
Hierarchical Self-Organizing

Systems for Task-Allocation in

Large Scaled Distributed

Architectures

Dissertation zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich Informatik und Mathematik

der Johann Wolfgang Goethe-Universität

in Frankfurt am Main

von

Andreas Lund
aus

Wiesbaden

Frankfurt 2019

(D30)

vom Fachbereich Informatik und Mathematik der

Johann Wolfgang Goethe-Universität als Dissertation

angenommen.

Dekan: Prof. Dr. Lars Hedrich

Gutachter: Prof. Dr. Uwe Brinkschulte

Prof. Dr. Lars Hedrich

Datum der Disputation: 09.07.2019

You know you have a distributed system when the

crash of a computer you’ve never heard of stops you

from getting any work done.

-Leslie Lamport-

Abstract

This thesis deals with the subject of autonomous, decentralized task al-

location in a large scaled multi-core network. The self-organization of such

interconnected systems becomes more and more important for upcoming devel-

opments. It is to be expected that the complexity of those systems becomes

hardly manageable to human users.

Self-organization is part of a research field of the Organic Computing initia-

tive, which aims to find solutions for technical systems by imitating natural

systems and their processes. Within this initiative, a system for task allocation

in a small scaled multi-core network was already developed, researched and

published. The system is called the Artificial Hormone System (AHS), since it

is inspired by the endocrine system of mammals. The AHS produces a high

amount of communication load in case the multi-core network is of a bigger

scale.

The contribution of this thesis is two new approaches, both based on the

AHS in order to cope with large scaled architectures. The major idea of those

two approaches is to introduce a hierarchy into the AHS in order to reduce the

produced communication load. The first and more detailed researched approach

is called the Hierarchical Artificial Hormone System (HAHS), which orders

the processing elements in clusters and builds an additional communication

layer between them. The second approach is the Recursive Artificial Hormone

System (RAHS), which also clusters the system’s processing elements and orders

the clusters into a topological tree structure for communication.

Both approaches will be explained in this thesis by their principle structure

as well as some optional methods. Furthermore, this thesis presents estimations

for the worst-case timing behavior and the worst-case communication load

of the HAHS and RAHS. At last, the evaluation results of both approaches,

especially in comparison to the AHS, will be shown and discussed.

Organic Computing, Task-Allocation, Distributed Computing, Autonomous

Computing, Decentralization, Self-Organization

Zusammenfassung

Zwei Entwicklungen verändern zunehmend die Möglichkeiten informationstech-

nischer Systeme, insbesondere die der eingebetteten Systeme: eine steigende

Integrationsdichte und das „Internet of Things“.

Die steigende Integrationsdichte führt dazu, dass mehr und mehr Schaltungen

auf einem einzigen Chip integriert werden können. Dadurch können komplexe-

re „Systems-on-Chip“ mit mehreren Funktionalitäten vereint in einem Chip

gefertigt werden. Doch birgt eine höhere Integrationsdichte auch eine höhere

Gefahr von transienten sowie permanenten Fehlern und Ausfällen des Chips.

Die Ursache für diese Fehler und Ausfälle ist zum einem die Elektromigration

von Schaltungen und Leiterbahnen und zum anderen „Single Event“-Effekte

in den Schaltungen, welche durch den Chip dringende Strahlungen ausgelöst

werden.

Der Begriff „Internet of Things“ bezeichnet den zunehmenden Trend ein-

gebettete Systeme mit einem internetfähigen Mikrocontroller oder Mikrochip

auszustatten. Dies resultiert in großen, verteilten Systemen, die alle mitein-

ander verbunden sind. Diese Systeme, die im Verbund zusammen arbeiten

(zum Beispiel in einer „Smart Factory“ oder einer „Smart City“), haben un-

ter Umständen eine komplexe Topologie mit mehreren Hierarchiebenen. Die

Entwicklung und Wartung von Anwendungen für diese Systeme gestaltet sich

aufgrund der Komplexität für Menschen schwierig.

Diese Entwicklungen erfordern neue Paradigmen in der Software- und Ar-

chitekturentwicklung. Die Organic Computing Forschungsinitiative sucht nach

Lösungen für die aus diesen neuen Entwicklungen resultierenden Problemen.

Es wird dabei versucht Techniken und Methoden aus der Natur in technischen

Systemen nachzuahmen. Das Organic Computing definiert dabei die soge-

nannten Selbst-X -Eigenschaften. Die wichtigsten dieser Eigenschaften sind die

Selbstkonfiguration, die Selbstoptimierung und die Selbstheilung. Bei Umsetzung

dieser Eigenschaften erlangt das System einen Grad der Selbstorganisation,

welcher das System dazu befähigt, diese Eigenschaften autonom und ohne

externen Einfluss durchzuführen. Auf diese Weise können Systeme entwickelt

werden, die auch in unerwarteten Zuständen funktionsfähig bleiben und dabei

die Komplexität der darunterliegenden Architektur gegenüber dem Benutzer

verbergen.

Ein spezifisches Problem im Zusammenhang mit verbundenen Prozessorker-

nen ist die Taskverteilung in einem solchen System. Gegeben sei dabei eine

Menge von Tasks, die auf eine Menge von heterogenen Prozessorkernen (auch

Processing Elements (PE) genannt) verteilt werden müssen. Diese Taskvertei-

lung soll während der Laufzeit anhand der aktuellen Eignung der PEs optimiert

werden. Zusätzlich sollen beim Ausfall eines PEs die verlorenen gegangenen

Tasks wieder neu verteilt werden. Die Heterogenität der PEs bedeutet in diesem

Zusammenhang, dass die verschiedenen PEs gegebenfalls verschiedene Eignun-

gen für die Tasks im System haben. Ein System, das diese Taskverteilung

bewerkstelligt, ist das Künstliche Hormonsystem (KHS) (im Englischen: Artif-

cial Hormon System (AHS) genannt), welches von Brinkschulte et al. entwickelt

und erforscht wurde. Das KHS benutzt verteilte Regelungsschleifen in jedem

PE, welche durch Nachrichten, den Hormonen, miteinander kommunizieren.

Drei verschiedene Typen von Hormonen existieren im KHS. Als Erstes die

Eignungswerte (im Englischen: Eager Values), die die Eignung eines PEs zu

einem Task angeben. Als Gegenspieler zu den Eignungswerten existieren Sup-

pressoren, welche die Eignung eines Task auf einem PE verringern. Und als

letzten Typ, die Acceleratoren, welche die Eignung von einzelnen PEs für eine

Task verbessern. Pro Regelungszyklus werden die aktuellen Eignungen für alle

Tasks auf dem PE anhand der empfangenen Hormone neu berechnet. Danach

wählt jedes PE genau ein Task per Zyklus und überprüft, ob er für diese

Task die höchste Eignung hat. Falls dem so ist, übernimmt das PE den Task

und allokiert ihn. Daraufhin sendet er alle zuvor berechneten Eignungswerte,

eventuelle Suppressoren und Acceleratoren an alle anderen PEs im System. Das

KHS implementiert die Selbstkonfiguration, Selbstoptimierung und Selbsthei-

lung für die Taskverteilung auf heterogenen Kernen. Zudem konnten für alle

„Selbst-X“-Eigenschaften Zeitschranken nachgewiesen werden, sodass das KHS

auch im Kontext von Echtzeitsystemen genutzt werden kann.

Ein Problem des KHS ist jedoch, dass die Skalierung in der Anzahl der PEs

und Tasks schwierig ist. Die Kommunikationslast eines hochskalierten KHS

bringt aktuelle Kommunikationsbusse an ihre Grenzen. Das Problem ist vor

allem die maximale Kommunikationslast, die bei der initialen Taskverteilung

nach dem Start des Systems, also der Selbstkonfiguration, erzeugt wird. So

werden zum Anfang n · m Eignungswerte (n = Anzahl PEs; m = Anzahl Tasks)

in einem Zyklus ausgesendet. Dies führt bei 100 PEs und 50 Tasks zu einer

benötigten Bandbreite von 1,7 MBytes/s.

Diese Dissertation stellt zwei neue Systeme vor, welche auf dem KHS basie-

ren und gleichzeitig die maximale Kommunikationslast verringern. Die Idee des

ersten neuen Systems, dem Hierarchisch Künstlichen Hormonsystem (HKHS)

(im Englischen: Hierarchical Artificial Hormone System (HAHS)) ist die PEs in

separate Cluster zu ordnen. In jedem Cluster wird exakt ein PE als sogenann-

ter Cluster Head auserwählt. Alle Cluster Heads untereinander formen einen

zweiten, übergeordneten Regelungszyklus. Dies stellt die einzige Kommunikati-

on zwischen den Clustern dar. Alle Tasks werden nun zuerst in dem oberen

Regelungszyklus (inter-cluster Zyklus) verhandelt und anschließend von dem

Cluster Head in dem entsprechenden Cluster-Regelungszyklus (intra-cluster

Zyklus) freigeschaltet. Dies führt dazu, dass die gesamte Taskmenge im oberen

Regelungszyklus in Untermengen aufgeteilt wird. Der Vorteil dieses Beitrags

ist, dass die anfängliche Kommunikationslast von n · m Hormonen auf c · m

(wobei c = Anzahl der Cluster) Hormone reduziert werden.

Das HKHS kann in verschiedenen Varianten implementiert werden, die je

nach Anwendungsszenario erforderlich sind. So stehen zwei Arten der Taskorga-

nisation zur Verfügung. Zum einem kann man das Prinzip der Aufteilung der

Tasks in Untermengen schon vordefinieren. Diese voreingestellten, statischen

Taskuntermengen werden Organe genannt. Das dazu gehörig Konzept heißt

Organ Task Konzept. In diesem Konzept werden nur noch die Untermengen

als Ganzes im oberen Regelungszyklus anhand eines speziellen Organ Tasks,

verhandelt. Gewinnt ein Cluster Head einen dieser Organ Tasks, so schaltet er

alle Tasks des Organs gleichzeitig in seinem Cluster frei. Mit dieser Methode

wird sowohl die Kommunikationslast nochmal deutlich reduziert als auch die

Allokationszeit (die Zeit bis alle Tasks allokiert wurden) verkürzt. Das Gegen-

stück ist das sogenannte Single Task Konzept, in dem jeder Task sowohl im

inter-cluster Zyklus als auch in den intra-cluster Zyklen einzeln verhandelt

wird.

Neben dem Taskkonzept lässt sich das HKHS auch in seinem Verhalten hin-

sichtlich der Cluster und Cluster Heads einstellen. So können die Cluster Heads

entweder vordefiniert werden und bleiben damit statisch ausgewählt oder sie

können von dem System dynamisch ausgewählt und verwaltet werden. Zweiteres

lässt sich auch über das genutzte KHS in jedem Cluster implementieren. Dazu

wird ein spezieller Task eingeführt, der pro Cluster einmal ausgeführt werden

soll. Ein PE, das diesen Task gewinnt, übernimmt die Aufgabe des Cluster Heads

für diesen Cluster. Mit den dynamischen Cluster Heads ist ein HKHS robuster,

da Ausfälle von Cluster Head PEs kompensiert werden können, während dies

bei statischen Cluster Heads zum Ausfall eines ganzen Clusters führen würde.

Ähnlich kann auch mit der Zuteilung der PEs zu den Clustern verfahren werden.

Entweder ist diese Zugehörigkeit statisch und vordefiniert oder wird dynamisch

zur Laufzeit vom System selbst bestimmt. Eine dynamische Zuteilung kann

durch das Versenden von sogenannten Cluster Acceleratoren durch die Cluster

Heads umgesetzt werden. Diese Cluster Acceleratoren haben einen bestimmten

Stärkewert, der sich an einer Eigenschaft der PEs orientiert. Ein jedes PE,

das einen solchen Accelerator erhält, wird sich dem Cluster zuordnen, der ihm

den höchsten Stärkewert gesendet hat. Eine solche Eigenschaft, die in dieser

Dissertation benutzt wird, ist die räumliche Distanz vom Cluster Head; dass

heißt der Stärkewert eines Cluster Accelerators nimmt mit der Entfernung zum

Cluster Head ab. Dadurch bilden sich räumlich zusammenhängende Cluster.

Bei der Nutzung des HKHS ergibt sich eine Schwierigkeit mit den Eignungs-

werten in der oberen Reglungsschleife, der Schleife zwischen den Cluster Heads.

Die Cluster Heads können nur durch den Einsatz von zusätzlicher Konmmuni-

kation herausfinden, wie geeignet die PEs in ihrem Cluster für jede einzelne

Task sind. Um dadurch nicht letztendlich eine höhere Kommunikationslast als

das KHS zu erzeugen, werden in dieser Dissertation verschiedene Methoden zur

Abbildung der Eignungswerte auf den oberen Regelungskreis vorgestellt. Alle

Methoden beruhen dabei auf der Kommunikation zwischen den PEs, während

sie versuchen diese möglichst stark zu reduzieren.

Das zweite System zur Lösung des Taskverteilungsproblems ist das Rekursive

Künstlichen Hormonsystem RKHS) (im Englischen: Recursive Artificial Hor-

mone System (RAHS)). Dieses System ist eine Weiterentwicklung des HKHS

und benutzt mehrere hierarchische Ebenen in denen separate Cluster aus PEs

angeordnet sind. Jeder Cluster hat genau ein Repräsentanten-PE in einem

Cluster aus der nächsthöheren Ebene; diese sind vergleichbar mit den Cluster

Heads aus dem HKHS. Wie beim HKHS startet die Taskverteilung in der obers-

ten Ebene mit der gesamten Taskmenge. Die PEs allokieren die Tasks oder

reichen sie weiter in die nächste Ebene, falls sie ein Repräsentant sind. Ob eine

solche PE den Task selber allokiert oder weiterreicht kann entweder statisch

vordefiniert werden oder auch dynamisch entschieden werden. Eine dynamische

Entscheidung könnte zum Beispiel durch Regelungsschleifen getroffen werden.

Die verteilten Regelungsschleifen in den Clustern werden horizontale Regelungs-

zyklen genannt, während die Kommunikation zwischen Repräsentant und einem

Cluster der nächsttieferen Ebene beziehungsweise die zugehörige Regelungs-

schleifen vertikale Regelungszyklen genannt werden. Ähnlich wie beim HKHS

ergibt sich auch im RKHS das Problem der Bestimmung der Eignungswerte

in den höheren Ebenen. Hierfür stellt diese Dissertation eine Lösungsmethode

vor, die die Eignungswerte zum Start des Systems sukzessive in die höheren

Ebenen abbildet. Weiterhin stellt diese Dissertation eine Methode zur dyna-

mischen Bestimmung ob ein Task von einer Repräsentanten-PE allokiert oder

weitergereicht wird vor.

Für beide Systeme, das HKHS und das RKHS, werden in der vorliegende

Dissertation Abschätzungen zum Worst-Case-Laufzeitverhalten und Worst-

Case-Kommunikationsverhalten der drei Selbst-X -Eigenschaften (-konfiguration,

-optimierung, -heilung) aufgestellt. Zudem wird der Einfluss der verschiedenen

Konzepte und Varianten beider Systeme auf das Zeitverhalten und Kommuni-

kationsverhalten analysiert und abgeschätzt.

Zu Evaluationszwecken wurden für das HKHS und RKHS Simulatoren

entwickelt, in denen verschiedene Architekturkonfigurationen sowie verschiedene

Methoden simuliert werden können. Während der Simulator für das HKHS

auf dem bestehenden C++ Simulator für das KHS basiert, wurde für das

RKHS, aufgrund seiner komplexen Hierarchiemöglichkeiten, ein komplett neuer

Simulator in C++ entwickelt. Zudem wurde die bestehende C-Middleware des

KHS um die Hierarchiemerkmale des HKHS erweitert, sodass dieses auch im

Produktiveinsatz als Middleware zwischen mehreren Recheneinheiten genutzt

werden kann.

Im Rahmen dieser Dissertation wurden beide Systeme analysiert und einige

ihrer Konzepte, Varianten und Methoden evaluiert. Dabei konnte gezeigt werden,

dass beide Systeme mit der maximalen Kommunikationslast unter dem Wert

des KHS bleiben und dabei immer noch die Selbst-X -Eigenschaften des KHS

gewährleisten. Zudem konnte gezeigt werden, dass ein Organ Task HKHS

schneller die vollständige Taskmenge allokiert als das KHS. Weiterhin wurde

die optimale Anzahl an Organen in einem Organ Task HKHS in Abhängigkeit

der Taskanzahl mittels Evaluationen bestimmt. Für das RKHS zeigte sich, dass

mehrere Hierarchie Ebenen nicht nur zu einer Verlängerung der Allokationszeit

führen, sondern durch sie auch die maximale Kommunikationslast steigt. Daher

ist eine mehrstufiges RKHS nur dann sinnvoll, wenn die vorliegende Topologie

dies erfordert.

Zuletzt stellt die vorliegende Dissertation vergleichbare Systeme und Lö-

sungen für das Taskverteilungsproblem vor. Dabei liegt der Fokus auf den

zahlreichen Methoden in Multi-Agenten-Systemen, welche ein ähnliches Funkti-

onsprinzip wie das KHS (und damit auch das HKHS und RKHS) einsetzen.

Organic-Computing, Taskallokation, Verteiltes Rechnen, Autonomes Rech-

nen, Dezentralisierung, Selbst-Organisation

Contents

Terms and abbreviations 1

1 Introduction 3

1.1 Task allocation in distributed multi-core processor networks . . 7

1.2 Goals and structure of the thesis 9

2 Organic Computing 11

2.1 History of Organic Computing 12

2.2 Self-x properties . 12

2.3 Emergence . 13

2.3.1 Example for emergence 14

3 The Artificial Hormone System 21

3.1 The biological endocrine system 22

3.2 Formal definitions . 22

3.3 Structure of the AHS . 23

3.4 The hormone loop . 26

3.5 Extensions of the AHS . 28

3.5.1 Priority decision . 28

3.5.2 Aggressive task allocation 29

3.5.3 Virtual accelerators . 29

3.5.4 Lightweight AHS . 29

3.6 Time constraints of the AHS . 30

3.7 Communication load of the AHS 31

4 The Hierarchical Artificial Hormone System 35

4.1 From the AHS towards the HAHS 35

i

4.2 The hormone loop . 36

4.3 Cluster heads . 39

4.4 Task set concepts . 39

4.4.1 Organ Task Concept . 39

4.4.2 Single Task Concept . 40

4.5 Formal definition . 40

4.6 Cluster set concepts . 42

4.6.1 static-static . 43

4.6.2 static-dynamic . 43

4.6.3 dynamic-static . 44

4.6.4 dynamic-dynamic . 47

4.7 Determining cluster eager values 50

4.7.1 Recalculation of cluster eager values 51

4.7.2 Mimic best PE . 53

4.7.3 Magnitude of eager vectors 53

4.7.4 Greatest Hormone . 53

4.8 Comparison of the concepts . 54

4.8.1 Task set concepts . 54

4.8.2 Cluster set concepts . 55

4.8.3 Cluster eager values . 56

4.8.4 Summary . 56

5 The Recursive Artificial Hormone System 59

5.1 Formal definition . 61

5.2 Pass or allocate . 62

5.3 Determining the eager values of the lower level 63

5.3.1 Periodic update . 63

5.3.2 Max eager value . 63

5.3.3 Least eager value method 66

6 System properties 69

6.1 The properties of the HAHS . 69

6.1.1 General . 69

6.1.2 Task concepts . 71

6.1.3 Cluster set concepts . 76

6.1.4 CEA Methods . 81

6.2 The properties of the RAHS . 85

6.2.1 Timing behavior . 85

6.2.2 Communication load . 87

6.2.3 Methods of the RAHS 88

7 Systems Implementation 91

7.1 Simulator . 91

7.1.1 HAHS . 91

7.1.2 RAHS . 93

7.2 Middleware . 94

7.2.1 HAHS . 94

8 Evaluation 97

8.1 HAHS . 97

8.1.1 Self-configuration . 98

8.1.2 Self-healing . 120

8.2 RAHS . 121

8.2.1 Max eager value approach 121

8.2.2 Least eager value approach 123

9 Comparison and applications 129

9.1 Off-line methods . 129

9.2 On-line methods . 130

9.2.1 Multi-Agent Systems . 131

9.2.2 Heuristics . 135

9.2.3 Centralized solutions . 135

9.2.4 Decentralized solutions 136

9.3 Application examples . 136

10 Conclusion 139

A 143

A.1 Allocation by a heuristic value in the greatest hormone method . 143

A.2 Equation to calculate the number of eager values in the organ

task HAHS . 147

List of Figures

1.1 Transistor amount, single-thread performance, frequency, power

and core amount of processors from 1970 until today [49] 4

1.2 Number of worldwide IoT devices (in billions) from 2015 to 2025

(released in November 2016, years 2017 to 2025 are forecasts) [38] 5

1.3 Results of a survey on already used and planned technology in

factories (200 respondents in Germany, January 2017 - February

2017) [27] . 6

2.1 3x3 cell grid initial state . 15

2.2 3x3 cell grid first state . 16

2.3 3x3 cell grid second state . 16

2.4 A circular course with cars. Each car has a distance (dx) to the

car in front of it . 17

3.1 The effects of the different hormones on a PE (example) 27

3.2 The hormone loop of the AHS [9] 28

3.3 Communication load (by means of hormone amount) of different

symmetric AHS configurations over self-configuration time . . . 33

3.4 Communication load (by means of the numbers of hormones)

of different symmetric AHS configurations over the entire time

(including self-optimization cycles) 34

4.1 The hierarchical extension of the AHS (top) to the HAHS (bot-

tom): The set of PEs will be split into disjoint clusters. Each

cluster gets exactly one cluster head (marked with Hx) which

represents the cluster in the inter-cluster cycle. 37

v

4.2 The hormone loop of the HAHS for a cluster head PE. It consists

of two separated AHS hormone loops: one loop for the inter-

cluster cycle and the other for the intra-cluster cycle. In the

basic concept, they are only connected by a notification hormone

which unlocks a task in the intra-cluster cycle. 38

4.3 Self-healing of the dynamic cluster head. The cluster head task

CH will be reallocated to the next best PE after the cluster head

permanently failed. Therefore, a new cluster head emerges and

the cluster remains functional. 44

4.4 Example of the clustering in the dynamic-static concept: The

cluster heads broadcast their cluster accelerator and the PEs

assign themselves to the cluster head with the highest received

cluster accelerator (in this example based on spatial distance). . 46

4.5 Predefined cluster eager values. The cluster eager value is not

related to any of the eager values from the cluster members and

will not be influenced by changes of those. 51

4.6 Cluster eager values (CEAs) are recalculated periodically. 52

4.7 Calculating the cluster eager values with the greatest hormone

method. In the first cluster a heuristic value of 10 will be used

for task 3. The second cluster uses heuristic values for the tasks

2 and 4. All other cluster eager values are based on eager values

of the cluster members. The maximum eager values of each PE

are displayed in red. 55

4.8 Comparison of the different concepts according to flexibility and

communication overhead . 57

5.1 Example of a topology for the RAHS [39] 60

5.2 Example of the task splitting in the RAHS [40] 61

5.3 The horizontal and vertical hormone loops of the RAHS [40] . . 62

5.4 Flow chart of the first part of the max eager value algorithm . . 64

5.5 Flow chart of the second part of the max eager value algorithm . 65

7.1 Screenshot of the HAHS simulator. Double framed rectangles

are cluster heads. The cluster memberships is expressed through

the color of the rectangles. 92

7.2 A simplified class diagramm of the HAHS simulator 93

7.3 Screenshot of the RAHS simulator 94

7.4 A simplified class diagramm of the RAHS simulator 95

7.5 A simplified module diagram of the HAHS middleware and a

single PE . 96

8.1 Allocated Tasks over the time of the 10 clusters, organ task

scenario. 100

8.2 Allocated Tasks over the time of the 50 clusters, organ task

scenario. 101

8.3 Allocated Tasks over the time of the 100 clusters, organ task

scenario. 102

8.4 The worst-case time for the self-configuration needed by an organ

task HAHS with 1000 tasks in dependance of the organ number 103

8.5 Allocated tasks over the time of the 31 and 32 clusters, organ

task scenario. 104

8.6 Allocated tasks over the time. Scenario with 50 clusters, single

task concept, static clusters and static cluster heads. 106

8.7 Allocated tasks over the time. Scenarios with 50 clusters, single

task concept, static clusters and dynamic cluster heads respec-

tively dynamic clusters and static cluster heads. 107

8.8 Allocated tasks over the time. Scenario with 100 clusters, single

task concept, dynamic clusters and dynamic cluster heads. . . . 108

8.9 Hormones over the time. Scenario with 32 clusters, organ task

concept compared with an AHS. 109

8.10 Hormones over the time during the start phase. Scenario with

32 clusters, organ task concept. 110

8.11 Hormones over the time. Scenario with the organ task concept,

dynamic clusters and dynamic cluster heads. 110

8.12 Hormones over the time, split by type. Scenario with the organ

task concept, static clusters and static cluster heads and 10

clusters. 111

8.13 Hormones over the time, split by type. Scenario with the organ

task concept, static clusters and static cluster heads and 100

clusters. 112

8.14 Eager value number in dependency of the organ number and the

hormone cycles . 113

8.15 Maximum eager value number in dependency of the organ number114

8.16 Pareto optima for an organ task HAHS with 1000 PEs and 1000

tasks . 115

8.17 Pareto optima for an organ task HAHS with 1000 PEs and 1000

tasks (zoomed to the pareto front (red line)) 116

8.18 Hormones over the time. Scenario with 50 clusters, single task

concept, static clusters and static cluster heads compared with

the AHS. 117

8.19 Hormones per second. Scenario with 50 clusters, single task

concept, static clusters and static cluster heads compared with

the AHS. 118

8.20 Emergence of the task allocation among the PEs in a 100 clusters,

single task, dynamic cluster, dynamic cluster head HAHS. . . . 119

8.21 Emergence of the task allocation among the Clusters in a 100

clusters, single task, dynamic cluster, dynamic cluster head HAHS.120

8.22 Allocated tasks of an organ task, dynamic-dynamic HAHS in

which each PE can allocate up to two tasks 121

8.23 Allocated tasks of an organ task, dynamic-dynamic HAHS in

which each PE can allocate up to one task 122

8.24 Allocated tasks of a 10 clusters, static cluster and static cluster

head HAHS. 76 PEs of cluster 1 fail at hormone cycle 2000. . . 123

8.25 Allocated tasks in the RAHS with different level configurations . 124

8.26 Communication load in the RAHS with different level configura-

tions . 125

8.27 Allocation time of the least eager value RAHS in comparison to

the Max eager value RAHS and the AHS 126

8.28 Communication load of the least eager value RAHS in comparison

to the Max eager value RAHS and the AHS 127

8.29 Self-healing of the RAHS demonstrated by the number of al-

located tasks. PE failure at hormone cycle 3500, recover at

7000. 127

A.1 The task distribution after the self-configuration phase 144

A.2 The updated cluster eager values after the self-configuration phase145

A.3 The resulting task distribution after the first self-optimization

phase . 146

List of Tables

2.1 Distance classification . 18

2.2 Distance distribution of the first scenario 18

2.3 Distance distribution of the second scenario 19

3.1 Eager value types . 24

3.2 Suppressor types . 25

3.3 Accelerator types . 26

3.4 Needed bandwidths (in KBytes/s) 34

8.1 Overview of the evaluations . 98

xi

List of Terms

AHS Artificial Hormone System.

CNP Contract Net Protocol.

GUI Graphical User Interface.

HAHS Hierarchical Artificial Hormone System.

ILP Integer Linear Program.

IoT Internet of Things.

MAS Multi-Agent System.

MCC Meteorological Command and Control.

MFC Microsoft Foundation Classes.

PE Processing Element.

RAHS Recursive Artificial Hormone System.

SCP Set Covering Problem.

SMT Satisfiability Modulo Theory.

SoC System-on-Chip.

SPP Set Partitioning Problem.

1

2

Chapter 1

Introduction

At present, two developments prevail in the field of computer science and

change the interactions, opportunities and paradigms in many areas of our

lives. Scientific research, industrial production, economic strategies and even

the society itself will be changed by these developments.

The growing integration density for integrated circuits leads to a higher

number of cores on a single die1. The consequences are more complex System-

on-Chips (SoCs) which consist of many heterogeneous, independent cores

working together in one device (e.g. a smartphone) [20].

The second development is the so-called Internet of Things (IoT). This

term describes the ongoing trend to integrate micro-controllers into devices

of everyday life, for instance thermostats, washing machines and cars. Those

micro-controllers are connected to the internet and communicate with servers

of the manufacturer and other devices fitted with an Internet-capable micro-

controller.

In figure 1.1 processors from 1970 until today are plotted by means of five

different metrics. Regarding the number of logical cores (black diamonds) in

each processor, it is obvious that in the past few years (since approx. 2005)

the amount grew fast; this trend is expected to continue.

Another interesting evident from the aforementioned figure is the still growing

number of transistors on a single die as a result of rising integration density,

i.e. the transistors take less and less space on a die. Such a trend has negative

1In this context a die is the block of semiconducting material on which a functional circuit

is implemented

3

4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 10

3
)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K. Rupp

Year

42 Years of Microprocessor Trend Data

Figure 1.1: Transistor amount, single-thread performance, frequency, power

and core amount of processors from 1970 until today [49]

side effects. The new smaller feature sizes lead to problems with chip reliability

(e.g. electromigration). The consequences are distorted and broken conductor

tracks. Due to smaller structure sizes and line widths, deformations cannot be

compensated anymore [37].

Another related problem is that the constant reduction of feature size leads

to the circuits becoming more and more sensitive to single event effects caused

by radiation in the environment [29]. The radiation permeates the die and

releases energy to the assemblies in the circuits. This can cause bit flips,

short-circuits or the destruction of the underlying transistors.

The increasing integration density also influences the thermal dissipation

of the micro-processors. The dissipation worsens with a reduced feature size

[48] [50] and leads to hotspots in the chip. These thermal hotspots can cause

damages to the circuits’ assemblies.

The benefits of higher integration density and higher numbers of logical cores

in a microprocessor raise the risk of failures in the chips. There could be either

transient failures, which occur only temporarily and will disappear eventually

(e.g. a bit flip), or permanent failures, that alter the chip in an irreversible

5

way. Broken conductor tracks are an example for such permanent failures.

Anyway, both types of failures will influence the programs and software running

on the microprocessors. The increased risk of failures can be countered by

either hardened software or special hardware. In critical areas, e.g. real-time

systems, redundancy is often implemented in order to deal with the failures

(for instance in the Space Shuttle program [56]). Redundancy can solve the

described problems but also raises the cost of the system. This is why intelligent

solutions are necessary in order to cope with the continuing rise of logical core

numbers and integration density. These solutions have to manage a certain

number of failures in their underlying hardware without stopping or interfering

in their actual tasks and purposes.

The second development, the IoT, connects many devices to the Internet

which were not connected to another system before. The result is a large net of

devices capable of sharing information and working together in order to fulfill

complex tasks.

Figure 1.2: Number of worldwide IoT devices (in billions) from 2015 to 2025

(released in November 2016, years 2017 to 2025 are forecasts) [38]

6

It is expected that the number of IoT devices will continue to grow. In

[38], the authors predict around 75.5 billion IoT devices for the year 2025 (see

figure 1.2) which corresponds to a growth of nearly 500% within ten years.

Additionally, the amount of internet traffic produced by machine-to-machine

(M2M) communication will grow as well. The authors of [51] showed that the

M2M traffic in cellular networks in the United States increased by more than

250% in the year 2011.

Figure 1.3: Results of a survey on already used and planned technology in

factories (200 respondents in Germany, January 2017 - February 2017) [27]

Figure 1.3 shows the results of a survey of 200 respondents in Germany from

2017. They were questioned which technologies are in use or planned in their

digital factory. The results show that the outstanding technology for factories

are connected sensors, probably making them the most important technology

in the future. Many sensors and devices in a factory will be connected in order

to coordinate the production and improve the production process. These are

the so-called “smart factories”, which will supersede the traditional factories.

The improvements in the field of parallel, ubiquitous and powerful compu-

tation will emerge into new applications, e.g. autonomous vehicles or “smart

cities”. “Smart city” describes the architecture of collaboration of a city’s

resources in order to provide good technical solutions for the citizens while

simultaneously reducing the costs for public administration. In [67], an example

7

project for a smart city is given.

The interaction between many heterogeneous devices and its cores confronts

us with new challenges in the fields of development, maintenance and expand-

ability of such systems. Furthermore, the safety and security aspects of these

highly distributed systems are critical. The challenge is the large complexity of

systems consisting of hundreds and hundreds of cores working together, some

being dependent and influencing each other. Additionally, solutions that cope

with these challenges have to consider the dynamic aspects of such distributed

infrastructures. Some of the devices in the network could be mobile devices

which migrate between different domains of the system or even vanish com-

pletely from the network. Moreover, new devices can join the network and

system along with new features and tasks.

In summary, it takes new paradigms and methods for future systems in order

to handle such large, dynamic, heterogeneous and fault-prone distributed nets

of processing cores.

Since 2002, the Organic Computing Initiative researches concepts for robust,

scalable and fault-tolerant systems. Its primary aim is to develop solutions

by implementing so-called self-x properties. These properties allow systems to

become more autonomous and require less management and maintenance from

human experts. In order to develop such systems, solutions from the nature

are observed which solve comparable problems. Those techniques will then be

mimicked and adapted to the technical problem.

Organic Computing, which is explained in detail in chapter 2, deals with

many problems that cannot be handled by a single solution. This thesis focuses

on one specific problem, namely the task allocation in distributed multi-core

processor networks.

1.1 Task allocation in distributed multi-core

processor networks

A large network of Processing Elements (PEs), which can be all kinds of

computational cores (e.g. general purpose processors, signal processors, analog

processors, timers, etc.) will also need to handle a large number of tasks.

Otherwise, the majority of the PEs would be useless and could be taken out

8

of the system. In the networks described above, the number of tasks and PEs

reaches a level of complexity that cannot be managed by human experts. A

good distribution of all tasks among the PEs is not easily possible. A good

task distribution is given when all tasks are assigned to PEs which are well

suited for the corresponding task, e.g. an analog core processing an analog task

or a special real-time core processing a time critical task. Thus, each PE has a

certain suitability for each task in the system. In the following, the suitability

will be discretized to a value called the eager value. The distribution of tasks

in the system can be optimized by allocating each task to the best fit PE in

the system thus resulting in a system performing in the best possible way.

The goal of the approaches presented in this thesis is to find such good

distributions of tasks to PEs. It is not an option to use a central distribution

unit having information about the system and its participants. As mentioned

above, the reliability of single components cannot be guaranteed, so a central

unit will introduce a single-point-of-failure. Redundancy of such a unit is

expensive and, depending on the size of the network, several redundant units

would be necessary. As mentioned before, the complexity of dynamic changes

in such a large system cannot be managed by a single human user. Also, local

changes that influence a PE’s suitability for tasks might be hard to recognize for

a central distribution unit. That is why this thesis concentrates on decentralized

and autonomous solutions for the given problem of task distribution. A system

which already deals with such kinds of problems is the Artificial Hormone

System (AHS) [14]. The AHS was developed by Brinkschulte et al. and

manages the task distribution in a network of connected heterogeneous PEs.

It fulfills the requirements stated above, meaning that it is decentralized and

autonomous. Further details of the AHS will be given in chapter 3.

Nevertheless, the AHS is only suitable for smaller scaled networks of PEs.

Large scaled systems do not work properly since the amount of communication

produced by the AHS is too high for most of the communication buses nowadays.

Moreover, the AHS is not capable of handling a hierarchical topology of

connected PEs. For this reason, this thesis deals with two new concepts, both

based on the AHS, in order to face the challenges of large scaled and hierarchical

networks of PEs. These two concepts are the Hierarchical Artificial Hormone

System (HAHS) and the Recursive Artificial Hormone System (RAHS). The

9

HAHS is based upon the idea of running several separated AHS instances in

parallel which partition the task set of the system among themselves. The

separated AHSs are inter-connected by a superordinate AHS. The RAHS is

a consequent extension of the HAHS supporting multiple levels of hierarchy:

Several levels form a tree topology which can also be unbalanced. This system

is predestined for hierarchical topologies which can be encountered in so-called

“smart cities” or smart factories.

1.2 Goals and structure of the thesis

This thesis aims to develop and evaluate hierarchical self-organizing systems

managing task-allocation in an autonomous and decentralized way. The base

for this research is the AHS, which already provides this function for small-

scaled systems. Large-scaled systems can be enhanced with autonomous task-

allocation by adding hierarchical concepts to the AHS. Several concepts for

hierarchical extensions will be presented, explained and evaluated.

The focus of the presented systems lies on the reduction of the system’s data

communication in comparison to the original AHS.

This thesis is structured as follows: At first, the basics are explained in

chapters 2 and 3, focusing on Organic Computing and the AHS. The following

two chapters 4 and 5 present the newly developed HAHS and RAHS with all

of their concepts and methods. Chapter 6 analyzes the system properties of

the HAHS and RAHS while chapter 7 briefly presents the developed software

for the two systems. This software was used to evaluate the systems and their

concepts. The evaluation results are presented and discussed in chapter 8. At

last, the thesis compares the HAHS and RAHS to other systems in chapter 9

and concludes with a summary and outlook in chapter 10.

10

Chapter 2

Organic Computing

The description of Organic Computing used in this thesis relies on the description

from [65]. Organic Computing is an approach to solve the problems arising

from the increasing complexity in computerized systems, especially large nets

of connected embedded systems. The complexity and the large number of

connected cores make it more complicated to construct, maintain, use and

develop for those systems. Organic Computing tries to overcome the gap

between the complex technical system and the human designer, programmer,

administrator and user.

Organic Computing is meant to enhance technical systems with “life-like”

properties in order to construct those systems as robust, safe, flexible and

trustworthy as possible [43]. The solutions are self-organizing systems adjusting

themselves to changing environments [46].

The usual procedure of Organic Computing is to observe a mechanism in

nature and transfer it to a technical system. For example, it can be observed

how ants build a track to a food source by using pheromones [25]. This

mechanism can be transferred to a set of robots working together.

As mentioned before, the benefits of Organic Computing for a system are

increased flexibility, robustness as well as the ability to optimize itself all

without any external control. In addition, the effort in designing a system

decreases as not every potential system state has to be programmed [46].

The disadvantage is that those systems, like every learning system, can react

in an unexpected way to unknown situations. Additionally, the high adaptivity

could be used for a malicious influences on the system [46].

11

12

2.1 History of Organic Computing

The term Organic Computing appears for the first time in the context of

a workshop in the year 2002. The result of this workshop was a position

paper published by the German Computer Society (Gesellschaft für Informatik,

GI) and the German Information-Technical Society (Informationstechnische

Gesellschaft, ITG) [60]. In connection to the workshop, the Organic Computing

initiative was founded in 2003. The initiative aims to research adaptive and self-

organizing computers and computerized systems. Several projects included in

priority programs were funded in the context of Organic Computing. Especially

the priority program 1183, financed by the German Research Foundation

(Deutsche Forschungsgesellschaft, DFG) led to a high research output from

2005 to 2011. The results from this priority program are summarized in [44].

2.2 Self-x properties

One of the most important principles of Organic Computing is the enhancement

of systems with the so-called self-x properties. These properties describe

functions and behaviors of the system which are usually achieved via external

influence, e.g. by a user. A system implementing a self-x property will henceforth

process the function or the behavior autonomously and without any external

influence.

The self-x properties are:

• self-configuration: A system with the self-configuration property is

able to find an initial start configuration for its components autonomously

while taking the requirements and conditions of the system into account.

• self-optimization: The self-optimization property includes the ability

to react to changing conditions. The system will react to changes in the

environment by optimizing its current configuration.

• self-healing: When a part of a system fails, usually the functionality of

this part will get lost for the system. A system with self-healing property

is capable of coping with failure events like failing components. Without

13

any external interference it will reorganize its configuration such that the

lost functionality will be restored if enough resources are still available.

• self-protection: In the context of attacking or exploiting technical

systems the self-protection property enables the system to identify attacks.

Moreover, the system can initiate countermeasures to stop the attack or

to avert harm.

• self-explanation: A self-explaining system is able to reason about its

decisions, which were made autonomously. This includes human-readable

explanations of low-level mechanisms. Those are needed in applications

observed and controlled by a human user. In these cases, those systems

have to explain their reasoning for actions to the human user.

2.3 Emergence

An often used term in the context of self-organizing systems is emergence.

While there exist many definitions for the term emergence [45], this thesis will

focus on the so-called quantitative emergence which relies on the statistical

definition of entropy by Shannon [52].

The entropy is a measure of structure for a system under observation. The

statistical entropy value describes the amount of structure in the system. A

high entropy value indicates less or no observable structures. A low entropy

value, on the other hand, corresponds to a highly structured system. The

entropy is calculated by choosing an attribute of the system and determining

the probability of each possible state1 (z ∈ Z) within this attribute.

H = −
Z

∑

z=0

pz · log2 pz (2.1)

By means of the systems entropy the quantitative emergence can be calculated

by ∆H of two states of the system under observation. For example, the

emergence could be calculated by observing the change in entropy from the

chronological beginning of the system to the chronological end of the system.

1in information theory, event is used instead of state (Shannon). However, state is used

here since the states of the attributes will be observed

14

M1 = HStart − HEnd (2.2)

Since the start of the system is an arbitrary state, this definition of emergence

is relative. Another more normalized emergence value can be calculated by

subtracting the current entropy of the system by the maximum possible entropy,

i.e. the state of maximal disorder (HMax).

M2 = HMax − H (2.3)

This definition of emergence can be used to calculate the degree of self-

organization in organic computing systems.

2.3.1 Example for emergence

Two examples for calculating emergence in systems are presented in the following

subsections.

2.3.1.1 Colored cells

The first example for emergence consists of a visualized 3x3 grid with a set of

nine cells (C). Each cell in the grid has a blue intensity value (b) in the range

from 0 to 255. Additionally the neighbor relationship of cells is given so that

cell x has a set of neighboring cells (Nx ⊂ C). The neighbor relationship for

this example will only concentrate on horizontal and vertical adjacent cells,

not on diagonal adjacent cells. Over time, the blue intensity values of the cells

will change by an unspecified mechanism. In order to measure the emergence

of this system, an average distance measure for the cells is introduced (see

equation 2.4).

dx =

∑

i∈Nx

|bx − bi|

|Nx| (2.4)

The example starts with an initial state (see figure 2.1). In this state, all

cells have different color intensity values and the distances (dx) are different,

too. The range of the average distance values (dx) have to be interpreted as the

15

states of the system when calculating the entropy of the system. The value of

the average distance is between 0 and 255. Since all nine cells have a different

average distance value, the entropy calculates to:

Hinitial = −9 ∗ (
1

9
∗ log2

1

9
) ≈ 3.1699 (2.5)

237

d = 112

21

d = 150

0

d = 46

244

d = 71

49

d = 165

234

d = 110

70

d = 92

183

d = 114

28

d = 99

Figure 2.1: 3x3 cell grid initial state

The initial state corresponds to the maximum entropy since all distance

values differ. Therefore, no structure is available and Hinitial = Hmax. Regarding

equation 2.3 the emergence for the initial state of the example equals zero.

Assuming the system has ended (or paused) while all cells have exactly the

same color (see figure 2.2), the average distances of all cells calculate to zero.

Therefore, all cells are in the same state and the entropy calculates to:

H1 = −1 ∗ (
9

9
∗ log2

9

9
) = 0 (2.6)

This state equals a completely ordered system. The emergence for the system

in this state calculates to M1 = Hmax − H1 ≈ 3.1699.

In figure 2.3 another state of the system is shown. This system consists of

five cells having a blue value of 255 and four cells having a value of 127.

Even though the cells are divided in two groups, the system still reaches the

entropy of H2 = 0. The reason for the low entropy is that the average distances

are all 128 and therefore all cells are in the same state. This again results in

the high emergence as seen before.

16

255

d = 0

255

d = 0

255

d = 0

255

d = 0

255

d = 0

255

d = 0

255

d = 0

255

d = 0

255

d = 0

Figure 2.2: 3x3 cell grid first state

255

d = 128

127

d = 128

255

d = 128

127

d = 128

255

d = 128

255

d = 128

127

d = 128

127

d = 128

255

d = 128

Figure 2.3: 3x3 cell grid second state

2.3.1.2 Traffic jam

Another example for emergence is a traffic jam. Figure 2.4 shows a circular

course with vehicles on it. In [58] and [3] could be demonstrated that the

vehicles in this system behave like interacting particles in a non-equilibrium

system. Even without a bottleneck the system changes from a free flow state

(without any jams) to a jamming state when the vehicle density exceeds a

threshold. This is explained with small fluctuations in the movement of the

vehicles. As long as the density is low enough, those fluctuations can be

compensated. If the density rises over a certain threshold, the fluctuations can

no longer be compensated anymore. Thus they accumulate, until a traffic jam

17

is formed.

This is a perfect example for emergence since it demonstrates that actions

from autonomous individuals on the micro-level will eventually form to struc-

tures on the macro-level.

d8

d1

d2

d3

d4

d5

d6

d7

1

2

3

4
5

6

7

8

Figure 2.4: A circular course with cars. Each car has a distance (dx) to the car

in front of it

For calculating the emergence of this example, the distances between the

cars have to be observed. For each car, the distance to the car driving in front

of it is measured. The distances of each car to the next car will be classified

according to table 2.1. Hence, each car will be assigned to a distance class.

Let’s first regard a free flow situation with 8 vehicles on the track (see figure

2.4). The distances between the vehicles are:

d1 = 39m d2 = 209m d3 = 229m d4 = 222m

d5 = 257m d6 = 129m d7 = 157m d8 = 81m

The outcome is an almost equal distribution of distance classes (see table

2.2). It is observable that six distance classes only have one car assigned. One

distance class (DClass = 7) includes two cars.

18

DClass distance interval

1 dx ≤ 50m

2 50m < dx ≤ 95m

3 95m < dx ≤ 135m

4 135m < dx ≤ 170m

5 170m < dx ≤ 200m

6 200m < dx ≤ 225m

7 225m < dx ≤ 245m

8 245m < dx ≤ 260m

9 260m < dx ≤ 270m

Table 2.1: Distance classification

DClass 1 2 3 4 5 6 7 8 9

Ex.1: #Vehicles p. class 1 1 1 1 0 1 2 1 0

Table 2.2: Distance distribution of the first scenario

Therefore, the entropy is calculated with six times a one eighth probability

plus a two eight probability:

H1 = −(6 ∗ 1

8
∗ log2(

1

8
) +

2

8
∗ log2(

2

8
)) = 2.75 (2.7)

For calculating the emergence H1 has to be subtracted of H1max
, which in

turn is the case when all cars are in different distance classes:

H1max
= −(8 ∗ 1

8
∗ log2(

1

8
) = 3 (2.8)

M1 = H1max
− H1 = 0.25 (2.9)

In the second example, eight more vehicles are introduced to the track. This

results in a higher vehicle density which eventually leads to a traffic jam. This

19

DClass 1 2 3 4 5 6 7 8 9

Ex.2: #Vehicles p. class 6 3 3 2 0 0 0 1 1

Table 2.3: Distance distribution of the second scenario

is also visible in the class distribution (see table 2.3). A lot of vehicles now

have a distance of 50 meters or less.

Similar to above, the entropy calculates by interpreting the number of cars

in the distance classes as probabilities for those classes:

H2 = − (
6

16
∗ log2(

6

16
) + 2 ∗ 3

16
∗ log2(

3

16
) (2.10)

+
2

16
∗ log2(

2

16
) + 2 ∗ 1

16
∗ log2(

1

16
))

≈ 2.31

As before, the emergence will be calculated by subtracting the calculated

entropy from the maximum entropy. For the maximum entropy the theoretical

case of all cars assigned to different classes is assumed. In order to calculate

this the distance classification (see table 2.1) has to be expanded to at least 16

classes.

H2max
= −(16 ∗ 1

16
∗ log2(

1

16
) = 4 (2.11)

M2 = H2max
− H2 = 1.69 (2.12)

Even though the two entropy values of the scenarios are not directly com-

parable due to the different amount of cars, the emergence values can be

compared. For this reason, we calculate the percentage of structure in the

system by dividing the calculated emergence through the maximum emergence

(Sx = Mx

Mxmax
).

S1 =
0.25

3
= 0.0833=̂8.33% (2.13)

20

S2 =
1.69

4
= 0.4225=̂42.25% (2.14)

The calculated values for the structure (see equations 2.13 and 2.14) show

that the system in the second scenario is more structured due to the traffic

jam.

Chapter 3

The Artificial Hormone System

Today’s distributed systems grow more and more complex. They often consist

of a large number of heterogeneous PEs. Commonly, a middleware layer is

introduced for those systems in order to manage the cooperation of tasks and

to hide the distribution to the application. Such a middleware is complex and

hard to manage. Therefore, self-organizing techniques (see chapter 2) can help

building such systems. Finding an initial task allocation is one of the jobs of

the middleware. Furthermore, it should adapt or optimize the configuration to

changes in the environment and internal states, heal itself in case of failures

and finally protect itself against malicious attacks.

The AHS implements such a middleware and organizes the task allocation

amongst a set of PEs. No central decision-making unit exists in the AHS. Each

PE decides upon basic rules and information received from other PEs. As a

consequence, the AHS is completely decentralized. Additionally, no external

organization can influence or affect the task-allocation, which means that the

AHS is self-organizing. The system was named artificial hormone system

since it is inspired by the endocrine system of higher mammals. Hence, the

first section in this chapter will summarize the properties of the endocrine

system. Afterward, the structure of the AHS, as well as its hormone loop will

be explained in detail. Furthermore, the developed extensions of the AHS,

the system’s communication load, and time constraints will be presented in

this chapter. The time constraints also prove that the system can be used in

real-time environments.

21

22

3.1 The biological endocrine system

The AHS is inspired by the endocrine system of higher mammals. Accordingly,

this section briefly explains the functionality of the biological system. The

endocrine system serves as a global communication system in the body which

coordinates actions between the cells of the body [30]. For this reason, the

endocrine system emits hormones in the blood stream. This realizes global

communication. For local communication, cells can also produce hormones

and sent them via the tissue to neighboring cells. The hormones are produced

by endocrine glands and work as messages for the cells. Often the hormones

realize regulation cycles between organs: certain hormones favor the production

of particular substances and others inhibit this production. A cell receives a

hormone via a molecule on the cell membrane, the so-called hormone receptor,

which only binds to one specific hormone. Not all cells have hormone receptors

for all hormones, in that way not all cells in the body will be effected when a

hormone is emitted. The concentration of the hormones determines the reaction

of the cell, too. Sometimes a certain threshold of concentration is needed to

trigger a reaction of the cell.

In summary, the endocrine system works in a decentralized way. Cells work

together on tasks in an independent and autonomous way. The coordination of

the tasks is managed by the hormones and the cells influence each other by

emitting hormones as well. No cell is in charge of coordinating tasks. By this,

the endocrine system is robust against failing cells.

3.2 Formal definitions

In this section, the basic formal definitions of the AHS will be defined. An AHS

consists of n PEs applying for m tasks in the system. For self-optimization, the

PEs will offer tasks after a defined period of cycles. The period is denoted by w.

Messages sent between the PEs are called hormones and are used for the self-

organization of the task-allocation among the PEs. It exists a difference between

sent hormones of a PE γ from a task i and received hormones which were sent

by a PE γ for a task i. Sent hormones will be denoted with subscripted indices,

for example Eγi, while received hormones will have superscripted indices, e.g.

23

Eγi.

3.3 Structure of the AHS

Adapting the endocrine system to a technical system is complex because of

the limited resources in the technical system. Therefore, the principles of

the endocrine system were simplified in the AHS to keep the main properties

of decentralized control of cell activity and fault tolerance. The following

abstractions were made:

• A cell is represented by a PE. The PE, in turn, can be represented by,

e.g. a processing core, an analog core or a graphics processing unit.

• A cell activity is represented by a processing task.

• Hormones are represented by messages sent via the network between the

PEs and tasks.

All PEs constantly send out hormones to all other PEs (broadcast) or

to neighboring PEs (multicast) including information for which task the PE

applies.

Additionally, PEs, that decided to allocate a task, will inform the other PEs

about the allocation by broadcasting a hormone, too. Those hormones effect

the above-mentioned hormones by a negative feedback loop. This is similar to

the endocrine system. Hormones from tasks in the AHS only effect those PEs

which are interested in the task.

A failure of a PE in the AHS can be compensated as long as there still exist

PEs which are able to allocate the tasks of the failed PE. Therefore, the AHS

realizes the self-healing property and shares this ability with the endocrine

system. With the absence of negative hormones from the task which was

allocated on the failed PE, the re-allocation will be regulated autonomously.

A difference between the endocrine system and the AHS is the intensity of

hormones. In the endocrine system, the intensity of an effect induced by a

hormone is determined by the quantity of the hormone in the blood stream.

In the AHS the intensity cannot be determined by the quantity since the

bandwidth of the communication network is limited. Therefore, the intensity

24

Subtype Symbol Description

Local

eager value
Eiγ

The local eager value represents the predefined suit-

ability of the PE γ to the task i

Modified

eager value
Emiγ

This value indicates the current suitability of PE

γ to task i, after the received accelerators and

suppressors were added respectively subtracted.

Table 3.1: Eager value types

is determined by the quality of the hormone. This means, only one hormone

will be sent periodically to all PEs. The hormone consists of a value, which

indicates the intensity of the hormone in the system.

In order to implement the negative feedback loop, the AHS needs different

hormones, which can influence each other.

The first kind of hormones are the so-called eager values. These hormones

indicate the ability of a PE to process a specific task at the exact point in

time. The PE sends out those eager values for each task the PE is interested

in. The value or intensity of the eager value determines the suitability. The

higher the eager value, the more suitable it is for this task. There exist exactly

two subtypes of eager values (see table 3.1).

As stated before, the AHS, like the endocrine system, works with negative

feedback loops. Therefore, an antagonistic hormone to the eager values, the

so-called suppressors, is implemented. Those suppressors effect the suitability

of the receiving PEs to a specific task. Thus, the received suppressor will be

subtracted from the suitability value of the PE, which is the eager value of the

task. Suppressors can have their origin from several events or conditions (see

table 3.2). Most commonly they will be used to limit the instances of tasks in

the system. This is achieved by the acquisition suppressors. Another important

suppressor is the load suppressor, which prevents a PE from allocating more

tasks than it can process.

The last type of hormones are the accelerators. Those hormones will

be added to the suitability of a PE for a task. The accelerators favor the

allocation of a task to a PE. Similar to the suppressors there are some subtypes

of accelerators (see table 3.3). The stay accelerator will be used in the context

25

Subtype Symbol Description

Acquisition

suppressor
Saiγ

The acquisition suppressor is sent to all other PEs

as soon as the task i is allocated.

Load

suppressor
Sliγ

The load suppressor will also be sent as soon as the

PE allocates task i. In contrary to the acquisition

suppressor, this hormone will only be sent to the

PE itself. It represents the load produced by the

task.

Monitoring

suppressor
Smiγ

This hormone is also sent only locally, and can

be used to represent temperature, energy level or

similar influences on the PE.

Table 3.2: Suppressor types

of self-optimization. It will be emitted from a PE when a task is offered for

optimization: Periodically (period w), a PE allocating a task will stop sending

the acquisition suppressor for this task for a defined amount of hormone cycles

(d). In this time, the other PEs get the chance to allocate the task if they have

become more suitable. The stay accelerator will only be sent to the original

PE itself and not to other PEs in the system. It increases the modified eager

value by a small amount x. Other PEs applying for this task have to have

an eager value which is at least x + 1 greater than the eager value of the

offering PE. Accordingly, the stay accelerator represents the costs of a task

migration in the process of a self-optimization. To move a task to a new PE,

the eager value of the PE has to exceed the eager value of the old PE plus

the stay accelerator. The organ accelerator will be multicasted to neighboring

PEs and favor allocations of related tasks in the neighborhood. Thereby, the

communication distance of the related tasks will be reduced.

An example overview of the hormones and their different effects on the PE

is given in figure 3.1.

26

Subtype Symbol Description

Stay

accelerator
Asiγ

The stay accelerator will be emitted locally, when a

PE offers a task. This prevents that tasks migrate

too easily in their offer phase.

Organ

accelerator
Aoiγ

In most applications tasks will work together and

have to communicate with each other. To prevent

long communication distances, the organ acceler-

ator can be used to allocate those tasks closely

together. It will be send to all neighboring PEs

and affect their suitability for the related tasks.

Monitoring

accelerator
Amiγ

This hormone is the counterpart of the monitoring

suppressor. It represents influences on the PE

which can favor the allocation of tasks on the PE.

Table 3.3: Accelerator types

3.4 The hormone loop

As stated in the section before, each PE sends out hormones periodically. This

is regulated by the hormone loop, which is a control loop running on each PE

(see figure 3.2). The hormone loop consists of three phases:

• In the receiving stage, the PE receives all hormones from all other PEs

in the system. The PE accumulates these received hormones for each

task separated by the three hormone types (eager values, suppressors,

accelerators).

• The second stage is the computation and decision stage. In this

stage the modified eager value for each task will be calculated (see table

3.1). This is done by subtracting all received suppressors for this task

and all received global suppressors from the initial eager value of the

task. Afterward, all received accelerators for the task and all received

global accelerators will be added. The result is the modified eager value.

This calculation is made for every task the PE γ is able to allocate. The

decision part will only be applied to one task per cycle. Therefore, one

task will be chosen from a sequential order. Then, the calculated modified

27

In Execution

Suitability

PE

T1 T2 Tn

Network

T1

Acq. Supp T1

Load Supp T1

Acq. Supp T1

Stay Acc T1

Acq. Supp T2

Organ Acc T1

Environment

Monitoring Supp Tn

Mod. EA T1

Mod. EA T2

…
Mod. EA Tn

………

Monitoring Acc T1

Figure 3.1: The effects of the different hormones on a PE (example)

eager value of this task will be compared to all received eager values of all

other PEs. If the own modified eager value of PE γ is the highest of all

compared eager values, PE γ knows it is currently most suitable for this

task. Thus, it decides to allocate the task. All PEs operate on the same

hormones, this means they share the same knowledge about the system,

and all PEs will result in the same decision about a task. Hence, all other

PEs which also chose the same task for decision will come to the result

that PE γ is the most suitable for the task and will not allocate it1.

• The last stage in the hormone loop is the sending stage. In this stage

the PE emits the hormones into the system, e.g. the modified eager values

which were calculated in the stage before. Suppressors and accelerators

will also be sent out in this stage. In contrast to the decision part of the

stage before, this stage will be proceeded for every task in which the PE

is interested.

As soon as the PE completes all three stages, the hormone loop is completed

1In order to avoid race hazards between the PEs, the hormone loop period must be at

least twice the communication time between the PEs [14]

28

and the next cycle of the hormone loop starts. This hormone loop forms a

distributed decentralized control loop.

Accumulation

Decision

Accelerators
received on γ

iγA

iγEm
Eager Values
received on γ

Suppressors
received on γ

iγS

Eager Values
sent by γiγEm

Accelerators
sent by γiγA

Suppressors
sent by γiγS

Local Eager
Value ofiγE

<
iγEm

iγEm

Take task i

+iγE _ Σ iγAiγSΣ

??

ϵTi γC

Comparison

I. Receive
II. Computation and Decision

III. Sending

Figure 3.2: The hormone loop of the AHS [9]

3.5 Extensions of the AHS

While researching the AHS several extensions were developed in order to

improve certain aspects of the AHS.

3.5.1 Priority decision

A first extension of the AHS, the priority decision decreases the upper bound

of the worst-case timing in the task allocation. Hence, the PEs actively observe

the eager values of their tasks. The PEs will decide on a task whose eager

value has increased instead of deciding on the next sequential task from the

task list. This approach also takes place if the task is currently offered. It

reduces the upper bound for the worst-case timing of the task allocation from

29

m2 to 2m − 1 hormone cycles, whereby m is the number of tasks in the system.

Further information to this extension can be found in [14].

3.5.2 Aggressive task allocation

Another extension reducing the worst-case timing for the task-allocation, is

the aggressive task allocation strategy [13]. It is a further improvement to the

priority decision (section 3.5.1). In contrast to the original AHS, every PE

tries to find a task to allocate in every hormone cycle. Hereby, the PE iterates

through its own task list to find a task for which it is the most suitable PE.

Like in the original system, the PE will still only decide on one task in each

hormone cycle. The worst-case timing for the task-allocation is reduced to

m hormone cycles by this strategy, whereby m is the number of tasks in the

system.

3.5.3 Virtual accelerators

Another technique to save communication load is the virtual accelerator [11]. In

order to reduce the communication time between related tasks, the AHS tries

to allocate them to adjacent PEs. This is managed by sending out accelerators

to all neighbor PEs for all related tasks as soon as a task is allocated at a

PE. However, the accelerator hormones produce additional communication.

To avoid this additional communication overhead, virtual accelerators can be

used. Due to the fact that the PE already sends out the acquisition suppressor,

the receiving neighbor PEs can deduce those accelerators for all related tasks

by themselves. Upon receiving the acquisition suppressor for a task the PE

looks up which tasks are related to this task and if the origin PE is in its

neighborhood. In order to substitute an accelerator by a virtual accelerator

the PE needs to know the strength of the accelerator for the task. In fact, this

value is initially distributed to the PEs with the task definition. Therefore, no

change has to be made to the system to meet this requirement.

3.5.4 Lightweight AHS

In its original implementation, the AHS needs an own list for received hormones

for every task (n) on every PE (m) and every hormone type (h). Those lists

30

have to be as big as the amount of PEs in the system itself. This results in

n · m · h lists with a size of m. It is imaginable that in bigger scaled scenarios

this occupies a lot of memory space. Therefore, a lightweight variant of the

AHS was developed in [61]. This variant sums up all received accelerators and

suppressors for each task and saves only the recent and current sums. It also

only stores the highest received eager value for each task of the recent and the

current hormone cycle.

Unfortunately, this variant comes with a problem. Due to asynchronous

operation of the PEs, it is possible that hormones are not received at all or

received twice by a PE within a hormone cycle. This is compensated through

the saving of all received hormones in lists. The lightweight variant dispenses

this additional saving of all received hormones. Therefore, the variant needs

a mechanism to ensure that all PEs work synchronously. This is achieved

by autonomously adjusting the hormone cycles of the PEs. In the original

implementation, after the decision phase has ended, all PEs wait for the same

amount of time before starting with the sending phase. In the lightweight

variant, the PE which first finishes the waiting time will immediately start

with the sending phase. All other PEs that receive those hormones will start

immediately with their sending phase, too, even though their waiting time

might not be finished. In this way, the AHS synchronizes itself in every hormone

cycle.

3.6 Time constraints of the AHS

As mentioned before, some worst-case timing behaviors could be estimated for

the AHS and also could be improved by extensions. This section summarizes

and separates them for the different self-x properties. Those estimations show

that the AHS in principle is capable of being used in a real-time environment.

The first worst-case timing estimation is for the self-configuration. During

the development of the AHS, this worst-case timing could be improved by

the Priority Decision (see section 3.5.1) and the Aggressive Task Allocation

(see section 3.5.2). With those two extensions the worst-case timing of the

self-configuration(tSC) calculates to equation 3.1.

31

WCTSC = m (3.1)

The second self-x property to investigate is the self-optimization. When a

PE optimizes its suitability to a task and becomes the best PE for the task,

it will send its updated eager values in the next self-optimization cycle of the

AHS. Assuming, an allocated task will be offered for optimization in a defined

interval w, the task then will be migrated to the more suitable PE after w

cycles at the latest. Provided that every task is optimized at the same time, the

worst-case time for self-optimization (tSO) is aligned on the migration of the

task whose offer phase ended in the cycle before. This concludes to a worst-case

time:

WCTSO = w + m (3.2)

The last self-x property is the self-healing. This property takes action when

a PE in the system fails. It will allocate the tasks which were lost due to the

PE failure. The missing acquisition suppressors of the failing PE will no longer

suppress the eager values in the remaining PEs. Therefore, the PE with highest

eager value of the remaining PEs will allocate the missing tasks immediately

after the last acquisition suppressor expired (expiration time of hormones: e).

The worst-case is the case of a failing PE which allocated all tasks. When this

PE fails all tasks of the system will become free for allocation. This equals

the self-configuration scenario and therefore the self-healing has a worst-case

timing (tSH) of:

WCTSH = m + e (3.3)

3.7 Communication load of the AHS

The communication load produced by the hormones of the AHS scales with

the amount of PEs and tasks in the system. Increasing one of those, leads

to a drastically increased communication load, especially at the start of the

32

system. In the self-configuration phase, all PEs will send out their eager

values for all available tasks. At the start of the system, all tasks will still be

available. Therefore n · m eager values (n = PEs, m = tasks) will flood the

communication network. Each time a PE allocates a task and sends out an

acquisition suppressor, n eager values will vanish in the next hormone cycle.

Section 3.6 shows that in worst-case only one task will be allocated by the

system in each hormone cycle. This concludes to equation 3.4 for the numbers

of eager values (EAs) over the self-configuration time, starting for tSC = 0 to

tSC = m when the system is fully configured (tSC ∈ {0, m}).

|Em(tSC)| = n ∗ (m − tSC) (3.4)

For a full communication load analysis, the acquisition suppressors (SA)

have to be considered, too. They rise with the number of allocated tasks in the

system (see equation 3.5).

|Sa(tSC)| = tSC (3.5)

Combining these two values leads to an equation for calculating the commu-

nication load (C) of an AHS during any hormone cycle in the self-configuration

(see equation 3.6).

CSC(tSC) = n · (m − tSC) + tSC (3.6)

The worst-case communication load occurs at tSC = 0, the immediate start

of the system, when no task is allocated yet (equation 3.7).

WCCSC = n · m (3.7)

In figure 3.3 the self-configuration communication load for several symmet-

rical (n = m) AHS configurations is visualized. It is visible that the critical

point in terms of communication load of the self-configuration is the start of

the system. It also shows that scaling of a system becomes problematic since

the communication load grows with n · m.

33

0

20

50

100

150

2015

200

18

#
H

o
rm

o
n
e
s

16

250

#Tasks/#PEs

14

300

10 12

Hormone Cycles

350

10
8

5 6
4

2
0

20

40

60

80

100

120

140

160

180

200

Figure 3.3: Communication load (by means of hormone amount) of different

symmetric AHS configurations over self-configuration time

Including the self-optimization cycles, the critical communication phase still

stays the same (see figure 3.4). The self-optimization cycles produce much less

communication load in comparison to the self-configuration phase.

For calculating the needed bandwidth in a real-world implementation, the

size of the eager values respectively suppressors (SEA and SSupp) in bits and

the duration of the hormone cycle (DH) in seconds have to be known. From

implementation we know the typical hormone size of 50 bits and the typical

hormone cycle duration of 100ms.

Table 3.4 shows the needed bandwidth of several PEs and task combinations

in MBytes per second. The bandwidth needed for the configuration of 150 PEs

and 150 tasks is already too high for a 10 MBit/s Ethernet. Moreover, the

calculated bandwidth is only for the hormone communication. Any payload

produced by the tasks will raise the needed bandwidth, too.

In [47] the needed bandwidth for an AHS with related tasks2 was calculated.

In the example the AHS has only 100 PEs and 50 tasks and results in a needed

2The related tasks (tasks which work together on one job and communicate together) will

produce additional accelerators. Accelerators have a size of 66 Bit.

34

0

20

50

100

150

10015

200

#
H

o
rm

o
n
e
s 250

80

#Tasks/#PEs

300

10
60

350

Hormone Cycles

400

405
20

0 0
0

20

40

60

80

100

120

140

160

180

200

Figure 3.4: Communication load (by means of the numbers of hormones)

of different symmetric AHS configurations over the entire time (including

self-optimization cycles)

bandwidth of 1.7 MBytes/s.

These calculations show that the AHS works well in small scaled scenarios,

but leads to high communication loads when scaled in large dimensions (in

terms of PE and/or task amount). Especially, the broadcasted eager value

amount in the self-configuration phase is a problem. In order to support large

scaled scenarios, techniques for reducing this amount have to be found.

PEs\Tasks 50 100 150 200 250

100 312.5 625 937.5 125 1562.5

150 468.75 937.5 1406.25 1875 2343.75

200 625 1250 1875 2500 3125

250 781.25 1562.5 2343.75 3125 3906.25

Table 3.4: Needed bandwidths (in KBytes/s)

Chapter 4

The Hierarchical Artificial

Hormone System

As presented in chapter 3, the AHS is used to handle the task allocation

among a set of heterogeneous PEs. In large scaled scenarios, the AHS com-

munication load grows rapidly. Especially, the broadcasted eager values in

the self-configuration phase flood the network. For reducing this high commu-

nication load, the AHS was extended towards the HAHS. The eager values

in the self-configuration phase can be reduced by introducing a hierarchical

level above the original AHS and grouping PEs together to clusters. While

the main focus in the development of the HAHS lays on the reduction of the

communication load, the flexibility and adaptivity of the AHS should also be

kept. That is why, different concepts in flexibility as well as different methods

for determining eager values in the hierarchical upper level were researched

and developed.

This chapter explains the hierarchical extension of the AHS and presents

the different concepts of the HAHS.

4.1 From the AHS towards the HAHS

The HAHS is the two level extension of the AHS. The goal of the HAHS is

to reduce the communication load in higher scaled application scenarios. In

order to reach that goal, the number of PEs sending eager values for each task

is reduced. Especially, in the communication-rich self-configuration phase, a

35

36

reduction of communication can be helpful. Therefore, the PEs will be grouped

into disjoint clusters. Each cluster is separated from the other clusters, thus no

PE of a cluster can communicate with a PE from another cluster (see figure

4.1).

With regard to the goal of reducing the amount of sent eager values, the

HAHS builds disjoint task-subsets. Each task-subset represents the task set for

the separated AHS in each cluster. Thus, for each task only a small group of

PEs send its eager values. Assuming the HAHS consists of n PEs split into

l equal sized clusters, the complete task set (with m tasks in it) will then be

divided into equal sized task-subsets. The size of a cluster is n
l

and the size

of a task-subset1 is m
l
. Every cluster will broadcast m

l
· n

l
eager values at the

beginning of the self-configuration. The overall number of eager values in the

beginning of the self-configuration phase calculates to l · m
l

· n
l
. So the number

of broadcasted eager values decreases by a factor of l in comparison to the AHS

(n · m; see section 3.7).

To build and deploy the task-subsets among the clusters in a decentralized

manner, a second communication level between the clusters has to be established.

For this purpose, each cluster has exactly one special PE representing the cluster,

the so-called cluster head. The cluster heads will negotiate via the second

communication level to create the task-subsets which will be deployed to the

clusters.

4.2 The hormone loop

Since the HAHS is based on the AHS, the hormone loop of the AHS (see section

3.4) is utilized in the HAHS. The AHS hormone loop (see figure 3.2) will be

left almost unchanged as hormone loop for the intra-cluster cycle. The only

difference is that tasks have to be unlocked for allocation before eager values

will be sent from the PEs to the task.

For the cluster heads, a second hormone loop for the inter-cluster hormones

have to be implemented. Again, the hormone loop of the AHS is used for this.

1Of course the resulting number of clusters and task-subset sizes can be non-natural

numbers. In this case one cluster/task-subset will receive one PE/task more than the others.

This will still be assumed as "equally distributed".

37

H1 H4H2 H3

H1 H2 H3 H4

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Inter-cluster cycle

Intra-cluster cycles

AHS

HAHS

Figure 4.1: The hierarchical extension of the AHS (top) to the HAHS (bottom):

The set of PEs will be split into disjoint clusters. Each cluster gets exactly one

cluster head (marked with Hx) which represents the cluster in the inter-cluster

cycle.

Again, it will stay almost unchanged, with a slight difference: when a task is

won in the inter-cluster cycle, a special notification hormone is broadcasted

38

to the intra-cluster cycle. The hormone causes the unlock of the task in the

intra-cluster cycle. The interaction of both loops is visualized in figure 4.2.

intra-cluster

inter-cluster

inter-cluster PEs

intra-cluster PEs

Receiving

Stage

Computation

and Decision

Stage

Sending

Stage

Receiving

Stage

Computation

and Decision

Stage

Sending

Stage

Hormone Flow

Control Flow

Task Allocation Notification

Figure 4.2: The hormone loop of the HAHS for a cluster head PE. It consists of

two separated AHS hormone loops: one loop for the inter-cluster cycle and the

other for the intra-cluster cycle. In the basic concept, they are only connected

by a notification hormone which unlocks a task in the intra-cluster cycle.

This figure describes the basic principle of the two separated loops and their

interaction. Details vary according to the chosen task concepts, cluster concepts

and other different methods. These details are explained and visualized in the

corresponding sections.

39

4.3 Cluster heads

The cluster heads represent a cluster. Each cluster has to have exactly one

cluster head. All cluster heads together form the inter-cluster cycle. In this

cycle, the task-subsets will be negotiated. Those task-subsets then will be

activated in the clusters (intra-cluster cycles).

It is important that all cluster heads are interconnected. In case of a full-

meshed or bus network this requirement is trivial. In case of separated networks

for the clusters, a network connection between the cluster heads has to be

ensured.

How to select a cluster head from the cluster members will be discussed in

section 4.6.

4.4 Task set concepts

As stated before the overall task set is divided into several subsets which then

will be distributed to the clusters. There exist two different methods in order

to determine the task subsets.

4.4.1 Organ Task Concept

The first method is the so-called organ task concept. In this concept, the tasks

will be grouped into subsets by the designer of the system. In this context,

the subsets are called organs. The grouping of the tasks can be performed by

their functionality, e.g. grouping similar tasks or communicating tasks. This

grouping is predefined and cannot be altered at runtime. For each organ exists

a representative task, the so-called organ task. This task is handled in the

inter-cluster cycle.

The cluster heads apply for the organ tasks. If a cluster head allocates an

organ task, it notifies its cluster members to start their intra-cluster cycle for

all tasks in the corresponding organ. The advantage of this method is a lower

overhead since only the organ tasks are negotiated in the inter-cluster cycle.

This leads to less sent eager values and suppressors in the cycle. The second

advantage of this concept is the reduced allocation time. As stated before,

only the organ tasks have to be distributed amongst the cluster heads. This

40

can be done faster than distributing all tasks separately. The disadvantage of

this concept are the static organs. They cannot be altered during run-time

and therefore the system cannot react to dynamic changes in the suitability of

the PEs to the single tasks in the organs. If, for example, a PE in a cluster

fails and the affected task cannot be allocated anywhere else in the cluster,

the cluster head must react by reducing its suitability for the entire organ. By

doing this, the organ will probably be migrated to another cluster even though

most of the tasks were functional in the original cluster.

In this concept, the size of the organs is crucial and must be chosen wisely

by the designer. The smaller the organ size the longer the allocation will take

and the higher the communication load will be. Designing bigger organ sizes

can lead to systems in which one PE failure leads to a functionality failure, for

example when an organ can neither be fully processed in the original cluster

nor migrated to another cluster. This would result in an incomplete task

distribution, even though the complete set of PEs could process all tasks.

4.4.2 Single Task Concept

The opposite of the organ task concept is the single task concept. In this

concept, every task is treated separately in the inter-cluster cycle, too. This

means that every task will first be assigned by a cluster head to its cluster

and afterward allocated by a PE in the cluster. That corresponds to an organ

task concept with only one task per organ. Of course, this takes more time

than the organ task concept and the communication load increases as well. In

return, this concept can react more dynamically to changes in the clusters than

the organ task concept (e.g. when a single PE fails, its tasks can migrate to

another PE in the same cluster or to a PE in another cluster without affecting

the remaining task allocation).

4.5 Formal definition

In this section the formal definitions for the HAHS used in this thesis will be

stated.

41

The HAHS system consists of a set of PEs:

P = {p1, ..., pn} n ∈ N,

a set of clusters:

C = {c1, ..., cl} l ∈ N; l ≤ n,

a set of tasks:

T = {t1, ..., tm} m ∈ N,

and dependent on the concept a set of organs:

O = {o1, ..., ok} k ∈ N; k ≤ m

Each organ itself consists of tasks of the task set:

oi ⊂ T with 1 ≤ i ≤ k

and

T = ˙⋃

oi∈O

oi

Each PE is part of exactly one cluster:

λ : P → C

∀c ∈ C ∃p ∈ P : c = λ(p)

The set of PEs of one cluster is defined as:

PCi
= {∀pj ∈ P : λ(pj) = ci; 1 ≤ j ≤ n}

42

Each cluster has exactly one PE, which is the so-called cluster head

∃!pCHi
∈ PCi

Additionally, the set of PEs belonging to the same cluster as PE pi is

described as:

CMpi
= {∀pj ∈ P ; λ(pi) = λ(pj)}

The set of allocated tasks on PE γ is defined as Ξ:

Ξγ ⊆ T

Hormones are denoted in the following form: eager values are abbreviated

with EA, suppressors with S and accelerators with A. Additionally, the modified

eager value will be denoted as mEA and the eager values in the inter-cluster

cycle, the so-called cluster eager values, as CEA.

In order to guarantee the self-optimization property the AHS implements an

offer mechanism. PEs allocating tasks will stop sending suppressors for those

tasks after w hormone cycles, where w is the so-called offer period. After d

hormone cycles (the so-called retake delay) the PE will send suppressors again,

if no other PE has won the task meanwhile.

4.6 Cluster set concepts

The HAHS introduces two new main aspects on the one hand the clustering of

PEs and on the other hand the cluster heads. Along with those aspects the

questions arises which PEs form a cluster and which PEs will become cluster

heads. Both questions can be handled with two different approaches: a static,

predetermined approach or a dynamic, flexible approach. In comparison to the

static approaches, the dynamic approaches tend to be more resilient regarding

failures in the system, but they are also more complex.

The different approaches will be explained in the following sub-chapters

4.6.1, 4.6.2, 4.6.3, 4.6.4.

43

4.6.1 static-static

The first variant of the HAHS is the so-called static-static HAHS. In this

variant, both the clusters and the cluster heads are static. This means they

are predefined by the designer of the system and cannot be altered by the

system itself. With this approach, single-points-of-failure are introduced in the

clusters. If the cluster head of a cluster fails, the entire cluster will fail because

all other cluster members will no longer have a connection to the inter-cluster

cycle. Without this connection the cluster cannot take part in the negotiation

of the task subsets. The other clusters will have to take over the tasks that

were originally allocated by the failed cluster.

4.6.2 static-dynamic

The next variant of the HAHS is the static-dynamic HAHS. In this case the

clusters are still static and predefined, but the cluster heads are dynamic. This

means the cluster heads in each cluster will be determined by the system during

run-time. It also means the system can reconfigure the cluster head ability

during run-time. This comes in handy when a cluster head PE fails. In this

case, the system is able to react to the failure by determining a new cluster

head for the cluster. This approach prevents the single-point-of-failure for

clusters which appears in the static-static configuration.

The dynamic determination of cluster heads can be achieved in many different

ways. The simplest solution is to determine a fall-back cluster head. This

fall-back cluster head will take over the cluster head function of the cluster as

soon as the first predefined cluster head fails and does not respond to messages

anymore. This solution is only dynamic to a certain degree. As soon as the

fall-back cluster head fails, the whole cluster becomes useless for the system.

Of course this could be coped by introducing a second fall-back cluster head,

but a ranking of the fall-back cluster heads has to be implemented as well. The

ranking prevents that both fall-back cluster heads simultaneously try to take

over the cluster head function of the cluster. If this ranking is static it will

not consider any environmental influences, e.g. the processing load of the PE.

For example, if the second fall-back cluster head would be more suitable to

take over the cluster head function because it does not process any task at the

44

moment, regardless of this, the first one will take over the job as cluster head

anyway.

A better solution is a fully dynamic mechanism to elect the cluster head.

This would also allow a reaction to failures in a more flexible way. Such a

mechanism can be designed by utilizing the AHS. As stated before, the AHS

has the properties of self-optimization and self-healing. Each cluster runs its

own separated AHS that is utilized for the cluster head determination. A

cluster head voting mechanism can be designed by introducing a special task in

each of those isolated cluster AHSs. All PEs add this special task to their task

set. The PE allocating this special task becomes the cluster head of the cluster.

If the PE fails or becomes overloaded such that it cannot process the upper

control loop any more, the AHS ensures that a substitute cluster head will

be determined (see figure 4.3). The AHS properties of self-configuration, self-

healing and self-optimization will be applied to the cluster head determination

process.

CH

CH

Cycle i Cycle i+1

Figure 4.3: Self-healing of the dynamic cluster head. The cluster head task CH

will be reallocated to the next best PE after the cluster head permanently failed.

Therefore, a new cluster head emerges and the cluster remains functional.

4.6.3 dynamic-static

An advanced variant is the dynamic-static HAHS. In this variant the cluster

heads will be predefined from the designer of the system again. However, the

clusters will be dynamic. That means that all PE, except the predefined cluster

45

heads, have no information about their cluster membership. Each cluster

head belongs to another cluster and cannot change this membership. When

the system starts, the PEs form autonomously as many clusters as cluster

heads exist. So, the system autonomously finds an initial configuration of

clusters. Cluster suitability might depend on spatial or functional properties.

Furthermore, the system is capable of changing the cluster configuration during

run-time. It can react to changes in the environment or failures of PEs. Still

this variant has a cluster single-point-of-failure: the cluster heads are predefined.

In case one of those fails the cluster will be lost. However, instead of losing all

PEs of this cluster, like in the static-static variant, those PEs can change their

cluster membership dynamically and therefore re-join the system.

The dynamic cluster aspect in the context of the HAHS can be implemented

by introducing a new hormone. This is the so-called cluster accelerator. The

cluster heads will emit the cluster accelerator. Depending on the chosen

membership method, the value of the cluster accelerator is different at the

receiving PEs. The most obvious method for the membership is the spatial

distance. Other methods (e.g. based on functionality) are also conceivable but

will not be covered in this thesis In case of a spatial distance, the value of the

cluster accelerator decreases with the distance of its origin (e.g. Manhattan

Distance). A PE assigns itself to the cluster with the highest cluster accelerator

it received2. The cluster accelerators are emitted constantly by the cluster

heads, in order to ensure that the PEs stays in its cluster, as long as the cluster

head is alive.

2In case it receives two or more cluster accelerators with the same value it uses a second

criterion (e.g. the id of the sender) to make a decision

46

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Figure 4.4: Example of the clustering in the dynamic-static concept: The

cluster heads broadcast their cluster accelerator and the PEs assign themselves

to the cluster head with the highest received cluster accelerator (in this example

based on spatial distance).

47

4.6.4 dynamic-dynamic

The last concept is the most flexible one. In this concept, both the clusters and

the cluster heads are dynamic and autonomously chosen by the system. This is

a composition of the two dynamic aspects of the previous variants. To achieve

this complex dynamic behavior, two different approaches are conceivable.

One way is to start with the autonomous election of cluster heads and then

proceed with the method described in section 4.6.3. The election of cluster

heads in a complete cluster-less environment can be achieved similarly as

described in section 4.6.2. A certain amount of cluster head tasks is introduced

into the system. When the system starts, the AHS starts distributing those

cluster head tasks. Allocating the cluster head tasks unlocks the sending of the

cluster accelerator in order to build the clusters for the cluster heads.

The second way is to use the reverse order. This means that at first the

clusters and then the cluster heads are determined. For determining the clusters,

a cluster analysis is needed. Two main approaches of a cluster analysis exist:

the agglomerative and divisive cluster analysis [26]. The agglomerative cluster

analysis starts with every PE being its own cluster. So at the beginning the

system consists of as many clusters as PEs. During run-time the PEs form

bigger clusters by migrating to neighboring clusters. This procedure is repeated

until all clusters reach a certain minimum of PEs as cluster members. The

divisive cluster analysis, on the other hand, starts with all PEs belonging to

the same cluster. When the cluster is started, it splits up into more and more

clusters until each of those new clusters reaches the amount of required PEs.

As soon as the clusters are determined, the cluster heads can be elected as

described in section 4.6.2.

4.6.4.1 Regulating unbalanced clusters

When using a dynamic cluster concept in conjunction with the organ task

concept (see section 4.4.1), a problem can occur depending on the specific

configuration: unbalanced clusters with evenly sized organs can lead to missing

tasks in the allocation even though the resources (the PEs) are sufficient.

This "under allocation" arises from the static, equally sized organs combined

with the dynamic, unequally sized clusters. Let’s assume the PEs can only

48

allocate a certain number of tasks, e.g. only one or two. Then it is possible

that there are clusters having not enough PEs to fully allocate all tasks from

an organ. Due to the organ task concept, the cluster head of such a cluster still

wins an organ and tries allocating all its tasks. This results in missing tasks in

the system.

To compensate this different strategies have been developed, to assign more

PEs to a undersized cluster, as soon as this problem is recognized3.

Regulating the cluster accelerator by a PID controller The first strat-

egy implements a PID controller [15] for every cluster head. This controller is

responsible for adjusting the cluster accelerator of the cluster head in case the

cluster is too small. The number of allowed tasks from the organ (the organ

size) is used as setpoint of the controller and the amount of received acquisition

suppressors is used as the process variable. The difference of setpoint and process

variable is the error the controller tries to minimize. The error is then used in

the proportional, integral and derivative terms which together calculate the

control variable. The calculated control variable amplifies the cluster accelerator.

A crucial point in this approach is the period of the control loop. The period

should be long enough to let the change of the cluster accelerator take effect on

the system and its allocation. On the other side, the period should be as short

as possible in order to reach a fully functional state as soon as possible. It also

has to be considered that the amplification of the cluster accelerator of one

cluster effects the size of the clusters in its neighborhood. This might include

clusters which are suitable sized for their organs. Those clusters then lose PEs

to the cluster which amplified its cluster accelerator and therefore might not

allocate all their tasks anymore. Subsequently, those clusters then start to use

their PID controller in order to amplify their cluster accelerator, too. This can

result in a chain reaction which either eventually finds a working state for all

clusters or never stops to oscillate. This method was evaluated and the results

are presented in section 8.1.1.4.

3A cluster head can recognize this problem by comparing the number of allowed tasks in

its cluster to the amount of received acquisition suppressors.

49

Regulating the clusters with a special hormone Another developed

strategy introduces a new special hormone, called stress hormone, for those

cluster heads which recognize missing tasks from their organ. This hormone

is broadcasted into the whole network, such that every PE receives it. Upon

receiving a stress hormone, a PE without any allocated tasks and not being

the cluster head of a cluster stores an amplification value for the cluster

accelerator of the sender of the stress hormone. Thereupon, the sender might

acquire more PEs for its cluster in the next hormone cycle. The amplification

value can depend on the amount of missing tasks of the sender, such that

clusters missing many tasks have a higher chance of acquiring free PEs. The

disadvantage of this method, besides the additional communication, is the

resulting spatial fragmentation of those clusters. This might lead to slower

inter-task communication of tasks belonging to the same organ (depending on

the physical topology of the system). This method was also evaluated and its

results can be found in section 8.1.1.4.

Worsening the cluster head ability Another idea in this context, which

is only applicable in the full dynamic-dynamic concept, is to adjust the cluster

head which recognizes the missing tasks in its cluster. So instead of amplifying

the cluster accelerator the suitability of the cluster head PE to the cluster

head task is reduced. This might lead to a migration of the cluster head task

to another PE, which in turn forms a complete different cluster due to its

spatial position. Similar to the first presented strategy, this relocation of the

cluster head might influence clusters which are perfectly sized, probably causing

clusters not having enough PEs in order to allocate all tasks anymore. Again

the result is a chain reaction, which either stops eventually in an optimal state

for every cluster or it keeps worsening the cluster head suitabilities of the PEs.

The latter can cause the effect of vanishing cluster heads. If enough PEs are

weakened in their cluster head suitability, there might not exist enough PEs for

the desired amount of cluster heads. This results in fewer but bigger clusters,

which might remedy the problem of missing task allocations. On the other

hand, it also can cause a chain reaction in which all PEs might worsen their

cluster head suitability. The result is one remaining cluster head allocating

all organs in one big cluster. This state would be like the original AHS with

50

additional overhead and is, therefore, not desirable. Due to its disadvantages,

which are similar to the ones from the first strategy, this method was not

evaluated.

Splitting organs Another conceivable and dynamic method to cope with

the problem of missing allocations due to small clusters is the splitting of

organs. As soon as a cluster head recognizes unallocated tasks, it detaches

the missing tasks from the organ. Afterward, it informs all PEs about the

changed task set. Upon receiving this information, the cluster heads start

applying for the detached tasks in the inter-cluster cycle independently. Those

detached tasks are treated as in the single task concept. The disadvantage

of this solution is that tasks belonging originally to one organ get separated

to different clusters. This might lead to a slower inter-task communication

between those tasks. Additionally, the communication load rises due to the

increased number of tasks in the inter-cluster cycle. Furthermore, the cluster

heads necessarily do not know if their cluster is able to additionally allocate

one or several tasks. Therefore, they either have to apply on spec and release

the task again if the cluster cannot allocate the task, or they have to use a

method of determining the cluster eager values for the detached tasks (see

section 4.7), resulting in further communication. A similar method which splits

all organs after the self-configuration is proposed in chapter 10 and currently

part of research. Therefore, an evaluation of the method was waived.

4.7 Determining cluster eager values

Since the eager values are stored locally at the PEs, the cluster heads cannot

access all eager values in their cluster without further communication. This

means that the cluster head has a lack of information concerning the suitability

of its cluster for the tasks. This in turn means that a sensible distribution of

the tasks on the inter-cluster cycle is hardly possible.

That is why a mechanism is needed in order to depict the suitability of a

cluster in the inter-cluster cycle. In a static cluster environment (see 4.6.1

and 4.6.2) each cluster head or cluster head candidate could retrieve a set of

pre-defined cluster eager values. This is the simplest solution and is used for

51

the organ task concept4. A feedback loop between the suitability of a cluster

and its cluster head is missing with this method. Also, a PE failure in a cluster

does not change the predefined cluster eager value (see figure 4.5), which can

be a problem for the complete task allocation.

Figure 4.5: Predefined cluster eager values. The cluster eager value is not

related to any of the eager values from the cluster members and will not be

influenced by changes of those.

4.7.1 Recalculation of cluster eager values

One method to solve this issue is the periodic recalculation of the cluster eager

values (CEA) by means of the eager values of the cluster children. For this

reason, all PEs in the clusters send periodically all their eager values to the

cluster head, even for those tasks which are currently not active in the cluster.

The cluster head then sums up the received eager values for each task and

4a dynamic method to generate the eager values of the organs would be also conceivable,

but is not be covered in this thesis

52

multiplies it by a factor (τ) indicating the current load of the cluster (see

figure 4.6 and equation 4.1)5. This represents the current cluster eager value

for the task. In order to reflect the dynamic suitability, this value has to be

recalculated periodically. The periodic resending of all eager values ensures

that dynamic changes of the suitability in the intra-cluster cycles are depicted

to the inter-cluster cycle. An evaluation of the recalculation method can be

found in section 8.1.1.3.

Figure 4.6: Cluster eager values (CEAs) are recalculated periodically.

CEAiγ =
∑

δ∈CMγ

(EAiδ) · τ (4.1)

5The load factor can be replaced by any other calculated factor, which fits the application

scenario.

53

4.7.2 Mimic best PE

A second method for depicting the suitability of the cluster children to the

inter-cluster cycle is that the cluster head copies the best eager value for all

tasks of all cluster children. Therefore, the PEs send all hormone sets (these

are the information about the eager value, the suppressors and accelerators) of

all their tasks to the cluster head in the beginning. The cluster head chooses

the best hormone set (by comparing the eager values) for each task and uses

those hormones for the task in the inter-cluster cycle. In this way for each task

the best PE is represented in the inter-cluster cycle. This procedure can also

be repeated periodically, to depict dynamic changes in the cluster children.

4.7.3 Magnitude of eager vectors

In this method, each PE interprets its eager values for the task as one vector,

the eager vector. Instead of sending an eager value for each task in each cycle,

the PEs send the magnitude of their eager vector to their cluster heads in each

cycle. This results in only one hormone per PE instead of m hormones per

PE (m = number of tasks in the system). The cluster head uses the received

magnitudes and calculates, based on those (e.g. the average, the mean or

Euclidean distance) a cluster eager value for all tasks. This method was also

evaluated and the results are presented in section 8.1.1.3.

4.7.4 Greatest Hormone

The disadvantages of the methods 4.7.1 and 4.7.2 are the periodic recalculation

and sending of all their eager values. Because of the fact that a cluster child

PE does not know which PE is the cluster head of its cluster6, the eager values

have to be broadcasted through the intra-cluster network. This leads to a

short but high communication load in the whole system. Instead of the PEs

sending eager values for all tasks to their cluster heads, in this method they

only send the eager value of the task with the highest eager value. The cluster

head only stores the maximum eager value it received for each task. Thus, the

cluster head receives an incomplete picture of the suitability of its cluster for

all tasks. This means it only knows the maximum eager value for some tasks in

6At least not without producing additional communication load, which should be avoided.

54

the cluster. For the remaining tasks, it "guesses" their eager values by means of

calculating a heuristic value (see figure 4.7). The heuristic value is calculated

by summing up all received maximum eager values and dividing the sum by

the number of received eager values (see equation 4.2). Therefore, it calculates

the mean of the maximum eager values.

hiγ =

∑

δ∈CMγ

(Emaxδ
)

|CMγ| (4.2)

Further details of the process of winning a task by a heuristic value are

explained in the appendix A.1.

4.8 Comparison of the concepts

In this section, the different concepts will be compared according to their

communication load, flexibility and the self-x properties.

4.8.1 Task set concepts

Comparing the two task set concepts, it is clear that the single task concept is

just one possible configuration of an organ task concept (where each organ only

has one task). Nevertheless, there are significant differences. While the organ

task concept also reduces the number of tasks to apply on the inter-cluster

level, the single task concept only reduces the number of PEs which apply on

each task in the intra-cluster cycle. This of course depends on the number of

organs in the system. It also effects the task allocation time, i.e. the time it

takes until all tasks are allocated. The organ task concept is faster due to the

time saving in the inter-cluster level. The big disadvantage of the organ task

concept compared to the single task concept is the reduced flexibility in terms

of self-optimization and self-healing. Only complete organs can be migrated,

due to an optimization or a failure. The single task concept is more flexible

and tasks can migrate to another cluster without affecting the remaining task

distribution. Therefore, the self-optimization and self-healing can be faster in

the single task concept.

55

T1: 5

T2: 5

T3: 5

T4: 7

T5: 0

C_T1: 15

C_T2: 10

C_T3: -

C_T4: 7

C_T5: 6

C_T1: 15

C_T2: 10

C_T3: h3 = 10

C_T4: 7

C_T5: 6

T1: 4

T2: 3

T3: 2

T4: 0

T5: 6

T1: 5

T2: 10

T3: 4

T4: 0

T5: 7

T1: 15

T2: 5

T3: 5

T4: 10

T5: 0

T1: 2

T2: 6

T3: 5

T4: 4

T5: 9

C_T1: 5

C_T2: -

C_T3: 9

C_T4: -

C_T5: 9

C_T1: 5

C_T2: h2 = 8

C_T3: 9

C_T4: h4 = 8

C_T5: 9

T1: 5

T2: 3

T3: 7

T4: 2

T5: 0

T1: 1

T2: 1

T3: 9

T4: 1

T5: 1

T1: 5

T2: 5

T3: 5

T4: 0

T5: 0

Cluster Head

Cluster Head

Heuristic

calculation

Heuristic

calculation

Figure 4.7: Calculating the cluster eager values with the greatest hormone

method. In the first cluster a heuristic value of 10 will be used for task 3. The

second cluster uses heuristic values for the tasks 2 and 4. All other cluster

eager values are based on eager values of the cluster members. The maximum

eager values of each PE are displayed in red.

4.8.2 Cluster set concepts

The cluster set concepts differ in two dimensions, the cluster dimension and the

cluster head dimension. On the one hand, the less static and predefined the

dimensions are, the more flexible the system will become. On the other hand,

this flexibility comes with a price, the production of additional communication

load between the PEs. Therefore, the degree of flexibility and adaptivity

has to be chosen wisely according to the underlying network bandwidth. A

more static and predefined system might reduce the communication load a

56

lot but also might contradict the idea of organic computing, by introducing

single-point-of-failures and centralized structures.

4.8.3 Cluster eager values

The different methods for determining cluster eager values also differ in their

production of communication and their flexibility/adaptivity. Hence, the

recalculation method (see section 4.7.1) with a small period can react fast to

changes in the suitability but also produces a lot of communication overhead. A

higher period reduces the communication output but also extends the reaction

time.

The mimic method (see section 4.7.2) only produces communication overhead

in the beginning, but cannot depict changes from the intra-cluster cycle to the

inter-cluster cycle.

In contrast, the magnitude method (see section 4.7.3), has a constant com-

munication flow between the suitability in the intra-cluster cycle and the

inter-cluster cycle. It also reduces the number of sent hormones by only sending

one special eager value every cycle instead sending one for every task every

cycle.

A step further from this method is the greatest hormone method which

reduces the communication even more, but has to extrapolate some cluster

eager values due to the reduced communication. This might increase the

reaction time because tasks could be allocated or migrated to sub-optimal PEs

at first.

4.8.4 Summary

In a nutshell the concepts differ a lot in the way they implement a HAHS. The

combination of the different techniques depends on the exact application for the

HAHS and the technical requirements. Figure 4.8 shows the different methods

and concepts on a two-dimensional system. This should serve as reference point

to estimate which method and technique is conceivable for implementing a

HAHS and which flexibility and communication load it creates.

57

High

Communication

Low

 Communication

High FlexibilityLow Flexibility

Recalculation

Predefined

Values

Mimic

Magnitudes
Greatest

Hormone

Static-static

Static-

dynamic

Dynamic-

static

Dynamic-

Dynamic

Organ task

Single task

Figure 4.8: Comparison of the different concepts according to flexibility and

communication overhead

58

Chapter 5

The Recursive Artificial

Hormone System

The RAHS is also based upon the AHS and is an advanced development of the

HAHS. The idea of the RAHS is similar to the idea of the HAHS. While the

HAHS uses exactly two levels, the RAHS arranges several isolated AHSs in

a hierarchical tree structure with several levels. The isolated AHSs (clusters)

are connected vertically to a processing element from a cluster of a higher

level. This processing element is the so-called representative in the higher level

(upper representative). The PEs in the topmost hierarchical level do not have

a representative since they already are in the highest level. The topology of

such a RAHS can be seen as a tree. The AHS in the topmost level represents

the root of the tree, while all AHSs in the lowest level represent the leaves of

the tree. Figure 5.1 shows an example topology of connected city blocks with

several hierarchical levels. The tree topology is unbalanced and consists of many

different devices, which can include several PEs. The RAHS builds an isolated

AHS cluster in every node and determines a representative for this cluster in

the next higher level. This representative needs a physical communication to

the PEs in the cluster of the next higher level. Therefore, network routers are

suited for this special job.

Similar to the HAHS the complete task set will be split into task-subsets

and distributed to the AHSs in the next lower hierarchical level (see figure 5.2).

Each task-allocating PE can either decide to allocate the task or to pass

it to the next lower hierarchical level, if it is a representative. In the RAHS

59

60

Figure 5.1: Example of a topology for the RAHS [39]

concept two kinds of hormone flows exist. First, the horizontal hormones

(horizontal eager values, horizontal suppressors, horizontal accelerators), are all

hormones which are interchanged between PEs in one of the separated AHS.

The communication between the hierarchical levels will also be provided by

hormones. These are called vertical hormones (vertical eager values, vertical

suppressors, vertical accelerators).

Regarding the concept of the RAHS, the HAHS can be interpreted as a

RAHS with only two hierarchical levels.

The advantage of the RAHS is its flexible adaption to the application and

the topology of the system. If a given topology is large and tree-like, the RAHS

reduces the communication load in every node and between the nodes.

One possible adaption and implementation of a RAHS is presented and

evaluated in [39]. The presented adaption focuses solely on binary-trees. Ad-

ditionally, an allocation is allowed on the lowest hierarchical level only. This

means all PEs in higher levels pass the tasks down to the next lower level.

61

Level 3:

Level 2:

Level 1:

Level 0:

{1,2,3,4,5,6,7,8,9,10}

{1,3,5,7,9} {2,4,6,8,10}

{1,5,9} {3,7}

{1,5,9} {3,7}

{2,4,6,8,10}

{2,4,6,8} {10}

1,5 9 7 3 4 2,8 6 10

Figure 5.2: Example of the task splitting in the RAHS [40]

5.1 Formal definition

Additionally to the formal definitions of the HAHS (see section 4.5), the RAHS

has a set of levels:

L = {l1, ..., lg} g ∈ N

each cluster ci ∈ C belongs to exactly one level:

µ : C → L

∀l ∈ L ∃c ∈ C : l = µ(c)

Furthermore, the RAHS ha a set of PEs belonging to the lowest level. Those

are the leaf PEs:

LP = {∀pi ∈ P |pi ∈ cx ∧ µ(cx) = |L|}

62

Level 3:

Level 2:

Level 1:

Level 0:

Allocation

Vertical Hormones Vertical Hormones

Horizontal

Hormones

Horizontal

Hormones

Horizontal

Hormones

Vertical Hormones Vertical Hormones Vertical Hormones

Vertical Hormones Vertical Hormones Vertical Hormones Vertical Hormones

Horizontal

Hormones

Horizontal

Hormones

Horizontal

Hormones

Horizontal

Hormones

Horizontal

Hormones

Horizontal

Hormones

Horizontal

Hormones

Figure 5.3: The horizontal and vertical hormone loops of the RAHS [40]

5.2 Pass or allocate

As mentioned before, different approaches are conceivable in the RAHS concept

concerning the level of task allocation. The PEs could either pass the tasks

always to the lowest level (see [39]) or dynamically decide if they allocate the

task or pass it to their underlying cluster. Besides the already mentioned

strategy to pass all tasks to the leaves, other simple solutions are conceivable

like giving each task an allocation level. If a PE belongs to the allocation level

of the task (or a lower level), it allocates the task. All other PEs winning the

task passes it to the next lower level. Other strategies include more dynamic

approaches. A strategy could introduce a hormone feedback loop between the

representatives and their underlying AHS. The deciding PE can compare its

own horizontal eager value to the horizontal eager values from the PEs of the

underlying AHS.

63

5.3 Determining the eager values of the lower

level

Similar to the HAHS, the RAHS also has the problem of depicting the suitability

of the leaf PEs to the node and root PEs. Therefore, techniques for transporting

these information through the levels are needed, too. As before, these techniques

should reduce the amount of communication load in the AHSs and between

the levels. At the same time, it is important that they depict the suitability of

all PEs to the higher levels.

5.3.1 Periodic update

One technique to depict the suitability of the PEs is a periodic update. Every

x (x > 1) hormone cycles the PEs sends their current modified eager value to

their representative in the next higher level. The receiving representative can

for example take the average eager value or the highest eager value as vertical

eager value. It compares the value to its own horizontal eager value and sends

the higher value to its own representative. This technique is repeated from

the lowest level up to the highest level. As soon as a task gets unlocked in

a cluster, the PEs applies for the task the own horizontal eager value or the

vertical eager value from below, which one is higher. If the PE wins the task in

its cluster, it either starts allocating the task, in case the sent eager value was

its own, or passes it to its underlying cluster if the eager value was the vertical

eager value. This is an accurate method for depicting the suitability among

the hierarchical levels, but only if the periodic interval is not too big. A big

interval leads to delayed reactions. Small intervals, on the other hand, produce

a lot of communication load. Therefore, this method has similar problems like

the HAHS with the recalculation method (see section 4.7.1).

5.3.2 Max eager value

The max eager value method is similar to the greatest hormone method of the

HAHS (see section 4.7.4). It also relies on the maximum eager values of each

PE. The algorithm presented in [39] works as follows (see figure 5.4 for a flow

chart):

64

Figure 5.4: Flow chart of the first part of the max eager value algorithm

1. In the first hormone cycle, right after the start of the system, all PEs in

the lowest level find their maximum eager value of all tasks and send the

value as well as the task id to their representative PE in the next higher

level. These are the vertical eager values.

2. The representative PEs only save the highest received vertical eager value

for each task.

3. Then, they update their horizontal eager value for each task as follows:

(a) If the PE received a vertical eager value for this task, the horizontal

65

eager value will be set to the value of the vertical eager value

(b) If no vertical eager value was received for this task, all received

vertical eager values are summed up and divided by the number of

possible tasks. This is the heuristic value for the task on this PE.

4. Following, the PE sends the maximum value of all horizontal eager values

as vertical eager value to its own representative in the next higher level.

5. This is repeated until the PEs in the root cluster calculated their horizontal

eager values, whereupon the sending of the eager values starts in the

cluster and therefore the allocation of tasks starts as well.

This approach generates the initial eager values in each level. As soon as

the allocation mechanism, the separated AHSs to be specific, starts, the second

phase of the approach comes into effect(see figure 5.5 for a flow chart):

Figure 5.5: Flow chart of the second part of the max eager value algorithm

66

1. When a PE wins a task and passes it down, it sends out a vertical

accelerator to its underlying cluster in the next lower level. This vertical

accelerator acts as activation hormone for the task.

2. When receiving the vertical accelerator, the PE starts sending out the

horizontal eager value for this task to all other PEs in the cluster. It also

sends it to the representative PE (in the form of a vertical eager value)

which sent the vertical accelerator.

3. The PE in the cluster which wins the task sends out the task suppressor to

all other PEs in the cluster and to the representative as vertical suppressor.

4. The representative saves the maximum of the received vertical eager values

as new horizontal eager value for the task. If no vertical eager value was

received after a certain time, the representative assumes that the task is

not allocatable in the underlying cluster at the moment. Consequently, it

sets its horizontal eager value for this task to 0.

5. The representative also uses the received vertical suppressor as indication

that the task was successfully allocated and the horizontal eager value

does not have to be adjusted at the moment.

With this method, a task which was falsely passed down to a cluster, which is

not able to allocate the task (anymore), is reallocated in the higher level. An

evaluation of this method can be found in section 8.2.1.

5.3.3 Least eager value method

Until now, all tasks were allocated in the lowest level, the leaf level. In order to

use the full potential of an unbalanced, heterogeneous tree of PEs, a strategy

for deciding to allocate or pass the task is necessary.

5.3.3.1 Allocation strategy

In order to find an adequate strategy for this purpose, it is necessary to

know when a PE should allocate the task. The answer is that it should

allocate the task if it is more suitable than all other PEs in the entire system.

Unfortunately, a PE in the RAHS can have the information if or if not it is the

67

most suitable in the entire system, only by producing so much communication

that using a conventional AHS would be more reasonable. Therefore a simple

mechanism relying on the information a PE can have without producing

additional communication was developed.

If the PE is the most suitable in its cluster for the specific task is the first

information. Retrieving the information is simple due to the separated AHS

running in each cluster. The second information needed is, if the PE has an

eager value, which is at least as high as the required eager value. This indicates

if it is currently suitable enough to execute the task. For this reason, each task

gets a system-wide least eager value, which indicates how high the eager value

has to be for allocation. If the eager value of a PE is less than this requirement,

it passes the task to its underlying cluster. In case the PE is a leaf of the tree,

it allocates the task, nevertheless its eager value is less to the least eager value

of the task. If the task was passed, the representative PE passing the task,

will record the sent out eager values in the lower cluster. In case one of the

recorded eager values from below is higher than its own, it will copy that as

horizontal eager value. In case the sent out eager values from the underlying

cluster are all lower than its own eager value, the PE will further record the

eager values until the next optimization cycle starts. If until then no eager

value from the underlying cluster is higher than its own, it withdraws the task

again and allocates the task itself, even though its eager value is not equal or

higher to the least eager value of the task.

5.3.3.2 Self-Healing

The self-healing in such a complex system like the RAHS is important. The

system is widely distributed and autonomous. Therefore, failing PEs are not

unlikely. The self-healing inside each cluster stays of course untouched and

works as in the original AHS. This means that a failed PE is compensated by the

other PEs in the same cluster if possible. If the failure cannot be compensated

cluster-internally the representative PE in the next higher level is responsible

for the self-healing of the lost tasks. The representative recognizes the lost tasks

through the vanished eager values from the lower level. It reacts by revoking

the pass and allocating the task even though its eager value is less than the

least required eager value of the task. If the representatives eager value is 0 it

68

does not allocate the task but also stop sending eager values horizontally. This

either leads to a re-migration of the task to another PE in the same cluster

or to an intervention of the clusters representative of the next higher level in

case no other PE of the cluster is able to migrate the task. This procedure is

possibly repeated until the task ends up at the topmost level. From there the

task migrates to another branch of the tree. The self-healing ability of this

method was also evaluated and the results are presented in section 8.2.2.

Chapter 6

System properties

6.1 The properties of the HAHS

The HAHS is responsible for the decentralized allocation of tasks between the

two hierarchical levels. The concept of the HAHS has been presented in chapter

4. The worst-case timings and the communication estimations of the HAHS in

terms of the self-configuration, self-optimization and self-healing are presented

in the following sub-chapters.

6.1.1 General

First, the general system and its properties are investigated. Since the HAHS

consists of two hierarchical levels, the analysis has to differ between the inter-

cluster cycle and the intra-cluster cycles. Due to the fact that each cycle,

whether the inter-cluster cycle or the intra-cluster cycles, implements a full

AHS, all properties are inherited from the original AHS.

Timing If one of the AHS cycles is responsible for x tasks, then the worst-case

timing behavior for the self-configuration, self-optimization and self-healing

is x hormone cycles (see section 3.6)1. Assuming that the inter-cluster cycle

is responsible for y tasks and the intra-cluster cycle i is responsible for xi

tasks, whereby: i ∈ {1...l} and
∑

i∈{1...l}
xi = y. Then, the first estimation for the

worst-case time of the entire HAHS is the sum of the worst-case time of the

1For the self-optimization and self-healing an offset has to be added

69

70

inter-cluster cycle and the worst-case time of the intra-cluster cycle with the

most tasks:

WCTgeneralfirst
= y + max

i∈{1...l}
xi (6.1)

Transferred to the formal definitions from section 4.5 with Ti ⊆ T :

WCTgeneralfirst
= m + maxi∈{1...l}|Ti| (6.2)

WCTgeneralfirst
= m + m = 2m

Only the maximum worst-case of the intra-cluster cycles is chosen because

all intra-cluster AHSs work in parallel. Since it is possible that all tasks are

distributed to only one cluster, the maximum worst-case for the intra-cluster

cycle can be m.

However, this estimation can be refined: not only the intra-cluster cycles

work in parallel, but also the inter-cluster cycle works in parallel to the

intra-cluster cycles. After the first task decision in the inter-cluster cycle is

completed, the cluster head will send the notification to all PEs in its cluster.

The notification hormone unlocks the sending of eager values for the task

in the next hormone cycle. And the task will be allocated in the following

hormone cycle. Consequently, while the inter-cluster cycle allocates x tasks,

the intra-cluster cycles will have allocated x − 2 tasks simultaneously. This

can be subtracted from the first worst-case estimation:

WCTgeneralsecond
= 2m − (m − 2) = m + 2 (6.3)

So the final worst-case timing for all three self-x properties mentioned before

is m + 2 for the general HAHS.

Communication The worst-case communication load of the HAHS also

origins from the AHS, since it is built of several isolated AHSs. In section 3.7,

the worst-case communication load for the AHS was stated to n · m. In regards

of the inter-cluster cycle, this transforms to:

WCCgeneralinter
= |C| · m ≤ l · m (6.4)

71

The n is replaced with l due to the fact that in the inter-cluster cycle exist

as many participating PEs (cluster heads) as clusters exist in the system.

For an intra-cluster cycle i the worst-case communication load derives to:

WCCgeneralintra
= |PCi

| · m = n · m (6.5)

The worst-case communication load can be n · m for one intra-cluster cycle

under the condition that there is only one cluster in the system.

The following sections will discuss the changes and additional overhead of

this worst-case analysis when using the different concepts and methods of the

HAHS.

6.1.2 Task concepts

In this section, the two different concepts for task organization of the HAHS

are analyzed, starting with the organ task concept succeeded by the single task

concept.

6.1.2.1 Organ task concept

The organ task concept builds subsets of tasks and calls them organs. The

organs are distributed to the clusters in the inter-cluster cycle. Then the tasks

of the organs are allocated by a PE in the assigned cluster.

Timing At first the timing behavior of an organ task concept HAHS is

analyzed in detail. For the analysis, the three self-x properties are handled

separately, starting with the self-configuration.

Self-configuration For the analysis of the organ task concept the first

estimation of the worst-case of the general HAHS (see equation 6.2) is used.

Beginning with the inter-cluster cycle, it is observable that exactly as many

tasks in the inter-cluster cycle have to be distributed as organs exist in the

system. Therefore, the worst-case of the inter-cluster cycle is |O| = k hormone

cycles. For the intra-cluster worst-case timing, it must be considered that

after a task is activated in the inter-cluster cycle, the cluster head sends an

activation hormone to all PEs in its cluster. After receiving the activation

hormone, the PEs starts sending eager values for the tasks in the corresponding

72

organ. The effect of the inter-cluster and intra-cluster cycle working in parallel

nearly vanishes. When the last organ i is allocated in the inter-cluster cycle,

two hormone cycles later the assigned cluster starts allocating the |oi| tasks

from the organ. Therefore, the worst-case timing of the self-configuration is:

WCTSCOrganT ask
= k + max

i∈{1...k}
|oi| + 2 (6.6)

Self-optimization The self-optimization in the organ task concept de-

pends on the offer period (w). This defines the interval for offering an allocated

task to the other PEs. In case a more suitable PE exists in the same cluster, the

system needs as many additional hormone cycles as optimizable tasks exist in

the corresponding organ. This results in a worst-case self-optimization timing

for one task of w + |oi| for organ i. If a PE from another cluster is more suitable,

then the whole organ has to migrate to the cluster with the designated PE.

For one organ the time for the self-optimization is w + 1 + |oi|. Regarding the

worst-case, in which all organs have to migrate to other clusters, the worst-case

time for the self-optimization calculates to:

WCTSOOrganT ask
= w + k + max

i∈{1...k}
|oi| + 2 = w + WCTSCOrganT ask

(6.7)

Self-healing If a PE fails in the organ task concept, two possible scenarios

are conceivable. The first one is that the failure can be compensated in the

cluster itself. This means that the tasks from the assigned organ of the cluster

will be reordered, such that the failure can be compensated. In fact, the tasks

from the failed PE will be migrated to a PE in the same cluster. In this case,

the self-healing will take |oi| cycles in worst-case.

The second scenario is the more interesting one. In this scenario the failure

cannot be compensated cluster-internally. This results in a necessary organ

migration since the tasks of an organ cannot be migrated to another cluster

without migrating the whole organ to the other cluster. In this case, the organ

itself has to be migrated in the inter-cluster cycle and then all its belonging

tasks have to be allocated in the new cluster in the intra-cluster cycle. For the

worst-case scenario, it has to be considered that this happens to all organs at

the same time, for this reason the worst-case self-healing timing calculates to:

73

WCTSHOrganT ask
= k + max

i∈{1...k}
|oi| + 2 = WCTSCOrganT ask

(6.8)

Communication The next aspect to analyze is the additional communication

load produced by an organ task HAHS in comparison to the general HAHS

(see section 6.1.1). Again, the worst-case is regarded.

In the beginning, the worst-case communication loads of the inter-cluster

cycle and the intra-cluster cycles are estimated. The inter-cluster cycle behaves

almost like an AHS in terms of communication load. The worst-case is also the

start of the system, when all cluster heads send out eager values for the organ

tasks. This ends in a worst-case communication load of:

WCCOrganT askInter
= |C| · |O| = l · k (6.9)

The worst-case of one intra-cluster cycle is reached when all its assigned

tasks are not allocated yet and all organs are assigned to the corresponding

cluster i. Then, all PEs of the cluster send eager values for all assigned tasks:

WCCOrganT askIntra
= |PCi

| · m (6.10)

For the entire system, the worst-case is reached when all organs are assigned

to the same cluster with the most PEs assigned. Additionally, the suppressors

of the inter-cluster cycle have to be considered in the calculation, one for each

organ (k). Therefore, the overall worst-case estimation derives to:

WCCOrganT ask = max
i∈{1...l}

|PCi
| · m + k (6.11)

6.1.2.2 Single task concept

The second task concept is the single task concept, in which the tasks are

assigned separately to the clusters in the inter-cluster cycle. Consequently, this

concept behaves similar as the general concept from section 6.1.1.

Timing At first the worst-case timings of the single task concept are analyzed,

again split by the three self-x properties.

74

Self-configuration The worst-case timing on the inter-cluster level eval-

uates to m cycles from the original AHS. Two additional cycles are needed

for the allocation in the second hierarchical level. This is explained in section

6.1.1.

WCTSCSingleT ask
= m + 2 (6.12)

For comparison with the organ task concept, an example with 100 tasks

(m = 100) is used. Consequently, the WCTSCSingleT ask
is 102 cycles. For the

WCTSCOrganT ask
further information about the organ sizes are needed. Let’s

assume there exist 5 organs (|O| = 5) and all organs have an equal size

(max
i∈{1...|O|}

|mOi
| = 20). Then the WCTSCOrganT ask

is 27 cycles. Equal sized

organs are not a necessary requirement for the organ task HAHS. That is

why inequality among the organ sizes has to be considered for the worst-case

estimation. Assuming the most unequal scenario for the example above, one

organ would have the size of 96, while the other four organs would have a size

of 1. This leads to WCTSCOrganT ask
of 103 cycles, which is even higher than

the worst-case time of the single task concept. The equation for this scenario

simplifies to:

WCSCOrganT askInequal
= k + (m − (k − 1)) + 2 = m + 3 > WCSCSingleT ask

(6.13)

Self-optimization The self-optimization in the single task concept bases

on the same principle as in the organ task concept. It depends on the offer

period (w), too. The worst-case is again the case in which all tasks have to be

migrated to new PEs. The difference is that no organs have to be migrated.

Therefore, the migration overhead for a single task is less than with the organ

task concept and calculates to w + 2. For the whole system, the worst-case

timing for the self-optimization calculates to:

WCTSOSingleT ask
= w + m + 2 = w + WCTSCSingleT ask

(6.14)

Self-healing In contrast to the organ task concept, the single task concept

can react more flexibly to failures since there exists no task grouping. The two

75

described scenarios from above are applicable for the single task concept as

well.

In the first scenario, all failures are compensated cluster-internally, which

ends in a worst-case self-healing timing of
∑

γ∈Cj

|Ξγ| hormone cycles.

The second scenario, when a task has to be migrated to another cluster, is

more complex and the worst-case timing is worse. The lost tasks have to be

migrated to another cluster in the inter-cluster cycle and afterward migrated to

a PE in the new cluster. Therefore, the worst-case self-healing timing behavior

for the single task concept derives to:

WCTSHSingleT ask
= m + 2 (6.15)

Communication The worst-case communication load of the single task

concept does not differ from the worst-cases stated in section 6.1.1, since it

behaves in exactly the same way. The worst-case in the inter-cluster cycle

appears when all cluster heads broadcast eager values for all tasks:

WCCSingleT askInter
= l · m (6.16)

The worst-case for one intra-cluster cycle happens when all tasks are assigned

to one cluster:

WCCSingleT askIntra
= |PCi

| · m (6.17)

The worst-case for the entire system can be derived from this. When all

tasks are assigned to the same cluster, which is simultaneously the biggest

cluster, the most communication load is produced. Additionally, the number of

suppressors in the inter-cluster cycle has to be added:

WCCSingleT ask = |PCi
| · m + m (6.18)

When comparing the worst-case communication of the two task set concepts,

it is observable that the organ task concept produces less communication. This

76

is because the worst-case communication in the intra-cluster cycles is the same,

but the worst-case communication in the inter-cluster cycle for the organ task

concept depends on k instead of m for the single task concept. From the

definition (see section 4.5) it is known that k ≤ m. So the organ task concept

at its worst produces the same amount of communication as the single task

concept. Regarding this one scenario in which k equals m, then there must

exist as many organs as tasks in the system. Since each organ must consist of at

least one task and all organs are disjoint to each other, each organ will consist

of exactly one task. This scenario equals exactly the single task concept. This

shows that the single task concept is a special case of the organ task concept.

The organ task concept produces always less or equal communication than a

single task concept of the same scale.

6.1.3 Cluster set concepts

The next set of concepts developed are the cluster set concepts. In contrary to

the section before, not the entire worst-case timing behavior and communication

load is examined. Instead, the additional worst-case overhead of the introduced

methods are analyzed.

6.1.3.1 static-static

The static-static cluster set concept does not introduce any special method into

the HAHS. Therefore all estimations of the worst-case timing and communica-

tion load from before hold.

6.1.3.2 static-dynamic

In the static-dynamic variant the cluster heads are dynamic. This means

that the cluster heads are elected in the clusters. The election is realized by

allocating a special task in each cluster, indicating which PE is the current

cluster head.

Timing In a first step, the worst-case timing of the dynamic cluster head

election is examined, again separated by the three self-x properties.

77

Self-configuration The self-configuration for the dynamic cluster head

method means the process of initially determining a cluster head. As mentioned

before, the method is implemented by a special task handled separately from

the other tasks by the AHS loop. Therefore, this can be interpreted as AHS

with a single task. The original AHS has a worst-case time of m cycles for the

self-configuration. Consequently, the worst-case self-configuration time for the

dynamic cluster head method is:

WCTSCdynCH
= 1 (6.19)

This means that after one hormone cycle the clusters have elected a cluster

head and can start the usual process for allocation of the tasks. The process is

delayed by this one hormone cycle.

Self-optimization The dynamic cluster head also implements the self-

optimization property, which is reasonable since it uses the mechanism of the

AHS. The suppressor of the cluster head task vanishes in periodic intervals

(w), such that the other PEs have the chance of allocating the cluster head

task in case they became more suitable meanwhile. The worst-case timing for

the self-optimization then is:

WCTSOdynCH
= w + 1 (6.20)

Self-healing The self-healing of a cluster head is finished in one cycle.

The suppressors vanishes immediately, and the next best PE allocates the

cluster head task in the next hormone cycle.

WCTSHDynCH
= 1 (6.21)

Communication The dynamic cluster head method also produces additional

communication. The additional communication load is limited to the intra-

cluster cycle since the cluster head task is handled internally in the separated

78

intra-cluster cycles. For estimating the worst-case communication load, self-

configuration can be considered. Nevertheless, this is also applicable for self-

optimization and the self-healing. Let’s assume, that all PEs of a cluster are

able to become the cluster head. This means that each PE has an eager value

for the cluster head task. When the system starts, all PEs send out their eager

value. This is the worst-case in terms of communication load. Regarding only

one cluster i the amount of communication derives to |PCi
|. For the complete

system, the load of the separated clusters have to be summed up:

WCCDynCH =
∑

i∈{1...l}

|PCi
| = n (6.22)

Therefore, the worst-case communication load of this method equals the

amount of PEs in the system.

6.1.3.3 dynamic-static

The dynamic-static concept has predefined static cluster heads, while all other

PEs determine dynamically their cluster membership during run-time. For this

reason, the cluster heads send out special hormones to all other PEs. Those

calculate their cluster membership according to the received hormones.

Timing Again, the timing behavior in terms of worst-case estimations is in-

vestigated. As before, the three self-x properties will be investigated separately.

Self-configuration The sending of the cluster accelerators at the start

of the system and the following decision upon the membership consumes one

additional hormone cycle:

WCTSCdynCluster
= 1 (6.23)

Likewise with the dynamic cluster head method, all following processes, e.g.

the allocation of the tasks, get delayed for this one hormone cycle.

79

Self-optimization In contrary to the dynamic cluster head method, the

dynamic cluster method does not rely on a feedback loop with suppressors.

The self-optimization is, therefore, faster. A change in the cluster accelerator

of the cluster head is emitted immediately since the cluster accelerators are

broadcasted every hormone cycle anyway. This results in a self-optimization

worst-case time of:

WCTSOdynCluster
= 1 (6.24)

Self-healing The same reasoning can be used for the self-healing property.

A cluster head which fails stops immediately sending its cluster accelerator. All

PEs belonging to the now vanished cluster, reassign themselves to the next

best cluster head in the next hormone cycle.

WCTSHDynCluster
= 1 (6.25)

Communication This method also produces additional communication in

order to gain flexibility.

In this concept, the differentiation between the inter-cluster and the intra-

cluster cycles is more difficult due to the fact that the clusters are created

during the self-configuration time, i.e. before the allocation of tasks begins.

For this reason, a separation of the two cycles does not make sense.

In this method all cluster heads in the system constantly send out their

cluster accelerators in order to form the clusters. This results in l cluster

accelerators:

WCCSCDynClusterInter
= |C| = l (6.26)

6.1.3.4 dynamic-dynamic

The last cluster set concept is the dynamic-dynamic concept. It combines

dynamic clusters with dynamic cluster heads and uses the two methods pre-

sented in the static-dynamic and dynamic-static concepts. There are two ways

to combine those concepts: In the first approach (A), the cluster heads are

80

elected after the start, and then the clusters are determined using the method

presented in the dynamic-static concept. Another approach (B) is to use a

cluster analysis based on the cluster accelerators as described in section 4.6.4

and afterward using the method described for the static-dynamic concept in

order to determine the cluster heads of the clusters. The cluster analysis is only

used for the self-configuration. The self-optimization and self-healing works as

described in the dynamic-static concept.

Timing This concept is examined for its worst-case timing behavior, begin-

ning with the self-configuration.

Self-configuration For the self-configuration the two approaches men-

tioned before have to be investigated separately.

Approach (A): In this approach the cluster heads are elected at first.

This consumes one additional hormone cycle. Afterward, the dynamic cluster

method takes place, as described in the dynamic-static concept. Therefore, the

self-configuration worst-case time is:

WCTSCDynamicDynamic(A)
= WCTSCdynCluster

+ WCTSCdynCH
= 2 (6.27)

Approach (B): Let’s regard an agglomerative cluster analysis in which it

is guaranteed that in each step at least one PE joins each of the final clusters.

Then, the clusters are built after
⌈

n
l

⌉

steps in the worst-case. For a divisive

cluster analysis (which builds each step at least one final cluster) the worst-case

estimation derives to l. So the worst-case for this approach is:

WCTSCDynamicDynamic(B)
= max(

⌈

n

l

⌉

, l) + WCTSCdynCH
= max(

⌈

n

l

⌉

, l) + 1

(6.28)

Self-optimization For the self-optimization, the worst-case timings of the

two methods have to be combined again:

WCTSODynamicDynamic
= WCTSOdynCH

+ WCTSOdynCluster
= w + 2 (6.29)

81

Self-healing The self-healing of a dynamic-dynamic HAHS is, like in the

self-optimization, a concatenation of the two dynamic methods from the static-

dynamic and dynamic-static concepts. The worst-case timing for the self-healing

in this concept is:

WCTSHDynamicDynamic
= WCTSHDynCH

+ WCTSHDynCluster
= 2 (6.30)

Communication The worst-case communication load for this concept is

the combination of the communication loads of the two methods used in this

scenario. This results in:

WCCDynamicDynamic = WCCDynCH + WCCDynCluster = n + l (6.31)

6.1.4 CEA Methods

As described in section 4.7, different methods were developed in order to

determine the cluster eager values. Those methods have an impact on the

worst-case timing and the communication load, too. As in the cluster set

concepts, only the worst-case timing and the communication load of the special

mechanisms introduced by the CEA methods are analyzed.

6.1.4.1 Predefined cluster values

For the sake of completeness the predefined cluster values are mentioned here,

too. This method does not have any influence in terms of worst-case timing

or communication load since no special mechanism is introduced. All cluster

eager values are static and determined by the designer.

6.1.4.2 Recalculation

In the recalculation of cluster eager values (as well as in the mimic best method),

the cluster member PEs send eager values for all tasks in periodic intervals (r).

The cluster heads use those eager values to update their cluster eager values.

82

Timing The following paragraphs analyze the worst-case timing of this

method by means of the three different self-x properties: self-configuration,

self-optimization and self-healing.

Self-configuration Ideally, the first recalculation takes place at the start

of the system. The cluster heads receive those hormones in the first cycle. They

calculate their cluster eager values and send them in the second cycle. That

is why this method needs an additional cycle. All succeeding processes are

delayed by this one hormone cycle.

WCTSCCEARecalc
= 1 (6.32)

Self-optimization Since the recalculation updates the cluster eager values

only in certain periodic intervals (r), the worst-case is when a change occurs

exactly after such a recalculation. When the recalculation process takes place,

the new value of the allocating PE is transmitted to the cluster head. Therefore,

the worst-case timing of the self-optimization for this method is:

WCTSOCEARecalc
= r (6.33)

Self-Healing Equal to the self-optimization, the self-healing of the cluster

eager value generation in the recalculation method is dependent from the

periodic interval r. The change in the cluster eager value caused by a failing

PE is taken into account after r hormone cycles latest.

WCTSHCEARecalc
= r (6.34)

Communication The recalculation causes all PEs to broadcast all their

eager values in periodic intervals. The worst-case communication load of this

method is:

WCCCEARecalc = n · m (6.35)

This worst-case communication load is produced every r hormone cycles.

83

6.1.4.3 Greatest hormone

In this method, the cluster eager values are calculated throughout an initial

sending of the highest eager value from each PE to its cluster head. The cluster

head uses those values as its cluster eager value. For the tasks it did not receive

any eager values, it calculates a cluster eager value heuristically based on the

received eager values of the other tasks. The cluster head constantly updates

those values by listening to the eager values sent in the intra-cluster cycle.

Timing The worst-case timing behavior of the greatest hormone method is

again analyzed for the three self-x properties.

Self-Configuration As mentioned before, all PEs initially send their

highest eager value to their cluster head. Then the cluster head takes those

values as cluster eager values or calculate heuristic values. The process of

sending the maximum eager values needs one hormone cycle:

WCTSCGreatestHormone
= 1 (6.36)

Self-optimization In case that the suitability of a PE for a task changes

the cluster head either receives an updated eager value in the next hormone cycle

if the task is not allocated yet, or when the task is offered again. Consequently,

the worst-case timing of the greatest hormone method with respect to the

self-optimization is:

WCTSOGreatestHormones
= w (6.37)

Self-healing When a PE fails in the HAHS using the greatest hormone

method, the intra-cluster suppressors for its allocated tasks vanish. The remain-

ing PEs in the cluster send out eager values for those tasks again. This leads to

an update of the cluster eager values for those tasks in the cluster head. Then

the tasks are migrated to other PEs in the same cluster or might be migrated

to other clusters in the next optimization cycle. However, it might happen that

no remaining PE can allocate the lost tasks from the failed PE. In this case,

84

the cluster head updates its cluster eager values for the lost tasks in the next

optimization cycle. Therefore, the worst-case timing for the self-healing of the

greatest hormone method is:

WCTSHGreatestHormone
= w (6.38)

Communication In this method, the PEs only sends the eager values for

the task with the highest eager value2. The worst-case communication load

for this method builds up when all PEs send those maximum eager values

at the beginning. Each PE sends exactly one. Therefore, the worst-case

communication load is:

WCCGreatest = n (6.39)

6.1.4.4 Magnitude of eager vectors

In this method, the cluster eager values are calculated by the magnitudes of

the eager vectors which are sent by each cluster member to the cluster head.

The magnitudes are sent every cycle and processed for the cluster eager values

in the following cycle.

Timing As before, the first aspect for analyzing is the worst-case timing

behavior of this method.

Self-Configuration In the first hormone cycle, all PEs send out their

magnitudes. In the second hormone cycle, the cluster heads choose their cluster

eager values and broadcast it afterward. Therefore, the worst-case timing for

the self-configuration is:

WCTSCMagnitudes
= 1 (6.40)

2if two tasks have the highest value, the eager value of the one with the lower id is sent

85

Self-Optimization In this method, the cluster eager values rely on the

magnitudes of the eager vectors of the PEs. A change in the environment that

causes a change in the suitability takes effect at latest when the task is offered.

Hence, the worst-case timing is exactly the offer period:

WCTSOMagnitudes
= w (6.41)

Self-Healing The magnitude of eager vectors method interprets all eager

values as a vector and calculates its magnitude. A PE failure leads either

to a cluster-internal migration or a change in the cluster eager value. The

change depends on the chosen calculation method of the cluster eager value,

e.g. by which operation the magnitudes will influence the cluster eager value.

A migration will take place only in the next optimization cycle (w). Therefore,

the worst-case timing for the self-healing calculates to:

WCTSHMagnitude
= w (6.42)

Communication The magnitude of eager vectors method behaves similar to

the greatest hormone method in terms of communication load. However, instead

of sending each cycle only the eager value of the task with the highest eager

value, it sends the magnitude of all eager values. Therefore, the communication

load is the same as with the greatest hormone method.

WCCMagnitudes = WCCGreatest = n (6.43)

6.2 The properties of the RAHS

This section will analyze the timing behavior and the communication load of

the RAHS, the advanced development of the HAHS.

6.2.1 Timing behavior

For analyzing the timing behavior of the general RAHS, a worst-case estimation

for an 1-level RAHS is given first. An 1-level RAHS is a system with no

86

hierarchical aspect. Therefore, the 1-level RAHS equals an AHS. From the

AHS it is known that the worst-case timing scales with the amount of tasks

m in the system. Hence, the worst-case timing for the self-configuration and

self-healing for this RAHS is:

WCTSC/SH1level
= m (6.44)

Similarly, the self-optimization estimates to:

WCTSO1level
= w + m (6.45)

The next step is a 2-level RAHS. Now a hierarchical super-level, consisting

of one cluster (c1 = 1), is introduced. The PEs in the lower level split up

in to c0 clusters. All tasks are distributed to the PEs in the upper level (1)

and then either passed downward or allocated directly to the PE in the upper

level. For the upper level this ends up into m hormone cycles as worst-case

timing. Each cluster in the lower level ends up allocating m tasks as absolute

worst-case. Therefore, the worst-case is also m hormone cycles in the lower

level. Combining both levels, this sums up to 2m hormone cycles. However,

equally to the HAHS the upper and lower level do not work sequentially but

partly parallel. Therefore, the worst-case is identical to the worst-case of the

HAHS:

WCTSC/SH2level
= m + 2 (6.46)

Accordingly, the self-optimization worst-case timing calculates to:

WCTSO2level
= w + m + 2 (6.47)

The next further step is to add a new lowest level of clusters. For the

worst-case timing this means that after the last task has been distributed in

the second level (= WCT2level), this task still has to be distributed in the third

level. The sending of the activation hormones and the allocation itself costs

additional 2 hormone cycles. Consequently, the worst-case timing sums to:

87

WCTSC/SH3level
= WCTSC/SH2level

+ 2 = m + 4 (6.48)

and:

WCTSO3level
= WCTSO2level

+ 2 = w + m + 4 (6.49)

So with each additional level two hormone cycles sum up on the worst-case

timing. The general worst-case timing for the RAHS derives to:

WCTSC/SH = m + (2 · (l − 1)) (6.50)

and:

WCTSO = w + m + (2 · (l − 1)) (6.51)

6.2.2 Communication load

The second aspect under investigation is the communication load produced

by the RAHS. Especially, the worst-case communication load is interesting for

designing a system. Again, the analysis starts with a 1-level RAHS.

As shown before a 1-level RAHS is the same as the original AHS. Therefore,

the worst-case communication load is the same, too:

WCC1level = n · m (6.52)

Regarding x-level RAHSs the communication load has to be analyzed for

each level separately. This is oriented on the communication load of the HAHS.

The number of PEs of the biggest cluster in the respective level multiplies with

the number of tasks in the entire system:

WCCxlevel =
∑

g∈L

max
i∈{∀c:µ(c)=g}

(|Pi|) · m (6.53)

88

Additionally, the vertical communication has to be considered for RAHSs

with more than one level. The vertical communication is limited to the vertical

activation hormones. This means that in the worst-case each level, except the

last level, sends m activation hormones. This results in a hormone amount of:

WCCxlevel = (|L| − 1) · m +
∑

g∈L

max
i∈{∀c:µ(c)=g}

(|Pi|) · m (6.54)

6.2.3 Methods of the RAHS

Two methods for the RAHS were presented in section 5.3.2 and 5.3.3. Both

methods are investigated in this section, regarding their impact on timing

behavior and communication load.

6.2.3.1 Max eager value

In the first method the maximum eager values of each leaf PE are forwarded

to the root PEs. Each node PE which receives the maximum eager values of

the cluster members from the underlying cluster forwards only the maximum

of the received eager values.

Timing behavior Due to the initial forwarding of the maximum eager values

the worst-case allocation time will be increased by the number of levels.

WCTSCMAXEA
= |L| (6.55)

This only holds if all allocations based upon heuristic values (decisions for

those tasks whose eager values were not forwarded) lead to an allocation in

the leaf PEs. In case the underlying PEs cannot allocate the task, the upper

representative revokes its allocation after a certain waiting time (v). If no other

PE in the same cluster can allocate the task, an additional time of h cycles

(the decay time of the vertical hormones) is needed to revoke the pass in the

upper level. The overall worst-case estimation for this concept was stated and

explained in [39] and derives to:

89

WCTSCMAXEA
= |L| + m + (2|L|−1 − 1) · v + (2|L|−1 − |L|) · h + (2|L|−1 − 1)

(6.56)

Communication load The additional worst-case communication load pro-

duced by this concept occurs in the first cycle, when all leaf PEs send out their

maximum eager value to their upper representative. Therefore, the maximum

worst-case communication load produced by this method is the number of leaf

PEs in the system.

WCCMAXEA = |LP | (6.57)

6.2.3.2 Least eager value

In this method, the tasks are allocated by those PEs having an eager value

which is at least as high as the required eager value of the task. This means,

the tasks can already be allocated by a PE in a non-leaf level.

Timing behavior The timing behavior of this method depends on the

number of tasks which at first are passed down the half-tree in which they

cannot be allocated. Those tasks have to be remigrated in worst-case to the

other half-tree of the system. For the worst-case it has to be assumed that this

happens to the last task which will be decided on in the first level. This task

will be passed down one half-tree and afterward remigrate to the other half.

This adds up to

WCTSCLEAST
= m + |L| + |C| · (w + 1) (6.58)

hormone cycles (w is the self-optimization period).

Communication load This method does not produce additional communi-

cation load.

90

Chapter 7

Systems Implementation

This chapter presents the implementations of the HAHS and RAHS which were

used to evaluate the concepts presented in this thesis (see chapter 8). The aim

of this chapter is not to give a full review of the software. However, a short

overview is given. All presented software is included on the CD, appended

to this thesis. The AHS was firstly developed and evaluated in a simulator.

Afterward, the system was developed as a middleware for Windows and Linux

operating systems. This procedure was repeated for the HAHS. For the RAHS,

only a simulator was developed since the concept of the system is still evolving.

7.1 Simulator

This section presents the simulator developments for the HAHS and RAHS.

7.1.1 HAHS

As mentioned before, a simulator was developed for the AHS. The simulator

was used to develop and evaluate the system itself as well as its extension

components.

Due to the broad correspondence in the concepts of the AHS and the HAHS,

the AHS simulator was extended to the HAHS simulator. The simulator is

written in C++ and uses the Microsoft Foundation Classes (MFC) library

[42] in order to build a Graphical User Interface (GUI) (see figure 7.1 for a

screenshot).

91

92

Figure 7.1: Screenshot of the HAHS simulator. Double framed rectangles are

cluster heads. The cluster memberships is expressed through the color of the

rectangles.

The main class of the simulator is the class representing a PE (CProcessin-

gElement, see figure 7.2). Each PE has two lists for organizing its tasks. One

list is for its intra-cluster cycle (taskList) and a second one (clusterTaskList)

exists in case the PE is a cluster head. Each task list consists of the tasks with

their corresponding hormone values and sub-lists for receiving hormones from

other PEs. Hence, the received hormones which were sent for a task are saved

in the corresponding sub-list for the task. Furthermore, the PE has lists for

receiving hormones. Indeed, those lists only save global hormones (e.g. load

suppressors).

In case the organ task concept (see section 4.4.1) is used, each PE additionally

has a list of organs. The organs, in turn, represent a list of tasks. As soon as

the organ is won by the PE in the inter-cluster cycle, it activates all tasks in

the organ object.

93

CProcessingElement

clusterId: int

isClusterHead: bool

taskList : CTaskList

clusterTaskList: CTaskList

organList: COrganList

receivedEagerValues: CReceiveValueList

CTask

receivedEagerValues: CReceiveValueList

receivedSuppressors: CReceiveValueList

receivedAccelerators: CReceiveValueList

CTaskList

COrganObject

organId: int

organTasks: CTaskList

COrganList

1
2

1

1

1

n

1

n

1

1

CReceiveValueList

CReceiveValue

value: int

timestamp: unsigned long

senderPEId: int

senderTaskId: int

senderClusterId: int
1

3

1

n

1

3

receivedSuppressors: CReceiveValueList

receivedAccelerators: CReceiveValueList

Only in OrganTask concept

Figure 7.2: A simplified class diagramm of the HAHS simulator

7.1.2 RAHS

Similar to the HAHS, a simulator for the RAHS has been developed. However,

in contrast to the HAHS the RAHS simulator is a complete new development

and not an extension of the AHS simulator. A further extension of the AHS

simulator into the direction of the RAHS would not have been feasible. The

concept of levels did not fit well into the structure of the AHS simulator.

The new RAHS simulator is written in C++, too. However, this time the

QT5 Framework [59] is used in order to create a GUI (see figure 7.3 for a

screenshot).

Similar as before, one of the main classes in this object-oriented software is

the PE itself (CProcessingElement, see figure 7.4). One of the main differences

is the PE class not having any task lists. Those are now associated to the

level instances of the PE. The level instances also have lists for storing received

global hormones. Therefore, a level instance represents more or less a PE from

the HAHS simulator.

94

Figure 7.3: Screenshot of the RAHS simulator

7.2 Middleware

The middleware of the AHS was built for creating applications which can take

advantage of the robust, decentralized and self-organizing concept. For instance,

the middleware was used in a composite with the Artificial DNA [10] to build a

robust, fault-tolerant self-balancing two-wheel vehicle (comparable to a segway)

[12].

This middleware was taken as a base for a new middleware implementing

the HAHS. The intended purpose of the middleware is to process high scaled

multi-task applications on a network of connected computers. The user and

administrator do not have to coordinate the allocation of the tasks among the

system. This will be managed autonomously and failures will be compensated

without interfering with the computation.

For the RAHS, no middleware was implemented. This is due to the fact

that the final concept of the system is still evolving. Additional research based

on simulations has to be done before developing a new middleware.

7.2.1 HAHS

As mentioned before, the AHS middleware was extended to the HAHS mid-

dleware. It is written as a static linked library in C and can be compiled for

95

CProcessingElement

levelInstances: map<int,

CLevelInstance*>

CLevelInstance

taskList: CTaskList*

receivedHorEagerValues: CHormoneList*

receivedHorSuppressors: CHormoneList*

receivedHorAccelerators: CHormoneList*

receivedHorEagerValues: CHormoneList*

receivedHorSuppressors: CHormoneList*

receivedHorAccelerators: CHormoneList*

CTaskList

CTask

receivedHorEagerValues: CHormoneList*
CHormoneList

CHormone

hormoneType: short

senderId: int

senderTaskId: int

receiverTaskId: int

value: int

timestamp: unsigned long

1

n

1

1

1

n

16

1

n

1

6

receivedHorSuppressors: CHormoneList*

receivedHorAccelerators: CHormoneList*

receivedVerAccelerators: CHormoneList*

receivedVerSuppressors: CHormoneList*

receivedVerEagerValues: CHormoneList*

Figure 7.4: A simplified class diagramm of the RAHS simulator

Windows and Linux operating systems.

In order to use the middleware, a program needs to bind the static library.

It instantiates itself as PE. The system then will handle the task allocation

autonomously and the instantiated PE starts allocated tasks independently

(see figure 7.5). The middleware is built upon modules (HAHSBasicCommu-

nication for instance), which can be easily replaced in order to support other

communication interfaces or operating systems. Several independent PEs can

run simultaneously on the same computer, as long as each PE program uses its

own HAHS library.

96

HAHSBasicCommunication

HAHSHormoneCommunication

HAHSBasicOSSupport

HAHSTaskManagement

HAHS

HAHS Middleware

Socket Communication Threading

Operating System

Processing Element

Task Task Task Task

PE Application

Figure 7.5: A simplified module diagram of the HAHS middleware and a single

PE

Chapter 8

Evaluation

This chapter shows the evaluation of the two systems presented in this thesis.

Due to the vast number of combinations of the different methods and scenario

configurations in each system, not all of them were evaluated, instead the most

suitable of those combinations were chosen.

In order to evaluate the two systems, criteria for the system’s performance

and stability have to be defined. An evaluation of the time needed for the

self-configuration is performed to evaluate the performance. This also shows

if and when the system finds a stable state for the given scenario. A second

performance criterion is the communication load produced by the system during

self-configuration. The important part of this evaluation is the comparison with

the communication load of the original AHS. The reduction of this communica-

tion load is a major motivation for the development of the HAHS and RAHS.

The focus lays on the comparison to the original AHS, but this evaluation will

also compare the communication load of the different methods and concepts to

each other. At last, the evaluation of this thesis will also examine at the emer-

gence (see chapter 2.3) of the system after the self-configuration, self-healing

and self-optimization.

A complete overview of all evaluations can be seen in table 8.1.

8.1 HAHS

For the evaluation of the HAHS, three different main scenarios were prepared

and evaluated in the HAHS simulator (see chapter 7.1.1). These scenarios

97

98

System Properties/Concepts/Variants Section

HAHS
Self-Configuration

Timing behavior
Organ task

8.1.1.1
Single task

Communication load
Organ task

8.1.1.2
Single task

Emergence
PE Emergence

8.1.1.3
Cluster Emergence

Cluster Regulation 8.1.1.4

Self-Healing Timing behavior Organ task 8.1.2

RAHS
Max eager value 8.2.1

Least eager value 8.2.2

Table 8.1: Overview of the evaluations

consist of 1000 PEs and a total of 1000 tasks. A high scale of PEs and tasks

was chosen in order to evaluate the scalability of the system. Of course the

number of clusters matters in a scenario and influences the performance. That

is why, three different cluster amounts for this scenario were evaluated: 10, 50

and 100 clusters. All clusters were evenly sized, meaning each cluster had the

same amount of PEs. Additionally, all PEs were equal in terms of suitability

for the tasks. This means the scenarios are a net of homogenous PEs, even

though the system can handle heterogeneous PEs. A heterogeneous net of PEs

would produce less communication since not all PEs would apply for all tasks

and, therefore, not all would send eager values for all tasks. A system handling

this amount of homogeneous PEs is, therefore, also able to handle the same

amount of heterogeneous PEs.

8.1.1 Self-configuration

At first, the self-configuration is examined. The self-configuration is the phase

of the system after the start. It finishes when an initial working state is found.

For the HAHS this state is reached as soon as all tasks are allocated somewhere.

99

8.1.1.1 Timing behavior

The first essential aspect under evaluation is the proper functioning of the

system, meaning that all tasks are allocated and processed by the system.

For this reason, the number of allocated tasks in the system over the time is

observed. Simultaneously, this is utilized for evaluating the timing behavior.

Organ task concept The organ task concept combines the tasks in disjoint

task groups, called organs. The PEs will apply for the organ in the inter-cluster

cycle. Therefore, it is expected to be faster in terms of allocation time than the

original AHS. The scenarios were configured to have exactly the same number

of organs as clusters exist in the system. Hence, the 10 clusters scenario has

fewer organs than the 50 clusters scenario.

The four different combinations of cluster and cluster head concepts (static

clusters and static cluster heads, static clusters and dynamic cluster heads,

dynamic clusters and static cluster heads, dynamic clusters and dynamic cluster

heads) in the 10 clusters scenario show the same behavior (see figure 8.1). The

number of allocated tasks increases over the time linearly until it reaches 1000,

which is the number of tasks in the system (see figure 8.1a). Plotted to 2D (see

figure 8.1b) it is visible that the dynamic cluster heads versions start a little

later in allocating the tasks. The reason for that is the allocation of the cluster

head which has to be finished first, before the application of the other tasks

can start.

A similar observation can be made regarding the task allocation of the 50

clusters scenarios with the organ task concept (see figure 8.2).

In comparison to the 10 clusters scenario from before, this scenario reaches

the full task-allocation earlier (see figure 8.2b). While it took 100-120 hormone

cycles (timestamps) in the 10 clusters scenarios (see figure 8.1b), the 50 clusters

scenarios only needed 60 - 80 hormone cycles. This behavior is related to the

cluster respectively organ number. The more organs exist, the less tasks are in

each organ. When allocating an organ, all its tasks will be unlocked for the

cluster, resulting in a worst-case allocation time of exactly the number of tasks

in the organ (see 3.6). Having few, but bigger clusters/organs the allocation

time increases and, therefore, the overall self-configuration time increases, too.

The last organ task scenarios examined have 100 clusters/organs (see figure

100

(a) Surface plot of the allocated tasks

0 20 40 60 80 100 120 140 160 180 200

Hormone cycles

0

100

200

300

400

500

600

700

800

900

1000

A
llo

c
a
te

d
 t
a
s
k
s

Task Allocation

Organ task concept - 10 clusters

Static/Static

Static/Dynamic

Dynamic/Static

Dynamic/Dynamic

(b) Line plot of the allocated tasks

Figure 8.1: Allocated Tasks over the time of the 10 clusters, organ task scenario.

8.3). Again, the scenarios show the same behavior among the four different

concept combinations as before. Besides that, it also shows that these scenarios

needed 100 - 120 hormone cycles until they reached the full task-allocation,

like the 10 clusters scenarios, too. Even though these scenarios have more and

smaller cluster/organs the time needed increased again in comparison to the

50 clusters scenarios.

The explanation for this increase, despite the smaller sized organs, is the

increased number of organs. For each additional organ, the worst-case allocation

101

(a) Surface plot of the allocated tasks

0 20 40 60 80 100 120 140 160 180 200

Hormone cycles

0

100

200

300

400

500

600

700

800

900

1000

A
llo

c
a
te

d
 t
a
s
k
s

Task Allocation

Organ task concept - 50 clusters

Static/Static

Static/Dynamic

Dynamic/Static

Dynamic/Dynamic

(b) Line plot of the allocated tasks

Figure 8.2: Allocated Tasks over the time of the 50 clusters, organ task scenario.

time in the inter-cluster cycle is increased by one.

In order to decrease the worst-case self-configuration time, the right number

of organs has to be chosen. For this reason, the relationship of the inter-cluster

and intra-cluster cycle has to be observed. For the inter-cluster cycle, the

worst-case timing is exactly the number of organs (k = |O|). For the intra-

cluster cycles, the worst-case timing is the number of tasks per organ (|T |
k

).

Additionally, one cycle has to be considered for the unlocking of the tasks in

the intra-cluster cycle. In case a dynamic cluster head method (DCH) is used,

102

(a) Surface plot of the allocated tasks

0 20 40 60 80 100 120 140 160 180 200

Hormone cycles

0

100

200

300

400

500

600

700

800

900

1000

A
llo

c
a
te

d
 t
a
s
k
s

Task Allocation

Organ task concept - 100 clusters

Static/Static

Static/Dynamic

Dynamic/Static

Dynamic/Dynamic

(b) Line plot of the allocated tasks

Figure 8.3: Allocated Tasks over the time of the 100 clusters, organ task

scenario.

a second additional cycle is needed for this method. The overall worst-case is

therefore

f(k)SCH =

⌈

k +
|T |
k

+ 1

⌉

(8.1)

f(k)DCH =

⌈

k +
|T |
k

+ 2

⌉

Figure 8.4 shows the worst-case times for a 1000 tasks organ task HAHS

103

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

|O|

60

65

70

75

80

85

90

95

100

105

110

115

120

125

W
C

-A
llo

c
a

ti
o

n
 t

im
e

 (
in

 h
o

rm
o

n
e

 c
y
c
le

s
)

WC-Allocation time for Organ task concept with 1000 tasks in relation to the organ amount (|O|)

Dynamic CH

Static CH

Empirical data

Figure 8.4: The worst-case time for the self-configuration needed by an organ

task HAHS with 1000 tasks in dependance of the organ number

with different organ numbers. In order to determine the best number of organs

the global minimum of the function f(k) has to be found 1.

For the present scenario, the minimum of the function calculates to:

f(k) = k +
1000

k
(8.2)

f(k)′ = 1 − 1000

k2
= 0 for k > 0

⇒ k = 10 · 10
1
2

k = 31.6228

So the perfect organ number for these scenarios, is between 31 and 32.

Generalized, the perfect organ number calculates to:

k =
√

|T | (8.3)

To verify this, two additional scenarios were created, one with 31 clusters

and one with 32 clusters.

Both scenarios (see figures 8.5a and 8.5b) behave as predicted in terms

of the task allocation time. The scenario with 31 clusters (see figure 8.5a)

1This is done by differentiating the function and finding the roots of the differentiated

function. Afterward, the roots have to be checked if they are minimum or maximum.

104

0 20 40 60 80 100 120 140 160 180 200

Timestamp

0

200

400

600

800

1000

A
llo

c
a
te

d
 t
a
s
k
s

Task Allocation

Organ task concept - 31 clusters

Static/Static

Static/Dynamic

Dynamic/Static

Dynamic/Dynamic

(a) Allocated Tasks over the time of the 31 clusters, organ task scenario as line plot.

0 20 40 60 80 100 120 140 160 180 200

Timestamp

0

200

400

600

800

1000

A
llo

c
a
te

d
 t
a
s
k
s

Task Allocation

Organ task concept - 32 clusters

Static/Static

Static/Dynamic

Dynamic/Static

Dynamic/Dynamic

(b) Allocated tasks over the time of the 32 clusters, organ task scenario as line plot.

Figure 8.5: Allocated tasks over the time of the 31 and 32 clusters, organ task

scenario.

needs ⌈64.258⌉ = 65 hormone cycles for the static versions and ⌈65.258⌉ = 66

hormone cycles for the dynamic versions according to equation 8.1. The

simulated scenarios finished the self-configuration at exactly these time points.

The 32 clusters scenario (see figure 8.5b) needs ⌈64.25⌉ = 65 respectively

⌈65.25⌉ = 66 hormone cycles according to the formula. The empirical simula-

tions results confirm this.

In comparison to a similar scaled AHS, the results show a speed-up in the

allocation time when using an organ task HAHS. The worst-case allocation

time of the AHS is m hormone cycles (the amount of tasks in the system, see

section3.6), while the organ task HAHS only needs
√

m hormone cycles in

105

worst-case.

Single task concept In contrast to the organ task concept, the single task

concept treats every task independently in the inter-cluster cycle. This results

in a more flexible handling of the task set. Problems as described in section

4.6.4.1 are completely avoided. Nevertheless, dealing with the complete task

set in the first hierarchical level extends the allocation time in this level. In

comparison to the organ task concept, the allocation time is extended by the

factor of m
l
.

As described in section 4.7, the single task concept needs a method to depict

the suitability from the cluster children to their cluster head. Two methods

were evaluated in order to demonstrate their influences on the task allocation

and the communication load. The first method is the Recalculation of cluster

eager values (see section 4.7.1), in which all cluster children send all their

current eager values for all tasks in periodic time intervals to their cluster head.

This method is abbreviated in the following with: CEASUM. The other method

evaluated is the Magnitude of eager vectors (see section 4.7.3). In this method

all cluster children constantly build the magnitude value of the eager value

vector and send this value to their cluster head in each cycle. This method is

abbreviated in the following with: EAGER.

For the evaluation, a scenario with 50 clusters and again 1000 PEs and

1000 tasks was used. All four cluster concepts (see section 4.6) were evaluated,

consisting either of static or dynamic cluster heads and either of static or

dynamic clusters. In combination with the cluster eager value methods this

results in 8 different evaluations for the scenario.

static-static The evaluations of the first two runs with static clusters and

static cluster heads (see figure 8.6) show that both cluster eager value methods

have the same behavior in the task allocation. Both reach the full allocation

after 1003 hormone cycles, as analyzed in chapter 6 (1002 hormone cycles for

the single task concept and one additional cycle for the cluster eager value

method).

static-dynamic When letting static clusters elect their cluster’s head

(dynamic cluster heads), the task allocation will take one additional cycle for

106

Figure 8.6: Allocated tasks over the time. Scenario with 50 clusters, single task

concept, static clusters and static cluster heads.

the election (see figure 8.7). This is confirmed by the evaluation of the variant

with the EAGER method. This combination takes exactly 1004 cycles to finish

self-configuration. For the other method the estimation does not hold, this

variant needs 1052 hormone cycles. The reason is the recalculation period of the

CEASUM method. The period was set to 50 hormone cycles, meaning every

50 cycles all PEs send their eager values to the cluster head. This happens for

the first time in the first hormone cycle. In the first cycle, the cluster heads

are not elected yet. Therefore, none of them has the necessary information to

build cluster eager values. That is why, they will have to wait until the next

recalculation period at hormone cycle 50. Afterward, in the 51st cycle, the

allocation starts and needs 1001 cycles as estimated in chapter 6.

dynamic-static The dynamic-static single task HAHS shows for both

methods exactly the same task allocation behavior as the static-dynamic variant

(see figure 8.7). In the static-dynamic variant the CEASUM method does not

start the allocation until the first recalculation period is reached. In contrast,

the dynamic-static variant, could start the allocation right at the beginning. At

this moment, the eager values are sent out for the first time. The waiting cycles

until the first recalculation interval passed (in the scenario at hormone cycle

number 50) would be avoided. However, letting the cluster heads calculate their

107

0 200 400 600 800 1000 1200

Hormone cycles

0

100

200

300

400

500

600

700

800

900

1000

A
llo

c
a

te
d

 t
a

s
k
s

Task Allocation

Single task concept - 50 clusters

Static clusters - Dynamic cluster heads/Dynamic clusters - Static cluster heads

CEASUM

EAGER

Figure 8.7: Allocated tasks over the time. Scenarios with 50 clusters, single

task concept, static clusters and dynamic cluster heads respectively dynamic

clusters and static cluster heads.

cluster eager values right at the start would result in misrepresented cluster

eager values since the clusters are not built at this moment. The only sources

available to the cluster heads at this moment are their own eager values. This

can lead to non-optimal allocations among the clusters, which then have to be

optimized as soon as all clusters are built and the next recalculation period is

reached.

dynamic-dynamic The most flexible HAHS still has a similar task allo-

cation behavior as the two variants before. To demonstrate the difference, the

evaluation of the 100 cluster configuration was chosen (see figure 8.8).

It can be seen that both methods are not monotonically increasing the

task allocations in the first 100 to 150 hormone cycles like before. Due to the

sequential cluster head task allocation, it takes as many hormone cycles as

clusters are in the system until all cluster heads are present. Simultaneously,

those cluster heads which already exist start to build their cluster. These

two mechanisms combined result in a constantly changing cluster environment

(clusters tend to start big and become smaller with time). These constantly

changing clusters influence the cluster eager values of their cluster heads. This

108

0 200 400 600 800 1000 1200

Hormone cycles

0

100

200

300

400

500

600

700

800

900

1000

A
llo

c
a

te
d

 t
a

s
k
s

Task Allocation

Single task concept - 100 clusters

Dynamic clusters - Dynamic cluster heads

CEASUM

EAGER

Figure 8.8: Allocated tasks over the time. Scenario with 100 clusters, single

task concept, dynamic clusters and dynamic cluster heads.

means they start with high cluster eager values, allocating many tasks, then

their cluster might shrink. Finally, they have to pass some of the tasks to other

cluster heads.

Compared to the organ task concept, the single task concept takes longer until

the self-configuration is finished. All scenarios needed at least 1001 hormone

cycles which is also slightly worse than the worst-case allocation time of the

AHS.

8.1.1.2 Communication load

The main reason for the development and research of the HAHS is the high

communication load of the AHS. The sent hormones in each cycle of the

simulations were counted in order to show that the communication load can

be reduced using the HAHS. Additionally, the counted hormones were used to

compare the different concepts and methods.

Organ task concept For the organ task concept the 32 cluster scenario was

chosen for comparison with the AHS (see figure 8.9).

The figure shows that all four variants of the organ task concept perform

much better than the AHS in terms of communication load. While the AHS

109

Figure 8.9: Hormones over the time. Scenario with 32 clusters, organ task

concept compared with an AHS.

starts with sending 1 million hormones and then slowly commutes around 4000

hormones per cycle, none of the four HAHS variants exceeds 30000 hormones

in any hormone cycle. After the self-configuration is done (around 100 hormone

cycles), the HAHSs commute to a level of around 1189-1253 hormones per

cycle, interrupted by periodic peaks up to 6000-7100 hormones per cycle. The

peaks are produced by the self-optimization techniques implemented, trying

to optimize the allocation every 1000 hormone cycles. The optimization is

performed with the same period in the AHS, too. Since the AHS does not finish

the self-configuration until hormone cycle 1000, it will immediately continue

with the first self-optimization phase.

Figure 8.10 shows the start phase of the four different HAHSs in detail

again. Noticeable in this figure is that the static-static, static-dynamic and the

dynamic-static organ task HAHS have more or less the same communication

load in this phase, while the dynamic-dynamic variant produces more load.

The observation is reasonable since the dynamic-dynamic organ task HAHS

coordinates its clusters and its cluster heads autonomously. The coordination

needs additional communication. Furthermore, the first allocated cluster heads

build big clusters since the cluster head tasks will be allocated sequentially.

Those big clusters produce more load because the task allocation also already

started and operates in parallel to the allocation of the cluster head task.

110

0 10 20 30 40 50 60 70 80

Hormone cycles

10
3

10
4

#
H

o
rm

o
n
e
s

Hormones in each cycle

Organ task concept - 32 clusters - Start phase

Static/Static

Static/Dynamic

Dynamic/Static

Dynamic/Dynamic

Figure 8.10: Hormones over the time during the start phase. Scenario with 32

clusters, organ task concept.

The big clusters will shrink gradually since new cluster heads spawn in their

neighborhood and build their own cluster around them.

When examining the hormone number of the dynamic-dynamic variant with

different cluster numbers (see figure 8.11), it can be seen that the different

numbers of clusters have different impacts on the communication load.

Figure 8.11: Hormones over the time. Scenario with the organ task concept,

dynamic clusters and dynamic cluster heads.

Especially the duration and the communication load in the start phase

differs. For example, the 10 and 100 cluster scenario have a longer high

111

load phase in comparison to the other configurations. The longer phase is

induced by the longer task allocation time needed by both scenarios (see

section 8.1.1.1). However, the 100 clusters configuration does not send out

nearly as much hormones as the 10 clusters scenario and also never reaches

the communication load of the other configurations. So, only regarding the

maximum communication load per cycle, it seems to be better to choose a

configuration with a high number of clusters.

For further examination, it has to be analyzed which kind of hormone has

the highest impact on the overall communication load.

0 200 400 600 800 1000 1200

Hormone cycles

0

10
0

10
1

10
2

10
3

10
4

10
5

#
H

o
rm

o
n
e
s

Hormones by hormone type

Organ task concept - 10 clusters

Static clusters - Static cluster heads

Eager values

 Suppressors

Cluster eager values

Cluster suppressors

 Life Signs

Figure 8.12: Hormones over the time, split by type. Scenario with the organ

task concept, static clusters and static cluster heads and 10 clusters.

Figure 8.12 shows the number of hormones, separated by their type, for the

static-static variant with a 10 cluster scenario. Apparently, the eager values

have the highest impact on the total communication load. They are especially

responsible for the maximum communication load per cycle in the system.

Figure 8.13 shows the same distribution for the 100 clusters scenario. This

time, the eager values are not responsible for the high communication load,

but the organ eager values. These are the eager values sent in the inter-cluster

network for the organs.

Apparently, the cluster size (and hence the organ number) has effects on the

number of eager values and on the number of organ eager values. In order to

find the best organ number/cluster size to reduce the maximum communication

112

Figure 8.13: Hormones over the time, split by type. Scenario with the organ

task concept, static clusters and static cluster heads and 100 clusters.

load per cycle, at first the maximum number of organ eager values and eager

values have to be found. Since both numbers depend from the organ number

and from the hormone cycle, equations for both numbers can be deducted. For

the organ eager values, this equation is simple since it is related to the number

of eager values in the AHS (see equation 3.4). The number can be calculated

by multiplying the number of cluster heads (which corresponds to the number

of clusters (|C|) and hence the number of organs (|O|)) with the number of

not already allocated organ tasks (in every cycle t at least one organ task will

be allocated, therefore: max(0, |O| − t)). This results in equation 8.4.

|OEA(t)| = |C| · max(0, |O| − t) (8.4)

The equation for the number of eager values turns out to be much more

complex. The reason for that is the sequential unlocking of organs among the

clusters and the following parallel allocation of the tasks in the organs. The

equation 8.5 will be explained in the appendix (see section A.2).

ǫ(t, k, l) = γ(t, k, l) + δ(t, k, l) (8.5)

Figure 8.14 shows the results of the equation for the first 200 hormone cycles

and 1-100 organ numbers. The number is higher for small organ numbers and

113

Figure 8.14: Eager value number in dependency of the organ number and the

hormone cycles

falls rapidly when raising this number.

According to equation 8.4, small organ numbers produce less communication

on the inter-cluster network, while more organs produce more organ eager

values. Hence, adjusting the organ number of the system leads to opposing

numbers of organ eager values and eager values. In order to find the right size

to reduce the communication load, the maximum of the organ eager values and

the cluster internal eager values for every organ number has to be determined

and compared. For organ numbers of 1 - 100 this is depicted in figure 8.15.

The least communication load is produced with an organ number of 58. This

is the tradeoff value from where the organ eager value load starts to exceed the

eager value load.

When designing an organ task HAHS, the communication load has to

be considered but also the worst-case allocation time should be minimized

(discussed in section 8.1.1.1).

Figure 8.16 shows the two properties, communication load and worst-case

allocation time, in dependency of the organ numbers for the presented HAHS

scenario. A pareto front can be extracted from the scatter plot in order to

114

0 10 20 30 40 50 60 70 80 90 100

#Organs (|O|)

103

104

105

106

M
a
x
 c

o
m

m
u
n
ic

a
ti
o
n
 l
o
a
d

max(eager value, cluster eager value) in dependeny of the organ number

Figure 8.15: Maximum eager value number in dependency of the organ number

determine optimal organ numbers (see figure 8.17). The pareto front shows

that organ numbers of 36 to 58 are optimal for an organ task HAHS with 1000

PEs and 1000 tasks.

Single task concept For the single task concept, the communication load

compared to the AHS was the major evaluation goal. A 50 cluster scenario

of the single task concept was chosen for that comparison (see figure 8.18).

Furthermore, the focus was set on the two cluster eager value methods. For

this reason, only the static-static variant will be evaluated here.

As expected the two HAHSs begin with fewer hormones per cycle than

the AHS. The EAGER method will produce fewer hormones until the self-

configuration is done, then a little more hormones will be sent out, due to the

additional inter-cluster hormones and the magnitude of eager values hormones

from the method. In contrast, the CEASUM method creates load peaks when

recalculating its cluster eager values. At this moment all PEs send eager values

for all tasks in the system to their cluster head. Those peaks reach the load level

of the AHS at the beginning, but repeat periodically, while the AHS constantly

reduces its load, until it reaches self-configuration. To decide which of those

two systems is more stressful for a network, the communication loads have

to be normalized to fit to the typical property of a network: the bandwidth.

The bandwidth indicates how many data per second can be transmitted by

a network. For this reason, the assumption was made that each hormone

115

0 100 200 300 400 500 600

Allocation time

10
3

10
4

10
5

10
6

M
a
x
 c

o
m

m
u
n
ic

a
ti
o
n
 l
o
a
d

Communication load and allocation time of different organ sizes in a HAHS with 1000 PEs and 1000 tasks

Figure 8.16: Pareto optima for an organ task HAHS with 1000 PEs and 1000

tasks

cycle needs exactly 100ms to finish. The resulting hormone rates (number of

hormones send by the system in each second) are depicted in figure 8.19.

The results show that in terms of the network bandwidth, the HAHS performs

better than the AHS, even with the communication rich CEASUM method.

8.1.1.3 Emergence

As mentioned in section 2.3, emergence is an often used measure when it

comes to evaluate organic computing systems. It can also be used in the

context of the HAHS to demonstrate the different behavior and influences

of the concepts/methods. Assuming each PE (or cluster) is an attribute of

the system, and the number of tasks allocated on a PE (or cluster) are the

states of the attributes. The resulting emergence rate shows if the tasks are

distributed equally or not among the PEs (or clusters). This can be used to

evaluate different cluster eager value methods in the single task concept. The

calculation of the emergence rate is explained in section 2.3.

Figure 8.20 shows the task per PE emergence rate over the time for a single

task, (dynamic clusters, dynamic cluster heads, 100 clusters HAHS) with both

cluster eager value methods. Both methods start with the maximal emergence

the system can reach which is reasonable since both start with no tasks allocated

116

Figure 8.17: Pareto optima for an organ task HAHS with 1000 PEs and 1000

tasks (zoomed to the pareto front (red line))

at all. Therefore, all PEs are in the same state. The CEASUM stays on this

level until the 50th hormone cycle has passed. Then, the recalculation takes

effect for the first time, and the system starts with the allocation. In both

methods the emergence rate falls rapidly as soon as the allocation starts. The

fall is reasonable since the tasks get distributed sequentially to the PEs, such

that some already start allocating, while others not have unlocked any tasks

yet. Furthermore, since these are the results of the dynamic-dynamic run the

clusters will build themselves sequentially, too. This might result in a PE

already having tasks allocated then, changing the cluster and therefore losing

its allocated tasks again. All this results in the PEs having many different

states. Therefore, the overall emergence subsides. The difference between the

methods is as follows: while the emergence of the CEASUM method rises again

after around 550 hormone cycles, the emergence of the EAGER method nearly

stays on the same level. This means that the CEASUM method reaches a

higher level of structure in its system, an almost equal distribution among the

PEs. In turn, the EAGER method has a more unequal distribution, meaning

more PEs have different states.

For a complete evaluation, the emergence of the tasks per cluster is inves-

117

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Hormone cycles

10
3

10
4

10
5

10
6

10
7

#
H

o
rm

o
n
e
s

Hormones in each cycle

Single task concept - 50 clusters

Static clusters - Static cluster heads

CEASUM

EAGER

AHS

Figure 8.18: Hormones over the time. Scenario with 50 clusters, single task

concept, static clusters and static cluster heads compared with the AHS.

tigated (see figure 8.21). It is interesting that this result shows a contrary

emergence behavior for the two methods than before. The CEASUM method

forfeits more emergence and stays on a lower level than the EAGER method.

As already mentioned before (see section 8.1.1.1), the dynamic-dynamic

HAHS tends to create differently sized clusters, meaning that they are not

having all the same number of PEs in their clusters. Therefore, a system trying

to find an equal distribution of tasks among all PEs has to consider this when

distributing the tasks to the different sized clusters. That is why the emergence

of the CEASUM method for the clusters is low while the method reaches the

maximal emergence for the PEs.

Concluding from these results: the CEASUM method depicts the cluster

ability for tasks to the inter-cluster cycle better than the EAGER method. Of

course, this has the price of a higher communication load (see section 8.1.1.2).

8.1.1.4 Cluster regulation

As mentioned in section 4.6.4.1, using the organ task concept in combination

with a dynamic cluster and dynamic cluster head concept can cause the problem

of under-allocation. Four different strategies to cope with this situation were

presented and two of them were evaluated. For this reason, two additional

configurations of an organ task HAHS with dynamic clusters and dynamic

118

0 20 40 60 80 100 120 140 160 180 200

Seconds

10
4

10
5

10
6

10
7

#
H

o
rm

o
n
e
s
/s

e
c
o
n
d

Hormones per second

Single task concept - 50 clusters

Static clusters - Static cluster heads

Hormone loop period: 100ms

CEASUM

EAGER

AHS

Figure 8.19: Hormones per second. Scenario with 50 clusters, single task

concept, static clusters and static cluster heads compared with the AHS.

cluster heads were prepared. The first one consisted of PEs able to allocate

only two tasks at maximum. The second one is even more restrictive, allowing

only one allocated task per PE.

Figure 8.22 shows the allocated tasks in each hormone cycle of the first

prepared configuration (the one in which two tasks per PE are allowed) with

no cluster regulation, with PID controllers trying to regulate the cluster ac-

celerators, and with the stress hormone method. With no cluster regulation,

the problem becomes obvious: eight tasks will not be allocated by the system,

even though the resources are available.

In both regulation strategies the cluster heads periodically check how many

of their assigned tasks are allocated in their cluster. In case they experience a

discrepancy, they act.

In the PID controller version, the cluster head amplifies its cluster accelerator

by means of a PID controller. It takes a few cycles until a change in the number

of allocated tasks is visible. Of course, this depends on the chosen P-,I- and

D-coefficients. Around hormone cycle 1000, the number of allocated tasks

climbs up for the first time. This means that a cluster which was too small,

raised its cluster accelerator in order to to gain more PEs for itself. In the next

cycle this happens again: the cluster which amplified its cluster eager value

gained PEs from one or several clusters in the neighborhood. However, those

119

0 500 1000 1500 2000

Hormone cycles

8.8

9

9.2

9.4

9.6

9.8

10

E
m

e
rg

e
n
c
e

Tasks per PE emergence

Single task concept - 100 clusters

Dynamic clusters - dynamic cluster heads

EAGER

CEASUM

Figure 8.20: Emergence of the task allocation among the PEs in a 100 clusters,

single task, dynamic cluster, dynamic cluster head HAHS.

neighbored clusters now lack enough PEs in order to fully allocate their organ.

That is why, a short drop is visible in the graph. After several further cycles

each cluster finally reached a size which is sufficient to fully allocate the organ.

In the stress hormone version, the cluster head which discovered a discrepancy

immediately broadcasts a stress hormone. Those PEs which have not allocated

any task yet, will immediately amplify the received cluster accelerator of

the stress hormone sender. Therefore, they assign themselves to the next

cluster head which sends a stress hormone. This method is fast, but leads to

unconnected, fragmented clusters.

In the second configuration each PE can only allocate one PE a maximum.

This aggravates the problem.

In this configuration, the unregulated version reaches only an allocated task

number of around 890, this is worse than before. Still, the stress hormone

version manages to fix the under-allocation in the first period. The impact of

the PID controller version is completely different. Apparently, the number

of allocated tasks oscillates around 890. It seems that the clusters with too

less PEs raise their cluster accelerator and take PEs from neighboring clusters

which needed those PEs. This is similar to before, but this time no stable

state between all clusters is found. The cluster heads constantly raise their

cluster accelerator as a reaction to the raise of neighboring clusters. Therefore,

120

0 500 1000 1500 2000

Hormone cycles

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

E
m

e
rg

e
n
c
e

Tasks per Cluster emergence

Single task concept - 100 clusters

Dynamic clusters - Dynamic cluster heads

EAGER

CEASUM

Figure 8.21: Emergence of the task allocation among the Clusters in a 100

clusters, single task, dynamic cluster, dynamic cluster head HAHS.

this strategy is not adequate in this situation, at least not with the evaluated

coefficients for the PID controller.

8.1.2 Self-healing

Another important self-x property in an organic computing system is self-healing.

The self-healing enables the system to regain the functionality in case some of

its parts fail. The self-healing in the AHS compensates PE failures by migrating

the tasks from the failed PEs to PEs still running. The self-healing in the

HAHS depends heavily on the chosen concepts and methods. Furthermore,

the HAHS has to differ between failures of cluster heads and failures of cluster

children. Especially the second case is complicated if the tasks of the failed PE

cannot be compensated cluster-internally. The failure then has to be depicted

to the inter-cluster cycle. In order to evaluate this scenario, a special simulation

configuration of the static-static HAHS with 10 clusters was prepared. In this

configuration, 76 PEs of the first cluster fail at hormone cycle 2000. The

remaining PEs are not able to compensate this loss by allocating all the lost

tasks. Therefore, the lost tasks have to migrate to other clusters.

The organ task HAHS does not provide a mechanism for depiction of the intra-

cluster cycles to the inter-cluster cycles. Therefore, the number of allocated

tasks will sink at hormone cycle 2000 (see blue plot in figure 8.24), then rise

121

0 500 1000 1500 2000 2500

Hormone cycles

950

960

970

980

990

1000

1010

1020

1030

1040

1050

A
llo

c
a
te

d
 t
a
s
k
s

Task Allocation

Organ task concept - 100 clusters

Dynamic clusters - Dynamic cluster heads

2 Tasks per PE max

no cluster regulation

PID Controller

Stress Hormone

Figure 8.22: Allocated tasks of an organ task, dynamic-dynamic HAHS in

which each PE can allocate up to two tasks

again because some tasks will be compensated cluster-internally, but never

reach the full functionality (1000 allocated tasks) anymore. In contrast, the

same configuration as single task concept with the CEASUM method (yellow

plot in figure 8.24) recovers the same number of tasks cluster-internally and

then migrates the remaining lost tasks to other clusters as soon as those tasks

will be offered in the inter-cluster cycle.

8.2 RAHS

The RAHS is a further development of the HAHS with more than one possible

hierarchical level. The evaluation of the RAHS also concentrates on the

task allocation and the communication load. The evaluation of two different

approaches of the RAHS is presented in this section. The evaluations of the

first concept (see section 8.2.1) were already published in [39].

8.2.1 Max eager value approach

The first approach examined is the max eager value approach (see section 5.3.2).

In this approach initial eager values in the upper levels will be generated by

the maximum eager values of the PEs in the underlying clusters. Therefore, it

takes some additional hormone cycles at the beginning until the first allocation

122

0 500 1000 1500 2000 2500 3000 3500 4000

Hormone cycles

0

100

200

300

400

500

600

700

800

900

1000
A

llo
c
a
te

d
 t
a
s
k
s

Task Allocation

Organ task concept - 100 clusters

Dynamic clusters - Dynamic cluster heads

1 Task per PE max

no cluster regulation

PID Controller

Stress Hormone

Figure 8.23: Allocated tasks of an organ task, dynamic-dynamic HAHS in

which each PE can allocate up to one task

in the uppermost level starts. For the evaluation, scenarios with 1000 PEs and

1000 tasks were prepared. The scenarios differ in the number of levels. All

scenarios have a binary-tree topology.

8.2.1.1 Timing behavior

At first, the timing behavior of the RAHS in terms of the task allocation is

evaluated.

Figure 8.25 shows the task allocations of eight different RAHSs. The

configurations differ in their number of levels (2 to 9 levels), while everything

else is the same. As expected, the time for the self-configuration rises with the

number of levels. This is not surprising since this approach requires that all

tasks have to be passed to the last level before they are allocated. Therefore, a

raise in the number of levels leads to a raise of the self-configuration time.

8.2.1.2 Communication load

For evaluating the communication load, the topology of the RAHS has to

be considered. Since the RAHS will be likely implemented on a hierarchical

topology, measuring the communication of the complete system would not

make sense. Therefore, the communication load of each PE in the RAHS is

measured at each hormone cycle. For comparison, the highest communication

123

0 500 1000 1500 2000 2500 3000 3500

Hormone cycles

900

950

1000

1050

A
llo

c
a
te

d
 t
a
s
k
s

Task Allocation

10 clusters - Self Healing

Static clusters - Static cluster heads

OrganTask

SingleTask

Figure 8.24: Allocated tasks of a 10 clusters, static cluster and static cluster

head HAHS. 76 PEs of cluster 1 fail at hormone cycle 2000.

load per PE in each hormone cycle is chosen.

Figure 8.26 shows the results from the different configurations. The results

are rather surprising. One would expect that with a raise in the number of

levels the maximum communication load falls, because even less PEs apply

for the same task at the same time. Actually, this effect is counteractivated

by the fact that each non-leaf cluster consists of exactly two PEs in a binary

tree topology and each PE can decide on exactly one task at each hormone

cycle. The consequence is that in the underlying clusters at most one task

is activated for application at one hormone cycle. This means a reduction

of the leaf cluster size does not reduce the communication load for the PE

with the highest communication load. On the contrary, the additional vertical

communication and the higher chances for passes which have to be revoked

lead to a higher communication load.

8.2.2 Least eager value approach

The second approach removes the restrictions of the max eager value approach.

On the one hand, the least eager value approach supports task allocations

on PEs not belonging to the lowest level. On the other hand, a self-healing

mechanism exists in this approach. For the evaluation a scenario of a non-binary

tree with 3 levels was created and simulated.

124

Figure 8.25: Allocated tasks in the RAHS with different level configurations

8.2.2.1 Self-configuration

At first the self-configuration of this approach is investigated. The timing

behavior and the communication load will be compared to the max eager value

RAHS and the AHS.

Figure 8.27 shows the allocated tasks of all three systems on a logarithmic

time scale. It can be observed that the least eager value RAHS is the system

with the longest allocation time, while the other two need similar time to finish

the self-configuration. Due to the fact that the least eager value approach is

also able to allocate tasks in upper levels, its task allocation is faster at the

beginning. The long period of no allocation in the approach is caused by the

withdrawing of tasks from lower levels to upper levels (see section 5.3.3).

Additional to the different allocation times, the three systems also differ in

their communication load (see figure 8.28). The evaluation shows that both

approaches for the RAHS have a lower maximum communication load than

the AHS. The second observation from the figure is that the max eager value

approach has a nearly stable communication load while the least eager value

approach produces more communication in the beginning. Eventually, its

125

Figure 8.26: Communication load in the RAHS with different level configura-

tions

communication load falls under the communication load of the max eager value

approach and nearly reaches the amount of communication from the AHS. The

reason for that is the ability of the least eager value approach to allocate tasks

in upper levels, which reduces vertical and horizontal hormones in lower levels.

8.2.2.2 Self-healing

The least eager value approach enhances the RAHS with the self-healing prop-

erty. For evaluating the property three different configurations for the system

were prepared.

In figure 8.29 the number of tasks over time for the three configurations

of this scenario are visible. In the first scenario, at hormone cycle 3500, an

arbitrary PE of the topmost level was shut down and recovered at hormone

cycle 7000. In the second scenario an arbitrary PE of the middle level was

chosen to fail. Finally, in the third scenario, one of the lowest level PEs was

chosen. The effect on the task distribution can be seen marked by the two

red circles. The smaller circle shows the effect after the shutdown: a small

fall in the number of tasks is observable, but the system quickly regains full

126

10
0

10
1

10
2

10
3

Hormone cycles

0

50

100

150

200

250

#
A

llo
c
a
te

d
 t
a
s
k
s

Comparison of the allocation time

3 Level RAHS LEAST

3 LEVEL RAHS MAX EAGER

AHS

Figure 8.27: Allocation time of the least eager value RAHS in comparison to

the Max eager value RAHS and the AHS

functionality. In contrast to that, the effect after recovering the failed PE is

more severe. This is observable in the large circle, which shows a huge fall in

the number of allocated tasks and a long time until all tasks were allocated

again. This is explainable through the recovering of the PE. Afterward, it will

win a lot of tasks in the first level and will pass many of them down to its

underlying cluster. There, the tasks might get allocated or passed again.

The difference between the three configurations is the deflection in the

allocated tasks, which is much lower when the failing PE is in a lower level.

A failing PE in the lowest level has hardly any effect on the allocated tasks.

This result is reasonable since the failure of a PE in the higher levels entails

the migration of tasks from a whole sub-tree, while in the lowest level only the

tasks from the PE in question have to be migrated.

127

0 500 1000 1500 2000 2500 3000 3500

Hormone cycles

10
0

10
1

10
2

10
3

10
4

10
5

#
H

o
rm

o
n
e
s

Hormones of the PE with the highest communication load in each cycle

3 Level RAHS LEAST

3 Level RAHS MAX EAGER

AHS

Figure 8.28: Communication load of the least eager value RAHS in comparison

to the Max eager value RAHS and the AHS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Hormone cycles

0

50

100

150

200

A
llo

c
a
te

d
 t
a
s
k
s

Allocated Tasks in a non-binary unbalanced tree RAHS (3 Level)

Level 1 failure

Level 2 failure

Level 3 failure

Figure 8.29: Self-healing of the RAHS demonstrated by the number of allocated

tasks. PE failure at hormone cycle 3500, recover at 7000.

128

Chapter 9

Comparison and applications

This chapter presents other systems and concepts for a distributed task allo-

cation, as well as applications for those. Additionally, some of them will be

compared to the HAHS respectively RAHS.

9.1 Off-line methods

The problem of mapping tasks to a multicore system is a well known problem

in the scientific community. Often, the task mapping is solved off-line at

design-time of the system. The resulting task mapping is static and will not

change during run-time, unless several configurations were prepared.

In [33] and [19] the problem of mapping tasks of applications to multiple

processing nodes is solved off-line. The tasks of an application are structured as

a directed graph. This means that some tasks have preceding tasks from which

they depend. Additionally, tasks can be recurring. In interaction with real-time

requirements for the applications/tasks, finding an optimal mapping becomes

a NP-complete problem[28]. The authors solved the mapping by formulating it

as a Satisfiability Modulo Theory (SMT) problem. Afterward, they used Z3, a

SMT solver, to find the mapping. Those two methods differ to the presented

HAHS and RAHS by not considering hierarchical topologies and heterogeneous

processing nodes.

[4] deals with the task mapping problem for heterogeneous processing nodes.

Here, different kinds of processing nodes may have different execution times

for the same task. The author states that finding an optimal mapping is

129

130

NP-hard and proved this by transforming the 3-Partition problem to the

presented problem. Moreover, the author formulated the problem to an Integer

Linear Program (ILP) and used an approximation algorithm for calculating

the solution.

The authors from [36] and [66] used genetic respectively evolutionary algo-

rithms in order to find an optimal task mapping for heterogeneous processing

nodes. While [36] tries to minimize the overall delay of the system, [66] focuses

on the reduction of resource consumption by the system.

Finally, heuristics are used to solve the task mapping problem, too. [8]

presents eleven different heuristics and compares them to each other. The

authors show that genetic algorithms perform best in comparison to all other

heuristics.

In contrast to all those off-line methods, the AHS, HAHS and RAHS are

on-line, dynamic methods which solve the task-mapping at run-time. The

advantage of dynamic methods is their flexibility towards unforeseen system

states. If the system enters a state which was not covered at design-time,

an off-line method cannot react with a suitable task mapping. An on-line

method in the same situation will react towards the changed state with a

new task mapping. The advantage of off-line methods is their possibility to

find the optimal task mapping for the given states. This is due to the fact

that off-line methods have enough time to calculate the optimal solution at

design-time while on-line methods need to deliver a working solution fast at

run-time. Therefore, a comparison between the presented HAHS/RAHS and

off-line methods in terms of allocation time and communication load is not

reasonable.

9.2 On-line methods

In contrast to the off-line methods, dynamic on-line methods have only limited

time to generate the task mapping. Therefore, those task mappings tend to be

the sub-optimal mappings for the given state of the system. In the following

subsections, several different on-line methods are presented, from which all of

them focus on different aspects of the problem or have a different approach in

solving the problem.

131

9.2.1 Multi-Agent Systems

When it comes to dynamic distributed task-allocation, researchers often use

the same principle of designing the allocating entities (e.g. PEs or robots) as

independent and autonomous agents. This results in a so-called Multi-Agent

System (MAS). A MAS is based on multiple agents which act autonomously

based on rules with their environment [64]. MASs can be used to solve many

problems, in which a centralized solution is not applicable. In this chapter,

only MASs solving the problem of an autonomous task allocation onto entities

will be regarded. MASs solving this problem are involved in many applications,

like the coordination of tasks between independent robots or the distribution

of resources to workers. In the following sections, some MAS and their core

functionality will be presented.

9.2.1.1 The contract net protocol

A widely used method to implement the task-allocation is using an auction-

based negotiation between the agents, called the Contract Net Protocol (CNP)

[57]. The CNP works auction-based, meaning that two kinds of agents exist in

the system, the managers announcing tasks/jobs and the contractors bidding

on the announced tasks. The contractor with the best bid on a task/job receives

it for execution and will send the result to the manager. A contractor receiving

a task/job can also become a manager and announce the task again. The

method to determine managers, contractors and which manager announces

which task, is heavily dependent from the exact implementation of the CNP.

In [7] the authors implemented an adapted CNP in their protocol for multi-

robot cooperation. This protocol (called the M+ protocol) is composed of

three components responsible for different system properties. In one of those,

the CNP is used to distribute the incoming tasks to the robots in the system

(the tasks are generated by a higher level, called the mission layer, which is

centralized). The other two components care about the fail-safety of the agent

and the task execution and synchronization of the task states. In contrast to

the two presented layered AHSs in this thesis, this system does not implement

a hierarchy. In case of many tasks (m tasks) spawning at the same time, all n

132

agents in the system bid on those tasks1. This results in n · m messages for the

self-configuration, which is equivalent to the message load of the original AHS.

A difference to the AHS is that all tasks are allocated simultaneously and no

self-optimization mechanism is implemented. This may result in a sub-optimal

task-allocation in which powerful agents overbid all other agents, but are not

able to execute all tasks they won.

9.2.1.2 Consensus-based Algorithms

Similar to the CNP algorithms, the consensus-based algorithms use the market

principle of bidding for tasks. In [21] such a consensus-based algorithm is used

to distribute tasks among a group of healthcare robots. The specialty about

the presented algorithm is that it starts the execution of tasks before all tasks

are allocated. This is why it is called consensus-based parallel auction and

execution. As an agent/robot advances with the progression of its current task,

it places higher bids for the not allocated tasks. In this way a certain load

balancing is implemented implicitly. Furthermore, in comparison to the CNPs,

the consensus-based algorithms do not differ between two different roles. Every

agent/robot has a list of still unallocated tasks on which it bids. This concept

resembles the AHS, even though neither a self-optimization nor a self-healing

are implemented. In comparison to the HAHS and the RAHS, this concept does

not work with hierarchy. Additionally, it is worse in terms of communication

load which is as high as the communication load of the AHS.

9.2.1.3 Hierarchical topology

In [5] the authors also used a hierarchical approach for MASs. Likewise to the

cluster heads concept of the HAHS and the upper representatives concept in the

RAHS, the presented architecture sorts the agents in two groups. It consists of

specialists and supervisors. While the specialists are ordered into groups, the

supervisors are responsible for the coordination among the specialists. For the

coordination among the supervisors, a special global supervisor is necessary.

This is equal to a central control unit and therefore not completely decentralized

like the HAHS or RAHS.

1One agent does not bid on a task since it is the manager of the task. Instead it sends an

announce message to all agents

133

The authors of [1] also use a hierarchical approach, called ADAM, in order

to implement a dynamic task mapping. The tiles of a network on chip (NoC)

will be ordered into virtual clusters. Similar to the dynamic clusters HAHS, the

virtual clusters are not predefined and not static. Each cluster receives a special

lightweight task, called the cluster agent (CA). The CAs are responsible for the

task mapping inside their cluster. Additionally, there exists a global agent (GA)

for the entire NoC. This GA, which is also a lightweight task, is responsible

to map applications and their tasks to the virtual clusters. In case there

exists no suitable virtual cluster for an application it creates one or reorganizes

the existing ones. Decisions by the global agent are based on the energy

consumption and requirement of the PE respectively application. The decisions

in the cluster depend on a cost function based on spatial, communication and

resource requirements. This proposed approach is very similar to the HAHS.

The difference is the implementation of managers. While the HAHS implements

two control loop levels in which every participant is equal, this approach adds

one special manager agent to each level.

9.2.1.4 Coalitions

Similar to the clusters in the HAHS and RAHS, [54] and [18] use coalitions of

agents to form groups which work together on a set of tasks/jobs. Determining

these coalitions autonomously is a key feature of both researches. In [54]

the authors use algorithms for the Set Partitioning Problem (SPP) and Set

Covering Problem (SCP) in order to form optimal coalitions of agents. Similar

to the HAHS, a value for each coalition and each task is calculated. This

coalitional value is the joint utility of all members of the coalition. Likewise

to the recalculation of cluster eager values method (see section 4.7.1), those

coalitional values will be recalculated, too. This becomes necessary since the

utility values vary over the time and over the progressing allocation. Despite

having coalitions of agents, this approach is not really a hierarchical architecture.

All agents operate collectively on the same level to find the coalitions and to

allocate the tasks.

In contrast, the authors of [18] used a coalition principle with a hierarchical

aspect. In this work several robots with different spatial distances and different

resources should form coalitions for the task allocation. Robots possessing key

134

resources will be selected as so-called leader of a coalition, while the others will

be named followers. This reminds of the dynamic clusters and static cluster

head concept of the HAHS. A big difference between the HAHS and the concept

in [18] is the decentralized aspect. While the HAHS finds the clusters in an

autonomous and decentralized manner, the presented concept needs a central

server organizing the coalition formation.

9.2.1.5 Probabilistic method

The authors of [22] used also a biological example to solve the task allocation

problem among a group of robots. The model used, which is called response

threshold model, defines for every task in every robot a certain threshold.

The threshold is used to calculate a probability of a response to a stimulus.

The stimulus of a task can be a quantitative value of the task. This model

is inspired by the reaction of bees to an experiment consisting of two food

sources with different sugar concentrations. The authors then use a Linear

Reward-Inaction algorithm [53] to let the robots learn their thresholds. This

is a stochastic reinforcement algorithm combined in a learning automaton.

The obvious difference to the presented HAHS and RAHS is the usage of

probabilities, which impedes the estimations of worst-case allocation time,

worst-case communication load and the allocation at all. Furthermore, no

hierarchical separation was considered in order to lower the communication

produced.

9.2.1.6 Tree-structure topology

The RAHS distributes the tasks of the system over a tree of connected clusters

consisting of PEs. The idea of utilizing a tree topology is also used in [17],

which adapted the idea from [35]. The authors use so-called mobile agents in

a grid computing environment [6]. Those agents are able to clone themselves

to other workstations in the grid and work on sub-tasks on the clone. The

clone is able to clone itself again to another workstation in order to divide

the task subset in even smaller subsets. The distribution of the sub-tasks is

dependent from the bandwidth between the nodes. In contrast to [35], the tree

topology is not static, but dynamic and can change during the execution of

the tasks. A node in the second hierarchical level can be pulled up to the first

135

level due to its good performance in terms of its bandwidth. This goes beyond

the current status of the RAHS and mixes it with the idea of dynamic clusters

of the HAHS.

9.2.2 Heuristics

Not only multi-agent systems are used as an on-line solution. In [23] the

authors used an integer linear program to find the initial task mapping for

a network-on-chip (NoC). Additionally to this the static, off-line part, they

implemented several heuristics in order to react to failures in the NoC. One of

those on-line self-healing mechanisms relies on the center of gravity method,

which calculates the new coordinates on the NoC for a task depending on its

communication with other tasks. The other heuristics are based on [31], which

proposes three scheduling heuristics for nonidentical multiprocessors (NMS).

The evaluation of all heuristics showed that a combination of one of the NMS

heuristics and the center of gravity performed best. While this work provides

an on-line method only for the self-healing the HAHS and RAHS use on-line

techniques for the self-configuration, self-optimization and self-healing.

In [16] several heuristics for dynamic task mapping are compared. The focus

of the evaluated heuristics lies on the mitigation of congestion in a NoC. All

heuristics were implemented by a centralized manager processor. The authors

showed that the Path Load heuristic performed best. The Path Load heuristic

tries to either reduce the maximum channel occupation or the overall average

channel occupation in the system. Additionally, Path Load considers only the

communication path of the task to map, which means that it includes the

position of communicating tasks in its decision.

9.2.3 Centralized solutions

An obvious solution for designing an on-line task mapping algorithm is to

establish an omniscient manager. This manager will be in charge for mapping

the tasks to the PEs at any time. Examples for this are given in [32] and

[55]. The authors implement a special manager processor which decides the

task mapping based on heuristic consisting of the manhattan distance and the

nearest neighbor property.

136

In [63] the authors also use a global manager in a NoC in order to minimize

the overall cost of all tasks. The authors define the cost of a task mapped to a

PE by means of the sum of the worst-case start time, a distance metric and a

neighborhood metric.

9.2.4 Decentralized solutions

An interesting solution to a related problem is presented in [62]. Here, the

authors developed a self-embedding, decentralized algorithm for mapping the

tasks of an application to a set of PEs. The application consists of a directed

acyclic graph of tasks. The root task will be placed by a seed point selection,

which can be for example the center region of a cluster build by k-means.

Afterward, the mapped task will start mapping its successor tasks to the most

suitable neighbor in a 1-hop region. Each mapped task will also continue doing

this with its successors, which ends in a decentralized and parallel task mapping

of the application.

9.3 Application examples

An important question for the research in the field of distributed, autonomous

and hierarchical task allocation systems is: what are the applications for those?

Some application examples were already presented above, like the multi-robot

system for healthcare facilities [21] or the bandwidth-centric tree topology for

grid computing [17] (which in turn can be used for many large applications

needing a high number of computational resources, like the SETI@Home project

[2]).

Another application example is a network of distributed sensors, which can

either be all in the same level or ordered to a hierarchical topology. The latter

is used in [34], which considers a network built from several Meteorological

Command and Control (MCC) systems distributed spatially. Also, many

NetRad radar systems were distributed in the network. Those are short-range,

adaptive radars for weather detection in low elevations. These radars are

clustered based on the location. In each cluster exactly one MCC will be

present. The MCC correlates with the cluster head of the HAHS. The MCCs

137

will negotiate over the tasks in order to scan the space completely without

redundant scanning.

Also interesting is the work in [24] in which a hierarchical MAS is imple-

mented for on-chip systems. The hierarchical MAS is responsible for the thermal

management of the chip. Therefore, the MAS will reactively and proactively

migrate tasks to different areas of the chip in order to avoid chip failures due

to overheating. Similar to the research of AHS, HAHS and RAHS this work

also considers the real-time aspects of its proposed model, which most of the

other MAS works presented in this chapter did not. The difference to the AHS

and its advanced developments is the focus on only one chip. It is, therefore,

application-specific. In contrast, the systems presented in this thesis can be

adapted to many different application environments.

Another conceivable application, besides the already mentioned, is a network

of wireless connected clusters, which also can be spatial mobile. Experiments

with the HAHS middleware and a network of three clusters consisting of three

Raspberry Pis 3 were conducted in [41]. Besides some minor problems with

the lossy wireless communication, the experiment shows that the system works

in this application scenario.

138

Chapter 10

Conclusion

In this thesis, two main concepts for distributed and autonomous task allocation

in large scaled, distributed many-core architectures are presented. Two ongoing

developments in the field of computer science are presented in chapter 1: The

growing integration density of integrated circuits and the Internet of Things.

Both developments lead to many connected processing cores that are working

together in one network. Chapter 3 presents the AHS, a general solution for

autonomous task allocation that is based on bio-inspired control loops. The

AHS was developed in the context of the organic computing research, which

defines the self-x properties. The properties are briefly described in chapter 2.

It is difficult to distribute tasks autonomously and decentralized in a large

scaled network. For smaller scaled architectures the AHS performs well in terms

of the self-x properties. However, for larger scales the produced communication

congests the network for payload traffic.

For this reason this thesis presents two solutions, namely the HAHS and

the RAHS. Both rely on a hierarchy to cope with the communication problem.

However, both are different in their application use case.

The HAHS implements a two-level hierarchy and organizes the PEs of the

system in separated clusters, each containing one special PE, the cluster head.

The system’s entire task set is split into several subsets, either by the system

designer (organ task concept) or during run-time by the cluster heads themselves

(single task concept). The amount of sent hormones can be lowered drastically

by only letting a fraction of the available PEs decide on the entire task set.

Especially, during the system start the communication load is lower than in

139

140

the AHS. The PEs in the separated clusters only negotiate on the task subset

distributed to their cluster. Besides the two already mentioned task concept

variants, several other properties of the HAHS can be chosen: The HAHS can be

instructed to choose autonomously the cluster heads by itself (dynamic cluster

heads) and even the cluster membership of the PEs in the system (dynamic

clusters). Furthermore, in case the single task concept is chosen, the cluster

heads need a method to determine how suitable the cluster is for a certain

task. All these methods have in common that they do not touch the system’s

autonomy and the decentralization. The task allocation results as well as the

entire behavior of the system vary considerably under the different concepts and

methods. A more flexible HAHS, meaning that the system has more decision

space, produces more communication and the task allocation takes longer to

complete. In contrast, a more static system does not adapt well to changes

in the environment, for example when encountering PE failures. Chapter 4

explains the HAHS in detail and its properties are shown in chapter 6.

Contrarily to the HAHS, the RAHS is not limited to two hierarchical level.

It is designed to work with n (n ∈ N>0) levels of PEs clusters. It is assumed

that the underlying topology is static and known to the system. Therefore, the

focus in its development laid on methods of determining the suitability of the

underlying PEs for tasks. These methods should favor a good and balanced

task allocation. Two potential methods for solving this problem are presented

in chapter 5 and the overall analysis of the RAHS’ properties is given in chapter

6.

Chapter 7 presents prototype implementations of both systems. Both have

their own simulator for evaluation and demonstration purposes. The HAHS

is also implemented as a middleware with the already existing cluster eager

value method. The simulator and the middleware of the HAHS are further

developments of the ones developed for the AHS, while a completely new

simulator has been developed for the RAHS.

The simulators were used to evaluate the two systems with their concepts

and methods. The evaluation presented in chapter 8 consists of measurements

of the allocation time as well as the produced communication load, especially

the maximum load. Those two aspects were compared to the original AHS as

well as other concepts and methods of the system.

141

In chapter 9, related work from other researchers was presented and discussed.

This chapter focuses on different MASs having many similarities to the AHS,

HAHS and RAHS.

This thesis has shown that the two presented systems solve the problem of

an autonomous and decentralized task allocation in a large scaled multi-core

architecture. Depending on the chosen concept and method, the systems take

more or less time to complete the self-configuration. The system’s maximum

communication load will vary with the chosen concept, but will be drastically

lower than the maximum communication load produced by the AHS. Therefore,

the goal of finding an AHS with a lower communication load is achieved. Besides

evaluating both systems as substitutes for the AHS in large scaled architectures,

some other findings are of interest.

When it comes to strict bandwidth limitations, an organ task HAHS should

be preferred over a single task HAHS. Due to the allocation speedup in the

inter-cluster cycle of an organ task concept it also should be preferred when the

time required for allocation is critical. In case the PEs’ underlying hardware

is unreliable or tends to change its suitability quickly, a single task concept

is more reasonable. The single task HAHS handles optimizations and failures

with a finer granularity and can therefore react to those changes with less

overhead. It is able to optimize and heal situations in which the organ task

concept fails. Another evaluation result is the connection between the number

of organs of the organ task concept and the system’s performance. It shows

how to determine a Pareto optimal number of organs in order to keep the

allocation time and the maximum communication load as low as possible.

For the RAHS, it could be shown that it performs better in terms of maximum

communication load per PE than the AHS. An interesting effect observed is

the rise of the maximum communication load with the number of levels in the

system. This observation was rather unexpected, but can be explained by the

basic operational principle of each PE in the system which was taken from the

AHS. An expected insight was the fact that a failure in a higher level causes

more migrations and therefore a longer downtime than a failure in a lower level.

Taking both findings into consideration, it seems more reasonable to keep the

number of levels as low as possible. Still, in some application scenarios, like the

initially motivated connected smart city, a hierarchical topology is given. This

142

topology consists of many IoT devices connected by routers. Here, the RAHS

can match the scenario’s network topology and thus avoid sending unnecessary

messages through the routers.

As described above, the most suitable approach depends strongly on the

application scenario. Many aspects of the scenario have to be considered,

meaning the research on the topic of hierarchical AHSs is not complete yet.

Different application scenarios may need different approaches to reach their full

potential, but also the already existing approaches may be improved. Thus, the

question arises which areas are promising candidates for future research. An

evaluation of a single task HAHS in which PEs are allowed to make more than

one decision per cycle would certainly be interesting. Such an approach would

probably lead to an allocation speedup but might also lead to a suboptimal

allocation among the clusters which needs to be optimized later. A further

idea is a combination of the organ task concept and the single task concept.

This idea involves the designer grouping the tasks into organs and the HAHS

to distribute them to the clusters. When the self-configuration is completed,

the groups will be dissolved and the system becomes a fully single task concept

HAHS. This approach combines the fast and communication-less allocation

of the organ task concept with the single tasks concept’s flexibility regarding

optimizations and failures.

For the RAHS, further research on additional methods to generate reliable

suitability values is desirable. Additionally, a flexible dynamic method to

determine the allocation level of a task in dependency of the suitability and

load of the underlying cluster could be researched. Furthermore, a development

into a self-building system could be considered, this means the system builds

and even reconfigures its tree topology at run-time, based on network topology

or functional resources of the PEs or any other criteria. Such a self-building

approach probably involves additional hormone communication and would have

an impact on allocation time and maximum communication load, similar to

the dynamic-dynamic HAHS.

Appendix A

A.1 Allocation by a heuristic value in the great-

est hormone method

This section briefly explains and visualizes the process of allocating a task in

the HAHS, in case heuristic values are used (see section 4.7.4).

When a cluster head wins a task for which it only has a heuristic value, it

starts the allocation by unlocking the task in its cluster (see figure A.1). As

soon as all cluster children sent out their eager values for the unlocked task,

the cluster head replaces the used heuristic cluster eager value by the greatest

received eager value (see figure A.2).

This allows a reduced communication load for generating the cluster eager

values and simultaneously maintains the dynamic reaction to suitability changes

in the cluster children.

The disadvantage of this method is the potential mispredictions in the cluster

eager values, e.g. the heuristic value for a task is higher than the real suitability

in the cluster, thus the task will be allocated in a non-optimal cluster. This can

be corrected by self-optimization phases (see figure A.3)) but depending on the

configuration it is also possible that it will not be corrected during run-time.

143

144

T1: 5

T2: 5

T3: 5

T4: 7

T5: 0

T1: 4

T2: 3

T3: 2

T4: 0

T5: 6

T1: 5

T2: 10

T3: 4

T4: 0

T5: 7

T1: 15

T2: 5

T3: 5

T4: 10

T5: 0

T1: 2

T2: 6

T3: 5

T4: 4

T5: 9

T1: 5

T2: 3

T3: 7

T4: 2

T5: 0

T1: 1

T2: 1

T3: 9

T4: 1

T5: 1

T1: 5

T2: 5

T3: 5

T4: 0

T5: 0

inter-cluster

intra-cluster intra-cluster

1

2

3

4

5

12

3 4

5

Figure A.1: The task distribution after the self-configuration phase

145

T1: 5

T2: 5

T3: 5

T4: 7

T5: 0

T1: 4

T2: 3

T3: 2

T4: 0

T5: 6

T1: 5

T2: 10

T3: 4

T4: 0

T5: 7

T1: 15

T2: 5

T3: 5

T4: 10

T5: 0

C_T1: 15

C_T2: 8

C_T3: 5

C_T4: 10

C_T5: 6

C_T1: 5

C_T2: h2 = 8

C_T3: 9

C_T4: 4

C_T5: 9

inter-cluster

intra-cluster

T1: 2

T2: 6

T3: 5

T4: 4

T5: 9

T1: 5

T2: 3

T3: 7

T4: 2

T5: 0

T1: 1

T2: 1

T3: 9

T4: 1

T5: 1

T1: 5

T2: 5

T3: 5

T4: 0

T5: 0

intra-cluster

12

3 4

5

Figure A.2: The updated cluster eager values after the self-configuration phase

146

inter-cluster

T1: 5

T2: 5

T3: 5

T4: 7

T5: 0

T1: 4

T2: 3

T3: 2

T4: 0

T5: 6

T1: 5

T2: 10

T3: 4

T4: 0

T5: 7

T1: 15

T2: 5

T3: 5

T4: 10

T5: 0

intra-cluster

T1: 2

T2: 6

T3: 5

T4: 4

T5: 9

T1: 5

T2: 3

T3: 7

T4: 2

T5: 0

T1: 1

T2: 1

T3: 9

T4: 1

T5: 1

T1: 5

T2: 5

T3: 5

T4: 0

T5: 0

intra-cluster

1

2

3

4

5

12

3

4

5

Figure A.3: The resulting task distribution after the first self-optimization

phase

147

A.2 Equation to calculate the number of eager

values in the organ task HAHS

In order to estimate the communication load of the organ task HAHS the max-

imum eager value emission has to be found. This turns out to be complicated,

due to the sequential allocation of organs in the inter-cluster cycle and the

following parallel allocation of tasks across the clusters. For this reason, an

equation has to be found which estimates the worst-case eager value number in

dependency of the hormone cycle (t). In order to find this equation, it has to

be estimated how many tasks are unlocked already at the timestamp t. This is

achieved by subtracting the timestamp t from the organ number k. The result

is the number of not unlocked organs1. This number has to be multiplied by

the organ size (|T |
k

) and then subtracted from the total number of tasks in the

system (1000 in this example). The result reflects the number of tasks which

are already unlocked. From this number, the number of already allocated tasks

has to be subtracted. The already allocated tasks are generally calculated by

summing up 1 to t, but only as long as t does not exceed the organ number

(k) or the tasks per organ (|T |
k

). Those two points in time correspond to the

state that all organs are allocated respectively the first organ allocated all its

tasks. In case one of those points in time are exceeded, the growth of allocated

tasks turns from exponential to linear. The corresponding sum (1 to t − k or

1 to t − 1000
k

) has to be subtracted from the sum 1 to t. Function β(t, k) (see

equation A.1) calculates this number of allocated tasks for a given timestamp t

and organ number k.

1Of course, this holds only for t ≤ k otherwise the result is 0

148

α(t, k) =

α(t, t − 1) + α(t, 1000
t−1

), t > 0 && t > 1000
k

t−k
∑

i=1
i, t > 0

t− 1000
k

∑

i=1
i, t > 1000

k

0, else

β(t, k) =

t
∑

i=1
i − α(t, k), t ≤ o + 1000

k

0, else

(A.1)

The number of tasks which are unlocked and not already allocated calculates

to: 1000 − (min(0, (k − t)) · 1000
k

) − β(t − 2, k). Every of those free tasks will

be assigned to exactly one cluster. Therefore, each task will be applied by the

number of PEs per cluster (1000
l

). The number of eager values of the free tasks

results in:

γ(t, k, l) = (1000 − (min(0, (k − t)) · 1000

k
) − β(t − 2, k)) · 1000

l
(A.2)

Indeed, the estimation is not done yet. As a matter of fact, not only the

free tasks produce eager values. Also, the tasks which were allocated in the

cycle before, still produce some eager values. When a PE allocates a task at

hormone cycle t, all other PEs in the same cluster receive the suppressor for

the task in hormone cycle t + 1 and will update their eager value to 0 and

broadcast the 0-hormone. For calculating the number of those 0-eager values,

the number of allocated tasks in the cycle t − 2 has to be calculated. Equation

A.3 calculates this number and multiplies it with the number of PEs in each

cluster subtracted by one (the one PE which allocated the task).

δ(t, k, l) = (β(t − 2, k) − β(t − 3, k)) · (
1000

l
− 1) (A.3)

Finally, the total number of eager values is the sum of the eager values from

the free tasks and δ:

ǫ(t, k, l) = γ(t, k, l) + δ(t, k, l) (A.4)

Bibliography

[1] M. Al Faruque, R. Krist, and J. Henkel. Adam: Run-time agent-based

distributed application mapping for on-chip communication. In Proceedings

of the 45th Annual Design Automation Conference, DAC ’08, pages 760–

765, New York, NY, USA, 2008. ACM.

[2] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.

Seti home: an experiment in public-resource computing. Communications

of the ACM, 45(11):56–61, 2002.

[3] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama.

Dynamical model of traffic congestion and numerical simulation. Phys.

Rev. E, 51:1035–1042, Feb 1995.

[4] S. Baruah. Task partitioning upon heterogeneous multiprocessor platforms.

In Proceedings of the IEEE Real-Time Systems and Embedded Technology

and Applications Symposium, pages 536–543, 2004.

[5] N. Bensaid and P. Mathieu. A hybrid and hierarchical multi-agent archi-

tecture model. Proceedings of PAAM 97, pages 145–155, 1997.

[6] F. Berman, G. Fox, T. Hey, and A. J.G. Hey. Grid computing: making

the global infrastructure a reality, volume 2. John Wiley and sons, 2003.

[7] S. C. Botelho and R. Alami. M+: a scheme for multi-robot cooperation

through negotiated task allocation and achievement. In IEEE international

conference on robotics and automation, pages 1234–1239, 1999.

[8] T. Braun, H. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. Reuther,

J. Robertson, M. Theys, B. Yao, D. Hensgen, and R. Freund. A comparison

of eleven static heuristics for mapping a class of independent tasks onto

149

150

heterogeneous distributed computing systems. Journal of Parallel and

Distributed Computing, 61(6):810 – 837, 2001.

[9] U. Brinkschulte. Reducing the communication overhead of an artificial

hormone system for task allocation by a task window. In Workshop on

Embedded Self-Organizing Systems (ESOS 2013) co-located to the 10th

International Conference on Autonomic Computing (ICAC 2013), June

2013.

[10] U. Brinkschulte. An artificial DNA for self-descripting and self-building

embedded real-time systems. Concurrency and Computation: Practice

and Experience, 28(14):3711–3729, 2014.

[11] U. Brinkschulte. Introducing virtual accelerators to decrease the com-

munication overhead of an artificial hormone system for task allocation.

In Object/Component/Service-Oriented Real-Time Distributed Computing

(ISORC), 2014 IEEE 17th International Symposium on, pages 117–124.

IEEE, 2014.

[12] U. Brinkschulte. Prototypic implementation and evaluation of an artificial

DNA for self-descripting and self-building embedded systems. EURASIP

Journal on Embedded Systems, 2017(1):23, Feb 2017.

[13] U. Brinkschulte and M. Pacher. An agressive strategy for an artificial

hormone system to minimize the task allocation time. In 2012 IEEE

15th International Symposium on Object/Component/Service-Oriented

Real-Time Distributed Computing Workshops, pages 188–195, April 2012.

[14] U. Brinkschulte, M. Pacher, and A. von Renteln. An artificial hormone sys-

tem for self-organizing real-time task allocation in organic middleware. In

Organic Computing, chapter 12, pages 261–283. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2008.

[15] U. Brinkschulte and T. Ungerer. Mikrocontroller und Mikroprozessoren.

Springer-Verlag, 2010.

[16] E. Carvalho and F. Moraes. Congestion-aware task mapping in hetero-

geneous mpsocs. In 2008 International Symposium on System-on-Chip,

pages 1–4, Nov 2008.

151

[17] A. J. Chakravarti, G. Baumgartner, and M. Lauria. The organic grid: self-

organizing computation on a peer-to-peer network. IEEE Transactions on

Systems, Man, and Cybernetics, Part A: Systems and Humans, 35(3):373–

384, 2005.

[18] J. Chen and D. Sun. Resource constrained multirobot task allocation

based on leader–follower coalition methodology. The International Journal

of Robotics Research, 30(12):1423–1434, 2011.

[19] Z. Cheng, H. Zhang, Y. Tan, and Y. Lim. Smt-based scheduling for

multiprocessor real-time systems. In 2016 IEEE/ACIS 15th International

Conference on Computer and Information Science (ICIS), pages 1–7, June

2016.

[20] M. Coppola, B. Falsafi, J. Goodacre, and G. Kornaros. From embedded

multi-core socs to scale-out processors. In Design, Automation and Test in

Europe, DATE 13, Grenoble, France, March 18-22, 2013, pages 947–951.

EDA Consortium, 2013.

[21] G. P. Das, T. M. McGinnity, S. A. Coleman, and L. Behera. A distributed

task allocation algorithm for a multi-robot system in healthcare facilities.

Journal of Intelligent & Robotic Systems, 80(1):33–58, 2015.

[22] J. de Lope, D. Maravall, and Y. Quiñonez. Response threshold models

and stochastic learning automata for self-coordination of heterogeneous

multi-task distribution in multi-robot systems. Robotics and Autonomous

Systems, 61(7):714–720, 2013.

[23] O. Derin, D. Kabakci, and L. Fiorin. Online task remapping strategies for

fault-tolerant network-on-chip multiprocessors. In Proceedings of the Fifth

ACM/IEEE International Symposium on Networks-on-Chip, NOCS ’11,

pages 129–136, New York, NY, USA, 2011. ACM.

[24] T. Ebi, H. Rauchfuss, A. Herkersdorf, and J. Henkel. Agent-based ther-

mal management using real-time i/o communication relocation for 3d

many-cores. In International Workshop on Power and Timing Modeling,

Optimization and Simulation, pages 112–121. Springer, 2011.

152

[25] S. Edenhofer, S. Tomforde, D. Fischer, J. Hähner, F. Menzel, and

S. Von Mammen. Decentralised trust-management inspired by ant

pheromones. International Journal of Mobile Network Design and In-

novation, 7(1):46–55, 2017.

[26] G. Gan, C. Ma, and J. Wu. Data clustering: theory, algorithms, and

applications, volume 20. Siam, 2007.

[27] R. Geissbauer, S. Schrauf, P. Berttram, and Cheraghi F. Digital factories

2020: Shaping the future of manufacturing, April 2017.

[28] T. Hoefler and M. Snir. Generic topology mapping strategies for large-scale

parallel architectures. In Proceedings of the International Conference on

Supercomputing, ICS ’11, pages 75–84, New York, NY, USA, 2011. ACM.

[29] G. Hubert, L. Artola, and D. Regis. Impact of scaling on the soft error sen-

sitivity of bulk, fdsoi and finfet technologies due to atmospheric radiation.

Integration, the VLSI Journal, 50:39 – 47, 2015.

[30] J. Huppelsberg and K. Walter. Kurzlehrbuch Physiologie. Georg Thieme

Verlag, 2013.

[31] O. Ibarra and C. Kim. Heuristic algorithms for scheduling independent

tasks on nonidentical processors. J. ACM, 24(2):280–289, April 1977.

[32] B. Kamel, A K. Singh, A. Benyamina, A. Kumar, and P. Boulet. Heuristics

for dynamic task and communications mapping in noc-based heterogeneous

mpsocs. The Mediterranean Journal of Computers and Networks, 9, 10

2013.

[33] A. Kovalov, E. Lobe, A. Gerndt, and D. Lüdtke. Task-node mapping in

an arbitrary computer network using smt solver. In N. Polikarpova and

S. Schneider, editors, Integrated Formal Methods, pages 177–191, Cham,

2017. Springer International Publishing.

[34] M. Krainin, B. An, and V. Lesser. An application of automated negotiation

to distributed task allocation. In Proceedings of the 2007 IEEE/WIC/ACM

international conference on intelligent agent technology, pages 138–145.

IEEE Computer Society, 2007.

153

[35] B. Kreaseck, L. Carter, H. Casanova, and J. Ferrante. Autonomous pro-

tocols for bandwidth-centric scheduling of independent-task applications.

In Parallel and Distributed Processing Symposium, 2003. Proceedings.

International, pages 10–pp. IEEE, 2003.

[36] T. Lei and S. Kumar. A two-step genetic algorithm for mapping task

graphs to a network on chip architecture. In Euromicro Symposium on

Digital System Design, 2003. Proceedings., pages 180–187, Sep. 2003.

[37] J. Lienig and M. Thiele. The pressing need for electromigration-aware

physical design. In Proceedings of the 2018 International Symposium on

Physical Design,ISPD 2018, Monterey, CA, USA, March 25-28, 2018,

pages 144–151, 2018.

[38] S. Lucero. Iot platforms: enabling the internet of things. White paper,

2016.

[39] A. Lund and U. Brinkschulte. Task-allocation in a large scaled hierarchical

many-core topology. In 2018 IEEE 21st International Symposium on

Real-Time Distributed Computing (ISORC), June 2018.

[40] A. Lund, M. Pacher, and U. Brinkschulte. Towards a recursive approach

for an artificial hormone system. In Seventh IEEE Workshop on Self-

Organizing Real-Time Systems (SORT 2016), May 2016.

[41] A. Lund, M. Pacher, and U. Brinkschulte. Task-allocation in a hierarchical

network topology by means of an organic middleware. In ARCS 2017; 30th

International Conference on Architecture of Computing Systems, pages

1–8, April 2017.

[42] Microsoft. MFC desktop applications, 8 2018.

[43] C. Müller-Schloer. Organic computing: On the feasibility of con-

trolled emergence. In Proceedings of the 2Nd IEEE/ACM/IFIP Interna-

tional Conference on Hardware/Software Codesign and System Synthesis,

CODES+ISSS ’04, pages 2–5. ACM, 2004.

154

[44] C. Müller-Schloer, H. Schmeck, and T. Ungerer. Organic computing- A

paradigm shift for complex systems. Springer Science & Business Media,

2011.

[45] C. Müller-Schloer and B. Sick. Controlled emergence and self-organization.

In Organic Computing, chapter 4, pages 81–103. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2008.

[46] C. Müller-Schloer, C. von der Malsburg, and R. P. Würtz. Organic

computing. Informatik Spektrum, 27(4):332–336, 2004.

[47] M. Pacher. Two-level extensions of an artificial hormone system. Con-

currency and Computation: Practice and Experience, 28(14):3730–3750,

2016.

[48] E. Pop, S. Sinha, and K. E. Goodson. Heat generation and transport in

nanometer-scale transistors. Proceedings of the IEEE, 94(8):1587–1601,

Aug 2006.

[49] K. Rupp. 42 years of microprocessor trend data, 9 2018.

[50] P. K. Schelling, L. Shi, and K. E. Goodson. Managing heat for electronics.

Materials Today, 8(6):30 – 35, 2005.

[51] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang. A first look at cellular

machine-to-machine traffic: Large scale measurement and characterization.

SIGMETRICS Perform. Eval. Rev., 40(1):65–76, June 2012.

[52] C. E. Shannon. A mathematical theory of communication. The Bell

System Technical Journal, 27(3):379–423, July 1948.

[53] I. J. Shapiro and K. S. Narendra. Use of stochastic automata for parameter

self-optimization with multimodal performance criteria. IEEE Transactions

on Systems Science and Cybernetics, 5(4):352–360, Oct 1969.

[54] O. Shehory and S. Kraus. Methods for task allocation via agent coalition

formation. Artificial intelligence, 101(1):165–200, 1998.

[55] A. Singh, T. Srikanthan, A. Kumar, and W. Jigang. Communication-

aware heuristics for run-time task mapping on noc-based mpsoc platforms.

155

Journal of Systems Architecture, 56(7):242 – 255, 2010. Special Issue on

HW/SW Co-Design: Systems and Networks on Chip.

[56] J. R. Sklaroff. Redundancy management technique for space shuttle

computers. IBM Journal of Research and Development, 20(1):20–28, Jan

1976.

[57] R. G. Smith. The contract net protocol: High-level communication and

control in a distributed problem solver. IEEE Transactions on Computers,

C-29(12):1104–1113, Dec 1980.

[58] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari,

S.i Tadaki, and S. Yukawa. Traffic jams without bottlenecksexperimental

evidence for the physical mechanism of the formation of a jam. New

journal of physics, 10(3):033001, 2008.

[59] The QT Company. QT|Cross-platform software development for embedded

& desktop, 8 2018.

[60] VDE/ITG. VDE/ITG/GI-positionspapier organic computing: Computer

und systemarchitektur im jahr 2010. GI, ITG, VDE, pages 1–7, 2003.

[61] A. von Renteln, U. Brinkschulte, and M. Pacher. Introducing a simplified

implementation of the ahs organic middleware. In Proceedings of the 2011

workshop on Organic computing, pages 51–58. ACM, 2011.

[62] A. Weichslgartner, S. Wildermann, and J. Teich. Dynamic decentralized

mapping of tree-structured applications on noc architectures. In Proceed-

ings of the Fifth ACM/IEEE International Symposium, pages 201–208,

May 2011.

[63] S. Wildermann, T. Ziermann, and J. Teich. Run time mapping of adaptive

applications onto homogeneous noc-based reconfigurable architectures. In

2009 International Conference on Field-Programmable Technology, pages

514–517, Dec 2009.

[64] M. Wooldridge. An introduction to multiagent systems. John Wiley &

Sons, 2009.

156

[65] R. P Würtz. Organic computing. Springer Science & Business Media,

2008.

[66] H. Yang and S. Ha. Pipelined data parallel task mapping/scheduling tech-

nique for mpsoc. In 2009 Design, Automation Test in Europe Conference

Exhibition, pages 69–74, April 2009.

[67] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. Internet of

things for smart cities. IEEE Internet of Things journal, 1(1):22–32, 2014.

	Terms and abbreviations
	Introduction
	Task allocation in distributed multi-core processor networks
	Goals and structure of the thesis

	Organic Computing
	History of Organic Computing
	Self-x properties
	Emergence
	Example for emergence

	The Artificial Hormone System
	The biological endocrine system
	Formal definitions
	Structure of the AHS
	The hormone loop
	Extensions of the AHS
	Priority decision
	Aggressive task allocation
	Virtual accelerators
	Lightweight AHS

	Time constraints of the AHS
	Communication load of the AHS

	The Hierarchical Artificial Hormone System
	From the AHS towards the HAHS
	The hormone loop
	Cluster heads
	Task set concepts
	Organ Task Concept
	Single Task Concept

	Formal definition
	Cluster set concepts
	static-static
	static-dynamic
	dynamic-static
	dynamic-dynamic

	Determining cluster eager values
	Recalculation of cluster eager values
	Mimic best PE
	Magnitude of eager vectors
	Greatest Hormone

	Comparison of the concepts
	Task set concepts
	Cluster set concepts
	Cluster eager values
	Summary

	The Recursive Artificial Hormone System
	Formal definition
	Pass or allocate
	Determining the eager values of the lower level
	Periodic update
	Max eager value
	Least eager value method

	System properties
	The properties of the HAHS
	General
	Task concepts
	Cluster set concepts
	CEA Methods

	The properties of the RAHS
	Timing behavior
	Communication load
	Methods of the RAHS

	Systems Implementation
	Simulator
	HAHS
	RAHS

	Middleware
	HAHS

	Evaluation
	HAHS
	Self-configuration
	Self-healing

	RAHS
	Max eager value approach
	Least eager value approach

	Comparison and applications
	Off-line methods
	On-line methods
	Multi-Agent Systems
	Heuristics
	Centralized solutions
	Decentralized solutions

	Application examples

	Conclusion
	
	Allocation by a heuristic value in the greatest hormone method
	Equation to calculate the number of eager values in the organ task HAHS

