaced the

infinite Dirac comb. This is sufficient if g(x) is negligible outside of the range −a/2 to

(N − 1/2)a. The inverse discrete Fourier transform (iDFT) is stated by,

F−1
D {g̃(uk)} =

1

N

N−1∑
k=0

g̃(uk)e
i2πxkuk/N = g(xk) k = 1, 2, 3, ..., N − 1, (3.21)
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so that DFT and iDFT have the same properties as Fourier transform and inverse Fourier

transform.

3.1.3 Fast Fourier transform

This procedure becomes time consuming for large data sets. However, with the discovery

of the so called Fast Fourier transformation (FFT), the number of calculations needed

to perform a Fourier transform decreases significantly [53]. Nowadays, this algorithm can

be performed very quickly and is used in various applications [52].

By defining the parameter,

W = e−i2π/N , (3.22)

the DFT of equation 3.19 is written as matrix multiplication,



G(0)

G(1)

G(2)
...

G(N − 1)


=



W 0 W 0 W 0 · · · W 0

W 0 W 1 W 2 · · · W (N−1)

W 0 W 2 W 4 · · · W 2(N−1)

...
...

...
...

...

W 0 W (N−1) W 2(N−1) · · · W (N−1)2





g(0)

g(1)

g(2)
...

g(N − 1)


.

(3.23)

To evaluate this matrix multiplication, N2 multiplications and N additions are performed,

summing up to N2 + N operations for the DFT. The FFT exploits the obvious identity

W 0 = 1 and the cyclic nature of W , leading to further simplifications and computational

savings. Many books can be consulted for the detailed derivation of the FFT algorithm

(eg. [52, 54]). The FFT algorithm reduces the number of needed calculations to N ln(N)

multiplications and N additions, resulting in a total number of N ln(N)+N computations

to perform with the FFT algorithm. For large enough N , one compares the DFT and

FFT with ∼ N2 and ∼ N ln(N) calculations, respectively. Taking an example of a vector

with 106 entries leading to ∼ 107 instead of ∼ 1012 calculations, being the equivalent of

a few milliseconds instead of several minutes computation time with modern computers

[52]. As a result, the FFT is very practicable to use for a wide span of applications.
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3.1.4 Fourier analysis in two dimensions

The previously discussed Fourier transform and FFT can be extended for functions with

multiple independent variables, where all properties and methods are still valid. Here

and in the rest of this work, the consideration is limited to a function g(x, y) with two

independent variables x, y. The Fourier transform of g(x, y), represented by F{g(x, y)},

is written as an integration over two independent variables,

F{g(x, y)} =

+∞∫∫
−∞

g(x, y)e−i2π(xu+yv)dxdy = g̃(u, v), (3.24)

where u and v are the special frequencies. By comparing the one and the two dimensional

Fourier transform (Eq. 3.1, Eq. 3.24), one will notice the additional factor e−i2πyv in the

integral. The two dimensional inverse Fourier transformation of a function g̃(u, v), repre-

sented by F−1{g̃(u, v)}, is again very similar to the two dimensional Fourier transform but

for the sign of the exponent and has analogical to the two dimensional Fourier transform

an additional factor ei2πyv,

F−1{g̃(u, v)} =

+∞∫∫
−∞

g̃(u, v)ei2π(xu+yv)dudv = g(x, y). (3.25)

The Fourier transform is applied now in future to a function with two independent vari-

ables, the two dimensional Fourier and inverse Fourier transform are used and therefore

will be referred to as Fourier and inverse Fourier transform, respectively.

3.1.5 Fresnel- and Fraunhofer Diffraction

Whenever a wave hits an object (e.g. an aperture) on its path, the wave bends and

can be observed in the geometrical shadow of the object. This phenomenon is known

as diffraction. Below, the Huygen- Fresnel- principle is introduced before the Fresnel

diffraction integral is derived whit the Fraunhofer diffraction as a limit approximation.

For simplicity, monochromatic light is assumed through all considerations.
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Huygen-Fresnel principle

While the effect of diffraction has been long known, it was Huygens who first gave

an intuitively accessible explanation by treating each point of the wavefront as a new

”secondary” point source of a new elementary wave [49, 55]. In an optical isotropic

medium, the envelope of these spherical elementary wavefronts form the new primary

wave (see Figure 3.3a) [56].

At this point it is noteworthy that Huygens principle can also explain the relationship

between the angle of incidence, reflected and refracted wavefront at a boundary surface of

two materials with different refraction indices n [57]. By assuming n1 < n2, Figure 3.3b

shows the refraction of a wave at an interface between two optical isotropic media with

refraction index n1 and n2, respectively. The wave front hits the interface at an angle α

with the propagation speed of the wave in medium one and two being c1 = c0/n1 and

c2 = c0/n2, respectively. An elementary wave is created at point A where the wave front

hits the interface which takes the time ∆t = AB/c2 to travel the distance to point B.

In the same time ∆t = DC/c1, the wave travels from point D to the point C. The

tangent of the spherical wave originated at point A through the point C creates a new

wave front. With distances AB and DC one finds for each triangle ACD and ABC

AC =
DC

sin α
and AC =

AB

sin β
. (3.26)

With the previous observation this leads to

sin α

sin β
=
DC

AB
=
c1

c2

=
n2

n1

, (3.27)

what is recognised as Snell’s law for refraction at an interface [57]. The observation of

reflection is analogue, resulting in a reflection angle α′ being the same as the incident

angle α.

The Rayleigh-Sommerfeld solution predicts for r01 � λ that the Huygen-Fresnel prin-
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Figure 3.3: (a) The new wave front can be displayed by the superposition of secondary
wavelets. (b) Refraction at an interface shown with Huygens principle.

ciple can be expressed mathematically by

U(P0) =
i

λ

∫∫
Σ

U(Pl)
exp (−ikr01)

r01

cos(θ) ds, (3.28)

where λ is the wavelength, k is the wave vector equal to 2π/λ, θ is the angle between ~n

(the normal vector on the aperture plane) and ~r01 [49]. The field U(P0) at P0 results by

superimposing the spherical waves exp(−ikr01)/r01 of secondary sources with amplitude

U(P1) in every point within the aperture Σ. r01 simply states the absolute value of the

vector ~r01 from the point of observation P0 to point P1 in the aperture. For the in depth

derivation of equation (3.28) the interested reader is referred to [49]. Please note that

hereafter the convention is used that the field E(~r) of an in z propagating wave with

amplitude A(~r) is defined as,

E(~r) = A(~r)e−ikz. (3.29)

Fresnel and Fraunhofer approximation

Following the steps presented in [49], further assumptions to the Fresnel-Huygens principle

are made. For cartesian coordinates, the Huygens-Fresnel diffraction problem is sketched
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Figure 3.4: Sketch for Huygens-Fresnel diffraction problem

in figure 3.4. By regarding this figure, the cosine in equation (3.28) can be substituted

by z/r01 yielding

U(P0) =
iz

λ

∫∫
Σ

U(ξ, η)
exp (−ikr01)

r2
01

dξdη, (3.30)

where the constant distance z was written before the integral. The absolute value of

vector r01 can be substituted by

r01 =
√
z2 + (x− ξ)2 + (y − η)2

= z

√
1 +

(
x− ξ
z

)2

+

(
y − η
z

)2

, (3.31)

where ξ and η are the coordinates in the plane of the aperture where x and y are the

coordinates in the plane of observation. The square root can be rewritten as a binomial

series using

f(a) =
√

1 + a =
∞∑
k=0

f (k)(a = 0)

k!
ak ≈ 1 +

1

2
a+O(a2), (3.32)

with a < 1 where terms with higher order in a are dropped. By identifying the second

and third term of equation (3.31) as a in the previous binomial series, r01 is approximated
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by

r01 ≈ z

[
1 +

1

2

(
x− ξ
z

)2

+
1

2

(
y − η
z

)2
]
. (3.33)

This is valid for angles θ < 45◦ because by rewriting previous restriction a < 1, one

obtains

1 < a =

(
x′

z

)2

+

(
y′

z

)2

=
(r01

z

)2 (
sin2 φ+ cos2 φ

)︸ ︷︷ ︸
=1

= tan2 θ, (3.34)

with the new coordinates x′ = x− ξ, y′ = y− η in the x, y plane with their origin at the

orthogonal projection of P1 and r, φ being the polar coordinates of point P0. Substituting

r01 in equation (3.30) using (3.33) where z2 is approximated by r2
01 in the denominator

but all terms for r01 in the exponent, one gets

U(x, y) =
ie−ikz

λz

+∞∫∫
−∞

U(ξ, η) exp

{
−i k

2z

[
(x− ξ)2 + (y − η)2

]}
dξdη, (3.35)

where U(ξ, η) was redefined so it vanishes outside of the aperture and writing the constant

phase factor e−ikz in front of the integral. Using r01 = z wont suffice in the exponent

since an error in the phase is more critical moreover being multiplied with k [49]. By

evaluating the quadratic terms in the exponent, equation (3.35) rewrites as

U(x, y) =
ie−ikz

λz
e−i

k
2z (x2+y2)

+∞∫∫
−∞

{
U(ξ, η)e−i

k
2z

(ξ2+η2)
}
ei

2π
λz

(xξ+yη)dξdη, (3.36)

which is known as the Fresnel diffraction integral [49, 55]. As it can be seen in

chapter 3.1.4, that it is a two dimensional Fourier transform of a complex field multiplied

with a quadric phase factor [49].

The Fresnel diffraction integral can be transformed to the Fraunhofer diffraction inte-

gral by making further restrictions to the quadratic phase exponent in equation (3.36)

demanding

z � k

2
(ξ2 + η2)max. (3.37)

The exponent vanishes, leaving unity as a factor over the range of integration, which then
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simplifies (3.36) to the Fraunhofer diffraction integral,

U(x, y) =
ie−ikz

λz
e−i

k
2z (x2+y2)

+∞∫∫
−∞

U(ξ, η)ei
2π
λz

(xξ+yη)dξdη. (3.38)

The Fraunhofer diffraction integral is derived as a special case of the Fresnel diffraction

integral. The former is an additional simplification and proves sufficient for many cases

to predict experimental results. As a simple measure when to use the Fresnel diffrac-

tion integral and when the Fraunhofer diffraction integral will be sufficient, the Fresnel

number can be defined as,

NF =
a2

λz
, (3.39)

with the radius of the aperture a, the wavelength λ and the distance z to the aperture

[49]. Two regions can be distinguishes as NF � 1 and NF � 1. The former indicates

the near field close to the aperture and the latter the so called far field further away

from the aperture, while the transition regime is denoted by NF ≈ 1. The Fraunhofer

approximation can only be applied in the far field. Assuming a plane wave with a nor-

malised amplitude and the wave length λ = 1 mm hit a 1 mm aperture (a = 0.5 mm).

Then Figure 3.5 shows the fields intensity behind the aperture for different distances from

0.025 mm to 2.5 mm (left side) with the corresponding Fresnel number from 10 to 0.1

(right side). For comparison, each intensity was normalised to the input plane wave’s in-

tensity and then shifted by 1 for better readability. In the near field, the intensity steeply

rises and oscillates strongly within the aperture boundaries. With increasing distance z

and decreasing NF , the field does not fall as steep to both sides. The oscillations become

smooth till a peak in the middle of the aperture is isolated and broadens for distances

further away. Note that in the near field, field enhancement is obtained indicated by in-

tensities greater than one. These become pronounced in the transition regime before they

decline in the far field. This effect is exploited by a zone plate which focuses monochro-

matic light, preferably used for frequencies e.g. x-rays where lenses do not work, due to

their refractive index being close to one [56].
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Figure 3.5: The Intensity distribution for various distances after an aperture (black).

3.2 Fourier optics

It is well known that an electromagnetic field passing through a lens is Fourier transformed

at the focus plane of that lens. This is exploited in multiple applications such as filtering,

optical information processing, pattern recognition ect. [49]. In the following section,

the previous discussed diffraction approximation is utilised to write down the equations

for calculating the light propagation through an optical system. The field of view and

resolution discussion terminates this section.

3.2.1 Fourier transformation by a lens

To investigate the Fourier transform by a lens, the below observation will make use of the

above derived Fresnel diffraction integral (see equation 3.36). As before, monochromatic

and coherent light is assumed. An input transparency t0(x, y) is considered which will be

stated hereafter as input. Firstly, the case is discussed where the input is placed directly

against the lens. There, the input field is phase transformed through a thin lens and

propagated to the focus. Second, the input is placed an additional distance d in front of

the lens which requires the input field to be propagated a length d towards the lens.

38



3.2 Fourier optics

A0 A3A1 A2

f

(a) Input against the lens
A0 A3A1 A2

fd

(b) Input d in front of lens

Figure 3.6: (a) The input placed directly against the lens with focus length f . (b)
The input placed a distance d in front of the lens with focus length f .
Ai indicates the field at the input, just before the lens, just after the lens
and at the focus for i = 0,1,2 and 3, respectively.

Phase transformation by a lens

A lens is usually made of an optically more dense medium than the surrounding which

is chosen to be air/vacuum (n = 1). The lens is defined to be spherically shaped with

a refractive index n. A plane wave travelling through a lens with thickness ∆d(x, y)

(dependent on the position of incident), experiences a phase transformation based on the

phase delay tl,

tl = e−ik(n−1)∆d, (3.40)
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where k is the wave vector k = 2π/λ with the wavelength λ. By expressing the thick-

ness ∆d as a function of x and y assuming spherical surfaces and applying the paraxial

approximation, √
1− x2 + y2

R2
i

≈ 1− x2 + y2

2R2
i

, i = 1, 2 (3.41)

one gets the phase transformation of a lens,

tl = exp

[
i
k

2f
(x2 + y2)

]
. (3.42)

In the last step the substitution,

1

f
= (n− 1)

(
1

R1

− 1

R2

)
, (3.43)

is used, where the focal length of the lens is f , the radius of the lens front plane curvature

is R1 and the back plane curvature is R2. The definition of a propagating wave (3.29)

with a negative phase factor is used again. A surface with a positive radius is concave

with the light coming from the left [49]. For an incident plane wave on the lens, this is a

spherical wave front converging towards a point in a distance f behind the lens which is

the focus point (see Fig. 3.7).

R2R1

f

Figure 3.7: Focosing lens
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Input placed against a lens

Monochromatic collimated light with the amplitude A passes an input with transparency

t0(x, y) which results in a field amplitude of A0 = At0(x, y), where the input phase is set

to zero without limitation of generality. Since the distance to the lens is zero, A0 = A1

resulting in a field behind the lens of

A2(ξ, η) = A1 exp

[
i
k

2f
(ξ2 + η2)

]
= AtA(ξ, η) exp

[
i
k

2f
(ξ2 + η2)

]
, (3.44)

with k and f being the wave vector and the focus length, respectively. Substituting A2

for U in the Fresnel diffraction integral (3.36) yields,

A3(x, y) =
ie−ikz

λz
e−i

k
2z (x2+y2)

+∞∫∫
−∞

{
A1(ξ, η)ei

k
2 ( 1

f
− 1
z )(ξ2+η2)

}
ei

2π
λz

(xξ+yη)dξdη, (3.45)

setting the distance behind the lens z equal to the focus length of the lens f results in,

A3(x, y) =
i

λf
e−i

k
2f (x2+y2)

+∞∫∫
−∞

A1(ξ, η)ei
2π
λf

(xξ+yη)dξdη , (3.46)

where a constant phase factor is dropped. By comparing (3.46) with the two dimensional

Fourier transform (see 3.24), it can be seen that A3 can be written as the Fourier transform

of A1 multiplied by a quadratic phase factor,

A3(x, y) =
i

λf
e−i

k
2f (x2+y2)Ã1

(
− x

λf
,− y

λf

)
=
iA

λf
e−i

k
2f (x2+y2)t̃0

(
− x

λf
,− y

λf

)
, (3.47)

using Ã1 = At̃0 in the last step.

Input placed in front of a focussing lens

Considering the situation shown in figure 3.6b, where an object is placed a distance d in

front of the lens. If that object with transparency t0 is illuminated by a planar wave front
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with amplitude A, the phase can be set to zero without loss of generality since only the

relative phase within the field is relevant. Consequently, the Fourier transform of the field

directly behind the object A0 is written as

Ã0(u, v) = F{A0} = F{At0}. (3.48)

The input field A0 relates to the field directly in front of the lens A1 in a distance d with

u = x
λf

and v = y
λf
,

Ã1(u, v) = Ã0(u, v)eiπλd(u
2+v2) = At̃0e

i πd
λf2

(x2+y2), (3.49)

by comparing this equation with (3.47) one obtains,

A3(x, y) =
i

λf
e−i

k
2f (x2+y2)e

i kd
2f2

(x2+y2)
Ã0

(
− x

λf
,− y

λf

)
=

i

λf
e−i

k
2f (1− d

f )(x2+y2)Ã0

(
− x

λf
,− y

λf

)
=
iA

λf
e−i

k
2f (1− d

f )(x2+y2)t̃0

(
− x

λf
,− y

λf

)
, (3.50)

where it can be seen that the field at the focus of a lens A3 equals the Fourier transform

of the input field t0 multiplied by a quadratic phase factor and a constant factor. For the

case that the distance d of the object in front of the lens equals the focus length f , the

equation simplifies to,

A3(x, y) =
iA

λf
t̃0

(
− x

λf
,− y

λf

)
, (3.51)

the exact Fourier transform of the input transparency t0.

In practice, it must be considered that an additional quadratic phase term has to be

included in the Fourier transform, if the detection plane is not exactly in the focus plane

of the lens. Furthermore, in reality the lens has a finite aperture which also has to be

taken into consideration. In the simplest case, the aperture of the lens can be expressed
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by a function P (x, y),

P (x, y) =

1, if inside of the lens

0, if otherwise.
(3.52)

Taking the finite aperture into account and considering the general case of z 6= f and

d 6= 0, with (3.49) equation (3.46) can be written as,

A3(x, y) =
iA

λz
e
−i k

2

(
1
z
− d
f2

)
(x2+y2)

+∞∫∫
−∞

{
t0(ξ, η)P (ξ, η)ei

k
2 ( 1

f
− 1
z )(ξ2+η2)

}
ei

2π
λz

(xξ+yη)dξdη.

(3.53)

However, the aperture has no effect if the illuming light is not clipped by the aperture of

the lens. Therefore, for simplicity, the aperture is not considered in further observations,

since the illuminated area is smaller than the aperture of the lens, as one sees below. In

practice, the Fourier spectrum is measured with a phase sensitive detection method and

the input is reconstructed via numerical methods with the inversion of equation (3.49).

3.2.2 Field of view and resolution

Two of the key features of every image are the resolution and the field of view. As seen

before, the field in the focus plane is related through a Fourier transform with the field of

the object plane. Therefore, the mapping of the input to the Fourier plane (see Fig. 3.6)

shares all the properties of a Fourier transform. This also includes the Similary theorem

(Eq. 3.5), leading to the fact that a high resolution of the Fourier image results in a large

field of view in the object plane and a large field of view results in a high resolution of

the object.

First, the change in resolution of the image is demonstrated by taking different sized

parts of the Fourier spectrum into account. Figure 3.8 shows in the top left corner the

original image and on the bottom left its Fourier transform. The two squares indicate two

different segments which are shown bottom center and bottom right. From the original

Fourier spectrum with 500×500 pixels only 128×128 pixels (big, blue square) and 68×68
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pixels (small red square) were taken, respectively. The inverse Fourier transformations of

these spectra show the original images field of view with a changed resolution. While

the middle image still shows a lot of detail, the right images resolution suffers from the

drastically reduced Frequency spectrum (< 2% of the original information).

Figure 3.8: The top row shows the original image on the left and the results of the
inverse Fourier transform from the Fourier spectra shown in the bottom
row. The squares in the bottom left Fourier spectrum indicate the parts
of the Fourier spectrum taken for bottom center (big, blue square) and
bottom right (small, red square).

By lowering the resolution of the Fourier spectrum, the field of view can be modified of

the inverse Fourier transform while keeping it’s resolution constant. Figure 3.9 shows the

original image on the top left with its respective Fourier transform on the bottom left.

The inset shows 30× 30 pixels of the original 1024× 1024 pixels image. If the resolution

of the original Fourier spectrum is reduced to 512×512 pixels, a magnified version of the

center segment of the original image is obtained. The inset shows the same 30×30 pixels

of the eye which shows that the resolution of the image was not reduced by reducing the
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resolution of the Fourier spectrum. The bottom right shows the Fourier spectrum of the

original image with a decreased 256 × 256 pixels resolution by taking only ever fourth

pixel of each column and row. The inverse Fourier transformation is again a zoomed in

version of the original image with the same resolution, which is shown in the 30×30 pixels

inset. In practice, the input is calculated through a numeric back propagation algorithm

from the measured amplitude and phase of its Fourier spectrum. The inputs resolution

is determined by the field of view of the recorded Fourier spectrum and its field of view

results from the resolution of the recorded Fourier spectrum.

Figure 3.9: The top row shows the original image on the left and the results of the
inverse Fourier transform from the Fourier spectra shown in the bottom
row. On the bottom left, one can see the original Fourier spectrum of
which resolution was reduced from 1024× 1024 pixels to 512× 512 pixels
and 256 × 256 pixels for bottom center and bottom right, respectively.
The insets in each column show a 30×30 pixels segment of the respective
inverse Fourier transform.

45



3 Fourier optics simulations

3.3 Simulation method

The fast Fourier transform (FFT) is utilised to implement an algorithm, based on the

formulas derived in section 3.2 to numerically propagate an electrical field through a

focussing lens and determine amplitude and phase at its focus. The propagation from

the input to the focus is referred to as simulation, while the propagation from the focus

plane back to the input is called back calculation.

3.3.1 Input transparencies for Fourier simulation

Since the simulation should be as close as possible to the conducted experiments (see

chapter 4), the inputs are chosen to be simple. Even though, the input itself as well

as its resolution and field of view vary frequently. Figure 3.10 shows the most common

inputs used in this work. All four pictures were generated as a 201 × 201 array where

the values at each array position are represented by the pixel’s colour. Because of the

grid’s periodicity, bright spots are observed in the Fourier spectrum at the corresponding

spacial frequencies. This makes it a good test object for Fourier optics. An aperture is a

very simple object that can be easily realised in an experimental set-up. The Siemens-star

is a fairly simple standard test chart commonly used in imaging applications to estimate

the achieved resolution. A Gaussian profile is underlaid to the object, since the output

intensity is likely to be a Gaussian profiled beam during measurements (see chapter 4). It

is also very convenient since its Fourier transform has again a Gaussian shape. The vast

majority of all simulations were performed with either one of those shapes or a combination

(width, periodicity, diameter are varied). The way those objects are implemented makes

it very simple to combine them through element wise multiplication.

3.3.2 Field propagation equation

To simulate the field in the focus A3 of the focusing lens (see Fig. 3.6), equation (3.50)

is used,

A3(x, y) =
iA

λf
e−i

k
2f (1− d

f )(x2+y2)t̃0

(
− x

λf
,− y

λf

)
, (3.54)
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Figure 3.10: Four commonly used inputs objects. From left to right top to bottom:
grid, aperture, Siemens-star, Gaussian

where the amplitude is A = 1 V/m and the focus length of the lens f = 0.15 m. λ is the

wavelength of the radiation which is chosen to be 1.19 mm corresponding to a frequency

of 252 GHz. k is the wave vector with its the definition k = 2π/λ. The distance of the

input t0 to the focusing lens is d, where the t̃0 stands for the Fourier transform of the

input t0 which is numerically calculated through the fast Fourier transformation (FFT)

(see 3.1.3). Note that the inversion of this formula,

t0

(
− x

λf
,− y

λf

)
= F−1

{
λf

iA
ei

k
2f (1− d

f )(x2+y2)A3(x, y)

}
, (3.55)

is used to calculate back to the input plane t0. The back calculation is a crucial tool

to gain knowledge on how modifications of the data in the Fourier plane influences the

back propagation to the input. Possible modifications might be lowering the resolution

or detecting only certain areas of the Fourier spectrum. This is important when the input

is calculated from measurement data at the Fourier plane (see section 4).

To be able to plot the results correctly, x and y must be rescaled to the coordinates in

the Fourier plane xf and yf . yf is calculated analogically to the here presented xf ,
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xf = [ −N−1
2
, −N−1

2
+ 1, ..., N−1

2
− 1, N−1

2
] λf

∆x(N−1)
if N is odd

xf = [ −N
2
, −N

2
+ 1, ..., N

2
− 1 ] λf

∆xN
if N is even,

where ∆x is the sample spacing in the discrete position array. To insure the existence of

a 0 entry in the center, the array is not symmetric if the number of elements N in x is

even.

3.4 Intensity and phase

In this section, a closer look is taken on the importance of the intensity and phase in

Fourier optics. Some key aspects can already be shown with numerical simulations.

Therefore, investigations of noisy intensity and phase are carried out and their impact on

the back calculations is compared. Afterwards, some comments on the input-lens distance

information are made which is encoded in the field.

3.4.1 Intensity and phase noise

The formulas to calculate the SNR and the DR of a system are defined in equation 2.1

and 2.4. While those values are straight forward for conventional imaging, the situation

is different for Fourier imaging. In conventional imaging, the resulting image is not

influenced by the detected phase, while the input reconstruction with (3.50) in Fourier

imaging is highly phase dependent. In fact, the phase is more important than the intensity

for the back calculation which can be easily shown by swapping the phase of two Fourier

transformed images (see appendix A.3 for an example). It does not only contain the

information about the distance of the input to the focusing lens, but is also crucial for

the reconstruction of the input intensity itself. Therefore, the SNR and DR of a Fourier

imaging system is better described by the SNR and DR in the back transformation rather

than the raw data.

To estimate the impact of experimental noise on the back calculation, the impact of

noisy intensity and phase on the SNR and DR of the resulting image are determined. Here,

an aperture object is taken and Fourier transformed. In the top row of figure 3.11, one
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can see the object on the left, the intensity in the center and the phase on the right. The

noise is then added to the simulation results (intensity and phase) shown in the second

row. For both, intensity and phase, a random array with the same number of rows and

columns is generated. The noise array for the intensity holds values in the range between

1 − nI and 1, where nI is the intensity noise. The noise array of the phase contains

values between −nPπ and nPπ, where nP is the phase noise. The intensity noise array

is element wise multiplied with the intensity array of the simulation, in contrast to the

phase noise array which is element wise added to the phase array of the simulation. In

the example of the bottom row in figure 3.11, the intensity noise nI and phase noise nP

have the same value nI = nP = 0.4. As a result to the added noise, the back calculation

(bottom left) shows not an exact replication of the input (top left) but a noisy, uneven

circle. The SNR is calculated using equation (2.1), where xi are only the values located

in the center spot of the input. The DR is analogically obtained using (2.4) with xnoise,i

being the values everywhere but in the center spot. In the example below, the noise values

for intensity and phase of nI = nP = 0.4, result in a SNR of 8.8 and DR of 133.1.

To gain a better understanding on how the noise influences the back calculation, the

same procedure of the above example is performed not with a single value for intensity

and phase, but with an array for each. Figure 3.12 displays the generated two dimensional

colour map with the intensity noise nI plotted at the x-axis and the phase noise nP at

the y-axis, where the colour of each pixel corresponds to the calculated SNR (left) or DR

(right) on a logarithmic scale. As before, the intensity noise nI is used to generate a noise

array with random values between 1− nI and 1 which is then element wise multiplied to

the simulated intensity. The phase noise nP is again used to create a random value array

with values between −nPπ and nPπ which are then element wise added to the phase of

the simulation. The resulting SNR and DR of the center spot are presented as one pixel in

the coordinate system at its corresponding position (nI ,nP ). Note that the highest SNR

and DR values (with no noise) are clipped to 40 dB (104) and 80 dB (108), respectively,

for better visibility. At a first glance, one already notices the very similar behaviour of SNR

and DR to phase and amplitude noise. The SNR map (see 3.12a), however, has a higher

granulation than the DR map (see 3.12b). It is believed that this is a result of statistics,
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DR	=	133.1
SNR	=					8.8

Figure 3.11: First row shows an aperture on the left, its Fourier spectrums intensity
and phase at the center and right, respectively. The second row shows
the back calculation of the input on the left with the corresponding noisy
intensity at the center and noisy phase at the right.

because the Sstd is calculated using only N = 317 (see Eq. 2.1) values compared to the

Nrms computation where N = 4084 (see Eq. 2.4) values are used. Both, SNR and DR

drop faster in the direction of phase noise. The drop in SNR or DR has only a strong

dependence of the intensity noise when the phase noise is very low or zero. The phase

noise, however always has a strong impact on the obtained SNR and DR indicated by the

horizontal colour trends. This strengthens the previous statement of this section where

in Fourier optics, more importance is attributed to the phase than to the amplitude.

3.4.2 Encoding of the distance information

For the case of detecting the light field in the focus plane of the lens (z = f), the exact

Fourier spectrum of an input a distance d in front of the lens is measured. Considering

d 6= f , the Fourier spectrum is multiplied by a quadratic phase factor (see Eq. (3.50))

e−i
k
2f (1− d

f )(x2+y2), (3.56)
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Figure 3.12: (a)The resulting signal to noise ratio (SNR) and (b) dynamic range (DR)
of the back calculation when noise is applied on the intensity and phase
of the simulation.

where k is the wave vector 2π
λ

and f the focus length of the lens. The distance of the

object to the lens d does not appear anywhere else in the Fourier spectrum calculation.

Therefore, the intensity of the Fourier spectrum is independent on d. The phase, however,

features a curved phase factor on top of the phase of the objects pure Fourier transform.

The curvature is then − k
f
(1 − d

f
). For a given set-up with a fixed wavelength, this is a

linear function in d with a zero point at d = f where the curvature changes sign from

negative to positive. To obtain a sharp input, it is crucial to use the right d in the

reconstruction. The better the phases curvature can be determined, the higher is the

depth sensitivity of the Fourier imaging process. Without knowledge of the input, this is

challenging, since the curvature is on top of the phase of the inputs Fourier transform. At

this point it is noteworthy that changing the focus length f will alter the gradient of the

d dependent curvature change. Or in other words, the steepness of the linear curvature

function. A shorter focus length results in a steeper gradient and therefore makes the

set-up more depth sensitive as one with a longer focus length, since a smaller change in

d results in a bigger change of the phase curvature even with taking the rescaling of the

Fourier spectrum into account.
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3.5 Simulation results

Numerical simulations can provide some important information and give insights on how

an experimental set-up might perform. The more accurate a simulation can be set up,

the closer the results are to the measurements. It also shows whether or not all the

important influences are understood and taken into account. Simulated results which differ

a lot from the measured data indicate another important mechanism not yet considered.

Therefore, the following section discusses some of the most important results regarding

the simulations being performed to generate a more complete picture of the Fourier optics

set-up. First, a look at the results created by the already seen inputs is taken. Secondly,

the situation is changed by a modified detection pattern and last with multiple objects in

a three dimensional scene.

Here, only reasonable inputs and boundary conditions are chosen to evaluate the per-

formance reduction which is to be expected when one has to compromise on detection

area and resolution in favour of acquisition speed.

3.5.1 Different objects

Above, different inputs can be seen in figure 3.10 which are used in simulations of a

Fourier optics set-up. Figure 3.13 shows a simulation of three different objects shown in

the top row with values: A = 1 V/m, f = 0.15 m, λ ≈ 1.2 mm and d = 0.13 m (see

Eq. (3.54)). The center row shows the simulations intensity spectrum and the bottom

row shows their respective phase. The top left input is a Gaussian beam shape with the

form,

f(x, y) = exp

(
−(x− x0)2 + (y − y0)2

2c2

)
, (3.57)

where c is chosen to be 9 pixels and x0, y0 are 1, 2 pixels, respectively. This Gaussian

intensity distribution is multiplied with a centered aperture with a diameter of 44 pixels
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of the form,

a(x, y) =

1, if x2 + y2 ≤ 22

0, else
(3.58)

This configuration was reused for the other two inputs. For better visibility, the initial

201× 201 pixels array (not shown here) is zoomed to display 96× 96 pixels for the inputs

and 168×168 pixels for intensity and phase, respectively. This corresponds to a displayed

area of 144 cm2 in all cases, indicating a resolution of 8 pixel/cm and 14 pixel/cm for the

input and Fourier spectrum, respectively. With a wavelength of 1.2 mm this is slightly

oversampled for the letter. The result of the simulated input is a simple spot in the

intensity and concentric rings in the phase. The phase has some rotationally asymmetry.

This can be attributed to the slight offset of the Gaussian function (x0 = 1 pixel and

y0 = 2 pixels) away from the center of the aperture to simulate with more real boundary

conditions, since it is not trivial to align the lenses perfectly centric in a real set-up.

For the second input in the center column, the left input was multiplied with a grid where

the periodicity of the grid is 6 pixels and the grid width (white stripes) is 2 pixels. With

the before introduced resolution, that corresponds to 7.5 mm and 2.5 mm, respectively.

The input is again numerically propagated through the set-up with a resulting intensity

and phase shown in the center and bottom row. The Fourier spectrum’s intensity shows

a bright center spot with a grid of spots around it. The spots become weaker the further

they occur away from the center with the first order spots being the second brightest

after the zero order spot in the center. The smaller the aperture of the input, the broader

each spot is. The phase has again a similar grid like pattern with points of more or less

constant phase at the positions of higher intensity. By comparing the phase pattern of

the Gaussian Fourier transform and the latter, the phases can be seen to have similarities,

featuring the same asymmetrical center and phase value indicating the common features

of the input.

The input at the right consists again of the same Gaussian illumination multiplied by

the aperture of the first input. This time it is additionally multiplied with a Siemens-star
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Figure 3.13: The top row shows 96 × 96 pixels out of 201 × 201 pixel of the inputs
consisting of either Gaussian and aperture (left), Gaussian and aperture
overlayed with a grid (center) or Siemens-star (right). In the center row,
the respective intensity spectra and at the bottom, the resulted phase in
the Fourier plane can be seen.

pattern. The inner radius, where the opaque fingers stop is chosen to be 5 pixel with

a total shift relative to the center of the array being 10 pixel in y direction. On first

glance, the intensity result of the simulation looks just like the Gaussian intensity with the

aperture. But a closer look unveils a ray like pattern around the center spot. The phase

is even more interestingly shaped. It builds a two leaf like pattern pointing away from the

center. Through multiple simulations, the axis of symmetry is found to be dependent on

offset direction of the Siemens-star. Also, there is no center area with concentric pattern.
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3.5.2 Detection pattern

In the above simulations, no information is lost or altered through noise, interpolating

or other methods. Therefore, the inverse propagation using equation (3.55) produces

exactly the given input without any deviation. The area, over which the Fourier spectrum

is spread is quite large. For measurements, this means a large range must be covered with

high resolution in order to detect the hole area. This could either not be possible or lead

to a long acquisition time. Previous simulation results are reused, modified in “detection”

area, resolution or both and then back propagated for a better understanding on how the

back calculated objects are effected by those modifications.

Figure 3.14 shows the back calculations of modified Fourier plane data. The starting

point are again the three different, 201 × 201 pixels objects (96 × 96 are shown). The

center row shows the center 101× 101 pixels of the simulated phase in the Fourier plane

padded with zeros around to generate an array with the original 201×201 pixels (168×168

are shown). Even though only the phase is displayed, the same procedure is done with

the intensity of the Fourier spectrum. This modified data is then used to calculate back

to the object plotted in the bottom row using equation (3.55). The back calculation of

the Gaussian intensity plus aperture shows almost no difference to the original input with

the exception of a not quite as sharp edge. The loss of information is more relevant for

the back calculation of the grid (center column). Here, the grid like pattern can still be

seen but all sharp edges are washed out and in the place of small squares, dots are visible.

The highest intensity, however, still shows the center spots which fades out towards the

aperture’s edge. The back calculation of the Siemens-star suffers also from the reduced

data in the Fourier plane. Again, edges appear to be more smooth due to averaging

effects, which leads also to a different intensity distribution over the back calculation.

The area with the highest intensity in the input, right at the transition from the fingers to

the transparent center, does not show a smooth transition of intensity towards the center

anymore. The thin tips of the transparent fingers are interpolated with the nearby opaque

areas leading to a reduced intensity just around the center transparency.

By changing the array size from 201×201 to 101×101 pixels, the data size is reduced
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Figure 3.14: The top row shows the inputs consisting of either Gaussian and aperture
(left), Gaussian and aperture overlayed with a grid (center) or Siemens-
star (right). In the center row one sees, the center of the resulting phase
(101×101 pixels) padded with zeros to generate a again 201×201 pixels
array (168 × 168 are shown). The right column shows the respective
back calculatoin using the modified simulation results.

to a quarter of its initial value. Removing any input higher spatial frequencies results in

a reduction in the quality of the back calculation image. Objects with only a few sharp

edges or small features do not contain many high frequency components. Therefore, a

restriction of those object’s Fourier spectrum to lower spacial frequencies does not have

a big impact on the back calculation (see first column Fig. 3.14). Much more affected

are the back calculations of objects with a higher content of small features and sharp

edges. The simulated grid in the center column of figure 3.14 contains crossed opaque

56
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stripes that have a sharp edge to the transparent squares. Replacing the higher spacial

frequencies with zeros has a high impact on the back calculation. The general structure

is still grid shape, but the transparent squares are reduced to simple spots. A similar

situation can be observed with the Siemens-star. The sharp edges of the opaque fingers

narrowing towards the center indicate high spacial frequencies occurring in the Fourier

spectrum. Neglecting this information results in a less sharp Siemens-star with an altered

intensity distribution.

Even though the objects are changed, they are still easily distinguishable. However,

one might not be able to tell apart similar objects after the higher spacial frequencies are

removed. The reduction of information effects mostly the small features in the object

leaving the general structure untouched. This allows a differentiation of the simulated

objects. Therefore, it could be advantageous to reduce the spacial frequencies in experi-

ments, since a reduction in spacial frequencies corresponds to a reduced detection area in

the Fourier plane. A smaller recording area results in fewer points to measure, reducing

acquirement time per Fourier spectrum.

Figure 3.15: The top row shows the simulated phase of a grid object where only a
center column of 21 pixel in widht and a center row of 21 pixel in hight
are used. The bottom row shows the respective back calculations.
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The number of pixels can be reduced even further and still increase the reconstruc-

tion’s quality. This is possible by reshaping the pattern of detection. Figure 3.15 shows

simulations of the known grid input (see Fig. 3.14) but instead of using a square in the

center for the back calculations, the used information lies on a centered cross with a

width of 21 pixels. The top row shows the used inputs (201 × 201 pixels plotted) with

their respective back calculations in the bottom row. For better visibility, out of the total

number of pixels (201 × 201) only 96 × 96 pixels of the back calculations are plotted.

From left to right the crosses have width and hight of 201, 151 and 101 pixels, respec-

tively. This results in the total number of pixels being 8001, 5901 and 3801. Compared

to the previous 101× 101 pixels, the total number of used pixels is reduced for all three

crosses, but the back calculations of the biggest cross on the left is very similar to the

input itself. The second biggest cross in the middle has sufficient information to generate

an almost exact reconstruction of the input. Only the smallest cross with a width of

101 pixels shows no squares, but spots aligned in a grid shape which is the same case

as the situation of figure 3.14. This behaviour is attributed to the unique pattern of a

grid. Since its general shape is almost only made up by horizontal and vertical spacial

frequencies, it is sufficient to only use those frequencies aligned horizontal and vertical in

the Fourier spectrum for the back calculation. Most of the other frequencies are zero and

therefore not as important. In general, his does not work for a generic input. It is highly

dependent on the input’s structure, which spacial frequencies it contains and therefore

at which positions in the Fourier spectrum the intensity is increased. If specific features

of an input are required, the detection area could be tailored to the spacial frequency of

those features to detect them with a minimum detection area and time.

3.5.3 Three dimensional scene

Above, the importance of the distance for the back calculation is mentioned. Only if

the correct distance of the object to the lens is used for the back calculation, a sharp

image of the back calculation is produced. Simulations with the Siemens-star at four

different distances are performed to show the effect of using various distances for the
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back calculation. The four columns of figure 3.16 show the results of four simulations

placing the Siemens-star input (see Fig. 3.14) at four different positions 12, 14, 16

and 18 cm away from the focussing lens. To demonstrate how potential measurement

results look like, just the center 101× 101 pixel are taken and padded with zeros to form

201 × 201 pixel spectra for the back calculations. Each modified Fourier spectrum is

then used to calculate back to the object. Instead of using just one distance for back

calculations, four distances 12, 14, 16 and 18 cm are used, shown in each row. Only

where the used distance for the back calculation (rows) matches the distance where the

Siemens-star input is placed (columns), the back calculation creates a sharp image of

the input (see Fig. 3.14). For better visibility only 50 × 50 pixels are shown in each

panel. This series of simulations shows the sensitivity of the back calculation towards the

distance used. In order to calculate back to the input, the position must be known. This

might lead to complications in reality, where the distance is not or just approximately

known and the sharpest image must be chosen out of a series of back calculations with

each using a different distance from object to the lens.

The sensitive to the distance also holds the chance of scanning through a three dimen-

sional scene of different objects. Figure 3.17 presents a simulation of a three dimensional

scene where two different inputs are used in one set-up. Top left (1) of figure 3.17a

shows the known Siemens-star input, multiplied by a Gaussian intensity distribution and

an aperture as before (only the center 98 × 98 pixel out of 201 × 201 pixel are shown).

The Siemens-star is placed at a virtual distance of 14 cm away from the lens. This input is

then propagated to the plane 8 cm away from the lens where the second object is placed.

The second object is the previously used grid shown in the top right (2) (only the center

98×98 pixel out of 201×201 pixel are shown). At this plane, the intensity of the electric

field is generated through multiplication of the propagated Siemens-star intensity with the

grid pattern. The phase is simply given by the field propagated from the Siemens-star

input. From this point, the simulation is performed as before with the combined field of

Siemens-star and grid used as an input. The resulting intensity and phase of the Fourier

spectrum are shown bottom left (3) and bottom right (4), respectively. Again, to mimic

a measurement, only the center 101×101 entries are used and padded with zeros to form
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Figure 3.16: Each column represents a set of data at distances 12, 14, 16 and 18 cm.
Each row represents a set of back calculations with the back calculated
distance 12, 14, 16 and 18 cm. The positions, where the back calculated
distance matches the real distance, the back calculation results in a sharp
image of the Siemens-star input.

a 201× 201 entries field array (168× 168 pixel are shown). Figure 3.17b shows the back

calculations of the simulated Fourier spectrum for four different distances 8, 10, 12 and

14 cm from the object to the lens. Obviously, the Siemens-star input should be visible at

14 cm and the grid at 8 cm, since those inputs are placed at those planes to generate the

Fourier spectrum. The grid features come out quite good compared to the previous grid

simulation. The Siemens-star, however, is not visible at its position. The poor quality

of the back calculations has multiple origins. First, the Siemens-star is illuminated by a

Gaussian beam profile like it is in a measurement. Second, the grids features dominate

the scene by blocking the line of sight to the Siemens-star. Also, by using just the center
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(1) (2)

(3) (4)

(a) Siemen-star and grid input

8	cm 10	cm

12	cm 14	cm

(b) Back calculation at different positions

Figure 3.17: (a) (1) and (2) are the Siemens-star object and the grid input, respec-
tively. (3) and (4) are the center 101 × 101 pixel intensity and phase
at the Fourier plane padded with zeros to make a 201× 201 pixel field.
(b) The result of the back calculation using the field of (a)(3)+(4) for
different distances to the lens (8, 10, 12 and 14 cm).

101×101 elements of the Fourier spectrum array for the back calculation, a large portion

of information is neglected. For a single input, the spacial frequency restriction was still

acceptable to retrieve the input at a reasonable quality. This can not be said for the

three dimensional scene with two objects. In the present case, the Siemens-star can not

be identified. In order to capture a three dimensional scene with multiple objects, the

detection range has to be increased and less opaque objects have to be used to retrieve

optimal results.
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4 Terahertz Fourier imaging

In order to realise Fourier imaging measurements, the intensity and the phase in the Fourier

plane must be detected. Here, a method is presented, on how THz Fourier imaging

can be realised through heterodyne detection. This detection method is successfully

demonstrated using two electrical multiplier chain sources mixed on a TeraFET detector

for amplitude and phase measurements in the Fourier plane. This information is used to

recover the object through a numerical back calculation.

4.1 Principle of heterodyne detection

Field effect transistor detectors are power detectors and therefore sensitive to intensity but

not to the optical phase. Through optical mixing it is still possible to capture the phase.

In order to do so, the probe signal is overlayed with a phase stable reference signal called

the local oscillator (LO). The resulting interference (beating) carries information about

the amplitude and the phase of the probe signal. If the frequencies of the probe signal and

the LO are slightly different, this technique is called optical heterodyning, optical mixing,

photomixing light beating or coherent optical detection [58].

The time dependent electrical fields of the probe and the LO signal are Esig(t) and

ELO(t), respectively. Then, their fields can be written as [55],

Esig(t) = Asig cos (ωsigt+ φ) and (4.1)

ELO(t) = ALO cos (ωLOt) , (4.2)

with their frequencies ωsig, ωLO, amplitude Asig, ALO and a constant phase difference φ.
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If the two signals are aligned parallel and have the same polarisation, the superposition

of the two fields is simply their sum. Since the intensity is proportional to the square of

the electrical field, the intensity of the interference is proportional to [58],

I ∝ [ALO cos (ωLOt) + Asig cos (ωsigt+ φ)]2 . (4.3)

By expanding the product, reordering and using the identities,

cos2 x =
1

2
[1 + cos(2x)] and (4.4)

cosx cos y =
1

2
[cos(x− y)− cos(x+ y)] , (4.5)

one obtains three kind of terms,

I ∝ 1

2

[
A2
sig + A2

LO

]
+ A2

sig

1

2
cos(2ωsigt+ 2φ)

+ A2
LO

1

2
cos(2ωLOt)

+ AsigALO
1

2
cos((ωsig + ωLO)t+ φ)

+ AsigALO
1

2
cos((ωsig − ωLO)t+ φ). (4.6)

A constant term, three (in this notation) high frequency terms with either the doubled

frequency of ωsig, ωLO or the sum of them and the low frequency term formed by the

difference of these frequencies. Band pass filtering can be used to exclude all but the low

frequency term from further consideration. The filtered interference signal’s amplitude

is proportional to the product of the LO’s and probe signal’s amplitude. Therefore, by

providing a strong LO signal, heterodyne techniques achieves an amplification of the

signal resulting in an increased performance of heterodyne detection compared to direct

detection [58–60]. If a lock-in amplifier is used with the difference frequency as the

reference signal, the phase difference between locking frequency and beat signal can be

obtained. This is all that is required for Fourier imaging since only the relative phase within
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the Fourier plane is relevant and a constant phase offset is taken out of consideration in

the first place (see section 3.1.5).

4.2 Optical setup for heterodyne detection

A heterodyne detection setup has to include two sources which have to have two slightly

different frequencies mixed on a detector. For this purpose, a terahertz (THz) antenna

coupled field effect transistor (TeraFET) is utilised to measure the mixed radiation from

the source and LO. The detectors principle relays on resistive mixing below the transit-

time and transforms to plasmonic effects above [22–25]. The presented data is conducted

with two different setups, where one features a beam splitter to focus both source and

LO on the detector. The second setup is based on a linear configuration without the

need of a beam splitter. Firstly, the electronics of both setups is presented. The beam

splitter configuration is presented in detail before the linear configuration is introduced

which adopts most of the former techniques.

4.2.1 Electronics of heterodyne detection setup

This setup utilises two commercial available electronic 300 GHz emitters to generate two

slightly different frequencies. Those emitters are based on multiplier chains and are widely

used as sources for frequencies below 0.7 THz [61–63]. Two frequency synthesisers are

used to generate the input frequencies between 12 and 18 GHz with a frequency difference

of 1 kHz which are then multiplied (×18) to 216-324 GHz and emitted by the sources.

Although, one synthesiser is clocked by the other, their respective phase delay is not

stable enough to use an external 18 kHz (1kHz× 18) reference for the lock-in amplifier.

Figure 4.1 shows the configuration used, where a −10 dB part of the electrical 15 GHz

and 15.000001 GHz (example frequency) signals are split, mixed and filtered to generate

the 1 kHz difference frequency as a more stable reference input for the lock-in amplifier.

This way, the reference frequency will dynamically adjust to any relative drift of the two

synthesisers. Note that the lock-in amplifier has to be set to detect the 18th harmonics

of the reference signal, since the synthesiser’s frequency is multiplied. This configuration
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ensures no frequency drift occurs. Therefore, the reference frequency can be efficiently

generated, but also more easily compared to including another external signal generator.

Figure 4.1: The electronics used in the heterodyne setup with two synthesisers
(15 GHz example frequency), splitter, one mixer, frequency filter two
sources, one detector and one lock-in amplifier.

4.2.2 Optical setup using the beam splitter configuration

To realise heterodyne detection, the radiation of source and LO has to be incident on the

detector. Ensuring a stable LO signal over the entire measurement is crucial. For imaging,

this means a constant LO signal over the whole detection range. The most effective way

to achieve a constant relative position of LO and detector is to move the source arm

relative to the LO and detector. A sketch of the optical setup is shown in figure 4.2

with source arm and LO oscillator arm. The latter consists of the source with mounted

spherical collimating lens, a spherical focussing lens and the beam splitter to focus on the

detector. The plano-convex lenses are made of polytetrafloureethylene (PTFE) with a

three inch diameter and a focal length of 150 mm [64]. The source arm indicated by the

dashed rectangle features two spherical lenses for collimation and focussing. The object

of interest is put inside the collimated beam path. The entire source arm is mounted on a

three dimensional translation stage and is therefore movable in all directions for creating

images through a scanning process.

The beam splitter which overlays both beam paths, is a whole 4 inch silicon waver coated

at one side (towards the source) with a 7 nm chrome layer as an anti-reflection coating

[65]. The detector is a single TeraFET detector with a 12 mm diameter substrate mounted
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Figure 4.2: The Fourier optics setup with the source and local oscillator (LO) comined
with a beam splitter on the detector for phase sensitive detection. The
object is placed in the collimated beam of the source which is mounted
together with the source, collimated lens, and focussing lens on a three
dimensional translation stage.

hyper hemispheric silicon lens [40, 41]. Its antenna is optimised for the lower regime of

the THz sources which results in a maximum signal at 239 GHz. In this configuration, the

detector is based on GaN/AlGaN high-electron-mobility transistor (HEMT) technology

[37–39]. The detector is housed in a small metal box with only one opening for the

silicon lens, just like the detector in a previous section (see Fig. 2.4a). The required gate

voltage is generated with a voltage supply/monitor over an SMA connector. Another

SMA connector feeds the detector’s output to the lock-in amplifier.

4.2.3 Optical setup without beam splitter

The same idea of a movable source arm relative to the LO and detector leads to another

approach in the LO arm design in which the beam splitter is removed. First, because the

beam splitter holder could cuts out parts of the fourier spectrum and secondly, astigmatism

introduced by the tilted Si-waver in the beam path. Instead of coupling both beam paths

through the silicon lens and substrate to the detector, the LO radiation illuminates the

detector directly from air to antenna. This is not possible with a metal box housed detector

described in the previous setup. For this configuration, the detector is mounted on a cage

system with the lens pointing to the source and the other side pointing to the LO. Also, big
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standing waves of the LO form between detector and source, leading to field enhancement

which can be exploited for the heterodyne detection (see Fig. A.4). The spherical lenses1

are again plano-convex made of PTFE. The substrate lens is a 4 mm diameter spherical

silicon lens glued on the back side of the detector. The latter is still a TeraFET but

changed to one based on CMOS technology [22–25] featuring a protection diode for this

sensitive device. The spiral antenna has its highest signal output at 252 GHz. Although

the coupling efficiency is expected to be reduced compared to the coupling through the

substrate [66, 67], the relative loss in signal is not as severe because the beam splitter

in the other configuration halves the signal before it even gets to the detector. With a

higher noise equivalent power of this detector compared to the GaN/AlGaN detector, the

overall performance is expected to be higher than the previous configuration. Just like in

the previous configuration, the image is created through scanning the source arm over a

certain range relative to single pixel detector.

Figure 4.3: The Fourier optics setup with the source and local oscillator (LO), fo-
cussing the source through the substrate lens on the detector and the LO
directly from air to the antenna. The object is placed in the collimated
beam of the source which is mounted together with the source, collimated
lens, and focussing lens on a three dimensional translation stage.

4.3 Heterodyne measurement results

The previous presented setup in the two configurations are used to measure different

objects at various distances to the focus lens. The measurements are performed to

1The same lenses of the previous setup are reused in this setup.
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resemble the above shown simulations to ensure comparability and enable statements

on the data quality. First, the two distinctive objects, the grid and the Siemens-star

are presented as well as their corresponding measurement with back calculation outcome

are compared with the simulation results . To follow the previous simulation chapter,

the Siemens-star input is placed at different positions and back calculated to show the

predicted sensitivity to depth in front of the lens.

4.3.1 Measurement of different objects

The grid and the Siemens-star are the two objects chosen to be analysed in both setups.

Since those objects are used in the Fourier simulation above (see section 3), the results of

simulation and measurement can be compared. Figure 4.4 shows the grid and Siemens-

star object used for the measurements. The grid’s stripes as well as the Siemens-star

fingers are both metal and therefore completely opaque for THz radiation. The plastics

of the Siemens-star on which the metal is applied has a minor effect on the THz radiation.

The square holes in the grid are 5 mm and the stripes are 2.5 mm wide. The Siemens-star

has an outer and inner diameter of 105 mm and 5 mm, respectively. With twenty opaque

fingers and twenty gaps, the tips of the metal fingers at the inner radius are roughly

0.6 mm wide.

By inserting the grid object of figure 4.4a in the collimated beam part (see Fig. 4.2),

the intensity and phase shown in Fig. 4.5a are measured. The area of measurement covers

an area of 8 × 8 cm2 with a pixel pitch of 1 mm. The scanning program accounts for

the different scanning directions of the detector is by shifting the pixels from forward and

backward movement deleting the overhang, resulting in a lowered number of points in

x-direction depending on the setting. In this case the resulting measurement includes

81× 72 pixels for both amplitude and intensity. Before the data is saved, the center spot

is shifted to the center of the array by adding rows and columns of zeros to the array. The

center is determined by calculating the center of mass of the center spot (th magnitude

is at least 0.7 of the maximum magnitude). After the shift, the measured data is padded

with zeros to generate a square shape with a side length which is two times the side length
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of the y-direction. For the presented data, the field is represented by a 170× 170 pixels

array. This padding results in an interpolated result for the back calculation. Padding

of zeros is a standard procedure in Fourier analysis [49]. By applying formula (3.55) to

the data, the field is back propagated to the object plane resulting in the figure shown in

figure 4.6a. As before, the resolution in the Fourier plane determines the field of view of

the back calculation while the field of view of the Fourier plane determines the resolution

of the back calculation. A pixel pitch of 1 mm at 250 GHz and 0.15 m focus length results

in a field of view of ∼ 9.4 × 9.4 cm2, which is more than sufficient to display the whole

area where THz radiation illuminates the grid object. The measurement range is restricted

by the travel range of the translation stage. By padding the actual measured data with

zeros, the back calculation is interpolated and therefore its resolution is increased from

4.55 pixels/cm to 9.1 pixels/cm. In comparison to the measured data, figure 4.5b shows

the Fourier spectrum generated by simulating the propagation of a grid to the Fourier

plane. There are no modifications to the previous object and data of chapter 3.5.2 with

the exception of relating one pixel to 1.25 mm matching the grid dimensions for better

comparability. The magnitude of the measurement and the simulation show the the same

(a) Grid object (b) Siemens-star object

Figure 4.4: (a) A picture of the used metal grid object with a ruler at the bottom.
The square holes are 5x5 mm2 in size and the opaque stripes are 2.5 mm
wide. (b) A picture of the Siemens-star testchart with an outer and inner
diameter of 105 mm and 5 mm respectively.
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nine points with a similar diameter and relative strength to each other. Due to noise,

shapeless noise can be seen specifically around the center spot of the measurement. Like

the magnitude, the measured phase shares also some features with the simulated results.

The nine spots which were already visible in the magnitude can be seen again. However,

the simulation predicts concentric rings around the center spot, which are not visible in the

measurement results. The back calculation of these two data sets are shown in figure 4.8.

They both show the grid like pattern with round spots decreasing in intensity towards the

edges of the round aperture.

Conducting the same measurement by inserting the Siemens-star object (see Fig. 4.4b)
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Figure 4.5: (a) The intensity and phase of the grid object measured in the Fourier
plane and padded with zeros. (b) The intensity and phase of the grid
object simulated in the Fourier plane and padded with zeros.
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4 Terahertz Fourier imaging

in the collimated beam path (see Fig. 4.2), the Fourier spectrum with intensity and

phase is measured, shown in figure 4.7a. Comparing the results with the results shown in

figure 3.14, a number of similarities are visible, however some elements of the simulation

do not match the measurement. The results at the right side in figure 4.7b, however,

share many features of the measurement. Specially the phase matches very well. This

is achieved by changing the simulation input situation. First, the object was modified to

have twenty opaque metal fingers and the inner and outer diameter of the Siemens-star are

changed to 4 pixels (5 mm) and 88 pixels (110 mm), respectively, to match the real test

chart. Also the offset of the simulated Siemens-star was increased from 10 to 15 pixels.

Just like before, the back calculation of the measurement and the back calculation of

the simulation are displayed in figure 4.8a and 4.8b, respectively. Both show the highest

intensity in the fingers while the simulation has a more evenly distributed intensity over

the transparent regions in the center.

4.3.2 Measurements for different input to lens distances

In order to test the effect of different positions on the final image, the Siemens-star object

is placed at four different positions in the collimated beam of the setup (Fig. 4.2) and
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Figure 4.6: (a) Back calculation of the grid from the measured data in figure 4.5a.
(b) Back calculation of the grid from the simulated data in figure 4.5b.
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(b) Simulated intensity and phase

Figure 4.7: (a) The intensity and phase of the grid object measured in the Fourier
plane and padded with zeros. (b) The intensity and phase of the grid
object simulated in the Fourier plane and padded with zeros..

their respective Fourier spectra are measured. The four different positions are 7, 9, 11

and 13 cm away from the focussing lens. Each set of data is used for back calculation, not

only to its input plane but also to the distances of the other three data sets. The result is

shown in figure 4.9. Each column stands for one set of data while each row represents the

used distance for the back calculation. The sharpest image of the Siemens-star occurs

where the used distance for back calculation matches the distance where the object is

placed in the setup. It reaches for the normalised modulation transfer function (MTF) a

value of MTF50% ≈ 0.1 cycles/mm at 0.5 of the MTF [68–70]. This demonstrates the

depth sensitivity of the presented imaging method. Even though the absolute distances
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Figure 4.8: (a) Back calculation of the Siemens-star from the measured data in fig-
ure 4.7a. (b) Back calculation of the Siemens-star from the simulated
data in figure 4.7b.

do not match the distances used for the simulation, the relative distances are the same.

Blurring can be seen to depend only on the difference between actual (real or virtual)

position and used distance for the back calculation.

So far, only objects with a high contrast are shown. However, the capability of displaying

objects with lower contrast is crucial for general imaging applications. For this purpose,

an “A” shaped piece of polyvinyl chloride (PVC) as shown in figure 4.10 is produced

and inserted in to the collimated THz beam (see Fig. 4.3). Note, the setup without

the beam splitter is used for this series of measurements. Figure 4.11 shows the same

measurement presented before (see Fig. 4.9) but in this case the object is a low contrast

piece of PVC. The intensity and the phase of the back calculation are shown in Fig. 4.11a

and Fig. 4.11b, respectively. Again, for intensity and phase each column represents one

measurement (at 8, 10, 12 and 14 cm) and every row represents a different distance (at

8, 10, 12 or 14 cm) for the back calculation. The THz radiation is not blocked by the

PVC since 5 mm thickness reduces the transmitted intensity by about 60% [71]. Due to

diffraction, the edges rather than the shape itself lack signal, which makes the “A” shape

recognisable. For visibility, the colour scheme is logarithmic for the intensity plot. For

transparent objects such as PVC, the phase shows a discontinuity at the edge due to the
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4.3 Heterodyne measurement results

7	cm
7	
cm

9	cm 11	cm 13	cm
9	
cm

11
	c
m

13
	c
m

Figure 4.9: Each column represents a set of data at a distances 7, 9, 11 and 13 cm.
Each row represents a set of back calculations with the back calculated
distances 7, 9, 11 and 13 cm. The diagonal positions, where the back
calculated distance match the real distance, the back calculation results
in a sharp image of the Siemens-star input.

Figure 4.10: The used polyvinyl chloride (PVC) “A” object with a scale at the bottom.
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4 Terahertz Fourier imaging

optical path differences. As shown, the phase of the back calculation can help to interpret

the result of the back calculation specially for transparent objects.
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(a) Intensity of the back calculation
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(b) Phase of the back calculation

Figure 4.11: (a), (b) Plot of the back calculation’s intensity (logaritc) and phase,
respectively, for a PVC “A” which is placed at four different distances 8,
10, 12 and 14 cm plotted in each column. Each row represents one of
the used distances 8, 10, 12 or 14 cm for the back calculation.

4.3.3 Three dimensional scene measurement

The sensitivity of the back calculation to the used distance can be exploited to “focus”

on different positions and therefore different objects in the beam path. This enables a

scanning through a three dimensional scene with different objects within the collimated

beam. Figure 4.12a shows one measurement’s back calculation for 8, 10, 12 and 14 cm

distance (from top left to bottom right). Each panel shows a field of view of 10×10 cm2

with a resolution of 9.03 pixel/cm. Two objects, the Siemens-star and the grid, are

placed in the collimated beam path 14 cm and 8 cm in front of the lens, respectively.

Consequently, these inputs should be visible for the back calculation at their respective

distance. The grid object can be seen at the top left panel with some distortions. The

residual three panels do not show any recognisable shape. Even the bottom right with

the back calculation for 14 cm, which matches the distances of the Siemens-star, shows
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4.3 Heterodyne measurement results

no features of a Siemens-star. The right side of figure 4.12 shows again the simulation

results of the previous chapter (see figure 3.17). The simulation data created resembles

the measurement. The back calculation shows again a 10×10 cm2 area with a 8 pixel/cm

resolution which is close to the measurement specifications. Considering the finding of

the simulation, the Siemens-star is not visible in the measurement’s back calculation at its

position of 14 cm in front of the lens. Reasons for this can be found in the measurement

setup and the back calculation algorithm. Objects which are less opaque could improve

the situation since the grid and Siemens-star each block a large portion of light. Without

knowledge of the object’s shape and position, it is not trivial to account for their impact

on the field and requires further investigations.

8	cm 10	cm

12	cm 14	cm

(a) Measured grid and Siemens-star

8	cm 10	cm

12	cm 14	cm

(b) Simulated grid and Siemens-star

Figure 4.12: Comparison between a measured and simulated three dimensional scene
with grid and Siemens-star. (a) Measured scene with the grid placed
8 cm and the Siemens-star 14 cm away from the focussing lens. (b)
Simulated scene with the grid placed 8 cm and the Siemens-star 14 cm
away from the focussing lens.
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4.4 Origins of noise in heterodyne imaging

Every measurement is affected by noise of various types and origins. The presented

measurements are no exception and suffer from various different noise sources. In the two

dimensional scanning process to measure intensity and phase with a single pixel detector,

a number of different influential variables are conceivable as noise sources. The detector

itselfe has an intrinsic noise dominated by the thermal Johnson-Nyquist noise [27, 72],

Vnoise =
√

4kBTR, (4.7)

where kB is the Boltzmann constant, T the temperature with ≈ 294K and R the re-

sistance at the working point being < 4kΩ for this device, resulting in a total Vnoise of

< 10 nV. Therefore, the intrinsic noise of the detector is well below other influences and

can be taken out of consideration. Simulations on how noise on the intensity and phase

influences the back calculation were performed in the previous chapter (see section 3.4).

There, it can be seen that noise on the phase has big consequences for the back cal-

culation and recognisability. Relative intensity fluctuations do not have a high impact.

However, coherent reflections from flat surfaces inside the beam path back to the Fourier

plane could play a major role since those reflections add artefacts in the Fourier spectrum

which then effect the back calculation. It is not trivial to quantify and identify the sources

of noise which influence the spectrum the most and is still under investigation. The two

noise sources which are believed to be the most critical are examined in the following sec-

tion. The quantification of the influences, however, is not trivial and is also the subject

of ongoing investigation.

4.4.1 Phase fluctuations

To enable Fourier imaging, the absolute phase is irrelevant while the relative phase plays

the key role in the back calculation. Above, the generation of the reference for the

lock-in amplifier is presented in subsection 4.2.1 where the electronics of the setup is

introduced. By generating the intermediate frequency of the two synthesisers through
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4.4 Origins of noise in heterodyne imaging

mixing a part of each signal, this intermediate frequency and its phase changes with small

fluctuation of the output frequencies. Using this intermediate frequency as the reference

for the lock-in amplifier dynamically accounts for frequency changes in the beat frequency

(the difference frequency of signal and LO). Consequently, the relative phase is mostly

immune to small frequency fluctuations of the synthesisers. In fact, the phase noise caused

by the synthesiser is small enough to be neglected. This statement is strengthened by

observations of the phase at a position with sufficient signal. However, phase fluctuations

occur with a much higher variation in the regions where the signal is weak. This is common

in regions of high spacial frequencies at the edges of the detection area. A reason for that

is unwanted reflections, which take other than the designed beam path to the detector.

At spatial frequencies where the signal strength of reflections is in the order of the direct

beam, the lock-in amplifier locks to the reflections phase rather than to the desired one.

Before this is adressed in the next subsection, one more factor inducing phase fluctuations

will be mentioned. It must be kept in mind that the source arm and therefore the source

is moved in this setup. The synthesiser device is too big to move along with the source

and therefore the connecting cable which feeds the source with the synthesiser’s signal is

moved and bent during the scanning process. Bending a cable carrying a high frequency

signal, however, leads to phase shifts of the signal [73]. To reduce the effect of this

phenomenon, various different cable configurations are tested with the setup. The results

show that short cables induce big phase shifts that back calculations do not show as a

recognisable object. A long cable for connecting the synthesiser with the moving source

improves the situation because the bending radius in a relative short cable is changed

more than in a long cable.

4.4.2 Reflections inside the setup

Reflections from the surfaces in the setup back to the Fourier plane can be a major

disturbing factor in the back calculation. Reflections not only add intensity where the

initial Fourier spectrum should not show any or less, but also the phase is changed since

the lock-in amplifier locks to the signal with a changed beam path. To limit the complexity,
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only the first reflection is taken into consideration. Even though multiple different surfaces

with different properties have to be accounted for. The reflection coefficient for parallel

RP and perpendicular RS polarised light can be calculated with the refraction coefficients

and the angle of incident with [74]

RP =

∣∣∣∣n1 tan θt − n2 tan θi
n1 tan θt + n2 tan θi

∣∣∣∣2 and (4.8)

RS =

∣∣∣∣n1 tan θi − n2 tan θt
n1 tan θi + n2 tan θt

∣∣∣∣2 , (4.9)

where n1, n2 are the refractive indices of the two media at the interface and θi, θt are

the incident and transmission angle. Because conservation of energy, the transmittance

is calculated with

TP = 1−RP and (4.10)

TS = 1−RS, (4.11)

for parallel and perpendicular polarised light, respectively. For simplicity, the reflective

index for perpendicular incident light to the surface is assumed, which yields,

R =

∣∣∣∣n1 − n2

n1 + n2

∣∣∣∣2 , (4.12)

where transmission and reflection is independent of the polarisation.

Figure 4.13 shows a simplified setup which displays the numbered surfaces considered

for the configuration without a beam splitter (see Fig. 4.3). The detector is glued on

a piece of silicon waver on which the silicon lens is glued from the other side. For

estimation, object À is assumed to be a flat silicon surface which has a refraction index

of 3.45 at 300 GHz [75] resulting in a reflectivity of ∼ 0.3. The objects at Á and Ã are

PTFE (Teflon) THz lenses [64] with a refraction index of 1.44 at 300 GHz [64, 76]. The

reflectivity of 0.03 is rather low and the absorption of 0.4 cm−1 weakens the radiation

with every transmission. The commercial Teflon lens is spherical shaped with a center

thickness of 1.81 cm and 0.57 cm at the edge. Assuming an aperture of 6 cm in diameter
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4.4 Origins of noise in heterodyne imaging

results in a average thickness of 1.57 cm which the radiation has to travel through the

lens resulting in 0.6 ≈ 0.4 cm−1 · 1.57 cm absorption. The metal object at position Â

is assumed to be a 50% free standing perfect reflector. The source at position Ä is

composed of metal again which is in the worst case 100% reflecting back to the beam

path when the focused reflection hits a metal part.

Figure 4.13: Simplified setup with numbered surfaces which have to be considered for
reflection. Silicon at the detector position 1, Teflon (PTFE) at position
2 and 4, the object input at position 3 and the source at position 5.

With the coefficients above, four critical situations are identified where reflections might

come back by a considerable amount to the detector. 30% of the radiation is reflected

from the silicon back to the optical components. First surface to encounter on the way

back is the fat side of the PTFE lens Á which reflects 3% back to the detection plane.

However, the reflection is not focused by the lens but travels twice the focus distance.

The diameter of the initial aperture has doubled to 12 cm, an area of 113 cm2 over which

the radiation is distributed. Since the detection range is only 64 cm2, the detectable

ratio of this radiation is only ∼ 57%. This means up to 0.005 ≈ 0.3 · 0.03 · 0.57 of

the incident radiation on the detector is reflected back to the detector plane detecting

an even smaller fraction at a time. The second situation to consider is the reflection at

the object Â . The radiation has to pass the Teflon lens two times where reflection and

absorption take place. The ratio of radiation transmitted through the lens is calculated by

the previously approximated absorption coefficient of 0.6 and considering two PTFE air

interfaces resulting in (1−0.6)·0.972 ≈ 0.376 transmission. If the object reflects 50%, the

ratio which hits again the detector is estimated to be 0.3 · 0.3762 · 0.5 ≈ 0.021. The third

situation is the standing wave between source and detector. In the worst case, the source

reflects completely, having the reflected radiation to pass four times through a Teflon lens
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and two times the object. The reflected radiation, which reaches again the detector plane

can be estimated to 0.3 · 0.3764 · 0.52 ≈ 0.0016 for a 50% transmitting object which

increases to 0.6% for no object. Depending on the object, the most prominent reflection

occurs between Ä and Â where the highest ratio of radiation with 0.071 ≈ 0.3762 · 0.5

returns on the beam path.

From above, the input object is identified as being the highest impact factor on disturb-

ing reflections. The higher the reflectance of the input, the higher its impact. Especially

the last considered case with an object of 50% metallisation could add 7% to the initial

signal which drastically lowers the DR. It can be reduced by tilting the object by a certain

degree making sure the reflection does not form standing waves in the setup.

4.5 Discussion and comparison

The feasibility of a phase sensitive heterodyne Fourier imaging setup is demonstrated us-

ing two commercial available 300 GHz electronic multiplier chain sources together with a

TeraFET detector (CMOS or GaN/AlGaN). The majority of the presented measurements

feature a beam splitter to superimpose LO and source (see Fig. 4.2). A second configura-

tion of the setup is introduced as an alternative to the previous one and is intended to be

used for future investigations (see Fig. 4.3). It is expected that the latter surpasses the

previous configuration, since a beam splitter reduces signal and due to a limited aperture

the order of spacial frequencies in the Fourier plane is restricted. Furthermore, removing

the beam splitter simplifies the alignment and the overall setup. An increased flexibility

is noted, since without the need of a beam splitter between focussing lens and detector,

no minimum focus length is required to fit the additional optical component in the beam

path. Removing the beam splitter is not the only difference between the two configu-

rations. The detector technology was changed from GaN/AlGaN to CMOS because of

increased sensitivity (for the used frequency) of the latter. Even though the configura-

tion without the beam splitter shows a ∼ 30% higher signal, the back calculations from

measurements of the same object are too similar to favour one over the other in that

perspective. In fact, the signal strength alone is no sufficient criteria to rate the perfor-

82



4.5 Discussion and comparison

mance of a Fourier imaging setup, since disturbance due to reflections, phase shifts or

similar play a much more important role for object reconstruction. In terms of alignment

and flexibility, the setup without the beam splitter surpasses the previous one, but future

experiments have to prove its superiority in imaging performance.

Figures 4.6 and 4.8 show the back calculation of the grid and Siemens-star, respectively,

with the back calculation of the measurement on the left and the simulation on the right

reaching a resolution of ≈ 2 mm. The simulation predicts an intensity and phase of the

grid input in the focus plane which is also measured and shown side by side for comparison

(see Fig. 4.5). The distinct intensity pattern of a Fourier transformed grid is visible in

the measurement even though with visible noise. In contrast to the intensity which is

only dependent on the grid’s shape, the exact appearance of the phase is dependent on

several more influences like distance of the object to the lens, offset of the Gaussian

intensity distribution and aperture size. Therefore, the simulated and measured phase

do not look much alike. The dot shaped phase islands in the positions of the intensity

dots are the most prominent features which can be found with almost every simulation

input (see Fig 3.13). Again, with some restrictions, these features are visible in the

measured phase. Those measurements are sufficient enough to achieve a back calculated

grid close to the simulated grid reconstruction. In order to quantify the similarity of

the back calculation for simulation and measurement, the normalised cross correlation is

used [77]. A maximum cross correlation of 72.87 % was found which can be stated as

high correlation [78]. Obviously, the correlation has again a grid like pattern since the

simulation and the measurement have the same periodicity (see figure A.5b). A similar

situation is observed with the comparison of the Fourier plane data of the measured and

simulated Siemens-star (see Fig. 4.7). The features of the intensity in the focus plane are

not as distinctive as the grids intensity pattern. However, the simulation and measurement

show similarities. Just like before, the phase of the Siemens-star is also very dependent

on the same input parameter as for the grid input. The simulation, however, is very much

like the measurement. The measurement shows the same features with even the same

absolute values observable. This is a good agreement and therefore results in a back

calculation shown in figure 4.8a close to the prediction of the simulation. However, the
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maximum calculated cross correlation is with 65.51 % for simulation and measurement

back calculation lower than the grid’s result which is reasonable since the Siemens-star is

more complicated than the grid object. Also the correlation pattern is more distinct than

the simulation and measured grid correlation (see figure A.5a). To summarise, grid and

Siemens-star measurements result in sufficient good data for reconstructing the inputs.

Further investigations are planed to include a reference measurement without object in

the beam path to increase reconstruction quality.

Simulations show a high enough depth sensitivity to distinguish between different posi-

tions of the input in front of the lens (see Fig. 3.16). The sharpest input is reconstructed

for the virtual distance of the input object which is experimentally confirmed. In a series

of measurements, the Siemens-star test chart is placed at several positions from 7 cm

to 13 cm away from the lens (see Fig. 4.9). It is easy to see that the clearest image of

the Siemens-star is where the back calculation distance matches the real distance. The

sharpness of the back calculation is only dependent on the relative difference between

used distance for the back calculation and actual distance. This is best seen in the sim-

ulation where the same relative distances result in the exact same reconstruction. The

back calculation of the measurement does not show this behaviour revealing an asymme-

try in the experiments. This irregularity can be reasoned with several different origins.

For example in an inaccurate positioning of the objects, a noisy detection process or not

perfectly collimated light to name a few explanations.

Another series of measurements feature a PVC “A” as the input object (see Fig. 4.11).

A PVC object provides a low contrast because it is transparent for THz radiation. The

PVC input can still be seen in the back calculations. This is due to the diffraction at the

object’s edges as well as the phase of the back calculation. The reconstructed objects

quality does not degenerate as quickly with increasing relative distance to the real input

as it is observed with the Siemens-star input. Future experiments have to investigate on

this behaviour which might be disturbing for reconstruction of a three dimensional scene

or a transparent volume.

By placing multiple opaque objects in the beam path, a three dimensional scene was

created which was simulated with two objects by numerically propagating the first input
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to the second input and to the Fourier plane from there. The simulations reveal that it is

not trivial to reconstruct two opaque objects in the beam path at their respective input

distances. One reason is the altered field incident on the second object and the shadowing

of the first by the second. Secondly, it is questionable if a simple back calculation is

adequate, since in the present simulations and measurement, the influence on the light

field of the closer object is ignored for the back calculation of the object further away

from the lens and vice versa. This complicated situation requires special attention and

a more careful approach as simply ignoring the first input object when calculating the

second or the other way around. Further investigations on existent data have to be

undertaken by altering the reconstruction algorithm optimising it for a three dimensional

scene reconstruction. For future measurements, it must be considered to expand the

detection range or shortening the focus length to include higher spacial frequencies into

the calculation to gather more data which is necessary for a thee dimensional scene

reconstruction. However, one has to be sure to resolve the intensity and phase features

in the Fourier plane or information about the object will be lost. Also, one has to keep in

mind that even when in principle a large area can be scanned to attempt high resolution

of the back calculation, the wavelength will still limit the achievable resolution because

the electromagnetic wave does not resolve the small features, diminishing its high spacial

frequencies in the regions far away from the center. The wavelength dependent k-vector

can also be used to obtain a Fourier spectrum without performing a 2D raster scan.

Hichem Guerboukha and his team exploid this fact using a TDS setup [79]. There, the

scanning happens in a circle considering the different frequencies present in the short pulse

to sample the k-space. This is an interesting solution but one has to be sure that the

transmission of the investigated object is not frequency dependent. The setup’s sources

in the present work emits just one frequency at a time which makes the frequency scan

more difficult.
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There have been many approaches in the realisation of THz imaging for various applica-

tions using different sources, detectors and techniques with advantages and disadvantages

to each method [10, 79–86]. This work presents two novel systems for THz imaging. The

two set-ups are related to the purpose of THz imaging but are otherwise separately dis-

cussed in chapters on low-repetition-rate THz pulse detection and Fourier imaging.

5.1 Low-repetition-rate terahertz pulse imaging

and spectroscopy sensing

In summary, single pulse detection is realised using low repetition THz pulses from a

commercial available Q-switched OPO THz source, the “Firefly-THz” in conjunction with

a TeraFET detector based on GaN/AlGaN technology for the first time. A double stage

amplification circuit based on low noise operational amplifier was designed and fabricated

to visualise each pulse with an ordinary oscilloscope enabling video rate imaging.

The quality of the source’s cavity is switched by a high voltage, inducing an ubiquitous

pulsed electric field which can be picked up by any cable in the set-up. Shielding the

detector from the high voltage is achieved by including the detector and the amplification

circuit with batteries as power supply in a metal housing. Also, the gate voltage is supplied

with a battery. By applying these measures, single pulse detection with a maximum

pulse to pulse signal to noise ratio of 25.5 and a dynamic range of 300 at 0.8 THz is

achieved. The source’s THz pulses carry enough power to drive the detector in saturation

which indicates that the pulse energy is high enough to be distributed over multiple

detectors enabling single shot imaging with a detector array. The principle of imaging
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is demonstrated using a scanning set-up achieving a lateral resolution of 1.2 mm. The

spectroscopy capabilities of the set-up were demonstrated using the explosive simulant

PABA where the absorption at 0.8 THz was resolved. Although, the highest sensitivity

of the detector is not within the tuning range of the Firefly-THz resulting in a strong

decreasing signal over the spectrum, the TeraFET detector was shown to be a capable

detection system together with Firefly-THz [47].

Attempts to increase the SNR by referencing the THz output with the corresponding

infrared or pump signal of the THz generation did not succeed. Further studies are

necessary to identify characterise the cascade effect and their threshold in the non liner

OPO process. With a strong correlation, a high increase of signal to noise ratio could be

achieved even if the THz output power has to be decreased. Furthermore, the sensitivity

of the detector is not matched with the tuning range of the “Firefly-THz”. Further studies

using this kind of set-up should include a TeraFET with an antenna optimised to between

0.8 and 1.7 THz. Special care has to be taken that a detector with its highest sensitivity

near the maximum output power is not exposed by the focused intensity of the “Firefly-

THz” in order to avoid saturation or even destruction of the detector. A detector array

with appropriate actuators could be used to record a hole area with frame rates up to

90 Hz resulting in a real time recording in the THz regime.

5.2 Fourier imaging through terahertz heterodyne

detection

The second main topic addresses the concept, simulation and accomplishment of THz

Fourier imaging. The simulations which are based on the Fresnel diffraction integral, are

performed to study an electric field illuminating an input object and its propagation to

the focus plane. Numerical studies also help to predict properties, features and potential

outcomes of an experimental measurements. Two electrical multiplier chain THz sources

are used in a heterodyne configuration to enable phase sensitive image detection of a

TeraFET detector for the first time. Simple input objects like a metal grid and a Siemens-
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star test chart are clearly recognisable and the predicted depth sensitivity is demonstrated.

The simulations give an idea of which objects create which characteristic intensity and

phase pattern. Numerical calculations also help to predict the impact of noisy intensity

and phase on the back calculation. Obviously, different objects result in different Fourier

spectra with the highlighted spacial frequencies from the features of the object. It can

be shown that the phase is more important in the Fourier plane than the intensity for the

input retrieval. Therefore, the back calculation suffers less from noise on the intensity

than from noise on the phase which also carries the depth information. Corresponding

measurements with the grid and Siemens-star object were performed achieving the pre-

dicted depth sensitivity for numerical focussing and a lateral resolution of 2 mm. The

retrieved input of the objects results in a high correlation with the numeric prediction (see

section 4.5) making it easy to distinguish between the objects. Multiple objects in the

beam path prove to be challenging for the presented set-up in the current configuration.

Nevertheless, heterodyne detection enables to capture a 3D scene by numerical focussing

to different depth after taking one set of data. Also, Fourier optics allows to generate a

large, low resolution image by taking high resolution, compact data and vice versa.

The lateral resolution is currently restricted by the scanning range. To increase the

resolution of the retrieved input, future experiments have to increase the range in k

space. This can either be achieved by increasing the travel of the translation stages or

lower the focus length and/or the wavelength. As mentioned before, coherent reflections

change the phase in the Fourier plane and therefore have a high impact on the quality

of the reconstruction. The coherent length in succeeding experiments has to be carefully

shortened to reduce standing waves but not destroy the phase behaviour of the Fourier

spectrum. To make use of the measurement’s resolution in the Fourier plane, the field of

view has to be broadened in the Fourier setup and filter the THz beam so that the object

is illuminated with a homogeneous intensity distribution instead of a Gaussian one. Using

the current setup, there is no estimate on how precise the phase curvature was measured

and therefore how depth sensitive the measurements are. In conclusion, this study realises

the potential of THz sources for applications in imaging and spectroscopy.
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A Complementary Figures

The appendices include some pictures which were believed to not fit in the continuous

text but are still interesting additional material for the reader’s consideration.

A.1 Pulsed terahertz detection

Section 2.3.2 addresses the topic of parasitic effects during the nonlinear optical process

in the OPO. Without taking good care about the reflexes in the “Firefly-THz” one can

easily couple out frequencies which were never designed to leave the output window of

the source as one can see through a IR-viewer (see Fig. A.1).

Figure A.1: View of the Firefly-THz output window through a IR-viewer. The area
with increased IR intensity at the corner of the output window is high-
lighted in red.
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A Complementary Figures

The simultaneous detection with several detectors at the same time reduces acquisition

time if the radiation is distributed over multiple detectors. A possible implementation is

shown in figure A.2c. The detector array was used to generate the THz image scan (see

Fig. A.2b) of a cell phone (see Fig. A.2a).

(a) Cell phone image (b) THz image (c) Detector array with silicon lenses

Figure A.2: (a) Optical image of a cell phone without the back cover. (b) Reflective
THz image scan of the cell phone where one can easily see different metal
parts as bright areas. (c) Used detector array seen from the back with
each detector featuring a 4 mm hemispherical silicon lens with a total
width of 25 mm.
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A.2 Fourier optics simulation

A.2 Fourier optics simulation

As an interesting test to demonstrate the importance of the phase in the Fourier transform,

one can Fourier transform two total different images and swap their resulting phases. The

inverse Fourier transform shows the features of the image of the phase. The figure below

(Fig. A.3) demonstrates this small experiment.

mag(A)

mag(A)

mag(B)

mag(B)

phase(A)

phase(B)

phase(B)

phase(A)

FT

iFT

FT

iFT

Figure A.3: The top row shows two pictures which were Fourier transformed and its
phase and amplitude were switched before the inverse Fourier transform
with its result shown in the bottom row.
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A.3 Terahertz Fourier imaging

The local oscillator in a heterodyne measurement setup interferes with the probing signal

and forms the beat frequency. The setup presented in section 4.2.3 uses a linear approach

without a beam splitter. The local oscillator forms a standing wave between source and

detector. This leads to field enhancements for frequencies with constructive interference.

This can be seen in the figure below (Fig. A.4) in the frequency range between 240 and

320 GHz.
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Figure A.4: The spectrum of the local oscillator response where standing waves lead
to field enhancements.

In order to calculate a cross correlation between two figures, their resolution must be

matched. The way the algorithm works is that the first picture is padded with zeros half

the side length (width or height) of the second image. The second picture is placed at

each position of the padded first picture and the correlation for that picture position is

calculated. This generates another figure of correlation where each pixel represents the

value of correlation between the two pictures where a value of one represents the perfect

match. Below, this cross correlation can be seen for the grid and the Siemens-star data

set on the left and right, respectively (see Fig. A.5). The correlation of the grid is again a
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A.3 Terahertz Fourier imaging

grid. Because of its periodicity, the images look similar every grid period. The correlation

of the Siemens-star, however, looks more complicated. In the case of chapter 4.3, only

the maximum value is of interest.
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(a) Normalised cross correlation of grid
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(b) Normalised cross correlation of Siemens-
star

Figure A.5: Normalised cross correlation of the back calculation of the measured and
simulated Fourier spectrum. The back calculation’s correlation of simu-
lation and measurement from the grid Fourier spectrum is shown on the
left. The right shows the corresponding figure of the Siemens-star.
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B Python code for Fourier optic

simulation and back calculation

B.1 Implemented functions

#impor t modules

from s c i p y impor t c o n s t a n t s #f o r c on s t a n t s

impor t numpy as np #f o r maths

de f create_x_and_y ( r ea l_g r i d_pe r i od , g r i d_pe r i od , N) :

""" Thi s f u n c t i o n c r e a t e s x and y a r r a y s t ha t . . .

c o n t a i n a z e r o e l ement w i th r e s o l u t i o n . . .

’ g r i d_pe r i o d / r ea l_g r i d_pe r i od ’ . " " "

i f N%2:

l i m i t = r e a l_g r i d_pe r i o d ∗(N−1)/ g r i d_pe r i o d /2

x = np . l i n s p a c e (− l i m i t , l i m i t ,N)

e l s e :

l i m i t = r e a l_g r i d_pe r i o d ∗N/ g r i d_pe r i o d /2

x = np . l i n s p a c e (− l i m i t , l i m i t ,N, endpo i n t = Fa l s e )

i f N%2:

l i m i t = r e a l_g r i d_pe r i o d ∗(N−1)/ g r i d_pe r i o d /2

y = np . l i n s p a c e (− l i m i t , l i m i t ,N)

e l s e :
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l i m i t = r e a l_g r i d_pe r i o d ∗N/ g r i d_pe r i o d /2

y = np . l i n s p a c e (− l i m i t , l i m i t ,N, endpo i n t = Fa l s e )

r e t u r n x , y
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B.1 Implemented functions

de f create_xf_and_yf ( x , y , lam , f ) :

""" C r e a t e s the c o o r d i n a t e s f o r the F o u r i e r p l an e ."""

nx = np . s i z e ( x )

ny = np . s i z e ( y )

fx_max = ( nx−1)/( x . ptp ( ) ∗ 2)

fy_max = ( ny−1)/( y . ptp ( ) ∗ 2)

i f nx%2:

x f = lam∗ f ∗np . l i n s p a c e (−fx_max , fx_max ,

nx , endpo i n t = True )

e l s e :

x f = lam∗ f ∗np . l i n s p a c e (−fx_max , fx_max ,

nx , endpo i n t = Fa l s e )

i f ny%2:

y f = lam∗ f ∗np . l i n s p a c e (−fy_max , fy_max ,

ny , endpo i n t = True )

e l s e :

y f = lam∗ f ∗np . l i n s p a c e (−fy_max , fy_max ,

ny , endpo i n t = Fa l s e )

r e t u r n xf , y f
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de f s im_f i e l d_th rough_in f_ l en s ( f i e l d , x , y , f r equency ,

f o ca l_ l eng th , d i s t_ob j , d i s t_ s c r e e n ) :

d e f my_fft ( a r r a y ) :

""" I n t e r n a l f u n c t i o n f o r the FFT"""

r e t u r n np . f f t . f f t s h i f t ( np . f f t . f f t 2 (

np . f f t . i f f t s h i f t ( a r r a y ) ) )

i f np . shape ( f i e l d ) == ( np . s i z e ( y ) , np . s i z e ( x ) ) :

#the shape has to f i t w i th the d imen s i on s o f x and y

c = con s t a n t s . c #speed o f l i g h t

nx = np . s i z e ( x )

ny = np . s i z e ( y )

nu = f r e qu en c y

f = f o c a l_ l e ng t h

d = d i s t_ob j

lam = c/nu

k0 = 2∗np . p i / lam

#d e f i n e the d imen s i on s

xx , yy = np . meshgr id ( x , y )

xf , y f = create_xf_and_yf ( x , y , lam , f )

xx f , y y f = np . meshgr id ( xf , y f )

Exy0 = f i e l d #complex f i e l d a r r a y

F0 = my_fft ( Exy0∗np . exp (1 j ∗k0 /2∗( xx∗∗2+yy ∗∗2)

∗(1/ f−1/d i s t_ s c r e e n ) ) )
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U_f = 1 j ∗F0/( lam∗ d i s t_ s c r e e n )

∗np . exp(−1 j ∗k0 /2∗(1/ d i s t_sc r e en−d/ f ∗∗2)

∗( x x f ∗∗2+ yy f ∗∗2))

e l s e :

r a i s e Runt imeEr ro r ("The l e n g t h o f x and y have

to match the d imen s i on s o f ’ f i e l d ’ . " )

r e t u r n U_f , x f , y f
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de f r e t r i e v e_ob j e c t_ f r om_f i e l d ( f i e l d , x f , y f , f r equency ,

f o ca l_ l eng th , d i s t_ob j , d i s t_ s c r e e n ) :

d e f my_i f f t ( a r r a y ) :

""" I n t e r n a l f u n c t i o n f o r the iFFT"""

r e t u r n np . f f t . f f t s h i f t ( np . f f t . i f f t 2 (

np . f f t . i f f t s h i f t ( a r r a y ) ) )

i f np . shape ( f i e l d ) == ( np . s i z e ( y f ) , np . s i z e ( x f ) ) :

c = con s t a n t s . c #the speed o f l i g h t

nx = np . s i z e ( x f )

ny = np . s i z e ( y f )

nu = f r e qu en c y

f = f o c a l_ l e ng t h

d = d i s t_ob j

lam = c/nu #wave l e n g t h

k0 = 2∗np . p i / lam #wave v e c t o r

#d e f i n e the d imen s i on s

xx f , y y f = np . meshgr id ( xf , y f )

f x = x f /( lam∗ f )

f y = y f /( lam∗ f )

x_step = 1/( np . abs ( f x ) . max ( ) ∗2 )

y_step = 1/( np . abs ( f y ) . max ( ) ∗2 )
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#de f i n e x and y making s u r e t h e r e i s a 0 e l ement

i f nx%2:

x = np . l i n s p a c e ((−nx+1)/2 ,( nx−1)/2 ,

nx , endpo i n t = True )∗ x_step

e l s e :

x = np . l i n s p a c e (−nx /2 , nx /2 ,

nx , endpo i n t = Fa l s e )∗ x_step

i f ny%2:

y = np . l i n s p a c e ((−ny+1)/2 ,( ny−1)/2 ,

ny , endpo i n t = True )∗ y_step

e l s e :

y = np . l i n s p a c e (−ny /2 , ny /2 ,

ny , endpo i n t = Fa l s e )∗ y_step

xx , yy = np . meshgr id ( x , y )

PXY = ((1 j ∗k0 )/(2∗ np . p i ∗ d i s t_ s c r e e n ) )

∗np . exp(−1 j ∗k0 /2∗(1/ d i s t_sc r e en−d/ f ∗∗2)

∗( x x f ∗∗2+ yy f ∗∗2))

F0_back = f i e l d / PXY

E0_back = my_i f f t ( F0_back )

∗np . exp (1 j ∗k0 /2∗( xx∗∗2+yy ∗∗2)

∗(1/ f−1/d i s t_ s c r e e n ) )

e l s e :

r a i s e Runt imeEr ro r ("The l e n g t h o f x and y have to

match the d imen s i on s o f ’ f i e l d ’ . " )

r e t u r n E0_back , x , y
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B.2 Fourier simulation script

#impor t modules

impor t m a t p l o t l i b . p y p l o t as p l t #p l o t t i n g module

from s c i p y impor t c o n s t a n t s #f o r c on s t a n t s

impor t numpy as np #f o r maths

impor t mycode #custom f u n c t i o n s

############### d e f i n i n g i n pu t pa ramete r s ###############

c = con s t a n t s . c #the speed o f l i g h t [m/ s ]

N = 201 #the p i x e l number f o r the NxN f i e l d

d = 0 .1 #d i s t a n c e o b j e c t to the l e n s [m]

f = 0 .15 #fo cu s l e n g t h o f the l e n s [m]

s c r e e n_d i s t = 0 .15 #d e t e c t i o n p l ane d i s t a n c e [m]

nu = 13.27∗18∗10∗∗9 #f r e qu en c y [ Hz ]

lam = c/nu #wave l ength

k0 = 2∗np . p i / lam #wave v e c t o r

# d e f i n e a r e l a t i o n between r e a l s i z e and r e p r e s e n t a t i o n

g r i d_pe r i o d = 6 #p i x e l

g r id_width = 2 #p i x e l

r e a l_g r i d_pe r i o d = 0.0075 #[m]

r ea l_gr i d_wid th = 0.0025 #[m]

#############################################################
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############## c r e a t e o b j e c t t r a n s p a r e n c y ##############

Ixy1 = mycode . a p e r t u r e ( (N,N) , 22 )

∗mycode . g a u s s i a n ( (N,N) , 9 , 9 , 1 , 2 )

∗mycode . c r e a t e_g r i d ( (N,N) , g r i d_pe r i od , g r id_width )

############################################################

#gene r a t e x and y so tha t t h e r e i s a z e r o e l ement

x , y = mycode . create_x_and_y ( r ea l_g r i d_pe r i od , g r i d_pe r i od ,N)

#c r e a t e f i e l d at the i n pu t t r a n s p a r e n c i e s

ph i x y0 = np . z e r o s ( (N,N) ) #ze ro phase

Exy1 = np . s q r t ( I x y 1 )∗ np . exp (1 j ∗ ph i x y0 ) #E− f i e l d

################# Fou r i e r s im u l a t i o n ###################

#s imu l a t e i n pu t

U_f1 , x f , y f = mycode . s im_f i e l d_th rough_in f_ l en s (

Exy1 , x , y , nu , f , d , s c r e e n_d i s t )

#mod i f i c a t i o n s on the s imu l a t i o n r e s u l t come he r e

#back c a l c u l a t i o n

E_b1 , x , y = mycode . r e t r i e v e_ob j e c t_ f r om_f i e l d (

U_f1 , x f , y f , nu , f , d , s c r e e n_d i s t )

############################################################

#c a l c u l a t e i n t e n s i t y and phase

i n t e n s i t y F o u r i e r P l a n e = np . abs (U_f1)∗∗2

pha s eFou r i e rP l a n e = np . ang l e (U_f1 )

i n t e n s i t y B a c kC a l c u l a t i o n = np . abs (E_b1)∗∗2
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##################### p l o t r e s u l t s #####################

f i g = p l t . f i g u r e ( )

mycode . c en t e r_p l o t ( I xy1 , I x y 1 . shape )

p l t . c o l o r b a r ( )

f i g = p l t . f i g u r e ( )

mycode . c en t e r_p l o t ( i n t e n s i t y F o u r i e r P l a n e , U_f1 . shape , x f , y f )

p l t . c o l o r b a r ( )

f i g = p l t . f i g u r e ( )

mycode . c en t e r_p l o t ( pha s eFou r i e rP l an e , U_f1 . shape , x f , y f )

p l t . c o l o r b a r ( )

f i g = p l t . f i g u r e ( )

mycode . c en t e r_p l o t ( i n t e n s i t y B a c kC a l c u l a t i o n , E_b1 . shape )

p l t . c o l o r b a r ( )

p l t . show ( )
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