
Space Improvements for Total Garbage Collection

Manfred Schmidt-Schauß and Nils Dallmeyer

Goethe-University, Frankfurt, Germany

Technical Report Frank-61

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

April 15, 2019

Abstract. The focus of this paper are space-improvements of programs, which are transformations that do
not worsen the space requirement during evaluations. A realistic theoretical treatment must take garbage
collection method into account. We investigate space improvements under the assumption of an optimal
garbage collector. Such a garbage collector is not implementable, but there is an advantage: The investi-
gations are independent of potential changes in an implementable garbage collector and our results show
that the evaluation and other similar transformations are space-improvements.

1 Introduction

Optimizing programs w.r.t. the runtime is ubiquitous in computer science and implemented in com-
pilers. It is important to also observe the space usage of these optimizations. These may enlarge the
program due to optimizations, for example by inlining, duplicating and specializing code, and also the
required space during runtime may be enlarged. Our objective is to investigate the behaviour of pro-
grams w.r.t. their space usage, in particular for the optimization method that iterates the application
of (small) transformations to the given program.

The target languages are call-by-need functional programming languages like Haskell [5, 2], since
these permit many correct program transformations. Early work on program transformations was
[7, 6], which is our paradigm for optimizations of programs. A motivation to investigate the space
behavior of (runtime-optimizing) transformations is the observation [3, 4, 1] that simple correct tran-
formations my drastically increase the space uage. An example is (head xs) eqBool (last xs) vs.
(last xs) eqBool (head xs) for a list-expression xs that generates a long list of Booleans (using the
Haskell-conventions).

Work on space-improvements in call-by-need functional languages [3, 4] was based on a garbage
collector that removes immediately detectable unused bindings in letrec-expressions. The same garbage
collecting method was used in our investigations in [8].

The focus of this paper is the space-behaviour during evaluations. A realistic theoretical treatment
must take runtime garbage collection into account. We will investigate space behaviour under the
assumption of an optimal garbage collector. Such a garbage collector is clearly not implementable,
but there is an advantage of this investgation: The results are independent of potential changes in an
implementable garbage collector and are hepful as guidelines which transformations are safe.

The optimal garbage collection is with respect to a single evaluation and thus not correct in every
context, however, we use it for measuring the space usage of correct transformations and thus obtain
information on the true requirement of space.

The contributions and results of this paper are: A definition (Def. 3.3) of the optimum of
garbage collectable positions and a space measure size for expressions and sps for complete eval-
uations, that do not count the garbage collectable expressions w.r.t. this optimal garbage collector.

2 M. Schmidt-Schauß and N. Dallmeyer

It also does not take into account the specifics of representing lets and indirections. This makes the
results robust against modifications of the realistic garbage collection and realistic representation of
bindings in the store. We prove a context lemma for space improvement w.r.t. to an optimal garbage
collector (Theorem 3.17), and prove that several transformations are space improvements or space
equivalences w.r.t sps in Sect. 4.

The structure of this paper is to first define the calculus LR in Sect. 2. Sect. 3 defines the optimal
garbage collector, space improvements and context lemmas. Sect. 4 contains analyses of the space
behaviour of several transformations.

2 The Call-by-Need Lambda Calculus LR

We recall the calculus LR [9], which is an untyped call-by-need lambda calculus that extends the
lambda calculus by recursive letrec, data constructors, case-expressions, and the seq-operator. We
present the syntax and reduction rules. Omitted details and further information can be found in [9].

Let Var be a countable infinite set of variables. We assume that there is a fixed set of type
constructors K, where every type constructor K ∈ K has an arity ar(K) ≥ 0, and there is a finite,
non-empty set DK = {cK,1, . . . , cK,|DK |} of data constructors. Every data constructor has an arity
ar(cK,i) ≥ 0.

The syntax of expressions r, s, t ∈ Expr of LR is defined in Fig. 1. We write FV (s) for the set
of free variables of an expression s. Besides variables x, abstractions λx.s, and applications (s t) the
syntax of LR comprises the following constructs: Constructor applications (cK,i s1 . . . sar(cK,i)) always
occur fully saturated. In the notation we sometimes omit the index of the constructor or use vec-
tor notation and thus write for instance (c−→s) instead of (cK,i s1 . . . sar(cK,i)). In a letrec-expression
letrec x1 = s1, . . . , xn = sn in t all variables x1, . . . , xn must be pairwise distinct, the scope of
xi is all si and t. The bindings x1 = s1, . . . , xn = sn are called the letrec-environment and t
is called the in-expression. We write LV (Env) for the binding variables of a letrec-environment
Env and sometimes write {xi = ti}ni=1 as abbreviation for such an environment. For a chain
of variable-to-variable bindings xj = xj−1, xj+1 = xj , . . . , xm = xm−1 we use the abbreviation
{xi = xi−1}mi=j . A seq-expression (seq s t) can be used for strict evaluation of expressions, since
the expression s must be successfully evaluated before t is evaluated. For every K ∈ K there is
a case-expression (caseK s (cK,1 x1 . . . xar(cK,1) -> t1) . . . (cK,|DK | x1 . . . xar(cK,|DK |)

-> t|DK |)) with

exactly one case-alternative ((cK,i x1 . . . xar(cK,i)) -> ti) for every data constructor cK,i ∈ DK . The
variables x1, . . . , xar(cK,i) in the case-pattern ((cK,i x1 . . . xar(cK,i)) -> ti) must be pairwise distinct and
the scope of the variables x1, . . . , xar(cK,i) is the expression ti. We sometimes use alts to abbreviate
the case-alternatives.

Definition 2.1. A context C is an expression with a hole (denoted by [·]) at expression position.
Surface contexts S are contexts where the hole is not in an abstraction, top contexts T are surface
contexts where the hole is not in an alternative of a case, and weak top contexts are top contexts
where the hole is not in a letrec-expression. With C[s] we denote the substitution of the hole in the
context C by expression s. A multicontext M is an expression with zero or more (different) holes at
expression positions.

A value in LR is an abstraction λx.s or a constructor application (c−→s). The reduction rules of LR
are defined in Fig. 2. The rule (lbeta) is the sharing variant of classical β-reduction. The rules (cp-in)
and (cp-e) copy abstractions. The rules (llet-in) and (llet-e) join two letrec-environments. The rules

r, s, t ∈ Expr := x | λx.s | (s t) | (cK,i s1 . . . sar(cK,i)) | (letrec x1 = s1, . . . , xn = sn in t) | (seq s t)

| (caseK s (cK,1 x1 . . . xar(cK,1) -> t1) . . . (cK,|DK | x1 . . . xar(cK,|DK |) -> t|DK |))

Fig. 1. Expressions of the language LR where x, xi ∈ Var are term variables

Space Improvements for Total Garbage Collection 3

(lbeta) C[((λx.s) r)]→ C[(letrec x = r in s)]

(cp-in) (letrec x1 = (λx.s), {xi = xi−1}mi=2,Env in C[xm])
→ (letrec x1 = (λx.s), {xi = xi−1}mi=2,Env in C[λx.s])

(cp-e) (letrec x1 = (λx.s), {xi = xi−1}mi=2,Env , y = C[xm] in r)
→ (letrec x1 = (λx.s), {xi = xi−1}mi=2,Env , y = C[λx.s] in r)

(llet-in) (letrec Env1 in (letrec Env2 in r))→ (letrec Env1,Env2 in r)

(llet-e) (letrec Env1, x = (letrec Env2 in sx) in r)→ (letrec Env1,Env2, x = sx in r)

(lapp) C[((letrec Env in t) s)]→ C[(letrec Env in (t s))]

(lcase) C[caseK (letrec Env in t) alts]→ C[(letrec Env in caseK t alts)]

(lseq) C[seq (letrec Env in s) t]→ C[(letrec Env in seq s t)]

(seq-c) C[seq v t]→ C[t], if v is a value

(seq-in) letrec x1 = (c
−→
t), {xi = xi−1}mi=2,Env in C[seq xm t]

→ letrec x1 = (c
−→
t), {xi = xi−1}mi=2,Env in C[t]

(seq-e) letrec x1 = (c
−→
t), {xi = xi−1}mi=2,Env , y = C[seq xm t] in r

→ letrec x1 = (c
−→
t), {xi = xi−1}mi=2,Env , y = C[t] in r

(case-c) C[caseK (c
−→
t) . . . (c−→y -> t) . . .]→ C[letrec {yi = ti}ar(c)i=1 in t], if ar(c) ≥ 1

(case-c) C[caseK c . . . (c -> t) . . .]→ C[t], if ar(c) = 0

(case-in) letrec x1 = (c
−→
t), {xi = xi−1}mi=2,Env in C[caseK xm . . . (c−→z -> t) . . .]

→ letrec x1 = (c−→y), {yi = ti}ar(c)i=1 , {xi = xi−1}mi=2,Env in C[letrec {zi = yi}ar(c)i=1 in t],
where ar(c) ≥ 1 and yi are fresh variables

(case-in) letrec x1 = c, {xi = xi−1}mi=2,Env in C[caseK xm . . . (c -> t) . . .]
→ letrec x1 = c, {xi = xi−1}mi=2,Env in C[t], if ar(c) = 0

(case-e) letrec x1 = (c
−→
t), {xi = xi−1}mi=2, u = C[caseK xm . . . (c−→z -> r1) . . .],Env in r2

→ letrec x1 =(c−→y),{yi = ti}ar(c)i=1 ,{xi = xi−1}mi=2, u=C[letrec {zi = yi}ar(c)i=1 in r1],Env
in r2 where ar(c) ≥ 1 and yi are fresh variables

(case-e) letrec x1 = c, {xi = xi−1}mi=2, u = C[caseK xm . . . (c -> r1) . . .],Env in r2
→ letrec x1 = c, {xi = xi−1}mi=2 . . . , u = C[r1],Env in r2, if ar(c) = 0

Fig. 2. Reduction rules

(lapp), (lcase), and (lseq) float-out a letrec from the first argument of an application, a case-, or a
seq-expression. The rules (seq-c), (seq-in), and (seq-e) evaluate a seq-expression, provided that the
first argument is a value (or a variable that is bound (via indirections) to a constructor application).
The rules (case-c), (case-in), and (case-e) evaluate a case-expression provided that the first argument
is (or is a variable which is bound to) a constructor application of the right type.

We also denote unions of rules in Fig. 2 as follows: (case) is the union of (case-c), (case-in), (case-e);
(seq) is the union of (seq-c), (seq-in), (seq-e); (cp) is the union of (cp-in), (cp-e); (llet) is the union of
(llet-in), (llet-e); and (lll) is the union of (llet), (lapp), (lcase), and (lseq).

We assume the distinct variable convention. Normal order reduction steps and notions of termina-
tion are defined as follows:

Definition 2.2 (Normal Order Reduction of LR).

1. Let t be an expression. Then a single normal order reduction step t
LR−−→ t′ is defined by first

undertaking a search for the next needed position (see [9]), and then one of the rules in Fig. 2 is
applied.

2. We write
+−→ for the transitive closure and

∗−→ for the reflexive-transitive closure of →. We write
n−→ for exactly n →-steps and we write

n∨m−−−→ for either n or m steps.

Definition 2.3. A reduction context R is any context in which an immediate normal-order reduction
step can be performed.

Definition 2.4. An expression s is a weak head normal form (WHNF), if s is a value,
or s is of the form letrec Env in v, where v is a value, or s is of the form
letrec x1 = (c

−→
t), {xi = xi−1}mi=2,Env in xm.

4 M. Schmidt-Schauß and N. Dallmeyer

Definition 2.5. An expression s converges, denoted as s↓, iff there exists a WHNF t s.t. s
LR,∗−−−→ t.

This may also be denoted as s ↓ t. We write s↑ iff s↓ does not hold.

We use contextual equivalence as our notion of program equivalence.

Definition 2.6. Let s, t be two LR-expressions. We define contextual equivalence ∼c w.r.t. the oper-
ational semantics of LR: Let s ∼c t, iff for all contexts C[·]: C[s]↓ ⇐⇒ C[t]↓.

A program transformation P is a binary relation on expressions. It is correct iff P ⊆∼c. All introduced
transformations are correct:

Proposition 2.7 ([9]). The program transformations (see Figs. 2 and 4) (lbeta), (case), (seq), (cp),
(lll), (gc), (cpx), (cpcx), (abs), (xch), and (ucp) are correct.

3 Space Improvement for Total Garbage Collection

The idea of total garbage collection is to assume an optimal garbage collection, which means to remove
all subexpressions that do not contribute to termination of the expression. It is clearly undecidable
whether a subexpression is used or not. A motivation to consider this form of total garbage collection
and the corresponding space improvement relation is the following. Practical garbage collectors may
have various strength, depending on their capabilities to predict the non-usage of subexpressions. Our
view is that all these garbage collections are approximations of differing strength to the maximal (total)
garbage collection. Analyzing the improvement property of the total garbage collection (as maximum)
is helpful and independent of the various implementations to garbage collect during evaluations, and
thus of independent value.

The total garbage collection is defined by recognizing garbage-subexpression as follows: their re-
placement by (the nonterminating) constant Bot does not modify the convergence. Positions in terms
are defined as usual as lists p of positive integers representing the path from the root to the tree-
positions. t[p 7→ t′] means the term that is constructed from t by replacing the position p with t′.

Definition 3.1 (garbage-collectable positions). Let Bot be a constant that does not converge
and has all types. A position p of an expression t is called garbage-collectable iff t↓ ⇐⇒ t[p 7→ Bot]↓.

The sequence of replacing garbage-collectable positions is irrelevant:

Lemma 3.2. Let p1, . . . , pn be some garbage collectable positions of t. Then t↓ ⇐⇒ t[p1 7→
Bot , . . . , pn 7→ Bot]↓

Proof. Let t′ := t[p1 7→ Bot , . . . , pn 7→ Bot]. We have t′ ≤c t, hence t′↓ =⇒ t↓. Now assume t↓, and
t′↑. Then the normal-order reduction of t′ must put some successor-position of pk in the expressions
of the reduction sequence in a reduction context, independent of the other positions. Then pk cannot
be a garbage-collectable position, which is a contradiction. Hence t′↓.

Definition 3.3 (Total garbage collection, tgc). Let s be an LR-expression. Then s
tgc−−→ s′ is

defined by total garbage collection; i.e., s′ = s[p1 7→ Bot , . . . , pn 7→ Bot] where the pi, i = 1, . . . , n are
all minimal garbage collectable positions of s. If s is not changed, then it is in tgc-normalform.

Remark 3.4. (tgc) is in general not correct. An example is the closed expression (Cons True Nil),

where (Cons True Nil)
tgc−−→ (Cons Bot Bot), but this transformation is not correct, since the context

(case [·] (Cons x y → x) . . .) distinguishes the two expressions.

Definition 3.5. The size(s) of an expression s is defined in Fig. 3.

Note that the size does not count variable names, nor indirections, nor the nesting of letrecs.
Insofar it is robust w.r.t. different implementations of bindings. The specialized size measure sizetgc
does not even count the garbage collectable positions.

Space Improvements for Total Garbage Collection 5

size(Bot) = 0
size(x) = 0
size(s t) = 1 + size(s) + size(t)
size(λx.s) = 1 + size(s)
size(case e of alt1 . . . altn) = 1 + size(e) +

∑n
i=1 size(alti)

size((c x1 . . . xn) -> s) = 1 + size(s)
size(c s1 . . . sn) = 1 +

∑
size(si)

size(seq s t) = 1 + size(s) + size(t)
size(letrec x1 = s1, . . . , xn = sn in s) = size(s) +

∑
size(si)

Fig. 3. Definition of size

Definition 3.6. Let s be an expression. Then sizetgc(s) := size(s′) where s
tgc−−→ s′.

Definition 3.7. For a closed expressions s, we define sps(s) := max{sizetgc(si) | where si are the
expressions in a normal-order reduction sequence of s}.

Definition 3.8. Let s, t be two LR-expressions with s ∼c t. If for all contexts C, we have sps(C[s]) ≤
sps(C[t]), then we say s totally-space-improves t (or s is a total space-improvement of t) notation
s ≤sps t.
If for all contexts C, we have sps(C[s]) = sps(C[t]), then we say s and t are totally-space-equivalent.
These notions are also extended and used for transformations.

This notion applies to functions that are defined in a library and are then optimized or compiled
We also define a weaker variant that only applies in the immediate evaluation situations: Here we

have in mind the optimizations of a compiler once the program is completely known.

Definition 3.9. We consider the calculus LR. Let s, t be two expressions with s ∼c t. If we have
sps(s) ≤ sps(t), then we say s opportunistically total-space improves t (or s is an opportunistic total
space-improvement of t).

In contrast to the standard notion of space-improvement as in [4, 3, 8] s ≤sps t does not imply
size(s) ≤ size(t) and also not FV (s) ⊆ FV (t), which is an advantage, since this permits a more gen-
eral definition and view of space consumption and space improvements, and it permits more interesting
transformations. However, it implies sizetgc(s) ≤ sizetgc(t):

Lemma 3.10. If s is a total space improvement of t, i.e. s ≤sps t, then sizetgc(s) ≤ sizetgc(t).

Proof. We show that if sizetgc(s) > sizetgc(t) and s ∼c t, then in general s cannot be a total space
improvement of t.
Let us assume that s is a space-improvement of t, and let m = sps(t)− sps(s) ≥ 0.
Let s0 := (seq∗ s . . . s) and t0 := (seq∗ t . . . t), where seq∗ is an iterated seq, and the number of occur-
rences of m+2. Then sps(s0) = sps(s)+(m+1)∗ (1+size(s)), since the normal-order reduction first
only modifies the leftmost s, then normal-order-reduces (seq∗ s . . . s) with one s-occurrence removed.
The same holds for t0: sps(t0) = sps(s) + (m+ 1) ∗ (1 + size(t)). Since size(s) > size(t), we obtain
sps(s0)−sps(t0) = −m+(m+1)∗ (size(s))−size(t) > 0, which is a contradiction to the assumption
that s is a space-improvement of t.

Note that (tgc) is in general not a space improvement, since it is not correct (see Remark 3.4). We
will show below that standard (gc) and also more general forms of garbage collection are total space
improvements.

Definition 3.11. Let (gcg) be a (garbage collecting) transformation that is an approximation of (tgc),
i.e. (gcg) : s → s′ holds, iff there is a set of positions q1, . . . , qn, where every position qi is the same
or below some garbage collectable position and s′ = s[q1 7→ Bot, . . . , qn 7→ Bot].

6 M. Schmidt-Schauß and N. Dallmeyer

Theorem 3.12. In any case (gcg) is an opportunistic total space improvement. If (gcg) is correct,
then (gcg) is a total space improvement.

Proof. We have to show the total space improving property.
Let s0 be an expression and let C be a context, and s0

gcg−−→ s′0. We look at the general reduction
diagram, which is as follows:

C[s0]
tgc
��

gcg // C[s′0]

tgcvv
s1

The reason is that the (gcg)-positions are removed by tgc. s1 is a common expression in the
reduction. We have sizetgc(C[s0]) ≥ sizetgc(C[s′0]). Hence sps(C[s0]) ≥ sps(C[s′0]).

It is easy to see that all normal-order reduction steps with the exception of (cp) are (total) space
improvements, which is in accordance with the space improvement notions in [4, 3, 8].

3.1 A Context Lemma for Total Space-Improvements

We need a context lemma to ease the proofs that transformations are total space improvements. We
will prove it in the calculus LR, but with the adapted measure sizetgc.

Definition 3.13. We consider the calculus LR. Let s, t be two expressions with s ∼c t. If for all
LR-reduction contexts R, if R[s], R[t] are closed and sps(R[s]) ≤ sps(R[t]), then we write s ≤R,sps t.
If for all LR-reduction contexts R, if R[s], R[t] are closed and sps(R[s]) = sps(R[t]), then we write
s =R,sps t.

Lemma 3.14. For every WHNF s, we have sizetgc(s) = 1.

Proof. A WHNF is either a simple WHNF of the form λx.s, (c s1 . . . sn), or letrec Env in s, where
s is a simple WHNF, or letrec Env in x, and x is bound in Env to a simple WHNF. Since after
total garbage collection, the expressions are of the form λx.Bot, (c Bot . . . Bot), or letrec Env in s′,
where s′ is a simple garbage collected WHNF, or letrec Env in x, and x is bound in Env to a simple
garbage collected WHNF. Hence sizetgc(s) is 1.

Definition 3.15. Let s, t be expressions. If for all contexts C, we have sizetgc(C[s]) ≤ sizetgc(C[t]),
then we denote this as s ≤C,sizetgc t. If for all contexts C, we have sizetgc(C[s]) = sizetgc(C[t]), then
we denote this as s =C,sizetgc t.

Lemma 3.16. If M is a multicontext with n holes, and si, ti are expressions with si ≤C,sizetgc ti for
all i, then also M [s1, . . . , sn] ≤C,sizetgc M [t1, . . . , tn].

Proof. We show that claim by induction on the number n of holes. M [s1, . . . , sn] ≤C,sizetgc M [t1, . . . , tn]
follows from M [s1, . . . , sn−1, sn] ≤C,sizetgc M [s1, . . . , sn−1, tn] ≤C,sizetgc M [t1, . . . , tn−1, tn]. The first
holds by assumption on sn, tn, and the second by the induction hypothesis for n− 1.

The following context lemma is similar, but more general than the context lemma in [8].

Theorem 3.17 (Context Lemma for Total Space Improvements). If s ∼c t, s ≤R,sps t, and
s ≤C,sizetgc t then s ≤sps t.

Proof. Let M be a multi-context. We prove the more general claim that if for all i: si ≤R,sps ti, and
M [s1, . . . , sn] and M [t1, . . . , tn] are closed and M [s1, . . . , sn]↓, then M [s1, . . . , sn] ≤sps M [t1, . . . , tn].

By the assumption that si ∼c ti, we have M [s1, . . . , sn] ∼c M [t1, . . . , tn] and thus M [s1, . . . , sn]↓ ⇐⇒
M [t1, . . . , tn]↓. The induction proof is (i) on the number of LR-reduction steps of M [t1, . . . , tn], and
as a second parameter on the number of holes of M . We distinguish the following cases:

Space Improvements for Total Garbage Collection 7

(I) If no hole of M is in a reduction context, then there are two cases:
(i) M [t1, . . . , tn] is a WHNF. The context M itself must be a WHNF, since otherwise there is a hole
of M in a reduction context. Then also M [s1, . . . , sn] is a WHNF, and by the assumption, we have
1 = sps(M [s1, . . . , sn]) ≤ sps(M [t1, . . . , tn]).

(ii) The reduction step is M [t1, . . . , tn]
LR,a−−−→ M ′[t′1, . . . , t

′
n′], and M [s1, . . . , sn]

LR,a−−−→ M ′[s′1, . . . , s
′
n′]

and the pairs (s′i, t
′
i) are renamed versions of pairs (sj , tj). This shows sps(M ′[s′1, . . . , s

′
n′]) ≤

sps(M ′[t′1, . . . , t
′
n′]) by induction.

By Lemma 3.16 and the preconditions of this lemma, the inequation sps(M [s1, . . . , sn]) ≤
sps(M [t1, . . . , tn]), holds, hence by computing the maximum, we obtain sps(M [s1, . . . , sn]) ≤
sps(M [t1, . . . , tn]).

(II) Some tj in M [t1, . . . , tn] is in a reduction position. Then there is one hole, say i,
of M that is in a reduction position w.r.t. only M . With M ′ = M [·, . . . , ·, ti, ·, . . . , ·], we
can apply the induction hypothesis, since the number of holes of M ′ is strictly smaller than
the number of holes of M , and the number of normal-order reduction steps of M [t1, . . . , tn]
is the same as of M ′[t1, . . . , ti−1, ti+1, . . . , tn], and obtain: sps(M [s1, . . . , si−1, ti, si+1, . . . , sn]) ≤
sps(M [t1, . . . , ti−1, ti, ti+1, . . . , tn]). Also by the assumption: sps(M [s1, . . . , si−1, si, si+1, . . . , sn]) ≤
sps(M [s1, . . . , si−1, ti, si+1, . . . , sn]), since M [s1, . . . , si−1, ·, si+1, . . . , sn] is a reduction context. Hence
sps(M [s1, . . . , sn]) ≤ sps(M [t1, . . . , tn]). ut

Corollary 3.18 (Context Lemma for Total Space Equivalence). If s ∼c t, s =R,sps t, and
s =C,sizetgc t then s =sps t.

Proof. Follows by applying Theorem 3.17 in both directions.

3.2 Criteria for Context Lemma Requirements

We show a criterion for ≤C,sizetgc of transformations. First we show a property that is used below
several times in variants.

Lemma 3.19. Let C1, C2 be multi-contexts, such that C1[s1, . . . , sn] ∼c C2[s1, . . . , sn] for all expres-
sions s1, . . . , sn. If p = p1p2 is a garbage collectable position of C1[s1, . . . , sn] that points into si, where
p1,1 is the position of the ith hole of C1 and p2 is the position in si, then for the position p2,1 of ith

hole of C2, also p2,1p2 is a garbage collectable position in C2[s1, . . . , sn].

Proof. The simple argument is that C1[s1, . . . , sn] ∼c C1[p1, . . . , pi[p2 7→ Bot], . . . , sn] ∼c

C2[p1, . . . , pi[p2 7→ Bot], . . . , sn] and hence C2[p1, . . . , pi[p2 7→ Bot], . . . , sn] ∼c C2[s1, . . . , sn]. The
same for the direction from C2 to C1 . Hence the claim holds.

Lemma 3.20. Let s, t be expressions, such that s ∼c t, s = Cs[s1, . . . , sn] and t = Ct[s1, . . . , sn], and
size(Cs) ≤ size(Ct). Moreover the translation T : Cs[r1, . . . , rk] to Ct[r1, . . . , rk] is correct for all rj.
We also assume that all positions in Cs, Ct that are not the hole positions are reduction positions in
the respective contexts. Then s ≤C,sizetgc t.

Proof. Since s ∼c t, which implies C[s] ∼c C[t], the garbage-collectable positions in C are the same
on the left and right hand side. Let p be a garbage-collectable position in C[Cs[s1, . . . , sn]] that is in
s and goes down to s1, w.l.o.g. Since the translation T is correct, the position p can be splitted into
p1p2,sp3 where p2,s is the position of the first hole of Cs. Using Lemma 3.19 we see that also p1p2,tp3
is a garbage collectable position where p2,t is the position of the hole of Ct, and vice versa. For the
position q1 of s and t itself Lemma 3.19 also shows that q1 in C[s] is garbage collectable if q1 in C[t]
is garbage collectable.
Hence there is a 1-1-correspondence between the garbage collectable positions of s in C[s] and t in
C[t]. As a summary, the garbage collectable positions in C[s] and C[t] are in 1-1- correspondence and
either point to equal expressions, or the expression on the s-side is not greater in size than the one of
C[t]. This means sizetgc(C[s]) ≤ sizetgc(C[t]).

8 M. Schmidt-Schauß and N. Dallmeyer

An example for the situation in Lemma 3.20 is the beta-reduction as transformation, i.e.,
((λx.s) t)→ letrec x = t in s, and the two contexts are ((λx.[]1) []2) and (letrec x = []2 in []1).

Note that the rules used in normal-order reduction are (lbeta), (case), (cp), (seq), (llet), (lapp),
(lcase), and (lseq). We show that the claim of Lemma 3.16 holds for these rules with the exception of
(cp), as a prerequisite for arguing on their total space improvement properties.

Lemma 3.21. For the rules a ∈ {(lbeta), (case), (seq), (llet), (lapp), (lcase), (lseq)}, and expressions
s

a−→ t, we have s ≥C,sizetgc t.

Proof. We use Lemma 3.19 implicitly in the following, which implies that a the garbage collectable
positions are transported by the reduction(s). For (lbeta) the preconditions of Lemma 3.16 hold,
since (lbeta) is correct (note that the positions of the characteristic multicontexts of rule (lbeta) are
switched). For the variants of (case) the conditions hold. For (llet), (lapp), (lcase) and (lseq) we have
to formalize these rules by an infinite number of rule formats, since the bindings must be explicit to
satisfy the conditions of Lemma 3.16 – there are no surprises. (seq) may delete a subexpression, but
also all garbage collectable positions are eliminated, hence also this rule satisfies the preconditions. ut

Note that the preconditions of Lemma 3.16 are in general not satisfied for (cp), since the resulting
expression is larger in size, and in general this also holds after applying (LRtgc), see also Proposition
4.1.

Lemma 3.22. For the rules a ∈ {(lbeta), (case), (cp), (seq), (llet), (lapp), (lcase)), (lseq)} with s
a−→ t,

and executed at top, the inequation sps(R[s]) ≥ sps(R[t]) is valid.

Proof. The reduction step is the first one in the normal-order reduction, and the maximum is taken
over all reduction steps, hence the inequation obviously holds.

4 Space-Safe and Unsafe Transformations

We now analyze the space-behaviur of several transformations. The correctness of the used transfor-
mations is shown in [9].

Proposition 4.1. The rule (cp) is in general not a total space improvement.

Proof. It is sufficient to present a counterexample: letrec x = λy.y in seq (x 0) r with r =
seq (x 0) (x 0). A normal-order reduction sequence has the subsequent expressions: seq ((λy.y) 0) r
→ seq (let y = 0 in y) r → let y = 0 in seq y r → let y = 0 in r → . . .

In contrast, copying results in letrec x = λy.y in seq (x 0) (seq ((λy.y) 0) (x 0)), which has an
sps that is strictly greater than before. Note that we have to apply LRtgc before measuring.

Proposition 4.2. The reduction (cp) applied in normal-order is an opportunistic total space-
improvement.

Proof. This holds, since sps maximizes the size values along the normal-order reduction sequence, and
the transformation is at the start of it and no contexts are involved.

We now consider several transformations that are not derived from reduction rules of the calculus.
Let (gc) be the union of (gc1) and (gc2), that is a non-optimal garbage collection only working on the
top-letrec and let (ucp) be the union of (ucp1), (ucp2), (ucp3).

Definition 4.3. Several transformations are defined in Fig. 4.

Proposition 4.4. (cpx) is a total space equivalence.

Space Improvements for Total Garbage Collection 9

(gc1) letrec {xi = si}ni=1,Env in t→ letrec Env in t if ∀i : xi 6∈ FV (t,Env), n > 0

(gc2) letrec x1 = s1, . . . , xn = sn in t→ t if for all i : xi 6∈ FV (t)

(cpx-in) (letrec x = y,Env in C[x])→ (letrec x = y,Env in C[y])
where y is a variable and x 6= y

(cpx-e) (letrec x = y, z = C[x],Env in t)→ (letrec x = y, z = C[y],Env in t) (same as above)

(cpcx-in) (letrec x = c
#»
t ,Env in C[x])→ (letrec x = c #»y , {yi = ti}ar(c)i=1 ,Env in C[c #»y])

(cpcx-e) (letrec x = c
#»
t , z = C[x],Env in t)

→ (letrec x = c #»y , {yi = ti}ar(c)i=1 , z = C[c #»y],Env in t)

(abs) (letrec x = c
#»
t ,Env in s)→ (letrec x = c #»x ,{xi = ti}ar(c)i=1 ,Env in s) where ar(c) ≥ 1

(xch) (letrec x = t, y = x,Env in r) → (letrec y = t, x = y,Env in r)
(ucp1) (letrec Env , x = t in S[x])→ (letrec Env in S[t])
(ucp2) (letrec Env , x = t, y = S[x] in r)→ (letrec Env , y = S[t] in r)
(ucp3) (letrec x = t in S[x])→ S[t] where in the three (ucp)-rules,

x has at most one occurrence in S[x], no occurrence in Env , t, r; and S is a surface context.

Fig. 4. Some special transformation rules

Proof. An analysis of forking overlaps between LR-reductions and (cpx)-transformations in top con-
texts shows that the following diagram is complete, where all concrete (cpx)-transformations in a
diagram copy from the same binding x = y:

·
T,cpx

//
n,a ��

·
n,a��

·
T,cpx,∗

// ·

Let s
cpx−−→ s′. By induction on the number of LR-reductions of T [s] we have sps(T [s]) = sps(T [s′]).

We now show the requirements of the context lemma: s′ might have a garbage letrec-binding from a
variable to variable in contrast to s, without impact on sizetgc since variables are not counted by the
size-measure. Using the diagram we see that s =T,sps s

′. Since s
cpx−−→ s′ does not introduce garbage

that has an impact on sizetgc also s =C,sizetgc s
′ holds. An application of Corollary 3.18 finishes the

proof.

Proposition 4.5. (xch) is a total space equivalence.

Proof. An analysis of forking overlaps between LR-reductions and (xch)-transformations in surface
contexts shows that the following set of diagrams is complete:

· S,xch //
n,a
��

·
n,a
��

·
S,xch

// ·

· S,xch //
n,a
��

·
n,aww·

Since (xch) only performs a renaming of let-variables, the garbage collection positions can be
transferred directly. Also the size is unchanged, hence we can apply Corollary 3.18 for surface contexts
to show that (xch) is a total space equivalence.

Proposition 4.6. (abs) is a total space equivalence.

Proof. An analysis of forking overlaps between LR-reductions and (abs)-transformations in surface
contexts shows that the following set of diagrams is complete:

· S,abs //
n,a
��

·
n,a
��

·
S,abs

// ·

· S,abs //
n,a
��

·
n,aww·

· S,abs //
n,case

��

·
n,case
��

·
S,abs

// ·
S,cpx,∗

// ·
S,xch,∗

// ·

Since as above garbage positions and size remain unchanged, we use Proposition 4.4, Proposi-
tion 4.5, and Corollary 3.18 for surface contexts to show that (abs) is a total space equivalence.

10 M. Schmidt-Schauß and N. Dallmeyer

Proposition 4.7. (seq-c), (case-c), (lbeta), (lapp), (lcase), (lseq) are total space improvements.

Proof. By considering reduction contexts we see that each of the above reductions is a normal order
reduction. Also the garbage collectable positions remain unchanged for each transformation, hence we
can apply Theorem 3.17 to show that these transformations are total space improvements.

Proposition 4.8. (llet) is a total space improvement.

Proof. The complete set of forking diagrams:

· S,llet //

n,a

��

·
n,a

��
·

S,llet
// ·

· S,llet //

n,a

��

·

n,a
{{·

· S,llet //

(n,lll)+

��

·

(n,lll)+{{·

· S,llet //

(n,lll)+

��

·
(n,lll)+

��
·

S,llet
// ·

· S,llet //

n,a

��

·

n,a

��

·
n,llet

��
·

Since (llet) only moves let-bindings, (llet) does not change the size and all garbage positions can be
transferred directly, hence induction using Lemma 3.21, Lemma 3.22 and Theorem 3.17 shows the
claim.

Corollary 4.9. (lll) is a total space improvement.

Proof. Follows from Proposition 4.7 and Proposition 4.8.

Proposition 4.10. (seq) is a total space improvement.

Proof. Proposition 4.7 shows that (seq-c) is a total space improvement. In the other case we use the
same simulation as in [9]: If the first argument of the seq-expression is an abstraction, then we use (cp)
followed by a (seq-c), where the additional space required by (cp) is directly removed by the following
(seq-c) and not counted by sps. If the first argument of the seq-expression is a constructor application,

then we use s
cpcx−−→ seq-c−−−→ t′ and t

abs−−→ t′ where again the additional space is directly removed by (seq-c)
and not counted by sps. Hence Proposition 4.6, Lemma 3.21, Lemma 3.22 and Theorem 3.17 finish
the proof.

Proposition 4.11. (case) is a total space improvement.

Proof. Proposition 4.7 shows that (case-c) is a total space improvement. In this proof we will only
consider (case-in), since the proof for (case-e) is a copy of this proof. We use the same simulation as in
[9] of (case-in): If there are no variable chains, then (cpcx) followed by a (case-c) simulates (case-in),
where the additional space required by (cpcx) is directly removed by the following (case-c) and not
counted by sps. If there are variable chains, then additionaly (cpx) is used (multiple times) to perform
the needed copies for the chains. Hence Proposition 4.4, Lemma 3.21, Lemma 3.22 and Theorem 3.17
finish the proof.

Proposition 4.12. (ucp) is a total space equivalence.

Space Improvements for Total Garbage Collection 11

Proof. An analysis of forking overlaps between LR-reductions and (ucp)-transformations in surface
contexts shows that the following set of diagrams is complete:

· S,ucp //
n,a
��

·
n,a
��

·
S,ucp

// ·

· S,ucp //
n,a
��

·
n,azz·

· S,ucp //

(n,lll)+ ��

·
(n,lll)∗��

·
S,ucp

// ·

· S,ucp //
n,cp
��

·

· S,gc

::

· S,ucp //
n,a
��

·
n,a
��

·
S,gc

// ·

· S,ucp //
n,case

��

·
n,case
��

·
S,gc

// ·
(S,cpx)∗

// ·
(S,gc)∗

// ·

(gc) is a total space improvement, which follows from the correctness and Theorem 3.12. Since
garbage collectable positions and size remain unchanged we use Proposition 4.4 and Corollary 3.18
for surface contexts to show that (ucp) is a total space equivalence.

Theorem 4.13. (seq), (case), (lbeta), (lll) are total space improvements, while (cpx), (xch), (abs),
(ucp) are total space equivalences.

This follows from the propositions above.

5 Conclusion and Future Work

We introduced a theoretical optimal garbage collector and analyzed the space behavior of several
transformations in lazy functional languages. Because of this garbage collector the results are inde-
pendent of the implementation of a specific garbage collector.
Future work is to extend the analysis to more complex transformations also taking recursion into
account. The adaption of this approach for a concurrent scenario is also left for future work.

References

1. Adam Bakewell and Colin Runciman. A model for comparing the space usage of lazy evaluators. In PPDP, pages
151–162, 2000.

2. Haskell Community. Haskell, an advanced, purely functional programming language, 2016.
3. Jörgen Gustavsson and David Sands. A foundation for space-safe transformations of call-by-need programs. Electr.

Notes Theor. Comput. Sci., 26:69–86, 1999.
4. Jörgen Gustavsson and David Sands. Possibilities and limitations of call-by-need space improvement. In Benjamin C.

Pierce, editor, Proceedings of the Sixth ACM SIGPLAN International Conference on Functional Programming (ICFP
’01), Firenze (Florence), Italy, September 3-5, 2001., pages 265–276, 2001.

5. Simon Marlow, editor. Haskell 2010 – Language Report. 2010.
6. Simon L. Peyton Jones and André L. M. Santos. A transformation-based optimiser for Haskell. Science of Computer

Programming, 32(1–3):3–47, 1998.
7. André L. M. Santos and Simon L. Peyton Jones. On program transformation in the glasgow haskell compiler. In

John Launchbury and Patrick M. Sansom, editors, Functional Programming, Glasgow 1992, Proceedings of the 1992
Glasgow Workshop on Functional Programming, Ayr, Scotland, UK, 6-8 July 1992, Workshops in Computing, pages
240–251. Springer, 1992.

8. Manfred Schmidt-Schauß and Nils Dallmeyer. Space improvements and equivalences in a functional core language.
In Horatiu Cirstea and David Sabel, editors, Proceedings Fourth International Workshop on Rewriting Techniques
for Program Transformations and Evaluation, WPTE@FSCD 2017, Oxford, UK, 8th September 2017., volume 265 of
EPTCS, pages 98–112, 2017.

9. Manfred Schmidt-Schauß, Marko Schütz, and David Sabel. Safety of Nöcker’s strictness analysis. J. Funct. Program-
ming, 18(04):503–551, 2008.

