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Zusammenfassung

Wetter- und Klimamodelle enthalten viele Subgitterskalen (SGS-) Parametrisie-

rungen. Diese beschreiben Prozesse, welche nicht explizit durch die Modelle berech-

net werden können. Dennoch spielen die SGS-Prozesse eine große Rolle für die von

den Modellen aufgelöste Strömung. Dabei sind SGS-Schließungen keine geschlos-

senen Gleichungen, sondern enthalten üblicherweise Parameter, deren Werte nicht

durch theoretische Überlegungen bestimmt werden können. So sind beispielswei-

se die Aerosolverteilung, die Wurzellänge in Bodenmodellen oder die Quellschicht

(engl.: launch level) von parametrisierten Schwerewellen freie Parameter.

Zur Bestimmung dieser empirischen Parameter werden Daten aus Beobach-

tungen oder hochauflösenden Modellläufen genutzt. Anhand dieser Daten werden

die Parameter angepasst (d.h. getunt), sodass das Modell mit der entsprechenden

SGS-Schließung die Referenz möglichst genau reproduziert. Dabei spielt das Tu-

ning in der Modellentwicklung eine entscheidende Rolle. Erst die Anpassung der

empirischen Parameter ermöglicht es den nationalen Wetterdiensten regelmäßig

qualitativ hochwertige Wettervorhersagen zu treffen. Andererseits birgt das Tu-

ning auch ein Problem, beispielsweise bei Klimaprojektionen. Die Parameter sind

auf das beobachtete Klima eingestellt. Es ist aber nicht zwangsläufig gegeben, dass

zukünftige oder vergangene Klimata mit dem gleichen Satz Parameter bestmöglich

beschrieben werden können.

Vor diesem Hintergrund werden in der vorliegenden Dissertation zwei Frage-

stellungen behandelt:

1. Ist es möglich eine Klimaabhängigkeit in den Tuningparameter von SGS-

Schließungen einzuführen?

2. Können Parametrisierungen entwickelt werden, welche gegenüber einem ge-

störten Klima robust sind?

Der erste Teil der Dissertation beschäftigt sich mit Tuningparametern in SGS-

Schließungen. Dabei wird das Fluktuations-Dissipations Theorem (FDT) genutzt,

um eine Klimaabhängigkeit in empirischen Parametern einzuführen. Das FDT ba-

siert auf einer linearen Theorie, welche die Fluktuationen eines Systems um dessen

statistischen stationären Zustand (engl.: steady state) mit dem Verhalten bei klei-
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ner äußeren Störung (dem Response) in Verbindung setzt. Dies ermöglicht es, die

Änderung der Statistik des betrachteten Systems bei gegebenem anomalen An-

trieb abzuschätzen. Falls die empirischen Parameter derart getunt wurden, dass

diese mathematisch rigoros von der Statistik des Systems abhängen, so kann die

Abschätzung des FDTs verwendet werden, um die Tuningparameter an den An-

trieb anzupassen. Hierzu wird die einfachste Form des FDT, das sogenannte quasi-

Gaußsche FDT (qG-FDT), verwendet.

Der Ansatz wurde in einem quasigeostrophischen Dreischichtenmodell (QG3LM)

untersucht, welches als Referenz für die numerischen Experimente dient. Daneben

wurde ein semiempirisches Modell (SEM) konstruiert, basierend auf den führenden

Varianzmustern [empirische orthogonale Funktionen (EOFs)] des QG3LM. Zudem

enthält das SEM eine rein datengetriebene SGS-Parametrisierung, gegeben durch

entweder eine einfache lineare Funktion (SEMdet) oder einen Ornstein-Uhlenbeck

Prozess (OU-Prozess; SEMstoch). Beide Parametrisierungen wurden objektiv durch

Minimierung des Residuumfehlers bzw. Anwendung der Maximum-Likelihood Me-

thode getunt. Als externer Antrieb wurde eine lokale Heizung in den mittleren

Breiten sowie ein globaler Antrieb, repräsentiert durch je eine der fünf führenden

EOFs, betrachtet. Während im ungestörten Fall beide SEMs sowohl qualitativ als

auch quantitativ das QG3LM reproduzieren, so zeigen sie einen falschen Response

auf die externen Antriebe. Dieser Fehler konnte direkt auf ein inkorrektes Tuning

zurückgeführt werden.

Für beide externe Antriebe ist das qG-FDT in der Lage die Änderungen der er-

sten und zweiten statistischen Momente abzuschätzen. Erwartungsgemäß zeigten

hierbei die zweiten Momente einen systematisch höheren Fehler. Um die Nützlich-

keit der qG-FDT-Abschätzungen zu bewerten, wurde der Response von drei Mo-

dellen untersucht: das a priori SEM (apr-SEM; unveränderte Schließung), das a

posteriori SEM (apo-SEM; perfekt getunte Parametrisierung) und das qG-FDT

SEM (FDT-SEM; Schließungsparameter mittels des qG-FDT aktualisiert). Dabei

kann das apr-SEM als die gängige Praxis von Klimaprojektionen angesehen wer-

den, in der das Modell zwar gestört, aber die Tuningparameter normalerweise nicht

angepasst werden.

Die Modelle wurden mit Hinblick auf den Response im Mittelwert und Kova-

rianz der Stromfunktion untersucht. Dabei zeigte sich ein ähnliches Bild für beide
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Antriebsterme und Schließungen. Generell wies das FDT-SEM eine systematisch

bessere Übereinstimmung mit dem QG3LM auf als das apr-SEM. Jedoch lieferten

alle SEMs mit EOF-Abbrüchen kleiner 200 EOFs für den Response der Kovarianz

keine brauchbaren Ergebnisse (der relative Amplitudenfehler lag bei allen Modellen

über 100%). In diesen Fällen reichten die einfachen Parametrisierungen nicht aus,

um die SGS-Prozesse ausreichend zu beschreiben. Andererseits ist das FDT-SEM,

aufgrund der Kombination der linearen qG-FDT-Abschätzung mit dem nichtlinea-

ren SEM, für hinreichend große EOF-Abbrüche in der Lage die direkte Anwendung

des qG-FDT-Response-Operators zu schlagen. Dies ermöglicht dem FDT-SEM ei-

ne Abschätzung des Responses im Mittelwert und Kovarianz der Stromfunktion,

selbst wenn der Response nichtlinear ist.

Neben den Anomalieexperimenten wurde auch die Annahme der Gaußität

im qG-FDT untersucht, durch Verwendung des genaueren Short-Time/qG-FDT

(ST/qG-FDT-) Algorithmus. Dieser umgeht die Annahme einer gaußverteilten

Wahrscheinlichkeitsdichtefunktion und liefert daher grundsätzlich präziserere Ab-

schätzungen als das qG-FDT. Allerdings zeigt sich in der Abschätzung des Re-

sponses der statistischen Momente keine signifikante Verbesserung gegenüber dem

qG-FDT. Daher scheint das vergleichsweise einfache qG-FDT auszureichen, um

Tuningparameter sinnvoll an externe Antriebe anzupassen.

Der zweite Teil der Dissertation beschäftigt sich mit SGS-Parametrisierungen

basierend auf ersten Prinzipien. Eine solche Schließung sollte allein von den Mo-

dellvariablen und –gleichungen abhängen und wenig bis keine Tuningparameter

beinhalten. Hierfür wurde die Methode der stochastischen Modenreduktion (SMR)

untersucht, welche die Konstruktion einer, weitestgehend auf ersten Prinzipien ba-

sierenden, Parametrisierung ermöglicht. Die SMR geht davon aus, dass der Zu-

standsvektor des Systems in eine langsame und schnelle Variable mit zwei unter-

schiedlichen charakteristischen Zeitskalen zerlegt werden kann. Zudem wird an-

genommen, dass der schnellste Term durch einen Gaußprozess (in dieser Arbeit

ein OU-Prozess) approximiert werden kann. Sind diese Bedingungen erfüllt, dann

ermöglicht die SMR, im Limit einer unendlichen Skalenseparation, die Konstruk-

tion eines reduzierten stochastischen Modells (RSM), welches nur die langsame

Variable beschreibt. Im RSM wird der Effekt der schnellen Variable durch eine

stochastische Parametrisierung beschrieben, welche analytisch berechnet werden
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kann und von den Modellgleichungen abhängt. Abgesehen vom Tunen des OU-

Prozesses verwendet die SMR dabei keine empirischen Parameter.

Bei der Anwendung der klassischen SMR ergibt sich allerdings ein kleineres

konzeptionelles Problem. Die Substitution des schnellsten Terms durch einen OU-

Prozess führt effektiv zu einer Energiequelle bzw. –senke im System. Die Ener-

giefluktuation ist unbedenklich, sodass selbst lange Integrationen stabil bleiben.

Dennoch suggeriert die Energiefluktuation eine Kopplung des QG3LM mit einem

Energiereservoir. Daher wurde in dieser Arbeit das QG3LM in drei Variablen zer-

legt: eine langsame, eine schnelle und eine versteckte Variable. Diese sind durch

die führenden, die direkt darauffolgenden und die restlichen EOFs definiert, da

die Zeitskala der Autokorrelation eine gute Übereinstimmung mit der erklärten

Varianz der EOFs zeigte. Die versteckte Variable wurde durch eine lineare Schlie-

ßung (analog zum SEMdet) beschrieben. Der verbleibende nicht-parametrisierte

Anteil der versteckten Variable stellt dann das Energiereservoir dar, mit dem der

OU-Prozess gekoppelt ist und welcher die Energiefluktuationen in den explizit be-

schriebenen Variablen erklären kann. Dies führt zu zusätzlichen Tuningparameter

in der Schließung. Wie allerdings im ersten Teil gezeigt, sollte es möglich sein diese

mit dem FDT zu behandeln.

Für den ungestörten Fall lieferte das RSM qualitativ und quantitativ ähnliche

Ergebnisse wie das SEM. Dieses Resultat scheint dabei weitestgehend unabhängig

von der Wahl der langsamen und schnellen Variable zu sein. Allerdings ist da-

von auszugehen, dass für zu viele EOFs als langsame Variable die Annahme ei-

ner Skalenseparation verletzt wird. Die, mit der Literatur verglichen, relativ gute

Leistung des RSM ist primär auf die zusätzliche Empirik durch die versteckten

Variable zurückzuführen. Dennoch hat die analytische Schließung der SMR einen

signifikanten Einfluss auf das RSM.

Zur Untersuchung der Fähigkeit des RSMs auf externe Antriebe zu reagieren,

wurde das Modell mit der lokalen Heizung gestört. Dabei wurden zwei Antriebsar-

ten betrachtet: die Heizung wirkte entweder auf alle Skalen (d.h. auf die langsame

und schnelle Variable) oder nur auf SGS-Variable (d.h. die schnelle Variable). Im

Vergleich zum ersten Teil der Dissertation wurde hierbei die Amplitude der Hei-

zung verstärkt, sodass der Response des QG3LM signifikant größer ist, als der

Bias des ungestörten RSMs. Es wurden fünf verschiedene Modelle untersucht: das
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a priori RSM (apr-RSM; unveränderte empirische Parameter, aber Anpassung der

Schließung folgend der SMR), a posteriori RSM (apo-RSM; wie apr-RSM, aber

mit perfekt getunten empirischen Parametern), qG-FDT RSM (FDT-RSM; wie

apo-RSM, aber Tuningparameter mittels qG-FDT aktualisiert) und die analogen

a priori SEM (apr-SEM) und qG-FDT SEM (FDT-SEM).

Beide Antriebsarten sind zu stark, um das lineare qG-FDT anwenden zu kön-

nen: sowohl das FDT-RSM als auch das FDT-SEM produzierten unrealistische

Ergebnisse oder sind instabil. Für schwächere Antriebe (die gleiche Amplitude

wie im ersten Teil) konnte das qG-FDT die empirischen Parameter erfolgreich an-

passen. Dabei lieferte das FDT-RSM eine ähnliche Leistung wie das apo-RSM.

Unabhängig davon zeigten das apr-RSM und apo-RSM systematisch bessere Er-

gebnisse als das apr-SEM, selbst für die verstärken Antriebe. Dennoch sind die

Amplitudenfehler im Response der RSMs im Schnitt größer als 100%, insbesondere

in der Kovarianz der Stromfunktion. Ferner konnte keine systematische Verbesse-

rung des apo-RSM gegenüber dem apr-RSM festgestellt werden, teilweise ist der

Response des apo-RSM sogar schlechter. Für Anomalieexperimente unter ideali-

sierten Bedingung (d.h. Eliminierung des Einflusses der empirischen Parameter)

lieferte das RSM einen Response in der mittleren Stromfunktion und der Kovari-

anz der Stromfunktion, welcher sehr gut mit der Referenz übereinstimmt. Unter

Berücksichtigung der Ergebnisse vom ersten Teil dieser Arbeit deutet dies dar-

auf hin, dass das betrachtete RSM insgesamt zu niedrigdimensional ist, um es im

Kontext von externen Antrieben abschließend zu evaluieren.

Alles in allem konnte gezeigt werden, dass das FDT prinzipiell in der Lage

ist, sinnvolle Änderungen der Tuningparameter zu liefern und somit eine Kli-

maabhängigkeit einzuführen. Ferner wurde die SMR als eine Methode identifiziert,

welche in der Tat auf ersten Prinzipien basiert: das RSM ist in der Lage automa-

tisch auf externe Antriebe zu reagieren, ohne dass ein erneutes Tuning erforder-

lich ist. Allerdings konnte dies bislang nur für idealisierte Fälle gezeigt werden.

Dennoch ermutigen die in dieser Arbeit präsentierten Ergebnisse, dass dies für

höherdimensionale RSMs auch möglich sein sollte.
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Abstract

State-of-the-art climate models contain, to a significant degree, empirical com-

ponents. In particular, subgrid-scale (SGS) parameterizations are usually highly

tuned against observations or high-resolution model data. While this enables the

models to minimize the error during hindcasts, it is not guaranteed that it yields

a benefit for climate projections because of climate change. In this thesis the

Fluctuation-Dissipation theorem (FDT) is used to update the statistics of the sys-

tem in the presence of an external forcing. If the empirical parameters are tuned

objectively to the data (i.e., they depend on the statistics of the data), then they

might be updated with the FDT. This ansatz is tested within a framework of

a semi-empirical model (SEM) based on the leading variance patterns of a quasi-

geostrophic three-layer model (QG3LM) and supplemented by a purely data-driven

parameterization. We show that the FDT is able to successfully update the tuning

parameters of the data-driven SGS closure, resulting in a systematic improvement

in model performance in comparison to an untreated SEM. Ideally, SGS param-

eterizations should contain little to no tuning parameters. Thus, complementary

to the FDT approach we investigate a stochastic SGS closure constrained by first

principles that is calculated using the stochastic mode reduction (SMR). The SMR

allows for an analytic derivation of the SGS closure from the model equations while

requiring only minimal tuning. We successfully apply the SMR to the QG3LM

and construct the reduced stochastic model (RSM). Furthermore, we show that

the RSM is more robust against an external forcing than the SEM. Additionally,

we find that, under appropriate conditions, the FDT is able to update the empiri-

cal parts of the RSM. Yet, only for the response in mean streamfunction the RSM

provides useful results, while the response in covariance of the streamfunction is

incorrect for most cases. Nevertheless, we obtain a remarkably accurate response

in both moments for the RSM in an idealized setting. In combination with the

results of the FDT study this indicates that the considered RSM is too low dimen-

sional and encourages us to investigate the response of larger RSMs in the future.
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Disclaimer

Parts of the following scientific results are published in Pieroth et al. (2018)

( c©American Meteorological Society. Used with Permission). In particular, some

of the figures and tables are taken from this article. In those cases, the copyright

has been stated in the figure/table caption. Additionally, some small text phrases

are reused in this thesis. In order to increase the readability, the respective sen-

tences are not highlighted within the text, but the copyright is stated only in this

disclaimer.
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Chapter 1

Introduction

1.1 Motivation

The climate system in general and the atmosphere in particular are multiscale

systems. As such, they contain a wide range of temporal (seconds to millennia) and

spatial (µm to 10 000 km) scales that interact with each other. An example for the

scale interaction is the ice-albedo feedback (Peixoto and Oort 1992). Simply put,

an increase/decrease in global mean temperature (global effect) decreases/increases

the ice coverage of Earth and thus also the albedo (regional effect). In return,

this leads to less/more reflection of incoming solar radiation (local effect), which

eventually results in increased/decreased global mean temperature (global effect).

This scale interaction makes the simulation of the climate quite challenging.

Because of the limited computational power and the discretization of the gov-

erning equations, a general circulation model (GCM; or climate model) can only

resolve a part of the important scales explicitly. The remaining scales have to be

described approximately by so-called subgrid-scale (SGS) parameterizations. Ide-

ally, such an SGS closure is based on physics. However, some SGS processes are

poorly understood (e.g., microphysics in clouds), and even if the SGS closure is

based on physics, eventually it has to be expressed in terms of the resolved fields

of the GCM. Consequently, the parameterizations are not closed equations but

usually contain parameters whose value are not determined by theory. For exam-

ple, climate models usually have a prescribed aerosol climatology (e.g., Stevens
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2 1.1. Motivation

et al. 2013), but also small-scale features such as the root depth in soil models

(e.g., Doms et al. 2011, pp. 99-129) or the launch level of parameterized gravity

waves are free parameters (e.g., Hines 1997).

The empirical parameters are obtained by tuning against either observations

or high-resolution model data. In principle, there exist two approaches for the

tuning. First, the tuned parameters can be determined by trial and error. In this

approach the parameters are changed manually until an optimum is found (e.g.,

Franzke and Majda 2006; Mauritsen et al. 2012). Even though this approach is

relatively often used, the tuning is somewhat ambiguous and it is not guaranteed

that a global optimum is found. More mathematically rigorous alternatives are

the minimization of an error function (e.g., Achatz and Branstator 1999) or the

application of the Maximum-Likelihood method (Honerkamp 1994).

Because of the significant amount of empirical parameters present in GCMs and

climate models (e.g., Doms et al. 2011) the tuning is a crucial step in the model

development (e.g., Reinert et al. 2019, pp. 3-6; Mauritsen et al. 2012). In fact,

only the tuning allows the weather services to regularly generate skillful weather

predictions for the next couple of days. However, tuning is not only necessary for

numerical weather prediction but also in the context of climate modeling. There

it is used to remove unrealistic climate drifts from the climate models, mainly by

adjusting parameters connected with cloud physics (Mauritsen et al. 2012).

Nevertheless, tuning can also be harmful. When we tune parameterizations

against data we introduce a data dependence in the empirical components. Hence,

if the statistics of the system change because of modified external influences (e.g.,

forcings, boundary conditions) the original tuning parameters might no longer be

useful. Rockel and Geyer (2008) illustrate this for the regional climate model

COSMO-CLM (Fig. 1.1). They tuned the regional climate model for central

Europe but used the same model setup also for other regions on Earth. For

the quantification of the model performance the amount of precipitation of the

COSMO-CLM is compared to a global data set. For Europe the model works

quite well with a low bias and RMSE, and a high pattern correlation (Fig. 1.1,

top). Nevertheless, using, for example, the same model setup for South America

results in an overall worse performance (Fig. 1.1, bottom).

Other examples of modified external influences of the system beyond regional
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1

Figure 1.1: RMSE, bias, and correlation between the COSMO-CLM and a global
data set of precipitation for the time period 2000-2004. (Top) European domain;
(bottom) South America domain. Units are given in mm month−1 (adapted from
Rockel and Geyer 2008).

climate models are a change in the radiation budget (Mauritsen et al. 2012), re-

placement of one or more parameterizations, a change in model resolution (Schättler

et al. 2018), or the simulation of another planet’s atmosphere. In each case (at

least some part of) the empirical parameters have to be retuned, otherwise the

respective model is unable to perform with the same quality.

The same issue arises for climate projections. The anthropogenic influence on

Earth’s climate has a drastic impact on, among others, the global mean tempera-

ture, sea level, precipitation patterns, or atmospheric phenomena such as ENSO,

which cause flooding of islands and coastal regions and influence agriculture as well

as other vital infrastructure (Field et al. 2014). However, the lack of observations

of the future climate and the insufficient observational records from the past deny

the validation of the climate response predicted by the models. Yet, there are

indications in the literature that the tuning parameters have a significant effect on

climate projections. For instance, Schirber et al. (2015) tune different gravity wave
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parameterization schemes (i.e., they differ, for example, in the propagation scheme,

gravity-wave source, launch level, and horizontal wavelength) successfully to sim-

ulate the quasi-biennial oscillation with a GCM. However, in a climate-change

experiment the response of the quasi-biennial oscillation experiences a strong de-

pendence on the chosen scheme.

This effect is even more pronounced for low-order models with purely data-

driven parameterizations. For example, Achatz and Branstator (1999) and Achatz

and Opsteegh (2003b) create low-order models based on empirical orthogonal

functions (EOFs) of two different GCMs. Furthermore, the reduced models are

equipped with a purely data-driven linear SGS parameterization, to account for

the unresolved scales resulting from of the EOF truncation. The low-order models

successfully capture the characteristic of the respective GCM dynamics (e.g., av-

eraged transient eddy fluxes and the statistics of the first and second moment of

the streamfunction). They fail, however, in capturing the correct response of the

GCMs in the presence of a local anomalous heating in the tropics.

Given the fact that state-of-the-art models used for climate projections (e.g.,

the models of CMIP5 and CMIP3, Flato et al. 2013) contain hundreds of empirical

parameters, we require an approach that takes the data dependence of the tuning

parameters into account. Achatz et al. (2013) propose to use the Fluctuation-

Dissipation theorem (FDT) for this purpose. The FDT is based on a linear theory

that connects suitable correlation functions with the response of a perturbed sys-

tem. This allows the estimation of the perturbed statistics caused by a sufficiently

small external forcing or small change in model parameters (Risken 1984). The

theorem has a long history in equilibrium statistical mechanics, where it can be

used to study macroscopic quantities by analyzing correlation functions, dating

back to Einstein’s work on Brownian motion (Einstein 1905; Marconi et al. 2008).

However, a generalized FDT holds also for a larger class of systems with chaotic

dynamics, such as the climate (see Marconi et al. 2008, for a recent review).

Originally Leith (1975, 1978) proposed using the FDT for the estimation of the

climate response. Since then it has been shown that the FDT is able to provide a

useful estimation of the linear response for simple GCMs (Gritsun and Branstator

2007; Gritsun et al. 2008; Ring and Plumb 2008) and even coupled atmosphere-

ocean GCMs (Gritsun and Branstator 2016). Nevertheless, even for small external
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forcings the response can be quite nonlinear (Pieroth et al. 2018). Still, the linear

estimations of the FDT may be used in combination with a nonlinear model to

obtain skillful estimations of the climate response (Achatz et al. 2013; Pieroth

et al. 2018).

Achatz et al. (2013) were the first to see the potential of the FDT to introduce

a climate dependence in empirical parameters of SGS closures. If the empirical

parameters are tuned objectively (i.e., they depend on the statistics of the data),

the linear estimations of the change in the statistics provided by the FDT may

be used to update the empirical parameters. Achatz et al. (2013) tested this

ansatz on the barotropic vorticity equation on the sphere. The FDT approach

worked reasonable well, however, only a part of the tuning parameters could be

updated, because of the poorly fulfilled constraints of the theorem. The FDT

requires a system in equilibrium with a differentiable probability density function

(PDF). In particular, the latter condition is violated in systems with deterministic

chaos. Adding suitable random noise to the system smooths the PDF and solves

this issue (Zeeman 1988). Indeed, Pieroth et al. (2018) could successfully update

their data-driven closure with the FDT for a quasigeostrophic three-layer model

(QG3LM). Even though the QG3LM is still a deterministic system, it contains

already sufficiently fast processes which act similarly to an explicit noise.

The FDT approach reportedly works, yet it can only be seen as a temporary

solution. In the long run climate models should contain little to no tuning pa-

rameters. Therefore, SGS parameterizations based on first principles (i.e., directly

obtained from model equations with little to none empirical tuning) should be

used. One approach is a closure based on the maximum entropy principle (Verkley

and Severijns 2014). This SGS parameterization requires no tuning and has been

applied successfully to a two-dimensional flow (Verkley et al. 2016). Further-

more, Wouters and Lucarini (2012) proposed a closure based on response theory

that relies on weak coupling between the resolved and SGS processes, respectively

(Wouters et al. 2016; Demaeyer and Vannitsem 2017).

Alternatively, the stochastic mode reduction (SMR; Majda et al. 2001, 2003)

can be applied to a system with a strict scale separation, which, in principle,

makes it suitable for the atmosphere and the climate. In the SMR the nonlinear

self-interaction of the SGS processes is approximated by an empirical Ornstein-
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Uhlenbeck process (OU-process). In return, this OU-process can then be used to

derive an SGS parameterization explicitly from the model equations. Even though

there is still some tuning involved, this analytically derived closure should be more

robust to climate change than traditional SGS parameterizations.

Parameterizations based on first principles certainly circumvent the problem

of tuning parameters. However, such closures are still in development and not

used operationally. State-of-the-art GCMs and climate models still rely on heavily

tuned SGS parameterizations. Thus, in this thesis we want to address two research

questions:

1. Can we introduce a climate dependence in empirical parameters of SGS

parameterizations?

2. Does the SMR provide a parameterization that is robust with respect to a

perturbed model climate?

Therefore, this thesis consists of two parts. First we show that in principle the

FDT is able to introduce a useful climate dependence of the tuning parameters

(i.e., models with an updated SGS closure perform systematically better in a

perturbed climate than models with a fixed closure). Hence, the FDT might

offer a method to deal with existing tuning parameters in state-of-the-art GCMs.

Secondly, we consider the SMR approach and show that, since it is constrained by

first principles, the resulting closure is able to react to an external forcing. Since

there is still a remaining empirical part involved we treat that with the FDT to

improve the result.

1.2 Structure

The thesis is structured as follows. In part I we investigate the application of the

FDT as an approach to introduce a climate dependence on empirical parameters of

SGS parameterizations. First, we derive the general form of the FDT in chapter 2.

Furthermore, we introduce the approximated quasi-Gaussian FDT and the more

sophisticated blended Short-Time/quasi-Gaussian FDT. In chapter 3 the models

used in this thesis are presented. This includes the QG3LM and a low-order semi-

empirical model with a purely data-driven closure that serves as a testbed of the
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FDT ansatz. Chapter 4 describes the climate dependence in the empirical tuning

parameters by the FDT. The corresponding numerical experiments are presented

in chapter 5.

Part II contains the construction of an SGS parameterization based on first

principles using the SMR. The latter is presented in chapter 6 where we derive

a reduced equation for the slow variable. In chapter 7 we apply the SMR to the

QG3LM. The analytic and numerical results are given in chapter 8. First we

analyze the performance of the reduced stochastic model (RSM). Furthermore, we

test the robustness of the SMR closure with respect to a perturbed model climate.

In addition, we go beyond the classical SMR and construct a RSM that includes

explicitly the nonlinear self-interaction of the fast variable. Finally, we conclude

this thesis in chapter 9.
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1.3 Notation

Let a,b ∈ RN and AAA,BBB ∈ RN×N be arbitrary vectors and matrices, respectively.

The scalar product (inner product) is then defined by

a · b = 〈a,b〉 =
N∑
i

aibi ≡ aibi , (1.1)

where in the last step (and from now onward) we applied Einstein’s summation

convention. In contrast, the inner product of two matrices (Frobenius product) is

denoted by

AAA : BBB = tr(AAATBBB) = AijBij , (1.2)

where tr(·) is the trace of a matrix. Moreover, the outer product of two vectors

a⊗ b ∈ RN×N defines a matrix, which is given by

a⊗ b = abT . (1.3)

Let∇z and∇z· be the gradient and divergence with respect to variable z ∈ RN .

Then we have for an arbitrary, sufficiently differentiable scalar field φ(z) ∈ R and

vector field v(z) ∈ RN , as well as for a matrix valued function AAA(z) ∈ RN×N

(∇zφ)i =
∂φ

∂zi
(∇zv)ij =

∂vi
∂zj

(1.4)

∇z · v =
∂vi
∂zi

(∇z ·AAA)i =
∂Aij
∂zj

. (1.5)

Moreover, we write the Laplacian and the Hessian as

∆zφ = ∇z · ∇zφ (∇z∇zφ)ij =
∂2φ

∂zi∂zj
. (1.6)

For a given PDF ρ(z) [conditional PDF ρ(z, t|z0, 0)] and an arbitrary function
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f(z) we write the expectation value as

E [f(z)] =

∫
ρ(z)f(z)dNz (1.7)

E [f(z, t)|z(0) = z0)] =

∫
ρ(z, t|z0, 0)f(z)dNz . (1.8)

Furthermore, we assume ergodicity, which allows us to approximate the expec-

tation value by a time average. Thus, for a sufficiently long discrete time series

{f1(z), f2(z), . . . , fNt(z)} we may write (1.7) as

E [f(z)] ' 〈f(z)〉 =
1

Nt

Nt∑
n=1

fn(z) . (1.9)

Lastly, we indicate deviations from the time average by primes:

z′ = z− 〈z〉 . (1.10)
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Chapter 2

Fluctuation-Dissipation Theorem

To understand the Fluctuation-Dissipation theorem (FDT) conceptually let us

consider a system in statistical steady state (i.e., the system is in steady state if

we average over a suitable time interval). The physical quantities of such a system

are not at rest but are constantly fluctuating. Mathematically the fluctuations

are described by correlation functions between the quantities in question. On the

other hand, an external forcing or change in model parameters drives the system

away from its statistical steady state. If the perturbation is sufficiently small

(i.e., we do not trigger any tipping points), the model will return to its statistical

steady state when the forcing is switched off. This can be described by a linear

response function that expresses the decay of expectation values from their steady-

state values. The similarity to the fluctuations allows a connection between the

response function and the correlation function: the FDT (Risken 1984).

Since the theorem is based on correlation functions, no knowledge about the

governing equations is required. Nevertheless, there are several constraints, which

have to be fulfilled. The system must be in statistical equilibrium and needs a time-

invariant, differentiable probability density function (PDF). While it is possible to

extend the theory to time-periodic cases (Majda and Wang 2010; Gritsun 2010)

and to nonequilibrium systems (Lucarini and Sarno 2011; Ragone et al. 2016), the

differentiability of the PDF is violated in systems experiencing deterministic chaos.

The attractor of such systems is usually fractal. Nevertheless, the differentiability

can be ensured by adding a suitable noise term that smooths the PDF (Zeeman

13
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1988). In practice we assume that the smallest scales of the model are sufficiently

irregular and thus smooth the PDF.

Leith (1975, 1978) was the first to propose estimating the climate response

with the FDT. Since then the theorem has been applied to various idealized cli-

mate models (e.g., Bell 1980; North et al. 1993; Gritsoun and Dymnikov 1999;

Gershgorin and Majda 2010; Achatz et al. 2013; Fuchs et al. 2015; Lutsko et

al. 2015; Pieroth et al. 2018), simple GCMs (Gritsun and Branstator 2007; Grit-

sun et al. 2008; Ring and Plumb 2008), and even coupled atmosphere-ocean GCMs

(Gritsun and Branstator 2016). However, these studies show a mixed performance

of the FDT, for reasons that remain unclear. Firstly, the different forcings and

models deny a direct comparison of the studies. Secondly, it is possible that the

forcings project onto a stable direction of the attractor, resulting in a response

that is not covered by the fluctuations of the unperturbed model (Gritsun and Lu-

carini 2017). Another possibility could be the nonnormality of the FDT-response

operator that might lead to strong interactions between resolved and unresolved

EOFs, which cannot be captured by a response operator in an EOF subspace

(Hassanzadeh and Kuang 2016). Furthermore, the quality of the response oper-

ator also depends on the length of the data used for its construction (Gottwald

et al. 2016). In particular, for the climate sensitivity Kirk-Davidoff (2008) shows

that the available temperature observations are insufficient for a robust estimate.

In addition to this “external” error sources the theory itself includes approxi-

mations. The general form of the FDT cannot be applied to realistic cases since

it requires the differentiation of the (usually unknown) PDF. Thus, commonly the

so-called quasi-Gaussian FDT (qG-FDT; Bell 1980; Majda et al. 2005) is used

where the unknown equilibrium PDF is assumed to be Gaussian. This assumption

may be relaxed by use of a nonparametric kernel method (Cooper and Haynes

2011). Furthermore, the differentiation of the PDF can be avoided altogether

with the blended short-time/quasi-Gaussian FDT (ST/qG-FDT) of Abramov and

Majda (2007, 2008, 2009). Instead this algorithm utilizes a tangent linear model

to construct the response operator. In comparison to the simple qG-FDT, these

methods produce superior results, however, they are also computationally more

expensive. Thus, in this thesis we focus on the simple qG-FDT and compare its

results with the ST/qG-FDT for selected cases.
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2.1 The general Fluctuation-Dissipation Theo-

rem

Let us approximate the atmosphere by a finite-dimensional state vector x ∈ RN .

Furthermore, we assume that the (unresolved) smallest-scale processes are suf-

ficiently irregular to describe the atmosphere by an autonomous1 Itô stochastic

differential equation (Itô-SDE):

dx = G(x)dt (2.1)

≈ f(x)dt+ σ(x)dW , (2.2)

where G(x) ∈ RN is the original system that is approximated by a deterministic

part f ∈ RN , a diffusion tensor σ ∈ RN×N , and a Wiener increment dW ∈ RN .

This Itô-SDE has a corresponding forward Fokker-Planck equation (FPE; Gar-

diner 2009) for the PDF p(x, t|x0, t0) of the system given by

∂tp(x, t|x0, t0) = −∇x · [f(x)p(x, t|x0, t0)] +
1

2
∇x∇x :

[
σ(x)σT(x)p(x, t|x0, t0)

]
.

(2.3)

For simplicity we suppress the condition of the PDF and set p(x, t) ≡ p(x, t|x0, t0)

from now on. The introduction of the partial differential operator LLLx allows us to

write (2.3) as

∂tp(x, t) ≡ LLLxp(x, t) . (2.4)

The formal solution of (2.4) reads

p(x, t) = eLLLxtp(x, 0) , (2.5)

where p(x, 0) is the initial condition.

1. Autonomy of the Itô-SDE is not required for the general and the quasi-Gaussian FDT,
respectively. However, it is necessary for the derivation of the ST-FDT.
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Consider a small deterministic perturbation

f(x) −→ f(x) + δf̃(x, t) , (2.6)

with δf̃(x, t) = 0, ∀t ≤ 0. This perturbation induces also a change in the PDF,

given by

p(x, t) −→ p(x, t) + δp(x, t) , (2.7)

which we assume to be small (i.e., δp(x, t) � p(x, t)) as well. Insertion in (2.3)

leads to

∂t[p(x, t) + δp(x, t)] = −∇x ·
{[

f(x, t) + δf̃(x, t)
][
p(x, t) + δp(x, t)

]}
+

1

2
∇x∇x :

{
σ(x)σT(x)

[
p(x, t) + δp(x, t)

]}
(2.8)

∂tp(x, t) + ∂tδp(x, t) = LLLxp(x, t) + LLLxδp(x, t)−∇x ·
[
δf̃(x, t)p(x, t)

]
−∇x ·

[
δf̃(x, t)δp(x, t)

]
. (2.9)

Since the perturbations are small, the last term can be neglected. Furthermore,

using (2.4), the FPE of the perturbed PDF reads

∂tδp(x, t) = LLLxδp(x, t) + L̃̃L̃Lpert.
x (x, t)p(x, t) , (2.10)

where the perturbed FPE operator is given by

L̃̃L̃Lpert.
x (x, t) = −∇x · δf̃(x, t)p(x, t) . (2.11)

Assuming that the unperturbed system is in equilibrium [i.e., p(x, t) = ρ(x), where

ρ(x) is the invariant measure] so that

LLLxρ(x) = 0 , (2.12)



2. Fluctuation-Dissipation Theorem 17

allows us to write the formal solution of (2.11) as

δp(x, t) =

t∫
0

eLLLx(t−s)L̃̃L̃Lpert.
x (x, s)ρ(x)ds , (2.13)

because L̃̃L̃Lpert.
x (x, 0) = 0, since we have δf̃(x, t) = 0, ∀t ≤ 0 (Risken 1984).

Let h(x) be an arbitrary observable (i.e., either a scalar, vector, or matrix-

valued function, respectively), depending on the state vector of the system. Then

the perturbed expectation value is given by

δE[h](t) =

∫
h(x)δp(x, t)dNx (2.14)

=

∫
h(x)

t∫
0

eLLLx(t−s)L̃̃L̃Lpert.
x (x, s)ρ(x)dsdNx . (2.15)

Furthermore, let us assume that the deterministic perturbation δf̃(x, t) in (2.6)

depends multiplicatively on time (no Einstein’s summation convention):

δf̃i(x, t) = δfi(x)wi(t) . (2.16)

From this follows

L̃̃L̃Lpert.
x (x, t) = −∂xiδfi(x)wi(t) ≡ LLLpert.

x (x)w(t) (2.17)

(Risken 1984). Thus, with the substitution τ = t− s we may write (2.15) as

δE[h](t) =

t∫
0

RRR(h, τ)w(t− τ)dτ , (2.18)

where the response operator is given by

RRR(h, t) =

∫
h(x)eLLLxtLLLpert.

x (x)ρ(x)dNx . (2.19)

For further evaluation of the response operator we consider a general cross
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correlation

E[h(x[t+ τ ])g(x[t])] =

∫
dNxh(x)

∫
dNyp(x, t+ τ |y, t)ρ(y)g(y) , (2.20)

where g(x) is an arbitrary integrable function. Obviously we have

p(x, t+ τ |y, t) = eLLLxτδ(x− y) . (2.21)

Thus, (2.20) can be written as

E[h(x[t+ τ ])g(x[t])] =

∫
dNxh(x)

∫
dNyeLLLxτδ(x− y)ρ(y)g(y) (2.22)

=

∫
dNxh(x)eLLLxτ [g(x)ρ(x)] . (2.23)

Comparison with the response operator (2.19) leads to

RRR(h, t) = E

[
h(x[t+ τ ])

(
1

ρ(x)
LLLpert.
x (x){ρ(x)}

)
x=x(t)

]
. (2.24)

Finally, substituting the perturbed Fokker-Planck operator results in the general

form of the FDT (Risken 1984):

δE[h](t) = −
t∫

0

E

[
h(x[t+ τ ])

(
1

ρ(x)
∂xi{δfi(x)ρ(x)}

)
x=x(t)

wi(t− τ)

]
dτ .

(2.25)

For the remainder of this thesis we consider an anomalous forcing that is indepen-

dent of space and time (i.e., δf̃(x, t) = δf = const.). With this assumption (2.25)

simplifies to

δE[h](t) = −
t∫

0

E

[
h(x[t+ τ ])

(
∇xρ(x)

ρ(x)

)
x=x(t)

]
dτ · δf . (2.26)

Consequently, we restrict our investigation on what Risken (1984) called Step-

Response function or Excitation function.
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2.2 Quasi-Gaussian Fluctuation-Dissipation The-

orem

While the general form of the FDT (2.26) is certainly elegant and compact, it has

one fundamental disadvantage: the exact form of the invariant measure has to be

known. However, in general (and in particularly in the case of the atmosphere)

the equilibrium PDF of the system is unknown. Consequently, it is impossible to

use (2.26), and thus further assumptions have to be made.

The simplest approximation of the general FDT results in the qG-FDT. Here

we assume that, because of the central limit theorem, the stationary PDF can be

approximated by a Gaussian distribution:

ρ(x) =
1√

det[2πΣ(0)]
exp

[
−1

2
x′

T
Σ−1(0)x′

]
, (2.27)

where Σ(τ) = E[x′(τ)x′T(0)] is the τ -lag cross-covariance matrix and the mean and

variance of (2.27) is taken from data (i.e., sampled from the unknown stationary

PDF hence the name quasi-Gaussian). Thus follows

∇ρ(x) = −ρ(x)x′
T
Σ−1(0) , (2.28)

since Σ(0) is symmetric. Hence, (2.26) may be written as

δE[h](t) = −
t∫

0

E
[
h(x[t+ τ ])

(
−x′

T
Σ−1[0]

)
x=x(t)

]
dτδf (2.29)

=

t∫
0

E
[
h(x[t+ τ ])x′

T
(t)
]

Σ−1(0)dτδf . (2.30)

The calculation of this simple cross-correlation is significantly easier and faster

compared to the general FDT. In particular, when using efficient algorithms such

as the Cooper-Hanyes algorithm (Lutsko et al. 2015) to solve the lag integral (see

appendix A.1). This makes the qG-FDT the most commonly used form of the

FDT.
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2.3 Short-Time Fluctuation-Dissipation Theorem

While the qG-FDT is computationally cheap and simple, it still makes the strong

assumption of a Gaussian distributed PDF of the system. Even though the mean

and variance of the true (unknown) PDF is used, this approximation introduces

potentially high errors (e.g., if the underlying PDF is bimodal). Abramov and

Majda (2007) introduced for deterministic systems an alternative ansatz known as

the Short-Time FDT (ST-FDT). They rearrange the response operator and thus

eliminate the dependence on the PDF of the system. In this section we derive this

ST-FDT and discuss its strengths and weaknesses.

Starting from (2.18) with a constant anomalous forcing, we note that this

integral can be seen as a scalar product

δE[h](t) =

∫ t∫
0

h(x)eLLLxτLLLpert.
x ρ(x)dτdNx (2.31)

≡
t∫

0

〈
h(x), eLLLxτLLLpert.

x ρ(x)
〉

dτ . (2.32)

Thus, we may write

δE[h](t) =

t∫
0

〈
LLLpert.
x

†
eLLL
†
xτh(x), ρ(x)

〉
dτ

≡
∫ t∫

0

{
LLLpert.
x

†
eLLL
†
xτh(x)

}
ρ(x)dτdNx , (2.33)

where LLL†x and LLLpert.
x

†
are the adjoint operators given by

LLL†x = G · ∇ (2.34a)

LLLpert.
x

†
= δfT∇ . (2.34b)

Alternatively, (2.33) can be obtained by integrating (2.18) by parts (Abramov and

Majda 2008).
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Next Abramov and Majda (2008) define an auxiliary function H : [R×RN ]→
R• (where • depends on the dimension of h), given by

H(t,x) = h(X[−t,x]) = h(x0) , (2.35)

with the solution operator X(t,x0) = x(t) and an initial condition x0. No time

dependence arises on the right-hand side in (2.35), since the considered system

(2.1) is autonomous. Consequently, the time derivative vanishes and we have

0 =
dH
dt

=
∂H
∂t

+ LLL†xH , (2.36)

as can be easily shown using the chain rule. The formal solution of this partial

differential equation reads

H(t,x) = e−LLL
†
xtH(0,x). (2.37)

Furthermore, if we substitute t with −t and use (2.35) once more, we can write

(2.37) as

eLLL
†
xth(x) = h(X[t,x]) . (2.38)

Using this identity in (2.33) we have

δE[h](t) =

t∫
0

E
[
LLLpert.
x

†
h(X[τ,x])

]
dτ , (2.39)

where we replaced the integral over the PDF with the expectation value. Substi-

tuting the adjoint perturbed Fokker-Planck operator (2.34b) yields

δE[h](t) =

t∫
0

E
[
δfT∇xh(X[τ,x])

]
dτ , (2.40)

where the index of ∇x indicates that the derivative acts on the argument of the

solution operator. The nonlocal derivative ∇xh(X[τ,x]) can be calculated with
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the tangent linear model (see appendix A.2)

TTTτx(t) = T exp

 t+τ∫
t

∇G(x[s])ds

 , (2.41)

where T is the time-order operator and TTTτx(t) ∈ RN×N is integrated from x(t) to

time τ . Thus, the ST-FDT response reads

δE[h](t) =

t∫
0

E
[
δfT∇h(x[t+ τ ])TTTτx(t)

]
dτ , (2.42)

where the tangent linear model can be calculated by

dTTTτx(t)

dt
= ∇G[x(t+ τ)]TTTτx(t) . (2.43)

In contrast to the general FDT, the ST-FDT does no longer depend explicitly

on the PDF. Therefore, the resulting response is in general more accurate than

that of the qG-FDT, since the assumption of Gaussianity is dropped. However,

the price for the higher accuracy is the need of the tangent linear model, which

is computationally expensive. Abramov and Majda (2008) provide an algorithm

for the calculation of (2.43) based on the QR-decomposition. Moreover, Abramov

and Majda (2009) introduces a tangent linear model with a reduced rank, which

further reduces the computational effort, although at the expense of accuracy. If

the gradient of the system (2.1) can be calculated explicitly, the tangent linear

model can be obtained by the algorithm of Baiesi and Maes (2013). However, this

algorithm gets quite expensive for large systems. Consequently, it is not applicable

in this thesis.

Regardless of the computational method the tangent linear model suffers from

inherent instability. This renders the ST-FDT useless for long lead times. To

counter the instability Abramov and Majda (2007) propose a combination of the

qG-FDT and the ST-FDT response operators. The equilibrium response (i.e.,
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t −→∞) of this so-called blended ST/qG-FDT reads as follows:

δE[h] =

τ∗∫
0

E
[
δfT∇h(x[t+ τ ])TTTτx(t)

]
dτ +

∞∫
τ∗

E
[
h(x[t+ τ ])x′

T
(t)
]

Σ−1(0)dτδf ,

(2.44)

where τ∗ is the integration time up to which the tangent linear model is still stable.

This blended algorithm utilizes the superior accuracy of the ST-FDT for the short

lead time and combines it with the traditional qG-FDT for longer integration

times. Even though the blending is done in a rather crude way, Abramov and

Majda (2007, 2008, 2009) have shown that the blended ST/qG-FDT has better skill

than the qG-FDT. However, the ambiguous choice of τ∗ and the ad-hoc blending

limit the robustness of this method.
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Chapter 3

Models

In this chapter we introduce the reference model used to address the research

questions of this thesis. Furthermore, we construct a low-order model based on a

limited number of variance patterns that is additionally equipped with a purely

data-driven parameterization. This reduced model serves then as a testbed of the

FDT approach to introduce a climate dependence on tuning parameters of SGS

closures.

3.1 Quasigeostrophic Three-Layer Model

This thesis uses the quasigeostrophic three-layer model (QG3LM) of Marshall and

Molteni (1993) as a toy model of the atmosphere. The model is governed by the

potential vorticity equation on the sphere, given by

∂qi
∂t

= −J(Ψi, qi) +Di(Ψi−1,Ψi,Ψi+1) + Si (3.1a)

qi = ∇2Ψi + ηi + f

(
1 + δi,3

h

H

)
, (3.1b)

on the pressure levels at 200 hPa, 500 hPa and 800 hPa, denoted by the index

i = 1, 2, 3, respectively. Here q denotes the potential vorticity, Ψ is the stream-

function, and J(·, ·) is the standard Jacobian operator. Furthermore, D represents

temperature relaxation, Ekman friction, and hyperdiffusion, η denotes the stretch-

ing vorticity, f is the Coriolis parameter, and h/H is a normalized orography (cf.
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Marshall and Molteni 1993). The constant vorticity forcing S is based on 10 north-

ern hemispheric winter of ECMWF reanalysis data (Liu and Opsteegh 1995), which

enables the model to simulate a realistic climatology.

The QG3LM uses a triangular spectral discretization of T21, leading to N =

1449 degrees of freedom. The time integration is done using a Leapfrog scheme

with a time step of ∆t = 1/36 days. For all following results a daily model output

is used. Additionally, in all simulations the first 10 000 days are discarded to

eliminate potential spinup effects.

Let x ∈ RN be the state vector as defined in (D.1). Then we can write the

QG3LM shortly as

dx

dt
= G(x) , (3.2)

where G(·) summarizes the right-hand side of (3.1a).

3.2 Semi-Empirical Model

We construct the semi-empirical low-order model (SEM) by projecting the QG3LM

onto its EOFs (Preisendorfer 1988). In particular, the deviation of the state vector

x′ (1.10) is projected onto the leading M (M < N) EOFs:

x = 〈x〉+ x′ (3.3)

= 〈x〉+ ak(t)ek + ε(t) (3.4)

= 〈x〉+ EEEa(t) + ε(t) , (3.5)

where a ∈ RM is the so-called principle component vector1, EEE ∈ RN×M consists

of the leading M EOFs e ∈ RN as columns, and ε ∈ RN is the time-dependent

truncation error.

The EOFs are defined by the eigenvalue problem (no Einstein’s summation

1. In the mathematical literature the EOF decomposition is called Principle Component Anal-
ysis.
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Figure 3.1: (a) Explained variance and (b) cumulative explained variance of the
EOFs obtained from a 100 000 day time series of the QG3LM.

convention) 〈
x′x′

T
〉
MMMek = λkek , (3.6)

where the eigenvalue λk denotes the variance of the QG3LM explained by the

kth EOF and MMM is the total energy metric of Ehrendorfer (2000). The exact

formulation of MMM is given in appendix D.

Figure 3.1 shows the explained variance (Fig. 3.1a) and cumulative explained

variance (Fig. 3.1b) of the EOFs, respectively, obtained by a 100 000 day integra-

tion of the QG3LM. Roughly 540 EOFs are necessary to explain 90% of the time

series. This flatness of the spectrum is typical when applying an energy metric to

data unfiltered in time (e.g., Achatz and Branstator 1999; Achatz and Opsteegh

2003a).

Applying the EOF decomposition (3.5) to the QG3LM (3.2) results in

da

dt
= EEETMMMG (〈x〉+ EEEa) + s(a,x) , (3.7)

where the SGS tendency error s stems from the truncation within G(·). To account

for the SGS error, a suitable parameterization p(a) is required, which allows us to
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write the SEM as

da

dt
= G̃(a) + p(a) + εp(a,x) , (3.8)

where G̃(a) = EEETMMMG(〈x〉+EEEa) and εp describes the error of the parameterization

[i.e., εp(a,x) = s(a,x) − p(a)]. We choose a simple linear deterministic closure

(Achatz and Branstator 1999; Achatz and Opsteegh 2003a) given by

pdet(a) = r + LLLa , (3.9)

where r ∈ RM and LLL ∈ RM×M are constant. The optimal closure parameters

LLL = 〈s′a′T〉〈a′a′T〉−1 (3.10a)

r = 〈s〉 − LLL〈a〉 , (3.10b)

are obtained by minimizing 〈‖εp‖2〉 (appendix B.1), and the SGS tendency error

is approximated by centered differences in time (B.3).

Furthermore, we consider a stochastic parameterization given by an OU-process

pstoch(a) = r + LLLa + ΣẆ , (3.11)

where Σ ∈ RM×M is diagonal and Ẇdt = dW ∈ RM denotes a Wiener increment.

The optimal closure parameters are estimated using the Maximum-Likelihood

method (Honerkamp 1994). We obtain for the deterministic part exactly the same

equations as (3.10), whereas the optimal noise amplitude is given by

Σii =

√√√√2∆t

〈[
si − (ri +

∑
k

LLLikak)

]2〉
, (3.12)

(see appendix B.2). Thus, we write for the remainder of this thesis the SEM as

da

dt
= G̃(a) + r + LLLa + ΣẆ , (3.13)

where in the case of the deterministic closure Σ = 0 (SEMdet) and for the stochastic
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Figure 3.2: (a),(b) Mean streamfunction (108 m2 s−1) and (c),(d) covariance of
streamfunction (1013 m4 s−2) at 200 hPa. (a),(c) The result of the QG3LM pro-
jected onto the first 500 EOFs; (b),(d) the result of the 500 EOF SEMdet. The
variable ε denotes the relative error in (5.1) and “cor” is the pattern correlation
calculated between the SEMdet and the QG3LM, respectively. Note that the color
shading is adjusted and the same units are used for each row (Pieroth et al. 2018,
c©American Meteorological Society. Used with permission).

parameterization Σ (SEMstoch) is given by (3.12).

In general, such semi-empirical low-order models tend to overestimate the vari-

ance (Achatz and Branstator 1999; Achatz and Opsteegh 2003a). To counter this,

we adjust the hyperdiffusion by changing the diffusion time scale τH (see Mar-

shall and Molteni 1993) to minimize the relative error [see (5.1) in section 5.1] of

the variance between the QG3LM and the SEM. The numerical values for both

parameterizations are given in Table 3.1.

Figure 3.2 shows the mean (top) and covariance of the streamfunction (bot-

tom), respectively, of the 500 EOF SEMdet (Figs. 3.2b and 3.2d) in comparison to

the QG3LM (Figs. 3.2a and 3.2c). Both models are evaluated at 200 hPa, since

for the anomaly experiments the strongest response is evident in this layer. In

addition, the QG3LM has been projected on the first 500 EOFs to allow a fair

comparison. In general, the parameterization works quite well: The mean is vir-



30 3.2. Semi-Empirical Model

Table 3.1: Adjusted diffusion time scale (days) that is used in the SEM. The
original value is τH = 2 days. (Pieroth et al. 2018, c©American Meteorological
Society. Used with permission).

number of EOFs SEMdet τH SEMstoch τH
20 1.0 0.4
50 1.3 0.6
100 1.2 0.6
200 1.9 1.1
500 2.6 2.2

tually identical2, and in the covariance only small differences in the amplitude are

visible. For smaller EOF truncations and the SEMstoch the results are qualitatively

the same (not shown).

2. This is to be expected, since for an unforced case the EOFs have per definition no mean.
Thus, both figures show essentially 〈x〉 of (3.5).



Chapter 4

Climate-Dependent Subgrid-Scale

Parameterization

4.1 Anomalous Forcings

In the following we introduce the external forcings used to perturb the models.

Additionally, we specify the anomalous SEM and explain the role of the FDT to

update the tuning parameters of the SGS closure.

4.1.1 Local Forcing

The SEM reproduces the QG3LM qualitatively and quantitatively. However, so far

we only considered an unperturbed setting. For a final evaluation of the SEM per-

formance we have to perturb the system. For this we consider a time-independent

local forcing that simulates the effect of a sea-surface temperature anomaly caused

by a change in the oceanic circulation (Branstator and Haupt 1998; Achatz and

Branstator 1999; Achatz and Opsteegh 2003b; Achatz et al. 2013).

In terms of a quasigeostrophic potential vorticity forcing this anomalous heating

31
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Figure 4.1: Response of the QG3LM at 200 hPa resulting from the local anomalous
forcing at λc = 60◦ in (a) mean streamfunction (106 m2 s−1) and (c) zonal wind
(m s−1). (b),(d) The response caused by the global anomalous forcing using the
first EOF. The color shading is adjusted and the same units are used for each row
(Pieroth et al. 2018, c©American Meteorological Society. Used with permission).

reads

δSi = −AR∆p

f0

(1− δi,3)
sin
(πp

i+1
2

ps

)
r2
i+ 1

2

pi+ 1
2

− (1− δi,1)
sin
(πp

i− 1
2

ps

)
r2
i− 1

2

pi− 1
2


× cos2

(
λ− λc

∆λ

)
cos2

(
φ− φc

∆φ

)
, (4.1)

where the amplitude A = 1.25 K day−1, R denotes the universal gas constant,

∆p = 300 hPa is the pressure difference of the respective layers, ps = 1000 hPa

denotes the surface pressure, f0 = 2 sin(45◦) is the Coriolis parameter, and λc, φc

is the position at which the anomalous forcing is centered. Furthermore, ∆λ =

∆φ = 20◦ denotes the extension of the forcing (i.e., for φ /∈ [φc−∆φ/2, φc+ ∆φ/2]

and λ /∈ [λc−∆λ/2, λc+∆λ/2] δS is set to zero). The pressure between the layers

is given by p1 1
2

= 350 hPa and p2 1
2

= 650 hPa. Finally, r denotes the Rossby radius

of deformation (see Marshall and Molteni 1993, for the numerical values).
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In accordance to Achatz et al. (2013) we place the anomalous forcing in the

extratropics, since the equatorial region of the QG3LM exhibits only a relatively

small variance. Consequently, any forcing placed there would be poorly resolved

by the EOFs. Therefore, we fix the latitute at φc = 45◦ and vary the longitude

position by λc = {0◦, 30◦, . . . , 330◦}. Strictly speaking this violates our physical

interpretation of the forcing as a heating coming from the ocean, because the

QG3LM has a crude representation of orography (Marshall and Molteni 1993).

Nevertheless, since the QG3LM is an atmosphere-only model it makes no difference

where the forcing is placed.

The left column of Fig. 4.1 shows the steady-state response of the QG3LM at

200 hPa, caused by an anomalous forcing placed at λc = 60◦ and calculated from a

time series of 6×106 days. The forcing has been projected onto the first 20 EOFs.

Fig. 4.1a shows the response of the mean streamfunction, Fig. 4.1c that of the

mean zonal wind. The peak wind speeds of about 2 m s−1 are comparable to what

is the expected response of the climate because of the anthropogenic influence

(Lorenz and DeWeaver 2007).

4.1.2 Global Forcing

It is quite an approximation to simulate a climate change by a localized heat source

in the extratropics. Intuitively we would expect a global forcing due to the climate

change. Therefore, to drop the locality and thus be more realistic, we additionally

consider a global anomalous forcing. In particular, we construct a dynamic forcing

given by individual EOFs multiplied by suitable factors:

δf = εkek , (4.2)

where εk > 0 with k = 1, 2, . . . , 5. The εk are chosen in a way that the turbulent

kinetic energy x′TMMMx′ of the response is comparable to the response caused by the

local forcing (Eturb ≈ 470 TJ kg−1). Their exact values are given in Table 4.1.

Figures 4.1b and 4.1d show, as a representative example, the response of the

global anomalous forcing using EOF 1. The response is similar to the one of

the local forcing (Figs. 4.1a and 4.1c). However, the amplitude is weaker with

maximum mean zonal wind speeds of about 1.5 m s−1.
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Table 4.1: Constant factors used for the calculation of the global anomalous forc-
ing. The values are given in units of 4Ω2 , where Ω = 2π day−1 (Pieroth et al. 2018,
c©American Meteorological Society. Used with permission).

ε1 ε2 ε3 ε4 ε5
1√
45
· 10−5 1√

10
· 10−5 1√

3
· 10−5 1

2
· 10−5 1√

2
· 10−5

4.2 Anomalous Semi-Empirical Model

The simplest approach to incorporate the anomalous forcing in the semi-empirical

low-order model is the so-called a priori SEM (apr-SEM; i.e., the näıve SEM):

da

dt
= G̃(a) + r + LLLa + ΣẆ + δf , (4.3)

where δf is either given by δf = EEET
20MMMδS (where EEE20 denotes the projection on the

first 20 EOFs) in case of the local anomalous forcing or by (4.2) for the global

anomalous forcing. However, the apr-SEM fails to reproduce a correct response,

as can be seen on the example of the local anomalous forcing at λc = 270◦ (Fig.

5.2b). The 500 apr-SEM has minima over the oceans which are too weak, while

the position of the maximum response is shifted to the west and is too pronounced

in comparison to the true response (Fig. 5.2a). This incorrect response is caused

by the empirical closure being tuned to the unperturbed case (Achatz et al. 2013;

Pieroth et al. 2018).

The actual forced SEM should read

da

dt
= G̃(a) + r + δr + (LLL + δLLL)a + (Σ + δΣ)Ẇ + δf , (4.4)

where δr, δLLL and δΣ are the changes in the SGS parameterization caused by the

forcing. The updated parameters are given by

LLL + δLLL =
(
〈s′a′T〉+ δ〈s′a′T〉

)(
〈a′a′T〉+ δ〈a′a′T〉

)−1

(4.5a)

r + δr = 〈s〉+ δ〈s〉 − (LLL + δLLL) (〈a〉+ δ〈a〉) (4.5b)
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Σii + δΣii =

√
2∆t

(
[〈s2

i 〉+ δ〈s2
i 〉] +

∑
k,j

(LLLik + δLLLik) (LLLij + δLLLij) (〈akaj〉+ δ〈akaj〉)

− 2

[
(ri + δri) (〈si〉+ δ〈si〉) +

∑
k

(LLLik + δLLLik) (〈siak〉+ δ〈siak〉)

]

+ (ri + δri)
2 + 2

∑
k

(LLLik + δLLLik) (ri + δri) (〈ak〉+ δ〈ak〉)

) 1
2

, (4.5c)

where δ〈s′a′T〉 = δ〈saT〉−δ〈s〉δ〈a〉T and δ〈a′a′T〉 = δ〈aaT〉−δ〈a〉δ〈a〉T. Therefore,

if the changes in the statistical moments (i.e., δ〈a〉, δ〈s〉, δ〈s2
i 〉, δ〈aaT〉, and δ〈saT〉)

are known, it would be easy to update the empirical parameters of the SGS closure.

The changes in the statistical moments can be obtained by a time series of the

perturbed reference model. Obviously, the response of the resulting a posteriori

SEM (apo-SEM; Fig. 5.2c) is significantly improved compared to the apr-SEM

(Fig. 5.2b). Nevertheless, running a high-dimensional reference model each time

when conducting sensitivity studies defies the purpose of low-order modeling.

For realistic climate projections it is impossible to compute the true response.

Thus, usually the tuning parameters are kept constant. However, we propose using

the qG-FDT (2.30) to estimate the required response of the statistical moments

(Achatz et al. 2013; Pieroth et al. 2018). In particular, if the model is forced by

δf = const., we approximate δ〈s〉 by

δ〈s〉 =

∞∫
0

〈
s(a[t+ τ ])a′

T
(t)
〉

Σ−1(0)dτδf . (4.6)

The change of the remaining statistical moments (i.e., δ〈a〉, δ〈s2
i 〉, δ〈aaT〉, and

δ〈saT〉) can be estimated analogously. In return, these estimations are then used

to update the tuning parameters (4.5). Of course, this estimation will not be

perfect because of the limitations of the theorem. Nevertheless, we expect to see

a positive effect under appropriate conditions.
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Chapter 5

Results

The results are structured as follows. First we introduce the experimental setup.

Afterwards, we conduct the anomaly experiments with both the local and global

external forcing, respectively. Furthermore, we investigate the performance of the

SEMstoch and the superior ST/qG-FDT algorithm. Most of the results presented

in this section are published in Pieroth et al. (2018).

5.1 Setup

In the following simulations we consider a local anomalous forcing and a global

anomalous forcing, which are both presented in section 4.1. The former uses 12

different forcing positions, while the latter considers one of the first five EOFs as

forcing patterns. In each integration the first 10 000 days have been discarded to

eliminate potential spinup effects. Furthermore, we are focusing the investigation

on the 200 hPa layer, since there the strongest response is visible. The results are

quantified by a relative error in EOF space given by

ε(a,b) =
‖ a− b ‖2

‖ a ‖‖ b ‖
and ε(AAA,BBB) =

‖ AAA−BBB ‖2

‖ AAA ‖‖ BBB ‖
, (5.1)

where the norm ‖ · ‖ is either the 2-norm (for a,b ∈ RM) or the Frobenius norm

(for AAA,BBB ∈ RM×M).

For the FDT experiments we consider four different SEM configurations:
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• apr-SEM: Using the original (a priori) parameterization of the unforced case

(4.3). This simulates the state-of-the-art case of using a GCM for sensitivity

studies without retuning any empirical parameters.

• apo-SEM: Using the perfect (a posteriori) parameterization by retuning the

empirical parameters to the perturbed time series (impossible in realistic

settings).

• FDT-SEM: Updating the parameterization with the help of the qG-FDT.

• rFDT-SEM: Updating the parameterization with the help of the rqG-FDT

of Achatz et al. (2013) (i.e., ignoring the second order moment updates).

Each model uses a time series of length 6 × 106 days. Strictly speaking, this

huge amount of data is not necessary (see discussion in section 5.2), however,

we want to avoid sampling errors and potential spurious linear-response effects

(Gottwald et al. 2016). Furthermore, we restrict our investigation on five different

EOF truncations, given by 20 (30% explained variance), 50 (46%), 100 (60%), 200

(73%), and 500 (89%) EOFs, respectively.

The experiments are conducted for both the SEMdet and SEMstoch. As it turns

out, the qG-FDT predicted correction of the noise amplitude δΣ is not useful for

the local anomalous forcing. We could set δΣ = 0, however, this would potentially

mask the positive (or negative) effect of the update of the remaining empirical

parameters of the SGS closure. Thus, for the local anomalous forcing we restrict

our investigation only on the SEMdet.

5.2 Numerical Experiments

5.2.1 Local Anomalous Forcing

Figure 5.1a shows for different EOF truncations a boxplot of relative error between

the qG-FDT and the a posteriori statistical moments required for the calculation

of the SEM’s SGS closure (3.10) and (3.12), respectively. Obviously, the qG-FDT

is unable to estimate δ〈s2
i 〉 correctly, regardless of the EOF truncation. In particu-

lar, for the 500 EOF case the median of relative error reaches O(1). Furthermore,



5. Results 39

a) b)

0.02

0.05

0.10

0.25

0.50

1.00

2.00

20 50 100 200 500 20 50 100 200 500
EOFs EOFs

re
la

tiv
e 

er
ro

r

δ<a>
δ<s>

δ<s2>

δ<sa>
δ<aa>

δr qG−FDT
δL qG−FDT
δΣ qG−FDT

Figure 5.1: Boxplot of (a) the relative error between the qG-FDT and the true re-
sponse of the moments and (b) a posteriori closure corrections to the local anoma-
lous forcing, against the number of EOFs. The statistics for the boxplot come
from the different forcing positions λc ∈ {0◦, 30◦, . . . , 330◦}. The median is given
by the horizontal black line and the colored area denotes the interquartile range
(25th–75th percentiles; Pieroth et al. 2018, c©American Meteorological Society.
Used with permission).

this moment experiences a significant spread. Yet, the first moments (i.e., δ〈a〉
and δ〈s〉) are remarkably well estimated with an average median of about ε ≈ 0.05.

In contrast, the second moments (i.e., δ〈aaT〉 and δ〈saT〉) show a systematically

higher relative error of ε ≈ 0.25. Moreover, we see a trend in the moments contain-

ing the SGS error (i.e. δ〈s〉, δ〈s2
i 〉, and δ〈saT〉) with increasing errors for higher

EOF truncations. This trend directly translates into the closure corrections (Fig.

5.1b). Overall, the estimation of δr has the lowest errors ranging from ε = 0.05

to ε = 0.25. In contrast, the errors of δLLL are significantly higher with ε = 0.25 to

ε = 1. However, the spread of δLLL is considerably lower than that of δr. This result

is unsurprising given the fact that δLLL is directly dependent on the second moments

and δr depends on δLLL (4.5). For the same reason the incorrect estimation of δ〈s2
i 〉

renders δΣ useless.

For the evaluation of the closure corrections obtained by the qG-FDT we first

consider, as an example, a 500 EOF SEMdet, perturbed by a local anomalous
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Figure 5.2: Response in covariance of streamfunction (1013 m4 s−2) at 200 hPa
resulting from a local anomalous forcing located at λc = 270◦. (a) The response
of the QG3LM projected onto 500 EOFs. The response of the 500 EOF (b) apr-
SEMdet, (c) apo-SEMdet, and (d) FDT-SEMdet. (e) For comparison the direct
qG-FDT estimation of the response in covariance of streamfunction is given. The
variable ε denotes the relative error in (5.1) and “cor” is the pattern correlation
calculated between the low-order model and the QG3LM, respectively (Pieroth
et al. 2018, c©American Meteorological Society. Used with permission).

forcing at λc = 270◦. Figure 5.2 shows the response in covariance of streamfunction

for the QG3LM (Fig. 5.2a), various SEMdet (Figs. 5.2b-d), and the direct qG-

FDT estimation using the response operator for var(Ψ) (Fig. 5.2e). The QG3LM

experiences multiple minima over the oceans and a large minimum over Greenland.

Additionally, we observe a band of maxima at roughly 50◦N spanning nearly the

whole globe with a local maximum over Asia. In contrast, for the apr-SEMdet

(Fig. 5.2b) the amplitudes of the minima over the oceans are too weak while

the minimum over Greenland is too strong. Furthermore, the local maximum

is shifted to the Pacific Ocean. Consequently, the relative error reads ε = 0.24

and the correlation is below 90%. Most of these deficits are directly linked to

incorrect tuning: the relative error decreases to ε = 0.18 for the apo-SEMdet (Fig.

5.2c). In particular, the minima over the oceans have a more realistic amplitude

and the position of the local maximum over Asia is well captured. However, the

amplitude of the minimum over Greenland is even worse than that of the apr-

SEMdet. Similar results are obtained by the FDT-SEMdet (Fig. 5.2d), which is
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Figure 5.3: Boxplot of the relative error of the response of (a) the first mo-
ment and (b) covariance of streamfunction between the SEMdet with adjusted
closures and the QG3LM with local anomalous forcing against the number of
EOFs. For comparison also the direct qG-FDT estimation of the respective mo-
ment is plotted. The statistics for the boxplot come from the different forcing
positions λc ∈ {0◦, 30◦, . . . , 330◦} (Pieroth et al. 2018, c©American Meteorological
Society. Used with permission).

also visible by the nearly identical relative error of ε = 0.17. On the other hand,

the direct qG-FDT estimation of the response of covariance of streamfunction

fails completely. While the pattern of the response is captured quite well (cor =

0.89), the amplitude is orders of magnitudes too high. In addition, the direct qG-

FDT response shows only a negative response throughout the northern hemisphere

resulting in a relative error of ε = 0.40. Similar results are obtained for the response

in mean streamfunction (not shown).

Figure 5.3 shows the summarizing evaluation of the FDT-SEMdet for all forcing

positions and EOF truncations. In particular, Fig. 5.3 shows the boxplot of

relative error of the various SEMdet for the response in mean streamfunction (Fig.

5.3a) and the response in covariance of streamfunction (Fig. 5.3b). In addition to

the models in the example case above we are also considering the rFDT-SEMdet,

which is the originally proposed ansatz of Achatz et al. (2013). In principle, we see

the same behavior as described in the detailed example, for all EOF truncations
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Figure 5.4: As in Fig. 5.1, but for the global anomalous forcings represented
by EOFs ek with k ∈ {1, 2, . . . , 5}. For comparison with the local anomalous
forcing case, the results are shown as a boxplot (Pieroth et al. 2018, c©American
Meteorological Society. Used with permission).

and forcing cases: the FDT-SEMdet outperforms the apr-SEMdet. The rFDT-

SEMdet, on the other hand, provides only a slight improvement over the a priori

SEMdet for the response in mean streamfunction (Fig. 5.3a). For the response in

covariance of streamfunction (Fig. 5.3b) the rFDT-SEMdet produces comparable

results to the FDT-SEMdet for the 20 EOF, 50 EOF, and 100 EOF case, but

does a poorer job for the higher EOF truncations. Furthermore, for both mean

and covariance of streamfunction the direct application of the qG-FDT operator

outperforms all SEMdet (including the apo-SEMdet) for all EOF truncations smaller

200 EOF.

5.2.2 Global Anomalous Forcing

Figure 5.4 shows the performance of the qG-FDT for the case of the global anoma-

lous forcing. The major results of the local anomalous forcing case are reproduced.

In particular, δ〈s2
i 〉 still experiences the highest spread. Yet, the overall quality of

the qG-FDT estimations (Fig. 5.4a) are significantly improved. The median of the

highest error among all moments and all EOF truncations is at ε ≈ 0.3. On the
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Figure 5.5: As in Fig. 5.3, but for the global anomalous forcings represented
by EOFs ek with k ∈ {1, 2, . . . , 5}. For comparison with the local anomalous
forcing case, the results are shown as a boxplot (Pieroth et al. 2018, c©American
Meteorological Society. Used with permission).

other hand, the resulting closure corrections (Fig. 5.4b) are seemingly identical to

that of the local anomalous forcing case (Fig. 5.1b). The only exception being δΣ

which has on average a median of ε ≈ 0.2, because of the skillful δ〈s2
i 〉 estimation.

On close inspection we see that the quality of the estimation of δ〈saT〉 for both the

local anomalous forcing (Fig. 5.1a) and the global anomalous forcing (Fig. 5.4a)

is nearly identical. This indicates that the closure corrections are highly sensitive

towards this specific moment.

Consequently, for the global anomalous forcing the performance of the FDT-

SEMdet (Fig. 5.5) is somewhat similar to the case of the local anomalous forcing

(Fig. 5.3). Not only qualitatively but also quantitatively the result for both the

response in mean streamfunction (Fig. 5.5a) and covariance of streamfunction

(Fig. 5.5b) is quite similar. We notice, however, that the spread of all SEMdet and

the direct application of the qG-FDT response operator is considerably reduced

in the case of the global anomalous forcing. This might be a consequence of the

reduced number of forcing cases, which are less than half compared to the local

anomalous forcing.
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Figure 5.6: As in Fig. 5.5, but for the SEMstoch (Pieroth et al. 2018, c©American
Meteorological Society. Used with permission).

Because of the skillful estimations of δΣ we are able to investigate the FDT-

SEMstoch in the global anomalous forcing case. In Fig. 5.6 the equivalent evaluation

as in Fig. 5.5 is shown, however, for SEMstoch. In principle, the previous results are

supported: the qG-FDT is able to successfully update the empirical parameters of

the SGS closure such that the FDT-SEMstoch systematically outperforms the apr-

SEMstoch. In contrast to the SEMdet (Fig. 5.5) we find that the response of both

the apr-SEMstoch and FDT-SEMstoch experience a reduced variability with respect

to the global anomalous forcing. However, in terms of the median of relative error

no benefit is visible from the additional stochasticity in the SEM.

5.2.3 Blended short-time/quasi-Gaussian Fluctuation-Dis-

sipation Theorem

In order to evaluate the impact of the assumption of Gaussianity made by the

qG-FDT, we additionally apply the blended ST/qG-FDT of Abramov and Majda

(2007) to the 20 EOF and 200 EOF case with a local anomalous forcing. For the

blending we choose a τ∗ = 2 days, which was determined by trial and error (i.e., by

comparison of the response of the qG-FDT and the ST-FDT for various τ∗). Figure
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Figure 5.7: As in Fig. 5.1, but showing the result of the ST/qG-FDT algorithm
(Pieroth et al. 2018, c©American Meteorological Society. Used with permission).

5.7a shows the estimation of the changes of the statistics by the blended algorithm.

The result is qualitatively similar to the qG-FDT (Fig. 5.1a). The first moments

are considerably better estimated than the second moments and δ〈s2
i 〉 experiences

the highest spread. Quantitatively only slight improvements, mainly in spread,

are visible for both δ〈s2
i 〉 and δ〈aaT〉. In contrast, the error of δ〈s〉 estimated by

the blended algorithm is considerably higher. Consequently, no improvement is

made in the closure corrections (Fig. 5.7b). In fact, because of the higher error

in δ〈s〉 the quality of δr is much lower than for the qG-FDT estimation (Fig.

5.1b). Therefore, the SEMdet with a ST/qG-FDT-adjusted closure experiences no

improved performance compared to the FDT-SEMdet (not shown).

5.3 Discussion

In general, we observe an improved performance of the qG-FDT for the global

anomalous forcing case (one of the first five EOFs as forcing; Fig. 5.4a) compared

to the local anomalous forcing case (combination of the first 20 EOFs as forcing;

Fig. 5.1a). According to Lutsko et al. (2015) taking more EOFs into account

results in a higher uncertainty of the response operator. The qG-FDT response
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Figure 5.8: (a) Pattern correlation between the response of the local anomalous
forcing with positive and negative amplitude, respectively. (b) as in Fig. 5.1a, but
only taking the linear part of the true response into account.

operator is inversely proportional to the auto-covariance matrix (2.30) and thus

inversely proportional to the eigenvalues of the EOFs. Since higher EOFs have

per definition smaller eigenvalues this leads to sampling problems. However, the

extremely long time series used in this study allows us to exclude sampling errors.

In fact, tests showed that taking a subset of 3×106 days (or even fewer) resulted in

nearly the same results as presented in this thesis. Furthermore, splitting the time

series in six parts and hence creating an ensemble of qG-FDT response operators

revealed a small ensemble spread while the ensemble mean operator yielded a quite

similar result to the findings above. Therefore, it seems that the worse performance

of the qG-FDT is not because of sampling errors but due to the “hot spot” nature

of the forcing, which agrees with the result of Fuchs et al. (2015).

The higher errors in the second moments for both forcing cases and both FDT

algorithms (Fig. 5.1a, Fig. 5.4a, and Fig. 5.7a) are to be expected. Gritsun

et al. (2008) observed a similar behavior when applying the qG-FDT to an atmo-

spheric GCM. Furthermore, for a transient response Majda et al. (2005, p. 68)

proved that the error of the qG-FDT for the second moment (δ〈aaT〉) is in general

less accurate than that of the first moment (δ〈a〉). On top of that, and in contrast
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to the literature (e.g., Gritsun and Branstator 2007; Gritsun et al. 2008), we use

the full nonlinear a posteriori response of the QG3LM as a reference.

To investigate the impact of the nonlinearity in the a posteriori response we

force the QG3LM with the local anomalous forcing but with opposite signs (i.e.,

±δf). If the response is purely linear, the pattern correlation of those two forcing

experiments should be -1. Figure 5.8a shows as an example the correlation of each

relevant statistical moment for the 20 EOF case. Obviously, δ〈a〉 and δ〈s〉 are

quite linear with cor < −0.98 and nearly no spread for all forcing cases, while

the correlation of δ〈s2
i 〉 is slightly larger with values cor < −0.94 and exhibits

a significant spread. The second moments have a pattern correlation of −0.9 <

cor < −0.8. In other words, they experience a significant nonlinear response.

Those nonlinearities lead to the reduced skill of the FDT in the prediction of the

second moments. This is underlined by the comparison of the qG-FDT estimation

to the purely linear part of the a posteriori response. The latter is extracted by

subtracting the anomalous QG3LM with −δf from the simulation with +δf and

dividing by 2. Since the nonlinearity is quadratic (3.1a) it cancels out and only

the linear response remains (cf. Gritsun and Branstator 2016). In Fig. 5.8b we

show the quality of the qG-FDT estimations of the linear part of the response.

In comparison to the case with the full response (Fig. 5.1a) we observe nearly no

change for the first moments. On the other hand, the estimations of the second

moments are significantly improved, in terms of both median and spread. Yet,

there is still a difference in relative error of roughly a factor of 10 between δ〈a〉,
δ〈s〉 and δ〈aaT〉, δ〈saT〉.

We observed a trend in the moments containing the SGS tendency error s

(i.e., δ〈s〉, δ〈s2
i 〉, and δ〈saT〉): with increasing EOF truncation the quality of the

FDT estimation deteriorates for both the qG-FDT (Fig. 5.1a; Fig. 5.4a) and

the ST/qG-FDT (Fig. 5.7a). It could be that at higher EOF truncations we

have larger contributions from the stable manifold (Gritsun and Lucarini 2017).

However, by definition the amplitude of the SGS error decreases with increasing

EOF truncation. Thus, all moments containing s suffer from a small signal-to-

noise ratio. Repeating the experiments with only half of the time series increased

the trend, which supports this hypothesis.

In Fig. 5.2e we see that the direct application of the qG-FDT operator yields
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Figure 5.9: As in Fig. 5.2, but for response in meridional momentum flux (m2 s−2;
Pieroth et al. 2018, c©American Meteorological Society. Used with permission).

inferior results compared to the FDT-SEM (Fig. 5.2d). This is not universally

the case. For the example of the response of meridional momentum flux δ〈u′v′T〉
(Fig. 5.9) we find that the direct qG-FDT application has roughly the same

skill as the FDT-SEM. This variability in qG-FDT skill is again linked to the

(non)linearity of the response of the considered observable. Obviously, the response

of covariance of streamfunction contains to a significant degree nonlinearities while

the response of meridional momentum flux seems to be quite linear. Unfortunately,

the nonlinearity cannot be avoided. Thus, the original idea of Leith (1975) to

utilize the FDT to estimate the climate response fails in some cases (e.g., Fig.

5.2e). Yet, using the linear estimations to update the empirical parameters of the

SGS closure of a nonlinear model as proposed by Achatz et al. (2013) circumvents

this issue. The results presented above and published in Achatz et al. (2013)

and Pieroth et al. (2018) indicate that even for cases with nonlinear response the

FDT-SEM has some skill.

In comparison to Achatz et al. (2013) the qG-FDT estimations of the response

of the second moments worked significantly better, allowing a successful update

of the linear operator in the SGS closure. Consequently, we show that in general

the rFDT-SEMdet yields inferior results compared to the FDT-SEMdet (Fig. 5.3).

This improvement was to be expected since the QG3LM with its relatively fast

baroclinic instability better fulfills the constraints of the qG-FDT.
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Figure 5.10: Strength of the QG3LM’s response to the local anomalous forcing in
comparison to the bias of the unforced SEMdet. The boxplot shows the relative
deviation of (a) mean streamfunction and (b) covariance of streamfunction between
the perturbed and unforced QG3LM against EOF truncation. The green dots are
the relative errors of the unforced SEMdet and QG3LM.

Nevertheless, the direct application of the qG-FDT significantly outperforms

all of the SEMs for EOF truncations ≤ 200 EOFs for both the local (Fig. 5.3)

and global anomalous forcing (Fig. 5.5), respectively. One could think that this

is caused by a small signal-to-noise ratio. Indeed, comparing the bias in relative

error of the unforced SEMdet with the strength of the QG3LM’s response reveals

a disadvantageous ratio (Fig. 5.10). However, we find no correlation between the

signal-to-noise ratio and the quality of the SEMs in Fig. 5.3. Because of the

energy metric used for the construction of the EOFs we require at least 540 EOFs

to explain 90% of the variance of the QG3LM (Fig. 3.1). Thus, SEMs based on

fewer EOFs might be unable to produce a correct response, especially the response

in covariance of streamfunction. Still, the results are meaningful since they show

that the FDT approach in general works, even though the actual output of the

FDT-SEM might not be particularly useful.
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Chapter 6

Stochastic Mode Reduction

The theory of the stochastic mode reduction (SMR; or homogenization in the

mathematical literature) for SDEs was developed by Papanicolaou (1976). Re-

cently, SMR has found interest in geoscience (Majda et al. 2001; Majda et al. 2005).

Since then its potential as an SGS parameterization has been studied in various

toy models (Majda et al. 2002, 2003; Franzke et al. 2005; Dolaptchiev et al. 2013a;

Dolaptchiev et al. 2013b; Wouters et al. 2016; Zacharuk et al. 2018), coupled toy

ocean/atmosphere models (Demaeyer and Vannitsem 2018), and more complex

atmospheric models (Franzke and Majda 2006). In principle, this method allows

the construction of a parameterization based nearly fully on first principles (i.e.,

obtained directly from the model equations), by applying the following steps:

1.) Separation of the system’s state vector into fast and slow variables with two1

different characteristic scales.

2.) Introduction of a scale-separation factor ε that describes the characteristic

scales mathematically.

3.) Replacement of the nonlinear self-interaction of the fast variable by a Gaus-

sian stochastic process.

4.) For the limit of ε −→ 0 an effective equation for the slow variable is ob-

tained that includes a stochastic parameterization, which accounts for the

1. Extensions to multiple scales are possible (see references within Pavliotis and Stuart 2008),
but we focus in this thesis on two scales only.
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fast variable.

Conceptually, we require in step 4.) that the fast variable is infinitely faster than

the slow variable. Thus, the explicit evolution of the former is no longer important:

looking from the scale of the slow variable, the fast variable acts only as a random

noise. The SMR provides a mathematically rigorous way to calculate this noise

analytically from the model equations. Therefore, we expect the resulting SGS clo-

sure to be able to react to an external forcing. In the context of regime transitions

this has already been shown by Franzke (2013) for an idealized four-dimensional

toy model.

For the application of the SMR we require a scale separation. While this is

given in the atmosphere and climate system, the limit of an infinite scale separation

presents an approximation we have to make. However, recently the theory has been

generalized to cases with a finite scale separation (Wouters and Gottwald 2018,

2019). The original articles (e.g., Majda et al. 2001, 2003) use an OU-process as a

Gaussian process in step 3.). This assumption is relaxed by Franzke et al. (2005)

in the so-called seamless SMR. However, both approaches rely in this step on

empirical tuning, either by fitting the OU-process or by obtaining the required lag

correlations directly from data, respectively. In this thesis we use the traditional

approach and fit an OU-process explicitly, which allows us to apply the FDT later

on.

6.1 Scale Separation

Consider an arbitrary system

˙̃x = F + LLLx̃ +NNNx̃x̃ , (6.1)

where F ∈ RN , LLL ∈ RN×N , and NNN ∈ RN×N×N are the explicit coefficients with

F,LLL,NNN = const. and x̃ ∈ RN denotes the state vector. We restrict our consideration

deliberately to quadratic systems, since this is the highest nonlinearity in the

QG3LM.

In the first step we assume that the state vector x̃ can be separated in a slow

variable x ∈ RS and a fast variable y ∈ RF , because of the underlying physics. In
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practice this step is quite complex, since the scale separation is generally nontrivial

(see section 7.1). However, at this point we simply assume that such a separation

is possible and write (6.1) as

ẋ = Fx + LLLxxx +NNNxxxxx + LLLxyy +NNNxxyxy +NNNxyxyx +NNNxyyyy (6.2a)

ẏ = Fy + LLLyxx +NNNyxxxx + LLLyyy +NNNyxyxy +NNNyyxyx +NNNyyyyy , (6.2b)

where the superscript •µνρ denotes that the latter variables (ν and ρ) act on the

first one (µ). In addition, the superscript indicates the dimension of the tensors

(e.g., NNNxyx ∈ RS×F×S).

Applying a suitable nondimensionalization results in

dx̂ =
(
F̂x + L̂LL

xx
x̂ + N̂NN

xxx
x̂x̂
)

dt̂

+
1

ε

(
L̂LL
xy

ŷ + N̂NN
xxy

x̂ŷ + N̂NN
xyx

ŷx̂ + N̂NN
xyy

ŷŷ
)

dt̂ (6.3a)

dŷ =
1

ε

(
F̂y + L̂LL

yx
x̂ + N̂NN

yxx
x̂x̂ + L̂LL

yy
ŷ + N̂NN

yxy
x̂ŷ + N̂NN

yyx
ŷx̂
)

dt̂

+
1

ε2
N̂NN
yyy

ŷŷdt̂ , (6.3b)

since we split the model accordingly. An estimation of ε in our case is given in

section 7.2.1. For convenience we suppress the hats from now on.

6.2 Introduction of an Empirical Ornstein-Uhlen-

beck Process

The only empirical step of the SMR is the replacement of the nonlinear self-

interaction term of the fast variable in (6.3b) by an OU-process:

NNNyyyyydt −→ lyyOUydt+ σydWy , (6.4)

where lyyOU,σ
y ∈ RF×F are constant, σy is diagonal, and dWy ∈ RF denotes a

Wiener increment. The respective parameters of the OU-process are obtained

empirically by the Maximum-Likelihood method (see appendix B.2). The classical
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SMR of Majda et al. (2002) assumes also a diagonal drift term lyyOU. However, this

assumption has been relaxed by Dolaptchiev et al. (2013a) and is also dropped

here: the drift term of the OU-process is considered to be a nondiagonal and

dense matrix.

While introducing the OU-process, the drift term inherits the scaling of the

nonlinear self-interaction term. The diffusion term has to be rescaled to ε−1 to as-

sure the same scaling as the drift term in the FPE (6.15), because of the properties

of a Wiener increment (Gardiner 2009). Thus,

dx = (Fx + LLLxxx +NNNxxxxx) dt

+
1

ε
(LLLxyy +NNNxxyxy +NNNxyxyx +NNNxyyyy) dt (6.5a)

dy =
1

ε
(Fy + LLLyxx + LLLyyy +NNNyxxxx +NNNyxyxy +NNNyyxyx) dt

+
1

ε2
lyyOUydt+

1

ε
σydWy . (6.5b)

In the next step we diagonalize lyyOU. In general this results in a complex diagonal

matrix with eigenvalues that form a complex conjugate pair. Thus, we transform

this complex matrix into a real block-diagonal matrix with 2-by-2 blocks (appendix

C.1). Consequently, the columns of the transformation matrix UUU ∈ RF×F do not

consist of the complex eigenvectors of lyyOU but of a combination of their real and

imaginary part2. We write

lyyOU = UUUΛUUU−1 , (6.6)

where Λ ∈ RF×F is the real block-diagonal matrix of lyyOU. Furthermore, let

ỹ = UUU−1y dỹ = UUU−1dy . (6.7)

2. In practice, the MATLAB routine cdf2rdf is used for this step.
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With (6.6) and (6.7) we are able to write (6.5) as

dx = (FFFx + LLLxxx +NNNxxxxx)dt

+
1

ε

(
L̃LL
xy

ỹ + ÑNN
xxy

xỹ + ÑNN
xyx

ỹx + ÑNN
xyy

ỹỹ
)

dt (6.8a)

dỹ =
1

ε

(
F̃FF
y

+ L̃LL
yx

x + ÑNN
yxx

xx + L̃LL
yy

ỹ + ÑNN
yxy

xỹ + ÑNN
yyx

ỹx
)

dt

+
1

ε2
Λỹdt+

1

ε
σ̃ydWy , (6.8b)

where the tilded quantities are the respective transformed coefficients3.

Because of the transformation, σ̃y is no longer a diagonal matrix. In recent

articles (Zacharuk et al. 2018; Dolaptchiev et al. 2013a) the noise amplitude ma-

trix has been replaced by an effective diagonal matrix σ?yii = [
∑F

j=1(σ̃yij)
2]1/2 to be

conform to the classical SMR of Majda et al. (2002). This simplifies the calculation

of the closure. For this thesis, however, tests with an RSM including this approx-

imation revealed a significant decrease of performance for certain truncations of

(S, F ). Therefore, we do not replace the noise amplitude by an effective diagonal

matrix. Instead, we keep the nondiagonal σ̃y and thus generalize the approach of

Dolaptchiev et al. (2013a).

6.3 Series Expansion of the Fokker-Planck Equa-

tion

For better readability we neglect the tilde from now on. Furthermore, we define

f0(x) = FFFx + LLLxxx +NNNxxxxx (6.9)

f1(x,y) = LLLxyy +NNNxxyxy +NNNxyxyx +NNNxyyyy (6.10)

g0 = 0 (6.11)

g1(x,y) = FFFy + LLLyxx +NNNyxxxx + LLLyyy +NNNyxyxy +NNNyyxyx (6.12)

g2(y) = Λy , (6.13)

3. For an improved readability we suppress the tilde in the superscripts.
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which allows us to summarize (6.8) as

dx = f0(x)dt+
1

ε
f1(x,y)dt (6.14a)

dy = g0dt+
1

ε
g1(x,y)dt+

1

ε2
g2(y)dt+

1

ε
σydWy . (6.14b)

Obviously, g0 = 0 will not contribute to the following calculation. However, in

the anomaly experiments (see section 8.3.1) this term can potentially be nonzero.

Thus, we formally keep it here.

The corresponding FPE for the PDF p ≡ p(x,y, t|x0,y0, t0) is given by

∂tp = L3p+
1

ε
L2p+

1

ε2
L1p , (6.15)

where

L1 = −g2(y) · ∇y −
1

2
Σ : ∇y∇y (6.16)

L2 = −f1(x,y) · ∇x − g1(x,y) · ∇y (6.17)

L3 = −f0(x) · ∇x − g0 · ∇y , (6.18)

and Σ = σy(σy)T is a nondiagonal matrix.

Next, we expand the solution of (6.15) in terms of the scale-separation factor:

p = p(0) + εp(1) + ε2p(2) +O(ε3) . (6.19)

Substituting this series into the FPE (6.15) yields

∂tp
(0) = L3p

(0) +
1

ε
L2p

(0) + L2p
(1) +

1

ε2
L1p

(0) +
1

ε
L1p

(1) + L1p
(2) +O(ε) . (6.20)

Thus follows for the leading orders:

O(ε−2) 0 = L1p
(0) (6.21)

O(ε−1) 0 = L2p
(0) + L1p

(1) (6.22)

O(1) ∂tp
(0) = L3p

(0) + L2p
(1) + L1p

(2) . (6.23)
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First we remark that from (6.21) follows

p(0) = p(0)(x, t|x0, t0), (6.24)

as is proven in appendix C.1.

We are interested in an effective equation of the slow variable where the fast

variable is eliminated. For this we need to express (6.23) in terms of p(0) only. In

order to do so we have to rearrange (6.22) for p(1). Formally this yields

p(1) = −L−1
1 L2p

(0) , (6.25)

where L−1
1 is the generalized inverse of L1 (see appendix C.1). For its existence we

require that L2p
(0) /∈ kerL1, since otherwise we would not be able to solve (6.22)

for a unique p(1).

Let P be the projection operator onto the nullspace of L1. Then we may write

L2p
(0) /∈ kerL1 as

PL2p
(0) = 0 , (6.26)

where the exact form of P is given in appendix C.1. Equation (6.26) is the so-

called solvability condition, which has to be (at least approximately) fulfilled by

the system4. Inserting L2, applying the projection operator, and utilizing (6.24)

yields

0 = −P [f1(x,y) · ∇x − g1(x,y) · ∇y]p
(0)

= −E [f1(x,y)]OU · ∇xp
(0) , (6.27)

where E[·]OU is the expectation value with respect to the stationary distribution

of the OU-process (C.13). Since the OU-process has zero mean, all odd moments

4. Otherwise, correction terms of order ε−1 are present in the effective equation of p(0) (Pa-
panicolaou 1976; Demaeyer and Vannitsem 2018).
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of the expectation value vanishes. Thus, the solvability condition reads

0 = NNNxyyijkDDDjk
∂p(0)

∂xi
, (6.28)

where DDD is the variance of the OU-process, which can be obtained from the so-

called Lyapunov equation (see appendix C.1 for the calculation; Gardiner 2009).

(6.28) can only be fulfilled if either NNNxyyijkDDDjk = 0, ∀i or if this vector is perpendicular

to ∇p(0).

If the solvability condition is fulfilled, we can apply the projection operator to

(6.23). This results in

∂tPp(0) = PL3p
(0) + PL2p

(1) + PL1p
(2) (6.29)

= L3p
(0) + PL2p

(1) , (6.30)

since P acts only on the fast variable (C.10) and both p(0) (6.24) and L3 (6.18)

dependent only on the slow variable. Furthermore, the last term in (6.29) vanishes,

since it is projected onto the nullspace of L1. Thus, with (6.25) follows

∂tp
(0) = L3p

(0) − PL2L
−1
1 L2p

(0) . (6.31)

Applying the operators (for a detailed calculation see appendix C.2) results in

∂tp
(0) = −

f0(x) +

∞∫
0

{
E [{f1(x,y) · ∇x}f1(x,y[τ ])]OU

+ E
[
{g1(x,y) ·DDD−1y}f1(x,y[τ ])

]
OU

− E [{∇y · g1(x,y)}f1(x,y[τ ])]OU

}
dτ

]
· ∇xp

(0)

−
∞∫

0

E [f1(x,y)⊗ f1(x,y[τ ])]OU dτ : ∇x∇xp
(0) . (6.32)
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6.4 Effective Equation of the Slow Variable

In order to obtain an Itô-SDE from (6.32), the amplitude matrix of the diffusion

term has to be Cholesky-decomposed. The decomposition exists for this particular

set of systems, as is proven in appendix C.3. Consequently, the effective equation

with the SMR parameterization (i.e., the RSM) reads

dx = (Fx + LLLxxx +NNNxxxxx)dt

+ (FFF +LLLx +QQQxx + CCCxxx)dt+AAAdW(1) +MMM(x)dW(2) , (6.33)

where FFF , dW(1) ∈ RS, LLL,AAA ∈ RS×S, dW(2) ∈ RF ,MMM ∈ RS×F , QQQ ∈ RS×S×S, and

CCC ∈ RS×S×S×S. Furthermore, dW(1) and dW(2) are independent. Following the

notation of Dolaptchiev et al. (2013a) the closure parameters are given by

FFF i = Fy
jLLL

xy
ikKKKkj +

[
LLLxylm(NNNxxyilj +NNNxyxijl )KKKjn + LLLyylmNNN

xyy
ijk (PPPjknl +PPPjkln)

]
DDDnm (6.34a)

LLLij =
[
Fy
l (NNN

xxy
ijk +NNNxyxikj ) + (NNNxxypjm +NNNxyxpmj)(NNN

xxy
ipk +NNNxyxikp )DDDlm + LLLyxlj LLL

xy
ik

]
KKKkl

+ (NNNyxyljm +NNNyyxlmj)NNN
xyy
ipk (PPPpknl +PPPpkln)DDDnm (6.34b)

QQQijk =
[
LLLyxlk (NNNxxyijm +NNNxyximj) +NNNyxxlkj LLL

xy
im

]
KKKml (6.34c)

CCCijkl = NNNyxxmkj(NNN
xxy
iln +NNNxyxinl )KKKnm (6.34d)

AAAij =
√

2(CCCT )ij (6.34e)

MMMij =
√

2(CCCS)lj [LLLxyil + (NNNxxyiml +NNNxyxilm )xm] , (6.34f)

where CCCS ∈ RF×F and CCCT ∈ RS×S are the Cholesky-decompositions of

SSSlk =
1

2
(KKKljDDDjk +KKKkjDDDjl) (6.35)

TTTop =
1

2
NNNxyyomn [PPPmnij (DDDikDDDjl +DDDilDDDjk) +PPPklij (DDDimDDDjn +DDDinDDDjm)]NNNxyypkl (6.36)

and DDD is given in appendix C.1. Furthermore, the tensors KKK ∈ RF×F and PPP ∈
RF×F×F×F are defined by

∞∫
0

yi(τ)dτ = KKKijyj(0) (6.37)
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∞∫
0

yi(τ)yj(τ)dτ = PPPijklyk(0)yl(0) , (6.38)

and read in particular (Dolaptchiev et al. 2013a)

KKKij =


γi

γ2i +ω2
i
, j = i

ωi
γ2i +ω2

i
, j = i+ sgn(ωi), ωi 6= 0

0, else

(6.39)

PPPijkl =



κij(γi + γj)
[
(γi + γj)

2 + ω2
i + ω2

j

]
, k = i, l = j

κijωi
[
(γi + γj)

2 + ω2
i − ω2

j

]
, k = i+ sgn(ωi), l = j, ωi 6= 0

κijωj
[
(γi + γj)

2 + ω2
j − ω2

i

]
, k = i, l = j + sgn(ωj), ωj 6= 0

2κijωiωj(γi + γj),
k = i+ sgn(ωi), l = j + sgn(ωj),

ωi,j 6= 0

0, else

(6.40)

κij =
{[

(γi + γj)
2 + (ωi − ωj)2

] [
(γi + γj)

2 + (ωi + ωj)
2
]}−1

, (6.41)

where sgn(·) denotes the sign function

sgn(x) =

1, x ≥ 0

−1, else
(6.42)

and the definitions of γ,ω ∈ RF are given in appendix C.1. In principle,

it is possible to construct M̃̃M̃M ∈ RS×S (Franzke et al. 2005; Franzke and Majda

2006), however, this would require a Cholesky-decomposition each integration time

step.



Chapter 7

Stochastic Mode Reduction

Applied to the Quasigeostrophic

Three-Layer Model

We want to apply the SMR to the QG3LM, which served already as a testbed of

the FDT approach in part I. However, we do not apply the SMR directly to the full

QG3LM but rather to a suitable subspace of the EOF spectrum. In this chapter

we define this subspace and explain in detail the involved approximations. Fur-

thermore, we derive the model equations on which the SMR is eventually applied

to and introduce the so-called bare truncation model.

7.1 Scale Separation

Consider the QG3LM in the full EOF space (i.e., a ∈ RN with N = 1449)

ȧ = F + LLLa +NNNaa , (7.1)

where F ∈ RN , LLL ∈ RN×N , and NNN ∈ RN×N×N are the constant explicit EOF

coefficients (appendix E). Next, we split the state vector into a slow variable

x ∈ RS and a fast variable y ∈ RF as already introduced in the derivation of

the SMR closure. In addition, we introduce a third variable z ∈ RH (such that

N = S + F +H), which we call hidden variable. With this decomposition we can

63
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rewrite (7.1) as three coupled differential equations given by

ẋ = Fx + LLLxxx +NNNxxxxx + LLLxyy +NNNxxyxy +NNNxyxyx +NNNxyyyy

+ LLLxzz +NNNxxzxz +NNNxzxzx +NNNxyzyz +NNNxzyzy +NNNxzzzz (7.2a)

ẏ = Fy + LLLyxx +NNNyxxxx + LLLyyy +NNNyxyxy +NNNyyxyx +NNNyyyyy

+ LLLyzz +NNNyxzxz + +NNNyzxzx +NNNyyzyz +NNNyzyzy +NNNyzzzz (7.2b)

ż = Fz + LLLzxx +NNNzxxxx + LLLzyy +NNNzxyxy +NNNzyxyx +NNNzyyyy

+ LLLzzz +NNNzxzxz +NNNzzxzx +NNNzyzyz +NNNzzyzy +NNNzzzzz , (7.2c)

where the exact shape of the tensors depends on the choice of the splitting.

In order to quantify a meaningful partition of the EOF space (i.e., one that -

at least approximately - results in a scale separation) we use the integral over the

absolute value of the autocorrelation function (no Einstein’s summation conven-

tion)

Tk =

∞∫
0

∣∣∣∣〈ak(t)ak(t+ s)〉
〈a2

k〉

∣∣∣∣ ds (7.3)

as an indicator of how fast the kth EOF loses its memory (Franzke and Majda

2006). The spectrum of (7.3) for all EOFs is given in Fig. 7.1. Obviously, it is

a continuous curve with no clear time-scale separation. The slowest (i.e., leading)

view EOFs have a decorrelation time scale of about 15-40 days. However, we

observe a peak at the 1318th EOF of about 19 days. Similar results were obtained

by Franzke and Majda (2006) for the same model in northern hemispheric mode,

which identified this peak as an artifact of the EOF analysis.

When applying the SMR to geophysical models based on global basis func-

tions we often encounter autocorrelation time scales similar to those shown in

Fig. 7.1 that lack a clear gap in the spectrum (Franzke et al. 2005; Franzke

and Majda 2006). In such cases it does not matter where we split the EOF

spectrum, since the neighboring EOFs have roughly the same time scale. Nev-

ertheless, it is common practice to split the state vector with respect to the

explained variance (e.g., Franzke et al. 2005). In other words if the full EOF
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Figure 7.1: Autocorrelation time scale of the EOFs.

space is given by span{e1, e2, . . . , eN}, then we have x ∈ span{e1, e2, . . . , eS},
y ∈ span{eS+1, eS+2, . . . , eS+F}, and z ∈ span{eS+F+1, eS+F+2, . . . , eN}.

Hence, we obtain, for example, NNNxyzijk from the full NNN by letting i = 1, 2, . . . , S,

j = S + 1, S + 2, . . . , S + F , and k = S + F + 1, S + F + 2, . . . , N . The remaining

tensors are constructed analogously. Note that, because of symmetry, we can

choose NNNijk = 0 ∀j > k (appendix E) and thus NNN•yx = NNN•zx = NNN•zy = 0.

7.2 Intermediate Model

In practice we eliminate the hidden variable z by parameterizing its effect on the

remaining variables:

ẋ = Fx + LLLxxx +NNNxxxxx + LLLxyy +NNNxxyxy +NNNxyyyy + px(x,y) (7.4a)

ẏ = Fy + LLLyxx +NNNyxxxx + LLLyyy +NNNyxyxy +NNNyyyyy + py(x,y) . (7.4b)
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Figure 7.2: As in Fig. 3.2, but for (a),(c) the result of the IMM; (b),(d) the result
of the OU-IMM for (S, F ) = (20, 10). The output of both models is projected onto
the first 20 EOFs (i.e., the slow variable). The relative error and the correlation is
calculated between the respective model and the QG3LM (Fig. 8.1) and the same
color shading as for the QG3LM is used.

For this we choose a simple linear parameterization as SGS closure

px(x,y) = rx + lxxx + lxyy + εx (7.5a)

py(x,y) = ry + lyxx + lyyy + εy , (7.5b)

where r•, l•• = const., ε• is the respective parameterization error, and the dimen-

sion is given by the superscripts. The closure is essentially pdet (3.9) of the SEM

and thus is calculated in the same way (appendix B.2). In total the so-called

intermediate model (IMM) reads

ẋ = F′x + LLL′xxx +NNNxxxxx + LLL′xyy +NNNxxyxy +NNNxyyyy (7.6a)

ẏ = F′y + LLL′yxx +NNNyxxxx + LLL′yyy +NNNyxyxy +NNNyyyyy , (7.6b)

where F′• = F• + r• and LLL′•• = LLL•• + l••.

The IMM serves as basis for the construction of the RSM, i.e. we apply the
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SMR to this model rather than to the full QG3LM. This allows us to counter

the minor conceptual problem arising from replacing the nonlinear self-interaction

of the fast variable with an OU-process. By doing so we artificially introduce a

stochastic energy source (or sink) in the system. This energy fluctuation does

not affect the long-term stability of the model, yet, it suggests a coupling of the

system with an additional energy reservoir. The remaining unparameterized part

of the hidden variable z may be seen as this energy reservoir to which the OU-

process couples and thus explain the energy fluctuation of the resolved modes. As

a positive side effect this reduces the computational effort for the calculation of

the SMR closure. Furthermore, applying the SMR on the IMM offers also new

opportunities in comparison to the traditional approach (chapter 6) as we will see

in chapter 8.

Nevertheless, by taking this approximation the RSM will depend on the quality

of the IMM. However, since the IMM is essentially the SEM we expect this to be no

problem, at least if we do not perturb the system by an external forcing. Indeed,

for (S, F ) = (20, 10) the dynamics of the IMM is quite close to the QG3LM as

is shown in the mean and covariance of streamfunction in Figs. 7.2a and 7.2c,

respectively. The output has been projected onto the slow variable only (i.e., the

first 20 EOFs). As for the SEM of part I, the error in the mean streamfunction

is negligible [O(10−4)], while the IMM slightly underestimates the covariance of

streamfunction of the QG3LM (Fig. 8.1). Nevertheless, the relative amplitude

error in the covariance is only ε = 0.01 and the correlation is cor = 0.996.

7.2.1 Estimating the Scale-Separation Factor

We evaluate the chosen partition of the EOF space by estimating the scale-

separation factor ε for the IMM. Majda et al. (2002) present an approach for

calculating the largest scale-separation factor ε? for a three-component additive

triad. We expect, however, that a high-dimensional1 model such as the IMM does

not have a global ε? � 1. Therefore, in the following we adapt the method of

Majda et al. (2002) for our case.

1. High dimensional in comparison to the three-component additive triad as considered by
Majda et al. (2002).
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In the remainder of this section we use Greek letters for indices which are not

subject to Einstein’s summation convention. Following Majda et al. (2002) we

first nondimensionalize the variables by their standard deviations

xα −→ Sdxαx̂α yβ −→ Sdyβ ŷβ , (7.7)

where α = 1, 2, . . . , S and β = 1, 2, . . . , F . Inserting this in (7.6) yields

dx̂α
dt

=
F′xα
Sdxα

+
LLL′xxαj Sdxj

Sdxα
x̂j +

NNNxxxαjkSdxjSdxk
Sdxα

x̂jx̂k

+
LLL′xyαj Sdyj

Sdxα
ŷj +

NNNxxyαjkSdxjSdyk
Sdxα

x̂j ŷk +
NNNxyyαjkSdyjSdyk

Sdxα
ŷj ŷk (7.8a)

dŷβ
dt

=
F′yβ
Sdyβ

+
LLL′yxβj Sdxj

Sdyβ
x̂j +

NNNyxxβjkSdxjSdxk
Sdyβ

x̂jx̂k +
NNNyxyβjkSdxjSdyk

Sdyβ
x̂j ŷk

+
LLL′yyβj Sdyj

Sdyβ
ŷj +

NNNyyyβjkSdyjSdyk
Sdyβ

ŷj ŷk . (7.8b)

The nondimensionalization constants of each component of f0(x), f1(x,y), g1(x,y),

and g2(y) are given by

F0α = max
j,k

{
|F′xα |
Sdxα

,
|LLL′xxαj |Sdxj

Sdxα
,
|NNNxxxαjk |SdxjSdxk

Sdxα

}
(7.9a)

F1α = max
j,k

{
|LLL′xyαj |Sdyj

Sdxα
,
|NNNxxyαjk|SdxjSdyk

Sdxα
,
|NNNxyyαjk|SdyjSdyk

Sdxα

}
(7.9b)

G1β = max
j,k

{
|F′yβ |
Sdyβ

,
|LLL′yxβj |Sdxj

Sdyβ
,
|NNNyxxβjk |SdxjSdxk

Sdyβ
,
|NNNyxyβjk|SdxjSdyk

Sdyβ

}
(7.9c)

G2β = max
j,k

{
|LLL′yyβj |Sdyj

Sdyβ
,
|NNNyyyβjk|SdyjSdyk

Sdyβ

}
. (7.9d)

Next we identify the maximum of F0α

F?0 = max
α

F0α (7.10)
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and use it to nondimensionalize the time:

t −→ t̂

F?0
, (7.11)

which allows us to write (7.8) shortly as

dx̂α

dt̂
= f̂0α(x̂) +

F1α

F?0
f̂1α(x̂, ŷ) (7.12a)

dŷβ

dt̂
=

G1β

F?0
ĝ1β(x̂, ŷ) +

G2β

F?0
ĝ2β(ŷ) . (7.12b)

For the application of the SMR we require

1

ε
≈ F1α

F?0
≈

G1β

F?0
≈

√
G2β

F?0
(7.13)

with ε� 1 ∀α, β.

In practice this requirement is only approximately fulfilled (see section 8.2.2).

Nevertheless, we assume that this is sufficient for the application of the SMR and

thus write (7.6) as

dx = (F′x + LLL′xxx +NNNxxxxx) dt+
1

ε
(LLL′xyy +NNNxxyxy +NNNxyyyy) dt (7.14a)

dy =
1

ε
(F′y + LLL′yxx +NNNyxxxx +NNNyxyxy + LLL′yyy) dt+

1

ε2
NNNyyyyydt , (7.14b)

where we suppressed the hats for convenience.

7.3 Ornstein-Uhlenbeck Intermediate Model

The next step in the application of the SMR is the replacement of the self-

interaction of the fast variable with an OU-process. For this we solve (7.14b)

for the terms of order ε−2, approximate the tendency by finite differences, and

apply the Maximum-Likelihood Method as described in appendix B.2. However,

it is crucial that we use the tendency of the full QG3LM instead of the IMMs’ ten-

dency in this step. This way we are effectively replacing NNNyyy + εy [where εy is the
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residual error of the IMM closure (7.5b)] and thus can account for the remaining

unparameterized part of the hidden variable z in the OU-process. This results in

the Ornstein-Uhlenbeck intermediate model (OU-IMM)

dx = (F′x + LLL′xxx +NNNxxxxx)dt+
1

ε
(LLL′xyy +NNNxxyxy +NNNxyyyy)dt (7.15a)

dy =
1

ε
(F′y + LLL′yxx +NNNyxxxx +NNNyxyxy + LLL′yyy)dt

+
1

ε2
lyyOUydt+ σydWy . (7.15b)

Similar to the IMM, we consider the OU-IMM as a step towards the construc-

tion of the RSM. Thus, we pass on a rigorous investigation of the performance of

this model. Instead, we compare the IMM and OU-IMM for the special case of

(S, F ) = (20, 10) in Fig. 7.2. In particular, Figs. 7.2a and 7.2c show the mean and

covariance of the IMM whereas Figs. 7.2b and 7.2d display the the respective re-

sults of the OU-IMM. While the mean is virtually identical, the covariance changes

more prominently. Overall, the amplitude of covariance is slightly reduced. Fur-

thermore, the OU-IMM experiences two maxima over the Pacific Ocean whereas

the IMM (and QG3LM) only has one distinct maximum. In comparison to the

IMM the relative error in the covariance increases by a factor of 5, yet it is still of

order O(10−2) while the correlation of the OU-IMM is cor = 0.99.

7.4 Bare Truncation Model

Before we investigate the RSM in detail we first introduce the so-called bare trun-

cation model (BTM). The BTM is the RSM without the closure following from

the SMR:

dx = (FFF′x + LLL′xxx +NNNxxxxx)dt , (7.16)

which allows us to evaluate the effect of the SMR closure directly.

We should note, however, that the BTM used in this thesis differs slightly from

the classical definition in literature (e.g., Franzke and Majda 2006; Dolaptchiev

et al. 2013a; Zacharuk et al. 2018). Usually, the BTM contains only the interaction
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coefficients of the slow variable x. Yet, in our case we use f0(x) of the IMM (7.14b),

which contains the additional empirical closure of the hidden variable z. In fact,

the BTM as defined in literature diverges in our case if S . 200.
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Chapter 8

Results

In this chapter we investigate the RSM obtained from applying the SMR to the

QG3LM. In the following we introduce the general setup of the numerical simula-

tions concerning the SMR. The remaining chapter is then split into the respective

experiments. In particular, we are investigating the performance of the RSM and,

for a perturbed climate, the quality of the anomalous RSM. Furthermore, we ex-

ploit the fact that we apply the SMR to a subspace rather than to the full QG3LM.

This allows us to go beyond the classical SMR and include explicitly the nonlinear

self-interaction of the fast variable (i.e., NNNyyy) in the SMR closure.

8.1 The General Simulation Setup

For the investigation of the RSM we consider four different dimensions of the

slow variable (x ∈ RS, S ∈ {10, 20, 30, 50}) each with four dimensions of the fast

variable (y ∈ RF , F ∈ {5, 10, 20, 30}). The corresponding dimension of the hidden

variable (z ∈ RH) can be calculated by H = N − S − F , where N = 1449. In

contrast to part I, we integrate the models only 3×105 days, since this is sufficient

to tune the OU-process. Nevertheless, we again discard the first 10 000 days to

eliminate potential spinup effects. The quantitative evaluation of the results is

done using the relative amplitude error as defined in (5.1), however, computed on

the grid instead of in the EOF space.

As for the SEM in part I, we adjust the hyperdiffusion by changing the diffusion

73
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Table 8.1: Adjusted diffusion time scale (days) that is used in the RSM. The
original value is τH = 2 days.

S + F 15 20 25 30 35 40 50 55 60 70 80
τH 1.2 0.7 1.2 1.5 1.5 1.6 1.2 1.2 1.2 1.2 1.0

Figure 8.1: As in Fig. 7.2, but for (a),(c) the QG3LM; (b),(d) the result of the
RSM.

time scale τH . The numerical values for the following simulations are given in Table

8.1.

8.2 Reduced Stochastic Model

8.2.1 Numerical Experiments

Before we analyze the performance of the RSM systematically, we first consider

the case with (S, F ) = (20, 10). This truncation corresponds to the results of the

IMM and OU-IMM (Fig. 7.2) in the previous chapter. Figure 8.1 shows the mean

streamfunction and covariance of streamfunction of the RSM in comparison to the

QG3LM. The RSM is able to reproduce the mean streamfunction of the QG3LM



8. Results 75

Figure 8.2: As in Fig. 7.2, but for (a),(c) the BTM; (b),(d) the SEM.

with a relative amplitude error of ε = O(10−4) and a correlation of cor ≈ 1. For

the covariance of streamfunction the RSM underestimates the amplitude over the

Pacific Ocean. On the other hand, the amplitude of the side maxima over India

and the Atlantic Ocean are well reproduced, resulting in ε = 0.02 and cor = 0.993.

The SMR closure has indeed a positive effect on the reduced model. In com-

parison to the RSM the BTM exhibits both in the mean streamfunction (Fig.

8.2a) and the covariance of streamfunction (Fig.8.2c) an increase in relative am-

plitude error of a factor of 10 and 3, respectively. This decrease of performance

is irrelevant for the mean streamfunction. Yet, for the covariance of the stream-

function the BTM clearly overestimates the amplitude, not only for the maximum

over the Pacific Ocean but also for the side maxima over the Atlantic Ocean and

India. Similar behavior is shown by the SEM (Figs. 8.2b and 8.2d). This model

also overestimates the covariance of streamfunction, although not as much as the

BTM, resulting in ε = 0.05 and cor = 0.97. Thus, we might summarize that the

RSM tends to underestimate the covariance while the conventional data-driven

approach (SEM) slightly overestimates the covariance of the streamfunction.

In Fig. 8.3 and Fig. 8.4 we show for various (S, F ) the relative error of the RSM,

BTM, and SEM for the mean streamfunction and covariance of the streamfunction,
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Figure 8.3: Relative error of the mean streamfunction of the RSM in comparison
to the BTM and SEM for various combinations of S ∈ {10, 20, 30, 50} and F ∈
{5, 10, 20, 30}.
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respectively. First we note that by design the SEM is independent of F , since only

the slow variable is described explicitly and both y and z are treated with the data-

driven parameterization. Furthermore, we observe not much variation of the SEM

with respect to S. In contrast, the error of the BTM increases significantly with

increasing dimension of the fast variable. This effect is strongest for S = 10, which

is unsurprising since the BTM neglects the impact of the fast variable completely.

On the other hand, the RSM is only weakly dependent (in first approximation

even independent) on F and experiences only small variations with respect to

S. Furthermore, for the majority of the considered cases the RSM outperforms

the BTM significantly, especially for large F . Yet, for a few combinations of

large S and small F the BTM is comparable to or even slightly better than the

RSM, respectively. In comparison to the SEM, the RSM seems to be qualitatively

and quantitatively similar. Nevertheless, only for S = 20 the RSM is able to

systematically outperform the SEM. However, as we have already seen in the

example with (S, F ) = (20, 10) (Fig. 8.1 and Fig. 8.2) the difference between the

RSM and SEM is relatively small.

8.2.2 Discussion

We found that the performance of the RSM seems to be (nearly) independent

of the chosen (S, F ) (Fig. 8.3 and Fig. 8.4). Yet, we investigated only a small

range of these parameters. We expect that, if we increase (S, F ) further, we would

eventually find a combination where the RSM (or rather the assumption of scale

separation) breaks down. Nevertheless, selected tests with F up to 100 showed no

decrease in performance. The reason for this is the actual unimportance of NNNyyy in

(7.14b). If we run the IMM with and without the nonlinear self-interaction of the

fast variable, we find nearly no difference in the model output (Fig. 8.5). This is

supported by the fact that we cannot construct a RSM if we use the tendency of

the IMM when fitting the OU-process, since the latter would practically be zero.

Thus, the required scale separation is caused by the remaining unparameterized

effects of z in the IMM closure [i.e., εy in (7.5b)]. Consequently, when increasing

F we simply shift the importance of εy to NNNyyy, which should not affect the scaling

of the fitted OU-process. Of course, the situation is completely different when
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Figure 8.4: As in Fig. 8.3, but for relative error in covariance of streamfunction.

Figure 8.5: As in Fig. 7.2, but for (a),(c) the IMM; (b),(d) the IMM with NNNyyy = 0.
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Figure 8.6: Boxplot with values of the scale-separation factors (7.13) for the OU-
IMM with (S, F ) = (20, 10).

changing S instead of F . Looking at the autocorrelation time scale (Fig. 7.1) we

see that if we increase S we will eventually have enough “fast” components in x to

violate the assumption of scale separation. However, given the fact that the SMR

closure contains a cubic term in x (6.34d) such large S are undesired anyway.

Instead of directly investigating the performance of the SMR with respect to

(S, F ), we might simply estimate the scale-separation factor as described in section

7.2.1. In Fig. 8.6 we show a boxplot of all components of the respective scale-

separation (7.13) of the OU-IMM. Overall, all three distributions show a median

well below 1. For the ratio F1/F0 we find no scale separation> 1. Consequently, the

corresponding smallest scale-separation factor (ε?) reads ε?F1
= 1.01. For [G2/F0]

1
2

the result is only marginally better with one component slightly larger than 1

(ε?G2
= 0.97). On the other hand, for G1/F0 20% of the components are larger than

1 and the smallest scale-separation factor reads ε?G1
= 0.70. We would not have

expected to see that all components of the ratios show a clear scale-separation.

Nevertheless, even if we assume that the components corresponding to ε? are

dominating Fig. 8.6 suggests no scale-separation within the equation of the slow

variable while for y the coupling terms seem to dominate the OU-process. However,
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as seen in Fig. 8.6 we find that the RSM performs quite well if we assume the

classical SMR scaling (7.14). This indicates that (7.13) is not a suitable a priori

measure of the applicability of the SMR especially since we would expect an even

unclearer result for larger (S, F ).

The contradicting result of ε? and the performance of the RSM suggests that

the estimation of the scale-separation factor in section 7.2.1 is, at least partly, in-

correct. Most likely the nonlinear terms have been falsely nondimensionalized. As

Majda et al. (2002) has stated the nondimensionalization of the variables by their

standard deviations only holds on average. Thus, by using the same nondimen-

sionalization constant for the nonlinear terms we effectively assume, for example

〈xyT〉 = 〈x〉〈yT〉, which is in general not true. Consequently, f̂0α, f̂1α, and ĝ1β in

(7.12) might not be of O(1).

Fact is that the performance of the RSM is remarkably good. Franzke and

Majda (2006) applied the SMR to the same model but run only in northern hemi-

spheric mode. Their resulting RSM showed significantly less accuracy as the results

presented in this thesis. In general, Franzke and Majda (2006) observed an under-

estimation of the amplitudes of various fields (e.g., streamfunction, eddy forcing)

by a factor varying between 1.5 and 6. Furthermore, their RSM experienced a

climatic drift, which had to be corrected by empirical fitting (i.e., adjusting the

amplitudes of various terms in the SMR closure). In return this allowed them to

obtain correlations above 0.95 for both the mean and standard deviation of the

streamfunction, respectively.

To understand the difference in RSM performance we have to compare the

assumptions leading to the respective RSMs. In contrast to the setup used here

(chapter 6 and chapter 7), Franzke and Majda (2006) applied the so-called seam-

less SMR (Franzke et al. 2005). Instead of fitting an OU-process explicitly and

using its variance DDD to calculate the SMR closure (6.34), the seamless SMR es-

timates the required correlations (i.e., 〈yyT〉 and 〈yyT(t)〉) directly from data.

Furthermore, Franzke and Majda (2006) assume these correlations to be diagonal.

This corresponds to a diagonal drift term lyyOU in the OU-process. Lastly, they

apply the seamless SMR to their full QG3LM with S ≤ 10.

RSMs constructed with a diagonal lyyOU caused no significant decrease in model

performance (not shown). Hence, only the presence of the hidden variable can
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Figure 8.7: As in Fig. 7.2, but for (a),(c) the RSM; (b),(d) the result of the RSM-
xoff. The units and the color shading are the same for each row, but (d) has been
divided by a factor of 5.

cause the improved performance of our RSM. Unfortunately, for technical reasons

a corresponding simulation with H = 0 (i.e., no hidden variable) has not been

done yet. However, as discussed above we would not expect worse results for large

F . On the other hand, Franzke and Majda (2006) identified the bare truncation

part as the source of their climatic drift. Consequently, their additional empirical

weighting of the RSM terms suppressed the bare truncation part in favor of the

SMR closure terms. In this thesis, we introduce an empirical closure in the bare

truncation part because of the hidden variable. To analyze its effect on the RSM

we show in Fig. 8.7 the RSM for (S, F ) = (20, 10) with and without the empirical

closure in the bare truncation part (RSM-xoff), respectively. The mean stream-

function of the RSM-xoff (Fig. 8.7b) shows differences compared to the standard

RSM (Fig. 8.7a), such as the multiple local minima at 60◦N. This results in a

relative amplitude error of ε = 0.03 and a correlation of cor = 0.986. While the

absolute value of ε is still quite low it is several orders of magnitude higher than

for all considered reduced models so far. Furthermore, the RSM-xoff significantly

overestimates the covariance of streamfunction (Fig. 8.7d) also seen by the relative

amplitude error of ε = 3.6. In fact, to reveal the structure of the covariance of
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streamfunction of the RSM-xoff Fig. 8.7d had to be divided by a factor of 5. The

overall covariance pattern is reproduced (cor = 0.94), yet, we find that the global

maximum is shifted from the Pacific to the Atlantic Ocean, respectively.

The empirical closure in the bare truncation part has obviously a significant

effect on the RSM. However, tests with relatively large F (up to F = 100; not

shown) revealed no decrease in the performance of the RSM. Nevertheless, the

larger F the less important the empirical closure in the bare truncation part should

become. Thus, it remains to be seen how our RSM performs when constructed

from the full QG3LM before we can conclude our comparison to Franzke and

Majda (2006).

8.3 Anomalous Reduced Stochastic Model

8.3.1 Analytic Results

Since the SMR is constrained by first principles, the theory automatically accounts

for the effect of an external forcing on the SGS closure. In fact, the calculation

of the closure (6.34) stays exactly the same, merely the explicit coefficients (see

appendix E) have to be adjusted. In particular, for a time independent constant

anomalous forcing δf , as considered in section 4.1, the new constant interaction

coefficient reads

Fl −→ Fl + δfl , (8.1)

where δf,F ∈ RN . The change of the constant interaction coefficient yields two

additional terms in (6.32) given by

−

δfx +

∞∫
0

E
[
{δf y ·DDD−1y}f1(x,y[τ ])

]
OU

dτ

 · ∇xp
(0) . (8.2)

Thus, the constant (6.34a) and linear (6.34b) part of the SMR closure, respectively,

are modified by

FFF i −→FFF i + δf yj LLL
xy
ikKKKkj (8.3a)



8. Results 83

LLLij −→LLLij + δf yk (NNNxxyijl +NNNxyxilj )KKKlk . (8.3b)

We call the resulting model the a priori RSM (apr-RSM).

Limits of the Closure Correction

The closure correction in (8.3) fails for external forcings that are too strong. In

general, we can write the perturbed IMM as

dx = f0(x)dt+
1

ε
f1(x,y)dt+ βxδf

xdt (8.4a)

dy = g0dt+
1

ε
g1(x,y)dt+

1

ε2
g2(y)dt+

1

ε
σ?ydWy + βyδf

ydt , (8.4b)

where βx, βy indicate the order of the scale separation (i.e., βx ∈ {0, 1, ε−1} and

βy ∈ {0, ε−1, ε−2}). Setting βx = βy = 0 yields the unperturbed IMM (7.6) while

βy = 1 is not of interest since such small forcings would have no effect on SMR

closure.

Depending on the order of scale separation, several cases occur:

1.) βx ∈ {0, 1}, βy = ε−1

In this case the above mentioned closure correction (8.3) is obtained. In particular,

the case with βx = 0 is of interest since then the external forcing is acting only on

the SGS processes. Consequently, a common data-driven model (e.g., the SEM in

section 3.2) is unable to respond at all, while the RSM is able to react to such a

forcing.

2.) βx = ε−1

If the forcing in the slow variable is too strong, we end up modifying

f1(x,y) −→ f1(x,y) + δfx . (8.5)
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This results in a new solvability condition given by

0 =
(
δfxi +NNNxyyijkDDDjk

) ∂p(0)

∂xi
. (8.6)

However, we assume that the original solvability condition (6.28) is correct. Thus,

the modified version can only be fulfilled if the gradient of probability changes in

such a way that the scalar product vanishes. In general, this is not necessarily

given. Consequently, the SMR cannot be derived and the RSM would not be

applicable.

In principle it is possible to correct for the term violating the solvability condi-

tion. Yet, this introduces a correction in (6.32), which is of O(ε−1) (Papanicolaou

1976; Demaeyer and Vannitsem 2018). However, this correction is not considered

in this thesis. Instead, in the following anomaly experiments we avoid this case by

choosing a sufficiently small external forcing.

3.) βx ∈ {0, 1}, βy = ε−2

In this case the fast variable is dominated by a constant and we have

f0(x) −→ f0(x) + δfx, if βx = 1 (8.7a)

g2(y) −→ g2(y) + δf y . (8.7b)

The modification of g2(y) corresponds to a strong anomalous forcing in the fast

variable. Consequently, the OU-process experiences a mean value. In return this

modifies the solvability condition:

0 =
{

[LLLxyij + (NNNxxyikj +NNNxyxijk )xk]E [yj]OU +NNNxyyijk E [yjyk]OU

} ∂p(0)

∂xi
(8.8)

=
{

[LLLxyij + (NNNxxyikj +NNNxyxijk )xk]δf
y
j +NNNxyyijkDDDjk

} ∂p(0)

∂xi
, (8.9)

since odd moments of the OU-process no longer vanish. Consequently, the SMR

cannot be applied unless it is modified as discussed in 2.). Furthermore, addi-

tional closure terms would occur since during the derivation of the RSM we made

repeatedly use of the fact that odd moments vanish.
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Update Empirical Part with the Fluctuation-Dissipation Theorem

Even if the closure correction (8.3) is applicable, we might improve the RSM

even further if we also retune the OU-process and the empirical z closure from a

perturbed climate simulation of the QG3LM. This would result in what we call

the a posteriori RSM (apo-RSM). However, this is impossible for realistic settings.

Instead, we use the qG-FDT to estimate the update of the empirical part in both

the z closure and the OU-process as introduced in part I, resulting in a modification

of KKK (6.39), PPP (6.40), and various interaction coefficients (7.6) and thus a change

of all components of the RSM closure (6.34).

8.3.2 Setup

In contrast to the general setup (section 8.1), we investigate the robustness of the

RSM against a perturbed climate only for (S, F ) = (20, 10). As external forcing

we use the local anomalous forcing of part I (see section 4.1). In analogy to the

FDT experiments we are considering 12 forcing positions λc ∈ {0◦, 30◦, . . . , 330◦}.
However, in contrast to part I we do not restrict the forcing to the first 20 EOFs

only.

For the SMR anomaly experiments we compare the following models:

• apr-RSM: Using the SMR closure with the corresponding correction terms

from the theory.

• apo-RSM: Using the perfect (a posteriori) parameterization by retuning the

empirical OU-process and the empirical closure to the perturbed data set

(impossible in realistic settings).

• FDT-RSM: As the apr-RSM, however, additionally the OU-process and the

empirical closure is updated with the qG-FDT.

• apr-SEM: Using the a priori parameterization of the unforced case (4.3).

This simulates the state-of-the-art case of using a GCM for sensitivity studies

without retuning any empirical parameters.

• FDT-SEM: Updating the parameterization with the help of the qG-FDT as

presented in part I.
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For the evaluation of the perturbed models we again focus on the 200 hPa layer.

Furthermore, we are investigating two different forcing cases:

• Forcing all scales: The external forcing acts on both the slow and fast vari-

able, respectively (i.e., δf ∈ RS+F where δfi 6= 0,∀i).

• Forcing the SGS: The external forcing acts only on the fast variable (i.e.,

δf ∈ RS+F where δfi = 0,∀i ≤ S).

8.3.3 Numerical Experiments

Anomaly Experiment: Forcing all Scales

For certain (S, F ) the RSM is able to reproduce the QG3LM qualitatively and

quantitatively in terms of both mean and covariance of streamfunction, respec-

tively. Nevertheless, since the SMR is based mainly on first principle, we are par-

ticularly interested in the performance of the RSM in a perturbed climate. Before

we conduct the anomaly experiments, however, we require an appropriate forcing.

Using the original one in (4.1) results in a response in the QG3LM that is too weak

to be significant with respect to the bias of the unforced RSM. Consequently, the

potentially correct response of the forced RSM might be masked by the underlying

bias. Therefore, we introduce an additional amplitude factor αall ∈ R with which

we multiply the local anomalous forcing (4.1). We compute αall by perturbing the

QG3LM and measure its response in terms of a relative deviation which in turn is

compared to the relative error of the unforced RSM (i.e., its bias). As can be seen

in Fig. 8.8 an amplitude factor of αall = 15 is sufficient.

In Fig. 8.9 we show, as an example, the response in covariance of stream-

function for an anomalous forcing located at λc = 210◦. In Fig. 8.9a we see the

response of the QG3LM projected on the slow variable (i.e., the first 20 EOFs).

The QG3LM experiences three distinct maxima over Eastern Europe, Western

Canada, and Greenland. Furthermore, we find a weak minimum over the Pacific

Ocean. Figure 8.9b shows the response of covariance of the apr-RSM. In contrast to

the reference, this model has a weak global minimum over the northern hemisphere

and multiple isolated maxima at 30◦N, resulting in a correlation of cor = 0.80 and

a relative amplitude error of ε = 1.37. The apo-RSM (Fig. 8.9c) fairs better.
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Figure 8.8: Strength of the response of the QG3LM in comparison to the bias of the
unforced RSM with (S, F ) = (20, 10). The boxplot shows the relative deviation
of (a) mean streamfunction and (b) covariance of streamfunction between the
perturbed and unforced QG3LM for various amplitude factors of the anomalous
forcing acting on all scales. The green line is the relative error between the unforced
RSM and QG3LM.

The overall pattern of the response is reproduced (cor = 0.96), however, the am-

plitude of the maximum at Western Canada is slightly underestimated. Still, the

apo-RSM has a relative amplitude error of only ε = 0.10. Figure 8.9d shows the

response of the FDT-RSM divided by a factor of 25. This reveals a relatively good

reconstruction of the pattern (cor = 0.91). Nevertheless, in general the response is

significantly overestimated resulting in ε = 41.63. In Fig. 8.9e we see the response

of the apr-SEM divided by 2. The pattern correlation reads cor = −0.92 and

overall the response is too pronounced with ε = 4.90. Similar results are found for

the FDT-SEM (Fig. 8.9f, response divided by 2). Again the correlation is nega-

tive with cor = −0.88. Furthermore, the FDT-SEM also experiences a response

in covariance that is too strong. In comparison to the apr-SEM, however, the

maximum over Eastern Europe is missing, resulting in a relative error of ε = 4.27.

Qualitatively similar results are found for the response in mean streamfunction

(not shown).

For the different forcing locations we show a summarizing evaluation of the
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Figure 8.9: Response in covariance of streamfunction (1013 m4 s−2) at 200 hPa
resulting from a local anomalous forcing acting on all scales and located at λc =
210◦. The response of (a) the QG3LM projected onto the slow variable (first 20
EOFs), (b) apr-RSM, (c) apo-RSM, (d) FDT-RSM, (e) apr-SEM, and (f) FDT-
SEM. The color shading is the same for each panel, however, the response of the
FDT-RSM (d) has been divided by 25 and the response of both SEMs (e) and (f)
has been divided by 2, respectively.

models in Fig. 8.10. In particular, Figs. 8.10a and 8.10c display the relative am-

plitude error and correlation of the response in mean streamfunction, respectively,

whereas Figs. 8.10b and 8.10d show the equivalent for the covariance of stream-

function. The RSM-FDT is unstable for all cases except λc = 210◦. Furthermore,

the FDT-SEM experiences the highest error for nearly all cases and both moments.

Since this model is clearly not providing any useful results we adjusted the vertical

axis in Figs. 8.10a and 8.10b to focus on the remaining models. For those we ob-

serve that both RSMs (apr-RSM and apo-RSM) outperform the apr-SEM for most

forcing locations. Nevertheless, only in four cases (λc ∈ {90◦, 120◦, 300◦, 330◦})
the apr-RSM has a relative error in the response of both mean and covariance of

streamfunction that is (slightly) less than 1. Unexpectedly, the response of the

apo-RSM is not systematically better than that of the apr-RSM. For the response

in mean streamfunction the apo-RSM outperforms all other models. However,

for the response in covariance of streamfunction the situation is less clear. Even

though there are cases in which the apo-RSM experiences a lower amplitude error,

we also have forcing locations (e.g., λc ≤ 120◦) where the apr-RSM significantly
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Figure 8.10: (Top) Relative error and (bottom) correlation of various RSMs and
SEMs for (S, F ) = (20, 10) against longitude position of the external forcing acting
on all scales. Shown is (a),(c) mean streamfunction; (b),(d) covariance of stream-
function. For the relative error the limits of the vertical axis have been set to 4
and 30, respectively. Thus some results of the FDT-SEM are cut out.

outperforms the retuned apo-RSM. In those cases, we see also a larger pattern

correlation by the apr-RSM.

Anomaly Experiments: Forcing the Subgrid Scales

For the forcing acting only on the SGS we obtain an amplitude factor of αSGS = 25.

Applying such a forcing located at λc = 240◦ results in a response in covariance of

streamfunction as shown in Fig. 8.11. First we note that by design the apr-SEM

is independent of a forcing acting only on the SGS processes. Thus, Fig. 8.11e

shows no response. The response of the QG3LM (Fig. 8.11a) is dominated by a

maximum over Western Canada. The apr-RSM (Fig. 8.11b) is able to capture

this maximum rather well, however, its amplitude is too weak. Furthermore, the
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Figure 8.11: As in Fig. 8.9, but for a local anomalous forcing acting only on the
SGS variable and located at λc = 240◦. The color shading is the same for each
panel, however, the response of the FDT-RSM (d) and of the FDT-SEM (f) has
been divided by 5 and 2, respectively. Note that by design the apr-SEM (e) is
independent of such a forcing and thus has no response.

apr-RSM suffers from a global minimum over the northern hemisphere similar to

the case with forcing all scales (Fig. 8.9b). Therefore, the relative error reads

ε = 3.51 and the correlation is given by cor = −0.25. Again, the apo-RSM (Fig.

8.11c) fairs better. It captures the pattern quite well, resulting in cor = 0.85. Yet,

the apo-RSM overestimates the amplitude of the maximum over Western Canada

and experiences an additional maximum in the southern hemisphere (ε = 0.96). In

Fig. 8.11d we see the response of the FDT-RSM divided by 5. As for the previous

forcing case we find that this model is able to reproduce the pattern (cor = 0.97)

but significantly overestimates the strength of the response (ε = 19.48). Similar

results are found for the FDT-SEM (Fig. 8.11f, response divided by 2) where the

amplitude is also overestimated (ε = 8.16) and the response has an incorrect sign,

resulting in cor = −0.97. Overall, we find a qualitatively similar behavior for the

response in mean streamfunction (not shown).

Figure 8.12 shows the performance of all considered models against the forcing

position. Similar to the case forcing all scales (Fig. 8.10) we find that most of

the FDT-RSMs are unstable, except for λc ∈ {90◦, 240◦}. Additionally, the FDT-

SEMs are also either unstable or experience a large relative amplitude error, which

renders the model output useless. Thus, we again adjust the vertical axis in Figs.
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Figure 8.12: As in Fig. 8.10, but for a local anomalous forcing acting only on
the SGS variable. Some relative errors of the FDT-SEM and of the FDT-RSM at
λc = 90◦ have been cut out since the limits of the vertical axis have been set to 8
and 30, respectively. Note that by design the apr-SEM is independent of a forcing
acting on the SGS and thus has an infinite relative error and zero correlation (not
shown).

8.12a and 8.12b to focus on the apr-RSM and apo-RSM. In general, we find a

similar result as for the forcing with all scales, albeit the errors are overall larger.

For roughly half of the forcing locations the apr-RSM outperforms (in terms of

relative error and correlation) the apo-RSM and vice versa for both the response

in mean and covariance of streamfunction, respectively.

8.3.4 Discussion

We find that, apart from the apr-SEM, both the forcing acting on all scales and

the forcing acting only on the SGS processes produce the same behavior of the
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Figure 8.13: Boxplot of the relative error between the qG-FDT estimation and the
true response of the moments for (left) the forcing acting on all scales, (right) the
forcing acting on the SGS. The statistics for the boxplot come from the different
forcing positions λc ∈ {0◦, 30◦, . . . , 330◦}. Both forcings have been multiplied by
their respective amplitude factors (i.e., αall = 15 and αSGS = 25).

models. Thus, unless otherwise stated, we discuss in the following only the case

with the forcing acting on all scales.

First we note that most of the FDT-RSM and a few of the FDT-SEM (Fig.

8.10 and Fig. 8.12) are unstable. This is caused by the incorrect closure update (or

more precisely by the incorrect qG-FDT estimations of the perturbed statistics,

see part I) by the qG-FDT. Figure 8.13 shows for both forcing types a boxplot

of relative error between the qG-FDT estimations and the true response of the

statistical moments. Clearly, the qG-FDT is unable to estimate all moments,

except δ〈a〉. The median of relative error of the latter is around ε = 0.3, whereas

for the remaining moments the median of relative error is ε > 2. This indicates

that the amplified forcings are too strong for the application of the qG-FDT.

Thus, we repeated the anomaly experiments with a forcing acting on all scales

and an amplitude factor of αall = 1 (i.e., we are using the local anomalous forcing

as presented in section 4.1.1 but projected onto the first 30 EOFs). Figure 8.14
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Figure 8.14: As in Fig. 8.10, but with a forcing amplitude of αall = 1.
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Figure 8.15: Boxplot of absolute value of the solvability condition for the apo-
RSM with (S, F ) = (20, 10) against forcing position λc ∈ {0◦, 30◦, . . . , 330◦}. As
reference the absolute value of the solvability condition of the apr-RSM is given.

shows the summarizing evaluation for all forcing locations. In general, we find that

all models fair better in predicting the response of the weaker forcing (compare

Fig. 8.14 to Fig. 8.10). Furthermore, both FDT-RSM and FDT-SEM are stable,

and the former seems to be performing roughly similar to the apo-RSM, especially

for the response in the covariance of the streamfunction. For the response in the

mean streamfunction caused by the weak forcing (Fig. 8.14a) the apo-RSM seems

to outperform the apr-RSM. Yet, for the response in covariance (Fig. 8.14b) the

opposite is the case. Similar results were already found for the stronger forcing

(Fig. 8.10).

To investigate this unexpected result, we first show the absolute values of the

solvability condition [i.e., the amplitude of the gradient of the PDF in (6.28)] for

the apo-RSM in the case of the forcing acting on all scales. In comparison, the

reference of the unforced RSM is plotted as well (Fig. 8.15). We find that the apo-

RSM has roughly the same solvability condition as the reference. Furthermore,

there is no clear correlation between the magnitude of the solvability condition of

the apo-RSM and the quality of its response. Thus, the variations in the solvability
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Figure 8.16: Relative error of the apr-RSM, apo-RSM, and apo-OU-IMM of the
response of (a),(c) mean streamfunction and (b),(d) covariance of streamfunction
resulting from a forcing acting on all scales. (a),(b) Evaluates the response for the
forcing with an amplitude factor of αall = 15; (c),(d) for an amplitude factor of
αall = 30.

condition cannot explain the observed performance of the apo-RSM.

It is possible that the forcing amplitude is still too weak, causing incorrect

a posteriori parameters due to a small signal-to-noise ratio. Thus, we repeat

the experiment with the forcing acting on all scales using an amplitude factor of

αall = 30 (Fig. 8.16). Besides the apr-RSM and apo-RSM we also consider the

apo-OU-IMM since this model contains the identical empirical parameters as the

apo-RSM. In general, we find a decrease in performance for both RSMs for the

forcing with αall = 30 (Figs. 8.16c and 8.16d) in comparison to αall = 15 (Figs.

8.16a and 8.16b). For the stronger forcing some apo-RSMs are unstable (λc ∈
{30◦, 90◦, 270◦}) while for the rest the unexpected behavior (i.e., no systematic

improvement over the apr-RSM) remains. The apo-OU-IMM outperforms the
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Figure 8.17: Relative error of the response of (a),(c) mean streamfunction and
(b),(d) covariance of streamfunction of the apr-RSM with the apr-OU-IMM as
reference. (a),(b) Shows the performance for a forcing acting on all sales, (c),(d) for
the forcing acting only on the SGS. Both forcings are multiplied by their respective
amplitude factors (i.e., αall = 15 and αSGS = 25).

RSMs for the response in mean streamfunction (on average ε < 0.1) and produces,

at least for the case with αall = 30 (Fig. 8.16d), in approximately 70% of the

forcing locations a useful response in the covariance of streamfunction (ε < 0.8).

This indicates that there is no incorrect update of the empirical parameters.

Nevertheless, the empirical parameters seem to be the cause of the unexpected

behavior of the apo-RSM. Thus, to disable the impact of the empirical parame-

ters we use the OU-IMM instead of the QG3LM as a reference. In particular, we

are comparing the forced apr-OU-IMM to the forced apr-RSM. Both models con-

tain exactly the same empirical components (including the identical OU-process)

allowing us to exclude any influence of tuning parameters. Figure 8.17 shows

the summarizing evaluation for both forcing types (multiplied by their respective
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amplitude factors αall = 15 and αSGS = 25) and both statistical moments. In par-

ticular, Figs. 8.17a and 8.17b show the relative error of the response in the mean

and covariance of streamfunction, respectively, for the forcing acting on all scales.

Figures 8.17c and 8.17d show the counterpart for the forcing acting only on the

SGS. Clearly, the apr-RSM is able to reproduce the response for both moments

if the forcing acts on all scales. Overall, for the response in mean streamfunction

the median of the relative error is ε = 0.18 and median of the correlation reads

cor = 0.92. For the response in covariance of streamfunction the corresponding

values are ε = 0.13 and cor = 0.98. In contrast, for the forcing acting only on the

SGS the apr-RSM performs generally worse. In this case for the response in mean

(variance) streamfunction the median of the relative error is given by ε = 0.79

(ε = 1.72) and the correlation reads cor = 0.63 (cor = 0.41). Yet, for the cases

with a relative error less than 1 in the response of covariance the correlations are

above cor > 0.90. Nevertheless, the performance of the apr-RSM in comparison to

the apr-OU-IMM is significantly better than in comparison to the QG3LM (Fig.

8.10 and Fig. 8.12) for both forcing types.

Using this idealized setup, we can even go beyond a constant anomalous forcing

by changing the amplitude of the linear coupling interaction coefficients:

LLL′xy −→ 1.65× LLL′xy (8.10a)

LLL′yx −→ 0.65× LLL′yx , (8.10b)

where the amplitude factors are arbitrarily chosen. Figure 8.18 shows the response

in covariance of streamfunction of both the apr-OU-IMM (Figs. 8.18a and 8.18b)

and apr-RSM (Figs. 8.18c and 8.18d) for the two forcings, respectively. The in-

crease of the amplitude of LLL′xy causes as response in covariance of streamfunction

three maxima located over India, the Atlantic, and the Pacific Ocean in the apr-

OU-IMM (Fig. 8.18a). The former two are significantly weaker than the latter.

Furthermore, we observe another relatively weak maximum over the southern Pa-

cific Ocean. The apr-RSM (Fig. 8.18c) reproduces the pattern of the response

remarkably well, resulting in cor = 0.996. Also the strength of the response is

well reproduced with a relative error of ε = 0.03. For the decrease in amplitude of

LLL′yx the response of covariance of streamfunction of the apr-OU-IMM (Fig. 8.18b)
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Figure 8.18: Response in covariance of streamfunction (1013 m4 s−2) at 200 hPa
of (a),(b) the apr-OU-IMM and (c),(d) the apr-RSM. (a),(c) Shows the response
resulting from a change in LLL′xy (8.10a); (b),(d) resulting from a change in LLL′yx

(8.10b). The relative amplitude error and the correlation have been calculated
with respect to the apr-OU-IMM.

has nearly the same pattern as for the change in the linear coupling of the slow

equation. Yet, overall the strength of the response is roughly 35% weaker. Again

the apr-RSM (Fig. 8.18d) is able to reproduce the response pattern quite well

(cor = 0.989). However, the response of the apr-RSM is slightly underestimating

the reference. Still, the relative error is only ε = 0.05. This shows that in principle

the RSM is able to adapt even to anomalies in the linear dynamics, at least if the

impact of the empirical parameters is disabled.

The results with the apr-OU-IMM as reference show that the RSM is able

to respond correctly to external forcings if the impact of the tuning parameters

is disabled. The a posteriori tuning parameters are correct, yet the apo-RSM

is unable to produce a correct response in the covariance of the streamfunction.

On the other hand, the response in the mean streamfunction is relatively well

reproduced. In part I we found qualitatively similar behavior of the apo-SEM

for cases with ≤ 200 EOFs. This suggests that a RSM with larger (S, F ) might

perform better as well.
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8.4 Reduced Stochastic Model Including the Non-

linear Self-Interaction of the Fast Variable

Usually when applying the SMR, the nonlinear self-interaction term of the fast

variable is replaced by an OU-process, since this term is the dominating term in

the system. In return, this OU-process is then used to derive the RSM. However,

Fig. 8.5 shows that the nonlinear self-interaction of the fast variable [at least for

the truncations of (S, F ) considered in this thesis] is not the dominating term of

the IMM. Therefore, we exploit the fact that we do not apply the SMR directly

to the QG3LM but to a subspace and include NNNyyy explicitly in the RSM, by

constructing a stochastic IMM. This results in a modification of the RSM closure

as described below.

8.4.1 Analytic Results

Stochastic Intermediate Model

For the stochastic IMM (IMMstoch) we replace the linear deterministic closure of

z in the fast variable (7.5b) by an OU-process, i.e.

py(x,y) = ry + lyxx + lyyy + σyẆ + εy . (8.11)

This approach is analogous to the construction of the SEMstoch. Similar to the OU-

IMM it is crucial that we use the tendency of the QG3LM to fit the OU-process

(see section 8.2.2). The IMMstoch reads then

dx = [(Fx + rx) + (LLLxx + lxx)x +NNNxxxxx

+(LLLxy + lxy)y +NNNxxyxy +NNNxyxyx +NNNxyyyy] dt (8.12a)

dy = [(Fy + ry) + (LLLyx + lyx)x +NNNyxxxx

+(LLLyy + lyy)y +NNNyxyxy +NNNyyxyx +NNNyyyyy] dt+ σydW . (8.12b)

Since we used the tendency of the QG3LM, the OU-process is dominating (8.12b).

Thus, in contrast to the classical SMR (chapter 6) we can keep the nonlinear

self-interaction term of the fast variable in the IMMstoch.
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Modification of the Standard Reduced Stochastic Model

The nonlinear self-interaction of the fast variable in the IMMstoch (8.12) is relatively

unimportant (see Fig. 8.5). Therefore, we assume that NNNyyyyy scales with ε−1

while using the same scaling as in the OU-IMM (7.15) for the remaining terms.

Hence, we have

g1(x,y) −→ g1(x,y) +NNNyyyyy , (8.13)

which leads to

∞∫
0

E
[
{NNNyyyyy ·DDD−1y}f1(x,y[τ ])

]
OU

dτ . (8.14)

Consequently, we obtain the original RSM (6.33) with the following modifications

FFF i −→FFF i +NNNyyyklmLLL
xy
ij DDDlmKKKjk (8.15a)

LLLij −→LLLij +NNNyyylmn(NNNxxyijk +NNNxyxikj )DDDmnKKKkl . (8.15b)

We call the resulting model the NNNyyy-RSM.

8.4.2 Setup

We use the same setup as for the unforced RSM, however, we restrict the investi-

gation of the NNNyyy-RSM on S ∈ {10, 20}.

8.4.3 Numerical Experiments

Figure 8.19 shows the relative error between the NNNyyy-RSM and the QG3LM in

comparison to the performance of the classical RSM for both the mean stream-

function (Fig. 8.19a and 8.19b) and the covariance of streamfunction (Fig. 8.19c

and 8.19d). For the mean streamfunction the NNNyyy-RSM outperforms the RSM for

S = 10 and F ∈ {5, 10} as well as S = 20 and F ∈ {20, 30}. In contrast, for the

covariance of streamfunction we find only for S = 20 and F ∈ {20, 30} a slightly
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streamfunction; (c),(d) corresponding relative error in covariance of streamfunc-
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better performance of the NNNyyy-RSM. For the remaining truncations the explicit

consideration of the nonlinear self-interaction of the fast variable yields no benefit.

Yet, overall the differences between the classical RSM and the NNNyyy-RSM are quite

small and thus insignificant.

8.4.4 Discussion

For the unforced case we find that the NNNyyy-RSM performs equally well compared

to the RSM. This shows that it is possible to generalize the SMR, allowing for

a quadratic nonlinearity in the fast variable. Even for higher truncations of S

(not shown) we find that the NNNyyy-RSM is virtually identical to the RSM. Yet,

as discussed in section 8.2.2 with increasing F we shift the importance of the

remaining unparameterized part of the hidden variable to NNNyyy. Therefore, we

would expect that the NNNyyy-RSM eventually would fail to reproduce the statistics

of the QG3LM for large enough F .

Since the considered cases here we find no added value by considering the

nonlinear self-interaction explicitly in the SMR, we pass on an investigation of a

forced NNNyyy-RSM.
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Conclusion

In this thesis we investigated the issue of tuning parameters under different bound-

ary conditions (e.g., a different climate). In part I we addressed whether it is

possible to update already existing tuning parameters in the models according to

the acting anomalous forcing, thus making them climate dependent. If the tuning

is done objectively (i.e., the empirical parameters depend on the statistics of the

data), then we might be able to utilize the Fluctuation-Dissipation theorem (FDT)

as proposed by Achatz et al. (2013). Complementary to that we constructed a re-

duced stochastic model (RSM) using the stochastic mode reduction (SMR) in part

II. This method is constrained by first principle and hence requires only minimal

tuning. However, for the application of the SMR we require a scale separation

in the system. In addition, we combined both methods to see whether apply-

ing the FDT to the remaining empirical components of the RSM leads to further

improvement.

We tested the two approaches on the well-established quasigeostrophic three-

layer model (QG3LM) of Marshall and Molteni (1993). Furthermore, we perturbed

the model by a local anomalous forcing given by a localized heat source that simu-

lates the effect of a sea-surface temperature anomaly (Branstator and Haupt 1998;

Achatz and Branstator 1999). Additionally, we used one of the first five empiri-

cal orthogonal functions (EOFs), respectively, and constructed a global dynamical

forcing (Pieroth et al. 2018).

In part I we considered a semi-empirical model (SEM) based on the lead-
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ing EOFs of the QG3LM and supplemented by a purely data-driven subgrid-scale

(SGS) parameterization. As a closure we considered either a simple linear function

(SEMdet) or an Ornstein-Uhlenbeck process (OU-process; SEMstoch). Both param-

eterizations were objectively tuned by minimizing the residual error and applying

the Maximum-Likelihood method, respectively. We showed that both SEMs are

qualitatively and quantitatively able to reproduce the statistics of the QG3LM.

However, they experienced an incorrect response in the presence of the external

forcings. This issue is well known for reduced models containing data-driven pa-

rameterizations (Achatz and Branstator 1999; Achatz and Opsteegh 2003b) and

renders these types of models useless for climate projections. Yet, this is a funda-

mental problem in climate modeling, which is not limited to low-order models but

also affects state-of-the-art global circulation models (GCMs) and climate mod-

els. Usually such models do not contain purely data-driven SGS parameterizations

but closures based on physics. Nevertheless, even physically based SGS param-

eterizations, such as convection, radiation, or gravity wave schemes, contain to

some degree empirical components (e.g., entrainment of convective cells, aerosol

distribution, or launch level of gravity waves). While one could hope that, in com-

parison to purely data-driven parameterizations, the physical basis would make

such closures more robust against an external forcing, we find indications in the

literature that this is not the case (e.g., Schirber et al. 2015; Rockel and Geyer

2008).

To tackle this issue, we followed the approach of Achatz et al. (2013) and

used the FDT to estimate updates of the tuning parameters. The FDT provides

estimations on the change of the statistics of a system that is perturbed by an

external forcing. If the empirical parameters depend in a mathematically rigorous

way on the statistics, the FDT estimations might be used to introduce a climate

dependence in the tuning parameters. In particular, we used the simplest form of

the FDT: the quasi-Gaussian FDT (qG-FDT). In this approximation the response

operator of the qG-FDT reduces to a simple integral over lag-correlation functions.

Achatz et al. (2013) applied this ansatz to a barotropic flow on the sphere. While

they found a systematic improvement in the models with the qG-FDT-treated

closure only a part of the tuning parameters could be updated. The qG-FDT

estimations of the second moments were not sufficiently accurate to provide useful



9. Conclusion 105

updates for the remaining tuning parameters. Achatz et al. (2013) potentially

suffered from a lack of high-frequency variability, which limits the applicability of

the FDT. In contrast, the QG3LM, which includes baroclinic instability, is better

suited for the FDT.

For both the local and global anomalous forcings we found that the qG-FDT es-

timations of the response of the first moments were remarkably accurate. However,

the estimations for the second moments experienced a systematically higher error.

This is consistent with the results of Gritsun et al. (2008) and has been proven,

for a transient response, by Majda et al. (2005, p. 68) as a general property of the

FDT. In contrast to Achatz et al. (2013), however, the estimations of the second

moments were sufficiently accurate to provide useful updates for all empirical clo-

sure parameters in the SEM. We could show that the FDT-SEM (i.e., where the

tuning parameters have been updated with the FDT) systematically outperformed

the apr-SEM (i.e., the SEM with an unmodified closure). Furthermore, we found

that the combination of the linear FDT estimation with the nonlinear SEM yields

a skillful response even if the response is nonlinear. Therefore, this approach is

superior in comparison to the direct application of the FDT as proposed by Leith

(1975, 1978), at least if sufficiently large EOF truncations are used. In general,

we required SEMs with at least 200 EOFs to obtain useful results for the response

in covariance of streamfunction (i.e., relative errors below 100%). We could ex-

clude the signal-to-noise ratio as a reason for this behavior. It is possible that the

SEMs need to describe a certain amount of explained variance of the QG3LM, for

a correct representation of the response in covariance.

In addition to the qG-FDT, we applied the more sophisticated blended Short-

Time/qG-FDT (ST/qG-FDT; Abramov and Majda 2008) onto selected cases. The

ST/qG-FDT drops to some degree the assumption of Gaussianity resulting in a

generally superior response operator (Abramov and Majda 2008, 2009), however,

the increased accuracy is at the expense of computational effort. At least for the

cases considered in this thesis, no notable benefit was gained by the ST/qG-FDT.

Instead, our results indicated that the comparatively simple qG-FDT suffices to

compute useful updates for the empirical parameters.

All in all, we could show that, under appropriate conditions, the FDT enables

us to update tuning parameters of SGS closures in the presence of an external
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forcing. However, it remains to be seen if this ansatz can be used to update

tuning parameters of standard physical SGS parameterizations (e.g., turbulence,

gravity waves, clouds, or convection). Furthermore, it might be interesting to see

whether the FDT is able to deal with a realistic external forcing. Additionally,

the applicability of this approach to more complex models (e.g., GCMs) with

unbalanced motion such as gravity waves should be considered.

Yet, the FDT ansatz suffers also from disadvantages. The response operator of

the FDT itself is data dependent. Therefore, we require sufficient data to construct

a useful operator. In particular, we need to sufficiently sample the statistical steady

state of the model. Furthermore, it is unlikely that the FDT predicts correctly

a drastic change in the climate (i.e., tipping points) unless the data used for the

computation of the response operator included a statistical significant sample of

such a regime transition. Moreover, for the FDT to work the forcing must not

project onto the stable direction of the attractor (Gritsun and Lucarini 2017).

However, it is not guaranteed that the driving force of the climate change projects

only in the unstable direction. Lastly, the FDT is a linear theory that breaks down

if the forcing is too strong.

Given the disadvantages of the FDT ansatz it can only be seen as a temporary

solution. Instead, climate models and GCMs should use SGS parameterizations

based on first principles. Thus, we investigated in part II the SMR as an approach

to construct an SGS closure constrained by first principles (Franzke 2013). The

SMR requires that the system can be separated into different characteristic scales

(e.g., fast and slow modes). Furthermore, it assumes that the fastest components

of the system can be replaced by a Gaussian process. In this thesis we fitted an

OU-process explicitly, although, in general this Gaussian process does not need

to be specified (Franzke et al. 2005). In the limit of an infinite scale separation

the explicit evolution of the fast modes is no longer important, and their effect on

the slow variable can be treated by a suitable noise. The SMR provides a math-

ematically rigorous and analytic derivation of this stochastic parameterization,

depending explicitly on the interaction coefficients (i.e., the model equation).

In contrast to the classical theory, we applied the SMR not directly to the

QG3LM, to avoid a minor conceptual energy conservation problem. Instead, we

split the EOF space into three variables: the slow variable, the fast mode, and
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the hidden variable. The latter was eliminated and described by a deterministic

data-driven SGS parameterization (the same as used in the SEMdet). Next we

fit an OU-process to replace the nonlinear self-interaction of the fast variable and

the remaining unparameterized hidden modes. This way the energy fluctuations

of resolved modes, introduced by the OU-process, may be seen as a coupling to

the energy reservoir of the unparameterized hidden variable. For the partition of

the EOF space we defined the first few EOFs as the slow variable, followed by the

fast modes, and declared the remaining EOFs as the hidden variable, since the

explained variance roughly coincides with the autocorrelation time scale (Franzke

and Majda 2006).

We successfully constructed the RSM for the OU intermediate model (OU-

IMM; i.e., the QG3LM without the hidden variable but with the empirical OU-

process) using the SMR. Independent of the dimension of the fast and slow variable,

respectively, the RSM was both quantitatively and qualitatively similar to the

SEM. Franzke and Majda (2006) applied the seamless SMR (Franzke et al. 2005)

to the same model in northern hemispheric mode. However, their RSM experienced

a climatic drift and thus performed significantly worse than the RSM presented

in this thesis. We identified the additional empirical closure in the slow variable,

caused by the elimination of the hidden mode, as the reason for the improved

performance of our RSM. Furthermore, the hidden variable allowed us to go beyond

the classical SMR and keep the fastest term explicitly in the RSM. However, the

resulting modified RSM showed no improvement over the standard RSM.

For the investigation of the RSMs’ robustness with respect to an external forc-

ing we perturbed the model with the localized heat source. In particular, we

considered the heat source acting either on all scales (on both the slow and fast

variable) or only on the SGS (i.e., the fast variable), respectively. In contrast

to part I, we deliberately increased the forcing strength until the response was

significantly stronger than the bias of the unforced RSM. For the anomaly exper-

iments we considered five different models: the apr-RSM (no change in tuning

parameters but an adjusted closure as given by the SMR), the apo-RSM (as the

apr-RSM but with retuned empirical closure and OU-process, respectively), the

FDT-RSM (as the apo-RSM but with updates estimated by the qG-FDT), the

apr-SEM (no change in parameterization), and the FDT-SEM (closure updated
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with the qG-FDT).

In general, all models performed better for a forcing acting on all scales com-

pared to the case with the forcing acting only on the SGS. Still, for both forcing

types we found that the RSMs systematically outperformed the SEMs. For the

response in covariance of streamfunction, however, the relative errors were above

100%. Furthermore, we found no clear improvement of the apo-RSM in compar-

ison to the apr-RSM. While the correlation was mostly higher for the apo-RSM,

the amplitude of the response in covariance of streamfunction was not always

improved. In contrast, for the response in mean streamfunction the apo-RSM

provided useful results and systematically outperformed the apr-RSM, although,

only for the forcing acting on all scales. In addition, the strong external forcings

denied the application of the qG-FDT. Both the FDT-RSM and the FDT-SEM

were either unstable or produced an unrealistic response with significant ampli-

tude errors. For the original strength of the forcing (i.e., as used in part I) the

FDT-RSM provided roughly the same results as the apo-RSM. Nevertheless, even

for the weaker external forcings the apo-RSM did not perform systematically bet-

ter than the apr-RSM, and both RSMs experienced relative errors ε > 1 for the

response in covariance of the streamfunction.

The unexpected low performance of the apo-RSM was most likely caused by

the empirical parameters introduced when eliminating the hidden variable. We

could exclude incorrect a posteriori parameters caused by a small signal-to-noise

ratio. It is possible that the considered apo-RSM, based on a twenty-dimensional

slow variable and a ten-dimensional fast variable, is simply too low dimensional in

order to resolve a correct response in the covariance of the streamfunction. The

qualitatively similar results of the apo-SEM in part I indicate that also for the

apo-RSM we might require at least 200 EOFs to resolve this response correctly.

Nevertheless, we could show that in general the RSM is able to produce a cor-

rect response if we exclude the impact of the empirical parameters. For this we

conducted anomaly experiments with the apr-OU-IMM as the reference instead of

the QG3LM. We found that the RSM reproduced the response in mean stream-

function and covariance of streamfunction, of both the strong and weak external

forcings, remarkably well. Furthermore, we could show that the RSM is able to

adapt even to anomalies in the linear dynamics.
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Figure 9.1: Schematic of EOF space partitions. (a) Traditional partition with
respect to the explained variance, (b) alternative partition with respect to the
autocorrelation time scale. The colors indicate the slow variable (green), the fast
variable (yellow), and the hidden variable (grey).

These results encourage us to investigate the response of RSMs with larger

(S, F ) to study if the model benefits from an increased dimension. In this context,

it is interesting to see whether we need to increase the dimension of the resolved

variable or if an increase of the dimension of the fast variable is sufficient. Taking

this to the extreme, we should construct a RSM based on the full QG3LM (i.e.,

without the hidden variable). This would allow us to confirm that the hidden

variable (or rather the additional empirical closure used to describe its effect on

the remaining variables) is the reason that the RSM presented in this thesis sig-

nificantly outperforms the results of Franzke and Majda (2006). Furthermore, the

hidden variable offers an alternative partition of the EOF space. Instead of split-

ting the EOF space with respect to the explained variance (Franzke et al. 2005;

Franzke and Majda 2006), we could reorder the EOFs with respect to the autocor-

relation time scale, as shown schematically in Fig. 9.1, and investigate the effect

of this alternative partition on the performance of the RSM.
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Appendix A

Fluctuation-Dissipation Theorem

A.1 Cooper-Haynes Algorithm

The FDT operator is based on the integral of the cross-covariance matrix

∞∫
0

CCCh(τ)dτ =

∞∫
0

h(τ)x′
T

(0)dτ , (A.1)

where h is an arbitrary variable whose response should be estimated. For practical

purposes the infinite integral is approximated by a finite time lag Tmax:

∞∫
0

CCCh(τ)dτ ≈
Tmax∫
0

CCCh(τ)dτ . (A.2)

Lutsko et al. (2015) presents an efficient algorithm, the so-called Cooper-Haynes

Algorithm (CHA), which solves (A.2). In this chapter the CHA is derived for

Simpson’s rule.

For a time series of length n the cross-covariance matrix in (A.2) is given by

CCCh(τ) =
1

n− l − 1

n−l∑
k=1

hk+lx
′
k

T
, (A.3)

where l is the number of data points of time lag τ and r denotes the number
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of points of the maximum time lag Tmax (i.e., r = Tmax/∆τ , where ∆τ is the

integration time step). Furthermore, we assume, without loss of generality, that r

is even1. Then the integral (A.2) can be written as

Tmax∫
0

CCCh(τ)dτ ≈

∆τ

3

[
1

n− 1

n∑
k=1

hkx
′
k

T
+

1

n− r − 1

n−r∑
k=1

hk+rx
′
k

T
+

2

n− 2

n−1∑
k=1

f(k + 1)hk+1x
′
k

T

+
2

n− 4

n−3∑
k=1

f(k + 3)hk+3x
′
k

T
+ . . .+

2

n− r

n−(r−1)∑
k=1

f(k + r − 1)hk+r−1x
′
k

T

+
2

n− 3

n−2∑
k=1

f(k + 2)hk+2x
′
k

T
+

2

n− 5

n−4∑
k=1

f(k + 4)hk+4x
′
k

T

+ . . .+
2

n− r + 1

n−(r−2)∑
k=1

f(k + r − 2)hk+r−2x
′
k

T

 , (A.4)

where the function f : N→ R is defined by

f(k) =

2, k even

1, k odd .
(A.5)

Thus, (A.4) can be reduced to

∞∫
0

CCCh(τ)dτ ≈ ∆τ

3

{
1

n− 1

n∑
k=1

hkx
′
k

T − 1

n− r − 1

n−r∑
k=1

hk+rx
′
k

T

+

r/2∑
l=1

[
2

n− 2l

n−2l+1∑
k=1

f(k + 2l − 1)hk+2l−1x
′
k

T

+
2

n− 2l − 1

n−2l∑
k=1

f(k + 2l)hk+2lx
′
k

T

]}
. (A.6)

If we additionally assume that the time lag is small compared to the total length

1. Should this be not the case, we simply neglect the first data point of the time series.
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of the time series (i.e., r � n), the last term can be further simplified to

r/2∑
l=1

[
2

n− 2l

n−2l+1∑
k=1

f(k + 2l − 1)hk+2l−1x
′
k

T
+

2

n− 2l − 1

n−2l∑
k=1

f(k + 2l)hk+2lx
′
k

T

]

≈ 2∆τ

3(n− r − 1)

n−r∑
k=1

r/2∑
l=1

[f(k + 2l − 1)hk+2l−1 + f(k + 2l)hk+2l] x
′
k

T
. (A.7)

Hence, the CHA for Simpson’s rule reads

Tmax∫
0

CCCh(τ)dτ =
∆τ

3

{
1

n− 1

n∑
k=1

hkx
′
k

T − 1

n− r − 1

n−r∑
k=1

hk+rx
′
k

T

2

n− r − 1

n−r∑
k=1

r/2∑
l=1

[f(k + 2l − 1)hk+2l−1 + f(k + 2l)hk+2l] x
′
k

T

 . (A.8)

The sum over k in the last term of (A.8) can be obtained from the previous

partial sum by a single addition and subtraction operation, respectively. Thus, for

CCCh ∈ RN×N the CHA requires only N2n operations (Lutsko et al. 2015).

A.2 Short-Time Fluctuation-Dissipation Theorem

In the following we proof that the nonlocal derivative ∇xh(X[τ,x]) can be calcu-

lated by the tangent linear model. The following calculation is based on Baiesi

and Maes (2013).

Proof. Let us consider a discrete time evolution of the system (2.1)

xn+1 = xn + ∆tG(xn) ≡ Gn(xn) , (A.9)

where n ∈ N denotes the time index and ∆t is the time step of the discrete

evolution (i.e., in the limit ∆t → 0 the original system is recovered). Then we

have in the discrete setting

∇x0h(x[τ ]) = ∇x0h(xnτ ) , (A.10)
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where nτ indicates the time steps needed to reach time τ and, without loss of

generality, we set t = 0 and let x(0) = x0. By chain rule we get

∇x0h(xnτ ) = ∇h(xnτ )∇x0xnτ . (A.11)

Applying (A.9) and the chain rule recursively yields

∇x0h(xnτ ) = ∇h(xnτ )∇x0Gnτ−1(xnτ−1) (A.12)

= ∇h(xnτ )∇Gnτ−1(xnτ−1)∇x0Gnτ−2(xnτ−2) (A.13)

= ∇h(xnτ )∇Gnτ−1(xnτ−1)∇Gnτ−2(xnτ−2) . . .∇x0G0(x0) . (A.14)

The Jacobian of Gk is given by ∇Gk(xk) = 1+∆t∇G(xk), ∀k ∈ {0, 1, . . . , nτ−1}.
Hence,

∇x0h(xnτ )

= ∇h(xnτ )[1 + ∆t∇G(xnτ−1)][1 + ∆t∇G(xnτ−2)] . . . [1 + ∆t∇G(x0)] . (A.15)

For sufficiently small ∆t we have [1 + ∆t∇G(xnτ−1)] ' exp{∆t∇G(x[τ −∆t])}.
Thus, formally we obtain in the limit ∆t→ 0

∇x0h(x[τ ]) = ∇h(x[τ ])T exp

 τ∫
0

∇G(x[s])ds

 , (A.16)

where T is the time-order operator.



Appendix B

Linear Empirical Closure

In this chapter we derive the set of optimal closure parameters for the SEMdet

and SEMstoch by minimization of the residual error and the Maximum-Likelihood

method (Honerkamp 1994), respectively. The latter can, after some simple alge-

braic treatment, also be used to calculate the OU-process required for the SMR.

B.1 Minimization of the Residual Error

One possibility to obtain a set of optimal closure parameters for the SEMdet is via

linear regression. In particular, by the minimization of the time-averaged norm of

the residual error (3.8) (i.e., 〈‖εp‖2〉). First we rearrange (3.8) to

εp =
da

dt
− G̃(a)− r− LLLa (B.1)

≈ a(t+ ∆t)− a(t−∆t)

2∆t
− G̃[a(t)]− r− LLLa(t) , (B.2)

where ∆t denotes the time step of the model output and we discretized the time

derivative of the principal components by the Leapfrog scheme. With the definition

of the SGS error

s(t) =
a(t+ ∆t)− a(t−∆t)

2∆t
− G̃[a(t)] (B.3)

115
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(B.2) may be written as

εpi = si(t)− ri − LLLijaj(t) . (B.4)

The squared norm of the residual error reads

‖εp‖2 = s2
i + r2

i + LLLijLLLikajak − 2 [siri + LLLij(siaj − riaj)] , (B.5)

where we suppressed the explicit time dependence for a better readability.

Thus, for the vector r we obtain

0 = ∂rβ‖εp‖2 (B.6)

= δiβ [2ri − 2si + 2LLLijaj] (B.7)

= rβ − sβ + LLLβjaj , (B.8)

which can be further simplified to

Ntri =
Nt∑
n=1

sni − LLLija
n
j . (B.9)

Dividing by Nt yields

rβ = 〈sβ〉 − LLLβj 〈aj〉 ⇔ r = 〈s〉 − LLL 〈a〉 . (B.10)

The minimization of (B.5) with respect to LLL is given by

0 = ∂LLLβγ‖εp‖2 (B.11)

= δiβδjγajLLLikak + LLLijajδiβδkγak − 2δiβδjγ [siaj + riaj] (B.12)

= 2 [LLLβjajaγ − sβaγ + rβaγ] , (B.13)

which can be written as

0 =
Nt∑
n=1

aγ [LLLβjaj − sβ + rβ] . (B.14)
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Using (B.10) yields

0 =
Nt∑
n=1

aγ [LLLβjaj − sβ + 〈sβ〉 − LLLβj 〈aj〉] (B.15)

=
Nt∑
n=1

aγ
[
LLLβja

′
j − s′β

]
. (B.16)

Hence, we obtain

LLLβj = 〈s′βa′γ〉〈a′γa′j〉−1 ⇔ LLL = 〈s′a′T〉〈a′a′T〉−1 . (B.17)

Strictly speaking it remains to be shown that the Hessian is positive definite.

However, this proof is not be given here but left for the reader as an exercise.

B.2 Maximum-Likelihood Method

In this section we derive the optimal set of closure parameters for the SEMstoch us-

ing the Maximum-Likelihood method. However, since the closure is essentially an

OU-process that we require for both the IMM and the SMR as well, we generalize

the problem by considering an arbitrary coupled system

dx(t) = {GGGx[x(t),y(t)] + rx + lllxxx(t) + lllxyy(t)} dt+ σxdWx(t) (B.18a)

dy(t) = {GGGy[x(t),y(t)] + ry + lllyxx(t) + lllyyy(t)} dt+ σydWy(t) , (B.18b)

where r, lll,σ = const. and σ is diagonal.

First we note that, because of the identical structure, we can summarize (B.18)

in the general form

d • (t) = {GGG•[x(t),y(t)] + r• + lll•xx(t) + lll•yy(t)} dt+ σ•dW•(t) , (B.19)

where • ∈ Rm stands for either x or y. Next we rearrange (B.19) to

σ•dW•(t) =

[
d • (t)

dt
− {GGG•[x(t),y(t)] + r• + lll•xx(t) + lll•yy(t)}

]
dt . (B.20)
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This is then approximated using the Leapfrog scheme, i.e.

σ•∆W̃•(t)

≈
{
•(t+ ∆t)− •(t−∆t)

2∆t
−GGG•[x(t),y(t)]− r• − lll•xx(t)− lll•yy(t)

}
2∆t ,

(B.21)

where ∆t denotes the time step of the model output. Since the Leapfrog scheme

requires two time steps we approximate ∆W̃•(t) by two consecutive Euler steps

∆W̃•(t) = W(t+ ∆t)−W(t−∆t) (B.22)

= W(t+ ∆t)−W(t) + W(t)−W(t−∆t) (B.23)

= ∆W(t) + ∆W(t−∆t) . (B.24)

Hence, we have

var
[
σ•∆W̃•(t)

]
= 2∆tσ•2 . (B.25)

With the definition of the subgrid-scale error

s•(t) =
•(t+ ∆t)− •(t−∆t)

2∆t
−GGG[x(t),y(t)] (B.26)

(B.21) can be written as

σ•dW•(t) = [s•(t)− r• − lll•xx(t)− lll•yy(t)] 2∆t . (B.27)

For a better readability we suppress the dependency of t in the following.

Because of (B.25) the right-hand side of (B.27) is normally distributed with

N (0, 2∆tσ•2). Thus, the Maximum-Likelihood function is given by

L(r•,lll•x, lll•y,σ•)

=
Nt∏
n=1

pn(r, lll•x, lll•y,σ•) (B.28)
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=
[
(2π)m det(2∆tσ•2)

]−Nt
2 exp

{
−

Nt∑
n=1

2∆t [s•n − (r• + lll•xxn + lll•yyn)]T

(2∆tσ•2)−1

2
2∆t [s•n − (r• + lll•xxn + lll•yyn)]

}
(B.29)

=

[
(4π∆t)m

m∏
i=1

σ•ii
2

]−Nt
2

exp

{
−

Nt∑
n=1

∆t [s•n − (r• + lll•xxn + lll•yyn)]T

σ•−2 [s•n − (r• + lll•xxn + lll•yyn)]

}
. (B.30)

The corresponding log-likelihood function reads

L(r•,lll•x, lll•y,σ•)

= log(L) (B.31)

= −Nt

2
log[(4π∆t)m]−Nt

m∑
i=1

log (σ•ii)

− ∆t

σ•ii
2

Nt∑
n=1

[
s•i
n − (r•i + lll•xij x

n
j + lll•yik y

n
k )
] [
s•i
n − (r•i + lll•xil x

n
l + lll•yimy

n
m)
]
. (B.32)

Thus for the vector r• we obtain

0 =
∂L
∂r•β

(B.33)

= − ∆t

σ•ii
2

Nt∑
n=1

∂r•β
[
s•i
n − (r•i + lll•xij x

n
j + lll•yik y

n
k )
] [
s•i
n − (r•i + lll•xil x

n
l + lll•yimy

n
m)
]

(B.34)

=
Nt∑
n=1

δiβ
{[
s•i
n − (r•i + lll•xil x

n
l + lll•yimy

n
m)
]

+
[
s•i
n − (r•i + lll•xij x

n
j + lll•yik y

n
k )
]}

(B.35)

=
Nt∑
n=1

2
[
s•β

n − (r•β + lll•xβjx
n
j + lll•yβky

n
k )
]
. (B.36)
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This can be simplified to

Ntr
•
β =

Nt∑
n=1

[
s•β

n − (lll•xβjx
n
j + lll•yβky

n
k )
]
, (B.37)

which is equivalent to

r•β =
〈
s•β
〉
− lll•xβj 〈xj〉 − lll•yβk 〈yk〉 ⇔ r• = 〈s•〉 − lll•x 〈x〉 − lll•y 〈y〉 . (B.38)

The calculation of the linear term acting on the first variable lll•x is given by

0 =
∂L
∂lll•xβγ

(B.39)

= − ∆t

σ•ii
2

Nt∑
n=1

∂lll•xβγ
[
s•i
n − (r•i + lll•xij x

n
j + lll•yik y

n
k )
] [
s•i
n − (r•i + lll•xil x

n
l + lll•yimy

n
m)
]

(B.40)

=
Nt∑
n=1

δiβ
{
δjγx

n
j

[
s•i
n − (r•i + lll•xil x

n
l + lll•yimy

n
m)
]

+δlγx
n
l

[
s•i
n − (r•i + lll•xij x

n
j + lll•yik y

n
k )
]}

(B.41)

=
Nt∑
n=1

2xnγ
[
s•β

n − (r•β + lll•xβjx
n
j + lll•yβky

n
k )
]
, (B.42)

which can be simplify to

0 =
Nt∑
n=1

xnγ
[
s•β

n − (r•β + lll•xβjx
n
j + lll•yβky

n
k )
]
. (B.43)

Using (B.38) yields

0 =
Nt∑
n=1

xnγ
[
s•β

n −
〈
s•β
〉
− (lll•xβjx

n
j − lll•xβj 〈xj〉+ lll•yβky

n
k − lll•yβk 〈yk〉)

]
(B.44)

=
Nt∑
n=1

xnγ
[
s′
•
β
n − (lll•xβjx

′n
j + lll•yβky

′n
k)
]
. (B.45)
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Thus,

lll•xβj =
[〈
x′γs

′•
β

〉
− lll•yβk 〈x

′
γy
′
k〉
]
〈x′γx′j〉−1

(B.46a)

⇔ lll•x =
[〈

s′•x′
T
〉
− lll•y

〈
y′x′

T
〉]〈

x′x′
T
〉−1

. (B.46b)

Analogously we obtain for lll•y

0 =
Nt∑
n=1

ynγ
[
s′
•
β
n − (lll•xβjx

′n
j + lll•yβky

′n
k)
]
. (B.47)

Inserting (B.46) yields

0 =
〈
y′γs

′•
β

〉
−
[〈
x′ls

′•
β

〉
− lll•yβk 〈x

′
ly
′
k〉
]
〈x′lx′j〉−1 〈

x′jy
′
γ

〉
− lll•yβk

〈
y′ky

′
γ

〉
, (B.48)

which can be rearranged to

lll•yβk =
[〈
y′γs

′•
β

〉
−
〈
x′ls

′•
β

〉
〈x′lx′j〉−1 〈

x′jy
′
γ

〉]
×
[〈
y′ky

′
γ

〉
− 〈x′ly′k〉 〈x′lx′j〉

−1 〈
x′jy

′
γ

〉]−1

(B.49a)

⇔ lll•y =

[〈
s′
•
y′

T
〉
−
〈
s′
•
x′

T
〉〈

x′x′
T
〉−1 〈

x′y′
T
〉]

×
[〈

y′y′
T
〉
−
〈
y′x′

T
〉〈

x′x′
T
〉−1 〈

x′y′
T
〉]−1

. (B.49b)

The calculation of σ• yields

0 =
∂L
∂σ•βγ

(B.50)

= −∂σ•βγNt

m∑
i=1

log (σ•ii)− ∂σ•βγ
∆t

σ•2ii

Nt∑
n=1

{[
s•i
n − (r•i + lll•xij x

n
j + lll•yik y

n
k )
]

×
[
s•i
n − (r•i + lll•xil x

n
l + lll•yimy

n
m)
]}

(B.51)

= −Nt

m∑
i=1

δiβδβγ
σ•βγ

+
2∆t

σ•3βγ

Nt∑
n=1

δiβδβγ
{[
s•i
n − (r•i + lll•xij x

n
j + lll•yik y

n
k )
]

×
[
s•i
n − (r•i + lll•xil x

n
l + lll•yimy

n
m)
]}

(B.52)
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= − Nt

σ•ββ
+

2∆t

σ•3ββ

Nt∑
n=1

{[
s•β

n − (r•β + lll•xβjx
n
j + lll•yβky

n
k )
]

×
[
s•β

n − (r•β + lll•xβlx
n
l + lll•yβmy

n
m)
]}

, (B.53)

which results in

σ•2ββ = 2∆t
〈[
s•β − (r•β + lll•xβjxj + lll•yβkyk)

] [
s•β − (r•β + lll•xβlxl + lll•yβmym)

]〉
(B.54a)

⇔ σ•2 = 2∆t
〈

[s• − (r• + lll•xx + lll•yy)] [s• − (r• + lll•xx + lll•yy)]T
〉
. (B.54b)

Let r• = r, lll•x = LLL, lll•y = 0,y = 0, and x = a. Then the comparison of (B.10)

with (B.38) and (B.17) with (B.46) shows that we obtain the same set of optimal

closure parameters with both methods.

For the calculation of the OU-process in the SMR, we use an Euler scheme

instead of the Leapfrog scheme presented above. Furthermore, we do not use the

model time step but ∆t = 1 day and set r• = 0. Thus, the constant vector

vanishes and the variances changes to second moments (e.g., 〈x′y′T〉 −→ 〈xyT〉)
in the equations of the linear closure parameters (lll•x and lll•y).



Appendix C

Stochastic Mode Reduction

This appendix contains the calculations needed for the derivation and application

of the SMR. Note that in this chapter we do not apply Einstein’s summation

convention.

C.1 Projection Operator and Generalized Inverse

of L1

Consider the initial value problem of a damped OU-process (Gardiner 2009)

∂tg(x,y, t) = L1g(x,y, t)− f(x,y, tr) (C.1a)

g(x,y, 0) = h(x,y, tr) (C.1b)

with an arbitrary function f(x,y, tr) as inhomogeneity, the L1 operator (6.16)

(only acting on the slow variable), and an arbitrary reference time tr. The solution

of (C.1) reads

g(x,y, t) = eL1th(x,y, tr)−
t∫

0

eL1(t−s)f(x,y, tr)ds , (C.2)

which can easily be proven by insertion.
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First we decompose L1 in its eigenfunctions eµ(y), i.e.

L1eµ = λµeµ , (C.3)

where λµ is the eigenvalue corresponding to eµ. With this we can decompose an

arbitrary function k(x,y, t) as

k(x,y, t) =
∑
µ

kµ(x, t)eµ(y) . (C.4)

From (C.4) we obtain for g, h, and f in the solution (C.2)

gµ(x, t) = hµ(x, tr)e
λµt −

{
fµ(x, tr)t , λµ = 0

(1− eλµt)fµ(x,tr)

λµ
, else .

(C.5)

Since (C.1) is the differential equation of the damped OU-process, the solution is

well defined for an initialization at t → −∞ (i.e., λµ ≥ 0 , ∀µ). Consider (C.5) in

the limit t→ −∞

1. with f = 0. All eigenmodes with λ 6= 0 are suppressed and only those with

λµ = 0 contribute to the solution. However, per definition those eigenmodes

span the nullspace of L1, i.e.

lim
t→−∞

g(x,y, t)
∣∣∣
f=0

= Ph(x,y, tr) . (C.6)

2. with h = 0. In this case the eigenmodes with λµ = 0 diverge and the

remaining modes converge to fµ(x, tr)/λµ. Hence,

lim
t→−∞

g(x,y, t)
∣∣∣
h=0

= L−1
1 f(x,y, tr) , (C.7)

if Pf = 0.

Nevertheless, (C.6) and (C.7) do not provide an exact expression for both the

projection operator onto kerL1 and the generalized inverse L−1
1 . For those we need
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to rearrange (C.2) by noting that

h(x,y, tr) =

∫
dF ỹδ(y − ỹ)h(x, ỹ, tr) (C.8a)

f(x,y, tr) =

∫
dF ỹδ(y − ỹ)f(x, ỹ, tr) . (C.8b)

On substituting (C.8) in (C.2) we find, after some algebra,

g(x,y, t) =

∫ eL1th(x, ỹ, tr) +

−t∫
0

e−L1sf(x, ỹ, tr)ds

 δ(y − ỹ)dF ỹ . (C.9)

Thus, following (C.6), we have for the projection operator

Ph = lim
t→−∞

g(x,y, t)
∣∣∣
f=0

=

∫
dF ỹ lim

t→−∞
eL1tδ(y − ỹ)h(x, ỹ, tr)

=

∫
dFyps(y)h(x,y, tr) ≡ E [h(x,y, tr)]OU , (C.10)

where we renamed the integration variable y in the last step and ps(y) denotes the

stationary distribution of the OU-process (C.13). Obviously, since the projection

operator P eliminates the fast variable, p(0) ∈ kerL1 has to be independent of y.

Furthermore, for vanishing initial condition (h = 0) the generalized inverse

reads

L−1
1 f = lim

t→−∞
g(x,y, t)

∣∣∣
h=0

=

∞∫
0

∫
dF ỹ lim

s→−∞
e−L1sδ(y − ỹ)f(x, ỹ, tr)ds

=

∞∫
0

∫
dF ỹp(ỹ, s|y, 0)f(x, ỹ, tr)ds ≡

∞∫
0

E [f(x, ỹ[s], tr)|ỹ(0) = y]OU ds .

(C.11)
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From this follows

PL−1
1 f =

∞∫
0

∫
dFy

∫
dF ỹp(ỹ, s|y, 0)ps(y)f(x, ỹ, tr)ds

=

∞∫
0

E [f(x, ỹ[s], tr)]OU ds . (C.12)

Since (C.2) with f = 0 describes a damped OU-process, its stationary distri-

bution ps(y) is given by

ps(y) =
1√

(2π)F detDDD
exp

[
−1

2
yTDDD−1y

]
, (C.13)

where the variance can be calculated by the Lyapunov equation

−ΛDDD−DDDΛT = σ?y(σ?y)T . (C.14)

Before we solve for DDD ∈ RF×F we first note that in general the drift term of

the OU-process (i.e., lyyOU) has complex eigenvalues µj = −γ̂j ± ıω̂j that form a

complex conjugate pair (i.e., ∃µj, µk with µ∗j = µk and j 6= k). Thus, in section 6.2

we rearranged Λ into a block-diagonal matrix that consists either of 2-by-2 blocks

given by (
−γ̂j ω̂j

−ω̂j −γ̂j

)
(C.15)

or of −γ̂j on the main diagonal and 0 else. For the special case where Λ,DDD,Σ ∈
R3×3 (i.e., F = 3) we solve the Lyapunov equation analytically:

Let γ,ω ∈ R3 be the vectors of the real and imaginary part of the eigenvalues

of Λ, respectively, given by

γi = |Λii| (C.16)
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and

ωi =


Λii+1, if Λii+1 6= 0

Λii−1, if Λii−1 6= 0

0, else

(C.17)

(Dolaptchiev et al. 2013a). Then the variance reads

DDDij =



Σii

2γi
, ωi = 0, j = i

(γi+γi+1)Σii+1+ωi+1Σii+2

(γi+γi+1)2+ω2
i+1

, ωi = 0, j = i+ 1, ωj > 0

(γi+γi+2)Σii+2+ωi+2Σii+1

(γi+γi+1)2+ω2
i+1

, ωi = 0, j = i+ 2, ωj < 0

(2γ2i +ω2
i )Σii+ω

2
iΣi+1i+1+2γiωiΣii+1

4γi(γ2i +ω2
i )

, ωi > 0, j = i

ωi(Σi+1i+1−Σii)+2γ2Σii+1

4(γ2i +ω2
i )

, ωi > 0, j = i+ 1

(2γ2i +ω2
i )Σii+ω

2
iΣi−1i−1+2γiωiΣi−1i

4γi(γ2i +ω2
i )

, ωi < 0, j = i ,

(C.18)

where the remaining components are obtained by DDD = DDDT.

From (C.18) cases where Λ is either exact diagonal or only consisting of one

2-by-2 block can be easily derived. However for a general Λ ∈ RF×F , the analytic

solution is more complex. In this case we first partition the matrices Λ,DDD, and Σ

into submatrices and write the Lyapunov equation as

−

(
Λ11 0

0 Λ22

)(
DDD11 DDD12

DDDT
12 DDD22

)
−

(
DDD11 DDD12

DDDT
12 DDD22

)(
ΛT

11 0

0 ΛT
22

)
=

(
Σ11 Σ12

ΣT
12 Σ22

)
.

(C.19)

From this follows for each submatrix (Chu 1989)

−Λ11DDD11 −DDD11Λ
T
11 = Σ11 (C.20a)

−Λ11DDD12 −DDD12Λ
T
22 = Σ12 (C.20b)

−Λ22DDD22 −DDD22Λ
T
22 = Σ22 . (C.20c)

Since Λ is of block-diagonal form, Λ11 and Λ22 are as well. Thus, so far we

only reduced the dimension of the problem without solving the Lyapunov equa-
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tion. However, the matrix partition can be applied recursively until Λ̄11 [where

(̄·) indicates the last iteration] is either a scalar or a 2-by-2 block (C.15). In both

cases, the corresponding D̄̄D̄D is given by (C.18). From this we can recursively obtain

the full variance of the OU-process DDD. In practice we compute the solution of the

Lyapunov equation (C.14) numerically with the NAG routine f08qhf.

C.2 Series Expansion of the Fokker-Planck Equa-

tion

The leading order FPE is given by

∂tp
(0) = L3p

(0) − PL2L
−1
1 L2p

(0) . (C.21)

First we consider

L−1
1 L2p

(0) = −L−1
1 [f1(x,y) · ∇x + g1(x,y) · ∇y]p

(0)

= −L−1
1 f1(x,y) · ∇xp

(0) , (C.22)

since p(0) depends only on the slow variable. Application of the generalized inverse

(C.11) yields

L−1
1 L2p

(0) = −
∞∫

0

E [f1(x, ỹ[τ ])|ỹ(0) = y]OU dτ · ∇xp
(0) . (C.23)

Hence,

−PL2L
−1
1 L2p

(0)

= −P [f1(x,y) · ∇x + g1(x,y) · ∇y]

∞∫
0

E [f1(x, ỹ[τ ])|ỹ(0) = y]OU dτ · ∇xp
(0)

= −Pf1(x,y)⊗
∞∫

0

E [f1(x, ỹ[τ ])|ỹ(0) = y]OU dτ : ∇x∇xp
(0)
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− P
∞∫

0

[f1(x,y) · ∇x]E [f1(x, ỹ[τ ])|ỹ(0) = y]OU dτ · ∇xp
(0)

− P [g1(x,y) · ∇y]

∞∫
0

E [f1(x, ỹ[τ ])|ỹ(0) = y]OU dτ · ∇xp
(0) (C.24)

≡ I1 + I2 + I3 . (C.25)

The first term can be further simplified to

I1 = −Pf1(x,y)⊗
∞∫

0

E [f1(x, ỹ[τ ])|ỹ(0) = y]OU dτ : ∇x∇xp
(0)

= −
∞∫

0

E [f1(x,y)⊗ f1(x,y[τ ])]OU dτ : ∇x∇xp
(0) . (C.26)

The second term reads

I2 = −P
∞∫

0

[f1(x,y) · ∇x]E [f1(x, ỹ[τ ])|ỹ(0) = y]OU dτ · ∇xp
(0)

= −
∞∫

0

E [{f1(x,y) · ∇x}f1(x,y[τ ])]OU dτ · ∇xp
(0) . (C.27)

The last term can, via partial integration with respect to the fast variable in

the projection operator P , be written as

I3 = −P [g1(x,y) · ∇y]

∞∫
0

E [f1(x, ỹ[τ ])|ỹ(0) = y]OU dτ · ∇xp
(0) (C.28)

= −
[∫

g1(x,y) · ∇yps(y)dFy + P∇y · g1(x,y)

]
×
∞∫

0

E [f1(x, ỹ[τ ])|ỹ(0) = y]OU dτ · ∇xp
(0) . (C.29)

With the definition of the stationary distribution (C.13) and the symmetry of DDD
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(C.18) this results in

I3 = −P [g1(x,y) ·DDD−1y −∇y · g1(x,y)] (C.30)

×
∞∫

0

E [f1(x, ỹ[τ ])|ỹ(0) = y]OU dτ · ∇xp
(0) . (C.31)

Finally, the application of the projection operator yields

I3 = −


∞∫

0

E
[
{g1(x,y) ·DDD−1y}f1(x,y[τ ])

]
OU

dτ

−
∞∫

0

E [{∇y · g1(x,y)}f1(x,y[τ ])]OU dτ

 · ∇xp
(0) . (C.32)

Thus, in total the FPE (C.21) reads

∂tp
(0) = −

[
f0(x) +

∞∫
0

{
E [(f1(x,y) · ∇x)f1(x,y[τ ])]OU

+ E
[
{g1(x,y) ·DDD−1y}f1(x,y[τ ])

]
OU

− E [{∇y · g1(x,y)}f1(x,y[τ ])]OU

}
dτ

]
· ∇xp

(0)

−
∞∫

0

E [f1(x,y)⊗ f1(x,y[τ ])]OU dτ : ∇x∇xp
(0) . (C.33)
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C.3 Cholesky-Decomposition

The following proof is based on Pavliotis and Stuart (2008). First we write the

last term in (6.32) as

∞∫
0

〈f1(x,y)⊗f1[x,y(τ)]〉OUdτ : ∇x∇xp
(0)

=

∫
ps(y)f1(x,y)⊗ L−1

1 f1(x,y) : ∇x∇xp
(0)dFy (C.34)

=

∫
ps(y)f1(x,y)⊗ Φ(x,y)dFy : ∇x∇xp

(0) (C.35)

= BBB1(x) : ∇x∇xp
(0) . (C.36)

Furthermore, we note that (C.36) is equivalent to

BBB1(x) : ∇x∇xp
(0) =

1

2

[
BBB1(x) +BBB1(x)T

]
: ∇x∇xp

(0)

≡ BBB(x) : ∇x∇xp
(0) , (C.37)

as can be easily proven in component notation, since both indices of the inner

matrix product indicate the same derivative of p(0). Obviously, BBB ∈ RS×S is

symmetric. Thus it remains to be shown that BBB is positive semi-definite, i.e.

∀ζ ∈ RS

ζTBBBζ ≥ 0 . (C.38)

Proof. For simplification we omit in the following some of the dependencies. We

have

ζTBBB1ζ = ζT

[
1

2

(
BBB1 +BBBT

1

)
+

1

2

(
BBB1 −BBBT

1

)]
ζ

= ζTBBBζ , (C.39)

since the latter term vanishes due to its anti-symmetric nature. Inserting the
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definition of BBB1 (C.36) and Φ (C.35) in (C.39) yields

ζTBBBζ =

∫
ps(y)ζTf1(x,y)⊗ Φ(x,y)ζdFy

=

∫
ps(y)ζif1i(x,y)Φj(x,y)ζjd

Fy

=

∫
ps(y)ζi[L1Φi(x,y)]Φj(x,y)ζjd

Fy . (C.40)

This can be simplified to

ζTBBBζ =

∫
ps(y)[L1φi(x,y)]φj(x,y)dFy , (C.41)

with φ = ζiΦi = ζ · Φ. The adjoint operator of L1 (6.16) reads

L†1• = ∇y · (g2•)−
1

2
∇y · ∇y · (Σ•) (C.42)

and has a corresponding backward FPE given by

∂tp = L†1p (C.43)

(Gardiner 2009). This implies for the stationary PDF ps

0 = ∂tps = L†1ps . (C.44)

Let f(x,y) be an arbitrary, sufficiently differentiable, scalar field. Then

L†1(psf) = ∇y · (g2psf)− 1

2
∇y · ∇y · (Σpsf)

= [∇y · (g2ps)] f + g2ps · ∇yf −
1

2

[
∂yj∂yi(Σijps)f + Σijps∂yj∂yif

+∂yj(Σijps)∂yif + ∂yi(Σijps)∂yjf
]
. (C.45)
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Because of the diagonal form of Σ the last two terms can be summarized to

L†1(psf) =
(
L†1ps

)
f − ps

[
−g2ps · ∇yf −

1

2
Σ : ∇y∇yf

]
− psΣ : ∇y∇yf

− ps∇y ·Σ · ∇yf − (∇yps)
TΣ∇yf . (C.46)

According to (C.44) the first term vanishes and we can simplify (C.46) to

L†1(psf) = −psL1f − psΣ : ∇y∇yf − ps∇y ·Σ · ∇yf − (∇yps)
TΣ∇yf . (C.47)

Let h(x,y) be another arbitrary, sufficiently differentiable scalar field. Then∫
ps(L1h)fdFy =

∫
h(L†1psf)dFy

= −
∫
h [psL1f + psΣ : ∇y∇yf

+ps(∇y ·Σ) · ∇yf + (∇yps)
TΣ∇yf

]
dFy . (C.48)

Partial integration of the last integral yields∫
ps(L1h)fdFy = −

∫
hps [L1f + Σ : ∇y∇yf + (∇y ·Σ) · ∇yf ] dFy

+

∫
ps
[
(∇yh)TΣ∇yf + hΣ : ∇y∇yf + h(∇y ·Σ) · ∇yf

]
dFy

= −
∫
ps
[
hL1f − (∇yh)TΣ∇yf

]
dFy . (C.49)

Finally let h = f = φ. Then we have∫
ps(L1φ)φdFy =

1

2

∫
ps(∇yφ)TΣ∇yφdFy (C.50)

=
1

2

∫
ps(∇yφ)Tσ?y(σ?y)T∇yφdFy (C.51)

=
1

2

∫
ps
∥∥(σ?y)T∇yφ

∥∥2
dFy ≥ 0 (C.52)
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Appendix D

Total Energy Norm

The state vector of the QG3LM is defined by

x =

νx
m
n,1

νx
m
n,2

νx
m
n,3

 ≡
νψ

m
n,i=1

νψ
m
n,i=2

νψ
m
n,i=3

 , (D.1)

where νψ
m
n,i is the spectral coefficient of the streamfunction, m is the zonal wavenum-

ber, n is the total wavenumber, and ν = 1 (ν = 2) denotes the real (imaginary)

part of the coefficient. The boundary conditions of the QG3LM lead to trivial com-

ponents for m = n = 0 and vanishing imaginary components for m = 0 ∧ n ≥ 1

(Ehrendorfer 2000). Therefore (D.1) reduces to

x =


x1

x2

...

xN

 ≡


1ψ
0
1,1

1ψ
0
1,2
...

2ψ
21
21,3

 , (D.2)
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because the QG3LM uses a spectral truncation of T21 (Marshall and Molteni

1993). From this Ehrendorfer (2000) defines the total energy norm as

MMM =


M̂MM0,1 0

M̂MM0,2

. . .

0 M̂MM21,21

 , (D.3)

where the matrices on the diagonal are given by

M̂MMm,n =
δm
3

n(n+ 1) + a2R−2
1 −a2R−2

1 0

−a2R−2
1 n(n+ 1) + a2R−2

1 + a2R−2
2 −a2R−2

2

0 −a2R−2
2 n(n+ 1) + a2R−2

2

 .

(D.4)

Here δm = 0.5 for m = 0 and equal 1 else, a = 6370 km denotes Earth’s radius,

and R−2
1 = 700 km (R−2

2 = 450 km) is the Rossby radius of deformation of the

200− 500 hPa (500− 800 hPa) layer. In combination with the state vector (D.2)

this implies that

E = xTMMMx , (D.5)

is the total energy of the flow.



Appendix E

Explicit EOF Coefficients

This chapter is based on Keeß (2010). In general the QG3LM (3.1a) can be written

as

dΨi

dt
= F̃i + L̃LLijΨj + ÑNNijkΨjΨk . (E.1)

Applying the EOF transformation (3.5) results in

Ψi(t) = EEEijaj(t) + 〈Ψi〉 , (E.2)

where we neglected the energy metric for convenience. The time derivative of (E.2)

yields

dΨ

dt
=

d

dt
[EEEa + 〈Ψ〉] = EEE

da

dt
(E.3)

so that (E.1) becomes

EEEil
dal
dt

= F̃i + L̃LLij [EEEjlal + 〈Ψj〉] + ÑNNijk [EEEjmam + 〈Ψj〉] [EEEknan + 〈Ψk〉] . (E.4)
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Thus,

dal
dt

= EEE−1
li

[
F̃i + L̃LLij〈Ψj〉+ ÑNNijk〈Ψj〉〈Ψk〉

]
(E.5)

+ EEE−1
li

[
L̃LLijEEEjl +

(
ÑNNijk + ÑNNikj

)
EEEjl〈Ψk〉

]
al + EEE−1

li ÑNNijkEEEjmEEEknaman

≡ Fl + LLLlmam +NNN∗lmnaman . (E.6)

In order to obtain the explicit EOF coefficients F,LLL, and NNN∗ we calculate the

tendency of the model for various a. In particular, we consider the following

1.) Let a = 0. Then (E.6) reduces to

dal
dt

= Fl . (E.7)

2.) Consider two principle component vectors a1 = δmiei and a2 = 2δmiei, in-

dicated by the superscript. Inserting both into (E.6) yields two equations

da1
l

dt
= Fl + LLLlm +NNN∗lmm (E.8a)

da2
l

dt
= Fl + 2LLLlm + 4NNN∗lmm . (E.8b)

From this we obtain, after some algebra,

LLLlm =
1

2

[
4

da1
l

dt
− da2

l

dt
− 3Fl

]
(E.9a)

NNN∗lmm =
da1

l

dt
− Fl − LLLlm . (E.9b)

3.) Consider an arbitrary vector with a 6= 0. Then results from (E.6)

dal
dt

= Fl + LLLlmam + LLLlnan +NNN∗lmmamam +NNN∗lnnanan

+NNN∗lmnaman +NNN∗lmnanam (E.10)

= Fl + LLLlmam + LLLlnan +NNN∗lmmamam +NNN∗lnnanan

+ (NNN∗lmn +NNN∗lnm) aman , (E.11)
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because of symmetry we have

NNN∗lmnaman = NNN∗lnmanam . (E.12)

Let a = em + 2en. Then follows from (E.11)

NNNlmn =
1

2

[
dal
dt
− Fl − LLLlm − 2LLLln −NNN∗lmm − 4NNN∗lnn

]
, (E.13)

where

NNNlmn =


0, m > n

NNN∗lmm, m = n

NNN∗lmn +NNN∗lnm, else.

(E.14)
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