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Reciprocal exchanges can be understood as the updating of an initial belief about a partner. This initial level of trust is essential when it comes to
establishing cooperation with an unknown partner, as cooperation cannot arise without a minimum of trust not justified by previous successful
exchanges with this partner. Here we demonstrate the existence of a representation of the initial trust level before an exchange with a partner has
occurred. Specifically, we can predict the Investor�s initial investment�i.e. his initial level of trust toward the unknown trustee in Round 1 of a standard
10-round Trust Game�from resting-state functional connectivity data acquired several minutes before the start of the Trust Game. Resting-state
functional connectivity is, however, not significantly associated with the level of trust in later rounds, potentially mirroring the updating of the initial
belief about the partner. Our results shed light on how the initial level of trust is represented. In particular, we show that a person�s initial level of trust is,
at least in part, determined by brain electrical activity acquired well before the beginning of an exchange.
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INTRODUCTION

The key to cooperative behavior is trust. It is this willingness to take

the risk of helping another person despite the possibility of nonreci-

procation that enables us to overcome the fear of being exploited and

work together. The absence of trust, on the other hand, renders us

reluctant to engage in reciprocal exchanges in the first place, thereby

leading us to forego the potential benefits of cooperation (Rilling and

Sanfey, 2011; De Dreu, 2012). In line with this, trust is essential for

almost all social interactions from romantic relationships (Rilling and

Sanfey, 2011) to the large-scale reciprocal exchanges underlying eco-

nomic growth (Knack and Keefer, 1997, Zak and Knack, 2001). Despite

the classic game theoretical insight that the subgame-perfect Nash

equilibrium is not to trust a partner, trust is ubiquitous in society

and a vast number of empirical investigations show that humans con-

sistently display trust and therefore engage in cooperative reciprocal

exchanges with unknown partners (Camerer, 2003; McCabe and

Smith, 2000; Rand et al., 2012).

Intuitively, reciprocal exchanges can be understood as the updating

of an initial belief about a partner. As information becomes available

through interaction with the partner, this initial belief is updated. In

case the partner behaves according to our expectations, the current

level of trust remains unchanged. If he, however, violates our expect-

ations�in a positive or negative manner�our level of trust toward this

partner is adjusted. Recent formal models of trust behavior mirror this

notion in that they assume an initial level of trust which is updated

when information about the partner is presented for the first time. In

the second exchange, the initial level of trust updated using the part-

ner’s behavior in the first exchange determines one’s own behavior.

Consequently, behavior in the third exchange is determined by updat-

ing the initial level of trust using the partner’s behavior in the first and

second exchange and so on (Ray et al., 2009). In short, this can be

understood as the mathematical equivalent of getting to know the

partner based on his behavior during past exchanges.

While the mechanism by which information about the partner is

taken into consideration is fundamental to the progress and develop-

ment of any reciprocal exchange, the initial level of trust plays the

crucial role in starting to cooperate: for example, the initial trust

level must be positive for a person to engage in a potentially costly

interaction at all. In other words, cooperation cannot arise without a

minimum of trust, which�by definition�is not justified by previous

successful exchanges with this partner. A simple, but prominent, ex-

ample of this is buying behavior in online shops where initial trust,

which is not justified by previous successful exchanges, must be placed

for cooperation to occur. E-commerce thus crucially depends on the

customer’s initial trust in the unknown web-based vendor [(Torkzadeh

and Dhillon, 2002); note that shops commonly make previous cos-

tumer evaluations publicly available to decrease dependence on initial

trust levels]. Later exchanges will then depend on previous experiences

with this vendor as described above.

As the initial level of trust is obviously not determined by previous

interaction with the partner, the question of how the initial level of

trust is formed and represented arises. To this end, we asked whether

there exists a representation encoding one’s initial trust level before any

aspect of an exchange�such as the game’s context (e.g. the partner)�is

known. If so, this would provide direct evidence for a subject-depend-

ent component of the initial trust level, formed and maintained well

ahead of actual behavioral expressions.

The attempt faced us with the issue of having to measure a repre-

sentation without activating it. The dilemma is that measuring the

representation using questionnaires, instructions or any experimental

setups would induce context, thereby altering the to-be-measured vari-

able that was supposed to be subject-driven and context-free.

Circumventing such issues, we choose to measure brain electrical ac-

tivity in participants during restful wakefulness several minutes before

the start of a standard Trust Game (Berg et al., 1995). Using this

particular source of information guarantees that our measurements

are fully independent of information about the game-specific experi-

mental setup used to measure trust behavior. In particular, we ensured

that participants neither knew their partners’ identities nor did they
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know they would be playing a Trust Game after resting-state data

acquisition. As previous tasks have also been shown to impact rest-

ing-state dynamics (Pyka et al., 2009, Pyka et al., 2013), we further-

more ensured that resting-state data were acquired not only before the

Trust Game, of which we played 10 rounds, but also before any other

tasks or questionnaires were administered.

We hypothesized that the Investor’s initial investment�i.e. his initial

level of trust toward the unknown trustee in Round 1 of the Trust

Game�can be predicted from resting-state functional connectivity

acquired several minutes before the start of the Trust Game. As we

assumed that belief updating ought to strongly affect initial trust levels,

we additionally expected that resting-state functional connectivity is

not significantly associated with the level of trust shown in later

rounds.

METHODS

Participants

Sixty healthy subjects participated in the present study. Two subjects

had to be excluded owing to missing questionnaire data or technical

problems during electroencephalography (EEG) data acquisition. The

remaining sample (n¼ 58) consisted of 29 females and 29 males with a

mean age of 22.91 years (s.d.¼ 3.03). All were recruited from the stu-

dent community at the University of Frankfurt am Main, Germany,

through flyers and advertisements in social networks and electronic

mailing lists. All participants gave written informed consent after a

complete description of the study was provided. Our study was

approved by the ethics committee of the German Society of

Psychology (Deutsche Gesellschaft für Psychologie), and all of the

procedures involved were in accordance with the latest version (fifth

revision) of the Declaration of Helsinki.

The Trust Game

We conducted a standard 10-round Trust Game (Berg et al., 1995).

One of the participants (Investor) started each round with 8 monetary

units (MU), which he was asked to split between himself and the

second player (trustee). The investor could choose to transfer 0 MU,

2 MU, 4 MU, 6 MU or the complete amount of 8 MU to the Trustee.

The amounts transferred and kept by the investor were presented to

both players simultaneously. In addition, the amounts were visualized

using red bars whose heights corresponded to the amount given and

kept relative to the overall available amount. The amount transferred

by the investor was then tripled and transferred to the trustee who

could choose any integer between 0 and the tripled amount invested by

the investor to repay the investor. Again both players received the

information about the trustee’s decision as described above. Then, a

new round started with the investor again being endowed with 8 MU.

After the 10 rounds, each player’s MU were summed and converted

into an amount in Euro that was paid in cash to the participants.

Before the start of the game, both players were informed that their

decisions during the Trust Game would determine the amount of their

respective payment.

Resting-state EEG acquisition

Participants were asked to sit in a quiet room in front of a computer

screen and relax. EEG data were continuously recorded during a 5 min

period using BrainAmp DC-amplifiers (BrainProducts, Gilching,

Germany; resolution 0.1mV/bit) and Brain Vision Recorder (version

1.05, Brain Products, GmbH, Gilching, Germany), with alternating 40 s

eyes-closed and 20 s eyes-open intervals separated by sound signals

generated using Presentation (version 14.7, www.neurobs.com).

During data acquisition, impedances were kept below 10 kV. An equi-

distance 64-channel EEG arrangement (Montage No. 10, EASYCAP

GmbH, Herrsching, Germany) with the reference electrode positioned

at Cz was used to record data at a sampling rate of 500 Hz. The ground

electrode was located on the right mastoid. Two further electrodes

were placed on the lower-outer edge of the right and left eye to

record ocular artifacts.

Resting-state EEG preprocessing

Data preprocessing was conducted using the Fieldtrip-toolbox (version

20130617, Donders Institute for Brain, Cognition and Behavior,

Nijmegen, The Netherlands) with Matlab (R2013a, The MathWorks

Inc., Natick, Massachusetts). In accordance with previous work

(Thatcher et al., 2007, Schlegel et al., 2012), only eyes-closed recordings

were selected for further analyses. For each participant, the data were

segmented into 2 s epochs employing a baseline correction using 0.1 s

before each interval. Each channel was re-referenced to the average of

all channels. Then, data were down-sampled 250 Hz and a band-stop

filter (0.1–40 Hz range) using a two-pass reverse Butterworth filter was

applied. If artifacts (e.g. ocular movements, muscle and cardiac con-

tamination, spike or sharp waves) were identified via visual inspection,

the entire 2 s epoch was discarded. Of the 5800, 2 s epochs (n¼ 58 *

100 epochs per person), 3733 epochs were artifact-free. On average,

64.36% of the epochs were retained (s.d.¼ 13.53%) for each

participant.

Brain-electrical connectivity between all 61 head channels was as-

sessed for each participant separately by computing Pearson correl-

ations between the time courses of all channels for each epoch of

each participant. This yields one matrix of correlations between all

channels for each epoch and each participant. Then epoch-connectivity

matrices were averaged over all epochs resulting in one connectivity

matrix per subject. As the resulting connectivity matrices are symmet-

ric, only the upper triangle [(612
� 61)/2¼ 1830 unique connectivities

per person] was used for further analyses.

Predicting initial trust levels

To predict a participant’s (initial) investment from brain-electrical

connectivity during rest, multiple regression was performed using

the Classification and Regression Tree algorithm (Breiman et al.,

1984) as implemented in Matlab (The Mathworks, Natick,

Massachusetts). To ensure the generalizability of the regression

model, we used leave-one-out cross-validation (LOO-CV) to predict

a participant’s (initial) investment. In each LOO-CV run, data from all

but one sample (S-1 of the S subjects) is used to train the model.

Subsequently, the investment of the remaining subject, which has so

far been unseen by the algorithm, is predicted. This procedure is re-

peated S times, each time leaving out a different subject, yielding each

subject’s predicted investment. The quality of the prediction is assessed

by computing the mean squared error (MSE). To establish whether the

observed MSE is significantly higher than chance level, we ran each

model 1000 times with randomly permuted investments and counted

the number of permutations, which achieved lower MSE (i.e. higher

performance) than the one observed with the true investments. The

P-value was then calculated by dividing this number by 1000.

To quantify the contribution of each EEG electrode, we computed

electrode-specific importance scores by taking the mean of all feature

importance scores over all cross-validation folds. Thereafter, we

summed the mean importance scores for each electrode separately.

RESULTS

To test whether the resting-state functional connectome encodes the

initial level of trust, we used a multivariate pattern recognition algo-

rithm to predict the Investor’s initial investment (i.e. the investment in

Round 1 of the Trust Game) from resting-state functional
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connectivities. Avoiding circularity bias by using a LOO-CV proced-

ure, we show that the Investor’s initial investment can be predicted

from the human functional resting-state connectome acquired several

minutes before the beginning of the Trust Game (MSE of the predic-

tion¼ 5.35; P¼ 0.028). Using the same approach to predict the invest-

ment in any of the other nine rounds of the Trust Game yielded

nonsignificant results (P > 0.233; Figure 1).

Next, we investigated the contribution of each anatomical location

(i.e. EEG electrodes) to overall prediction of the initial trust level by

summing the feature importance scores from the multivariate pattern

recognition algorithm for each electrode. As depicted in Figure 2, we

found that the algorithm’s performance was driven to a large extent by

connections of electrodes located over the parietal cortex (Electrodes

12, 14 and 28 in Figure 2). In addition, an electrode over the right

frontal cortex substantially contributed to the prediction (Electrode

37). This, however, is solely due to its connection with one of the

three parietal electrodes (Electrode 14). The contribution of these

four electrode sites far exceeded the sum of importance scores of all

other electrodes. In fact, importance scores from all other electrodes

combined accounted for only �77% of the importance of the four sites

alone.

DISCUSSION

In this study, we showed that the Investor’s initial investment�i.e. his

initial level of trust toward the unknown trustee in Round 1 of the

Trust Game�can be predicted from resting-state functional connect-

ivity acquired several minutes before the start of the Trust Game. In

accordance with our hypotheses, we also found that resting-state func-

tional connectivity is not significantly associated with the level of trust

in later rounds. This evidence suggests that there exists a representation

encoding one’s initial trust level before any aspect of an exchange�such

as the game’s context (e.g. the partner)�is known. Our findings sup-

port the notion that the initial trust level is, at least in part, determined

well ahead of an exchange. Considering that trust behavior could not

be predicted after interaction with the partner had occurred (i.e. in

Rounds 2–10 of the Trust Game), the initial trust level does not appear

to be hard-wired, though, but is dynamically adjusted depending on

the partner’s behavior.

Generally, our finding that the initial trust level can be predicted

from the pattern of brain electrical resting-state network connectivities

is in agreement with a number of prior studies that found an associ-

ation between resting-state dynamics and personality traits (Adelstein

et al., 2011; Dawes et al., 2012; Hahn et al., 2012; Kunisato et al., 2011;

Hahn et al., 2013). The resting-state dynamics are thought to impose

constraints on the range of possible neural responses to stimulus input

and task context, thereby defining personality (Kannurpatti et al.,

2012; Bas� ar, 1998; Basar, 1997). According to our results, the neural

correlates of the initial level of trust might affect behavior in a similar

fashion: implemented in resting-state dynamics, they might determine

how the brain responds in social situations to the range observed in the

phenotype [for a more detailed description and additional evidence

supporting this notion, see (Hahn et al., 2012, Hahn et al., 2013)]. In

particular, this framework might help to explain how the initial level of

trust can be encoded in the brain in a stable manner�similar to per-

sonality traits�while allowing experience with the partner’s behavior to

overwrite it.

While our findings show that the initial level of trust can be pre-

dicted before the beginning of an exchange, our data does not speak to

the question of how long before an exchange the initial trust level is set.

On the one hand, individual differences in initial trust level could be

assumed to be highly stable over time, as trusting behavior is partly

heritable (Cesarini et al., 2008, Kanagaretnam et al., 2009) and heavily

depends on other-regarding preferences (Falk and Fischbacher, 2006;

Fehr and Camerer, 2007; Fehr and Gintis, 2007), which, in turn, are

highly stable over the life span (Eisenberg et al., 1999). On the other

hand, it has been shown that the level of initial trust can be affected by

a person’s emotional state with positively valenced emotions leading to

increased trust and negatively valenced emotions (e.g. anger) decreas-

ing it (Dunn and Schweitzer, 2005). In that sense, short-term fluctu-

ations in resting-state connectivities may play a role as well. In our

view, it appears most likely that situational changes affect resting-state

dynamics depending on stable trait-like characteristics, so that resting-

state dynamics that are continuously changing and those that are stable

over time interact. Based on this view, we would predict individual

behavioral variance of initial trust levels to be explained by, both,

current emotional state and other-regarding preferences. Only further

research can address the question of how fluid and stable characteris-

tics of resting-state dynamics might interact to produce such behavior.

Investigating the initial level of trust and the mechanism by which it

is updated, it has been shown that the two components can be affected

independently: on the one hand, individuals who received oxytocin did

not decrease their trust in response to a partner’s breach of trust, while

those participants who had received a placebo adjusted their behavior

as would be expected. In short, oxytocin affects the way in which

information about the partner is incorporated, presumably by its sup-

pression of amygdala activity, which is thought to dampen the fear of

betrayal. However, it does not influence the initial level of trust

(Baumgartner et al., 2008, Kosfeld et al., 2005). Against this back-

ground, the question arises of whether the mechanism by which the

initial trust level is updated is also encoded by resting-state dynamics,

i.e. not the behavior in later rounds itself could be encoded in resting-

state dynamics, but the more general strategy with which a person

responds to a partner’s behavior. To this end, future research should

investigate the possible link between strategies in the Trust Game and

resting state.

Considering the contribution of each of the connections to overall

prediction of the initial trust level, we showed that the connections of

electrodes over the parietal cortex provide unique information about a

person’s initial level of trust compared with all other electrodes’ con-

nectivities. As with all EEG-based approaches, these results do not

allow for exact anatomical specification. Source localization is particu-

larly hampered in our case by two issues: first, we used brain-electrical

connectivities (not e.g. event-related potentials) in our analyses,

requiring specific source localization algorithms, which are still ani-

matedly debated within the community (Pascual-Marqui et al., 2011).

Fig. 1 Accuracy when predicting the Investor‘s allocation to the Trustee for all 10 rounds of the
Trust Game based on resting-state EEG. The shaded area represents prediction accuracy under
permutation for each round.
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Secondly, when estimating the contribution of each functional con-

nection to predictive performance, one should be aware that the maps

describe a nonlinear multivariate pattern. Generally, importance scores

can be meaningfully interpreted only in the context of the entire multi-

variate pattern�not in isolation. Nonetheless, previous studies inves-

tigating this area of the cortex, found the temporal parietal junction

(TPJ) activated during investment decisions (Fett et al., 2013) and

when the investor’s decision was revealed to the trustee (van den

Bos et al., 2011). Generally, the TPJ has been described as part of

the mentalizing system (Fletcher et al., 1995; Ruby and Decety, 2004;

Gobbini et al., 2007; Van Overwalle, 2009) and it has been argued to

play a role in mentalizing during decisions about how much to trust

while predicting the game partner’s behavior. In this context, it appears

plausible that parietal regions such as the TPJ play an essential role in

the kind of trusting behavior observed in our study. Generally, it has

been argued that the properties of resting-state dynamics in a certain

region might define the extent to which this area can respond to in-

ternal or external input (Hahn et al., 2012, Mennes et al., 2010, Hahn

et al., 2013), and recent evidence appears to support this notion

(Kannurpatti et al., 2012). Considering the limitations of EEG-based

functional localization outlined above, interpreting our results against

the background of the current literature hints toward a central role of

parietal regions in accordance with previous evidence from functional

neuroimaging implicating the TPJ.

As we used a multivariate regression approach to predict the initial

level of trust, we cannot infer causality of our results, i.e. a third vari-

able might determine both initial trust behavior and resting-state dy-

namics. The fact that we cannot infer causality, however, does not

compromise our findings, showing that the initial trust level is at

least partly determined before�versus during�an exchange. Future

studies using experimental designs using, for example, transcranial

magnetic stimulation or neurofeedback will have to clarify whether

resting-state dynamics in the parietal cortex are directly causally re-

sponsible for the initial trust behavior.

In summary, we asked whether there exists a representation encod-

ing one’s initial trust level before any aspect of an exchange�such as

the game’s context (e.g. the partner)�is known. Shedding light on how

the initial level of trust is represented, we showed that a person’s initial

level of trust is, at least in part, determined by brain electrical activity

acquired well before the beginning of an exchange.
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