
On Equivalences and Standardization in a
Non-Deterministic

Call-by-Need Lambda Calculus

Manfred Schmidt-Schauß and Matthias Mann

Fachbereich Informatik und Mathematik,
Institut für Informatik, Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany,
{schauss,mann}@ki.informatik.uni-frankfurt.de

Technical Report Frank-31

15. August 2007

Abstract. The goal of this report is to prove correctness of a consid-
erable subset of transformations w.r.t. contextual equivalence in a an
extended lambda-calculus with case, constructors, seq, let, and choice,
with a simple set of reduction rules. Unfortunately, a direct proof appears
to be impossible.
The correctness proof is by defining another calculus comprising the com-
plex variants of copy, case-reduction and seq-reductions that use variable-
binding chains. This complex calculus has well-behaved diagrams and
allows a proof that of correctness of transformations, and also that the
simple calculus defines an equivalent contextual order.

1 Introduction

Motivation The motivation for this report is to provide support for the proof
method of simulation [Abr90,How89,Gor99] in a non-deterministic call-by-need
lambda-calculi (see e.g. [AFM+95,AF97,MOW98]) with let, case, constructors
and seq. Simulation, and thus also bisimulation, is a proof tool for contextual
preorder in deterministic lambda-calculi (see [Abr90,How89,Gor99,Pit97]), that
covers a large amount of similarities and equalities that are out of reach for the
approach using a context-lemma, overlap diagrams and transformations. The ad-
vantage of simulation-based equivalence proofs is that they lead, in a significant
number of cases, in particular for programming languages with constructors, to
a proof after a finite number of steps, and if not, it is often possible to use
co-induction. The simulation-based method in its basic version appears to be
automatable. In contrast, the proof method based on a context-lemma and over-
lap diagrams usually requires ad-hoc computations of overlaps, or the creative
invention of helper-transformations including the computation of overlaps, and

2 M. Schmidt-Schauß, M.Mann

appears to be hard to automate. The safety of the proof tool of simulation re-
quires a proof to show that similarity is equivalent to contextual preorder in the
respective calculi, or that simulation implies contextual preorder.

For non-deterministic call-by-name lambda-calculi, which are not the ap-
propriate model for programming languages if non-determinism is involved,
there is a corresponding proof in [How89]. For non-deterministic call-by-need
lambda-calculi with non-recursive let, a proof of the “implies”-property is in
[Man05a,Man05b], but in a calculus without constructors, i.e. lists and list-
functions are not available. This work is extended to case and constructors for
call-by-need-calculi in [MSS06,MSS07] thus extending the power of similarity. A
shortcoming of this method is that for non-deterministic call-by-need lambda-
calculi the normal-order reduction cannot be used for simulation proofs. Instead
another variant of a standardizing reduction, the approximation reduction, is the
appropriate one. Thus there remains the proof burden to show that the approx-
imation reduction generates the same contextual preorder as the normal-order
reduction. This is the goal of this research report, which proves exactly this
relationship for a sufficiently expressive non-deterministic call-by-need lambda-
calculus extended with case, constructors and seq.

Structure of the Report In this report we define three variants of a non-
deterministic call-by-need lambda-calculus with case, constructors, seq, let and
choice, and prove their equivalence w.r.t. contextual equivalence.

The first calculus L is a non-deterministic call-by-need lambda-calculus,
where the reductions for case, seq and the copy-rule exploit variable-variable
binding chains, and which is a calculus that prefers sharing over copying also for
values. This calculus is rather well-behaved in a proof of correctness of reductions
as transformations using a context lemma and overlap diagrams.

The second calculus LS is a variant of the first one, but has simpler reduc-
tion rules, and prefers copying of values over looking for references. This calculus
resists direct proofs of correctness of reductions as transformations w.r.t. contex-
tual equivalence using a context lemma and overlap diagrams, since the overlap
diagrams (i.e. commuting of reduction steps) cannot be controlled by a well-
founded measure that allows induction proofs. However, it is possible to use the
calculus L and to show that L and LS have equivalent contextual pre-order,
and thus this provides an indirect proof of correctness of lots of transformations
w.r.t. the simple calculus LS .

The third calculus LA is a so-called approximation calculus that is an inter-
mediate step to exploit (bi)simulation proofs of behavioral preorders and equiv-
alences. This calculus instead of a normal-order reduction follows the strategy
of reducing expressions top-down and approximately, without any let-shuffling
rules. It can be seen as a call-by-value variant of call-be-need, however, in general
a single normal-order reduction sequence is represented as an infinite number of
reductions in the call-by-value calculus. The outcomes of the infinitely many
reductions may be seen as approximates. They are derived by cutting reduction

Equivalences and Standardization in a Non-Deterministic Calculus 3

in a certain depth and then removing the sharing, i.e. removing the top-let-
environments.

Now proofs by simulation can use the reduction rules of the calculus LA, since
it is the appropriate one for simulation proofs in a call-by-need non-deterministic
calculus as shown in [MSS06,MSS07].

2 The Call-By-Need Calculus With Chaining

The call-by-need calculus L has binary application, non-recursive let, , lambda,
seq, case and constructors, with a normal-order reduction that defines evalua-
tion to weak head normal forms. The calculus L is an adapted extension of the
corresponding calculus in [Man05a,Man05b] by case and constructors, see also
[SSSS04,MSC99] for nondeterministic calculi with case and constructors. The
slightly more complicated definitions of (case) and (cp) are borrowed from the
calculus in [SSSS07]. The reason is that for simpler formulations an equivalence
proof appears to be only constructible via the more complicated calculus. Note
that the exact definition of the syntax and rules may vary slightly in different
papers, in particular the syntax and the rules dealing with case-expressions.

We describe the syntax. There is an infinite set V of variables and a finite set
K of constructors with fixed arities. The canonical operators are the constructors
from K and λ. The syntax is as follows, where E means expressions and c, ci ∈ K:

E ::= V | (E E) | λx.E | (let V = E in E) | (choice E E) | (seq E E)
| (c E1 . . . Ear(c)) | (case E of (c1 V . . . V)→ E; . . . ; (cm V . . . V)→ E)

The untyped case-construct is assumed to have a pattern (c x1 . . . xar(c)) for
every constructor c ∈ K, where the variables in a pattern have to be distinct.
The scoping rules are as usual, where let is non-recursive, and hence the scope
of x in (let x = s in t) is the term t. We assume that expressions satisfy the
distinct variable convention before reduction is applied, which can be achieved
by a renaming of bound variables. A nested let-expression is written as (let x1 =
s1, . . . , xn = sn in t), meaning (let x1 = s1 in (let x2 = s2 . . . in (let xn =
sn in t) . . .)).

We use labels indicating the normal order redex, where T means the top-term,
S means a subterm reduction, V,W mean visited, where W marks positions that
are not target for a (cp)-reduction, and M is a meta-variable that may stand for
S or T . The shifting algorithm (unwind) starts with tT , where no subexpression
of t is labeled, and uses the following rules exhaustively.

(s t)M → (sS t)V

(let x = s in t)T → (let x = s in tT)V

(let x = s in C[xM])→ (let x = sS in C[xV])
if C 6= C ′[(let z = [.] in r)]

(let x = s in C[xM])→ (let x = sS in C[xW])
if C = C ′[(let z = [.] in r)]

(seq s t)M → (seq sS t)V

(case s alts)M → (case sS alts)V

4 M. Schmidt-Schauß, M.Mann

(lbeta) ((λx.s)S r) → (let x = r in s)
(cp) (let x = vS in C[yV]) → (let x = v in C[v])

where v is an abstraction and v is bound by y
(case-c) (case (c t1 . . . tn)S . . . ((c y1 . . . yn) → s) . . .)

→ (let y1 = t1, . . . , yn = tn in s)
(case-e) (let x = (c t1 . . . tn)S in C[(case yV . . . ((c y1 . . . yn) → s) . . .)])

→ let z1 = t1, . . . , zn = tn, x = (c z1 . . . zn)
in C[(let y1 = t1, . . . , yn = tn in s)]
Here the expression (c t1 . . . tn) is bound by y

(seq-c) (seq vS t) → t if v is a value
(seq-e) (seq xV t) → t if some value is bound by x
(choicel) (choice s t)S∨T → s
(choicer) (choice s t)S∨T → t
(llet) (let x1 = (let x2 = s2 in s1)

L in t)
→ (let x2 = s2, x1 = s1 in t)

(lapp) ((let x = s1 in s2)
S t) → (let x = s1 in (s2 t))

(lseq) (seq (let x = s1 in s2)
S t) → (let x = s1 in (seq s2 t))

(lcase) (case (let x = s in t)S alts) → (let x = s in (case t alts))

Fig. 1. Normal-order rules

In figure 1 the normal-order reduction rules are defined, where the rules are
applied by first running the unwind-labeling on a label-free expression, and then
applying the reduction rule, where L means any label. A cv-expression means an
expression of the form (c x1 . . . xn) where c is a constructor and xi are variables.
A value is an abstraction or a constructor-expression (c t1 . . . tn). We use the
following abbreviation for reduction rules: (choice) = (choicer) ∪ (choicel), (case)
= (case-c) ∪ (case-e), (seq) = (seq-c) ∪ (seq-e), (lll) = (llet) ∪ (lapp) ∪ (lseq)
∪ (lcase). We say an expression r is bound by a variable x in t (which satisfies
the distinct variable convention), if there is a chain of variables xi, i = 1, . . . , n,
such that (let xn = r in . . .), and (let xi = xi+1 in . . .) for i = 1, . . . , n − 1
are subexpressions of t.

A weak head normal form (WHNF) is an expression (let x1 = t1, . . . , xn =
tn in v), where v is a value, or (let x1 = t1, . . . , xn = tn in xi), where xi is
bound to a constructor-expression. A reduction contextis defined as a context,
where the hole will be labeled with S or T by the labeling algorithm. We denote
the class of reduction contexts by R. A term s converges, iff s

∗−→ s1 for some
WHNF s1 by a normal order reduction sequence, denoted as s ⇓. Two terms
s, t are related by contextual preorder, s ≤c t, iff ∀C : C[s] ⇓ =⇒ C[t] ⇓, and
s, t are contextually equivalent, s ∼c t, iff s ≤c t and t ≤c s. It is easy to verify
that ≤c is a precongruence, i.e. it is an preorder and s ≤c t =⇒ C[s] ≤c C[t]
for all C; and that ∼c is an congruence, i.e. it is a precongruence that is also an
equivalence relation.

Proving properties of the calculus, like correctness of the deterministic reduc-
tion rules as transformations can be done as e.g. in [SSSS04]. The context-lemma
for L follows immediately from [SSS07].

Equivalences and Standardization in a Non-Deterministic Calculus 5

3 Correctness of Transformations in the Chaining
Calculus

In this section we prove correctness of a considerable set of transformations and
also some properties w.r.t. different kinds of reduction lengths The technique is
to analyze the contextual equivalence and preorder of L.

3.1 Context Lemma and Program Transformations

First, it is easy to see that the context lemma holds for L:

Lemma 3.1. Let s, t be any expressions. Then s ≤c t iff for all reduction con-
texts R: R[s] ⇓ =⇒ R[t] ⇓.

Proof. This holds since the general result for context lemmas of [SSS07] is ap-
plicable to L and its normal-order reduction. The proof is very similar to the
proof in [SSSS07].

Lemma 3.2. If s→ t by one of the reductions (lbeta), (case-c), (seq-c), (lapp),
(lseq), (lcase), then s ∼c t.

Proof. By the context lemma it is sufficient to treat the case that s → t on
toplevel by one of the reductions, and to show that R[s] ⇓⇔ R[t] ⇓ for any
reduction context R. For all the mentioned reductions, it is easy to see by
inspecting the rules and the definition of reduction contexts that s → t im-
plies that R[s] no−→ R[t], and that the normal-order reduction is unique. Hence
R[s] ⇓⇔ R[t] ⇓.

Lemma 3.3. If s→ t by one of the reductions (choicel), (choicer), then t ≤c s.

Proof. By the context lemma it is sufficient to treat the case that s → t on
toplevel by one of the reductions, and to show that R[t] ⇓⇔ R[s] ⇓ for any
reduction context R. As in the proof of the previous lemma, it is easy to see that
s→ t implies that R[s] no−→ R[t]. Hence R[t] ⇓⇔ R[s] ⇓.

The missing rules from the calculus are (case-e), (seq-e), (cp) and (llet). We
will show in the following that these are also correct transformations, i.e. that
s

a−→ t implies s ∼c t. A surface-context S is a context, such that the hole is not
within an abstraction. The class of let-right-contexts, defined by the grammar
LR := [] | letx = E in LR will be used in a transformation rule. In figure 2 we
define more transformation rules in L to complete the overall proof.

Lemma 3.4. Let s
a−→ t by a reduction rule a in figure 1. If s is a WHNF, then t

is a WHNF, and if t is a WHNF, then the reduction is a normal-order reduction.

Proof. By inspection of the transformation rules in figure 1 and also the defini-
tion of unwind and reduction contexts.

6 M. Schmidt-Schauß, M.Mann

(gc) let x = s in t → t if x does not occur in t
(cpx) let x = y in C[x] → let x = y in C[y]
(abs) (c t1 . . . tn) → (let x1 = t1, . . . , xn = tn in (c x1 . . . xn))
(cpcx) let x = v in C[x] → let x = v in C[v]

if v is a cv-expression
(cpS) let x = v in S[y] → let x = v in S[v]

if v is a an abstraction, v is bound by y
and S a surface context

(cpd) let x = v in C[x] → let x = v in C[v]
if v is an abstraction, v is bound by y
and C a non-surface context

Fig. 2. Transformation Rules in L

Lemma 3.5. Let s
a−→ t by a transformation rule a in figure 2. Then the follow-

ing holds:

– For all a: if s is a WHNF then t is a WHNF.
– If a ∈ {(gc), (cpd), (cpx), (cpcx), }, then s is a WHNF iff t is a WHNF.

– If a = (abs), t is a WHNF and s is not a WHNF, then s
no,lll,∗−−−−→ t.

– If a = (cpS) and t is a WHNF, and s is not a WHNF, then (cpS) is in fact
a normal-order (cp)-reduction.

Proof. By inspection of the transformation rules in figure 2.

3.2 Forking and Commuting Diagrams

We compute for the reductions and transformations (cpS), (lll), (cpd), (gc),
(cpx) respectively, a complete set of forking and a complete set of commuting
diagrams, restricted to reductions within surface contexts. The reductions that
are not normal-order are always reductions in a surface context. (for a detailed
definition of the complete sets of diagrams see [SSSS07]).

A complete set of forking diagrams for a transformation a−→ is a fi-
nite set of transformation rules for reduction sequences of the form

· a //

no,∗
���
�
� ·

·

;

·
no,∗

���
�
�

· ∗ //___ ·
which is represented as follows, where a straight arrow means given reduction
and a dashed arrow means existential reduction,

· a //

no,∗
���
�
� ·

no,∗
��

· ∗ //___ ·

Equivalences and Standardization in a Non-Deterministic Calculus 7

where the ∗−→-sequence at the bottom may consist of several, different re-
ductions. There may also be exceptional diagrams, where some edges are not
present.

The condition for completeness is that for every reduction sequence
· a←− · no,+−−−→ ·, there is an applicable transformation of reduction sequences in
the set.

A complete set of commuting diagrams for a transformation a−→ is a
finite set of transformation rules for reduction sequences of the form

· a // ·
no,∗

��
·

;

·
no,∗

���
�
�

· ∗ //___ ·
which is represented as

· a //

no,∗
���
�
� ·

no,∗
��

· ∗ //___ ·

where the ∗−→-sequence at the bottom may consist of several, different reduc-
tions. An implicit transformation rule is that a reduction step using a reduction
from the calculus may become a normal-order step after the rearrangement.
There may also be exceptional diagrams, where the a−→ is omitted.

The condition for completeness is that for every reduction sequence
· a−→ · no,+−−−→ ·, there is an applicable transformation of reduction sequences in
the set.

3.3 All the Diagrams

Diagrams for (gc)-reductions The forking diagrams for (gc) are

· gc //

no,a

��

·
no,a

���
�
� · gc //

no,a

��

·

no,a
���

�
�

�
· gc //

no,lll

��

·

· gc //___ · · ·
gc

@@�
�

�
�

The commuting diagrams for (gc) are

· gc //

no,a

���
�
� ·

no,a

��

· gc //

no,a
��=

=
=

= ·
no,a

��

· gc //

no,lll

���
�
� ·

· gc //___ · · ·
gc

@@�
�

�
�

Diagrams for (cpx) The forking diagrams for (cpx) are

· cpx //

no,a

��

·
no,a

���
�
� · cpx //

no,a

��

·

no,a
���

�
�

�
· cpx //

no,cp

��

·
no,cp

���
�
�

· cpx //___ · · · cpx //___ · cpx //___ ·

8 M. Schmidt-Schauß, M.Mann

The commuting diagrams for (cpx) are

· cpx //

no,a

���
�
� ·

no,a

��

· cpx //

no,a
��=

=
=

= ·
no,a

��

· cpx //

no,cp

���
�
� ·

no,cp

��
· cpx //___ · · · cpx //___ · cpx //___ ·

Diagrams for (abs)
The forking diagrams for (abs) are

· abs //

no,a

��

·
no,a

���
�
� · abs //

no,a

��

·

no,a
���

�
�

�
· abs //

no,case

��

·
no,lll,∗

���
�
� · abs //

no,b

��

·
no,lll,∗

���
�
�

· abs //___ · · ·
no,case

���
�
� ·

no,b

���
�
�

· oo gc,∗___ · oo cpx,∗___ · · abs //___ · lll,∗ //___ ·
where b ∈ {(seq), (case)}.

The commuting diagrams for (abs) are

· abs //

no,a

���
�
� ·

no,a

��

· abs //

no,a
��=

=
=

= ·
no,a

��

· abs //

no,case

���
�
�
�
�
� ·

no,lll,∗
��

· abs //

no,b

���
�
�
�
�
� ·

no,lll,∗
��

· abs //___ · · ·
no,case

��

·
no,b

��
· oo gc,∗___ · oo cpx,∗___ · · abs //___ · lll,∗ //___ ·

where b ∈ {(seq), (case)}.

Diagrams for (cpcx)
Note that the rule (cpcx) is different from the rule in [SSSS07].

The forking diagrams for (cpcx) are

· cpcx //

no,a

��

·
no,a

���
�
� · cpcx //

no,a

��

·

no,a
���

�
�

�
· cpcx //

no,cp

��

·
no,cp

���
�
� · cpcx //

no,case

��

·
no,case

���
�
�

· abs //___ · · ·
cpcx

//___ ·
cpcx

//___ · ·
cpcx

//___ · oo
cpx,∗

___ ·

The commuting diagrams for (cpcx) are

· cpcx //

no,a

���
�
� ·

no,a

��

· cpcx //

no,a
��=

=
=

= ·
no,a

��

· cpcx //

no,cp

���
�
� ·

no,cp

��

· cpcx //

no,case

���
�
� ·

no,case

��
· cpcx //___ · · ·

cpcx
//___ ·

cpcx
//___ · ·

cpcx
//___ · oo

cpx,∗
___ ·

Equivalences and Standardization in a Non-Deterministic Calculus 9

Diagrams for (lll) The forking diagrams for (lll) are

· lll //

no,a

��

·
no,a

���
�
� · lll //

no,a

��

·

no,a
���

�
�

�
· lll //

no,lll

��

·
no,lll,∗

���
�
� · lll //

no,lll,+

��

·

no,lll,+
���

�
�

�

· lll //__ · · · lll //__ · ·

· lll //

no,a

��

·

no,a

���
�
�
�
�
�
�

·
no,lll

��

·

·
The commuting diagrams for (lll) are

· lll //

no,a

���
�
� ·

no,a

��

· lll //

no,a
��7

7
7

7 ·
no,a

��

· lll //

no,lll

���
�
� ·

no,lll,+

��

· lll //

no,lll,+
��7

7
7

7 ·
no,lll,+

��
· lll //__ · · · lll //__ · ·

· lll //

no,a

��,
,

, ·

no,a

��

·

no,lll
��,

,
, ·

·

Diagrams for (cpS)-reductions The forking diagrams for (cpS) are

· cpS //

no,a

��

·
no,a

���
�
� · cpS //

no,a

��

·

no,a
���

�
�

�
· cpS //

no,a

��

·

no,a

���
�
�
�
�
�
�

· cpS //___ · · ·
no,cp

�� ·

The commuting diagrams for (cpS) are

· cpS //

no,a

���
�
� ·

no,a

��

· cpS //

no,a
��=

=
=

= ·
no,a

��

· cpS //

no,a
��=

=
=

= ·

no,a

��

· cpS //___ · · ·

no,cp
��=

=
=

=

·

Diagrams for (cpd)-reductions The forking diagrams for (cpd) are

· cpd //

no,a

��

·
no,a

���
�
� · cpd //

no,a

��

·

no,a
���

�
�

�
· cpd //

no,cp

��

·
no,cp

���
�
� · cpd //

no,lβ

��

·
no,lβ

���
�
� · cpd //

no,lβ

��

·

no,lβ

���
�
�
�
�
�
�

· cpd //___ · · · cpd //___ · cpd //___ · · cpS //___ · ·
no,cp

�� ·

10 M. Schmidt-Schauß, M.Mann

The commuting diagrams for (cpd) are

· cpd //

no,a

���
�
� ·

no,a

��

· cpd //

no,a
��:

:
:

: ·
no,a

��

· cpd //

no,cp

���
�
� ·

no,cp

��

· cpd //

no,lβ

���
�
� ·

no,lβ

��

· cpd //

no,lβ

��:
:

:
: ·

no,lβ

��

· cpd //__ · · · cpd //__ · cpd //__ · · cpS //__ · ·

no,cp
��:

:
:

:

·

Note that the fourth and fifth diagram turn a (cpd) into a (cpS).

3.4 Proofs of Properties of Transformations

Lemma 3.6. The transformation (lll) terminates. I.e. there are no infinite re-
duction sequences consisting only of (lll)-reductions.

Proof. The terminating measure is the sum of the following number for every
subexpression that is a let-expression s: the number of non-let-expressions and
bindings x = r that are above the subexpression s.

Lemma 3.7. The transformation
(lll)∪(S,(cp))−−−−−−−−→ terminates. I.e. there are no in-

finite reduction sequences consisting only of
(lll)−−→- and

S,(cp)−−−−→-reductions.

Proof. The terminating measure is a lexicographically ordered pair where the
first component is the number of occurrences of variables in surface positions,
and the second is the sum of the following number for every subexpression that
is a let-expression s: the number of non-let-expressions and bindings x = r that
are above the subexpression s. The first component is strictly decreased by every
S,(cp)−−−−→-reduction. The reduction

(lll)−−→ leaves the first component invariant and
strictly decreases the second. Hence the lemma holds.

Lemma 3.8. The transformation (abs) is terminating. I.e. there are no infinite
reduction sequences consisting only of (abs)-reductions.

Proof. Obvious.

We define different length measures for finite, maximal reduction sequences
U , which are reduction sequences that end in a WHNF, and where WHNFs are
not reduced further. Note that the sequences might in general be non-normal-
order reduction sequences. A maximal non-normal-order reduction sequence is
also called evaluation.

Definition 3.9. For reduction sequences U and a set M ⊆
{(case), (cp), (seq), (lbeta), (lll), (choice)} = Mmax, we define lenM (U) to
be the number of reductions from M in U .

Equivalences and Standardization in a Non-Deterministic Calculus 11

The correctness proof are usually made using the following schema: To show
that s0

S,a−−→ t0 is correct, we use the context lemma, which shows that it is
sufficient to show that for all reduction contexts R, R[s0] ⇓ ⇔ R[t0] ⇓. Since R is

also a surface context, it is sufficient to show for all expressions s, t with s
S,cpd−−−→ t

and for every evaluation U of s, there is an evaluation U ′ of t, and vice versa,
perhaps combined with a length claim concerning U,U ′. Since the diagrams are
always computed for surface context reductions, they are applicable.

Lemma 3.10. The transformation (gc) is correct.

Proof. Using the context lemma, we have to show that for s
S,gc−−−→ t and all

reduction contexts R, R[s] ⇓ ⇔ R[t] ⇓. Showing R[s] ⇓ =⇒ R[t] ⇓
requires to use the forking diagrams by induction on the length of normal-order
reduction sequences. The direction R[t] ⇓ =⇒ R[s] ⇓ requires the commuting
diagrams, induction on the length lenMmax of normal-order reduction sequences,
and Lemma 3.6. The base cases are in Lemma 3.5.

Lemma 3.11. Let s
S,gc−−−→ t, and let M ⊆ {(case), (cp), (seq), (lbeta), (choice)}.

Then for every evaluation U of s there is an evaluation U ′ of t with lenM (U) =
lenM (V ′), and for every evaluation U ′ of t there is an evaluation U of s with
lenM (U) = lenM (V ′).

Proof. This follows using exactly the same constructions as in Lemmas 3.10 and
due to the diagrams for (gc). Note that the number of (lll)-reductions may be
different.

Lemma 3.12. The transformation (cpx) is correct and the following holds for
the modification of the length of evaluations:
Let s

S,cpx−−−→ t, and let M ⊆ {(case), (cp), (seq), (lbeta), (lll), (choice)}. Then for
every evaluation U of s there is an evaluation U ′ of t with lenM (U) = lenM (U ′),
and for every evaluation U ′ of t there is an evaluation U of s with lenM (U) =
lenM (U ′).

Proof. Using the context lemma, we have to show that for s
S,cpx−−−→ t and all

reduction contexts R, R[s] ⇓ ⇔ R[t] ⇓. This follows by induction on the length
of normal-order reduction sequences using the diagrams: Showing R[s] ⇓ =⇒
R[t] ⇓ requires to use the forking diagrams. For the induction the additional
induction hypothesis on the above-mentioned length must be proved within the
same induction due to third diagram for (cpx).

The direction R[t] ⇓ =⇒ R[s] ⇓ requires the commuting diagrams and also
a combined induction hypothesis The base cases are in Lemma 3.5.

Lemma 3.13. The transformation (cpcx) is correct and the following holds for
the modification of the length of evaluations:
Let s

S,cpcx−−−−→ t, and let M ⊆ {(case), (cp), (seq), (lbeta), (lll), (choice)}. Then for
every evaluation U of s there is an evaluation U ′ of t with lenM (U) = lenM (U ′),
and for every evaluation U ′ of t there is an evaluation U of s with lenM (U) =
lenM (U ′).

12 M. Schmidt-Schauß, M.Mann

Proof. Using the context lemma, we have to show that for s
S,cpcx−−−−→ t and all

reduction contexts R, R[s] ⇓ ⇔ R[t] ⇓. Showing R[s] ⇓ =⇒ R[t] ⇓ requires
to use the forking diagrams, and the Lemma 3.12 on reduction length of (cpx),
where an induction on the length of a normal-order reduction is possible. We
have to prove the combined induction hypothesis on the existence of a normal-
order reduction and on the above-mentioned length The direction R[t] ⇓ =⇒
R[s] ⇓ requires the commuting diagrams, and Lemma 3.12, and we can again use
induction on the length of a normal-order-reduction, where again the combined
induction hypothesis must be proved. The base cases are in Lemma 3.5.

Lemma 3.14. The transformation (lll) is correct.

Proof. Using the context lemma, we have to show that for s
S,lll−−−→ t and all

reduction contexts R, R[s] ⇓ ⇔ R[t] ⇓. Showing R[s] ⇓ =⇒ R[t] ⇓ requires
to use the forking diagrams, and the direction R[t] ⇓ =⇒ R[s] ⇓ requires
the commuting diagrams, where in both cases an induction on the length of a
normal-order-reduction is possible. The base cases are in Lemma 3.5.

Lemma 3.15. Let s
S,lll−−−→ t, and let M ⊆ {(case), (cp), (seq), (lbeta), (choice)}.

Then for every evaluation U of s there is an evaluation U ′ of t with lenM (U) =
lenM (U ′), and for every evaluation U ′ of t there is an evaluation U of s with
lenM (U) = lenM (U ′).

Proof. This follows using exactly the same constructions as in Lemma 3.4, and
due to the diagrams for (lll). Note that the number of (lll)-reductions may be
different in the respective U , and U ′.

Lemma 3.16. The transformation (abs) is correct and the following holds for
the modification of the length of evaluations:
Let s

S,abs−−−→ t, and let M ⊆ {(case), (cp), (seq), (lbeta), (choice)}. Then for every
evaluation U of s there is an evaluation U ′ of t with lenM (U) = lenM (U ′),
and for every evaluation U ′ of t there is an evaluation U of s with lenM (U) =
lenM (U ′).

Proof. Using the context lemma, we have to show that for s
S,abs−−−→ t and all

reduction contexts R, R[s] ⇓ ⇔ R[t] ⇓. Showing R[s] ⇓ =⇒ R[t] ⇓ requires
to use the forking diagrams for (abs) with normal-order reduction, where the
measure for induction is as follows: First lenM (U), and second the number of all
normal-order reductions. Lemmas 3.15, 3.11, 3.12 show that this is the correct
induction measure, where the third and fourth diagrams strictly decrease the
first component.

The direction R[t] ⇓ =⇒ R[s] ⇓ requires the commuting diagrams and the
same induction measure as for the previous case, and also the length properties
of Lemmas 3.15, 3.11, 3.12. The base cases are in Lemma 3.5.

Lemma 3.17. The transformation (cpS) is correct.

Equivalences and Standardization in a Non-Deterministic Calculus 13

Proof. Using the context lemma, we have to show that for s
S,cpS−−−−→ t and all

reduction contexts R, R[s] ⇓ ⇔ R[t] ⇓. Showing R[s] ⇓ =⇒ R[t] ⇓ requires to
use the forking diagrams, where the induction is on the number of normal-order
reductions. The direction R[t] ⇓ =⇒ R[s] ⇓ requires the commuting diagrams
and the same induction measure as for the previous case. The base cases are in
Lemma 3.5.

Lemma 3.18. Let s
S,cpS−−−−→ t, and let M ⊆ {(case), (seq), (lbeta), (lll), (choice)}.

Then for every evaluation U of s there is an evaluation U ′ of t with
lenM (U) = lenM (U ′), and for every evaluation U ′ of t there is an
evaluation U of s with lenM (U) = lenM (U ′). In addition, for M ′ ⊆
{(case), (seq), (cp), (lbeta), (choice)}, and for every evaluation U of s there is an
evaluation U ′ of t with lenM (U) ≥ lenM (U ′).

Proof. This follows using exactly the same constructions as in the proof of
Lemma 3.17, and due to the diagrams for (cpS). Note that the number of (cpS)-
reductions may be different in the respective sequences U and U ′.

The additional claim of the existence of some reduction sequence U ′ with
lenM (U) ≥ lenM (U ′) also follows from the forking diagrams of (cpS) by induc-
tion.

Lemma 3.19. The transformation (cpd) is correct.

Proof. Using the context lemma, we have to show that for s0
S,cpd−−−→ t0 and all

reduction contexts R, R[s0] ⇓ ⇔ R[t0] ⇓.
Showing R[t0] ⇓ =⇒ R[s0] ⇓ requires to use the commuting diagrams: Since
R is also a surface context, it is sufficient to show for all expressions s, t with
s

S,cpd−−−→ t and for every evaluation U ′ of s, that there is an evaluation U of
t, with lenM (U) = lenM (U ′) for M = {(case), (seq), (lbeta), (lll), (choice)}; i.e.
the number of all non-cp-reductions. This is done by induction on the following
measure of (t, U): first lenM (U ′), second the number of occurrences of variables
in surface contexts in t. Inspecting all the cpd- and cpS-diagrams, the induction
step can be proved. Note that for the third cpd-diagram that duplicates the (cpd)
at the bottom arrow, the induction hypothesis is also applicable to the middle
term, since (cp) strictly decreases the measure, but (cpd) does not change the
second part of the measure.

The direction s ⇓ =⇒ t ⇓ requires the commuting diagrams and can be done
using a simpler induction measure: simply count the number of normal-order
reductions in U .

The base cases are in Lemma 3.5.

Correctness of Copying Ω For the application to the approximation calculus
we also need the correctness of the transformation
(cpbot) (let x = Ω in C[x]) → (let x = Ω in C[Ω])
where Ω = Ω1 Ω1 and Ω1 = (λx.(x x)).

14 M. Schmidt-Schauß, M.Mann

Lemma 3.20. For all reduction contexts R : R[Ω] has no evaluation. This im-
mediately implies via the context lemma, that for all t : Ω ≤c t.

Proof. Every reduction of R[Ω] is of the form: R[Ω]
no,lβ−−−→ R[(let x =

Ω1 in (x x))]
no,lll,∗−−−−→ R1[(let x = Ω1 in R2[(x x)])], such that (x x) is in a re-

duction context. The reduction will be continued as follows:
no,cp−−−→ R1[(let x =

Ω1 in R2[(Ω1 x)])]
no,lβ−−−→ R1[(let x = Ω1 in R2[(let x1 = x in (x1 x1))])]. By

induction it is easy to see that the normal-order reduction uses the same scheme
again and again, and thus is infinite.

Lemma 3.21. The reduction
S,(cpbot)
−−−−−−−→ is correct. Moreover, if s

(cpbot)
−−−−−→ t,

then for every M ⊆ {(case), (cp), (seq), (lbeta), (choice), (lll)}: for every evalua-
tion U of s there is an evaluation U ′ of t with lenM (U) = lenM (U ′), and for
every evaluation U ′ of t there is an evaluation U of s with lenM (U) = lenM (U ′).

Proof. The simple argument is that whenever s
S,(cpbot)
−−−−−−−→ t, then for every

evaluation of s, the Ω, and also the corresponding x are never in a reduction
context, and thus are not used in the reduction, hence the evaluations of s and
t are the same in structure, and the intermediate expressions only may differ at
non-reduction positions.

4 The Simple Calculus LS and its Equivalence

In this section we describe a simpler variant LS of the calculus L, where the
reduction rules are a simplified, and show that the corresponding convergence
and contextual equivalences are equivalent. The syntax is the same, only the
reductions differ.

4.1 A Simple Call-By-Need Calculus

Now we define the corresponding notions of normal-order reduction for the cal-
culus LS . We will omit the label LS in the notation in this subsection, but will
distinguish the notions for L and LS , if it is necessary.

We use labels indicating the normal order redex, where T means the top-
term, S means a subterm reduction and M is a meta-variable that may stand
for S or T . The shifting algorithm (unwind) starts with tT and uses the following
rules exhaustively.

(s t)M → (sS t)M

(let x = s in t)T → (let x = s in tT)T

(let x = s in C[xM])→ (let x = sS in C[xS]) for a context C
(seq s t)M → (seq sS t)M

(case s alts)M → (case sS alts)M

The normal-order reduction rules are as defined in figure 3.

Equivalences and Standardization in a Non-Deterministic Calculus 15

(lbeta) ((λx.s)S r) → (let x = r in s)
(cp) (let x = vS in C[xS]) → (let x = v in C[v])

where v is an abstraction or a cv-expression
(abs) (c t1 . . . tn)S → (let x1 = t1, . . . , xn = tn in (c x1 . . . xn))

if (c t1 . . . tn) is not a cv-expression, where xi are fresh variables
(case) (case (c t1 . . . tn)S . . . ((c y1 . . . yn) → s) . . .)

→ (let y1 = t1, . . . , yn = tn in s)
(seq) (seq vS t) → t if v is a value
(choicel) (choice s t)S∨T → s
(choicer) (choice s t)S∨T → t
(llet) (let x1 = (let x2 = s2 in s1)

S in t)
→ (let x2 = s2, x1 = s1 in t)

(lapp) ((let x = s1 in s2)
S t) → (let x = s1 in (s2 t))

(lseq) (seq (let x = s1 in s2)
S t) → (let x = s1 in (seq s2 t))

(lcase) (case (let x = s in t)S alts) → (let x = s in (case t alts))

Fig. 3. Normal-order rules of LS

A weak head normal form (WHNF) is an expression (let x1 = t1, . . . , xn =
tn in v), where v is a value. A term s converges, iff s

∗−→ v for some WHNF v by
a normal order reduction, denoted as s ⇓.

Two terms s, t are related by contextual preorder, s ≤c t, iff ∀C : C[s] ⇓ =⇒
C[t] ⇓, and s, t are contextually equivalent, s ∼c t, iff s ≤c t and t ≤c s.

4.2 Equivalence of L and LS

In the following theorem we use the measure lenM (·) also for LS-evaluations.

Theorem 4.1. Let s be an expression. Then s ⇓LS
⇔ s ⇓L.

Let M ⊆ {(case), (seq), (lbeta), (choice)}. Then for every L-evaluation U of s
there is an LS-evaluation U ′ of t with lenM (U) = lenM (U ′), and for every LS-
evaluation U ′ of t there is an L-evaluation U of s with lenM (U) = lenM (U ′).

Proof. We show the directions separately:
Let s be an expression with s ⇓LS

. Then we show that s ⇓L. We assume

s0
no,LS ,k−−−−−→ sk where sk is a LS-WHNF and k ≥ 0. We show s0 ⇓L by induction

on k. For the base case s0 is a LS-WHNF and obviously also a L-WHNF. For
the induction step let k > 0 and s0

no,LS−−−−→ s1
no,LS ,k−1−−−−−−−→ sk. From the induction

hypothesis we have s1 ⇓L. If s0
no,LS ,choice−−−−−−−−→ s1 then Lemma 3.3 and s1 ⇓L imply

s0 ⇓L. Otherwise, s0 ⇓L follows from the lemmas in subsection 3.4 showing that
all LS-reduction except for (choice) are contained in ∼c,L.

Let M = Mmax \ {(lll)} and let U be a normal order L reduction for s. We
show by induction on lenM (U) that there exists a normal order LS-reduction
ULS

for s.

16 M. Schmidt-Schauß, M.Mann

For the base case let lenM (U) = 0. Then U consists only of (lll)-reductions.
We show by a sub-induction on the number of (lll)-reductions of U that there
exists a normal-order LS-reduction for s. If U is empty then s is an L-WHNF.
Then either s is also an LS-WHNF, or it can be reduced to an LS-WHNF by a
(no,LS ,abs)−−−−−−−→ if necessary and subsequent

(no,LS ,cp)−−−−−−−→-reductions. If U is not empty
then every (lll)-reduction in U is also a (no, LS , lll) normal order reduction and
the claim follows obviously.

Now we treat the case lenM (U) > 0. Let U = s
no,L,lll,∗−−−−−−→ s1

U ′

−→, where
the first reduction of U ′ is not an (lll)-reduction. For the construction of ULS

we will use as prefix s
no,L,lll,∗−−−−−−→ s1 since these reduction sequence are also a

normal-order LS-reduction sequence. Obviously lenM (U ′) = lenM (U).

Now let s1
no,L,a−−−−→ s2 be the first reduction of U ′, where a is not an (lll)-

reduction. If a ∈ {(lbeta), (case-c), (seq-c), (choice)} then
no,L,a−−−−→ is also a normal

order reduction for LS and the measure lenM is strictly decreased. Using the in-
duction hypothesis we derive the demanded normal-order L-reduction-sequence.

Otherwise, i.e. if the L-reduction exploits bindings over several variable-
variable-bindings, the following diagrams show how normal-order LS-reduction
sequence can be derived for the first reduction:

x = (c t1 t2) x = (c x1 x2) x = (c t1 t2)
in case x . . . in case x . . . in seq x . . .

s1

no,LS ,abs

��

no,L,case−e// s2

S,cpcx,∗

����
��
��
��
��
��
��
��
��
��
�

·
no,LS ,cp,+

��
·

no,LS ,case

��
s′

s1

no,LS ,cp,+

��

no,L,case−e// s2

S,cpcx,∗
����
��
��

·

no,LS ,case

��

·

S,cpx,∗
����
��
��

·

S,gc,∗
��

s′

s1

no,LS ,abs

��

no,L,seq−e// s2

S,abs
����
��
��

·
no,LS ,cp,+

��

·

S,cpcx,∗

����
��
��
��
��
��
��

·

no,LS ,seq

��
s′

x = (c x1 x2) x = (λx.s) x = λz.s, y = x
in seq x . . . in seq x . . . in R[y] . . .

s1

no,LS ,cp,+

��

no,L,seq−e// s2

S,cpcx,∗

��

·

no,LS ,seq

��
s′

s1

no,LS ,cp,+

��

no,L,seq−e// s2

S,cpS,+

��

·

no,LS ,seq

��
s′

s1

no,LS ,cp,n

��

no,L,cp// s2

S,cpS,n−1~~}}
}}

}}
}}

s′

Equivalences and Standardization in a Non-Deterministic Calculus 17

Let U ′ = s1
no,L,a−−−−→ s2 U ′′. Then by the lemmas in subsection 3.4, in particular

the claims on the reduction lengths, we derive a normal-order L-reduction Us′

for s′ with lenM (Us′) ≤ lenM (U ′′). Note that only the reductions (abs) and (gc)
modify the number of (lll)-reductions.

Since lenM (U ′′) < lenM (U ′) = lenM (U) we can apply the induction hypoth-
esis to Us′ and hence have a normal order LS reduction for s′ and using the
diagrams above also a normal order LS reduction for s.

Corollary 4.2. The contextual preorders and contextual equivalence of L and
LS are identical, i.e. ≤c,L = ≤c,LS

and ∼c,L = ∼c,LS
.

Proof. This follows from Theorem 4.1 and since the contexts of L and LS are
identical.

5 The Approximation Calculus

We define the approximation calculus LA related to LS , such that LA is a
SHOCS (see [MSS06,MSS07]), the contextual preorders of the two calculi are
equivalent, and such that the result that simulation implies contextual preorder
can be applied to LA (see [MSS06,MSS07]). The calculus LA is related to the
one in [Man05a,Man05b], however, extended and modified, insofar as all the
let-shuffling rules from L are omitted, and constructors, a case and seq are
added.

5.1 Rules of the Approximation Calculus

The syntax is the same as for L and LS , where in addition a non-constructor
constant } is permitted as expression. We will also use non-closing surface-
contexts, which are surface contexts such that the hole is not in the scope of a
let-binder of the context. We denote the class of contexts as NS. The canonical
operators in the sense of the higher-order abstract syntax are λ and the construc-
tors. A pseudo-value in this calculus is built from constructors, abstractions, and
}, and var-pseudo-value is built from constructors, abstractions, variables and
}, and an answer is a var-pseudo-value that is not the }-constant and not a
variable. The rules of LA are defined in figure 4.

A term s converges w.r.t. LA: t ⇓A iff t
A,NS,∗−−−−−→ v, where v is an answer.

Two terms s, t are related by contextual preorder, s ≤c,A t, iff ∀C : C[s] ⇓A =⇒
C[t] ⇓A, and s, t are contextually equivalent, s ∼c,A t, iff s ≤c,A t and t ≤c,A s.

5.2 Equivalence of L and LA

We have to argue that the addition of } to the syntax of L is not significant.
Let L} be the calculus L on the expressions and contexts that may contain },

18 M. Schmidt-Schauß, M.Mann

(cpA) (let x = v in s) →A s[v/x] if v is a var-pseudo-value
(stop) s →A } if s is not an answer
(choicel) (choice s t) →A s
(choicer) (choice s t) →A t
(seq) (seq v t) →A t if v is an answer
(betaA) ((λx.s) v) →A s[v/x] if v is a var-pseudo-value
(caseA) (case (c v1 . . . vn)

of . . . (c x1 . . . xn → t) . . .) →A t[vi/xi] if vi are var-pseudo-values

The LA-reduction
A,NS−−−−→ is defined as any of the reductions in non-closing surface

contexts.

Fig. 4. Reductions in LA: Approximation Reductions

but with the same definition of reductions rules, normal-order reduction and
WHNFs. The corresponding convergence is denoted using the suffix L}. Let φ
be the translation of expression from L} to expressions of L which replaces every
occurrence of } by Ω. Then the following holds:

Proposition 5.1. Let s be an L}-expression. Then s ⇓L} ⇐⇒ φ(s) ⇓L.
Moreover, for all L}-expressions s, t the relation s ≤c,L} t ⇐⇒ φ(s) ≤c,L}

φ(t) ⇐⇒ φ(s) ≤c,L φ(t) holds.

Proof. The main argument is that } does not converge, since it is not a con-
structor. If s ⇓L} then the unwind and the normal-order reduction are the
same (related by φ) whatever is replaced for }, hence φ(s) ⇓L. If φ(s) ⇓L, then
the subexpression Ω is not touched by the reduction rules, since R[Ω] diverges
for every reduction context R. Hence s ⇓L} . The equivalence of the preorders
follows from the fact that φ(C[s]) = φ(C)[φ(s)] for all L}-contexts C and L}-
expressions s.

For the following, we drop the distinction between L and L}, and assume
that the calculus L} is used. We can use all the lemmas on equivalences and
lengths of reductions w.r.t. L also for LA.

Now we show the equivalence of L and LA by proving that s ⇓ ⇐⇒ s ⇓A

for all s for all expression s.

Theorem 5.2. For all expressions s: s ⇓A =⇒ s ⇓ ⇐⇒ s ⇓LS
.

Proof. We use the lemmas available for the calculus L and show that the LA-
reduction rules retain contextual equivalence w.r.t. L:
Let s ⇓A. The reduction starts as s

a,LA−−−→ s1 with s1 ⇓A. Then we show by induc-
tion on the length of the LA-reduction of s1 that there is also an L-evaluation
of s1.
The base case is trivial. For the induction hypothesis assume that s

a,LA−−−→ s1

and that s1 ⇓L.

Equivalences and Standardization in a Non-Deterministic Calculus 19

– If a is a (cpA)-reduction, then it is translated as a sequence of
S,(abs)−−−−→,

S,lll−−−→,
S,(cpcx)−−−−−→,

S,(cpx)−−−−−→,
S,(cp)−−−−→ and

S,(cpbot)−−−−−−→-reductions with subsequent
(gc)−−→-reductions. The lemmas in subsection 3.4 show that all these reductions
retain the L-equivalence class and hence that s ⇓L holds.

– If the reduction a is a (stop)-reduction, then s ≥c s1 by Lemma 3.20, and
hence s ⇓L.

– If the reduction a is a (choice)-reduction, then s ≥c s1 by Lemma 3.3, and
hence s ⇓L.

– If the reduction a is a (seq)-reduction, then it is a (seq-c)-reduction in L,
and hence s ⇓L by Lemma 3.2.

– If the reduction a is a (case)-reduction, then it is a (case-c)-reduction in L,
and hence s ⇓L by Lemma 3.2.

– If the reduction a is a (betaA)-reduction, then it can be simulated by an
(lbeta) and then treated as a (cpA)-reduction, hence s ⇓L by the above
arguments and by Lemma 3.2.

We conclude that s ⇓LS
.

The second claim follows from Theorem 4.1.

5.3 Approximation-Convergence Implies L-Convergence

The direction s ⇓L =⇒ s ⇓A for all s requires to find an approximation re-
duction from s to an answer, given a normal-order reduction of s, in particular,
the reduction must be free of (let)-shuffling rules. How this can be achieved
is demonstrated for a small non-deterministic calculus in [Man05a,Man05b]. We
will show a specialized claim, where s ⇓A is shown for a restricted approximation
reduction.

5.4 A Less Non-Deterministic Approximation Reduction

The goal now is to show that for every s with s⇓LS
, there is an approximation

reduction of s to an answer. It is more convenient to show that there is a special
kind of approximation reduction; an AP-reduction, defined as follows.

Definition 5.3. Let AP be a class of contexts, where the hole can be reached by
a label-shift of S using the following rules exhaustively:

(s t)S → (sS t)
(vS t) → (v tS) if v is a var-pseudo-value
(let x = s in t)S → (let x = sS in t)
(seq s t)S → (seq sS t)
(case s alts)S → (case sS alts)
(c s1 . . . sn)S → (c s1 . . . sS

i . . . sn) if si is not a var-pseudo-value,
and for all j < i: sj is a var-pseudo-value.

Note that AP-contexts are non-closing surface-contexts.
We define AP−−→ as a A−→-reduction in an AP -context; and s ⇓AP iff s

AP,∗−−−→ v

20 M. Schmidt-Schauß, M.Mann

for some answer v.

Now we argue that the following “commuting diagrams” hold between
normal-order reductions (LS , no) and successive AP−−→-reduction:

Lemma 5.4. A complete set of commuting diagrams for a single LS-evaluation
with an AP-reduction is:

· AP //_____

no

��

·
no

���
�
� ·

AP,∗

%%KKKKKK

no

��
· AP // · ·

AP,+
// ·

Proof. By inspecting the AP-reductions and the cases of an overlap. We show a
critical overlap:

case (c t1 t2) of
(c x1 x2)→ s

AP,∗

))TTTTTTT

no

��

case (c t′1 t′2) of
(c x1 x2)→ s

AP

))TTTTTTT

let x1 = t1, x2 = t2 in s
AP,+ // s[t′1/x1, . . . , t

′
n/xn]

Now we can show the existence of an AP-evaluation for LS , no-converging
expressions.

Proposition 5.5. Let s be an expression that has an LS-evaluation. Then there
is also an AP-evaluation of s to an answer.

Proof. The proof is by induction on the length of an LS-evaluation. Assume
that s

LS ,k−−−→ t where t is a WHNF. If k = 0 then s is a WHNF, and hence
there is an AP-reduction to an answer by removing a potential let-environment
using (cpA), where perhaps several }-reductions may be necessary to en-

able a (cpA)-reduction; e.g. (let x = (s1 s2) in (c x))
AP,(stop)−−−−−−→ (let x =

} in (c x))
AP,(cpA)−−−−−−→ (c }).

For the induction step, let k > 0, i.e. s
LS−−→ s′

LS ,k−1−−−−−→ t. We apply the in-
duction hypothesis to s′

LS ,k−1−−−−−→ s and obtain an AP-reduction of s′ to an
answer. We show that for every sequence s

LS−−→ s′
AP,∗−−−→ v where v is an an-

swer, there exists an AP-reduction of s to an answer using a sub-induction
on the length of the AP -reduction s′

AP,∗−−−→ v. The base case is that s′ is
an answer. Then s

LS−−→ s′ must be a (choice) or (seq) reduction. If it is a

Equivalences and Standardization in a Non-Deterministic Calculus 21

LS ,(choice)−−−−−−−→-reduction, then this reduction can also be used as AP-reduction. If

it is a
LS ,(seq)−−−−−→-reduction, then it is of the form (seq v w) LS−−→ w, where v

is a value, and w is an answer. It is obvious that v
AP,(stop),∗−−−−−−−→ v′ such that

v′ is an answer, hence (seq v w)
AP,(stop),∗−−−−−−−→ (seq v′ w) AP−−→ w is an AP-

reduction to an answer. Otherwise, if the length of s′
AP,∗−−−→ v is greater than 0,

we apply a commuting diagram from Lemma 5.4: If the first diagram is appli-
cable we have s

AP−−→ s′′
Ls−−→ s′′′

AP,∗−−−→ v. Applying the induction hypothesis to
s′′

Ls−−→ s′′′
AP,∗−−−→ v we have an AP-reduction to an answer for s′′ and also for s.

If the second diagram is applicable then the AP-reduction for s is derived after
the application of the diagram.

As a summary, we obtain the following:

Theorem 5.6. Let s be an expression.
Then s ⇓L ⇐⇒ s ⇓S ⇐⇒ s ⇓A ⇐⇒ s ⇓AP

To use AP-reductions instead of A-reductions for simulation-proofs, we need
a stronger claim about the relationship between AP-reduction and A-reductions:

Theorem 5.7. Let s be an expression. Then for all answers v: s
AP,∗−−−→ v ⇐⇒

s
A,∗−−→ v

Proof. The direction s
AP,∗−−−→ v =⇒ s

A,∗−−→ v is trivial, since every AP-reduction
is an A-reduction.
For the other direction, we first compute the commuting diagrams for all situa-
tions s

AP−−→ s′
A−→ s′′: The possibilities are:

s
AP //___

A

��

s(3)

A

���
�
�

s

AP

!!C
C

C
C

A

��

s

AP

""E
E

E
E

E

A

��

s′
AP // s′′ s′

AP
// s′′ s(3)

AP

""F
F

F
F

s′
AP

// s′′

This can be verified by inspecting the AP-reduction and A-reductions and the
cases of an overlap. We show a critical overlap:

C[D[s]]

AP

%%JJJJJJ

A

��
C[D[s′]] AP // C[}]

The third diagram above occurs if the A-reduction s
A−→ s′ turns into an AP-

reduction.

22 M. Schmidt-Schauß, M.Mann

The proof of s
A,∗−−→ v =⇒ AP,∗−−−→ v is by induction on the length of the reduction

s
A,∗−−→ v. If the length is 0, then s is an answer, and the AP-reduction is also of

length 0. Now let the length be at least 1. Then we treat the case s
A−→ s′

A,∗−−→ v,
where by induction hypothesis, s′

AP,∗−−−→ v. In this situation we make a sub-
induction on the length of the AP-reduction. If the length of s′

AP,∗−−−→ v is 0,
then s′ is an answer, and then s

A−→ s′ must also be an AP-reduction. If the
length of s′

AP,∗−−−→ v is at least 1, then we have s′
AP−−→ s′′

AP,∗−−−→ v, and one of the
commuting diagrams above is applicable to s

A−→ s′
AP−−→ s′′. If the first diagram is

applicable, we obtain s
AP−−→ s(3) A−→ s′′

AP,∗−−−→ v and by the induction hypothesis,
we get an AP-reduction s(3) AP,∗−−−→ v, and hence s

AP,∗−−−→ v. If the second or third
diagram applies, then we immediately have a reduction s

AP,∗−−−→ v.

6 Simulation and Examples

Since all reductions of the approximation calculus LA of the previous section
match a rule-format of a SHOCS (see [MSS07,MSS06], and L and LA have iden-
tical contextual preorder, we can apply the main theorem in [MSS07] which tells
us that similarity in LA is a proof tool for contextual equivalence in LA and
hence in L. Note that the alternative in a case for a zero-ary constructor is en-
coding like a unary constructor. Instead of the general approximation reduction,
we can use the more deterministic AP -reduction (see Proposition 5.5 and The-
orem 5.7), which has a smaller set of possibilities of reductions for expressions.
The non-deterministic choices are whether the reduction (choice) selects the left
or right argument, and whether to use (stop) or another reduction.

The definition of simulation in the calculus LA, as an instance of the general
definition in [MSS07], is as follows:

Definition 6.1. The behavioral preorder ≤b is the greatest relation on closed
expressions satisfying the following two conditions:

– For all closed expressions s, t: If s ⇓AP λx.s′, then t ⇓AP λx.t′ and for all
closed pseudo-values r: s′[r/x] ≤b t′[r/x].

– For all closed expressions s, t: If s ⇓AP (c s1 . . . sn), then t ⇓AP (c t1 . . . tn)
and for all i: si ≤b ti.

The relation ≤o
b on all expressions is defined as the open extension on

pseudo-values, i.e. for all s ≤o
b t ⇐⇒ for all pseudo-values r1, . . . rn :

s[r1/x1, . . . , rn/xn] ≤b t[r1/x1, . . . , rn/xn], where FV(s, t) = {x1, . . . , xn}.
Similarity 'b is defined as 'b := ≤o

b ∩ ≥o
b .

Theorem 6.2. The relation ≤o
b ⊆ ≤c holds for the calculi L and LS.

Proof. This follows from Theorem 5.6 and the main theorem in [MSS07].

Equivalences and Standardization in a Non-Deterministic Calculus 23

We define some combinators and recursive functions used in the following
examples.

K := λxy.x
Y := λf.(λx.f(x x)) (λx.f(x x))
Y2 := λf.(λxy.f(x y y)) (λxy.f(x y y)) (λxy.f(x y y))
map := Y (λm.λf.λxs.caselist xs of

(Nil→ Nil)
(Cons y ys)→ Cons (f y) (m f ys))

repeat := Y (λr.λx.Cons x (r x))

It is easy to see that Y K 'b Y2 K using AP -reduction. The main argument
is that all the answers in every recursion of the similarity-test are abstractions.
The definition of .b shows that the terms Y K and Y2 K are mutually similar,
and hence (Y K) ∼c (Y2 K).

A further example where s 'b t is easy to verify using simulation, and hence
s 'c t holds, are the two terms

s0 := (Cons (choice 0 1) Nil)
t0 := (choice (Cons 0 Nil) (Cons 1 Nil))

Note that similarity-testing requires s to AP -reduce to an answer, hence the
expression (choice 0 1) will be reduced before comparisons. Further contextual
equivalences that can immediately be derived using bisimilarity are commuta-
tivity, idempotency and associativity of choice seen as a binary operator.

A third example for the simulation method is the proof of equivalence of

s1 := Y (λr.Cons (choice 0 1) r)
t1 := map (λf.f 0) (repeat (λz.choice 0 1))

which are lists with elements 0, 1, where the selection can be made indepen-
dently for every element.

Using simulation and co-induction these two expressions can be shown as
contextually equivalent. We show a particular reduction for each expression.

(λf.(λx.(f (x x))) (λx.(f (x x)))) (λr.Cons (choice 0 1) r)
AP−−→ (λx.(F (x x))) (λx.(F (x x)))

where F = (λr.Cons (choice 0 1) r)
AP−−→ (F (G G))

where G = (λx.(F (x x)))
AP−−→ (F })
AP−−→ Cons (choice 0 1) }
AP−−→ Cons 0 }

In the reduction of the second expression we assume that map and repeat are
defined as above.

24 M. Schmidt-Schauß, M.Mann

map (λf.f 0) (repeat (λz.(choice 0 1)))
→ M (λf.f 0) (repeat (λz.(choice 0 1)))

where M = (λx.(M1 (x x))) (λx.(M1(x x)))
and M1 is the case-abstraction of the definition

AP,∗−−−→M2 (λf.f 0) (repeat (λz.(choice 0 1)))
where M2 = (M1 })

AP,∗−−−→M3 (λf.f 0) (repeat (λz.(choice 0 1)))
where M3 = λf ′.λxs.case xs of (Nil→ Nil)

((Cons y ys)→ Cons (f ′ y) (} f ′ ys)))
AP,∗−−−→ case L of (Nil→ Nil) ((Cons y ys)→ Cons (F ′ y) (} F ′ ys)))

where L = (repeat F ′′)
and F ′ = (λf.f 0) and F ′′ = (λz.(choice 0 1))

AP,∗−−−→ case L′ of (Nil→ Nil) ((Cons y ys)→ Cons (F ′ y) (} F ′ ys)))
where L′ = (Cons F ′′ (} F ′′))

AP,∗−−−→ case L′′ of (Nil→ Nil) ((Cons y ys)→ Cons (F ′ y) (} F ′ ys)))
where L′′ = (Cons F ′′ (} F ′ ys))

AP,∗−−−→ Cons ((λz.(choice 0 1)) 0) (} F ′ ys)
AP−−→ Cons (choice 0 1) (} F ′ ys)
AP,∗−−−→ Cons 0 }

For every AP-evaluation of the first expression, the second one has a corre-
sponding AP-evaluation.

A further example are the lists

s2 := repeat (choice 0 1)
t2 := choice (repeat 0) (repeat 1)

It is not hard to see that s1 6∼c s2, since the latter corresponds either to
an infinite lists of 0’s or of 1’s, and where contexts are easily constructed that
distinguish s1 and s2.

We show the respective AP-reductions. The AP-reduction of (Y F) results
in:

Y F
AP,∗−−−→ Fn(F ′ F ′)
AP−−→ Fn }

where F 1 a = Fa and Fn+1 a = F (Fn a)
and F ′ = λx.F (x x)

Thus the possibilities of AP-reductions of s2 can be illustrated as follows:

Equivalences and Standardization in a Non-Deterministic Calculus 25

repeat (choice 0 1)
AP,∗−−−→ (Fn } (choice 0 1)

where F = (λr.λx.Cons x (r x))
AP−−→ (Fn } 0) or (Fn } 1)
AP,∗−−−→ (Cons 0 (Cons 0 . . . (Cons 0 }))) or (Cons 1 (Cons 1 . . . (Cons 1 })))

The reduction of t2 results in (Cons 0 (Cons 0 . . . (Cons 0 }))) for repeat 0
and (Cons 1 (Cons 1 . . . (Cons 1 }))) for repeat 1, hence t2 can reduce to
(Cons 0 (Cons 0 . . . (Cons 0 }))) or to (Cons 1 (Cons 1 . . . (Cons 1 }))).

This shows that s2, t2 have the same answers using AP-reductions, hence
they are bisimilar, and hence contextually equivalent.

7 Conclusion and Further Research

We have show the equivalence of three different reductions in a non-deterministic
call-by-need calculus with case, constructors and let, which shows that there is an
interesting prototypical instance for a calculus that is covered by SHOCS, where
the simulation method as described in [MSS07] can be used advantageously.

Future work will be to extend the simulation method to non-deterministic
call-by-need calculi with a letrec (as in Haskell), and to extend the contextual
preorder to also include must-convergence, which is required for a fully appro-
priate contextual equivalence in non-deterministic calculi.

Acknowledgement

We thank David Sabel for his help, for discussions and reading versions of the
paper; and also the anonymous referees of the SHOCS-paper for their hints and
demands.

References

Abr90. Samson Abramsky. The lazy lambda calculus. In D. A. Turner, editor, Re-
search Topics in Functional Programming, pages 65–116. Addison-Wesley,
1990.

AF97. Z. M. Ariola and M Felleisen. The call-by-need lambda calculus. J. Funct.
Programming, 7(3):265–301, 1997.

AFM+95. Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A call-
by-need lambda calculus. In Principles of Programming Languages, pages
233–246, San Francisco, California, 1995. ACM Press.

Gor99. Andrew D. Gordon. Bisimilarity as a theory of functional programming.
Theoret. Comput. Sci., 228(1-2):5–47, October 1999.

How89. D. Howe. Equality in lazy computation systems. In 4th IEEE Symp. on
Logic in Computer Science, pages 198–203, 1989.

26 M. Schmidt-Schauß, M.Mann

Man05a. Matthias Mann. Congruence of bisimulation in a non-deterministic call-by-
need lambda calculus. Electron. Notes Theor. Comput. Sci., 128(1):81–101,
2005.

Man05b. Matthias Mann. A Non-Deterministic Call-By-Need Lambda Calculus:
Proving Similarity a Precongruence by an Extension of Howe’s Method
to Sharing. PhD thesis, Dept. of Computer Science and Mathematics,
J.W.Goethe-Universität, Frankfurt, Germany, 2005.

MOW98. John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda
calculus. J. Funct. Programming, 8:275–317, 1998.

MSC99. Andrew K. D. Moran, David Sands, and Magnus Carlsson. Erratic fudgets:
A semantic theory for an embedded coordination language. In Coordination
’99, volume 1594 of Lecture Notes in Comput. Sci., pages 85–102. Springer-
Verlag, 1999.

MSS06. Matthias Mann and Manfred Schmidt-Schauß. How to prove similarity
a precongruence in non-deterministic call-by-need lambda calculi. Frank
report 22, Inst. f. Informatik, J.W.Goethe-University, Frankfurt, January
2006.

MSS07. Matthias Mann and Manfred Schmidt-Schauß. How to prove similarity a
precongruence in a broad class of non-deterministic call-by-need lambda
calculi, 2007. submitted.

Pit97. Andrew D. Pitts. Operationally-based theories of program equivalence. In
Semantics and Logics of Computation. Cambridge University Press, 1997.

SSS07. Manfred Schmidt-Schauß and David Sabel. On generic context lemmas
for lambda calculi with sharing. Frank report 27, Inst. f. Informatik,
J.W.Goethe-University, Frankfurt, 2007.

SSSS04. Manfred Schmidt-Schauß, Marko Schütz, and David Sabel. On the safety
of Nöcker’s strictness analysis. Frank report 19, Inst. f. Informatik,
J.W.Goethe-University, Frankfurt, 2004.

SSSS07. Manfred Schmidt-Schauß, Marko Schütz, and David Sabel. Safety of
Nöcker’s strictness analysis. J. Funct. Programming, 00(99), 2007. accepted
for publication.

	On Equivalences and Standardization in a Non-Deterministic Call-by-Need Lambda Calculus

