SUPPLEMENTARY FIGURES AND TABLES

Supplementary Figure 1: Absence of detectable PKC β protein levels and PKC α and ABCB1 depletion in UKF-NB-3^rVCR¹⁰ cells. (A) A Western blot for PKC β did not result in detectable PKC β protein levels in UKF-NB-3^rVCR¹⁰ cells although PKC β was readily detectable in K562 cells. (B) siRNA-mediated depletion of PKC α or ABCB1 in UKF-NB-3^rVCR¹⁰ cells 48 h post- transfection determined by flow cytometry using specific antibodies. Values are means ± S.D. (*P < 0.05) relative to non-targeting siRNA as indicated by *t*-test.

Supplementary Figure 2: Effects of siRNA-mediated PKCa depletion on PKC signalling as indicated by MARCKS phosphorylation and on ABCB1 function. (A) Effects of siRNA- mediated PKCa depletion on MARCKS phosphorylation determined in UKF-NB-3^{ABCB1} cells 48 h after transfection; (B) siRNA-mediated PKCa depletion does not affect ABCB1 expression. *P < 0.05 relative to non-treated control; (C) siRNA directed against ABCB1 (but not siRNA directed against PKCa) increases (1) accumulation of the fluorescent ABCB1 substrate rhodamine 123 (0.5 μ M) in ABCB1-expressing UKF-NB-3^{ABCB1} cells and (2) the sensitivity of UKF-NB-3^{ABCB1} cells to the cytotoxic ABCB1 substrate vincristine. *P < 0.05 relative to non-trageting siRNA.

Supplementary Figure 3: Influence of enzastaurin on accumulation of mitoxantrone (40 μ M; a fluorescent ABCG2 substrate) in non-ABCG2-expressing UKF-NB-3 cells and UKF-NB-3 cells transduced with a control vector (UKF-NB-3^{iG2}) as detected by flow cytometry (RFU = relative fluorescence units). The ABCG2 inhibitor Ko143 (1 μ M) served as positive control.

Cell line	Drug	IC ₅₀ (nM)
UKF-NB-3 ^{ABCB1}	staurosporine	9.80 ± 2.49
	UCN-01	104.6 ± 23.7
	enzastaurin	8,365 ± 1,812
	GF109203X	5,244 ± 1,408
	RO-31-8220	4,996 ± 1950
	verapamil	45,606 ± 10,129
UKF-NB-3 ^{Cer2}	staurosporine	3.35 ± 0.98
	UCN-01	77.2 ± 20.3
	enzastaurin	7,862 ± 1,041
	GF109203X	2,477 ± 604
	RO-31-8220	972 ± 195
	verapamil	44,157 ± 9,211

Supplementry Figure 4A: Effects of staurosporine, enzastaurin, UCN-01, GF109203X, and RO-31-8220, and verapamil on neuroblastoma cell viability.

UKF-NB-3^{ABCB1}

rhodamine 123 in the absence of drug)

Supplementary Figure 4B: (*Continued*) Effects of staurosporine, enzastaurin, UCN-01, GF109203X, RO-31-8220, and verapamil on accumulation of the fluorescent ABCB1 substrate rhodamin 123 in ABCB1-transduced UKF-NB-3 cells (UKF-NB-3ABCB1) and UKF-NB-3 cells transduced with a control vector (UKF-NB-3Cer2). The investigated drug concentrations did not affect cell viability in this short-term assay as indicated by MTT assay (data not shown). Results are expressed as fold change (rhodamine 123 fluorescence in the presence of drug/ rhodamine 123 in the absence of drug). *P < 0.05 relative to rhodamine 123 alone.

rhodamine 123 in the absence of drug)

Supplementary Figure 4C: (*Continued*) Effects of staurosporine, enzastaurin, UCN-01, GF109203X, RO-31-8220, and verapamil on accumulation of the fluorescent ABCB1 substrate rhodamin 123 in ABCB1-transduced UKF-NB-3 cells (UKF-NB- 3^{ABCB1}) and UKF-NB-3 cells transduced with a control vector (UKF-NB- 3^{Cer2}). The investigated drug concentrations did not affect cell viability in this short-term assay as indicated by MTT assay (data not shown). Results are expressed as fold change (rhodamine 123 fluorescence in the presence of drug/rhodamine 123 in the absence of drug). **P* < 0.05 relative to rhodamine 123 alone.

1) $NLF^{r}VCR^{10}$ displays enhanced expression of ABCC1 relative to NLF but not of ABCB1 or ABCG2 (* P < 0.05 relative to NLF).

2) The ABCC1 inhibitors MK571 (10 μ M) and verapamil (5 μ M) sensitise NLF^rVCR¹⁰ cells but not NLF cells to the ABCC1 substrate vincristine. MK571 or verapamil alone did not affect the viability of the investigated cells (* P < 0.05 relative to vincristine alone (control)).

3) SiRNA directed against ABCC1 sensitises $NLF^{r}VCR^{10}$ cells to vincristine (scr = scrambled non-targeting siRNA; * P < 0.05 relative to no siRNA).

Supplementary Figure 5A: NLF^rVCR¹⁰ **as ABCC1 model. (1)** NLF^rVCR¹⁰ displays enhanced expression of ABCC1 relative to NLF but not of ABCB1 or ABCG2 (*P < 0.05 relative to NLF). **(2)** The ABCC1 inhibitors MK571 (10 µM) and verapamil (5 µM) sensitise NLF^rVCR¹⁰ cells but not NLF cells to the ABCC1 substrate vincristine. MK571 or verapamil alone did not affect the viability of the investigated cells (*P < 0.05 relative to vincristine alone (control)). **(3)** SiRNA directed against ABCC1 sensitises NLF^rVCR¹⁰ cells to vincristine (scr = scrambled non-targeting siRNA; *P < 0.05 relative to no siRNA). (*Continued*)

NLF'VCR¹⁰

Enzastaurin (µM)	Viability in the presence of enzastaurin alone	vincristine IC ₅₀ (ng/mL)	fold change*
0	100	36.44 ± 2.25	
0.3125	106 ± 8	24.10 ± 1.08	1.51
0.625	98 ± 6	22.71 ± 2.21	1.60
1.25	96 ± 6	15.52 ± 3.84	2.35
2.5	88 ± 5	8.92 ± 0.77	4.09
5	52 ± 1	2.03 ± 0.33	17.95

G62

Enzastaurin (µM)	Viability in the presence of enzastaurin alone	vincristine IC ₅₀ (ng/mL)	fold change
0	100	1.95 ± 0.25	
0.3125	94 ± 4	1.61 ± 0.10	1.21
0.625	89 ± 4	1.51 ± 0.11	1.29
1.25	80 ± 2	1.09 ± 0.03	1.79
2.5	73 ± 3	0.61 ± 0.07	3.20
5	55 ± 4	0.24 ± 0.06	8.13

PC3^rVCR²⁰

Enzastaurin (µM)	Viability in the presence of enzastaurin alone	vincristine IC ₅₀ (ng/mL)	fold change
0	100	20.23 ± 1.41	
0.3125	84 ± 7	15.72 ± 4.44	1.29
0.625	80 ± 5	13.80 ± 4.23	1.47
1.25	71 ± 1	9.12 ± 1.95	2.22
2.5	62 ± 3	5.14 ± 0.26	3.94
5	32 ± 1	5.16 ± 1.30	3.92

 * IC_{\rm 50} vincristine/ IC_{\rm 50} vincristine in the presence of enzastaurin

Supplementary Figure 5B: (*Continued*) Enzastaurin sensitises ABCC1-expressing NLF^rVCR¹⁰, G62, and PC3^rVCR¹⁰ cells to the ABCC1 substrate vincristine. Cell viability was determined by MTT assay after 120 h of incubation (IC_{50} = concentration that reduces cell viability by 50%). (*Continued*)

Representative flow cytometry histograms

Supplementary Figure 5C: (*Continued*) Effects of enzastaurin on the accumulation of the fluorescent ABCC1 substrate 5-CFDA in ABCC1-expressing NLFrVCR¹⁰ cells (*P < 0.05 relative to non-treated control).

Supplementary Figure 6: ABCB1 expression in the project cell lines as determined by flow cytometry or Western blot; *P < 0.05 relative to respective parental cell line, # P < 0.05 UKF-NB-3^{Cer2}.

Supplementary Table 1: Influence of enzastaurin (1.25 μ M) on the vincristine sensitivity of neuroblastoma and rhabdomyosarcoma cells. Cell viability was determined after a 5 day incubation period by MTT assay. Concentrations that reduced cell viability by 50% (IC₅₀) were calculated.

			Influence of enzastaurin on the vincristine IC_{50}		
Cell line	ABCB1status	IC ₅₀ ¹ vincristine (ng/ml)	cell viability enzastaurin (% control)	IC ₅₀ vincristine (ng/ml)	Fold change ²
UKF-NB-3	-	0.29 ± 0.09	99.5 ± 15.0	0.30 ± 0.16	0.97
UKF-NB-3 ^r VCR ¹⁰	+	53.0 ± 7.7	85.3 ± 12.2	1.69 ± 0.41^{3}	31.37
UKF-NB-3 ^{ABCB1}	+	33.0 ± 8.2	99.9 ± 12.3	0.77 ± 0.11^3	42.86
UKF-NB-3 ^{Cer2}	_	0.56 ± 0.06	91.7 ± 10.9	0.52 ± 0.08	1.08
UKF-NB-2	—	0.61 ± 0.28	95.6 ± 19.8	0.49 ± 0.22	1.24
UKF-NB-2 ^r VCR ¹⁰	+	50.6 ± 9.0	88.3 ± 9.6	$2.08\pm0.39^{\scriptscriptstyle 3}$	24.34
KFR	_	0.47 ± 0.11	97.4 ± 13.7	0.26 ± 0.04	1.81
KFR ^r VCR ¹⁰	+	51.6 ± 13.2	106.8 ± 11.2	2.46 ± 0.37^3	20.99
Rh30	_	0.38 ± 0.01	108.1 ± 11.0	0.40 ± 0.18	0.95
Rh30 ^r VCR ¹⁰	+	76.7 ± 14.5	104.6 ± 8.2	1.97 ± 0.28^{3}	38.86

¹Values are mean \pm S.D. of three independent experiments.

 ${}^{2}\text{IC}_{50}$ vincristine/ IC₅₀ vincristine in the presence of enzastaurin.

 ${}^{3}P \le 0.05$ relative to IC₅₀ vincristine in the absence of enzastaurin as indicated by *t*-test.

Supplementary Table 2: Influence of enzastaurin on the sensitivity of ABCB1-expressing UKF-NB-3^rVCR¹⁰ cells to the cytotoxic ABCB1 substrates paclitaxel and actinomycin D. Cell viability was determined after a 5 day incubation period by MTT assay. Concentrations that reduced cell viability by 50% (IC₅₀) were calculated.

		Influence of enzastaurin on the paclitaxel IC_{50}			
Enzastaurin	IC ₅₀ ¹ paclitaxel (ng/ml)	cell viability enzastaurin (% control)	IC ₅₀ paclitaxel (ng/ml)	Fold sensitisation ²	
0.625 μM	75.31 ± 8.36	87.74 ± 9.18	5.62 ± 0.74^{3}	13.4	
1.25 μM	91.00 ± 10.27	87.96 ± 8.83	3.04 ± 0.41^3	29.93	

		Influence of enzastaurin on the actinomycin D IC ₅₀			
Enzastaurin IC ₅₀ ⁴ actinomycin D (ng/ml)		cell viability enzastaurin (% control)	IC ₅₀ actinomycin D (ng/ml)	Fold sensitisation ⁵	
0.625 μM	2.10 ± 0.27	90.30 ± 6.38	0.38 ± 0.05^{6}	5.53	
1.25 μM	2.28 ± 0.15	88.23 ± 4.16	0.32 ± 0.04^{6}	7.13	

¹Values are mean \pm S.D. of three independent experiments.

 ${}^{2}\text{IC}_{50}$ paclitaxel/ IC₅₀ paclitaxel in the presence of enzastaurin.

 ${}^{3}P \le 0.05$ relative to IC₅₀ paclitaxel in the absence of enzastaurin as indicated by *t*-test.

⁴Values are mean \pm S.D. of three independent experiments.

 $^5\mathrm{IC}_{_{50}}$ actinomycin D/ $\mathrm{IC}_{_{50}}$ actinomycin D in the presence of enzastaurin.

 ${}^{6}P < 0.05$ relative to IC₅₀ actinomycin D in the absence of enzastaurin as indicated by *t*-test.

Supplementary Table 3A: Concentration-dependent influence of enzastaurin on the sensitivity of low ABCB1-expressing UKF-NB-3 and high ABCB1-expressing UKF-NB-3^rVCR¹⁰ neuroblastoma cells to the ABCB1 substrate vincristine. Cell viability was determined after a 5 day incubation period by MTT assay. Concentrations that reduced cell viability by 50% (IC₅₀) were calculated.

		Influence of enzastaurin on the vincristine IC_{50} in UKF-NB-3 cells (low ABCB1)			
Enzastaurin (µM)	IC ₅₀ ¹ vincristine (ng/ml)	cell viability enzastaurin (% control)	IC ₅₀ vincristine (ng/ml)	Fold sensitisation ²	
0.3125	0.25 ± 0.05	103.45 ± 12.22	0.23 ± 0.07	1.09	
0.625	0.22 ± 0.08	91.84 ± 10.73	0.31 ± 0.04	0.71	
1.25	0.33 ± 0.10	86.91 ± 11.79	0.21 ± 0.08	1.57	
2.5 µM	0.27 ± 0.06	74.29 ± 9.18	0.20 ± 0.04	1.35	

Influence of enzastaurin on the vincristine IC₅₀ in UKF-NB-3^rVCR¹⁰ cells (high ABCB1)

Enzastaurin (µM)	IC ₅₀ ¹ vincristine (ng/ml)	cell viability enzastaurin (% control)	IC ₅₀ vincristine (ng/ml)	Fold sensitisation ²
0.3125	45.21 ± 6.09	95.35 ± 9.93	8.93 ± 1.16^{3}	5.06
0.625	47.27 ± 5.89	100.92 ± 14.51	4.43 ± 0.55^{3}	10.67
1.25	53.02 ± 7.68	85.32 ± 12.17	1.69 ± 0.41^{3}	31.37
2.5 μM	56.51 ± 6.75	65.71 ± 9.74	0.60 ± 0.12^{3}	94.18

¹Values are mean \pm S.D. of three independent experiments.

 ${}^{2}\text{IC}_{_{50}}$ vincristine/ IC₅₀ vincristine in the presence of enzastaurin. ${}^{3}P < 0.05$ relative to IC₅₀ vincristine in the absence of enzastaurin as indicated by *t*-test.

Supplementary Table 3B: (Continued) Concentration-dependent influence of enzastaurin on the sensitivity of low ABCB1-expressing UKF-NB-2 and high ABCB1-expressing UKF-NB-2^rVCR¹⁰ neuroblastoma cells to the ABCB1 substrate vincristine. Cell viability was determined after a 5 day incubation period by MTT assay. Concentrations that reduced cell viability by 50% (IC_{50}) were calculated.

		Influence of enzastaurin on the vincristine IC ₅₀ in UKF-NB-2 cells (low ABCB1)			
Enzastaurin (µM)	IC ₅₀ ¹ vincristine (ng/ml)	cell viability enzastaurin (% control)	IC ₅₀ vincristine (ng/ml)	Fold sensitisation ²	
0.3125	0.55 ± 0.16	91.52 ± 17.21	0.57 ± 0.12	0.96	
0.625	0.65 ± 0.11	94.48 ± 8.13	0.54 ± 0.10	1.20	
1.25	0.53 ± 0.09	72.32 ± 9.95	0.48 ± 0.06	1.10	
2.5 µM	0.56 ± 0.13	58.13 ± 8.37	0.45 ± 0.04	1.24	

Influence of enzastaurin on	the vincristine IC.	in UKF-NB-2	2 ^r VCR ¹⁰ cells	(high ABCB1)

Enzastaurin (µM)	IC ₅₀ ¹ vincristine (ng/ml)	cell viability enzastaurin (% control)	IC ₅₀ vincristine (ng/ml)	Fold sensitisation ²
0.3125	57.98 ± 10.73	93.00 ± 10.26	11.86 ± 1.71^3	4.89
0.625	40.80 ± 8.43	90.97 ± 6.21	5.72 ± 1.13^{3}	7.13
1.25	50.62 ± 8.97	88.28 ± 9.61	$2.08\pm0.39^{\scriptscriptstyle 3}$	24.34
2.5 μM	50.09 ± 6.92	69.81 ± 7.86	0.46 ± 0.09^{3}	108.41

¹Values are mean \pm S.D. of three independent experiments.

 ${}^{2}\text{IC}_{50}$ vincristine/ IC₅₀ vincristine in the presence of enzastaurin. ${}^{3}P < 0.05$ relative to IC₅₀ vincristine in the absence of enzastaurin as indicated by *t*-test.

Supplementary Table 3C: (Continued) Concentration-dependent influence of enzastaurin on the sensitivity of low ABCB1-expressing KFR and high ABCB1-expressing KFR¹⁰ rhabdomyosarcoma cells to the ABCB1 substrate vincristine. Cell viability was determined after a 5 day incubation period by MTT assay. Concentrations that reduced cell viability by 50% (IC₅₀) were calculated.

		Influence of enzastaurin on the vincristine IC_{50} in KFR cells (low ABCB						
Enzastaurin (µM)	IC ₅₀ vincristine ¹ (ng/ml)	cell viability enzastaurin (% control)	IC ₅₀ vincristine (ng/ml)	Fold sensitisation ²				
0.3125	0.54 ± 0.12	101.13 ± 6.27	0.60 ± 0.09	0.90				
0.625	0.59 ± 0.15	107.91 ± 11.84	0.55 ± 0.08	1.07				
1.25	0.47 ± 0.11	97.37 ± 13.72	0.26 ± 0.04	1.81				
2.5 µM	0.54 ± 0.16	88.61 ± 7.99	0.27 ± 0.09	2.00				

Influence of enzastaurin on the vincristine	IC ₅₀ i	n KFR ^r VCR ¹⁰	cells (high ABCB1)
---	--------------------	--------------------------------------	--------------------

Enzastaurin (µM)	IC ₅₀ ¹ vincristine (ng/ml)	cell viability enzastaurin (% control)	IC ₅₀ vincristine (ng/ml)	Fold sensitisation ²
0.3125	47.10 ± 6.24	108.29 ± 13.41	20.50 ± 2.15^3	2.30
0.625	48.74 ± 2.81	111.34 ± 7.26	5.90 ± 1.96^{3}	8.25
1.25	51.63 ± 13.18	108.83 ± 11.27	2.46 ± 0.37^{3}	20.99
2.5 μM	52.44 ± 8.50	84.28 ± 8.82	0.93 ± 0.25^{3}	56.27

¹Values are mean \pm S.D. of three independent experiments.

 ${}^{2}\text{IC}_{_{50}}$ vincristine/ IC₅₀ vincristine in the presence of enzastaurin. ${}^{3}P < 0.05$ relative to IC₅₀ vincristine in the absence of enzastaurin as indicated by *t*-test.

www.impactjournals.com/oncotarget/

Supplementary Table 3D: (*Continued*) Concentration-dependent influence of enzastaurin on the sensitivity of low ABCB1-expressing Rh30 and high ABCB1-expressing Rh30^rVCR¹⁰ rhabdomyosarcoma cells to the ABCB1 substrate vincristine. Cell viability was determined after a 5 day incubation period by MTT assay. Concentrations that reduced cell viability by 50% (IC_{50}) were calculated.

		Influence of enzastaurin on the vincristine IC ₅₀ in Rh30 cells (low ABCB1)						
Enzastaurin (µM)	IC ₅₀ ¹ vincristine (ng/ml)	cell viability enzastaurin (% control)	IC ₅₀ vincristine (ng/ml)	Fold sensitisation ²				
0.3125	0.33 ± 0.05	88.79 ± 13.73	0.30 ± 0.04	1.10				
0.625	0.23 ± 0.03	97.40 ± 8.91	0.31 ± 0.03	0.74				
1.25	0.38 ± 0.01	108.08 ± 11.00	0.40 ± 0.18	0.95				
2.5 μM	0.37 ± 0.04	97.41 ± 1.24	0.25 ± 0.05	1.46				

Influence of enzastaurin on the vincristine IC₅₀ in Rh30^rVCR¹⁰ cells (high ABCB1)

Enzastaurin (µM)	IC ₅₀ ¹ vincristine (ng/ml)	cell viability enzastaurin (% control)	IC ₅₀ vincristine (ng/ml)	Fold sensitisation ²
0.3125	71.13 ± 8.46	92.98 ± 10.76	11.40 ± 1.21^3	6.24
0.625	77.88 ± 4.10	113.21 ± 11.09	8.13 ± 1.27^{3}	9.58
1.25	76.68 ± 14.54	104.63 ± 8.21	$1.97\pm0.28^{\scriptscriptstyle 3}$	38.86
2.5 μM	68.45 ± 15.37	91.82 ± 8.20	0.48 ± 0.30^3	142.61

¹Values are mean \pm S.D. of three independent experiments.

 ${}^{2}\text{IC}_{50}$ vincristine/ IC₅₀ vincristine in the presence of enzastaurin.

 ${}^{3}P < 0.05$ relative to IC_{50} vincristine in the absence of enzastaurin as indicated by *t*-test.

Supplementary Table 4: Protein interaction energies (kcal/mol) of the top five scoring poses for the docking of enzastaurin into the different binding pockets of several ABCB1 structures; the best interaction energies are highlighted in bold

ABCB1 Structure	Docking energy of the five top scoring poses (left to right)						Binding site used
3G60	-14.04	-12.74	-12.71	-12.25	-11.76	-12.70	Upper QZ59-SSS binding site
3G60	-13.15	-12.96	-12.86	-12.80	-12.71	-12.90	Lower QZ59-SSS binding residues
3G60	-16.60	-12.81	-12.38	-11.61	-11.47	-12.97	QZ59-RRR binding residues
3G60	-12.33	-12.77	-12.52	-12.27	-11.70	-12.32	QZ59-RRR and upper and lower QZ59-SSS residues
3G60	-12.62	-12.56	-11.95	-11.90	-11.63	-12.13	Verapamil binding residues
3G60	-15.79	-13.65	-13.03	-12.93	-12.72	-13.62	Lower QZ59-SSS binding site ^a
3G60	-11.20	-11.00	-10.87	-10.23	-10.09	-10.68	QZ59-SSS upper and lower and QZ59-RRR residues ^a
3G61	-10.39	-9.99	-9.84	-9.76	-9.66	-9.93	Lower QZ59-SSS binding site ^a

(Continued)

Structure							
3G61	-13.43	-13.24	-12.72	-12.20	-11.90	-12.70	Upper QZ59-SSS binding site
3G61	-11.14	-10.81	-10.37	-9.98	-9.77	-10.41	Lower QZ59-SSS binding site
3G61	-12.33	-12.17	-11.78	-11.36	-10.81	-11.69	QZ59-SSS upper and lower and QZ59-RRR residues
3G61	-10.71	-10.01	-9.89	-9.82	-9.30	-9.95	Verapamil binding residues
3G61	-9.66	-8.53	-8.53	-8.33	-8.01	-8.61	QZ59-RRR binding residues
3G61	-12.80	-12.74	-12.58	-12.55	-12.50	-12.63	QZ59-SSS upper and lower and QZ59-RRR residues ^a
3G5U	-10.58	-9.79	-9.36	-9.00	-8.99	-9.54	Upper and lower QZ59-SSS residues
3G5U	-12.98	-12.85	-11.95	-10.52	-10.35	-11.73	QZ59-SSS upper and lower and QZ59-RRR residues
3G5U	-11.89	-11.64	-11.23	-11.08	-10.87	-11.34	QZ59-SSS upper and lower and QZ59-RRR residues ^a
3G5U	-9.01	-8.95	-8.93	-8.76	-8.59	-8.85	Verapamil binding residues
3G5U	-13.67	-12.20	-10.51	-10.43	-10.12	-11.39	QZ59-RRR binding residues
Human	-12.06	-11.96	-11.39	-10.59	-10.13	-11.23	Upper and Lower QZ59-SSS binding residues
Human	-13.30	-12.37	-9.28	-9.18	-9.01	-10.63	Upper and Lower QZ59-SSS binding and QZ59-RRR residues
Human	-11.84	-10.75	-10.22	-9.80	-9.77	-10.48	QZ59-SSS upper and lower and QZ59-RRR residues ^a
Human	-10.42	-9.58	-9.07	-9.05	-8.93	-9.41	Verapamil binding residues
Human	-11.37	-10.35	-10.22	-9.77	-9.35	-10.21	QZ59-RRR binding residues

ABCB1 Docking energy of the five top scoring poses (left to right) Average

Binding site used

^aConformational search was performed prior to docking and 100 docking poses were retained.

Supplementary Table S5: Ligand interaction report for the interaction of enzastaurin with ABCB1 binding sites listing the important interactions for the top poses

ABCB1 Structure	Pose	Ligand	Atom/group in residue/	interaction	Distance (Å)	E (kcal/mol)	Binding site used
3G60	1	C8 21	6-ring/ Phe728	Н-рі	4.26	-1.1	Upper and Lower QZ59-SSS binding site
	2	6–6ing	CG2/ Val978	pi-H	3.82	-0.6	
3G60	1	6-ring	6-ring/ Phe724	pi-pi	3.58	-0.0	Lower QZ59-SSS binding residues
	2	6-ring	6-ring/ Phe974	pi-pi	3.71	-0.0	
	3	C 29	SD/ Met68	H-donor	4.49	-0.7	
	3	5-ring	6-ring/ Phe728	pi-pi	3.83	-0.0	
3G60	1	5-ring	6-ring/ Phe71	pi-pi	3.89	-0.0	QZ59-RRR binding residues
	1	6-ring	6-ring/ Phe71	pi-pi	3.23	-0.0	
	2	5-ring	6-ring/ Phe728	pi-pi	3.78	-0.0	
3G60	1	N 15	OE1/ Gln986	H-donor	2.69	-1.5	QZ59-RRR and upper and lower QZ59-SSS residues
3G60	1	6-ring	6-ring/ Phe974	pi-pi	3.91	-0.0	Verapamil binding residues
3G60	1	N15	OG/ Ser975	H-donor	2.7	-1.1	Upper and Lower QZ59-SSS binding site ^a
	1	6-ring	CA/ Gln721	pi-H	4.06	-0.7	
	2	5-ring	CG2/ Val978	pi-H	3.96	-0.6	
	2	6-ring	6-ring/ Phe728	pi-pi	3.48	-0.0	
3G60	1	C 32	6-ring/ Tyr303	Н-рі	3.72	-0.6	QZ59-SSS upper and lower and QZ59-RRR residues ^a
	2	N 15	OE1/ Gln721	H-donor	3.49	-0.7	
	2	C 29	6-ring/ Phe299	H-pi	4.58	-0.6	
	2	C 31	6-ring/ Tyr303	H-pi	4.06	-0.6	
	2	5-ring	CD1/Leu300	pi-H	4.02	-0.6	
3G61	1	O 17	ND2/ Asn717	H-acceptor	2.78	-1.3	Upper and Lower QZ59-SSS binding site ^a
	2	N 15	6-ring/ Phe728	H-pi	4.27	-1.5	
	2	5-ring	CZ/ Phe332	pi-H	3.86	-0.6	
	2	5-ring	6-ring/ Phe974	pi-pi	3.88	-0.0	
3G61	1	N 30	6-ring/ Phe974	cation-pi	3.4	-2	Upper QZ59-SSS binding site
	1	C 31	6-ring/ Phe728	H-pi	4.5	-0.7	
	1	5-ring	6-ring/ Phe953	pi-pi	3.75	0	
3G61	1	O 17	ND2/Asn717	H-acceptor	2.92	-1	Lower QZ59-SSS binding site
3G61	1	5-ring	CD2/ Tyr494	pi-H	4.39	-1.2	QZ59-SSS upper and lower and QZ59-RRR residues
	1	6-ring	6 ring/ Phe974	pi-pi	3.75	-0.0	

(Continued)

ABCB1 Structure	Pose	Ligand	Atom/group in residue/	interaction	Distance (Å)	E (kcal/mol)	Binding site used
	2	N 15	SD/ Met67	H-donor	3.9	-3	
	2	N 30	6-ring/ Phe974	caton-pi	3.45	-1.8	
	2	5-ring	6-ring/ Phe953	pi-pi	3.73	-0.0	
	2	6-ring	6-ring/ Phe953	pi-pi	3.9	-0.0	
3G61	1	5-ring	6-ring/ Phe953	pi-pi	3.72	-0.0	Verapamil binding residues
	2	C 31	6-ring/ Phe974	H-pi	4.58	-1	
	2	6-ring	6-ring/ Phe728	pi-pi	3.66	-0.0	
3G61	1	6-ring	CA/ Gly342	pi-H	4.34	-0.6	QZ59-RRR binding residues
	2	N 23	6-ring/ Phe728	H-pi	4.06	-2.2	
	2	5-ring	6-ring/ Phe974	pi-pi	3.7	-0.0	
3G61	1	6-ring	CE2/ Phe332	pi-H	3.56	-0.7	QZ59-SSS upper and lower and QZ59-RRR residues ^a
	2	6-ring	CA/ Phe974	pi-H	3.61	-0.6	
	2	5-ring	6-ring/ Phe71	pi-pi	3.64	-0.0	
	2	6-ring	6-ring/ Phe71	pi-pi	3.55	-0.0	
3G5U	1	6-ring	NE2/ Gln191	pi-H	3.6	-1.9	Upper and lower QZ59-SSS residues
	1	5-ring	CB/ Ala981	pi-H	3.86	-1	
	1	6-ring	CA/ Met982	pi-H	4.11	-0.6	
3G5U	1	O 17	ND2/ Asn717	H-acceptor	2.85	-1.8	QZ59-SSS upper and lower and QZ59-RRR residues
	1	6-ring	OH/ Tyr303	pi-H	3.84	-2.1	
	1	5-ring	NE2/ Gln721	pi-H	3.78	-3.8	
	2	5-ring	CD1/ Leu300	pi-H	3.74	-0.6	
3G5U	1	6-ring	6-ring/ Phe71	pi-pi	3.42	-0.0	QZ59-SSS upper and lower and QZ59-RRR residues ^a
	2	6-ring	6-ring/ Phe71	pi-pi	3.98	-0.0	
3G5U	1	C 28	6-ring/ Phe299	H-pi	3.67	-1	Verapamil binding residues
	1	5-ring	CB/ Ala338	pi-H	4.4	-0.6	
	1	6-ring	CB/ Ala338	pi-H	4.23	-0.7	
3G5U	1	6-ring	OH/ Tyr303	pi-H	3.63	-1.5	QZ59-RRR binding residues
	2	5-ring	NE2/ Gln721	pi-H	4.12	-0.6	
Human	1	6-ring	CA/ Gly346	pi-H	3.68	-0.9	Upper and Lower QZ59-SSS binding residues
Human	1	O 17	NE2/ Gln725	H-acceptor	3.2	-1.6	Upper and Lower QZ59-SSS binding and QZ59-RRR residues
	1	6-ring	CB/ Ile868	pi-H	4.46	-0.9	

(Continued)

ABCB1 Structure	Pose	Ligand	Atom/group in residue/	interaction	Distance (Å)	E (kcal/mol)	Binding site used
	1	6-ring	CD1/ Ile868	pi-H	4.28	-0.9	
Human	1	6-ring	CB/ Phe303	pi-H	4.03	-0.7	QZ59-SSS upper and lower and QZ59-RRR residues ^a
	1	5-ring	6-ring/ Phe303	pi-pi	3.97	-0.0	
Human	1	N 30	OG/ Ser992	H-donor	3.15	-0.7	Verapamil binding residues
	1	5-ring	CA/ Gly872	pi-H	4.37	-1.2	
Human	1	5-ring	CA/ Tyr310	pi-pi	3.54	-0.6	QZ59-RRR binding residues

^aConformational search was performed prior to docking and 100 docking poses were retained.

Supplementary Table 6A: Concentration-dependent influence of enzastaurin on the sensitivity of ABCG2-expressing UKF-NB-3^{ABCG2} cells to the ABCG2 substrate mitoxantrone. Cell viability was determined after a 5 day incubation period by MTT assay. Concentrations that reduced cell viability by 50% (IC₅₀) were calculated.

		Influence of enzastaurin on the mitoxantrone IC ₅₀						
Enzastaurin (µM)	IC ₅₀ ¹ mitoxantrone (ng/ml)	cell viability enzastaurin (% control)	IC ₅₀ mitoxantrone (ng/ml)	Fold sensitisation ²				
0.3125	59.28 ± 19.01	91.50 ± 8.35	16.51 ± 3.52^3	3.59				
0.625	66.16 ± 12.63	92.31 ± 14.51	11.23 ± 2.61^3	5.89				
1.25	54.91 ± 10.27	90.42 ± 13.62	6.17 ± 0.08^{3}	8.90				
2.5 μM	61.74 ± 11.42	84.89 ± 7.86	2.90 ± 0.04^{3}	21.29				

¹Values are mean \pm S.D. of three independent experiments.

 ${}^{2}\text{IC}_{50}$ mitoxantrone/ IC₅₀ mitoxantrone in the presence of enzastaurin. ${}^{3}P < 0.05$ relative to IC₅₀ mitoxantrone in the absence of enzastaurin as indicated by *t*-test.

Supplementary Table 6B: (*Continued*) Influence of enzastaurin on the sensitivity of non-ABCG2expressing UKF-NB-3 cells to the ABCG2 substrate mitoxantrone. Cell viability was determined after a 5 day incubation period by MTT assay. Concentrations that reduced cell viability by 50% (IC_{50}) were calculated.

		Influence of enzastaurin on the mitoxantrone IC ₅₀						
Enzastaurin (µM)	IC ₅₀ ¹ mitoxantrone (ng/ml)	cell viability enzastaurin (% control)	IC ₅₀ mitoxantrone (ng/ml)	Fold sensitisation ²				
0.3125	0.23 ± 0.05	102.17 ± 17.44	0.19 ± 0.03	1.21				
0.625	0.20 ± 0.02	95.52 ± 18.65	0.18 ± 0.01	1.11				
1.25	0.19 ± 0.04	81.79 ± 10.46	0.19 ± 0.03	1.00				
2.5 µM	0.22 ± 0.03	67.59 ± 5.08	0.18 ± 0.05	1.22				

 1 Values are mean \pm S.D. of three independent experiments.

 ${}^{2}IC_{50}$ mitoxantrone/ IC₅₀ mitoxantrone in the presence of enzastaurin.

Supplementary Table 6C: (*Continued*) Influence of enzastaurin on the sensitivity of non-ABCG2expressing UKF-NB-3 transduced with a control vector (UKF-NB- 3^{iG2}) cells to the ABCG2 substrate mitoxantrone. Cell viability was determined after a 5 day incubation period by MTT assay. Concentrations that reduced cell viability by 50% (IC₅₀) were calculated.

		Influence of enzastaurin on the mitoxantrone IC ₅₀		
Enzastaurin (µM)	IC ₅₀ ¹ mitoxantrone (ng/ml)	cell viability enzastaurin (% control)	IC ₅₀ mitoxantrone (ng/ml)	Fold sensitisation ²
0.3125	0.25 ± 0.06	97.81 ± 12.27	0.22 ± 0.05	1.14
0.625	0.22 ± 0.05	105.13 ± 9.84	0.23 ± 0.04	0.96
1.25	0.21 ± 0.06	86.02 ± 11.70	0.17 ± 0.02	1.24
2.5 μM	0.23 ± 0.02	63.67 ± 10.74	0.17 ± 0.06	1.35

¹Values are mean \pm S.D. of three independent experiments.

 ${}^{2}IC_{50}$ mitoxantrone/ IC₅₀ mitoxantrone in the presence of enzastaurin.