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This paper studies the geometry and the thermodynamics of a holographic screen in the framework of the ultraviolet self-complete
quantum gravity. To achieve this goal we construct a new static, neutral, nonrotating black holemetric, whose outer (event) horizon
coincides with the surface of the screen.The spacetime admits an extremal configuration corresponding to theminimal holographic
screen and having both mass and radius equalling the Planck units. We identify this object as the spacetime fundamental building
block, whose interior is physically unaccessible and cannot be probed even during the Hawking evaporation terminal phase.
In agreement with the holographic principle, relevant processes take place on the screen surface. The area quantization leads
to a discrete mass spectrum. An analysis of the entropy shows that the minimal holographic screen can store only one byte of
information, while in the thermodynamic limit the area law is corrected by a logarithmic term.

1. Introduction

“Quantum gravity” is the common tag for any attempt
to reconcile gravity and quantum mechanics. Since the
early proposals by Wheeler [1, 2] and DeWitt [3], up to
the recent ultraviolet (UV) self-complete scenario [4], the
diverse formulations of a would-be quantum theory of
gravity have shown a common feature, that is, a fundamen-
tal length/energy scale where the smooth manifold model
of spacetime breaks down. Let us refer to this scale as
the “Planck scale” irrespectively whether it is 1019 GeV or
10−102 TeV. The very concept of distance becomes physically
meaningless at the Planck scale and spacetime “evaporates”
into something different, a sort of “foamy” structure, a
spin network, a fractal dust, and so forth, according to the
chosen model [5]. As a matter of fact, one of the most
powerful frameworks for describing the Planckian phase
of gravity is definitely (Super) String Theory. The price to
pay to have a perturbatively finite, anomaly-free quantum

theory is to give up the very idea of point-like building
blocks of matter and replace them with one-dimensional
vibrating strings. As there does not exist any physical object
smaller than a string; there are no physical ways to probe
distances smaller than the length of the string itself. In
this regard two properties of fundamental strings are worth
mentioning:

(i) string excitations correspond to different mass and
spin “particle” states;

(ii) highly excited strings share various physical proper-
ties with black holes.

Thus, we infer that string theory provides a bridge between
particle-like objects and black holes (see for instance [6]).
However, it is important to remark that while the Comp-
ton wavelength of a particle-type excitation decreases by
increasing the mass, the Schwarzschild radius of a black hole
increases with its mass. Thus, the first tenet of high energy
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particle physics, which is “the higher the energy the shorter
the distance,” breaks down when gravity comes into play
and turns a “particle” into a black hole. The above remark
is the foundation of the UV self-complete quantum gravity
scenario, where the Planckian and sub-Planckian length
scales are permanently shielded from observation due to the
production of black hole excitations at Planck energy scatter-
ing [7]. Accordingly the Planck scale assumes the additional
meaning of scale at which matter undergoes a transition
between its two admissible “phases,” that is, the particle phase
and the black hole phase [8–10]. From this perspective, trans-
Planckian physics is dominated by larger and larger black hole
configurations. It follows that only black holes larger than, or
at most equal to, Planck size objects can self-consistently fit
into this scheme. However, classical black hole solutions do
not fulfill this requirement, that is, the existence of a lower
bound for their mass and size (see Figure 1).

A first attempt to overcome this limitation is offered
by the noncommutative geometry inspired solutions of the
Einstein equations [11].The latter are a family of regular black
holes which span all possible combinations of parameters,
such as mass [12], charge [13], and angular momentum
[14, 15]. In addition such regular geometries admit a vari-
ety of complementary gravitational configurations such as
traversable wormholes [16], dirty black holes [17], dilaton
gravity black holes [18], and collapsing matter shells [19].
Recently this family of black holes has been recognized as
viable solutions of nonlocal gravity [20, 21], that is, a set of
theories exhibiting an infinite number of derivative terms of
the curvature scalar [22–24] in place of the mere Ricci scalar
as in the standard Einstein-Hilbert action. More importantly
extensions of noncommutative geometry inspired metrics to
the higher dimensional scenario [25, 26] are currently under
scrutiny at the LHC for their unconventional phenomenology
[27]: specifically the terascale black holes described by such
regular metrics tend to have a slower evaporation rate [28]
and emit only soft particles mainly on the four-dimensional
brane [29]. A characteristic feature of this type of solutions
is that the minimum size configuration is given by the
extremal black hole configuration which exists even in the
neutral nonspinning case [30–32]. This fact automatically
implies a minimum energy for black hole production in
particle collisions [33] without any further need of correcting
formulas of cross sections with ad hoc threshold functions.
Extremal configurations play a crucial role in the physics
of the decaying de Sitter universe via the nucleation of
microscopic black holes. It has been shown that Planck
size noncommutative inspired black holes might have been
copiously produced during inflationary epochs [34].This fact
has further phenomenological repercussions: being stable,
noninteracting objects, extremal black holes turn out to be
a reliable candidate for dark matter component. On the
theoretical side, extremal configurations in the presence
of a negative cosmological term can provide a short scale
completion of the Hawking-Page diagram which switches to
a more realistic Van der Waals phase diagram [35].

Extremal configurations can be either descending from
the introduction of a fundamental length in the line element
and can alternatively be interpreted as a phenomenological
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Figure 1: The dotted and the solid curves represent the particle
Compton wavelength 𝜆

𝐶
and the Schwarzschild radius as a function

of the energy 𝑀 in Planck units (quantities are rescaled). The
squared bullet is the Planck scale. The grey area of the diagram is
actually excluded, meaning that a particle cannot be compressed
at distances smaller than the Planck length: at trans-Planckian
energy only black hole form. The arrow shows the inadequacy of
the Schwarzschild metric: black holes have no lower mass bounds,
can have size smaller than the Planck length, and can expose the
curvature singularity by decaying through the Hawking process.

input from quantum gravity: in the latter case it has been
shown that such extremal black holes fit pretty well in the
UV self-complete scenario providing a stable, minimum size
probe at the transition point betweenparticles andblack holes
[36].

In this paper we want to take a step further in the
realization of this program by avoiding the introduction of
an additional principle to justify the presence of a minimal
length, rather we demand the radius of a Planck size extremal
black hole to provide the natural UV cutoff of a quantum
spacetime. In this framework gravity is expected to be self-
regular in the sense that the actual regulator cutting off sub-
Planckian length scales is given in terms of the gravitational
coupling constant; that is,√𝐺 = 𝐿

𝑃
.The paper is organized as

follows. In Section 2 we derive a black hole metric, consistent
with the above discussion and the concept of holographic
screen. The latter coincides with the outer horizon of the
black hole whose mass spectrum is bounded from below by
the mass of the extremal configuration equalling the Planck
mass. Once trans-Planckian length scales are cut-ff, the
“interior” of the black hole loses its physical meaning in the
sense that all the relevant degrees of freedom are necessarily
located on the horizon itself. In Section 3 we discuss the
thermodynamics of the screen. We find that the area law
is modified by logarithmic corrections and that there exists
a minimal holographic screen with zero thermodynamic
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entropy. Finally we propose a “holographic quantization”
schemewhere the area of the extremal configuration provides
the quantumof surface. In Section 4we offer the reader a brief
summary of the main results of this work.

2. Self-Regular Holographic Screen

A simple but intriguing model of singularity-free black hole
has been “guessed” in [37], in the sense that the metric was
assigned as an input for the Einstein equations. Sometimes
this inverted procedure is called “engineering” because the
actual source term of field equations is not known a priori.
The distinctive feature of the solution is the presence in
the line element of a free parameter with dimension of a
length, acting as a short distance regulator for the spacetime
curvature, allowing a safe investigation of back-reaction
effects of theHawking radiation. In [38] a higher dimensional
extension of this model has been proposed; it was also shown
that, by a numerical rescaling of the short-distance regulator,
it is possible to identify this fundamental length scale with
the radius of the extremal configuration. With hindsight,
we are going to take a step forward to improve this inverse
procedure. Specifically, we want to follow the “direct way”
by building up a consistent source for Einstein equations: we
introduce a physically motivated energy momentum tensor
which allows for transitions between particle-like objects and
black holes as consistently required by UV self-complete
quantum gravity.

We start from the energy density for a point-particle in
spherical coordinates as

𝜌

𝑝
(𝑟) =

𝑀

4𝜋𝑟

2
𝛿 (𝑟) ,

(1)

where 𝛿(𝑟) is the Dirac delta. The energy distribution (1)
implies a black hole for any value of mass 𝑀 even for sub-
Planckian values where one expects just particles. Before
proceeding, we would like to recall that a Dirac delta function
can be represented as the derivative of a Heaviside step-
function Θ:

𝛿 (𝑟) =

𝑑

𝑑𝑟

Θ (𝑟) .

(2)

Against this background, we want to accommodate both
particles and black holes by a suitable modification of the
energy distribution in order to overcome the ambiguities
of the Schwarzschild metric in the sub-/trans-Planckian
regimes (see also Figure 1). This can be done by considering
a “smooth” function ℎ(𝑟) in place of the Heaviside step:

Θ (𝑟) 󳨀→ ℎ (𝑟) . (3)

The new profile 𝜌(𝑟) of the energy density is defined through
ℎ(𝑟) by the relation

𝜌 (𝑟) =

𝑀

4𝜋𝑟

2

𝑑

𝑑𝑟

ℎ (𝑟) ≡ 𝑇

0

0
.

(4)

By means of the conservation equation ∇

𝜇
𝑇

𝜇]
= 0 one can

determine the remaining components of the stress tensor,
which turns to be out of the form

𝑇

]
𝜇
= diag (−𝜌, 𝑝

𝑟
, 𝑝

⊥,
𝑝

⊥
) . (5)

The condition for the metric coefficients 𝑔

00
= −𝑔

−1

11

determines the equation of state, namely, the relation between
the energy density and the radial pressure, 𝑝

𝑟
= −𝜌. The

angular pressure is specified by the conservation of the stress
tensor and reads 𝑝

⊥
= 𝑝

𝑟
+ (𝑟/2)𝜕

𝑟
𝑝

𝑟
.

By plugging the tensor (5) in Einstein equations, one finds
that the metric reads (𝐺 = 1)

𝑑𝑠

2
= − (1 −

2𝑚 (𝑟)

𝑟

) 𝑑𝑡

2

+ (1 −

2𝑚 (𝑟)

𝑟

)

−1

𝑑𝑟

2
+ 𝑟

2
𝑑Ω

2
,

(6)

with

𝑚(𝑟) = 4𝜋∫𝑑𝑟

󸀠
(𝑟

󸀠
)

2

𝜌 (𝑟

󸀠
) . (7)

At large distances 𝑟 ≫ 𝐿

𝑃
, the above energy density has

to quickly vanish; that is, 𝜌(𝑟) → 0 in order to match the
“vacuum” Schwarzschild metric. Conversely, at shorter scales
𝑟 ≳ 𝐿

𝑃
, the density 𝜌(𝑟) (and accordingly ℎ(𝑟)) has to depart

from the point-particle profile in order to fulfill the following
requirements:

(i) no curvature singularity in the origin;
(ii) self-implementation of a characteristic scale 𝑙

0
in the

spacetime geometry by means of the radius of the
extremal configuration 𝑟

0
; that is, 𝑟

0
= 𝑙

0
.

The latter condition is crucial. For instance noncommutative
geometry inspired black holes [11] are derived by the direct
way; they enjoy (i) but fail to fulfill the condition (ii). This
means that the characteristic length scale of the system
𝑙

0
and the extremal configuration radius 𝑟

0
are indepen-

dent quantities. Indeed noncommutative geometry is the
underlying theory which provides the scale 𝑙

0
in terms

of an “external” parameter, namely, the noncommutative
parameter 𝜃. In other words one needs to invoke a principle,
like a modification of commutators in quantum mechanics,
or the emergence of a quantum gravity induced fundamental
length to achieve the regularity of the geometry at short
scales. Against this background, we want just to use 𝑟

0
as

fundamental scale, getting rid of any 𝑙
0
as emerging from any

theory or principle not included in Einstein field equations.
This is a step forward since it opens the possibility for
Einstein gravity to be self-protected in the ultraviolet regime.
To emphasize this point, we introduced the word “self -
implementation” in (ii). Since there exists actually only one
additional scale beyond 𝑟

0
, that is, the Planck length 𝐿

𝑃
=

√

𝐺, or the Planck mass 𝑀
𝑃
= 1/

√

𝐺, we can implement the
condition (ii) in the most natural way by setting 𝑟

0
= 𝐿

𝑃
and

accordingly 𝑀

0
= 𝑀

𝑃
, where 𝑀

0
≡ 𝑀(𝑟

0
) is the extremal

black hole mass.
Despite the virtues of the above line of reasoning, we feel

that the set of conditions (i) and (ii) can be relaxed and a
further simplification is possible. Having in mind that for
extremal black hole configurations the Hawking emission
stops we just need to find a metric for which only the
condition (ii) holds. This would be enough for completing
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the program of the UV self-complete quantum gravity by
protecting the short distance behavior of gravity during the
final stages of the evaporation process. In this regard, the
resulting extremal black hole is just the smallest object one
can use to probe short-distance physics. In other words, in
the framework of UV self-complete quantum gravity, it is
not physically meaningful to ask about curvature singularity
inside the horizon as the very concept of spacetime is no
longer defined below this length scale.

According with such a line of reasoning, we can deter-
mine the function ℎ(𝑟) by dropping the condition (i) and
keeping just the condition (ii). Inside the class of all admis-
sible profiles for ℎ(𝑟), the most natural and algebraically
compact choice is given by

ℎ (𝑟) = 1 −

𝐿

2

𝑃

𝑟

2
+ 𝐿

2

𝑃

.
(8)

A similar procedure has been already used in [33] and
accounts for the fact that in the presence of 𝐿

𝑃
the step cannot

be any longer sharp. Thus, the smeared energy density 𝜌(𝑟)

turns out to be

𝜌 (𝑟) =

𝑀

2𝜋𝑟

𝐿

2

𝑃

(𝑟

2
+ 𝐿

2

𝑃
)

2
. (9)

As a result we find the followingmetric which is derived from
a stress tensor modeling a particle-black hole system (5):

𝑑𝑠

2
= − (1 −

2𝑀𝐿

2

𝑃
𝑟

𝑟

2
+ 𝐿

2

𝑃

)𝑑𝑡

2

+ (1 −

2𝑀𝐿

2

𝑃
𝑟

𝑟

2
+ 𝐿

2

𝑃

)

−1

𝑑𝑟

2
+ 𝑟

2
𝑑Ω

2
,

(10)

where the arbitrary constant𝑀 is defined as follows:

𝑀 ≡

1

2𝐿

2

𝑃
𝑟

ℎ

(𝑟

2

ℎ
+ 𝐿

2

𝑃
) . (11)

We give 𝑀 the physical meaning of mass for a spherical,
holographic screen with radius 𝑟

ℎ
. The basic idea is that gravi-

tational phenomena taking place in three-dimensional space
can be projected on a two-dimensional “viewing screen” with
no loss of information [39]. The idea of holographic screen
has been proposed in [40] and it hasmathematically been for-
mulated in [41]: the holographic screen plays the role of “basic
constituent of space where the Newton potential is constant.”
Along this line of reasoning, the idea of holographic screen
has been used also in the context of noncommutative inspired
metric to derive compelling deviations to Newton’s law [42].
For what concerns the current discussion, however, we just
need to recall that a special case of holographic screen is given
by an event horizon where the entropy is maximized.

Several remarks are in order.

(i) It is easy to show that𝑀 ≥ 𝑀

𝑃
and equals the Planck

mass only for 𝑟
ℎ
= 𝐿

𝑃
.

(ii) The line element (10) admits a pair of horizons
provided 𝑀 ≥ 𝑀

𝑃
. The radii 𝑟

±
of the horizons are

given by

𝑟

±
= 𝐿

2

𝑃
(𝑀 ±

√

𝑀

2
− 𝑀

2

𝑃
) . (12)

For 𝑀 = 𝑀

𝑃
the two horizons merge into a single

(degenerate) null surface at 𝑟
±
= 𝑟

0
= 𝐿

𝑃
. For 𝑀 ≫

𝑀

𝑃
the outer horizon approaches the conventional

value of the Schwarzschild geometry; that is, 𝑟
+

≃

2𝑀𝐿

2

𝑃
.

(iii) By inserting (11) into (12) one finds 𝑟

+
= 𝑟

ℎ
, 𝑟
−

=

𝐿

2

𝑃
/𝑟

ℎ
. We see that the holographic screen surface

coincides with the (outer) black hole horizon 𝑟

+
,

while the inner Cauchy horizon has a radius which
is always smaller or equal to the Planck length. This
fact lets us circumvent the issue of potential blue shift
instabilities [43, 44] (see, i.e., recent analyses for non-
commutative inspired [45, 46] and other quantum
gravity corrected metrics [47, 48]) because 𝑟

−
simply

loses its physical meaning being not accessible to any
sort of measurement process. In what follows we can
identify the holographic screen with the black hole
outer horizonwithout distinguishing between the two
surfaces any longer.

(iv) “Light” objects, with 𝑀 < 𝑀

𝑃
, are “particles”

rather than holographic screens. By particles wemean
localized lumps of energy of linear size given by the
Compton wavelength 𝜆

𝐶
= 1/𝑀 that can never

collapse into a black hole. Rather they give rise to
horizonless metrics (see Figure 2) and cannot probe
distances smaller than 𝜆

𝐶
. The “transition” particle

→ black holes is discussed below in terms of critical
surface density.

As a further analysis of this result, it is interesting to consider
the surface energy density of the holographic screen which is
defined as

𝜎

ℎ
≡

𝑀

4𝜋𝑟

2

ℎ

=

1

8𝜋𝐿

2

𝑃

𝑟

2

+
+ 𝐿

2

𝑃

𝑟

3

+

. (13)

From the above relation we see that 𝜎
ℎ
is a monotonically

decreasing function of the screen radius.We notice that there
exists a minimal screen encoding the physically maximum
attainable energy density, that is, the Planck (surface) density:

𝜎

ℎ
(𝑟

+
= 𝐿

𝑃
) =

1

4𝜋𝐿

3

𝑃

=

𝑀

𝑃

4𝜋𝐿

2

𝑃

. (14)

We stress that there is no physically meaningful “interior” for
the minimal screen; that is, the “volume” of such an object
is not even defined, in the sense that it can never be probed.
Thus, we can only consider energy per unit area, rather than
per unit volume. If we, formally, define a surface energy for a
particle as

𝜎

𝑝
≡

𝑀

4𝜋𝜆

2

𝐶

=

1

4𝜋𝜆

3

𝐶

(15)
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we see that the two curves (13) and (15) cross at 𝜆

𝐶
=

𝐿

𝑃
= 𝑟

+
. This result offers an additional interpretation for

the Planck length which consistently turns to be the minimal
size for a particle as well for a black hole (see Figure 2).
Accordingly, the Planck density (14) is the critical density for a
particle to collapse into a black hole.This argument is usually
formulated in terms of volume energy density having inmind
the picture of macroscopic body gravitationally collapsing
under their ownweight. Fromour holographic vantage point,
where “surfaces” are the basic dynamical objects, it is natural
to reformulate this reasoning in terms of areal densities
[39]. In addition holography offers a way to circumvent
potential conflicts between the mechanism of spontaneous
dimensional reduction [49, 50] and the UV self-complete
paradigm. If we perform the limit for 𝑟 → 0 the metric (10)
would apparently reduce into an effective two-dimensional
spacetime:

𝑑𝑠

2
󳨀→ − (1 − 2𝑀𝑟) 𝑑𝑡

2
+ (1 − 2𝑀𝑟)

−1
𝑑𝑟

2
+ O(

𝑟

2

𝐿

2

𝑃

) .

(16)

As explained in [51], this mechanism would lead the for-
mation of lower dimensional black holes for length scales
below the Planck length, in contrast with the predicted
semiclassical regime of trans-Planckian black holes in four
dimensions. However, contrary to the Schwarzschild metric
that eventually reduces into dilaton gravity black holes when
𝑟 ≃ 𝐿

𝑃
(for reviews of the mechanism see [52, 53]), the

presence of the holographic screen forbids the access to
length scales 𝑟 < 𝐿

𝑃
and safely protects the arguments at the

basis of the UV self-complete quantum gravity.

3. Thermodynamics, Area Quantization, and
Mass Spectrum

In this section we would like to investigate the thermody-
namics of the black hole described by (10) and determine
the relation between entropy and area of the event horizon.
It is customary to consider the area law for granted in any
case, but this assumption leads to an inconsistency with the
third law of thermodynamics: extremal black holes have zero
temperature but nonvanishing area. Here, we stick to the
textbook definition of thermodynamical entropy and not to
more exotic quantity like Rényi, or entanglement entropy. To
cure this flaw, we will derive the relation between entropy and
area from the first law, rather than assuming it. The Hawking
temperature associated to themetric (10) can be calculated by
evaluating the surface gravity 𝜅:

𝑇

𝐻
=

𝜅

2𝜋

=

1

4𝜋

(

𝑑𝑔

00

𝑑𝑟

)

𝑟=𝑟
+

=

1

4𝜋𝑟

+

(1 −

2𝐿

2

𝑃

𝑟

2

+
+ 𝐿

2

𝑃

) , (17)

while the heat capacity 𝐶 ≡ 𝜕𝑈/𝜕𝑇

𝐻
is

𝐶 ≡

𝜕𝑀

𝜕𝑇

𝐻

= −2𝜋𝑟

+
(

𝑟

2

+
− 𝐿

2

𝑃

𝐿

2

𝑃

)

(𝑟

2

+
+ 𝐿

2

𝑃
)

2

𝑟

4

+
− 4𝐿

2

𝑃
𝑟

2

+
− 𝐿

4

𝑃

.

(18)
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Figure 2: The plot shows a length/energy relation consistent with
the self-complete quantum gravity arguments in Planck units.
Particles (dotted line) and black holes (solid line) cannot probe
length shorter than the Planck length. The grey area is permanently
inaccessible and accordingly represents the minimal spacetime time
region or fundamental constituent, that is, the “atom” the spacetime
is supposed to be made of.

One can check that for large distances, that is, 𝑟
+
≫ 𝐿

𝑃
, both

(17) and (18) coincide with the conventional results of the
Schwarzschild metric; that is, 𝑇

𝐻
≈ 1/4𝜋𝑟

+
and 𝐶 ≈ −2𝜋𝑟

2

+

(see Figures 3 and 4). On the other hand at Planckian scales,
contrary to the standard result for which a Planckian black
hole has a temperature 𝑇

𝐻
= 𝑀

𝑃
/8𝜋, we have that 𝑇

𝐻
→ 0

as 𝑟
+

→ 𝑟

0
= 𝐿

𝑃
as expected for any extremal configurations.

This discrepancy with the classical picture is consistent with
the genuine quantum gravitational character of the black
hole and is reminiscent of the modified thermodynamics of
noncommutative inspired black holes [54, 55].

The Hawking emission is a semiclassical decay where
gravity is considered just in terms of a classical spacetime
background. Such a semiclassical approximation convention-
ally breaks down as the Planck scale is approached. On the

other hand for our metric, at 𝑟
+

= 𝑟

𝑀
=

√

2 +

√

5𝐿

𝑃
≃

2.058𝐿

𝑃
the temperature admits a maximum corresponding

to a pole in the heat capacity. In the final stage of the
evaporation, that is, 𝐿

𝑃
< 𝑟

+
< 𝑟

𝑀
, the heat capacity is

positive; the Hawking emission slows down and switches off
at 𝑟

+
= 𝐿

𝑃
. From a numerical estimate of the maximum

temperature one finds 𝑇
𝐻
(𝑟

𝑀
) = 0.0239𝑀

𝑃
. This implies that

the ratio temperature/mass is𝑇
𝐻
/𝑀 < 𝑇

𝐻
(𝑟

𝑀
)/𝑀

0
≃ 0.0239.

As a consequence, no relevant back reaction occurs during
all the evaporation processes and the metric can consistently
describe the system “black hole + radiation” for all 𝑟

+
≥ 𝐿

𝑃
.

We can summarize the process with the following
scheme:
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Figure 3: The solid curve represents the Hawking temperature 𝑇

𝐻

and as a function of the horizon radius 𝑟
+
in Planck units.The dotted

curve represents the corresponding classical result in terms of the
Schwarzschild metric.

(i) “large”, far-from-extremality, black holes are semiclas-
sical objects which radiate thermally;

(ii) “small”, quasi-extremal, black holes are quantum
objects;

(iii) 𝑟 = 𝑟

𝑀
is “critical point” where the heat capacity

diverges (see Figure 4). Since 𝐶 > 0 for 𝑟
0
< 𝑟

+
< 𝑟

𝑀

and 𝐶 < 0 for 𝑟

𝑀
< 𝑟

+
, we conclude that a phase

transition takes place from large thermodynamically
unstable black holes to small stable black holes.

As a matter of fact, the black hole emission preceding the
evaporation switching off (often called “SCRAM phase” [11])
might not be thermal. It has been argued that such a quantum
regime might be characterized by discrete jumps towards the
ground state [7, 56]. To clarify the nature of this mechanism
we proceed by studying the black hole entropy profile and the
related area quantization. By integrating the first law, taking
into account that no black hole can have a radius smaller than
𝑟

0
= 𝐿

𝑃
, that is,

𝑆 (𝑟

+
) = ∫

𝑟
+

𝑟
0

𝑑𝑀

𝑇

𝐻

=

𝜋

𝐿

2

𝑃

(𝑟

2

+
− 𝐿

2

𝑃
) + 2𝜋 ln(

𝑟

+

𝐿

𝑃

) , (19)

we can cast the entropy in terms of the area of the event
horizonA

+
≡ 4𝜋𝑟

2

+
as

𝑆 (A
+
) =

𝜋

A
0

(A
+
−A
0
) + 𝜋 ln(

A
+

A
0

) , (20)

where A
0
= 4𝜋𝐿

2

𝑃
is the area of the extremal event horizon.

We remark that the modifications to the Schwarzschild
metric, encoded in our model, are in agreement with all

the major approaches to quantum gravity, which universally
foresee a logarithmic term as a correction to the classical area
law. For brevity we recall that this is the case for string theory
[57, 58], loop quantum gravity [59–61], and other results
based on generic arguments [62, 63], on Cardy’s formula
[64], conformal properties of spacetimes [65], and other
mechanisms for counting microstates [66–68]. We can check
that this is the case for themetric (10) by performing the limit
𝑟

+
≫ 𝐿

𝑃
for (20) to obtain

𝑆 (A
+
) ≈

A
+

4𝐿

2

𝑃

+ 𝜋 ln(

A
+

4𝜋𝐿

2

𝑃

) . (21)

Conversely for 𝑟
+

→ 𝐿

𝑃
the entropy vanishes; that is,

𝑆 (A
+
) ≈

4𝜋

𝐿

𝑃

(𝑟

+
− 𝐿

𝑃
) + 𝑂 ((𝑟

+
− 𝐿

𝑃
)

2

) . (22)

This result is consistent both with the third law of thermo-
dynamics and the entropy statistical meaning. The Planck
size, zero temperature, black hole configuration is the unique
ground state for holographic screens.Thus, it is a zero entropy
state as there is only one way to realize this configuration. To
see this we promote the extremal configuration area to the
fundamental quantum of area:

A
+
≡ A
𝑛−1

= 𝑛A
0
= 4𝜋𝑛𝐿

2

𝑃
,

(23)

where 𝐿

2

𝑃
represents the basic information pixel and 𝑛 =

1, 2, 3 . . . is the number of bytes (we borrow here the names
of some units of digital information. In the present context,
each byte consists of 4𝜋 bits. Each bit, represented by 𝐿

2

𝑃

is the basic capacity of information of the holographic
screen. In the analogy with the theory of information for
which a byte represents the minimum amount of bits for
encoding a single character of text, here the byte represents
the minimum number of basic pixel 𝐿2

𝑃
for encoding the

smallest holographic screen). From the above condition one
obtains

𝑟

𝑛−1
≡ 𝑛

1/2
𝐿

𝑃
,

𝑀

𝑛−1
≡

1

2

(𝑛

1/2
+ 𝑛

−1/2
)𝑀

𝑃
.

(24)

Consistently the ground state of the system is 𝑟
0
= 𝐿

𝑃
and

𝑀

0
= 𝑀

𝑃
, while for 𝑛 ≫ 1 one finds a continuous spectrum

of values.This can be checked through the following relation:

Δ𝑀

𝑛
≡ 𝑀

𝑛
− 𝑀

𝑛−1
∼

1

4

𝑛

−1/2
𝑀

𝑃
.

(25)

We notice that for 𝑛 ≤ 4 we are in the regime of positive
heat capacity 𝐶 > 0 and discrete mass spectrum, while for
𝑛 > 4 we approach the semiclassical limit characterized by
negative heat capacity 𝐶 < 0 and continuous mass spectrum;
that is, Δ𝑀

𝑛
/𝑀

𝑛
≤ 1/12. This confirms that at 𝑟

+
= 𝑟

𝑀
,

the system undergoes a phase transition from a semiclassical
regime to a genuine quantum gravity regime. As a conclusion
we have that large black holes decay thermally, while small
objects decay quantum mechanically, by emitting quanta of
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Figure 4: The solid curve represents the black hole heat capacity 𝐶

as a function of the horizon radius 𝑟

+
in Planck units. The dotted

curve represents the corresponding classical results in terms of the
Schwarzschild metric.

energy (for a recent phenomenological analysis of such kind
of decay see [69]).The end point of the decay is a Planckmass,
holographic screen.

The quantization of the area of the holographic screen lets
us disclose further features of the informational content of the
holographic screen. We have that the surface density can be
written as

𝜎

ℎ
(𝑛) =

1

2

(

1

𝑛

1/2
+

1

𝑛

3/2
)

𝑀

𝑃

4𝜋𝐿

2

𝑃

, (26)

while the entropy reads 𝑆(𝑛) = 𝜋(𝑛 + ln(𝑛) − 1). From
this relation we learn that, while the entropy increases with
the number 𝑛 of bytes, the surface density decreases. This
confirms that the extremal configuration is nothing but
a single byte, zero entropy, Planckian density holographic
screen.

4. Discussion and Conclusions

In this paper we have presented a neutral nonspinning
black hole geometry admitting an extremal configuration
whose mass and radius coincide with the Planck units.
We have reached this goal by suitably modelling a stress
tensor able to accommodate both the particle and black hole
configurations, undergoing a transition at the Planck scale.
We showed that the horizon of the degenerate black hole
represents the minimal holographic screen, within which
we cannot access any information about the matter-energy
content of spacetime.

We showed that a generic holographic screen is described
in terms of the outer horizon of the metric (10), while the
inner horizon lies within the prohibited region, that is, inside
the minimal holographic screen. The whole scheme fits into
the gravity self-completeness scenario. For sub-Planckian

energy scales one has just a quantum particle able to probe at
the most distances of the order of its Compton wavelength.
By increasing the degree of compression of the particle,
one traverses the Planck scale where a collapse into a black
hole occurs, before probing a semiclassical regime at trans-
Planckian energies. The virtual curvature singularity of the
geometry in 𝑟 = 0 is therefore wiped out since in such
a context sub-Planckian lengths have no physical meaning.
From this vantage point spacetime stops to exist beyond the
Planck scale as there is no physical way to access this regime.
Thus, the curvature singularity problem is ultimately resolved
by giving up the very concept of spacetime at sub-Planckian
length scales.

The study of the associated thermodynamic quantities
confirmed that at trans-Planckian energies black holes radiate
thermally before undergoing a phase transition to smaller,
quantum black holes. The latter decay by emitting a discrete
spectrum of quanta of energy and reach the ground state of
the evaporation corresponding to the minimal holographic
screen. We came to this conclusion by quantizing the black
hole horizon area in terms of theminimal holographic screen
which actually plays the role of a basic information byte. We
showed that in the thermodynamic limit, the area law for
the black hole entropy acquires a logarithmic correction in
agreement with all the major quantum gravity formulations.

In conclusion, we stress that the line element (10) not only
captures the basic features of more “sophisticated” models of
quantumgravity improved black holes (e.g., noncommutative
geometry inspired black holes [11], loop quantum gravity
black holes [70, 71], asymptotically safe gravity black holes
[72, 73], and other studies about collapses in quantum gravity
[74, 75]) but overcomes some of their current weak points:
specifically there is no longer any concern for potential
Cauchy instabilities or for conflicts between the gravity self-
completeness and the Planck scale spontaneous dimensional
reduction mechanism, as well as the scenario of the terminal
phase of the evaporation for static, nonrotating, neutral black
holes. In addition, for its compact form the newmetric allows
straightforward analytic calculations and opens the route to
testable predictions.
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