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Abstract

The brain is a large complex system which is remarkably good at maintaining
stability under a wide range of input patterns and intensities. In addition,
such a stable dynamical state is able to sustain essential functions, includ-
ing the encoding of information about the external environment and storing
memories. In order to succeed in these challenging tasks, neural circuits rely
on a variety of plasticity mechanisms that act as self-organizational rules
and regulate their dynamics. Based on toy models of self-organized critical-
ity, this stable state has been proposed to be a phase transition point, poised
between distinct types of unhealthy dynamics, in what has become known as
the critical brain hypothesis. It is not yet known, however, if and how self-
organization could drive biological neural networks towards a critical state
while maintaining or improving their learning and memory functions.

Here, we investigate the emergence of criticality signatures in the form
of neuronal avalanches due to self-organizational plasticity rules in a recur-
rent neural network. We show that power-law distributions of events, widely
observed in experiments, arise from a combination of biologically inspired
synaptic and homeostatic plasticity but are highly dependent on the ex-
ternal drive. Additionally, we describe how learning abilities and fading
memory emerge and are improved by the same self-organizational processes.
We finally propose an application of these enhanced functions, focusing on
sequence and simple language learning tasks.

Taken together, our results suggest that the same self-organizational pro-
cesses can be responsible for improving the brain’s spatio-temporal learning
abilities and memory capacity while also giving rise to criticality signatures
under particular input conditions, thus proposing a novel link between such
abilities and neuronal avalanches. Although criticality was not verified, the
detailed study of self-organization towards critical dynamics further eluci-
dates its potential emergence and functions in the brain.
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Kurze Zusammenfassung

Obwohl das Gehirn diversen dufleren Reizen in verschiedensten Intensitédten
ausgesetzt ist, zeigt es als komplexes dynamisches System eine bemerkenswer-
te Stabilitédt. Solche stabilen dynamischen Zustédnde erlauben die Aufrechter-
haltung essenzieller Funktionen, insbesondere das Speichern von Erinnerun-
gen oder die Kodierung der externen Welt in neuronalen Aktivitdtsmustern.
Um diese anspruchsvollen Aufgaben zu bewéltigen, sind neuronale Schaltkrei-
se auf verschiedene Plastizitdtsmechanismen angewiesen, welche als selbst-
organisierende Regeln die Netzwerkdynamik regulieren. Die Hypothese vom
Gehirn als System am kritischen Punkt schlidgt ausgehend von vereinfachten
Modellen der selbst-organisierten Kritikalitét vor, dass dieser stabile Zustand
ein Phaseniibergang zwischen verschiedenen Arten anormaler beziehungswei-
se ungesunder Dynamik ist. Jedoch ist noch unklar, ob und wie biologische
neuronale Netzwerke durch Selbst-Organisation zu einem kritischen Punkt
gelangen, wahrend ihre Lern- und Gedéchtnisfunktionen aufrechterhalten
oder verbessert werden.

In dieser Arbeit untersuchen wir die Entstehung von Anzeichen fiir Kri-
tikalitéit in Form von neuronalen Aktivitdtslawinen, die durch selbst-organi-
sierende Plastizitdatsregeln in rekurrent verbundenen neuronalen Netzwerken
auftreten. Wir zeigen, dass die experimentell beobachtbare Potenzgesetz-
Verteilung der Aktivitédtslawinen aus einer Kombination von biologisch in-
spirierten synaptischen und homoostatischen Plastizitétsregeln entstehen,
aber stark von externem Input abhéngig sind. Zusétzlich beschreiben wir,
wie die Fahigkeit zu Lernen und zu Vergessen durch die gleichen selbst-
organisierenden Prozesse sowohl entstehen als auch sich verbessern kénnen.
Abschlieflend zeigen wir mogliche Anwendungen dieser verbesserten Funk-
tionen auf, mit einem Fokus auf dem Lernen von Sequenzen sowie einfachen
Sprach-Lernaufgauben.

Alles in allem legen unsere Ergebnisse nahe, dass die gleichen selbst-
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X KURZE ZUSAMMENFASSUNG

organisierenden Prozesse sowohl fiir die Verbesserung von raumlich-zeitlich
abhéngigem Lernen als auch fiir die Gedéchtniskapazitit verantwortlich sind.
Gleichzeitig rufen diese Prozesse Anzeichen fiir Kritikalitéit unter bestimmten
Bedingungen fiir den Input hervor und regen eine neue Verkniipfung dieser
Féahigkeiten des Gehirns mit neuronalen Aktivitéitslawinen an. Obwohl diese
Arbeit keine Kritikalitét im Gehirn nachweisen kann, verdeutlicht die detail-
lierte Untersuchung der Selbstorganisation zur Kritikalitdt ihr potenzielles
Auftreten und ihre Funktionen im Gehirn.



Zusammenfassung!

Selbstorganisation, Kritikalitdt und das Gehirn

Eines der anspruchvollsten Probleme der modernen Wissenschaft ist, die
Funktionsweise des Gehirns zu verstehen. Als komplexes System aus Hun-
derten von Milliarden nichtlinearer Informationsverarbeitungseinheiten, die
durch Hunderte von Billionen Synapsen miteinander verbunden sind, dhnelt
die kollektive Dynamik des Gehirns vielen klassischen Systemen der statis-
tischen Physik. Dariiber hinaus passt sich dieses enorme System sténdig
dynamisch an, wodurch ein grofles Repertoire an rdumlich-zeitlichen Akti-
vitdtsmustern offenbar wird. Man kennt mehrere Anpassungsmechanismen,
die simultan wirken und die Gehirnaktivitét regulieren, welche praktisch allen
lebenswichtigen Funktionen zugrunde liegt, von grundlegenden Muskelbewe-
gungen bis hin zu anspruchsvollen kognitiven Prozessen. Diese auftreten-
den neuronalen Phdnomene finden unabhéngig von duflerer Kontrolle statt,
dhnlich zu vielen natiirlichen Systemen, die sich allein aufgrund ihrer eigenen
Anpassungsmechanismen entwickeln. Uberraschenderweise zeigen natiirliche
Systeme, die selbst-organisierend sind, oft verschiedene Muster und zeitli-
che Strukturen, die spontan aus einfachen vordefinierten dynamischen Re-
geln entstehen. Aktivitdt scheint sich im Gehirn selbst zu organisieren, da
neuronale Aktivitdtsmuster und Synapsen viel zu zahlreich und zu variabel
scheinen, als dass sie in genetischen Anweisungen hart codiert sein kénnten.

Das Gehirn als ein kollektives Phdnomen zu untersuchen, ist ein rela-
tiv neuer Ansatz in den Neurowissenschaften, und viele Fragen sind noch
immer unbeantwortet. Eines der faszinierendsten Merkmale der Mechanis-
men der Selbstorganisation im Gehirn ist beispielsweise dessen Féhigkeit,
das Level der Gesamtaktivitdt genau zu steuern, sowie das gesamte System
unter moglicherweise stark variierender Intensitit des Eingangssignals stabil

I This abstract corresponds approximately to the German translation of Chapter 1.
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zu halten. Dieses Merkmal ist sogar noch rétselhafter, da es moglich sein
muss innerhalb eines bestimmten Gehirnzustandes verschiedenartige Infor-
mationen zu verarbeiten, einschliefflich des Lernens und Speicherns externer
Inputmuster. Basierend auf der Idee kritischer Phdnomene sowie experimen-
teller Beobachtungen von Anzeichen fiir Kritikalitéit ist kiirzlich eine Hypo-
these vorgeschlagen worden, nach der der dynamische Zustand, in dem sich
ein gesundes Gehirn befindet, tatséchlich ein kritischer Punkt ist, der sich am
Ubergang zwischen einer unterkritischen und einer iiberkritischen Phase be-
findet. Diese Hypothese ist jedoch immer noch umstritten, da Kritikalitat nur
indirekt in biologischen neuronalen Netzwerken nachgewiesen werden kann.
Dariiber hinaus gibt es mehrere experimentelle und theoretische Argumente,
die die potenziellen funktionellen Rollen von Kritikalitdt unterstiitzen oder
unterminieren.

Hier untersuchen wir, wie Anzeichen fiir Kritikalitét aufgrund der durch
Plastizitéat gesteuerten Selbstorganisation in neuronalen Schaltkreisen entste-
hen, und schlagen neuartige Beziehungen zwischen ihrem Auftreten und der
Lern- und Speicherkapazitit eines Netzwerks vor. Dazu verwenden wir ein
selbst-organisierendes, rekurrentes neuronales Netzwerkmodell, das rdaumlich-
zeitliches Lernen durch die Nutzung biologisch inspirierter Plastizitdtsmecha-
nismen ermoglicht. Wir beschreiben die notwendigen Bedingungen fiir die
Aufrechterhaltung dieser Anzeichen in Form experimentell beobachteter la-
winenartiger neuronaler Aktivitdtsmuster und zeigen, dass sie aus denselben
Anpassungsmechanismen resultieren, die das Lernen und das Gedéchtnis ver-
bessern. Dies deutet darauf hin, dass der dynamische Zustand neuronaler
Schaltkreise an besondere duflere Anforderungen angepasst werden konnte
und sollte. Im Zuge des maschinellen Lernens untersuchen wir weitere An-
wendungen dieses besonders niitzlichen dynamischen Zustands fiir Sequenz-
und Sprachlernen. Abschlieend schlagen wir vor, dass die gleiche Kombi-
nation von Plastizitdtsmechanismen, die fiir die Gehirnfunktionen auf hoher
Ebene verantwortlich ist, eine wesentliche Rolle darin spielt neuronale Schalt-
kreise hin zu oder weg von einem kritischen Zustand einzustellen.

Anzeichen fiir Kritikalitit resultieren aus plastizitéitsges-
triebener Selbstorganisation

Im ersten Teil dieser Dissertation wird gezeigt, dass experimentell beobacht-
bare Anzeichen fiir Kritikalitdt, wie etwa nach einem Potenzgesetz verteilte
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Aktivitatsbursts, auch ,neuronale Lawinen® genannt, in der Aktivitdt von
selbstorganisierten rekurrenten neuronalen Netzwerken zu finden sind. Durch
die Wirkung von synaptischer Plastizitét, gehoren diese anpassungsfihigen
Netzwerke wahrscheinlich zu einer anderen Universalitdatsklasse als stochas-
tische Verzweigungsprozesse, die haufig zur Veranschaulichung von neurona-
len Schaltkreisen eingesetzt werden. Es wird ausgefiihrt, dass das verwen-
dete rekurrente neuronale Netzwerk deshalb nicht nur nicht-triviale Akti-
vitdtsmuster aufweist, sondern auch keine Trennung von Input- und inter-
nen Zeitskalen besitzt, was die Beobachtung von kleineren Potenzgesetz-
Exponenten erklart. Auflerdem wird gezeigt, dass eine Kombination von
Hebb’scher und homdoostatischer Plastizitat verantwortlich dafiir ist, das Netz-
werk in einen Zustand zu lenken, in dem Anzeichen fiir Kritikalitit erschei-
nen, diese Kombination jedoch nicht fiir ihre Aufrechterhaltung im Falle
spontaner Aktivitdt benotigt wird.

Evozierte Aktivitat verkompliziert den Sachverhalt. Der Noise-Pegel an
neuronalen Membranen bestimmt den dynamischen Zustand des Netzwerks.
Dies deutet darauf hin, dass ein Phaseniibergang von einem scheinbar su-
perkritischen zu einem rein stochastischem Zustand stattfindet. Weiterhin
tragt unstrukturierter Input dazu bei, dass Aktivitdtsmuster in einer kurzen
Ubergangsperiode keine Potenzgesetz- Verteilung mehr aufweisen, was jedoch
durch die Wirkung von Plastizitit wiederhergestellt wird. Dies verlauft ana-
log zu experimentellen Beobachtungen. Strukturierter Input, wie in einfa-
chen Lernaufgaben, sorgt dafiir, dass das Netzwerk in einen Zustand versetzt
wird, wo keine Anzeichen fiir Kritikalitdt zu finden sind. Diese Ergebnis-
se des Modells kénnen dhnlich auch experimentell nachgewiesen werden: in
vivo Aufnahmen von neuronalen Aktionspotentialen zeigen einen leicht sub-
kritischen Zustand, wiahrend Anzeichen fiir Kritikalitét in vitro beobachtet
werden. Aus der Perspektive des Gehirns ist so eine Adaption an externe Vor-
aussetzungen von extremer Bedeutung fiir gesunde dynamische Zusténde, da
superkritische Zusténde mit pathologischen Verhaltensmustern einhergehen.
Die Ergebnisse zeigen auf, wie eine Kombination von biologisch inspirier-
ten Plastizitétsreglen diese beiden Phénomene erklaren kann, wéhrend diese
gleichzeitig essentiellen Gehirnfunktionen zugrunde liegen, wie z.B. Lernen
und Gedéchtnis.
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Lernen und Gedachtnis in der Nahe kritischer Dynamik

Die funktionalen Aufgaben kritischer Hirndynamiken sind nach wie vor Gegen-
stand aktueller Forschung und auch der Schwerpunkt im zweiten Teil dieser
Dissertation. Zahlreiche theoretische Studien haben gezeigt, dass die Infor-
mationsverarbeitungsleistung in Systemen maximal ist, die in einen kritis-
chen Zustand eingestellt sind. Zu dieser Leistung gehoren die Empfindlichkeit
fiir unterschiedliche Eingangssignale, die Informationsiibertragung und die
Speicherkapazitat von Signalmustern. Es ist nicht tiberraschend, dass es ins-
besondere in adaptiven Systemen sehr herausfordernd ist, eine Verbindung
zwischen Kritikalitdt, den Anzeichen fiir Kritikalitat und hohen kognitiven
Funktionen wie Lernen und Gedéchtnis zu ziehen. Auf der theoretischen
Seite erfordert Lernen von Aufgaben typischerweise, dass das Inputsignal
eine bestimmte Starke aufweist und die Signalmuster sich nicht einfach von
der Dynamik des Modells entkoppeln lassen, was zu getriebenen dynamis-
chen Zustanden fiihrt. Auf der experimentellen Seite verlangt das Messen
,heuronaler Lawinen “ lange Aufnahmen neuronaler Aktivitat um hinreichend
viele Ereignisse zu detektieren, wahrend ein dynamischer Zustand sich schnell
durch verschiedene Plastizitatsmechanismen verdndern kann. Des Weiteren
wird die Sache zusatzlich dadurch verkompliziert, dass kritische Zustiande
in zwei unterschiedlichen Systemen auftreten, namlich in selbstorganisierten
kritischen Systemen und an Phaseniibergéingen von geordneten zu chaotis-
chen Dynamiken. Und beide “Definitionen” treten im Allgemeinen, nicht
gleichzeitig auf. Aus diesen Griinden werden Verbindungen zwischen Kri-
tikalitdt und Gehirnfunktionen normalerweise nur indirekt durch Anzeichen
fiir Kritikalitat suggeriert und es wurde bisher keine formale Theorie entwick-
elt.

Hier zeigen wir zunachst, dass das strukturierte Eingangssignal einer zu
lernenden Aufgabe, Anzeichen fiir Kritikalidt, welche normalerweise in spon-
taner Aktivitdt von Netzwerken auftreten, zerstort. Somit sind Anzeichen
fiir Kritikalitdt beim Lernen einer Aufgabe abwesend, was eine interessante
Parallele zu in-vivo Aktivitdt bedeutet. Wichtig ist dabei hervorzuheben,
dass die von Plastizitat getriebenen Mechanismen der Selbstorganisation die
Befahigung des dynamischen Netzwerks zum Lernen von raumlich-zeitlichen
Mustern, im Vergleich zu statischen Netzwerken, verbessert. Wir zeigen
zusatzlich, dass unser Modell eine verbesserte Gedachtniskapazitat aufweist,
d.h. dass das Gedéachtnis langsamer nachlasst, da das Modell auch temporare
Signalmuster nach langen Verzogerungen wieder aufrufen kann. Dies ist ein
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Hinweis darauf, dass die Netzwerkdynamiken nach der Selbstorganisation
nahezu kritisch sind, da wir eine logarithmische Skalierung der Gedécht-
niskapazitat als Funktion der Netzwerkgrofie beobachtet haben. Solch eine
Skalierung ist maximal und es ist bekannt, dass sie nur in rekurrenten Netzw-
erken oder Reservoir-Systemen auftritt, welche am Ubergang von geordneter
zu chaotischer Dynamik operieren. AbschlieSend lassen diese Resultate da-
rauf schlieffen, dass der dynamische Zustand von neuronalen Schaltkreisen
an die Aufgabenanforderungen angepasst werden sollte, um sich in bes-
timmten Funktionen hervorzutun. Obwohl es nicht erforderlich ist, treten
in manchen jener Zustdnde Anzeichen fir Kritikalitdt auf, da eine kritis-
che Dynamik fiir die Informationsverarbeitung vorteilhaft ist, wahrend diese
scheinbar unkorrelierten Phénomene durch Selbstorganisation aus den selben
Plastizitatsmechanismen entstehen konnen.

Satzbildung und grundlegende Sprachverarbeitung mit
selbst-organisierenden rekurrenten Netzwerken

Im letzten Teil dieser Arbeit nutzen wir die kritischen Eigenschaften nach-
lassender Gedéchtniskapazitit von rekurrenten neuronalen Netzwerken, die
durch Selbstorganisation entstehen, und wenden uns dem maschinellen Ler-
nen zu, indem wir Netzwerke eine einfache Grammatik lernen lassen. Wir
zeigen, dass sogar relativ kleine Netzwerke, bestehend aus Hunderten von
Neuronen, nicht nur in der Lage sind, kiinstlich erzeugte Séitze aus einem
kiinstlichen Worterbuch auf der Ebene von einzelnen Zeichen zu lernen, son-
dern auch neue, korrekte Kombinationen von Woértern zu generieren, ob-
wohl es sich um ein deterministisches System handelt. Trotzt der Tatsache,
dass dies eine leichte Aufgabe fiir moderne Deep Learning Ansétze ist, schla-
gen wir vor, dass biologisch inspirierte Selbstorganisation Einblicke geben
kann, wie Lernregeln, die auf der Plastizitdt des Gehirns basieren, die gene-
relle Architektur solcher rekurrenter Netze verbessern konnen, und — was
vielleicht noch interressanter ist — wie solche Prozesse in sich entwickeln-
den neuronalen Schaltkreisen ablaufen konnten. Durch letzteres motiviert,
erforschen wir eine etwas anspruchsvollere Sprachgenerierungsaufgabe, ba-
sierend auf Sprachtranskripten von echten Kindern, und beschreiben wie
selbst-organisierende neuronale Netze im Vergleich mit einfachen, zufillig
generierten Deep Learning Modellen abschneiden.
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Diskussion

In dieser Arbeit zeigen wir, auf welche Art und Weise von Plastizitit getrie-
bene Selbstorganisation vielen simultanen Ph&nomenen zugrunde liegt, wie
unter anderen dem Auftreten neuronaler Lawinen, rdumlich-zeitlichem Ler-
nen und Verbesserungen des nachlassenden Erinnerungsvermogens neurona-
ler Netze. Insbesondere zeigen wir, dass in Experimenten héufig beobachtete
Anzeichen fiir Kritikalitat in der spontanen Aktivitat eines Modells auftre-
ten, das urspriinglich zum Erlernen von Sequence-Learning-Tasks konzipiert
war. Diese benotigen allerdings einen bestimmten Noise-Pegel an der neu-
ronalen Membran. Die Anzeichen fiir Kritikalitdt hidngen nichtsdestotrotz
stark vom externen Input ab: widhrend unstrukturierter externer Input sie
nur voriibergehend unterbricht, schaltet strukturierter Input sie komplett
ab. Diese Erkenntnisse zeigen eine direkte Parallele zu neuronaler Aktivitat
in-vivo und in-vitro, die auch sowohl Zeichen eines getriebenen subkritischen
als auch eines kritischen Zustands aufweist.

Unsere Untersuchung ist motiviert von der Hypothese, dass das Gehirn
ein kritisches System ist, welches sich selbst hin zu einem Phaseniibergang
zweiter Ordnung organisiert. Aber unsere Resultate sind nicht ausreichend
um zu beweisen, dass entweder unser Netzwerkmodell oder das Gehirn sich in
einem kritischen Zustand befindet, sondern deuten vielmehr darauf hin, dass
Selbstorganisation schnell auf den dynamischen Zustand reagiert, der vom
externen Input abhéngt. Eine solche Anpassung kénnte besonders fiir neu-
ronale Strukturen von Vorteil sein, da sie den verbesserten Informationsfluss
im kritischen Bereich ausnutzen kénnten, wiahrend sie eine stabile Dynamik
fiir eine grofle Bandbreite an Input-Intensititen aufrecht erhalten. Wir heben
hervor, dass die hier beschriebene Selbstorganisation zu einer logarithmischen
Skalierung des nachlassenden Erinnerungsvermégens fiihrt, was bisher nur in
Modellen am Rande des Chaos beobachtet wurde. Es ist derzeit unbekannt,
in was fiir einem Zusammenhang dieser Ubergangspunkt, der auch kritisch
genannt wird, zu Anzeichen fiir Kritikalitdt und ,,neuronalen Lawinen “ steht.
Wir legen nahe, dass adaptive Systeme in der Lage sein konnten, beide ,, Ar-
ten® von Kritikalitit miteinander zu vereinen, wenn auch moglicherweise als
unterschiedliche dynamische Zusténde, und erwarten das zukiinftige Arbeit
Klarheit iiber diese formale Beziehung schaffen wird.

Die Charakterisierung von Kritikalitéit in neuronalen Netzen eroffnet neue
Perspektiven in einer Vielzahl von Gebieten. Das Versténdnis der Adapti-
on von Netzwerken an Kritikalitdt kann zu besseren Diagnosewerkzeugen
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und eventuell Behandlungsmoglichkeiten fiir Krankheiten fithren, die gemein-
hin mit nicht-kritischen Dynamiken assoziiert werden, wie z.B. Epilepsie.
Zusétzlich entwickeln und verbessern sich viele Gehirnfunktionen, einschlie3-
lich des Lernens und des Erinnerungsvermogens, auf der Grundlage derselben
Mechanismen, die fiir die Aufrechterhaltung der Anzeichen fiir Kritikalitat
zustandig sind. Eine sorgfiltige Beschreibung der notwendigen Bedingungen
fiir deren Auftreten kann zu Erkenntnissen iiber die Entstehung dieser Funk-
tionen im Gehirn fithren und moglicherweise die zugrunde liegenden Mecha-
nismen erkldren. Schliellich besitzen auf Kritikalitdt eingestellte Modelle be-
eindruckende Fahigkeiten Informationen zu verarbeiten, aber die Forschung
iiber die Selbstorganisation hin zur Kritikalitdt in neuronalen Netzen steckt
noch in den Kinderschuhen. Ein besseres Verstédndnis ihrer Rolle in Modellen
von Gehirn-Strukturen kénnte letztendlich zu effizienteren Architekturen fiir
maschinelle Lernverfahren fiihren. Folglich hoffen wir, dass diese Arbeit den
Weg fiir zukiinftige Studien zur Rolle von Kritikalitdat und Selbstorganisation
in unterschiedlichen Arten neuronaler Netze bereitet.
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Chapter 1

A brief introduction

If in physics there’s something you don’t understand, you can
always hide behind the uncharted depths of nature. You can
always blame God. You didn’t make it so complex yourself. But
if your program doesn’t work, there is no one to hide behind.
You cannot hide behind an obstinate nature. If it doesn’t work,
you’ve messed up.

Edsger W. Dijkstra

1.1 Self-organization, criticality, and the brain

Understanding how the brain works is one of the most challenging problems
in modern science. As a complex system composed of hundreds of billions of
non-linear information processing units, connected by hundreds of trillions
of synapses, the brain’s collective dynamics resemble many classic systems
from statistical physics. In addition, this enormous system is highly dynami-
cal and constantly adapts itself revealing a large repertoire of spatio-temporal
activity patterns, which are the basis for adaptive behaviour. Multiple adap-
tation mechanisms are known to act simultaneously and regulate synapses
and overall brain activity, underlying virtually all vital functions, from basic
muscle movement to high level cognitive processes. These emergent neu-
ral phenomena take place independently of external control, similarly to
many other widely studied natural systems which evolve solely due to their
own adaptive mechanisms. Surprisingly, natural self-organization phenom-
ena typically show various patterns and temporal structures, frequently with
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apparent purpose, that arise spontaneously from simple predefined dynam-
ical rules. This is seemingly what occurs in the brain, as neuronal firing
patterns and synapses are far too numerous and variable to be hard coded
into genetic instructions.

Studying the brain as a collective phenomenon is a relatively new ap-
proach in theoretical neuroscience, and many questions still remain to be
answered. For instance, one of the most intriguing features of the brain’s
self-organizational mechanisms is their ability to precisely control the overall
activity level and keep the whole system stable under a wide range of different
input intensities. This feature is even more puzzling given that any partic-
ular operational state must maintain, or even improve, various information
processing capacities, including learning and storing external input patterns.
Based on the notion of critical phenomena and experimental observations of
criticality signatures, a recent hypothesis proposed that the dynamical state
in which a healthy brain operates is, in fact, a critical point, poised at the
transition between a subcritical and a supercritical phase. However, this
critical brain hypothesis is still controversial since criticality can only, if at
all, be detected indirectly in biological neural circuits, and multiple experi-
mental and theoretical arguments have emerged to support or undermine its
potential functional roles.

1.1.1 Research outline

In this thesis, we investigate how criticality signatures emerge due to plastic-
ity driven self-organization in neural circuits and propose novel links between
their occurrence and a network’s learning and memory capacities. To do so,
we employ a self-organizing recurrent neural network model which is capa-
ble of spatio-temporal learning by taking advantage of biologically inspired
plasticity mechanisms. We describe the necessary conditions for the mainte-
nance of these signatures, in the form of experimentally observed neuronal
avalanches, and show that they result from the same adaptation mechanisms
that improve learning and memory, what suggests that the dynamical state
of neural circuits could and should be adapted to particular external require-
ments. In a turn towards machine learning, we further explore applications of
this particularly useful dynamical state for sequence and language learning.
Finally, we conclude by proposing that the same combination of plasticity
mechanisms responsible for high level brain functions plays an essential role
in tuning neural circuits towards and also away from a critical state.
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1.2 Criticality signatures arise from plastic-
ity driven self-organization

In the first part of this thesis (Del Papa et al., 2017), we show that experimen-
tally observed criticality signatures, power-law distributed bursts of activity,
or neuronal avalanches, occur in the activity of self-organizing recurrent neu-
ral networks. Due to the action of synaptic and intrinsic plasticity, these
adaptive networks likely belong to a universality class distinct from stochas-
tic branching processes, which are a common toy model used in analogy to
neural circuits. As a consequence, our model not only displays non-trivial
dynamics but also lacks any separation of time scales between input and
internal dynamics, which explains the smaller power-law exponents we ob-
serve. Nonetheless, we show that a combination of Hebbian and homeostatic
plasticity is responsible for driving the network towards a state in which crit-
icality signatures appear, but is not required for their maintenance in the
case of spontaneous activity.

The case of evoked activity tells a more complicated story. First, the
level of neuronal membrane noise controls the network’s dynamical state,
suggesting that a phase transition from a seemingly supercritical to a purely
stochastic state takes place. Second, unstructured input breaks down the
power-laws during a short transient period, but plasticity quickly brings them
back, mimicking experiments. Third, structured input of simple learning
tasks is enough to drive the model to a distinct regime where no signs of crit-
icality appear. These findings, interestingly, have experimental correlates:
in-vivo spike recordings indeed show a driven, slightly subcritical regime,
while criticality signatures are observed in in-vitro setups. From the brain’s
perspective, such adaptation to external requirements could be extremely im-
portant for healthy dynamics, as signs of supercriticality are known to occur
during epileptic regimes. Our results suggest how a combination of biolog-
ically inspired plasticity rules is able to account for both phenomena while
also underlying essential brain functions, including learning and memory.
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1.3 Learning and memory near critical dy-
namics

The functional roles of critical brain dynamics are still subject of ongoing
research, and also our focus in the second part of this thesis (Del Papa et al.,
2017, 2019). Multiple theoretical studies have shown that information pro-
cessing capacities are maximal in systems tuned to criticality, including their
sensitivity to various inputs, information transmission, and pattern storage
capacity. Not surprisingly, linking criticality and its signatures to high level
cognitive functions such as learning and memory is much more challeng-
ing, especially in adaptive systems. On the theoretical side, learning tasks
typically require particular input levels and patterns that are not easily dis-
entangled from a model’s dynamics, resulting in driven dynamical states.
On the experimental side, the measurement of neuronal avalanches demand
long recordings of neural activity in order to detect a sufficient number of
events, while a dynamical state can be quickly modified by various plasticity
mechanisms. To make matters more complicated, critical points commonly
appear in two different types of systems — self-organized criticality phe-
nomena and phase transitions between ordered and chaotic dynamics — and
both “definitions” do not co-occur in general. For these reasons, links be-
tween criticality and brain functions are usually suggested only by indirect
indications of criticality, and no formal theory has been developed so far.
Here, we first show that the structured input of learning tasks breaks
down the criticality signatures otherwise found in a network’s spontaneous
activity. Thus, when performing learning tasks, signatures of criticality
are absent, reinforcing the interesting parallel with in-vivo activity. Impor-
tantly, the same plasticity driven self-organizing mechanisms improve spatio-
temporal learning when compared to static networks. We additionally show
that our model, when poised at a phase transition state where neuronal
avalanches occur, has an improved fading memory capacity and is able to
recall temporal inputs after longer delays. This points to near critical dy-
namics after self-organization, since we also observed a logarithmic scaling
of the memory capacity as a function of the network size. Such scaling is
maximal and is known to occur only for recurrent networks or reservoirs op-
erating at the transition between ordered and chaotic dynamics, but may
also emerge after plasticity actions. Finally, these results imply that the
dynamical state of brain circuits or neural networks should be adapted to
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task requirements in order to excel at particular functions. Although not a
requirement, criticality signatures may appear in some of those states, since
critical dynamics is beneficial for information processing, while these seem-
ingly uncorrelated phenomena can result from self-organization due to the
same plasticity mechanisms.

1.4 Sentence generation and basic language
processing with self-organizing recurrent
neural networks

In the last part of this work, we take advantage of the critical-like fading
memory scaling of recurrent neural networks after self-organization and turn
towards machine learning, by exploring their applications for simple gram-
mar learning tasks. We show that even relatively small networks of hundreds
of neurons are not only able to learn artificially created dictionaries of sen-
tences at the character level, but also generate new, correct combinations of
words, despite being deterministic systems. Although this is an easy task
for modern deep learning frameworks, we suggest that biologically inspired
self-organization might give insights on how learning rules based on brain
plasticity can improve general recurrent network architectures and, perhaps
more interestingly, on how this process might take place in developing neural
circuits. Motivated by the latter, we also explore a more challenging language
generation task based on speech transcripts from real infant -directed lan-
guage, and describe how self-organizing neural networks perform compared
to simple deep learning models.

1.5 Discussion

In this work, we show how self-organization due to biologically inspired plas-
ticity underlies a combination of phenomena, including the occurrence of
neuronal avalanches, spatio-temporal learning, and improvements in the fad-
ing memory of recurrent neural networks. In particular, we show that the
most common experimentally measurable criticality signatures also occur in
the spontaneous activity of a model that was initially conceived for sequence
learning tasks, but require a specific neuronal membrane noise level to be
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maintained. These signatures, nonetheless, depend heavily on the external
drive: while unstructured external input only transiently breaks them down,
structured input of simple learning tasks abolish them completely. These
findings have a direct parallel with spiking activity in-vivo and in-vitro, which
show signs of a driven subcritical and a critical state, respectively.

Our investigation is partially motivated by the critical brain hypothe-
sis, which states that the brain is a critical system that self-organizes to a
second-order phase transition point, poised between subcritical and super-
critical dynamics. However, our results are insufficient to prove that either
our network model or the brain is indeed at a critical state, and instead
suggest that self-organization quickly acts on the dynamical state depend-
ing on the external input condition. Such adaptation could be particularly
beneficial for neural circuits, as they could take advantage of the improved
information processing abilities of criticality while maintaining healthy and
stable dynamics for a range of input intensities and patterns. Importantly,
we highlight that self-organization as described here results in a logarithmic
scaling of the fading memory capacity, which was previously observed only
for models tuned to a transition point at the edge-of-chaos. It is currently
unknown how this transition point, also referred to as critical, generally re-
lates to criticality signatures in the form of neuronal avalanches. We suggest
that adaptive systems might be able to combine both “types” of criticality,
but possibly as different dynamical states, and expect that future work will
clarify the formal relationship between these phenomena.

The characterization of criticality in neural circuits opens new perspec-
tives in many areas. Understanding how networks adapt towards criticality
might lead to better diagnostic tools and eventual treatments for diseases
whose symptoms are associated with deviations from a critical dynamics,
such as epilepsy. In addition, multiple brain functions, including learning and
memory, seem to emerge and improve based on same mechanisms responsi-
ble for self-organization and maintenance of criticality signatures. A careful
description of the necessary conditions for their occurrence can lead to in-
sights into the emergence of these functions in the brain at the network level,
and potentially shed light on their underlying mechanisms. Finally, models
tuned to criticality have repeatedly proved to possess powerful information
processing abilities, but the study of self-organization towards criticality in
neural networks is still in its infancy. We believe that a better understanding
of its role in simple models of brain circuits might eventually lead to new,
more efficient architectures in subareas of machine learning. Thus, we hope
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this work will pave the way for further studies on the roles of criticality and
self-organization in various types of neural networks.
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Chapter 2

Self-organization and
criticality: from piles of sand to
neural circuits

In such a product of nature every part not only exists by means of
the other parts, but is thought as existing for the sake of the others
and the whole, that is as an (organic) instrument. Thus, however, it
might be an artificial instrument, and so might be represented only
as a purpose that is possible in general; but also its parts are all
organs reciprocally producing each other. This can never be the case
with artificial instruments, but only with nature which supplies all
the material for instruments (even for those of art). Only a product
of such a kind can be called a natural purpose, and this because it is
an organized and self-organizing being.

Immanuel Kant

Patterns can be observed in virtually all natural systems composed of
multiple entities. In fact, the attempted description of emergent order in
nature is arguably the inception of many modern scientific areas of investi-
gation, including both physics and neuroscience. Rather surprisingly, spatio
and temporal structures sometimes occur spontaneously and seemingly with
purpose, as they result in essential functions or properties for a given col-
lective system. In the natural sciences, such broad process has been named
self-organization (Haken, 2008), since it develops in an unguided and unsu-
pervised manner, and many studies have focused on finding general princi-
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ples that govern all different observed self-organizing phenomena. After all,
if generic principles of self-organization exist and can be applied to varied
distinct systems, independently of their structure or particular dynamics,
the path towards a unifying theory of everything could be at the horizon.
In reality, however, general self-organization rules have been found only for
specific classes of systems, but have undoubtedly helped their development
towards new directions. In particular, one of the most debated occurrences of
self-organization comes from neuroscience: do complex neural systems obey
general rules or do particular individual mechanisms dictate their behavior?
Do distinct “neural” self-organizational dynamics exist? And if so, do they
always tend to converge towards some special states? In this chapter, we pro-
vide an overview of self-organization in nature and physical systems, going
from toy models to biological neural circuits, in order to lay the foundations
for further investigation of self-organizing mechanisms in neural networks.
We discuss the most popular hypothesis on large scale self-organization in
the brain: the critical brain hypothesis. The hypothesis, which has been first
proposed relatively recently by Beggs and Plenz (2003), has become the fo-
cus of many studies and shed light on possible desirable dynamical states
in which the brain could, in principle, operate. We finally discuss potential
implications of these self-organization mechanisms, bringing forward the mo-
tivation for our study of criticality signatures in biologically inspired neural
networks.

2.1 Self-organization and phase transitions in
nature

From the curious geometric patterns in snow crystals to the self-dynamics
of formation of public opinion, studies have shown that complex systems
self-organize following various rules, depending on their boundaries, initial
conditions, and parameter values (Haken, 2008). These systems’ behaviors
typically emerge as a collective function of simpler, mostly local interaction
processes without any external guidance!. The result of a self-organization
process can be illustrated, for example, by complex spatial patterns observed

IMore precisely, this is a related process called emergence, and although similar, it is
not equivalent to self-organization, as systems can self-organize due to internal mechanisms
into states in which no collective property emerges (Crommelinck et al., 2006).
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in lizard skins, beach sand, or even in brain activity (Fig. 2.1).

v.‘)

X e

Visual Auditory Sensorimotor Default mode

:@

(

Control Dorsal attention

Figure 2.1: Examples of self-organization and emergence in diverse
natural systems. (A) Color pattern emergence in adult ocellated lizards
(inset shows a juvenile lizard, for comparison). The emergence occurs mostly
due to local interaction rules among skin cells, resembling a cellular automa-
ton. Figure reproduced from Manukyan et al. (2017) with permission. (B)
Sand dune ripples formed by wind action in a desert, with wavelengths typi-
cally between 10 and 15 cm and heights of a few mm. Figure reproduced with
permission from Yizhaq et al. (2004). (C) Large-scale emergent brain net-
works. The top sequence of images shows increases (red) and decreases (blue)
compared to the mean fMRI blood-oxygenation level dependent (BOLD) ac-
tivity during consecutive resting brain recordings (2.5 seconds per image).
Bottom images are the results of linear correlations between the activity of
small regions within the networks of interest and the rest of the brain, corre-
sponding to six main systems: visual, auditory, sensorimotor, default mode,
executive control and dorsal attention. Figure reproduced from Chialvo
(2010) with permission.
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The development of complex patterns requires, naturally, a minimal set of
interaction rules among the system’s components, which is possibly the main
reason why computational toy models have become popular to explain and
reproduce self-organization. Generally, local self-enhancement (i.e., positive
feedback) and long-range inhibition (i.e., competition for limited resources)
have been proposed to be driving forces behind the generation of organized
regions and boundaries in many biological systems (Meinhardt, 2008). Some
models, additionally, require a specific set of parameters to reproduce par-
ticular self-organization patterns and have distinct structure and properties,
or phases, depending on their tuning. The transition between phases, which
modifies the system’s collective behavior, can happen quite suddenly and be
the result of critical phenomena.

2.1.1 A very brief introduction to critical phenomena

Critical phenomena, although not exclusively, are commonly the result of
second order phase transitions in equilibrium, when the second derivative of
an order parameter is discontinuous (in contrast to first order phase tran-
sitions, in which the first derivative is discontinuous). At critical points,
quantities such as the correlation length between units are known to diverge,
while the overall dynamics slows down and scale-free properties are known
to appear (Scheffer et al., 2009). Perhaps the most famous and seminal ex-
ample of such transitions is the Ising model (for ferromagnetic-paramagnetic
transitions). This model, which by no means we aim to explain here in
mathematical detail, describes the collective behavior of classical two-state
spins, and how their local neighbor interactions result in different dynamics,
or phases, as a function of the temperature (which serves as a control param-
eter). Regarding the system state in terms of “up” and “down” spin states,
each phase follows a characteristic pattern (see Fig. 2.2), with unique dy-
namics at a critical point. First, at high temperatures, individual spin states
change continuously, almost at random, resulting in null mean magnetiza-
tion. Second, at low temperatures, the system is ordered and exhibits large
regions of spins with the same orientation, resulting in magnetization with
strong stability over time. Last, at an intermediate critical temperature, the
system exhibits distinct spatio-temporal patterns with characteristic proper-
ties, such as scale invariant fluctuations of its magnetization and power-law
distributed correlations of spins. Additionally, at this critical point, the spin
system has the highest susceptibility and a single perturbation can, with a



2.2. SELF-ORGANIZED CRITICALITY 13

given probability, be propagated and reshape the entire system switching its
magnetization direction.

These dynamical properties have analogies in virtually all critical phe-
nomena, both self-organized or externally driven. In particular, one can
easily see that properties such as maximum correlation length can be quali-
tatively associated with improvements in information transmission and that
such analogies could be also valid in neural systems. In fact, this is the ori-
gin of the critical brain hypothesis. Nonetheless, before explaining how this
hypothesis was formulated and how self-organization occurs in the brain, we
first describe a particular class of toy models that maintain a critical point
without external tuning, and that have drawn a significant amount of atten-
tion since their proposal.

Subcritical

Figure 2.2: Three phases of the 2D Ising model. Snapshots of two-state
spin configurations for three different temperatures (subcritical, critical, and
supercritical). Subcritical and supercritical temperatures result in relatively
homogeneous states, while a system at critical temperature 7, displays het-
erogeneous regions. Figure reproduced with permission from Chialvo (2007).

2.2 Self-organized criticality

As discussed previously, some natural systems spontaneously self-organize
into states that may exhibit various spatio-temporal patterns. Under certain
conditions, these self-organization states, being at equilibrium, might exhibit
similar properties to systems at second order phase transition points, thus
resulting in critical phenomena. Such special class of systems has been first
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described by Bak et al. (1987) and the phenomenon has been named Self-
Organized Criticality (SOC), as an attempt to provide unifying principles
guiding the behavior of collective systems. Although such attempt resulted
in rather bold and incorrect claims about a new universal theory of complex
behavior (Frigg, 2003), SOC has since become a description of a group of
models that relate via formal analogy due to their internal mechanisms.

Importantly, the universal behavior observed in SOC systems is the re-
sult of their diverging correlation lengths (Markovié¢ and Gros, 2014). Since
the correlation length for those systems is larger than any microscopic local
interactions, a collective behavior with scale-free properties appears. In fact,
as we will demonstrate with examples, SOC systems are not typically at an
equilibrium point, since they exchange energy (or information) continuously
with the environment (but, rather remarkably, they are conservative systems
— see Bonachela et al. (2010)), which makes them a distinct class of models
different from systems displaying “classic” critical points.

When at non-equilibrium states, SOC systems tend to not be analyt-
ically solvable, and numerical solutions are often considered on a case by
cases basis. However, those systems fall under the same universality notion
in statistical physics: systems whose large-scale properties are independent
of their particular dynamical details when near a critical point (Kadanoff,
1990). Thus, SOC systems share both scaling functions and their critical
exponents, i.e., their exponents describing physical measurable quantities as
order parameters. An immediate conclusion of such property is that simple
toy models can be used to infer many aspects of the critical behavior of real
complex systems, given that they share the same universality class. There-
fore, we continue our discussion by describing the model that introduced the
SOC nomenclature, the Bak—Tang—Wiesenfeld sandpile model.

2.2.1 The sandpile model

The classic case of SOC systems is the Bak—Tang-Wiesenfeld sandpile model
(Bak et al., 1987), also called Abelian Sandpile Model. This toy model
exemplifies a general class of self-organizing systems that evolve into a critical
point by simulating the growth of theoretical piles of sand on a finite grid,
as in a cellular automaton. Intuitively, the model starts from an empty
two-dimensional grid, on which unitary grains of sand are randomly and
consecutively dropped. When any particular grid cell has many more grains
than its nearest neighbors, the column topples, and its sand is distributed
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equally among neighboring cells. Eventually, the toppling of one column
induces the toppling of others in a chain reaction and big avalanche events
that span the entire system occur. By definition, a grain of sand that reaches
the border of the grid “falls” off the system, countering the addition of new
grains and resulting in the conservation of sand (on average). This state
is defined as SOC: self-organized in the sense that it occurs spontaneously,
without external fine tuning, and critical in the sense that local events (the
drop of a single grain of sand) may be propagated and affect the entire system
through avalanches, similar to perturbations in the Ising model. Note that
although the self-organizing nomenclature implies independence of external
influence, the addition of new grains, in fact, mimics the external drive?, a
result of the interaction with the surrounding environment.

Formally, the sandpile model can be generalized to d dimensions. Con-
sidering a grid of size L, the height z(r) of a cell at position r = (rq, 79, .., 74),
r; < L, 0 <i < L, is updated according to the rule:

2(r,t+1) = 2(r,t) + 02 (2.1)

in which 0z is the number of sand grains/energy added to the model at each
discrete update step. After the addition of each new grain, two scenarios
may occur. First, if the cell in which the grain was added satisfies the con-
dition z(t) < zr for a fixed threshold zr, nothing happens and the dynamics
continue, adding the next grain to the system. Second, if the height of the
cell exceeds its threshold, an avalanche event starts, and toppling occurs with
the following update rules:

2(r,t) < z(r,t) — zp (2.2)

z2(r+e,t) < z(r+e,t)+ Bzn (2.3)

in which zy is the number of grains that topple to the neighbor cells (|e| = 1
is a unitary vector, depending on the model’s topology in the most general
case) and [ is a transmission constant. After the first toppling, any cell
that also reaches its threshold also topples, thus creating the chain reaction.
The update step is over when z(r,t) < zr for all r, and the model dynamics
continues to the next step. Although the cell in which each grain of sand
drops can be chosen at random, depending on the variation of the model,

2The number of sand grains per cell is, roughly speaking, its local energy or stress level.
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if zg = 27 the toppling process is deterministic and the particular order
of toppling does not affect the final system configuration (thus the Abelian
model nomenclature).

Even though the sandpile model can be constructed with any given topol-
ogy, for the sake of brevity we only reproduce here the two-dimensional square
grid case. The study of sandpile structures is an interesting field of its own,
and many more realistic complex systems, including Erdés-Rényi random
graphs and small-world networks, have been shown to belong to the same
universality class as high-dimensional lattices in the thermodynamic limit
(L — o0). Different toppling rules, however, can lead to different critical ex-
ponents, see Markovi¢ and Gros (2014) and references within for an overview
and more details on the sandpile dynamics in those systems. Back to the
two dimensional case (d = 2), setting § = 1/2d assures local conservation
of grains/energy, although energy dissipation still occurs at the border (in
practice, by setting z(r) = 0 if r belongs to the system’s borders). We can set
21 = 4 (for convenience, in practice bigger values also result in SOC (Frigg,
2003)) and measure the scaling of observable quantities in numerical simula-
tions, such as the avalanche size S (number of topplings during one avalanche
— Fig. 2.3A) and the avalanche duration 7" (number of time steps until stabil-
ity is reached — Fig. 2.3B). The scaling of these observables reveals important
properties of the sandpile model and its universality class. First, a power-law
scaling means scale free behavior, i.e., the scaling of avalanche sizes and du-
rations is independent of the system size, although their exponents depend
on the particular parameters of the model. Second, the average avalanche
size (S) also follows a power-law (with positive exponent) as a function of
the avalanche duration (Fig. 2.3C), which determines the critical exponents
of the model. In fact, this scaling is a consequence of the finite size scaling of
the model, which should hold independently of the time scale (Sethna et al.,
2001). Considering a power-law scaling with exponents 7 for the avalanche

size and « for the avalanche duration, the relation -&(S)(T") = a% should
hold for some constant a. This yields (S)(T) = ST, where a = ¢=] is a

critical exponent of systems of the same universality class as the sandpile
model®. Third, a relatively small numerical simulation (on a square lattice

3In fact, this critical exponent is related to other critical exponents of the model via
renormalization theory and is commonly written as their multiplicative combination % =
ml/z- This derivation is, however, beyond our scope in this brief introduction, and a formal

derivation of the critical exponent values and their relations can be found in Sethna et al.
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Figure 2.3: Scaling in the Bak—Tang—Wiesenfeld sandpile model. (A)
Normalized avalanche size distribution for a 100 x 100 square lattice, after 10°
grains dropped on random cells. Gray points show raw numerical results and
a shows the fitted power-law exponent (via maximum likelihood estimators
— see Appendix B). (B) Normalized duration distribution for the same grid.
(C) Power-law scaling of average avalanche size (S) as a function of avalanche
duration, for the raw simulation data. (D) Snapshot of emergent symmetrical
patterns when grains are continuously dropped in the middle of the lattice.
Colors indicate the number of grains/energy in each cell. Simulation code
can be found at https://github.com/delpapa/sandpilemodel.
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of 100 x 100 cells) illustrates the distributions’ tail effect in finite systems.
Although the avalanche size and duration follow a power-law for a number
of orders of magnitude, their tails reveal biases due to finite size cut-offs and
rounding effects, requiring special fitting algorithms to avoid propagating
those biases when estimating their exponents (see Appendix B). Of course,
bigger systems yield power-laws that span more orders of magnitude, and
infinite systems display no cut-off effects. Fourth and last, depending on
the initial conditions and lattice shape/size, the sandpile model can result
in interesting symmetrical patterns (Fig. 2.3D) or fractal structure if enough
grains are dropped on the system.

Importantly, the dynamics of the sandpile model described so far relies
on an essential assumption: the separation of time scales between external
drive (the dropped grains of sand) and internal dynamics (the topplings and
avalanches). This separation means that no grains are dropped, or equiva-
lently no energy is added to the system, while its own dissipation process is
still ongoing, creating pauses between each time step. This property, which
is rather unique to toy models and absent from many real complex systems
such as living neural circuits, is essential for keeping the model at a criti-
cal point. In fact, considering the density of active states (states in which
avalanches only stop due to the dissipation at the borders) as an order pa-
rameter, it is possible to show that a second order phase transition appears
and can be tuned via a mechanism that balances external drive and dissi-
pation (Markovi¢ and Gros, 2014). Thus, while a system in which external
drive and dissipation occur separately at a phase transition point (i.e., they
are infinitely separated by construction) can always be tuned to criticality,
its scaling properties and SOC state cannot be, in principle, generalized to
other complex systems without separation of time scales.

Finally, it is important to mention that although sandpile models were
inspired by sand patterns and avalanches, they are toy models and SOC has
received much criticism regarding being a ubiquitous theory of nature (Frigg,
2003). For instance, even real piles of sand only display SOC and the afore-
mentioned scaling properties up to a certain size limit, and virtually every
property of the toy model breaks down in the limit of large real piles of
sand (Held et al., 1990). Additionally, piles of rice only show apparent SOC
and power-law distributions of avalanche sizes in the limit of elongated rice
grains, but not for round ones (Frette et al., 1996), suggesting that SOC is

(2001); Markovié¢ and Gros (2014) and references within.
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indeed dependent on the details of the system, while deviations from critical
points cannot be disregarded as experimental noise or imprecision. Instead,
those differences are rooted in the sandpile model simplicity: it does not
account for physical interactions between grains or the limited speed with
which they move or accelerate. Thus, even though we can conclude that the-
oretical piles of various grains display SOC and power-law scaling, the same
cannot be stated for experimental ones.

2.2.2 Stochastic branching processes

We continue by describing another important class of models that displays
critical behavior and has perhaps a more straightforward analogy to neural
activity: branching processes (Harris, 2002; Beggs and Plenz, 2003). For-
mally, a branching process is defined as a multiplicative Markov chain of
positive random integer values, in which a generation of active units (or
particles or neurons) at a given time step yields a new generation of active
units at the immediate posterior time step (Markovi¢ and Gros, 2014). More
specifically, a stochastic branching process (SBP), as studied by Haldeman
and Beggs (2005), describes the mapping of branching processes onto a prob-
abilistic network of simple neurons, in which each neuron ¢, when active, has
a fixed probability p;; of activating its neighbor neuron j at the subsequent
time step. The system’s order is measured via its branching parameter o,
given by:

Uz

(2.4)

oy =
ne1
in which n; is the number of active neurons at time step t. The system is
considered to be critical when it maintains its activity level over time, i.e.,
when on average 0 ~ 1. Likewise, the system is subcritical when, on av-
erage, activity dies out (o < 1) and supercritical when activity eventually
takes over all neurons (o > 1). For a network of N neurons, the branching
parameter can be estimated for each single neuron ¢ by considering the sum
of its connectivity probabilities, o; = Zfil pij- More formally, this control
parameter is the extinction probability, i.e., the probability of activity reach-
ing zero in the limit of infinity time steps. From this probability one may
estimate the Lyapunov exponents of the system, from which it can be shown
that as long as the condition Zﬁio kipi;j = 1 is satisfied for all neurons 7,
the system is critical (i.e., its Lyapunov exponents are zero) and power-law
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distributions with exponents g = —1.5 for avalanche sizes and a; = —2 for
avalanche durations appear in infinitely large systems (see Otter (1949) and
Markovi¢ and Gros (2014) for the derivation). For simplicity, following the
model by Priesemann et al. (2014), we can assume that all neurons have the
same fixed number of neighbors k, which can be randomly chosen at each
time step and activated with the same fixed probability p. This results in
a control parameter a = p X k, which is also unitary at the critical point.
Similarly to the sandpile model, branching processes yield power-law distri-
butions with finite size cut-offs and a characteristic critical exponent when
at criticality, which can be approximated by simulations of relatively small
systems (Fig. 2.4: N = 2500, k = 4, and 10° time steps). Remarkably,
even a relatively small and easy to simulate network is already capable of
approximating the theoretical critical exponents, both for the avalanche sizes
(Fig. 2.4A) and durations (Fig. 2.4B). Small deviations from criticality al-
ready result in different distributions, for which power-laws are not the best
fit. For the subcritical case, the decay is faster than a power-law, resembling
an exponential distribution. For the supercritical case, bigger avalanches ap-
pear much more frequently, and, mathematically speaking, there is a non-zero
probability of infinite duration.

Branching processes are particularly insightful in the modeling of critical-
ity in neural circuits for mostly three reasons. First, they have a straightfor-
ward analogy to biological neural networks, with neurons and transmission
probabilities that can easily be seen as simplified synapses. Second, the
simplicity of the model allows for a good understanding of the role each pa-
rameter plays in the self-organization process and how they affect the tuning
towards a critical point. Critical exponents can be identified and measured
based uniquely on the size and duration of experimental events. Last, it
is relatively easy to include interactions with the external environment, by
adding a probability of dissipation and an external drive parameter (see the
model by Priesemann et al. (2014) for an analysis of these additional param-
eters). Thus, the analogy of neural circuits as branching processes lies at the
inception of the critical brain hypothesis (Beggs and Plenz, 2003) and they
have become an important tool to study self-organization towards criticality
in the brain.
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Figure 2.4: Avalanches in stochastic branching processes. (A) Normal-
ized avalanche size distribution for a system at criticality (o = 1, power-law
exponent ag ~ 1.54) and at slightly subcritical (o = 0.98 and o = 0.90)
or supercritical (o« = 1.02 and a = 1.03) regimes. (B) Analogue distribu-
tions for avalanche duration (power-law exponent ar ~ 1.99). (C) Scaling
of the average avalanche size (S) as a function of duration (power-law with
positive exponent v &~ 1.84). (D) Sample activity distribution (number of
active units) for a system at criticality, where each avalanche is initiated im-
mediately after the previous one is over (i.e., one time step after the activity
reaches zero). Plots show stochastic branching processes with the following
parameters: N = 2500, k = 4, and 10° time steps.
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2.2.3 Other SOC models and criticality signatures

Besides sandpiles and stochastic branching processes, many other mathe-
matical and physical SOC models have been proposed. In particular, some
models are able to keep SOC properties even when some dynamical rules
are relaxed. For example, power-laws also appear for a random sandpile
model, which topples grains to other random cells instead of neighbor ones,
or some particular classes of non-conservative models?. Additionally, SOC
has been famously employed to study many distinct complex systems such
as earthquakes (Olami-Feder-Christensen model (Olami et al., 1992)), so-
lar flares (Lu and Hamilton, 1991), propagation of forest fires (Drossel and
Schwabl, 1992), and brain activity (Beggs and Plenz, 2003). Although an ex-
tensive discussion of all different model classes and their applications is out
of our scope, we briefly mention here a few interesting measurable properties
that those systems have in common, which we generally refer to as critical-
ity signatures. This concept is particularly important when comparing SOC
models to experimental systems where criticality cannot, in principle or due
to experimental limitations, be measured.

Many criticality signatures have already been mentioned in this chapter,
and, certainly, the most discussed in the literature is the power-law distribu-
tions of events’ size and duration®. Being a direct consequence of a second
order phase transition which is present in SOC systems, this scaling has be-
come an indication of critical phenomena. However, it is important to stress
that power-law scaling alone does not prove criticality in any system®. In
fact, power-laws are fairly common in nature and appear for word frequency
distribution in specific English novels, number or scientific paper citations,
cities” populations, or the diameter of craters in the moon (Newman, 2005).
Curiously, those distributions are also alternatively named Zipf’s law and/or
Pareto distributions in different systems due to historical reasons. Addition-
ally to power-laws, “true” critical systems typically display a 1/f scaling of

4Some models, however, only reach a state near, but not exactly at, criticality. This
behavior has been named self-organized quasi-criticality (Bonachela and Munoz, 2009).

5Curiously, many natural systems go “beyond” power-laws: huge catastrophic events
tend to be more frequent than expected by simple scale-free properties. These particularly
rare and large events have been named dragon kings, and their origin is still debated in
the literature (Sornette, 2009).

6We ignore for now the practical consequences of fitting true power-laws and iden-
tifying spurious “power-law-like” distributions that are best fit by other functions. See
Appendix B for a more extensive discussion on power-law fitting.
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power-spectra (Bak et al., 1987; Markovi¢ and Gros, 2014), power-law scaling
of other critical exponents (for example, the aforementioned ratio between
events’ duration and size exponents, v = %), scale-free average avalanche
shapes (Friedman et al., 2012; Beggs and Timme, 2012), and must display
different behaviors at criticality and at subcritical or supercritical regimes
(as we have shown for sandpiles and stochastic branching processes).

The more criticality signatures a natural system displays, the more ev-
idence of a critical point is accumulated, supporting the hypothesis that a
theoretical SOC model is indeed a good description. However, rarely can a
natural system be shown to be a pure SOC phenomenon, and as more exper-
imental measurements are made, the SOC classification can be weakened or
strengthened. Ideally, enough experimental evidence would be gathered to
support or undermine each criticality signature, but in practice that is rarely
possible. For example, recording in neural circuits cannot be made for every
single neuron in the network, which affects virtually every detectable critical-
ity signature (Priesemann et al., 2009), while the tuning of parameters using
synaptic antagonists can be rather difficult or imprecise (Beggs and Timme,
2012). It is important, therefore, to understand as precisely as possible the
self-organization mechanisms acting on a given system before proposing it as
SOC, as well as the limitations of such a description. In the next section,
we begin to describe how these mechanisms act in neural circuits and what
dynamical rules are known to be present in the brain.

2.3 Self-organization in neural circuits

As one would expect, self-organizational mechanisms in biological neural cir-
cuits tend to be more complex and numerous compared to the ones from
theoretical toy models. Synapses, for example, are constantly fluctuating not
only spontaneously, but also due to plasticity, in response to myriad different
stimuli, internal activity, learning processes, or memory formation. Neurons,
rather than single cells with a few possible states, interact in multiple differ-
ent manners depending on their types of ion channels, synapses, functions,
neurotransmitters, spike rates, and other factors”. The result of these inter-

TOf course, as the majority of computational studies of neural circuits, we ignore here
the roles of other types of cells in the brain, such as glia cells, even though they are far
more numerous than neurons in the nervous systems. For a review on different types of
glia cells and relatively recent developments on their understanding, see Fields (2009).
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actions are macroscopic phenomena we, as humans, observe on a daily basis:
muscle movement, decision making, vision and pattern recognition, among
others. As they are typically huge systems (the brain has approximately 100
billion neurons (Herculano-Houzel, 2009)) with so many interaction mecha-
nisms and possible resulting behaviors, modeling self-organization in neural
circuits is particularly challenging, and there are no obvious order parameters
to measure. Instead, at the microscopic level, self-organization dynamical
rules have been linked to different types of synaptic plasticity mechanisms,
which underlie synaptic efficacy fluctuations and have been widely described
in experiments. We review here the key processes underlying synaptic plas-
ticity, which are essential ingredients to understand self-organization towards
criticality and the occurrence of criticality signatures in the brain.

2.3.1 Spike-timing-dependent plasticity

The changes in synaptic efficacy due to a neurons’ activity are exemplified
by the Hebbian theory (or rule, or postulate) (Hebb, 1949), which is often
summed up as cells that fire together, wire together (Lowel and Singer, 1992).
The theory states that if a pre-synaptic neuron A takes part in the firing of
post-synaptic neuron B by firing shortly before, the synaptic efficacy from
A to B is increased. Thus, repeated firing leads to stronger local wiring,
which in turn leads to a higher probability of sequential firing. This pro-
posal was later experimentally verified for spikes occurring inside a limited
time window, and has become known as spike-timing-dependent plasticity
(STDP), which combines the long-term potentiation (LTP) and long-term
depression (LTD) of synapses. LTP (LTD) phenomena refer to the findings
that very high (low) frequency stimulation of pre-synaptic neurons results
in the strengthening (weakening) of the respective synapses and more (less)
activity on the post-synaptic neurons (Bliss and Lgmo, 1973). This result
has since been confirmed in distinct brain areas and animals (Dayan and
Abbott, 2001), suggesting a robust match to the Hebbian theory.

The experimental measurement of STDP in different studies (Markram
et al., 1997; Bi and Poo, 1998) has shed light on the importance of the spike
timing for LTP and LTD effects on excitatory synapses and offered further
support to a biological implementation of the Hebbian theory®. In fact, the

8Note that, in principle, LTD/LTD and STDP do not result in the same synaptic
efficacy increase/decrease phenomenon. There is, however, evidence suggesting that they
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amplitude of excitatory post-synaptic currents (EPSC) has been shown to
depend on the precise spiking time, with LTP occurring for positive spike
timings (i.e., post-synaptic firing after pre-synaptic firing) and LTD for neg-
ative spike timings, as long as they occur inside a time window of tens of
milliseconds (Fig. 2.5A). The STDP positive (negative) feedback has the ef-
fect of identifying (non) causal relationships, therefore encoding information
about activity patterns as a form of unsupervised learning.

Similarly to STDP between excitatory neurons, inhibitory synapses are
also affected by spike timings, and the effects of fluctuations in the inhibitory
synaptic efficacies (inhibitory pre-synaptic neurons) play an important role in
the overall stabilization of network dynamics (Vogels et al., 2013). However,
there are some key differences between STDP and inhibitory STDP (iSTDP)
(see Haas et al. (2006), Fig. 3). In contrast to STDP in excitatory synapses,
iSTDP has very little effect for near zero spike timings, peaking at around
10 ms. Additionally, the strongest changes occur for potentiation after an
unsuccessful inhibition (positive spike timings), while weaker depression takes
place otherwise, on average. iSTDP has also been proposed to work together
with STDP to regulate the overall activity level based uniquely on the spike
timing in connected neurons (Haas et al., 2006).

Additionally to the classic, Hebbian STDP rules described so far, other
factors are known to influence synapse efficacies. For instance, the amplitude
of the fluctuations in the cortex is affected by the presence of neuromodula-
tors, a process which has been named three-factor learning rules (Frémaux
and Gerstner, 2016). Neuromodulators typically add another time window in
which STDP can modify synaptic efficacies efficiently, linking each synaptic
change to inputs or events from the recent past and playing an important role
in learning processes. The most studied neuromodulator is dopamine, a neu-
romodulatory signal produced in the ventral tegmental area (VTA) and trans-
mitted in widely studied pathways that correlate with novelty and received
reward (Schultz et al., 1997). In practice, neuromodulation via dopamine in
the brain likely aims to bridge the temporal gap between sensory stimulation
(which happens at the scale of seconds) and synaptic plasticity (which, as
we have mentioned, happens at the millisecond scale). However, whether
self-organization by neuromodulation of various STDP mechanisms in recur-
rent neural networks can achieve improved learning and memory capacities

consist in the same general mechanism that aims to improve information encoding while
minimizing energy consumption (Yger and Harris, 2013; Krieg and Triesch, 2014).
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Figure 2.5: Self-organization mechanisms in neural circuits. (A) Spike-
timing-dependent plasticity (Bi and Poo, 1998): synaptic potentiation (At > 0)
and depression (At < 0) based on changes in the excitatory post-synaptic currents
(EPSC) as a function of spike timings. Inside a critical time window, synapses with
positive timings are potentiated (on average), while synapses with negative timings
are depressed. (B) Inhibitory spike-timing-dependent plasticity (Haas et al., 2006):
fluctuations of inhibitory postsynaptic potentials (IPSPs) as a function of spike
timings for different cells. Synaptic efficacies change very little for At — 0, and
the overall function is asymmetric. (C) Synaptic scaling (Watt and Desai, 2010):
Schematic diagram representing changes in the post-synaptic activity, illustrated
by the multiplicative scaling in the number of AMPA receptors at synapses (orange
rectangles). (D) Structural plasticity (De Paola et al., 2006): time-lapse in-vivo
imaging (in days — top left corner) of axonal bouton growth (red arrow) for an
intracortical mouse axon, suggesting the creation of new synapses. (E) Intrinsic
plasticity (Desai et al., 1999): neuronal increased firing as a response to activity
deprivation. Left: example of increased firing rate. Right: increase in firing rate
for 18 neurons as a function of the input current. All figures were reproduced (or
adapted, for (D)) with permission from the respective manuscripts.
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remains an open question, and a detailed discussion about its consequences
is out of our scope of this thesis.

2.3.2 Homeostasis

Synapses do not fluctuate only due to spike timings, but also as a result
of “competition” for limited resources in the system (Turrigiano, 2011), re-
sulting in slightly different self-organization mechanisms. Such competition
keeps the activity bounded at a network level and stabilizes a neuron’s out-
put under a range of different inputs (Watt and Desai, 2010). The two main
homeostatic plasticity mechanisms act, therefore, at different levels: synap-
tic scaling keeps the total input to a neuron fixed, while intrinsic plasticity
regulates the overall activity level in order to counterbalance variations in
the input or recurrent network drive?.

Synaptic scaling has been observed in cortical, hippocampal, and spinal
neurons, both excitatory and inhibitory, which makes it one of the best de-
scribed homeostatic plasticity mechanisms (Turrigiano et al., 1998; Watt
and Desai, 2010). It directly regulates the strength of synapses by alter-
ing the number of post-synaptic receptors, thus acting to scale synapses and
constrain them to an optimal size range (Watt et al., 2000; Watt and De-
sai, 2010). This mechanism results in a competition for resources, in which
synapses (and therefore also their post-synaptic currents) grow and shrink
their relative size (e.g., the number of AMPA receptors) in order to coun-
terbalance the overall input level a neuron receives!’. Additionally, exper-
imental evidence suggests that this process, differently from STDP, can be
multiplicative (Fig. 2.5C) and aid learning and memory processes by modi-
fying only the relative strength differences between inputs (Watt and Desali,
2010). Due to the multiplicative nature of the input scaling, this plasticity
mechanism is also referred to as synaptic normalization (the name we later
use in this thesis), which differentiates it from other types of synaptic scaling.

At the network level, the overall activity is regulated by intrinsic plasticity
mechanisms that act on the neurons’ excitability at long time scales. This

9There are also additional homeostatic plasticity mechanisms that act alone or com-
bined in specific brain regions and/or aid in the regulation of the neurons firing rate. For
a review, see Watt and Desai (2010).

0Experimental evidence supporting a pre-synaptic scaling also exist, due to conservation
mechanisms found in the axon, but we do not discuss it here. See, for example, Sabel and
Schneider (1988).
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activity regulation modifies the neurons’ firing rates in response to network
changes, thus introducing an activity level control. In particular, neurons
have been shown to reduce their excitability when activity deprived (Desai
et al. (1999); Fig. 2.5E) and, likewise, increase their excitability when activity
increases above a baseline level (Turrigiano, 2011). Interestingly, this process
does not have to be local and can potentially affect neurons that are not
directly connected or even nearby, as intrinsic plasticity might be chemically
regulated by diffusion of specific molecules along the neural circuit (Sweeney
et al., 2014). Similarly to synaptic scaling, this overall excitability regulation
likely takes place after a competition for resources (diffusive molecules), and
one neuron can only become more active when others reduce their activity,
in what can be seen as a self-organization process. Importantly, the target
firing rates for different neurons do not have to be, in principle, the same, and
many different types of neurons are known to fire with different frequencies
and /or firing patterns (Izhikevich, 2003). Intrinsic plasticity, therefore, does
not dictate which firing rate each neuron should adopt but instead drives
such rate towards an overall network level.

2.3.3 Structural plasticity

In addition to spike timing or homeostatic mechanisms, synapses can also
be created or removed due to structural changes in neural circuits. This
process is known as structural plasticity and can be the result of learning,
the formation of new memories, or recovery from damage. Structural plas-
ticity is, however, relatively less consistent and robust than other plasticity
mechanisms, and its nature is less clear compared to them (Bourne and
Harris, 2011). Studies have suggested that this mechanism can be either
homeoastatic (Bourne and Harris, 2011) or activity dependent (Holtmaat
and Svoboda, 2009), although it is a highly heterogeneous process whose ex-
act function remains an open question. Creation or removal of synapses are
typically measured via temporal imaging of axon boutons or dendritic spines’
growth or reduction (Fig. 2.5D) and have been observed for neurons in vari-
ous brain regions (Holtmaat and Svoboda, 2009), suggesting that structural
plasticity is potentially ubiquitous in neural circuits, and therefore important
for their self-organization.

Finally, we have reviewed concepts and experimental evidence for self-
organization in neural circuits via plasticity action. In fact, many of these
plasticity mechanisms are active at the same time (although in different time
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scales) and interact with each other (Abbott and Nelson, 2000; Watt and
Desai, 2010). The dynamics of neural systems is shaped by those in a similar
(but much more complex) fashion than sandpile models or branching pro-
cesses, which are regulated by their own self-organization rules. The com-
bined action of spike-timing-dependent plasticity, homeostasis, and structural
plasticity, thus, is able to drive and maintain networks at special states,
which are potentially the result of selective evolutionary pressures under
which plasticity in the brain evolved. But what are those states? Is there
a unique dynamical regime towards which biological neural networks are al-
ways driven? And, not less importantly, does this hypothetical state display
SOC, as theoretical sandpiles or stochastic branching processes do? In an
attempt to better understand those questions and their answers, the critical
brain hypothesis, which we introduce in the next section, has emerged.

2.4 The critical brain hypothesis

The brain is a system in which self-organization takes place via the inter-
action between various plasticity mechanisms and activity-dependent pro-
cesses. In short, the critical brain hypothesis states that the brain, naturally
driven by those mechanisms, is poised at a phase transition point, between
two types of very different dynamics (Beggs and Plenz, 2003; Chialvo, 2010).
This phase transition is, according to the hypothesis, a consequence of a
SOC process, including the brain and neural circuits in the list of critical
phenomena. The experimental evidence supporting such claim initially came
from in-vitro experiments: power-laws of events’ size and duration have been
measured for bursts of activity that spread through the neural circuit and
are separated by quiet periods (Beggs and Plenz, 2003). Drawing inspiration
from the avalanche nomenclature of SOC systems, this phenomena has been
named neuronal avalanches''. Interestingly, the observed power-law expo-
nents matched the theoretical predictions for stochastic branching processes
(—2 for avalanche durations and —1.5 for avalanche sizes), depending on the
detection threshold selection and width of time bins (Priesemann et al., 2013).
Many experiments have since replicated these findings in other preparations

'Note that, in general, neuronal refers to properties of a single neuron, while neu-
ral refers to collective properties of a network of many neurons. However, even though
avalanches span many neurons, we keep here the historical nomenclature of neuronal
avalanches.
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and brain regions (Mazzoni et al., 2007; Pasquale et al., 2008; Tetzlaff et al.,
2010; Lombardi et al., 2012; Friedman et al., 2012; Yang et al., 2012; Shew
et al., 2015), and although the initial observation of neuronal avalanches
lacked some more detailed statistical treatment of the multielectrode array
recordings and power-laws, the hypothesis has since gained momentum and
support (see Chapter 4 for a comparison between different experimental se-
tups and examples of observed power-laws).

The measurement of power-law distributed neuronal avalanches raised
important questions about the tuning of a complex dynamic system such as
the brain. In analogy to branching processes, this critical dynamical regime
should keep activity between a subcritical state (when, as we have described,
activity reaches zero in a finite number of time steps) and a supercritical
regime (in which activity propagates through the whole system indefinitely).
Plasticity, as a combination of self-organization mechanisms, is the best can-
didate for maintaining the brain near this specific point. However, it might
seem obvious that a healthy, operating brain constrains its activity to a cer-
tain level, avoiding dangerous extreme sub or supercritical regimes (Markovié
and Gros, 2014). It is surprising, nevertheless, that this is achieved under
a range of external stimulation, which can destroy power-laws in theoretical
SOC models. In fact, strong external input indeed breaks down power-laws
in the visual cortex, but only during a short transient period (Shew et al.,
2015), indicating that at least some specific brain regions (such as the early
layers of the visual cortex) possess plasticity mechanisms that are capable of
maintaining criticality.

Later experiments on systems that receive continuous external input,
such as in-vivo preparations, only showed criticality signatures for coarse,
large-scale measures, while spiking activity, after proper statistical treat-
ment, resembled instead a driven, slightly subcritical regime (Priesemann
et al., 2014). Such results suggested a small addition to the original hypoth-
esis, as external input seems to play an important role in determining in
which state neural circuits operate. Interestingly, the brain could operate at
a slightly subcritical regime when receiving external input in order to avoid
supercriticality, which has been linked to epileptic seizures (Meisel et al.,
2012). However, such interpretation is not currently a consensus, since other
experiments have detected no power-laws in brain activity (Touboul and Des-
texhe, 2010; Dehghani et al., 2012) and/or suggested that they appear due
to other reasons, including a simple occurrence in pure stochastic processes
(Touboul and Destexhe (2010); we review these criticisms in more depth in
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Chapter 4). The extent to which each experimental procedure, thresholding
process, and power-law fitting method affects the observed power-laws is still
subject to debate, and thus the origin and function of the recorded power-
law scalings remain relatively obscure. For this reason, combined with the
fact that power-law scaling alone does not prove criticality, the critical brain
hypothesis remains still a hypothesis.

Evidence of SOC in neural circuits is, in some cases, not only limited to
power-laws of avalanche events. Other criticality signatures have been de-
tected in particular studies. Examples are the scaling of critical exponents
and scale-free average avalanche shapes (Beggs and Timme, 2012; Friedman
et al., 2012) and the seemingly necessary level of excitation and inhibition in
order to remain at the (supposed) second order phase transition point (Halde-
man and Beggs, 2005; Hesse and Gross, 2014). These measurements have not,
however, been widely replicated in comparison to the power-law distributions
for neuronal avalanches, but are commonly employed as an argument to sup-
port the claim that those power-laws are indeed “true” criticality signatures.

Finally, a last claim of the critical brain hypothesis is that, while at
criticality, the brain has multiple advantages regarding information process-
ing, and therefore such a state could be the result of evolutionary pressures.
Computational modeling of simpler neural networks and branching processes
has shown that various information processing capacities are maximized at a
critical point (Kinouchi and Copelli, 2006; Shew and Plenz, 2013). Interest-
ingly, those theoretical results do not make it a necessary condition for the
whole brain to operate at criticality. For example, hierarchical networks have
been shown to display many criticality signatures even when their underly-
ing processes are not critical (Friedman and Landsberg, 2013). Thus, it is
conceivable that different brain regions self-organize into distinct dynamical
states, some critical and some not, and the general dynamics remain ben-
eficial for information processing. In particular, it would be expected that
lower layers that receive direct external input might commonly deviate from
criticality, while deeper layers that only receive recurrent network drive are
able to maintain a robust critical state (Markovi¢ and Gros, 2014).

2.5 Discussion and outline

We have described here how simple theoretical systems with simple self-
organization rules might become critical phenomena without external inter-
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ference, a process also known as SOC. These models reproduce the behavior
of different natural self-organizing systems, in which seemingly purposeful
patterns arise. We have described in more detail two important examples
of critical models: the Bak-Tang-Wiesenfeld sandpile model and stochastic
branching processes. Both can be used as analogies to biological neural cir-
cuits, and the latter, in fact, is commonly employed in computational models
in order to study the critical brain hypothesis. Neural circuits, nonetheless,
have rather complex dynamical mechanisms which have only recently been
experimentally described, and the interaction among them, as well as their
exact function, is subject of ongoing research. Differently from typical SOC
models, these plasticity mechanisms can depend on the neuronal proper-
ties, activity timing, network structure, or even homeostatic processes, which
makes their representation as simple toy models particularly difficult.

The critical brain hypothesis has emerged from the observation of criti-
cality signatures in-vitro in the form of power-law distributed sizes and du-
ration of neuronal avalanches, in a direct analogy to branching processes.
However controversial due to experimental methods, analyses, and a few
contradictory results, this hypothesis has gained popularity to explain brain
self-organization and adaptation under different input regimes. As criticality
has many benefits for information processing in neural networks, it is reason-
able to assume that the brain evolved towards a critical state at the network
level. Interestingly, in-vivo recordings have shown that such a hypothesis
might mean that when receiving external input neural circuits operate at a
driven subcritical regime, avoiding dangerous supercritical dynamics. How
plasticity mechanisms are able to adapt and maintain different dynamical
states under different external inputs is, however, currently unknown.

In the remainder of the thesis, we investigate how criticality signatures
might emerge due to plasticity action in recurrent neural networks. First, in
Chapter 3, we present a recurrent network model that self-organizes due to
biologically inspired plasticity mechanisms. In Chapter 4, we propose a link
between criticality signatures and one of the most important brain functions,
learning, discussing how both phenomena might arise due to the same self-
organization processes. We study how different types of external drive might
break down the power-laws in the neuronal avalanche distributions, and re-
produce experimental findings on readaptation due to fast plasticity action.
Additionally, in Chapter 5, we extend our analysis to another function that
has been previously linked to criticality, the memory capacity, and provide
examples of applications of self-organizing recurrent neural networks for sim-
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ple language learning and sentence generation tasks. Last, we summarize
our main conclusions in Chapter 6, while suggesting a direction for follow-up
studies, both in the field of SOC in neural circuits and of spatio-temporal
sequence learning with self-organizing recurrent neural networks.
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Chapter 3

Modeling neural activity:
self-organizing recurrent neural
networks

Remember that all models are
wrong; the practical question is
how wrong do they have to be to
not be useful.

George Box

The goal of this chapter is to briefly introduce neural networks, focus-
ing on reservoir computing and sequence models, and to describe in detail
the family of models known as Self-Organizing Recurrent Neural networks
(SORNs; Lazar et al. (2009); Zheng et al. (2013)). The first half of the chapter
is dedicated to the historical developments that motivated the original SORN
model and its subsequent variations. We present the implementation of the
models’ different versions and summarize the most important past results.
SORNSs are largely used in the remainder of this thesis, and further technical
details about their python implementation can be found in Appendix A. The
source code for the simulations presented in this thesis and its usage instruc-
tions can be found online at https://github.com/delpapa/SORN_V2.
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3.1 A brief historical perspective

The SORN model was introduced by Lazar et al. (2009) in the context of
reservoir computing and first employed to study sequence learning tasks.
Since then, modified versions of the model have been used in a number of
different spatio-temporal learning tasks and as simple models of brain activ-
ity, with various degrees of success.

The idea of modeling neural activity using artificial neural networks is,
however, by no means new. The first artificial neuron (i.e., a neuron modeled
as a mathematical function) dates back to the '40s (McCulloch and Pitts,
1943). Each artificial neuron, or McCulloch & Pitts unit (MCP), combined
weighted numerical inputs from different sources and passed them forward
to a binary transfer, or activation, function (or, equivalently, compared them
to an activation threshold), which then calculated a binary output. This
function was inspired by the anatomy of a typical biological neuron, with
relatively straightforward analogies (Fig. 3.1): incoming weights multiplying
the inputs could be compared to dendrites, the summation of inputs to the
soma, and the output transmission to the axon. These simplified MCP neu-
rons are still the building blocks of a wide range of neural network models to
this day, including the SORN, and were used in one of the first implementa-
tions of an artificial neural network, the Multi-Layer Perceptron (MLP).

3.1.1 Perceptrons

Perceptrons were one of the first attempts to model neural circuits, developed
by Frank Rosenblatt in the '50s (Rosenblatt, 1958). The main Perceptron
machine, designed for image recognition, employed a combination of MCP
units which were implemented directly into custom-built hardware. Such
proposal attracted a reasonable amount of attention due to the new paral-
lels with biological neurons, the possibility of adjustment of incoming weights
according to different inputs, and the controversial claims regarding its capac-
ities!. Using modern notation, the perceptron algorithm can be summarized

Tn 1958, Rosenblatt himself remarkably stated that “(...) the embryo of an electronic
computer today that it expects will be able to walk, talk, see, write, reproduce itself and be
conscious of its existence. Later perceptrons will be able to recognize people and call out
their names and instantly translate speech in one language to speech and writing in another
language, it was predicted.” (Olazaran, 1996). Although modern machine learning research
has partially accomplished some of those goals, perceptrons alone proved insufficient for
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Figure 3.1: Artificial neurons. Representation of the McCulloch and
Pitts processing unit. Each input v; is multiplied by an incoming weight
w;, combined in a summing device, and passed forward to a threshold ele-
ment, which then outputs a single binary value. Reproduced with permission
from Olazaran (1996).

as a simple function:

. N
f(X) _ { 1 if Zi:l w;T; +b > 0, (31)

0 otherwise

where x; are the components of the input vector x, w; are the perceptron
weights, and b is a bias term independent from any input. The weights and
bias can be adapted, or learned, for a given problem, and the output of
f(x) can be used, for instance, to classify an input instance as a negative or
positive example.

Despite seemingly an initially promising algorithm, the single layer per-
ceptron (Fig. 3.2) was still a linear classifier (i.e., it was linear in x), thus be-
ing unable to solve problems that are not linearly separable such as the XOR
logic function. This shortcoming was demonstrated shortly after their initial
proposal, in an influential book by Marvin Minski and Seymour Papert (Min-
ski and Papert, 1969). Given that many interesting learning problems cannot

those particularly complex tasks.
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be solved purely by simple linear classification, the original enthusiasm for
neural networks decayed in the following years, in favor of other approaches
towards artificial intelligence (Olazaran, 1996). Interestingly, it was already
known that MLPs can overcome this linear classification limitation, but their
resurgence only occurred many years later, with the proposal of the back-
propagation algorithm (Rumelhart et al., 1986) and the emergence of deep
neural network architectures.

hidden
units

input units

output units

Figure 3.2: Single and Multi-Layer Perceptrons. (A) A single layer
perceptron. Inputs v; are multiplied by weights w;;, combined and passed
through an activation function. The resulting o; elements are the percep-
tron outputs. Reproduced with permission from Olazaran (1996). (B) A
Multi-Layer Perceptron (MLP). Combining multiple single layer perceptrons
in a row results in a simple feedforward neural network, with input, hidden,
and output units. The combination of layers takes place by using the out-
put of a single layer as the input to the next. Reproduced with permission
from Olazaran (1996).

In more detail, MLPs consist basically of multiple single layer percep-
trons organized in a feedforward manner, where the weighted outputs of a
layer are received by the subsequent layer until a final output is calculated
(Fig. 3.2B). Each unit i in a given layer may be connected to any other unit
J in the next layer by a weight wj;, which is then updated at every training
step. These networks are composed of a minimum of three layers: input, hid-
den, and output. Differently from single layer perceptrons, MLPs combine
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many nonlinear activation functions, which increase their application from
simple binary classification tasks to multi-class classification and regression
problems.

Today, MLPs and other feedforward neural networks have become the ba-
sis for more complex deep learning models. However, it is relatively straight-
forward to identify their shortcomings for modeling biological neural circuits.
First, networks of neurons are not simply feedforward, showing many exam-
ples of recurrent loops (or “back” connections) and intra-layer connections,
particularly in the cortex (Douglas and Martin, 2004). Second, the back-
propagation algorithm that updates the weights is a non-local learning rule,
which requires the computation of precise gradients relative to a predefined
loss function. There is no evidence that such processes can occur in the
brain at the neural level (Kandel et al., 2000). Third, neurons produce
spikes with different firing rates and sometimes precise firing patterns (as
in songbirds (Hahnloser et al., 2002), for example), which suggests that their
activation functions might have more constraints than a MLP unit. Fourth,
synapses are a result of myriad biochemical processes (Kandel et al., 2000),
which weights represented by single real numbers are not able to fully cap-
ture. Those facts suggest that, in order to model biological neural circuits,
additional properties should be at least partially taken into account. Thus,
we continue by shifting our focus to tackle the first shortcoming: from the
development of pure artificial feedforward networks to more general recurrent
models.

3.1.2 Recurrent neural networks

Recurrent neural networks (RNNs) can be seen as a generalization of the
feedforward models described previously, in which connections between lay-
ers are replaced by connections between any two neurons, as in a directed
graph. Those extra connections allow for temporal sequence encoding, as
some input information remains stored in their internal state for a number
of time steps, a process that gives rise to a memory capacity?. Historically,
these networks have been used in problems that require temporal represen-

2Perhaps one of the earliest examples of a recurrent network with a memory capacity
is the famous Hopfield network (Hopfield, 1982), which combines binary neurons with
Hebbian learning rules and has an interesting associative memory property. However, it
suffers from similar training shortcomings as other recurrent neural networks, particularly
when compared to biological systems.
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tation, such as sequence learning, speech recognition (Sak et al., 2014), and
music generation (Boulanger-Lewandowski et al., 2012).

Even though RNNs are able to encode time-dependent information in
their internal state, they are classically trained with backpropagation through
time, which requires their expansion (or “unrolling”) in feedforward-like net-
works (Werbos, 1988). This process makes standard RNN architectures diffi-
cult to train with gradient descent techniques due to gradient vanishing prob-
lems, as the size of the “unrolled” network increases exponentially (Bengio
et al., 1994; Pascanu et al., 2013). Additionally, large problems become virtu-
ally unfeasible due to computational time. To overcome these problems, new
approaches have emerged in recent years, based on the introduction of differ-
ent gating functions. Today, the most widely used architectures are known
as Long Short-Term Memory units (LSTMs; Hochreiter and Schmidhuber
(1997)) and the Gated Recurrent Units (GRUs; Cho et al. (2014)), both of
which were developed aiming for higher performance in relevant problems
instead of biological realism?.

3.1.3 Reservoir Computing

Reservoir computing emerged as a solution to the problem of training com-
plex RNNs models. It is a method in which recurrent connections are ran-
domly generated and kept fixed during training, while only a supervised read-
out layer is trained for a particular task (Lukosevicius and Jaeger, 2009). The
term, coined as an analogy to water reservoirs, broadly refers to two very sim-
ilar models, which historically appeared in different contexts, namely Echo
State Networks (Jaeger and Haas, 2004) and Liquid State Machines (Maass
and Markram, 2004)*. The analogy relies on the similarity between the be-

3Tt is important to also mention one interesting historical example of biologically in-
spired recurrent neural networks. Balanced networks (Van Vreeswijk and Sompolinsky,
1996), as they have been named, showed that a model combining excitatory and inhibitory
neural populations exhibited chaotic behavior, with potential applications for temporal en-
coding. This model provided an example of development in computational neuroscience,
with models that were not constructed aiming only for higher performance in tasks.

“In this thesis, the term reservoir is used to refer to the recurrent connections and
neurons of a network model, excluding the readout layer and input connections. Therefore,
following this nomenclature, a reservoir computing model is typically composed of input,
reservoir, and readout layer. Additionally, in the following chapters, we use the term static
reservoir to refer to a reservoir with fixed weights, in contrast to dynamic reservoirs in
which weights evolve over time.
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havior of wave propagation in a water reservoir’s surface and the input in
these models: both slowly fade away with time while interacting with other
waves or inputs following a nonlinear dynamics. Thus, an important ingre-
dient of these reservoirs is their nonlinear functions, which are known to be
extremely beneficial for learning (Huang et al., 2006), even when combined to
a simple linear readout layer. As reservoir weights are commonly fixed, train-
ing reservoirs turns out to be much faster than more complex RNNs, and the
training procedure follows a relatively straightforward recipe (Lukosevicius,
2012). In general terms, past inputs are encoded in the internal state of reser-
voirs, and due to the recurrent connections “echo” for a number of time steps
before fading away. Interestingly, there is some evidence that similar repre-
sentation decays occur in the brain (Buonomano and Maass, 2009), although
cortical circuitry shows non-random connectivity features (Song et al., 2005;
Perin et al., 2011). Altogether, these findings raise the question of whether
reservoirs are also adequate models for studying biological circuits.

3.1.4 Plasticity induced self-organization

Reservoirs, however powerful, rely on random connections for their spatio-
temporal learning abilities. These static random connections limit the num-
ber of internal states a network of a given size may store, suggesting that
improvements could still be made. For instance, recurrent networks operat-
ing near a phase transition state are known to have maximal fading memory
capacities (Bertschinger and Natschlager, 2004), a property not observed
in random static reservoirs (Del Papa et al., 2019). Additionally, different
forms of biologically inspired plasticity mechanisms have been shown to also
improve a reservoir’s fading memory (Lazar et al., 2007), proposing that in-
sights into brain function might be gained by combining particular plasticity
mechanisms with the architecture of reservoirs.

Finally, here is where we reach the SORN model (Lazar et al., 2009). Ini-
tially proposed as an improved reservoir for spatio-temporal tasks, the SORN
has allowed for a network level description of particular biological neural net-
works. Those two results alone make the SORN a very interesting model
to achieve our goals of understanding the role of self-organization towards
criticality in biological neural networks and its consequences on the fading
memory capacity. The next section of this chapter describes in mathematical
detail how the SORN combines different plasticity mechanisms to update the
main reservoirs’ weights, a process we henceforward call self-organization.
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3.2 The SORN model

In just a few words, SORNs are reservoirs of perceptron-like neurons with
dynamic synaptic weights evolving according to biologically inspired plastic-
ity mechanisms (Fig. 3.3). The original model, introduced by Lazar et al.
(2009), was developed to study sequence learning tasks and later shown to
reproduce a wide range of findings on spontaneous brain activity and the
variability of neural responses (Hartmann et al., 2015). As we will discuss
later in this thesis (Chapters 4 and 5), such learning abilities result par-
tially from an improved fading memory capacity exhibited by the network,
which arises from the combination of plasticity mechanisms. An extended
SORN model (Zheng et al., 2013), which incorporates additional plasticity
mechanisms and neuronal membrane noise, has been shown to reproduce
the distribution and fluctuation patterns of cortical synaptic efficacies, while
spontaneously generating synfire chains (Zheng and Triesch, 2014). Addi-
tionally, the combination of different plasticity mechanisms can affect the
appearance of power-law distributed bursts of activity, commonly associated
with healthy dynamics in the brain (Del Papa et al. (2017); Chapter 4). In
order to better understand the details and implications of all these findings,
we describe in the next sections the models’” dynamics and implementation.

3.2.1 Network dynamics

The SORN models consist of a reservoir of N¥ excitatory and N = 0.2 x N®
inhibitory threshold MCP neurons (McCulloch and Pitts, 1943), whose state
at each discrete time step ¢ is described by the binary activity vectors x(t)
and y(¢), corresponding to the activity of excitatory and inhibitory neurons,
respectively. Biologically, each discrete time step corresponds to 10 to 20 ms,
corresponding to the membrane time constant of biological neurons and the
typical scale of spike-timing-dependent plasticity (see below). Both neuron
types can be active (“17 state) or silent (“0” state) at each time step de-
pending on their input, membrane noise, and firing threshold. Neurons are
connected by synaptic weights w;; (from neuron j to ¢, by convention) and
synapses are allowed between different excitatory neurons (W¥E) | from exci-
tatory to inhibitory neurons (W), and from inhibitory to excitatory neurons
(WED). Connections between inhibitory neurons and self-connections are not
included in the models. At each time step ¢, the network state is updated
according to the input each neuron receives and its current threshold. For



3.2. THE SORN MODEL 43

each neuron 7, the following update equations apply:

Xi(t+1) =0 Z wi (B (1) = ) wi (¢)ye(t)
+u () + &7 () T ()|, (3:2)

and

vilt+1) =0 | Y wiP()z;(t+1) + &) =T} | (33)

in which ©[.] represents the Heaviside step function, which maps the neuronal
activations to binary outputs, u*(¢) is the external input received by neuron
i at time step ¢, and T} and T} and the excitatory and inhibitory neuronal
thresholds, respectively. €¥(¢) and &£'(t) represent the neuronal membrane
noise, set to a Gaussian random variable with zero mean and ¢? = 0.05
variance unless stated otherwise.

It is important to emphasize here that the membrane noise level £ can
be seen as one of the parameters that regulate the amount of input the
neurons receive at each time step. In practice, the noise variance controls the
intensity of random inputs a neuron might receive from some other sources
not included in the model, thus being essential for many of the results we
present in this thesis. For example, as will be shown in Chapter 4, large values
of 02 result in a network of virtually independent neurons, thus nullifying
most of the interesting properties of the SORN models. The inclusion of
neuronal membrane noise (introduced in Zheng et al. (2013)), however, has
two biological motivations. First, it accounts for the inputs a neuron might
receive from other brain areas not included in the model. Second, it accounts
for synaptic failure, by providing negative input to some neurons with a small
probability and keeping them from firing at a particular time step.

The models are initialized as random reservoirs where each directed con-
nection of the sparse matrix W is present with a probability p™. The
remaining weights W' and W¥! are dense matrices in which all the weights
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Figure 3.3: The Self-Organizing Recurrent Neural network model
(SORN). (A) The SORN: a reservoir of excitatory (blue) and inhibitory
(orange) neurons receives sequential inputs from an input layer, and a super-
vised readout layer classifies its internal state for a given task (for example,
identifying which input has just been shown to the network). (B) Diagrams
of the plasticity mechanisms in the network. The top row shows the three
mechanisms in the SORNy,: STDP, connections between excitatory neurons
are strengthened (y axis) when the post-synaptic neuron is active exactly one
time step after the pre-synaptic neuron (positive values in the z axis), and
weakened by the same amount when the opposite occurs; SN, the sum of in-
coming connections to any excitatory neuron is normalized and kept constant
over time; IP, the thresholds of the excitatory neurons are updated according
to the network activity, increasing when a neuron fires and decreasing when
it does not. The bottom row shows the additional two mechanisms incorpo-
rated in the SORNy: iSTDP, the connections from inhibitory to excitatory
neurons are strengthened (y axis) when the inhibitions in unsuccessful, i.e.,
the inhibitory neuron fires one time step before the excitatory neuron (pos-
itive z axis) and weakened otherwise; SP, connections between previously
unconnected excitatory neurons are added with a small probability while
very weak connections are pruned.
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are present. All individual weights are drawn from a uniform distribution
over the interval [0, 1] and normalized so that the incoming excitatory and in-
hibitory synapses separately sum up to 1 for all neurons. The excitatory and
inhibitory thresholds are initially randomly drawn from the uniform distribu-
tions [0,TE, ] and [0,71, ], respectively, and the initial network state x(0)
and y(0) is randomly selected. Following the implementation from Zheng
et al. (2013), the initialization parameters are p®® = 10%, T, = 1, and
7! =05

max

ax

3.2.2 Plasticity mechanisms

The synaptic weights WEE and W' and the excitatory thresholds T% are
subject to plasticity at each time step ¢, while the weights W*! and inhibitory
thresholds 7T remain fixed during the simulations. In total, the network
employs five different kinds of biologically inspired plasticity, described below
(see Fig. 3.3B for simplified diagrams of the plasticity mechanisms action).

Spike-timing-dependent plasticity (STDP)

As a biologically inspired form of Hebbian learning, a discrete model of
STDP (Gerstner et al., 1996; Markram et al., 1997; Bi and Poo, 1998) acts
on all active excitatory to excitatory synapses, increasing each weight wZEjE
by a fixed learning rate nstpp when neuron i fires exactly one time step after
neuron j. Conversely, the weight is decreased by the same value if neuron
j fires one time step before 7. Very small weights (ng < 107%) are pruned
after each STDP update. Formally, both update rules can be combined and

STDP is written as a simple update rule, which is applied at each time step:
Aw(t) = ngrop [zi(t)x;(t — 1) — z;(t)x(t — 1)] (3.4)

Inhibitory spike-timing-dependent plasticity (iISTDP)

Similarly to STDP, iSTDP acts on the synaptic weights, but from inhibitory
to excitatory ones (WP®!). This plasticity rule adjusts those weights in order
to balance the amount of excitatory and inhibitory drive that the excitatory
neurons receive. This STDP-like phenomenon has been experimentally ob-
served in the cortex (Haas et al., 2006; Vogels et al., 2013) and suggested to
be essential for the maintenance of functional cortical circuitry (Vogels et al.,
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2011). In order to balance the excitatory and inhibitory inputs, each iSTDP
step acts as follows. When an inhibition is unsuccessful, i.e., an inhibitory
neuron k firing does not prevent an excitatory neuron ¢ firing at the next time
step, the weight wg!, if present, is increased by mistpp/pp, in which pp < 1
represents the mean target firing rate of the network. If the inhibition is
successful, i.e., if 7 is silent one time step after k firing, wE! is reduced by a
smaller value nistpp. In practice, this synaptic weights update regulates the

overall network activity, and can be simply written as another update rule:

Awii (t) = —msopy; (t — 1) [1 = 25(t) (1 + 1/ pup,)] - (3:5)

Structural plasticity (SP)

In order to compensate for the pruning of excitatory synapses resulting from
STDP, SP adds new synapses between previously unconnected excitatory
neurons. Specifically, a new synapse is added between a previously uncon-
nected neuron pair at each time step with a small probability psp and set
to a small value ngp. This plasticity rule simulates the constant generation
of new synapses observed in both cortex and hippocampus (Johansen-Berg,
2007; Yasumatsu et al., 2008), which occurs even in the adult brain as a
result of diverse processes, such as learning new skills or recovering from in-
juries. In the SORN, nonetheless, the majority of the newly created synapses
are quickly eliminated, but a few are strengthened and become part of the
network dynamics (Zheng et al., 2013).

Synaptic normalization (SN)

At each time step, after the STDP, iSTDP and SP updates, SN normalizes
separately the incoming excitatory and inhibitory synaptic weights of ev-
ery excitatory neuron, thus regulating the total amount of input it receives
while maintaining the relative strengths of the synapses. In the brain, such
process avoids uncontrolled growth of any single synapse and has been ob-
served in both excitatory and inhibitory cases (Bourne and Harris, 2011).
In particular, this normalization is achieved by the multiplicative scaling of
the synapses (Turrigiano et al., 1998; Abbott and Nelson, 2000), which is
modeled by applying the following update rule to the weights of WFF and
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WEI, separately:

wij(t) = wi(t)/ Z wij(t) - (3.6)

Intrinsic plasticity (IP)

Last, simultaneously to the updates of the synaptic weights, a variety of
homeostatic mechanisms control the neural firing rates, including refractory
periods, firing rate adaptation and intrinsic plasticity occurring in different
time scales (Desai et al., 1999; Zhang and Linden, 2003; Turrigiano, 2011).
The SORN simplify all those processes with a single update rule, maintaining
a constant mean target firing rate for each neuron i, pp,, drawn from a
Gaussian probability distribution with mean pp and standard deviation opp.
In practice, the speed of the homeostatic plasticity is regulated by a learning
rate np, and the IP rule applied to the excitatory neuronal thresholds T}°
can be written as:

AT = mp [wi(t) — pup] - (3.7)

As can be concluded from the previous paragraphs, the plasticity mech-
anisms are responsible for adding a number of parameters to the SORN
models. Their default values from Zheng et al. (2013) are summarized in
Table 3.1. Unless stated otherwise, these were the default values used for all
the experiments in this thesis, as long as a particular plasticity mechanism
is active.

3.2.3 External input and spontaneous activity

Besides the plasticity mechanisms, another essential feature of SORN models
is the addition of external input to excitatory neurons, which allows the
model to perform temporal learning tasks (Lazar et al., 2009). Biologically,
this input could represent either the direct sensory input received by different
cortical regions (for example, the early layers of the visual cortex) or the input
received from other brain areas (later layers of the visual cortex). In practice,
the external input to neuron ¢ is included in the models via the parameter
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Plasticity mech. Parameters Default values

STDP 7STDP 4.1073
iISTDP THSTDP 1-1073
Sp Dsp L- 10_{1
nsp 1-107°

SN - -
pip 1-1071

P o1 0
mp 1-1072

Table 3.1: Summary of default values for parameters employed in the plas-
ticity rules.

uP*t(t) (Eq. 3.2). Specifically, external input is described as a temporal
sequence of symbols during this thesis, where a single symbol is presented to
the network at each time step, as in Lazar et al. (2009) and Hartmann et al.
(2015). Each symbol provides extra input to a fixed, randomly chosen, and
potentially overlapping pool of NV < NP excitatory neurons. The length of
the input sequence Uy, the number of symbols contained in a given input
sequence, henceforward called alphabet size Uy, the structure of such input
sequence and NV are experiment dependent (see Chapters 4 and 5 for details
about the experiments and the parameters’ numerical values in each case).
Whenever possible, we stick to the previously proposed set of parameters
from Lazar et al. (2009) and Zheng et al. (2013).

For experiments in which no input is present (uf(t) = 0, Vi,t), the
SORN’s activity is referred to as spontaneous activity, in opposition to the
evoked activity resulting partially from external stimuli. This activity corre-
sponds to the recurrent drive, which originates from a combination of past
inputs and spontaneous self-organization due to plasticity action. Impor-
tantly, in the brain, spontaneous activity is highly variable and responsi-
ble for experimentally measured trial-to-trial variability in a range of tasks
(see, for example, Churchland et al. (2010)), a phenomenon also previously
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measured in SORN models (Hartmann et al., 2015). Such activity, further-
more, possesses space and time structures and strongly differs from pure
noise (Ringach, 2009), partially because it is linked to the underlying network
connectivity. Therefore, we emphasize here the difference between sponta-
neous activity in the SORN and noise-driven dynamical regimes.

3.2.4 'Training the readout layer

The last building block of the SORN models is the linear readout layer
(Fig. 3.3A), which is trained during learning tasks to evaluate the models’
performance or make predictions. This layer is trained separately from the
main SORN reservoir (which is trained by the plasticity mechanisms) in a
supervised fashion, as typically done in reservoir computing (Lukosevi¢ius
and Jaeger, 2009). In general terms, the readout layer learns to classify the
SORN’s activity at each time step when all plasticity is turned off, during a
total of Tia, time steps. The model is subsequently evaluated for another
Tiest time steps, again without the action of plasticity. The model’s overall
performance is defined as the normalized number of correct classifications
(while the error is the normalized number of incorrect classifications). De-
pending on the task, the classification could be done regarding the current,
past, or future input symbols or positions in the input sequence.

There are many well established supervised learning algorithms that per-
form linear classification efficiently. Importantly, all of them assume that
the data (i.e., the internal state x), can be classified by a regression model
that is linear in its parameters, which in turn becomes a strong assumption
of the SORN models when performing learning tasks. Specifically, we im-
plement the readout by using a logistic regression layer, which has the same
size as the number of classification labels (typically the alphabet size or in-
put sequence length). Although this approach is different from the original
SORN paper (Lazar et al., 2009), which employed the pseudo-inverse algo-
rithm, we found it faster and computationally more stable for our learning
tasks, particularly in the limit of very long input sequences. Both meth-
ods, among others, can be used to solve the readout classification problem
in reservoir computing, with different assumptions but virtually equivalent
results (Lukosevicius, 2012).
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3.3 Previous studies and model variations

SORN models have not only been chosen due to their simplicity and easy
computational implementation but were also motivated by their previous
successes in modeling spatio-temporal learning tasks and cortical dynamics.
In this section, we give a brief overview of those past achievements and
highlight the differences between the two main SORN variations employed in
this thesis: the original model SORNy, (Lazar et al., 2009) and the extended
model SORNy (Zheng et al., 2013).

Learning tasks

The SORN was first developed to study temporal sequences using a combi-
nation of Hebbian learning and homeostatic plasticity (Lazar et al., 2009).
The study introduced the SORNp, which combines three of the five plas-
ticity mechanisms described in the previous section: STDP, SN, and IP,
all of which have been shown to improve the fading memory of recurrent
neural networks (Lazar et al., 2007). The authors showed how those plastic-
ity mechanisms combined can improve the performance of static reservoirs
in different tasks that required the learning of sequential inputs. In par-
ticular, when performing a Counting Task, which consisted of the repeated
presentation of equal length sequences of symbols of the form ‘ABB...BBC’
and ‘DEE...EEF’, the SORNy, was capable of outperforming other reservoirs
when predicting the next input symbol. Interestingly, the learned internal
representations for symbols in the same position were similar, suggesting that
the SORNp, indeed learned to differentiate equal symbols in different posi-
tions in the sequences, while relying mainly on a local learning rule. The
same study also showed that the model quickly reached subcritical dynamics
under the input conditions of the same Counting Task, via the measurement
of the Hamming distance after small perturbations in its activity. Further-
more, in a follow-up study (Lazar et al., 2011), the same model was shown to
learn the statistical structure of its input, suggesting a link between learning
via neuronal plasticity and statistical inference.

The learning abilities of the SORN can be better understood by con-
sidering the model’s response to perturbations and its proximity to critical-
ity. Past studies on the SORNy, which adds iSTDP, SP, and membrane
noise (£) to the original model (see Table 3.2 for an overview of all plas-
ticity mechanisms), have shown that only a fraction of the perturbations
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become amplified over time, but such fraction decreases as the plasticity
driven self-organization takes place (Eser et al., 2014). Interestingly, dur-
ing spontaneous activity, the authors reported a delay in the amplification
of perturbations to the network weights, a deferred chaos effect, suggesting
that the SORNz might not behave like a typical neural network tuned to
criticality. Additionally, such a network was shown to spontaneously develop
synfire chains (Zheng and Triesch, 2014), allowing for an interplay between
faster and slower activity time scales, potentially further aiding its learning
abilities. The interaction between plasticity mechanisms and critical dynam-
ics in the SORN is one of the main motivations of our work, and an extended
discussion is presented in Chapter 4.

Plasticity mech. SORN; SORNy

STDP v v
iSTDP v
SP v
SN v v
IP v v

Table 3.2: Overview of the SORN model variations and their plasticity mech-
anisms, as used in this thesis.

Finally, the learning abilities of the SORNy have been further tested by
an independent research group on a grammar learning task (Duarte et al.,
2014). The model was shown to be capable of learning the structure of a
Reber grammar (Reber, 1967), performing similarly to humans when judg-
ing the validity of a particular grammatical string. This study exemplifies
the powerful complex sequence learning abilities of a simple combination of
biologically inspired plasticity mechanisms and raises questions about the
learning capacity of SORN models in the context of natural language. Such
questions are further addressed on Chapter 5, where we investigate the mech-
anisms underlying its learning abilities and their applications for character-
level sentence learning.
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Cortical dynamics

Besides the learning abilities, the self-organization due to plasticity mech-
anisms also has many similarities to cortical self-organization. Zheng et al.
(2013) showed that, after self-organization, the overall distribution of excita-
tory synaptic weights in the SORNy stabilizes as a lognormal-like distribution
under particular conditions, matching experimental measurements of excita-
tory postsynaptic potentials (EPSPs) in the rat visual cortex (Song et al.,
2005). Additionally, the fluctuations of those weights qualitatively match the
fluctuations of spine sizes in cortical regions (Yasumatsu et al., 2008), while
newly created synapses show a power-law distribution of lifetimes, which
is also observed in the cortex (Loewenstein et al., 2015). In more biolog-
ically detailed SORN models (Hartmann et al., 2016; Miner and Triesch,
2016), a combination of simple plasticity mechanisms have also been able to
account for the experimentally observed disproportionate number of bidirec-
tional synapses and for a synaptic efficacy alignment while maintaining many
of the properties from the more abstract SORNy.

Interestingly, the deterministic plasticity mechanisms of the SORNy, alone
are also responsible for the emergence of important features of neural variabil-
ity (Hartmann et al., 2015), such as trial-to-trial variability decrease (Faisal
et al., 2008) and spontaneous activity alignment with evoked activity pat-
terns (Han et al., 2008). Such results further highlight the importance of
abstract SORN models as a link between artificial recurrent neural networks
and cortical self-organization modeling. In this thesis, we further explore
such a link by looking not only at the learning abilities of the aforementioned
plasticity mechanisms but also at their ability to reproduce experimentally
observed phenomena.

3.4 Where do SORNs stand today?

Before diving into the results, it is useful to briefly discuss the current state
of SORNSs in comparison to other state-of-the-art models, both in the fields
of computational neuroscience and machine learning. Although a detailed
comparison between different models is beyond the scope of our work, other
recent studies have extended RNNs and SORNs in other directions, and their
differences to the SORNs described here are worth mention.
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3.4.1 Beyond binary networks: leaky integrate-and-
fire neurons

More biologically realistic SORNs have provided interesting results in the
field of computational neuroscience, as recent works have expanded the mod-
els from point spiking neurons into the integrate-and-fine domain. The LIF-
SORN model (Miner and Triesch, 2016) extended the plasticity mechanisms
of the classic SORNs by introducing a dependency on the network’s topol-
ogy and continuous time dynamics. The combination of simple, biologically
motivated synaptic, structural, and intrinsic plasticity was able to repro-
duce, at the same time, important features from cortical circuits, which are
not observed in simple static random reservoirs. Those features include the
over-representation of bidirectional connections and certain motifs, distance
dependent connectivity on local scales, a heavy tailed distribution of synaptic
efficiencies, and the power-law distribution of synaptic lifetimes. These re-
sults highlight the importance of self-organization in shaping neural circuits,
suggesting that many experimental results can be approximated by applying
relative simple constraints in a self-organizing neural network, rather than
in the typically used randomly wired networks. Additionally, the success of
more biologically realistic models based on the same learning mechanisms as
the abstract SORNs implies that those mechanisms, which are much easier
to investigate in abstract models, are also essential for learning in the brain.
This fact further highlights the importance of abstract models with biological
constraints for the development of the field of computational neuroscience.

3.4.2 SORNSs vs. deep neural networks

In machine learning, deep neural networks have become ubiquitous and are
now employed in the most diverse domains of expertise, with fine tuned, task-
dependent architectures. Differently from SORNs, deep neural networks are
typically trained using backpropagation (Rumelhart et al., 1986) or back-
propagation through time (Werbos, 1988). Those are supervised learning
rules that rely on the estimation of a general loss function, which is used to
update weights via variations of gradient descent algorithms. This training
procedure, although computationally expensive, has proved effective for deep
feedforward networks and some classes of recurrent networks (the most pop-
ular being LSTMs), which today typically consist of hundreds of millions of
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trainable parameters®.

In SORNSs, as described in previous sessions, learning happens in two
stages. First, the main reservoir weights are updated as a consequence of
biologically inspired plasticity mechanisms (or self-organization), which are
activity or topology dependent. Second, a readout layer is trained in a su-
pervised manner to identify the internal state of the reservoir, and the final
result is used for classification or generative tasks. Both learning stages
have important differences compared to backpropagation. Self-organization
is mostly a local learning rule that does not depend on the estimation of gen-
eral loss functions but on neighboring neurons (STPD) or network activity
(IP). Therefore, self-organization is inherently an unsupervised learning rule,
which encodes input pattern information into the reservoir’s activity and
weights. Readout layer training, a supervised learning rule, consists of a sin-
gle classifier layer, requiring simpler algorithms than backpropagation, such
as the pseudo-inverse matrix method or logistic regression. As in the case
of more general reservoir computing models, even though computationally
faster than backpropagation, these unsupervised and supervised combined
methods excel in a different class of problems when compared to deep neural
networks®.

As recurrent neural networks, SORNs are constructed aiming for spatio-
temporal learning tasks, which makes a direct performance comparison with
LSTMs possible. We discuss this comparison in more detail for a sentence
learning and generation task in Chapter 5 but emphasize that our choice for
the use of SORNs is motivated by their biological inspiration rather than
performance. Although LSTMs have become the common choice for those
tasks, they rely on a very different, more complex architecture than self-
organized reservoirs. By studying how self-organization affects a reservoir’s
learning capacity in those tasks, we also provide insights into how reservoirs

5In practice, due to the huge size, one of the main issues with backpropagation algo-
rithms is the gradient vanishing (or exploding) problem, which results from the propaga-
tion of very small (or very large) gradients though many network layers (Bengio et al.,
1994). Different architectures have proposed different methods for avoiding or minimiz-
ing this problem, but those are not discussed in this thesis as they are not applicable to
reservoir computing or SORNs.

6Deep learning methods have become more popular than reservoir computing today
partially due to the nature of the supervised learning tasks they excel at, such as im-
age classification (Krizhevsky et al., 2012), object detection (Ren et al., 2015), speech
recognition (Graves et al., 2013), among others, which take advantage of huge available
datasets.
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could prove useful for improving current spatio-temporal learning techniques
and (potentially) deep recurrent networks architectures, which remains a
topic of ongoing research.

3.5 Discussion

We have presented here the SORNs, a family of recurrent neural networks
that relies on biologically inspired plasticity mechanisms for self-organization
and learning. We described in detail the two main variants of the models,
namely the SORNy, (Lazar et al., 2009) and the SORNy (Zheng et al., 2013),
which are employed to model self-organization towards criticality, criticality
signatures and spatio-temporal learning tasks in the remaining chapters.

Studying self-organization towards criticality with SORNs has a number
of advantages. First, compared to most neural network models, the SORN
is a relatively simple one: it has a small number of free parameters to tune,
which makes it possible to pinpoint which mechanisms contribute to each
observed phenomenon. At the same time, we avoid possible overfitting prob-
lems, as complex models with multiple degrees of freedom are more prone to
reproduce any desired result with the right set of parameters. Second, SORNs
were initially developed as improved reservoirs for spatio-temporal learning
tasks, instead of being models previously tuned towards critical dynamics.
By identifying criticality signatures in such systems, we highlight the fact
that criticality might be an important state towards which self-organizing
models with useful learning abilities converge, rather than an artificially cho-
sen state. Third, SORNs stand today between artificial and biological neural
networks, with important results in both fields, as described in the previ-
ous sections. Critically in neural networks, as a comparison, stands in a
similar situation, being a dynamical state with maximal information pro-
cessing capabilities (Shew and Plenz, 2013) whose signatures are commonly
observed in many biological systems (Beggs and Timme, 2012). Last, the
plasticity mechanisms and architecture of SORNs allow for insights on brain
circuits and application for spatio-temporal learning tasks, a combination
that would be impossible with many other models, including more detailed
biological networks or deep neural networks.

We often referred to the biological inspiration of synaptic plasticity mech-
anisms during this chapter, therefore it is important to mention that SORNs
can be thought as abstract brain circuits and do not necessarily represent
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what happens in all layers of different brain regions. Instead of simulating
a particular brain region (or the whole brain), we rather focus on general
self-organization mechanisms and aim to model criticality and information
processing at a network level. As criticality results from the collective be-
havior of a system and the interaction among its components, such approach
is commonly adopted by network models with critical dynamics (e.g., Beggs
and Plenz (2003); de Arcangelis et al. (2006); Levina et al. (2007); Poil et al.
(2012)), which have various degrees of biological motivation. Certainly, the
model’s plasticity mechanisms are based on experimental data measured in
particular brain regions, which can be used to limit its scope. The ratio
between excitatory and inhibitory neurons (5 : 1) is based on data from
the sensory cortex (Okun and Lampl, 2008) and hippocampus (Atallah and
Scanziani, 2009), as are the studies that motivated the SORN’s plasticity
mechanisms (Markram et al., 1997; Turrigiano et al., 1998; Bi and Poo, 1998;
Haas et al., 2006; Johansen-Berg, 2007; Turrigiano, 2011; Vogels et al., 2013).
The addition of neuronal noise, accounting for synaptic failure and inputs
from other brain areas, is also compatible with cortical data: the SORN
reservoir can be seen as a one layer recurrent neural network, in comparison,
for example, to single layers from the visual cortex. Last, the experimental
data we aim to reproduce, power-law distributed bursts of activity, have been
widely observed in cortical cultures (Beggs and Plenz, 2003; Friedman et al.,
2012; Priesemann et al., 2014; Shew et al., 2015), even in blood-oxygen-level-
dependent (BOLD) measurements (Tagliazucchi et al., 2012; Shriki et al.,
2013), and recently in the whole brain dynamics (Ponce-Alvarez et al., 2018).
Therefore, even though SORN’s draw inspiration mainly from dynamics in
the cortex and hippocampus, they may provide more general insights.

In summary, SORNs possess properties that are essential for investigat-
ing the interaction between experimentally observed criticality signatures and
learning abilities. Being relatively simple models, they allow for a system-
atic analysis of their plasticity mechanisms while maintaining useful learning
abilities. Naturally, these models might become more general and/or be
improved in the future, either by new experimental findings or more pow-
erful learning algorithms, given that they are simple, but not simpler than
necessary for our study of abstract circuits.



Chapter 4

Criticality meets learning:
neuronal avalanches in
spontaneous and evoked
activity

If you try and take a cat apart
to see how it works, the first
thing you have on your hands is
a non-working cat.

Douglas N. Adams

The brain does a surprisingly good job controlling its overall activity
level. Such a task is particularly difficult as it requires precise tuning of a
huge number of parameters in order to keep the whole system in a healthy
and behavioral useful dynamics (Beggs and Timme, 2012). This achievement
is even more impressive due to the wide range of different input intensities the
brain is capable of processing and learning from without losing its stability.
To cope with such variety, specific adaptation mechanisms have evolved to
maintain the activity bounded in a healthy regime, avoiding epileptic seizures
and long quiescent periods. But how do these mechanisms work? Are there
any other functional roles of this particular, critical, activity state? In this
chapter, we use self-organizing recurrent neural networks (SORNSs) to propose
a novel link between criticality signatures (in the form neuronal avalanches)

57
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and learning, an essential brain function. We provide an extended analysis
of different mechanisms and conditions in which this link holds, by studying
both spontaneous and evoked activity cases. Most results presented here have
been previously published and can be found in our recent paper (Del Papa
et al., 2017), while some discussions also appear in Del Papa et al. (2019).
Parts of the text of this chapter have also been taken from the same publi-
cations.

4.1 Neuronal avalanches and criticality in neu-
ral circuits

In theoretical neuroscience, a popular hypothesis claims that biological neu-
ral circuits operate near a special state, which is capable of maintaining long
term stable dynamics (Beggs and Plenz, 2003). This hypothesis, discussed
in more detail in Chapter 2, is today commonly known as the Critical Brain
Hypothesis (Beggs and Timme, 2012), as the dynamical state is poised at
a phase transition point, between a subcritical regime, in which the activity
decays and most system units end up in a quiescent state, and a super-
critical regime, in which activity is amplified over time and most units be-
come constantly active. In order to always operate near such a state, brain
circuits would require continuous and precisely tuned adaptation (or self-
organization) mechanisms, as many different input conditions and intensities
might quickly cause shifts in the current dynamical regime and destabilize
the whole network. Thus, the study of criticality in the brain must not only
address the question of whether the brain is critical, but also how it remains
critical in an ever-changing environment (Haimovici et al., 2013; Plenz, 2013).

Investigating criticality in the brain, as expected for any biological com-
plex system, is far from an easy task. In typical physical dynamical systems,
a critical point can be measured by considering an order parameter, which
measures how a given system property varies as a function of a control pa-
rameter, tuned by some outer mechanism. In general, small changes in a
control parameter result in small changes in an order parameter; criticality
occurs at phase transition points!, where sudden fluctuations appear and
different, unique macroscopic properties might emerge. Such a state also

Note, furthermore, that phase transitions can be of first or second order (see section
2.1.1).
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commonly marks a shift from ordered to disordered dynamics, as in the clas-
sical Ising model example. Neural circuits, however, have no self-evident
order or control parameters, as myriad interactions happen continuously be-
tween different types of neurons while input is received from varied sources.
The relationship between macroscopic measurable properties and microscopic
mechanisms is still not fully modeled or even understood?. Macroscopic
measurable properties linked to a critical brain dynamics, in analogy to the
magnetization in the Ising model, are currently considered open questions,
although healthy, stable brain dynamics (Meisel et al., 2012) and maximal in-
formation properties (Shew et al., 2011; Shew and Plenz, 2013) are commonly
proposed as observable quantities. Interestingly, and maybe expectedly, it is
nearly impossible to systematically tune a control parameter in living neural
circuits, emphasizing the need for other forms of criticality detection and
analysis.

Given all the challenges described above, how can criticality be actually
measured in the brain? As seen in Chapter 2, based on experiments with toy
models and theoretical arguments (Chialvo, 2010; Beggs and Timme, 2012;
Hesse and Gross, 2014), critical systems are expected to show chaotic behav-
ior and scale free properties for some particular quantities such as dynamic
correlation coefficients and local domain sizes. In particular, for some classes
of self-organizing dynamical systems, those scale free properties appear in the
size and duration of perturbation events, as observed in the Abelian Sand-
pile Model, which describes theoretical piles® of sand (Bak et al., 1987). As
an analogy, similar signatures of criticality can be sought in other complex
systems and point to, but not prove, dynamics near a critical point. Typical
criticality signatures relate to chaotic behavior, including response to pertur-
bations or Lyapunov exponents approximately equal to zero, and to scale free
properties, including power-law distributions of size and duration of activity
or perturbation events. In the case of neural circuits, the second of these sig-
natures, power-laws of activity distributions, can be more easily (or at least

?In fact, even relatively “simple” quantities such as the number of neurons in the
brain for different species have only recently been measured (Herculano-Houzel, 2009).
Although very complex brain models are currently under development (Markram, 2006),
their applicability is subject to intense debate, since very complicated models with a huge
number of free parameters can, in principle, fit any desired system.

3Tt is interesting to highlight again that such theoretical models only hold for relatively
small experimental piles of sand, breaking down in the limit of large real ones (Held et al.,
1990).
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less problematically) inferred from activity measurements. In fact, power-law
distributed bursts of neural activity have become the most common result
suggesting criticality in the brain, on which the critical brain hypothesis re-
lies. Those bursts of activity have been named neuronal avalanches, in an
analogy to critical sandpile models and sand avalanches, and have gained
popularity in the last decade as criticality signatures, after the first convinc-
ing evidence that they can be found in neural populations (Beggs and Plenz
(2003); Fig. 4.1).

Similarly to the general criticality ideas, the proposal of systems that tune
themselves, or self-organize, to a critical state also started in physics and was
later borrowed for the description of neural circuits after neuronal avalanches
were observed (Hesse and Gross, 2014). The formalization of the main theo-
retical framework was proposed many years earlier than the measurement of
neuronal avalanches, and was known as self-organized criticality (SOC; Bak
et al. (1988)). SOC in networks has been first demonstrated to occur by
simple rewiring rules (Bornholdt and Rohlf, 2000), which raised the question
of whether a similar essential process could occur in complex neural networks
as a result of more sophisticated and realistic self-organization rules. Years
later, measurements of neural activity suggested that such hypothesis had at
least some experimental backing: multielectrode array measurements of local
field potentials (LFPs) showed that bursts of activity in organotypic cultures
of slices of rat cortex have power-law distributed sizes (the number of active
electrodes, Fig. 4.1A) and potentials (the sum of LEPs, Fig. 4.1B; Beggs and
Plenz (2003)). Moreover, such power-laws showed an exponent of —1.5 for
a range of time bin sizes (Fig. 4.1C), which was compatible with theoretical
predictions of critical toy systems (Harris, 2002). This finding was the first
of many studies that confirmed the existence of neuronal avalanches in many
types of neural activity measurements, in different brain regions, including
both in-vitro and in-vivo experimental setups. These experimental results
are the basis for our investigation of neuronal avalanches as criticality signa-
tures in SORNs. Therefore, we describe the most important studies in more
detail in the next sections, before presenting our main results.
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Figure 4.1: Neuronal avalanches in cortical circuits, from Beggs and
Plenz (2003). (A) Power-law distributions for avalanche sizes, based on the
number of activated electrodes, for different time bins. « shows the exponent
for each time bin, and the cut-off shows the maximum number of electrodes
that recorded activity in the experiment (n. = 60). (B) Probability distri-
bution of avalanche sizes based on summed LFPs from each electrode, for
different time bins. (C) Time binning procedure for avalanche recording.
Raster plot (top) shows bursts of activity, which could be divided in time
bins of different length (middle), representing different electrodes in a square
multielectrode array (bottom). Figures have been reproduced ((A) and (C))
or adapted ((B)) with permission from Beggs and Plenz (2003).



62 CHAPTER 4. CRITICALITY MEETS LEARNING

4.1.1 Power-laws and criticality signatures in experi-
mental data

After the initial finding of neuronal avalanches in cultures of rat cortical
slices (Beggs and Plenz, 2003), many studies sought further experimental ev-
idence to support or undermine the critical brain hypothesis. Following the
initial LFP measurements in cortical networks, power-laws have been ob-
served in very different in-vitro circuits, such as cultures of cortex (Friedman
et al., 2012; Lombardi et al., 2012; Yang et al., 2012), ganglia and hippocam-
pus (Mazzoni et al., 2007), dissociated rat cortical neurons (Pasquale et al.,
2008), and developing cortical networks (Gireesh and Plenz, 2008; Tetzlaff
et al., 2010), supporting the hypothesis that neuronal avalanches are ubiqui-
tous in neural circuits, independently of their architecture and/or function.
Furthermore, many of these measurements reproduced other characteristic
properties of SOC systems (see Fig. 4.2 for a selection of these results), such
as power-law exponents close to the theoretical expected value of —1.5 (up
to a cut-off resulting from the finite size of the systems) for event size distri-
butions (Harris, 2002), a fixed ratio between the exponents of power-laws for
event size and duration (Sethna et al., 2001), and the scaling of avalanche
shapes (Kuntz and Sethna, 2000). Based on these results, the critical brain
hypothesis has gained momentum and support, although important criti-
cisms should be taken into consideration when discussing the validity of the
aforementioned experimental results (see next sections and the discussion at
the end of this chapter).

Furthermore, different biological mechanisms have been found to cause
in-vitro networks to deviate from a state in which criticality signatures ap-
pear. For instance, alteration of GABA, neuronal receptors in order to
decrease inhibition leads to a supercritical network state (Beggs and Plenz,
2003; Mazzoni et al., 2007; Gireesh and Plenz, 2008; Pasquale et al., 2008;
Yang et al., 2012), while an increase in the relative number of inhibitory
neurons yields subcritical dynamics (Chen et al., 2010). Excitation, how-
ever, acts in an opposite manner: a decrease in excitation by modification of
AMPA (Shew et al., 2009; Yang et al., 2012) or NMDA (Mazzoni et al., 2007,
Gireesh and Plenz, 2008) receptors results in avalanche distributions that are
compatible with subcritical dynamics. Thus, in-vitro systems showed that
the balance between excitation and inhibition is essential for the mainte-
nance of power-law distributed neuronal avalanches, a potential candidate
for a control parameter, and might aid the emergence of functional brain
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Figure 4.2: Experimental evidence of criticality signatures in various
circuits. (A), (B) (Pasquale et al., 2008): neuronal avalanches for cultures
of dissociated rat cortical neurons and respective power-law fits; (A) size dis-
tribution (with slope close to —1.5); (B) duration distribution. (C), (D), (E),
(F), (G) (Friedman et al., 2012): neuronal avalanches for a single sample of
cortical culture with individual neuron level recordings; (C) size distribution
(power-law with exponent 7); (D) duration distribution (exponent «); (E)
theoretical prediction for a system near criticality and experimental results
for the exponents ratio (o« —1)/(7 — 1). (F) Example of avalanche shapes in
terms of average number of firings (size) as a function of duration; (G) the
collapsed avalanche shapes. Figures reproduced with permission from the
respective manuscripts. (C)-(G): Reprinted figure with permission from Fried-
man, N. et al. (2012): Universal critical dynamics in high resolution neuronal
avalanche data. Physical review letters, 108(20):208102. Copyright 2012 by the
American Physical Society.
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networks (Hellyer et al., 2016).

In-vivo results, however, tell a slightly different and more complex story
(see Fig. 4.3 for a graphical summary of this story). On the one hand, ev-
idence of neuronal avalanches has been found in coarse measures of cortical
activity in different animals, such as negative LFP in awake monkeys (Peter-
mann et al., 2009), voltage imaging in mice after (but not during) anes-
thesia (Scott et al., 2014), and brain blood oxygenated level dependent
(BOLD) signals, functional MRI, and magnetoencephalography (MEG) in
humans (Kitzbichler et al., 2009; Poil et al., 2012; Tagliazucchi et al., 2012;
Shriki et al., 2013). On the other hand, spiking activity in awake animals
has failed to show criticality signatures. First, in the cat cortex, not only
power-laws are absent, but the 1/f frequency scaling of the power-spectra,
another criticality signature (see Chapter 2), is not consistent with the ex-
pected curve for critical states (Bedard et al., 2006). Second, avalanche anal-
ysis in cats, monkeys, and humans showed no power-laws (Dehghani et al.,
2012; Priesemann et al., 2013) and suggested a slightly subcritical regime in-
stead (Priesemann et al., 2014). Such disparity implied that healthy neural
networks might be able to self-organize towards different dynamical states
with potentially different functions, depending on the overall network state.
Thus, a better understating of the mechanisms underlying this state de-
pendent self-organization could, for a start, shed light on these seemingly
contradictory experimental results, and potentially explain the observed dis-
crepancies.

Interestingly, a given animal behavioral state also seems to have an effect
on its brain dynamical state (Hahn et al., 2017). Although power-laws seem
consistent across the sleep-wake cycle and during anesthesia (except for spik-
ing avalanches (Dehghani et al., 2012)), important differences have been ob-
served in rats (Ribeiro et al., 2010), cats, monkeys (Priesemann et al., 2014)
and humans (Priesemann et al., 2013). In anesthetized rats, for example,
other signatures of criticality, such as the 1/f spectra scaling, collapse, while
they can be observed in the same animals when freely-behaving (Ribeiro
et al., 2010). Furthermore, the average size of avalanches has been found to
differ among slow wave sleep, wakefulness, and rapid eye movement (from
large to small, respectively; Priesemann et al. (2013)). Such differences could
be the result of different levels of external stimulation to the system, which
varies for each behavioral state, or even an indication that brain circuits
self-organize towards different dynamical states for different conditions. The
latter hypothesis has some experimental backing: deviations from criticality
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Figure 4.3: Avalanches in-vivo. (A) (Tagliazucchi et al., 2012): avalanche
size (S) and duration (L) distributions for different thresholds of detec-
tion (colors) of BOLD activity in humans. (B) (Petermann et al., 2009):
avalanche size distributions (negative LFPs) in awake monkeys for different
time bins (not observed with shuffled times). (C) (Scott et al., 2014): ex-
amples of avalanche size distributions in voltage imaging of mouse cortex
recovering from anesthesia. Power-laws break down for anesthetized animals
(blue), but are recovered when they become fully awake (red). (D), (E),
(F) (Priesemann et al., 2014): avalanche size distributions in the hippocam-
pus of awake rat (D), visual cortex of anesthetized cat (E), and prefrontal
cortex of awake monkey (F). They all lack power-laws independently of the
time bin size, resembling instead a subcritical model. All figures have been
reproduced or adapted (C) with permission from the respective manuscripts.
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are related to certain pathologies, as criticality signatures break down during
epileptic seizures when the system resembles supercriticality instead (Meisel
et al., 2012). Therefore, brain circuits would benefit best from a near crit-
ical, but slightly subcritical, dynamics, as they would then avoid small de-
viations to epileptic regimes while keeping some of criticality’s functional
gains (Priesemann et al., 2014; Massobrio et al., 2015).

The hypothesis that different levels of external stimulation are at least
partially responsible for the different observed dynamical states, should not,
however, be ignored. While they receive a larger range of external inputs?*,
awake, freely-behaving animals lack the typical separation of time scales ex-
pected for SOC systems (Bak et al. (1988); see also Chapter 2), and ac-
tivity measurements might only be able to detect combined and entangled
avalanches, which lack the expected “pure” power-law distributions (Priese-
mann et al., 2014). Additionally, since external input is continuously re-
ceived, the brain might never precisely reach a critical point (Bonachela
et al., 2010) but operate nearby instead®, in an extended critical-like region
corresponding to a Griffiths phase (Moretti and Munoz, 2013). Note that
this argument does not invalidate the hypothesis that neural circuits operate
at a slightly subcritical regime to avoid epilepsy, but can be seen simply as
a complementary explanation for all experimental results mentioned here so
far. The evolution of brain adaptation mechanisms might have resulted in a
network system that, under a wide range of external inputs, self-organizes to
operate close to criticality while avoiding dangerous supercritical regimes.

4.1.2 FEzx-vivo experiments: the role of external input

Neural circuits in awake, behaving animals typically receive a large number
of different external inputs (i.e., sensory inputs). Given the importance of
those inputs to the adaptation of critical and near critical dynamical systems,
experiments have compared how neural networks behave before, during, and
after the onset of external stimulation, by measuring ex-vivo activity (Shew
et al., 2015; Clawson et al., 2017), and suggested that sensory adaptation

“Incidentally, simple artificial networks tuned to criticality have optimal dynamical
range, i.e., they can detect and process information from a large range of input intensi-
ties (Kinouchi and Copelli, 2006).

5The near critical state in non-conserving systems has been called apparent criticality or
self-organized quasi-criticality (Bonachela and Munoz, 2009), in contrast to true criticality.
In this thesis, we opt for the near criticality nomenclature, for simplicity.
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Figure 4.4: Adaptation tunes cortical dynamics back towards a crit-
ical dynamics after short transient (Clawson et al., 2017). (A) Ex-
perimental setup for ex-vivo recording in the turtle visual cortex (whole brain
brain plus eyes). Movies were projected onto the retina while a microelec-
trode array (MEA) recorded LEPs. (B) Avalanche size distributions for the
transient up to 1 second after input onset (blue) and after the readaptation
period (green — green lines show the 5% - 95% probability percentiles for
samples drawn from a pure power-law). The transient distribution exhibits a
peak for large avalanches, which is a typical property of supercritical systems.
Figures reproduced with permission from Clawson et al. (2017).

itself is a self-organizing mechanism responsible for maintaining criticality in
the cortex. In particular, LFP and spike recordings were made in the turtle
ex-vivo brain (whole brain plus eyes), while visual input in the form of a movie
was projected into the retina of the preparations (Fig. 4.4A). The results
supported the hypothesis of adaptation towards a critical regime: although
criticality signatures are lost shortly after input onset, this transient is quickly
overcome, and the power-law distributed neuronal avalanches return in the
next few hundreds of milliseconds (Fig. 4.4B).

The transient period, although short, revealed an interesting system prop-
erty. The size of avalanches almost immediately increased (see the peak at
the blue distribution in Fig. 4.4B), as more activity was present in the cor-
tical network, a feature typically observed in supercritical systems. Thus, it
was possible to conclude from those studies that internal cortical mechanisms
acted to bring activity down quickly, possibly to keep it constrained to a near
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critical, healthy regime, as discussed in the previous section. Furthermore,
an increase in the stimulus discrimination was detected only for regimes in
which the power-laws appeared, even though stimulus detection was slightly
reduced (Clawson et al., 2017). This result, combined with experimental in-
dications that sensory dynamic range is maximized near criticality in the rat
whisker system (Gautam et al., 2015), offered further evidence that impor-
tant brain functions are improved, or even optimized, at criticality.

4.1.3 Modeling neuronal avalanches and criticality

Measuring the improvement of functions in brain circuits for a given dy-
namical regime is not an easy task. Although the network dynamics can be
controlled, for instance, via the onset of external input (Gautam et al., 2015;
Shew et al., 2015) or by balancing the amount of excitation and inhibition
in the network (Haldeman and Beggs, 2005; Beggs and Timme, 2012; Hesse
and Gross, 2014), those approaches can be applied in-vitro, while most in-
teresting high-level functions can only be measured (if at all) in in-vivo, in
awake animals. Additionally, as discussed previously, investigating criticality
typically requires the precise tuning and measurement of parameters that are
either extremely costly, difficult, or even impossible in living animals. For
these and other reasons®, modeling neuronal avalanches has become an im-
portant tool to investigate what would the brain, indeed, gain by operating
exactly at a critical point, and how this can be achieved with some biological
constraints.

In neural network models, critical dynamics has been widely proposed
to arise from ongoing synaptic plasticity action. Power-law distributions
of avalanche sizes have been observed in networks of different complexity
and plasticity mechanics, ranging from stochastic spiking neurons (Brochini
et al., 2016) and simple activity-dependent dynamic synapses (de Arcange-
lis et al., 2006; Levina et al., 2007, 2009; de Andrade Costa et al., 2015)
to spike-timing-dependent plasticity (STDP) (Meisel and Gross, 2009; Uhlig
et al., 2013) and a combination of short and long-term plasticity mecha-

50f course, modeling a physical system also results in important insights and many
useful ideas about how the real system behaves, given that the model is kept simple
but good enough. Naturally, this approach is widely accepted in theoretical physics, but
less obvious in the study of complex biological systems, where myriad different entities
continuously interact. A discussion about how simple models help to improve science in
general is, however interesting, beyond the scope of this thesis.
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nisms (Stepp et al., 2015). Interestingly, SOC and other similar dynami-
cal states (for example, a “quasicritical” dynamics near a non-equilibrium,
Widom line (Williams-Garcia et al., 2014)) can be achieved by the same
networks with different tuning conditions and parameters. As mentioned
in the previous paragraphs, a popular control parameter is the overall ex-
citatory and inhibitory balance (Shew et al., 2011; Lombardi et al., 2012),
a tuning mechanism that has been widely experimentally observed (Beggs
and Timme, 2012; Hesse and Gross, 2014). In particular, the level of inhibi-
tion seems to be determinant for achieving criticality in randomly connected
networks (Neto et al., 2017). Most of these systems and networks have,
therefore, been designed and/or tuned to show criticality signatures or criti-
cal points, but a unified theory linking self-organization mechanisms to their
biologically relevant functions, such as learning and memory, is still to be
developed (Haimovici et al., 2013; Plenz, 2013). All these models, however,
raise an important argument that should not be left unmentioned: the critical
brain hypothesis is, even if not verified, at least plausible.

As one would expect, simpler models are more prone to reproduce criti-
cality signatures not only because they are easier to tune, but because crit-
ical dynamics is more evident in systems with simpler dynamics due to the
separation of time scales between input, internal activity, and adaptation
mechanisms, as in the case of the original sandpile model (Bak et al., 1987)
or branching processes (Beggs and Plenz, 2003). While the exact physical
and biological mechanisms which the brain employs to arrive at and main-
tain criticality during learning and development remain unknown, insights
have been gained by looking at a variety of models. After those toy mod-
els, most numerical studies simulate a network of identical units or neurons,
whose activity is regulated by different adaptation rules. Popular choices
are activity dependent and/or relative spike timing rules (Hesse and Gross,
2014), in the form of activity-dependent rewiring (Bornholdt and Rohlf, 2000;
Tetzlaff et al., 2010), Hebbian learning (de Arcangelis et al., 2006) (but see
also anti-Hebbian local learning rules (Magnasco et al., 2009)), short-term
plasticity (Millman et al., 2010; Levina et al., 2007, 2009), and, on the more
biologically realistic side, STDP (Shin and Kim, 2006; Meisel and Gross,
2009; Rubinov et al., 2011). Given the relatively large number of simpli-
fied mechanisms resulting in criticality, the latter seems to be a fundamental
property of self-organization mechanics rather than a simple consequence of
particular implementation details, suggesting it is a robust process.

The same robustness argument can, in addition, be applied to the type
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of neuron these models are built with. From systems composed of point,
two state neurons inspired in simple branching processes (Beggs and Plenz,
2003) to leaky integrate-and-fire (LIF; de Arcangelis et al. (2006); Meisel and
Gross (2009); Rubinov et al. (2011)) and Izhikevich neurons (Teixeira and
Shanahan, 2015), and even one example of Hodgkin-Huxley neurons (Shin
and Kim, 2006), criticality signatures and scale-free dynamics have been
shown to appear. Differently from the case of self-organization mechanisms,
however, the computational power can often be a limiting factor for the choice
of neuron model: distributions of neuronal avalanches, for example, require
a huge number of simulation time steps to be observed, and very complex
neuron models are typically impractical. As criticality in neural networks is
a dynamical state, a true critical point should be relatively independent of
the details of the system’s units, which explains why authors typically opt to
study its properties and functions with more abstract and computationally
tractable neuron models.

As previously mentioned, although criticality can appear in very simple
networks, it is important not only to understand how it appears in the bio-
logical brain, but also why would be advantageous for the brain to maintain
or not such state. Even though the balance between excitation and inhibi-
tion seems a very plausible control parameter to explain the first question,
it not only has been shown not to be a necessary condition in artificial crit-
ical networks (Jost and Kolwankar, 2009) but also has a poorly understood
functional role (Meisel et al., 2012; Lombardi et al., 2012; Hesse and Gross,
2014). Computational models can shed light into this problem via yet another
approach: by investigating which biologically useful functions are improved
in critical systems. Given that self-organization mechanisms in the brain
evolved to optimize information processing, the hypothesis of criticality in
the brain can only hold true if a critical state is, indeed, better than other
possibilities when processing information. Thus, before addressing the major
criticisms of the critical brain hypothesis and finally present our results with
SORN models, we discuss which information processing abilities have been
shown to be optimized (or maximized) in critical networks.

4.1.4 Maximal information processing

Intuitively, an information processing system performs best when avoiding
two extreme scenarios. First, evidently, a circuit should not have a “null”
dynamics, i.e., dynamical regimes in which there is no activity at all should
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be avoided as they do not change over time, and thus do not convey any infor-
mation. Second, a system composed of always active, or randomly activated,
units has similar shortcomings, as no input information can be encoded. Fur-
thermore, experimental recordings have repeatedly shown that the amount
of activity in the brain at any single time point (or time bin) is rather limited
and only a small number of neurons are simultaneously active’. Thus, there
must be at least one particular middle level of activity that improves, or
ideally maximizes, information encoding compared to extreme, impractical
scenarios.

Ultimately, what are the benefits for neural circuits to operate near criti-
cality? So far, we have been mostly using a generic reference to “information
processing” or “encoding” when referring to its (supposedly) useful proper-
ties, but it is important to be more precise when describing them. In fact,
many studies have shown that particular quantities improve in critical neu-
ral networks when compared to the same networks tuned to other dynamical
states, and we briefly discuss some of them in this section (for a complete
review, but lacking the most recent results, see Shew and Plenz (2013)).

Dynamical range Dynamical range® is the range of distinguishable stim-
ulus intensities by the activity, or population response, of a system. This
property is extremely important, for example, for cortical systems, which
receive and initially process external inputs. On the one hand, a subcritical
system is capable of responding to weak stimuli due to activity propagation
among neurons. Since this activity propagation increases as the system ap-
proaches supercriticality, stronger stimuli can also be encoded. On the other
hand, a supercritical system gets easily saturated and should not be able to
distinguish between large stimuli. This property was verified in externally
driven branching processes (Kinouchi and Copelli, 2006), by tuning them
to and away from criticality via their branching parameter and measuring

"Typical neuronal firing rates depend on the particular animal, particular brain region,
and are not fixed even for a single neuron under a particular repetitive task (Hartmann
et al., 2015). In the in-vivo cortex, for example, neurons are estimated to fire with a
frequency that varies from less than one Hertz to tens of Hertz (Roxin et al., 2011). As
one spike duration is in the scale of milliseconds (but shows many variations depending
on neuron type, synapse type, among other factors; Zhang and Linden (2003); Turrigiano
(2011)), one may immediately see that neurons are not always active.

8 Although dynamical range is the original nomenclature (Kinouchi and Copelli, 2006),
which we follow here, this quantity is also called dynamic range in the literature.
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their response ratio between strong and weak inputs (Fig. 4.5A). Interest-
ingly, this is one of the rare functionalities that have also been suggested in
experiments: by chemically controlling the balance between excitation and
inhibition in cortical cultures (and assuming that intact slices are in a criti-
cal state because they show power-laws), a similar measure of response ratio
was maximized at criticality (Shew et al., 2009). Although their electric
stimulation was systematically varied, this particular experiment measured
criticality as a deviation from a pure power-law distribution of avalanche
sizes, which made their conclusions dependent of the avalanche definition of
criticality”. Nonetheless, there seems to be a link between the excitation and
inhibition balance and optimal dynamical range in cortical networks.

Mutual information between input and response. Mutual informa-
tion (Dayan and Abbott, 2001) quantifies the ability of a network to en-
code and transmit information about stimuli to its neural response. The
more a system is capable of transmitting useful information about inputs,
the better it is at perceiving, and possibly understanding, complex environ-
ments. This property is maximized at criticality both in cellular automata (Li
et al., 1990) and between different neurons in neural networks (Greenfield and
Lecar, 2001). Furthermore, learning and plasticity rules aimed at maximiz-
ing mutual information resulted in networks that have been shown to display
both neuronal avalanches (Tanaka et al., 2009) and dynamics near critical-
ity (Shriki, 2003). Last, on the experimental side, the encoding of amplitude
patterns of electrical stimuli in cortical in-vitro cultures is maximal for crit-
ical states (Shew et al. (2011); Fig. 4.5B). As in the case of the dynamical
range, cortical slices were tuned by the chemical control of the excitatory and
inhibitory synapses, and the distance to criticality was measured based on
the deviation from power-law distributed neuronal avalanches. Therefore, the
same considerations apply, and this can only be considered an experimental
observation of maximal mutual information in case the avalanches, indeed,
are proof that these circuits were in a critical state. A particularly important
application of mutual information in neural networks is their capacity of rep-
resenting visual inputs (Shriki and Yellin, 2016). After being trained with
visual inputs, networks should converge to a representational state, which

9For a discussion about the possibility of different critical states, one of which not nec-
essarily distinguishable by power-law distributed neuronal avalanches, see the last section
and discussion of this chapter.
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Figure 4.5: Benefits of critical systems for information processing.
(A) (Kinouchi and Copelli, 2006): dynamical range (A, a measure of the re-
sponse ratio between strong and weak inputs) is optimal for a critical branch-
ing parameter (o) in externally driven branching processes. See the original
paper for details on the estimation of A. (B), (C) (Shew et al., 2011): (B)
mutual information, the mutual entropy between patterns of electrical stim-
uli and recorded response, and information capacity (entropy) are maximal
for networks exhibiting power-law distributed neuronal avalanches (k ~ 1,
where k is a measure of the deviation from power-laws) for different recording
electrode array geometries and recording times. See the original paper for
details on the estimation of the mutual entropy. (D) (Haldeman and Beggs,
2005): information capacity for branching processes (branching parameter
o) is maximal during criticality (o = 1), for big enough systems (/N nodes).
The number of metastable states is a measurement of the repeating activ-
ity patterns in the system (again, see the original paper for numerical and
analytical details). All figures were reproduced with permission from the
respective manuscripts. (D): Reprinted figure with permission from Haldeman,
C. and Beggs, J. M: (2005). Critical branching captures activity in living neural

networks and maximizes the number of metastable states. Physical review letters,
94(5):058101. Copyright 2005 by the American Physical Society.
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can be more or less accurate, and from which the input can be, in the ideal
case, reconstructed accurately. Remarkably, this convergence becomes much
slower during phase transition points, in a process known as critical slowing
down (Scheffer et al., 2009). By training a network in order to maximize the
mutual information between input and output, a recent study (Shriki and
Yellin, 2016) showed that both visual input orientation representation (in
terms of a population vector (Georgopoulos et al., 1989)) and convergence
time undergo a phase transition when the system is tuned, via adjustment of
weights, to criticality. Although this phase transition has been shown only
in a model trained with gradient descent (thus not biologically realistic), it
suggested that those properties might generalize to other networks also tuned
towards criticality, and, in case the critical brain hypothesis holds, the whole
brain.

Information capacity. Information capacity measures the number of pat-
terns that can be stored in a network’s activity. In other words, it is the
entropy (Shannon, 1948) of the system. Many neural networks have been
shown to have maximal information capacity at criticality, by measurements
of the number of activity patterns in branching processes (Haldeman and
Beggs (2005); Fig. 4.5D), networks of boolean neurons (i.e., directed graphs;
R&mo et al. (2007)), and even cortical slices (Stewart and Plenz, 2008). In-
terestingly, by defining activity patterns based on electrode recordings, the
information capacity is also maximized when power-law distributed neuronal
avalanches appear (Stewart and Plenz (2008); Shew et al. (2011); Fig. 4.5C).
Last, cortical sensory circuits seem to optimize their performance by maxi-
mizing their response entropy with respect to a given input probability dis-
tribution (Dan et al., 1996; Rieke and Warland, 1999). This adds one more
experimental argument to support that a state which maximizes information
capacity is a desired and possibly the best “choice” of dynamical state for
neural circuits.

Memory capacity. A last, but essential, information processing property
of neural networks is their fading memory (sometimes referred to as work-
ing memory): their ability to retain information about recent inputs in their
activity (Maass et al., 2002). Such property is a determinant for a net-
work’s total memory capacity, which might have a direct link to its learning
abilities. Interestingly, the fading memory capacity scales approximately log-
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arithmically with the network size for systems tuned to criticality, but slower
for other systems (Bertschinger and Natschldger, 2004). Notably, however,
such finding has only been observed for randomly connected, static networks,
for which no study has reported neuronal avalanches or other experimen-
tally observed criticality signatures. A potential co-occurrence of neuronal
avalanches and the logarithmic scaling of the fading memory capacity in the
same system might shed light on the connection between different “proper-
ties” (or possibly types) of criticality. We further discuss those properties,
their consequences, and explore the applications of systems with improved
fading memory capacities in Chapter 5.

Given that criticality seems to improve so many important brain func-
tions, any deviation from a critical dynamics might result in potential brain
dysfunctions. As described before, epileptic regimes carry signatures of su-
percriticality (Meisel et al., 2012), which arguably damage most, if not all,
the information processing abilities described here. Additionally, neural cir-
cuits operating far from a critical regime might result in abnormal reactions
to sensory stimulation and limited neural activity patterns when compared
to healthy, near critical systems. One important hallmark of these dysfunc-
tional systems can be speculated to be the loss of balance between excitation
and inhibition, as it is a common way of chemically controlling the network
regime of in-vitro circuits. In fact, this argument has been used to link de-
viation from critical dynamics to autism (Shew and Plenz, 2013), although
no conclusive evidence has been found in-vivo. In summary, all these results
point out that operating near a critical point would be very beneficial for
the brain from an information processing perspective, and evolution might
have found mechanisms to assure that in most cases, neural circuits take
advantage of those functional benefits.

4.1.5 Ciriticality criticisms

So far we have presented multiple arguments and experimental evidence to
support the critical brain hypothesis, or at least indicating that the brain
operates close to criticality. It is, however, important to mention that this
topic is still subject to debate in the neuroscience community and no consen-
sus has been reached, mostly due to the difficulty of measuring reliable and
general criticality signatures or proving their plausibility in different neural
circuits. Beyond simply taking sides in this discussion, we hope to shed light
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on the topic by exploring SORN models with biologically inspired plasticity
mechanisms and proposing a novel link between criticality signatures and
learning abilities. Therefore, we mention here the most common criticisms
against the critical brain hypothesis and address later their applicability to
SORN models and our main results.

The main concern when inferring criticality from neuronal avalanches is
that power-law distributions are not unique to critical systems and can be ex-
plained by other factors (Markovi¢ and Gros, 2014; Touboul and Destexhe,
2010). In fact, even other criticality signatures such as the 1/f frequency
scaling do not necessarily reflect a SOC or critical state (Bedard et al., 2006;
Bédard and Destexhe, 2009). Many other mechanisms can result in power-
law-like distributions of activity events, including stochastic processes (e.g.,
noise convolved with Poison processes or a thresholded Ornstein-Uhlenbeck
model (Touboul and Destexhe, 2010)), filtered neural activity (Bedard et al.,
2006), or even multiplicative noise (Sornette, 1998). In fact, power-law distri-
butions of events are fairly common in nature (Reed and Hughes, 2002) and
arise generically for a class of large systems that lack any fine tuning (Schwab
et al. (2014); see also Chapter 2). Thus, any criticality claim cannot be only
supported by power-laws, and other indications of critical points must be
observed if one wants to show that a neural network is at a critical point. In-
dicators include, for example, the mathematical relationship between size and
duration exponents (Beggs and Timme, 2012), the observation of a control
parameter that tunes the system’s dynamical regime (Haldeman and Beggs,
2005) or the collapse of avalanche shape as a function of relative duration
(which suggests a scale-free system; Friedman et al. (2012)). Although those
indicators can be observed in computational models, most experimental se-
tups are not capable of measuring more than a few of them together with
the power-laws, which justify the latter’s designation as signatures, but not
proofs, of criticality.

Besides not being a clear proof of criticality, the measurement of power-
law distributed neuronal avalanches may suffer from yet another drawback:
the power-law fitting process (Clauset et al., 2009). Power-laws are, by their
mathematical nature, difficult to tell apart from heavy-tailed or exponential
distributions and require rather sophisticated statistical tests, which are not
always employed on experimental datasets (Newman, 2005; Clauset et al.,
2009; Markovi¢ and Gros, 2014). In fact, many studies have argued that
some experimentally observed power-laws do not hold after careful analysis
(Bédard and Destexhe (2009); Touboul and Destexhe (2010); but see also crit-
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icism of their conclusions regarding neuroscience datasets: Beggs and Timme
(2012)). To make matters more complicated, experimentally observed power-
laws are truncated, as the neural systems have finite size, and do not typically
spread among many orders of magnitude, which make them more prone to
misclassification. Given the high possibility of false positives, in this the-
sis, we follow the recommended approach to fit power-laws (Clauset et al.,
2009): a combination of maximum likelihood estimators for the power-law
exponents and a comparison of the goodness of fit between different possi-
bilities of distributions. For a more detailed description of this method, see
Appendix B.

In experimental data, additional issues might affect the inference of criti-
cality from power-laws. First, neuronal avalanche distributions might depend
heavily on the event detection threshold or even time bin sizes (Pasquale
et al., 2008; Touboul and Destexhe, 2010). Importantly, however, most re-
sults on neuronal avalanches do not depend on the bin size and have carefully
compared multiple bin sizes for neuronal avalanche events (e.g., Beggs and
Plenz (2003); Tetzlaff et al. (2010) — see also Fig. 4.1), showing that al-
though such criticism demands an additional statistical analysis, it does not
invalidate the experimental evidence suggesting criticality in the brain. Sec-
ond, as experiments are typically done via multielectrode array recording
or other less spatially precise methods, a subsampling effect must be taken
into consideration when treating the data (Priesemann et al., 2009, 2014).
This effect is the result of the array geometry (or equivalent for other record-
ing methods): since the activity is not recorded for every single neuron, a
single avalanche can display artificial pauses in case the array geometry is
not taken into account. Even pure SOC theoretical models are misclassified
in case of subsampling, when activity is not measured in every single cell or
unit (Priesemann et al., 2009), showing that corrections must be made to take
into account the subsampling geometry. In the subsampled case, for instance,
the distribution of events’ size and duration might not necessarily follow a
power-law, and any event measurement depends both on the subsampling ge-
ometry and the intrinsic model dynamics, which complicates the interpreta-
tion. Recent methods and estimators have been proposed in order to extract
useful information from this subsampling effect (Nonnenmacher et al., 2017),
including the system’s distance to criticality itself (Wilting and Priesemann,
2016), paving the way to future, more precise experimental insights on the
critical brain hypothesis. It is important to highlight that subsampling issues
are essentially an experimental feature and, although computational models
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can be also subsampled, all their neuronal states can in principle be accessed
at any point in simulation time, which dismisses the need for any additional
corrections.

Last, a smaller but important point about neuronal avalanches in-vivo
and in externally driven computational models should be raised. Due to the
nature of those systems, input and internal dynamics co-occur, resulting in
the lack of separation of time scales ((Priesemann et al., 2014); in contrast
to traditional SOC models (Bak et al., 1988)). As a consequence, different
avalanches are not separated by pauses and occur at the same time, encom-
passing the same neurons and overlapping, and can be mistakenly detected
as one event. A possible solution to disentangle avalanches in those cases is
the introduction of detection thresholds, which artificially separate overlap-
ping avalanche events. Although there is currently no formal theory about
the effects of thresholds on events’ size and duration distributions, computa-
tional studies have shown that power-laws still occur in thresholded critical
systems (Poil et al., 2012), but the distributions depend on the threshold
choice to some extent, as they do in experiments!® (Hesse and Gross, 2014).
This is the case for SORN models: as their internal dynamics never stops
due to plasticity action, event detection thresholds must be introduced as
additional parameters to our neuronal avalanche measuring method. We dis-
cuss in the next sections our threshold choices, their robustness, and how
these choices might affect the neuronal avalanche distributions and our con-
clusions. We highlight, nonetheless, that this process has become common
practice for systems with no separation of time scales, both in computational
models and experiments (Priesemann et al., 2014; Hesse and Gross, 2014).

4.2 Spontaneous activity: self-organization to-
wards criticality

In this section, we describe the existence of neuronal avalanches in the spon-
taneous activity of models of the SORN family and discuss which mechanisms
might underlie their occurrence after self-organization. In particular, we fo-
cus on the plasticity mechanisms and neuronal membrane noise level, which

10This problem is amplified when combined with subsampling effects, a case which we
do not discuss here. See Priesemann et al. (2014) for a explanation of this and similar
cases.
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can be alternatively interpreted as input from other non-modeled circuits.
We argue that even though SORNs might not always operate at criticality,
their self-organization mechanisms might bring them towards a regime in
which power-law distributed avalanches appear in their spontaneous activity
and that those mechanisms are important to understand how the same pro-
cesses might occur in the brain. In fact, this is one of the reasons why SORN
models were chosen for our computational experiments with criticality sig-
natures: by combining biologically inspired plasticity and self-organization
mechanisms with relatively simple neurons, SORNs show a reasonable level
of abstraction to approach the criticality signatures detection problem, while
still allowing for simulations to be run in a computationally feasible time.

4.2.1 SORNSs revisited

Self-organizing recurrent neural networks (SORNs; Lazar et al. (2009)) con-
sist of a reservoir of excitatory and inhibitory neurons, whose state at each
discrete time step is described by two binary vectors, x(t) € {0,1}¥ * and
y(t) € {0,1}M'. Those vectors correspond to the activity of excitatory and
inhibitory neurons, respectively. Connections between excitatory neurons
(WEE) and from inhibitory to excitatory neurons (W) are shaped by bina-
rized forms of spike-timing-dependent plasticity (STDP), or inhibitory spike-
timing-dependent plasticity (iSTDP), by homeostatic mechanisms, namely
synaptic normalization (SN), and by structural plasticity (SP), depending
on the variation of the model. Additionally, SORN models also include a
form of intrinsic plasticity (IP), which regulates the neuronal firing thresh-
olds and may combine their internal recurrent neuronal drive with external
input and/or membrane noise. Details of all these mechanisms, their func-
tions, and their mathematical formulations are described in Chapter 3. In
this chapter, we refer mostly to one SORN variation: the SORNy (Zheng
et al., 2013), which has additional plasticity mechanisms compared to the
original model, the SORNy, (Lazar et al. (2009); see Table 3.2).

For the case of spontaneous activity, we reimplemented the SORN7z model
due to its richer spontaneous dynamics, large number of biologically inspired
plasticity mechanisms (five in total — STDP, iSTDP, SN, SP, and IP), and
neuronal membrane noise. Additionally, this model has been shown to re-
produce, under certain conditions, features of cortical dynamics, such as the
lognormal-like distribution of excitatory weights (Zheng et al., 2013), making
it an adequate cortical model in which to investigate self-organization and
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criticality signatures. Our simulations kept the same set of default parame-
ters as the original model (Zheng et al., 2013) whenever possible.

In our reimplementation of the SORNy model (see Appendix A), its spon-
taneous activity showed three different self-organization phases regarding
the number of active excitatory to excitatory synapses when driven only
by Gaussian membrane noise (Fig. 4.6A). After being randomly initialized,
the number of active connections decreased quickly as a result of the STDP
pruning action (the decay phase) and reached a minimum at around 10° time
steps, before slowly increasing due to SP action (growth phase) until stabi-
lization after around two million time steps (stable phase), when only minor
fluctuations were present. Importantly, this result was equivalent to the self-
organization phases observed in the original model implementation (Zheng
et al., 2013), which provided some validation to ours.
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Figure 4.6: Self-organization phases and thresholded neuronal
avalanches. (A) Fraction of active connections as a function of simula-
tion time in the SORNy, starting from a random connected graph with 10%
of active excitatory to excitatory connections. The model exhibits three self-
organization phases: decay, growth, and stable. Neuronal avalanches were
observed in the latter. Figure reproduced with permission from Del Papa
et al. (2017). (B) Raster plot of the SORNy spontaneous activity a(t) in the
stable phase, after self-organization, and neuronal avalanche event definition
via activity threshold #. A single avalanche starts when the activity goes
above 6 and lasts as long as it stays above this threshold. Shaded red areas
indicate the size of avalanches and the blue line indicates the duration of a
single avalanche event.
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In order to avoid possible transient effects, we concentrated our anal-
yses only on the stable phase, discarding the first 2 x 10° time steps. In
this sense, we measured neuronal avalanche distributions in the regime into
which the SORN self-organizes driven only by membrane noise and its own
plasticity mechanisms, diminishing any possible influence of the random ini-
tialization of the synaptic weights. Interestingly, during this post-transient
phase, bursts of asynchronous activity could be observed, suggesting indeed
potential neuronal avalanches (Fig. 4.6B).

As pointed out in the previous sections, SORNs are fundamentally differ-
ent from classical SOC models, as they lack separation of time scales and any
avalanches could appear combined. A practical consequence of this property
is that avalanches can no longer be defined as precise events separated by
pauses. Instead, a slightly distinct definition of neuronal avalanches, based
on a method of thresholding neural activity, had to be employed. Inspired
by a previous computational model (Poil et al., 2012), we introduced an ac-
tivity threshold @, which artificially included pauses in the excitatory neural
activity a(t) = sz\fo x;(t). Specifically, a constant background activity € was
subtracted from a(t), for all time steps ¢, allowing for reasonably frequent
pauses and thus reintroducing temporally separated avalanches. 6 was ini-
tially set to half of the mean network activity, as proposed by Poil et al.
(2012), (a(t)): = pp = 0.1, and was rounded to the nearest integer for
simplicity (since a(t) is also constrained to integer values). Each neuronal
avalanche was described by two complementary parameters: duration 7" and
size S. An avalanche began when the network activity increased above the
threshold 6, where T was the number of subsequent time steps during which
the activity remained about such threshold. The size S was defined as the
sum of neuronal spikes exceeding the activity threshold at each time step
during an avalanche event (see Fig. 4.6B for a graphical example). Formally,
for an avalanche starting at ty, S was given by:

to+T

S=>"lalt) - 0] (4.1)
t=to
4.2.2 SORN’s spontaneous activity shows power-laws

We initially simulated networks of N¥ = 200 excitatory and N! = 40 in-
hibitory neurons for a total of 5 x 10° time steps. The neuronal avalanches
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were measured after the network self-organized into the stable phase. The
observed bursts of spiking activity had various sizes and durations, whose
distributions could be fit by power-laws for different ranges, up to a size-
dependent cut-off point (Fig. 4.7A and 4.7B). For the size, the power-law
distribution was a good fit for approximately two orders of magnitude, while
the duration is only well fit for approximately one (Fig. 4.7F). The cut-offs
observed in the distributions’ tails could not be included in any fit, even
when considering power-laws with exponential cut-offs (oc 7% e #at), and
thus were hypothesized to be the result of a finite size effect. Indeed, with in-
creasing network size the power-law distributions extended over larger ranges
(Fig. 4.7C and Fig. 4.7D), while the exponents remained roughly the same
(avalanche’s duration: « ~ 1.45; avalanche’s size: 7 ~ 1.28). Thus, both for
simplicity and for the sake of computational time, we kept the SORN size
constant for the remaining simulations of spontaneous activity.

Importantly, we employed maximum likelihood estimators and compared
the goodness of fit of power-laws with other possible distributions (Clauset
et al. (2009); see also Appendix B). Following the approach by Alstott et al.
(2014), we compared the loglikelihood ratio R between power-laws and ex-
ponential fits, and between power-laws and stretched exponential fits. The
ratio showed that among those distributions, power-laws were better fits for
our results (Table 4.1). We refrained from a comparison with more complex
distributions with two or more parameters as they might overfit the data,
thus leading to an apparent better fit than pure power-laws with only one
parameter.

Distribution size (S) duration (7
Exponential (e=7¢) R~552 R~ 151
Stretched exponential (e*tﬁ) R~ 39 R~ 37

Table 4.1: Goodness of fit (loglikelihood ratio) between power-laws and ex-
ponential distributions. A bigger ratio R indicates that a power-law fit is
more likely than the compared distribution.
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Figure 4.7: Power-law distributed neuronal avalanches in the
SORNy’s stable phase. (A), (B) Normalized distributions of size S and
duration 7', respectively, for N¥ = 200. Raw simulation data points are
shown in gray. Power-law fits are shown in red/blue, and best power-laws
with exponential cut-off fit in black. (C), (D) Scaling of avalanches for net-
works of increasing size. (E) Avalanche average size as a function of duration,
for simulated data (gray) and theoretical prediction (red). The dashed line
shows a pure power-law with exponent v = 1.3. (F) Power-law scale range,
up until the cut-off point, as a function of network size. All distributions
show combined results from 50 independent simulations. Figures have been
adapted with permission from Del Papa et al. (2017).



84 CHAPTER 4. CRITICALITY MEETS LEARNING

The expected theoretical ratio between the power-law scale exponents
(a—1)/(7 — 1) inferred from the power-law fitting, however, did not match
the exponents obtained from the avalanche raw data (Fig. 4.7E), although
the average avalanche size did follow a power-law as a function of avalanche
duration, with exponent vgata & 1.3. Recall that, in addition to neuronal
avalanches, this ratio is an indicator of critical dynamics in neural net-
works (Beggs and Timme, 2012). It is worth noting that, although the
predictions were not compatible, our numerical exponent Yq.¢» agreed with
the one calculated directly from experimental data from cortical activity in a
previous experimental study (Friedman et al., 2012). This discrepancy might
be the result of our thresholding process, a simple consequence of the com-
plex model topology, or even an indication that besides showing neuronal
avalanches, the SORNy was not near a critical point.

Additionally, we looked at the robustness of the activity threshold and
how its choice might have affected our exponents. The activity threshold,
which defines the start and end of avalanches, should in principle affect the
avalanche distributions since the slope of the power-laws might depend on its
choice. Intuitively, small thresholds should increase the avalanches’ duration
and size while reducing the total number of events. Large thresholds are
expected to reduce an avalanche’s duration and size while also reducing the
number of events. Our results agreed with this intuition, but also showed
that the power-law scaling was robust for a range of thresholds, roughly be-
tween the 5% and 25% activity percentiles (Fig. 4.8B). Notably, this window
contained the previous threshold definition of § = (a(t));/2 (approximately
the 10% activity percentile for a network of size N¥ = 200 — see Fig. 4.8A),
offering support to our threshold choice. Additionally, as long as the activ-
ity threshold remained inside this window, the distributions were better fit
by power-laws compared to other single parameter functions (see Table 4.2
for the example loglikelihood ratios between power-laws and exponentials),
although their exponents varied. This variation was, however, expected as
a result of the activity thresholding process: higher thresholds reduced the
relative number of large avalanches (by reducing their size and duration) re-
sulting in steeper curves with larger (in terms of absolute value) exponents.
As the attentive reader might perceive, those exponents are close to but
still different and slightly smaller than the theoretical predictions for ran-
domly connected networks and critical branching processes that have also
been experimentally observed in-vitro (a« = 2 and 7 = 1.5; Beggs and Plenz
(2003)). This difference may again be due to the fact that SORN models
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have a complex dynamic topology that differs from random networks after
self-organization, or simply an indication of non-critical dynamics even in the
presence of some criticality signatures. A mathematical relation between ex-
ponents of thresholded avalanche events (without separation of time scales)
and exponents from pure SOC systems is, however, not entirely clear (but
see the discussion section of this chapter), and any claim about exact critical
dynamics in the SORN spontaneous activity remains speculative as long as
the origins of these power-laws are not better understood.
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Figure 4.8: Robustness of choice of activity threshold. (A) Activity
distribution function for the SORNy (N® = 200). The shaded area shows
the approximate region where the power-laws hold. The activity peak, set
by the target firing rate, is 10% of N®, and the thick dashed line shows
half of the average network activity (a(t))¢, a common threshold choice. (B)
Avalanche size distribution for different activity thresholds 6 set as activity
percentiles. Although showing different exponents, the power-laws hold for
different threshold values (as seen, for example, for 6 set at the 5th or 10th
percentiles of activity distribution). Curves show combined data from 50
independent simulations. Figures have been reproduced from Del Papa et al.
(2017) with permission.

Before further discussing the mechanisms that might originate the power-
laws and their relation to a potential critical dynamics, one difference be-
tween the SORNy power-laws and experimentally observed ones should be ad-
dressed. Independently of the threshold value, SORNy power-laws have a left
cut-off for the avalanche size, which is absent in experiments (compare, for ex-
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Threshold (0) size (.5) duration (7)
T Rexp « Rexp
5% 1.24674 ~ 836 1.46122 =~ 230
10% 1.31176 ~ 981 1.46809 ~ 284
15% 1.35339 ~ 894 1.52231 ~ 269
20% 1.40378 ~ 772 1.62024 =~ 235
25% 1.52244 =~ 534 1.93752 =~ 191

Table 4.2: Power-law exponents and goodness of fit (loglikelihood ratio be-
tween a power-law and an exponential fit; Rey,) for different choices of ac-
tivity thresholds 6 (N® = 200).

ample, the raw data in Fig. 4.7A with the distributions in Fig. 4.1A). This un-
usual cut-off was a consequence of our avalanche size definition (Eq. 4.1). Re-
moving the explicit dependence on € (i.e., introducing an alternative avalanche
definition where the avalanche size was given by S’ = ESOT a(t) instead)
modified the left cut-off shape, but did not have a significant effect on the
power-law ranges or exponents (Fig. 4.9). In practice, the only difference
between our standard definition and this alternative one was a small, pro-

portional increase in all avalanche sizes.

Figure 4.9: Alternative avalanche
definition. Example of avalanche 107
size distribution (red) and power-law
fit (black — exponent 7 = 1.31) for an
alternative avalanche definition (see
text). The main effect of removing the
explicit dependence of S on € was seen
at the left cut-off, while 7 remained
largely unaffected. Figure adapted
from Del Papa et al. (2017) with per- 107° - > -
o 10 10 10 10
mission. s

- 7=1.31

f(9)
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Last, after addressing the issue of threshold dependence, we looked at
the effects of our binning process on the distributions. As discussed previ-
ously, experimental neuronal avalanches are typically independent of time bin
size for SOC models, but not for subsampled or driven systems (Priesemann
et al., 2014). Given our definition of avalanche events, we have used a single
“unitary” time bin (i.e., one time step) because differently from experiments
we could easily look at every single spike and its precise timing. However,
in order to fit the power-law distributions, we required a different binning
process, relative to the mathematical fit (i.e., the bin size of frequency distri-
butions). For power-laws, the fit of the slope was best done with logarithmic
bins, whose width increased in proportion to the variable, reducing fluctua-
tions in the tail of the distributions (Clauset et al., 2009). We tested different
logarithmic bin sizes (bs — see Fig. 4.10) and with the exception of extreme
cases, the frequency distributions for different bin sizes virtually overlapped,
ruling out any interference of this binning process in our power-law slope fits.

107 ¢ Figure 4.10: Effects of logarith-
x x raw data . . e
.10 mic binning on the avalanche
__ 4 _gs5 distributions. Varying the log-
_ bS:O.l arithmic bin size b, did not re-
90 | — b::0.05 sult in significant changes in the
power-law ranges, shapes, or ex-
ponents. Results for N¥ = 200,
combining data from 50 indepen-
) dent simulations. Figure adapted
107 T e 0 from Del Papa et al. (2017) with
s permission.

4.2.3 Ciriticality signatures are not the result of ongo-
ing plasticity

Having established that the SORNy displayed robust power-law distributed
neuronal avalanches and that they are not an artifact of our activity thresh-
olding process, we set to investigate what mechanisms might cause them.
First, we looked at the role of network plasticity, the SORNs’ main compo-
nents: are they necessary to drive the network into a regime in which the
power-laws appear? We compared our results to a SORN model with no
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plasticity action, which is equivalent to a randomly initialized network. The
avalanche distributions observed in the random networks, for both duration
and size, did not show power-laws and resembled exponential distributions
(Fig. 4.11A, red curves, duration distributions omitted for simplicity). The
conclusion was that some plasticity mechanisms, or possibly a combination
of them, were necessary for the appearance of criticality signatures.
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Figure 4.11: SORNyz with frozen plasticity. (A) Distribution of avalanche
sizes for the normal SORNy (black), random networks without plasticity
(red), and a frozen network, with plasticity mechanisms turned off at the
stable phase (cyan). Shaded regions show the effects of variations in the ac-
tivity threshold (5% to 25% percentiles window). (B), (C), (D) Distributions
of avalanche sizes for partially frozen networks, with different combinations
of plasticity mechanisms turned off at the stable phase. Figures adapted
from Del Papa et al. (2017) with permission.
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After verifying that the combination of plasticity mechanisms was indeed
necessary to drive the network from a randomly initialized state towards a
state in which the power-laws appear, we asked whether this result is purely
due to the continued action of such mechanisms. If the power-laws appear
only when plasticity is active, they could be only a direct result of this on-
going plasticity. If the power-laws held even when all plasticity is turned off
(after self-organization), the interpretation that plasticity mechanisms drive
the network structure to a special state with criticality signatures would
gain more support. We compared, therefore, our previous results with the
distributions observed for a frozen network: a network where all plasticity
mechanisms where turned off in the stable phase. The SORNz was simu-
lated up until that point, after which the simulation was divided in two:
a normal network and a frozen network. We used the same random seed
for the membrane noise in both cases so that differences due to randomness
were avoided and initialization bias effects could be ruled out. The frozen
network resulted in virtually identical power-law distributions for durations
(omitted from the figures for simplicity) and sizes (Fig. 4.11A), and the only
significant differences were observed in their tails: with frozen plasticity, an
increase in the number of large avalanches was observed. This effect could
be partly explained by the absence of homeostatic mechanisms that control
network activity in the normal, non-frozen network. Likewise, freezing indi-
vidual or combinations of mechanisms (for example, IP or STDP + SP) did
not affect the overall avalanche distributions (see Fig. 4.11B, Fig. 4.11C, and
Fig. 4.11D for some examples), indicating that they were not the result of
continued action of any particular plasticity rule from the model.

Taken together, these results showed that the SORNy’s plasticity mech-
anisms allowed the network to self-organize into a regime where it showed
signatures of criticality. However, the continued action of the plasticity mech-
anisms was not required for maintaining these criticality signatures, once the
network has self-organized.

4.2.4 Noise level contributes to the maintenance of the
power-laws

Since a combination of plasticity mechanisms seemed to play a key role in
driving the SORNy towards a possible critical regime, our next step was
to investigate whether the criticality signatures depended on other model
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parameters. In particular, we looked at the neuronal membrane noise (1),
drawn independently for each neuron as Gaussian noise with g = 0 mean and
variance o2 = 0.05. These parameters are of special interest as they could
also be interpreted as a random input level and potentially help with insights
not only for the spontaneous activity case but also during an externally driven
dynamics.

We found that the avalanche and activity distributions suggested three
different regimes depending on the noise level. In the case of high noise levels
(0% = 5), the neurons behaved as if they were statistically independent!?, thus
breaking down the power-laws and showing binomial activity centered at the
number of neurons expected to fire at each time step (i.e. the mean of the fir-
ing rate distribution Hyp; Fig. 4.12D). Low noise levels (02 ~ 0) resulted in a
distribution of avalanche sizes resembling a combination of two exponentials,
while the activity occasionally died out completely for periods of a few time
steps (Fig. 4.12A). A close look at the raster plots of excitatory neuronal ac-
tivity (Fig. 4.13) also revealed that large bursts of activity only happened at
intermediate noise levels (o2 ~ 0.05), while low noise levels resulted mostly in
shorter bursts and high noise levels resulted in Poisson-like activity. There-
fore, we concluded that, together with the plasticity mechanisms, the noise
level determined the network dynamical regime. Taken together with the
drastic changes in activity distribution for each regime (Fig. 4.12A), these
results supported the existence of a phase transition point, with the noise
level (or its variance) acting as a control parameter.

In order to further investigate the contribution of the noise level to the
maintenance of the criticality signatures, we tested if other types of noise
could have a similar effect on the network’s dynamical regime, and how diffuse
this noise needed to be in order to allow for the appearance of the power-
laws. First, we switched from Gaussian noise to random spikes: each neuron
received input surpassing its threshold with a small probability of spiking
at each time step p,. Using p, as a control parameter in the same way as
the Gaussian noise variance, we could reproduce all of the previous findings:
three different distribution types including a transition window in which the
power-law distributions of neuronal avalanches appeared (Fig. 4.12B and
Fig. 4.12E). Second, we observed that limiting the noise action to a subset

U This result is, naturally, expected for a network of randomly spiking neurons, inde-
pendently of its topology. Such random firing regime can also be interpreted as a sanity
check of our implementation of the model.
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Figure 4.12: Noise level gives rise to criticality signatures. Top row:
activity distributions for distinct noise sources and levels. Bottom row: dis-
tributions of avalanche sizes for the same noise forms. (A), (D) Gaussian
noise levels: low (02 = 0.005), intermediate (62 = 0.05) and high (02 = 5).
Very weak or strong noise levels break down the power-laws, suggesting non-
critical regimes. (B), (E) Random spike noise source (see text), with dif-
ferent probabilities of random spiking ps. Results are strikingly similar to
Gaussian noise, with three distinct regimes. Black curves show the stan-
dard SORNy parameters that give rise to power-law distributed neuronal
avalanches. Dashed gray lines show a binomial distribution, for compari-
son. (C), (F) Noise limited to randomly chosen subsets of excitatory neurons
shows no power-laws or signs of criticality. Percentages indicate the number
of excitatory units receiving suprathreshold input at each time step. Figures
were adapted from Del Papa et al. (2017) with permission.
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of units'?, while keeping all plasticity mechanisms on, abolished power-laws
completely (Fig. 4.12C and Fig. 4.12F). Different subset sizes were compared
(10%, 5%, or 0% of excitatory units were continuously active), while the
activity threshold was set again to half of the mean network activity, but
now excluding the subset of continuously active units. We concluded that
the observed criticality signatures required not only a specific noise level,
suggesting a control parameter for the network, but also a relatively even
distribution of noise across the network units. Additionally, the intermediate
noise level resulted in a phase transition state between two very different
dynamics, again suggesting a critical or near critical point.

Figure 4.13: Raster plots
for distinct noise levels.
Typical raster plots of exci-
tatory activity at low (0% =
0.005), intermediate (0% =
0.05), and high (¢ = 5) Gaus-
sian noise levels. Bursts of ac-
tivity of varied sizes only ap-
pear in the intermediate case
and are short-lived (low noise
levels) or nonexistent (high
noise levels). Figure adapted
from Del Papa et al. (2017)

with permission. Time step

Interm.

High

Finally, if the neuronal membrane noise level was capable of deviating the
network away from a regime in which criticality signatures appear, but the
plasticity mechanisms seemed to drive the network dynamics back towards
this state, a few new questions arise. What happens under external input
that differs from noise? Can the power-laws be maintained independently of
the input intensity, or does the SORNy reproduce subcritical dynamics as
observed in-vivo?

12Note that we keep here the noise nomenclature for consistency only, since suprathresh-
old input limited to a fixed subset of units is equivalent to deterministic external input.



4.3. EXTERNAL INPUT: READAPTATION AND LEARNING 93

4.3 External input: readaptation and learn-
ing

Neural circuits in awake, behaving animals typically receive a large number
of different external inputs. For the critical brain hypothesis to hold true,
adaptation mechanisms must tune neural circuits towards criticality under
various external input regimes. We have seen so far that this adaptation
is not only possible in computational models, but criticality also improves
various input encoding capacities. Additionally, experimental evidence has
shown that the onset of external input breaks down criticality signatures in
the form of power-laws (Shew et al., 2015; Clawson et al., 2017). Specifically,
both studies showed that cortical ex-vivo activity measured in the turtle
brain is not critical immediately after the onset of strong external input,
but critical dynamics quickly reappears due to the system’s readaptation
mechanisms.

What could be, therefore, the role of this readaptation? As criticality
improves essential encoding capabilities, a critical regime is also extremely
beneficial for the learning capacities of various types of networks, and one
can hypothesize that the same mechanisms that drive a network towards
criticality are also responsible for its learning abilities. Potentially, both pro-
cesses might be intrinsically connected in neural circuits by self-organization
mechanisms. In this section, we study the possible link between a potentially
critical dynamics (or at least, dynamics displaying criticality signatures) and
learning by looking at distinct input conditions: random and structured.
Both input types affect the model’s internal dynamics and can, in principle,
drive it towards different states, but only the latter has useful patterns that
can be learned by a network model. We further analyze the effects of differ-
ent input patterns on neuronal avalanches and compare the SORNy activity
with experimental externally driven networks, proposing that a combination
of plasticity mechanisms is responsible for the quick readaptation after ex-
ternal input onset.

4.3.1 Network readaptation after external input onset

In a first experiment, random external input (sequence of length Uy, — oo
and alphabet size Uy = 10, see section 3.2.3 for details on the definiton of
those values) was presented to the network after it reached the stable phase,
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and distributions of avalanche size and duration were measured first imme-
diately after its onset, including avalanche events starting in the first 10 time
steps after the stimulus, and second after readaptation due to plasticity, with
all plasticity mechanisms on (2 x 10° time steps). The number of time steps
defining the size of the transient period was chosen based on what has been
commonly chosen in experiments, roughly hundreds of milliseconds (Shew
et al. (2015); recall that each time step in the SORN models corresponds to
the typical time scale of STDP, around 10 to 20 ms). The external input con-
sisted of a random sequence of symbols, where each symbol provided strong
input (u**(t) = 10°) to a subset of NV excitatory neurons (see Chapter 3 for
further details and the exact update equations). Importantly, the activity
threshold 6 was kept the same for both time periods.
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Figure 4.14: SORNyz readaptation after random external input onset.
Size (A) and duration (B) distributions of avalanche events before input
onset (black), during a short transient readaptation period (red) and after
readaptation (cyan). During the transient readaptation period, power-laws
are modified and bigger avalanches become relatively more frequent. Before
input and Readaptation curves show combined data from 50 independent
simulations, while Input onset curves show data from 250 input trials. Shaded
areas represent the area between the curves obtained for activity thresholds
at the 5th and the 25th percentiles. Figures reproduced from Del Papa et al.
(2017) with permission.
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In agreement with the ez-vivo recordings (Shew et al., 2015), external
input onset resulted in flatter power-laws (Fig. 4.14, red curve). As in the
experimental recordings, we also observed network readaptation towards the
regime in which power-laws appeared, after a transient period (cyan curve).
Furthermore, the flatter power-laws and the subsequent readaptation ap-
peared even under weaker external inputs (uf*(t) ~ 1, in contrast to the
default strong input). This finding supported the hypothesis that plasticity
mechanisms were responsible for driving the SORNy towards the appearance
of criticality signatures, even after transient changes due to external stimula-
tion. Interestingly, this result suggested that neuronal avalanches are, indeed,
input dependent, and the same network might display them or not depending
on the input intensity and structure. This result could help to clarify and
reconcile in-vitro observed criticality signatures and their absence in spiking
activity in-vivo, as the external input is one of the key differences between
those experimental setups.

4.3.2 Absence of criticality signatures under input of
learning tasks

In contrast to random external input, structured input is used in spatio-
temporal learning tasks and is commonly associated with more realistic sen-
sory input in behaving neural circuits (Lazar et al., 2009; Hartmann et al.,
2015). We studied two simple learning tasks that required the SORNy to
encode temporal information about its input: a Counting Task (Lazar et al.,
2009) and a Sequence Task. We discuss both tasks separately below.

Counting Task

The Counting Task was inspired by one of the learning tasks in which the orig-
inal SORNL, model was shown to outperform static reservoirs (Lazar et al.,
2009). It consisted of randomly alternating sequences of symbols of the form
“ABB...BBC” and “DEE...EEF”, with n middle, repeating symbols. Each
symbol provided extra input, ui**(¢) = 1, for a randomly selected but fixed
subset of excitatory neurons NV at the time step in which it was presented to
the network. Differently from the former random external input experiment,
these sequences were presented during the whole simulation, one symbol per
time step. The model was trained with plasticity (all plasticity mechanisms

active) for Tppase = 5 % 10* time steps, and the performance was evaluated by
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training a readout layer to predict the nezt symbol (input at ¢t + 1) based on
the network internal state (i.e., the recurrent activity without the external
input term, u2**) at time ¢. The readout was trained for T} ay, = 5 % 103 time
steps and evaluated for another Tios = 5 x 10%. The final performance was
the percent of correct predictions ignoring the first symbol of each sequence,
as both sequences could appear with the same probability. Generally speak-
ing, the model would have to learn how to “count” the number of middle
symbols to correctly predict the final one (thus the name of the task).
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Figure 4.15: Learning a Counting Task. (A), (B) Size and duration
distributions, respectively, during the Counting Task for different input se-
quence lengths with n middle symbols, in the presence of membrane noise
(0 = 0.05). (C) SORNyz performance as a function of the sequence size n,
for two different membrane noise levels. Original SORN refers to the SORN,
model (without iISTDP, SP, and membrane noise; Lazar et al. (2009)). Curves
show the average of 50 independent simulations and error bars show the 5%
to 95% percentile interval. Figures adapted from Del Papa et al. (2017) with
permission.
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We measured the avalanche distributions for duration and size after the
active plasticity period and verified that the power-laws did not appear in
this case, independently of n (Fig. 4.15), although the distributions appeared
smoother and visually more similar to power-laws for longer sequences (larger
n). This finding suggested that structured input did not allow for the ap-
pearance of the power-laws. In this case, in contrast to random external
input, our plasticity mechanisms could not drive the network towards the
supposed critical regime and counteract the input effect. Furthermore, we
measured the performance of the SORNy in the task and found that this
model was capable of maintaining a performance higher than 90% when the
membrane noise was removed (0 = 0; Fig. 4.15C), which is consistent with
the results obtained in the original SORN model for the same task (Lazar
et al., 2009). With the addition of membrane noise (¢ = 0.05), however, we
observed decay in the overall performance, particularly for long sequences.

Sequence Task

The Sequence Task consisted of a different form of external input with longer
sequences and a larger number of symbols compared to the Counting Task.
At the beginning of each simulation, we defined a random sequence of size L,
which would become the discrete input to be subsequently repeated indefi-
nitely. The training procedure was again similar: during Tyase = 5 X 10* time
steps, the model was subject to input while all plasticity mechanisms were
active. Each input symbol provided additional input to a subset of excitatory
neurons in the same manner as the Counting Task. Later, a readout layer
was trained for Ti.m = 5 x 10% to predict the nest element of the sequence
(at t41), again based on the model’s recurrent activity (at t). Now, however,
as the same sequence was repeated, there was no need to exclude the last
symbol from the performance evaluation, which was simply the percent of
correct predictions over the last Tieqe = 5 x 10 time steps.

The action of the plasticity mechanisms abolished the criticality signa-
tures under structured input (Fig. 4.16), but, as observed in the Counting
Task, longer sequences showed smoother curves. Those are the same plastic-
ity mechanisms, however, that improved performance on a sequence learning
task in the original SORNp,, as well as in the SORNy, compared to a ran-
domly initialized reservoir (RR; Fig. 4.16C). Interestingly, the performance in
the SORNyz was better under low membrane noise than under medium noise
and decreased to chance level for high noise (not shown). This, on the one
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Figure 4.16: Learning a Sequence Task. (A), (B) Size and duration distri-
butions, respectively, during the Sequence Task for different input sequence
lengths L, in the presence of membrane noise (02 = 0.05). (C) SORNyz per-
formance as a function of the sequence size L, for two different membrane
noise levels (low — o2 = 0.005; medium — o2 = 0.05). For the SORNy,
performance depends on the membrane noise level, while this is not the case
for random reservoirs (RR). Curves show averages of 50 simulations and
error bars indicate the 25% to 75% percentiles interval. Figures adapted
from Del Papa et al. (2017) with permission.

hand, was to be expected, as membrane noise masked the input sequences.
On the other hand, such a result may appear surprising at first sight, as the
SORNy showed signatures of criticality under intermediate, but not low or
high noise levels.

In summary, what do these tasks mean for the relation between criticality
and information processing? Surprisingly, during such tasks, the repeating
structure of the input was enough to destroy the power-law distributions in
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the SORNy activity. Yet, longer sequences resulted in smoother distributions,
qualitatively closer to power-laws, as long repeating input sequences resem-
bled random input, suggesting that additionally to plasticity, the structure
of the external drive fundamentally controlled the model’s dynamical regime.
Regarding the model’s performance, a few conclusions could be drawn. First,
one may conclude that performance is maximized at a state that does not
show power-laws. However, as none of the tested conditions showed power-
laws, it is still conceivable that there may exist a state with power-law scaling
and even better performance. Second, the task is fairly simple, as it predicted
the pattern at ¢+ 1 from the activity at t. Maximal performance at this task
may not require critical dynamics. Note that criticality maximizes certain
input encoding properties, such as susceptibility, correlation length and time,
and pattern diversity. Maximization of these properties fosters performance
in tasks that rely on them, e.g. tasks that require maintaining information
about past input in their activity for a long time (random reservoir proper-
ties). However, for simple tasks as the one used here, fast forgetting might
be of advantage (Boedecker et al., 2012). Hence, the higher performance in
the simple task under low membrane noise was expected.

In the next chapter, we continue to directly tackle the learning properties
of the SORN models, switching focus to their memory capacity, the ability of
a network to store information about past inputs. Before this small change of
topics, however, we summarize our current conclusions about the possibility
of a critical regime in the SORN dynamics, given all criticality signatures
we have measured so far, and its effects to the variations in performance on
these simple learning tasks.

4.4 More than one critical point?

From the brain’s perspective, critical dynamics is highly desirable due to
its many functional benefits (Shew and Plenz, 2013). Specifically, networks
tuned to criticality showed maximal dynamical range (Kinouchi and Copelli,
2006), maximal information capacity (Shew et al., 2011), maximal number
of metastable states (Haldeman and Beggs, 2005), and even maximal com-
plexity in neural systems (Timme et al., 2016). A similar concept, known as
computation at the edge-of-chaos (i.e., at a phase transition point separat-
ing non-chaotic from chaotic dynamics) is known to increase performance in
classification tasks (Legenstein and Maass, 2007) and maximize information
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transfer and storage (Boedecker et al., 2012) in recurrent neural networks, al-
lowing them to perform complex computational tasks due to an increased fad-
ing memory capacity (Bertschinger and Natschliger, 2004). Edge-of-chaos,
nonetheless, is also referred to as criticality because chaotic dynamics oc-
cur near transition states, which potentially means that different studies use
different definitions for criticality and critical points. On the one hand, crit-
icality in the sense of neuronal avalanches, as we have been discussing so
far, is typically measured via control and order parameters, whenever possi-
ble, or via indirect signatures for more complex models without separation
of time scales. These signatures, as we discussed in this chapter, include
the power-laws for distributions of bursts of activity, mathematical relations
between the distributions’ slopes, ability to tune the system with a control
parameter (as the excitation and inhibition balance), among others. On the
other hand, edge-of-chaos criticality is measured via perturbation analysis
and Lyapunov exponents (Kanders and Stoop, 2016), which have, up to this
point in time, being largely unexplored in experiments due to experimental
constraints (i.e., systematically controlling and tracking perturbations either
in-vitro or in-vivo is particularly challenging and/or infeasible with current
techniques). Although those two definitions are sometimes assumed to re-
fer to the same dynamical state and commonly considered to coexist, they
might in principle refer to distinct phenomena, which increases the problem
of comparing different models displaying any indication of criticality.

In fact, it has been recently proposed that both “types” of criticality may
occur independently in neural networks (Dahmen et al., 2016, 2017; Kan-
ders et al., 2017a). Furthermore, when considering neural systems without
separation of time scales, different “routes” towards a critical (avalanche)
dynamics have been observed (Taylor et al., 2013; Hartley et al., 2014), sug-
gesting that the lack of co-occurrence between neuronal avalanches as criti-
cality signatures and a critical point might imply that these refer to distinct
dynamical states. Such hypothesis has at least some theoretical backing, as
one computational model has suggested that biologically inspired systems
give rise to avalanche criticality, but at a point where edge-of-chaos critical-
ity fails to co-occur ((Kanders et al., 2017a,b); see Fig. 4.17 for an example
of this model’s results). This model, however, relied on one important detail:
a single “leader neuron” artificially tuned to fire in a chaotic manner, which
might lead the system to a state with the coexistence of critical and non-
critical dynamics. This combination of two dynamics has been proposed to
yield optimal population coding in a slightly different class of models (Gollo,
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2017), and arguments on the benefits of smaller, critical subsets of bigger
systems have been proposed. These benefits, however, might be specific to
some model architectures, as a general link between edge-of-chaos criticality
and neuronal avalanches is still missing. Thus, a deeper understanding of
the self-organization mechanisms that lead to a supposed avalanche critical
regime is necessary in order to describe how useful information processing
capacities, typically associated with edge-of-chaos dynamics, might also arise
in those cases.
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Figure 4.17: (Kanders et al., 2017a): Lack of co-occurrence between
avalanche and edge-of-chaos criticality. (A) Raster plots for the three
dynamical regimes, from subcritical to supercritical, achieved by scaling the
weights of a biologically inspired network. (B) Distributions of avalanche
sizes. Power-laws appear in a phase transition state, defining criticality in
the model. (C) Lyapunov spectra ), for each dynamical regime, for the first d
exponents (insets show the full spectra). All regimes show positive exponents
(red), revealing supercritical (edge-of-chaos) dynamics. Figures reproduced
from Kanders et al. (2017a) with permission.
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What does the difference between avalanche criticality and edge-of-chaos
criticality mean for our results on the SORN models? We have investigated
the occurrence of criticality signatures and referred to self-organization to-
wards criticality a number of times. Given the nature of our results, aiming to
model experimentally observed phenomena, we have employed the avalanche
definition of criticality and have not analyzed the values of Lyapunov expo-
nents in response to perturbations. In fact, such analysis has already been
done for the SORNy, (Lazar et al., 2009) and revealed a slightly subcriti-
cal state via an approximation of small perturbations employing the discrete
Hamming distance, under the input of the Counting Task. In the SORNy, we
have observed that criticality signatures also break down under structured
input of this particular learning task, raising the possibility that the model
is indeed not in a critical state, both in the avalanche and edge-of-chaos
sense, when performing learning tasks. Interestingly, this scenario would
correspond to in-vivo spike activity, which also does not show criticality sig-
natures (Priesemann et al., 2014), but arguably must excel at information
processing. In the spontaneous activity case, nonetheless, our observation of
power-law distributed bursts of activity did not reveal if the model operates
at the edge-of-chaos, and for now, we limit our conclusions to the avalanche
definition of criticality (but see Chapter 5 for an additional argument based
on the SORN’s fading memory capacity).

4.5 Discussion

Criticality is a central concept connecting microscopic and macroscopic levels
of a complex system and frequently leads to key insights about the behavior
of large systems composed of smaller, similar units (Hesse and Gross, 2014).
The hypothesis of criticality in the brain as discussed here is largely based
on experimental measurements of power-law distributed neuronal avalanches.
This hypothesis is still controversial in the neuroscience community, in par-
ticular, because power-law distributions can be generated by a number of
other mechanisms but criticality (Touboul and Destexhe, 2010) and thus are
not sufficient to prove that a system is critical. For that reason, our neu-
ronal avalanche analysis alone does not prove that the SORNy self-organizes
towards a critical state. Instead, we first highlight that the combination of
plasticity mechanisms in the model is sufficient to produce the same criti-
cality signatures typically observed in in-vitro experiments, independently of
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the question whether these systems are critical or not.

The measured exponents for duration and size, o ~ 1.45 and 7 = 1.28,
were both smaller than those expected for random-neighbor networks (2 and
1.5, respectively), potentially reflecting the complex topology emerging after
the SORNy self-organization (or, this discrepancy might be purely a result
of the activity thresholding process, which has been proposed to alter those
exponents (Font-Clos et al., 2015)). The power-laws typically spanned one
or two orders of magnitude for the durations and sizes, respectively, which
is comparable to experimentally observed data. Before and after the power-
law interval, the size distribution often showed cutoffs. While the right cut-
off typically arises from finite size effects (Privman, 1990), the left cutoff
is not characteristic for classical critical systems such as a branching net-
work (Harris, 2002), possibly being the result of our avalanche definition
based on thresholding the network activity. However, left cutoffs have been
observed for neural avalanche distributions in the cortex (e.g., Priesemann
et al. (2014); Shew et al. (2015)). Therefore, the neuronal avalanche distri-
butions we observed seemed to be indeed compatible with the experimental
ones we described in the first half of this chapter.

Our results also proposed that the combination of biologically inspired
Hebbian and homeostatic plasticity mechanisms in the SORNy was respon-
sible for driving the network towards a state in which power-law distributed
neuronal avalanches appeared, even though such plasticity action was not
required for the maintenance of this state in the case of spontaneous activity.
The power-law distributions of avalanche durations and sizes in the SORNy’s
spontaneous activity replicated a widely observed phenomenon from cultured
cortical networks (Beggs and Plenz, 2003; Tetzlaff et al., 2010; Friedman
et al., 2012) to awake animals (Petermann et al., 2009; Hahn et al., 2010;
Priesemann et al., 2014). Notably, the network also reproduced the short
transient period with bigger and longer neuronal avalanches and subsequent
readaptation after external input onset which has been observed in the tur-
tle visual cortex (Shew et al., 2015; Clawson et al., 2017). Additionally, the
power-laws also required a suitable intermediate level of membrane noise to
occur in the model’s spontaneous activity. This finding suggested that, in
the cortex, the strength of input received from other connected areas could
act as a control parameter maintaining the local network circuit in a rever-
berating state, thus within the subcritical regime (Zierenberg et al., 2018).
Therefore, we highlight the role of self-organization in driving a network to-
wards a regime in which criticality signatures appear, but suggest that this
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regime is only achievable under particular input conditions. If the brain is
indeed critical, a remaining question is whether it self-organizes to criticality
as a single system or as a collection of many subsystems, as critical dynamical
behaviors may emerge even when the underlying dynamical processes are not
critical (Friedman and Landsberg, 2013). While computational models con-
sider predominantly homogeneous networks, the brain is composed of a range
of diverse subsystems that potentially self-organize independently (Hesse and
Gross, 2014). A better understanding of this question could strengthen the
link between criticality and its medical, and even technological (Srinivasa
et al., 2015), implications.

Previous studies have already identified plasticity mechanisms that tune
a network to criticality. For example, networks of spiking neurons with
STDP (Meisel and Gross, 2009; Rubinov et al., 2011) showed critical dy-
namics, and the earliest example of self-organization towards criticality in
plastic neural networks is probably the network by Levina et al. (2007), who
made use of dynamical synapses in a network of integrate-and-fire neurons.
Furthermore, it is known that networks without plasticity can be fine-tuned
to a critical state, where they show favorable information processing proper-
ties, both in deterministic (Bertschinger and Natschldger, 2004; de Arcange-
lis et al., 2006; Boedecker et al., 2012) and stochastic (Haldeman and Beggs,
2005; Shew et al., 2011; Poil et al., 2012) systems. Those models are very
important to describe the properties of a network already in a critical state.
Beyond those results, here we have shown, for the first time, criticality signa-
tures arising in a network model initially designed for sequence learning and
cortical dynamics modeling, via a combination of Hebbian and homeostatic
plasticity mechanisms.

Linking criticality or the deviation from it to performance in a particular
learning task in experiments is particularly challenging, and theoretical work
is crucial for their systematic understanding. Experimentally, a large body of
work focuses on testing whether recorded neural activity in-vivo or in-vitro
complies with the criticality hypothesis in showing avalanche distributions
without a direct link to function. The challenges when investigating learning
tasks are twofold. First, tasks typically come with altered input for each con-
dition. The input makes it very difficult to disentangle whether an observed
difference is indeed caused by a deviation from criticality or any general state
change, whether it is induced by transiently changing (non-stationary) input
without underlying state change, or a combination of both. Developing ap-
proaches to disentangle the two scenarios is an important future challenge.
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The second challenge is that avalanche analysis requires tens of minutes, or
even hours, of recordings to be able to detect differences. This is because
an avalanche distribution that extends over two or more orders of magnitude
comprises thousands of avalanches for sufficient statistics. Assuming a rate
of one avalanche per second, the analysis requires at least 1000 seconds (or
around 20 minutes of recording — per condition). A fine temporal resolu-
tion in state change is, therefore, difficult and data-costly. Current studies
focus on estimators in order to quantify the distance of a particular system
to criticality (Wilting and Priesemann, 2016), what may in the future enable
a larger number of experimental insights linking dynamical state, criticality,
and learning task processing.

Finally, the contrast between the presence of power-law distributed neu-
ronal avalanches in the model’s spontaneous activity and their absence under
structured input also suggests an analogy between in-vivo and in-vitro activ-
ity in the brain. We have shown that the same plasticity mechanisms might
result in the occurrence or absence of power-law distributions under differ-
ent input conditions. As such distributions indicate avalanche criticality,
our results stand in agreement with the development of criticality signatures
in neural networks in-vitro and with the non-critical dynamics observed in
spike avalanches in-vivo. Such input driven adaptation may be favorable for
the neural circuits in behaving animals, as it allows them to take advantage
of improved learning abilities and the computational advantages of critical-
ity while avoiding unstable supercritical regimes observed during epileptic
seizures. Thus, by keeping neural activity at a healthy, non-epileptic level,
biological plasticity mechanisms might play an essential role in tuning the
system towards and also away from criticality when required by various input
conditions.
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Chapter 5

Learning with plasticity: from
random sequences to sentence
generation

(...) for memory tasks, however, the input consisted of
nonrepeating random sequences and the performance was
evaluated on past time steps at each time step, the
performance was defined as the normalized number of correct
classifications of input symbols received time steps in the past.
again, we emphasize that both capacities refer to different
phenomena the learning capacity measures the encoding of
temporal patterns from the input sequence, we took advantage
of a modified sequence learning tasks, which was already
employed in the last chapter as an example of structured
external input. now, we have additionally shown that
plasticity can also improve the fading memory capacity. (...)

SORN*

Having explored the experimental sings of critical dynamics and their
emergence after self-organization in recurrent networks, we now switch focus

*Quote text autonomously generated by a SORN model with N¥ = 10000, trained for
Tplast = 500000 time steps with the text of the two first sections of this chapter (5.1 and
5.2, excluding figure captions, references, and mathematical symbols). For further details,
see section 5.4.2. The code is provided at https://github.com/delpapa/SORN_V2.
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to another interesting function of general random reservoirs — their memory
capacity. Generally speaking, a model’s memory is intrinsically connected to
its overall learning capacity, allowing it to easily recall recent inputs and thus
learn from them. This capacity is also present in biological neural circuits
and can roughly be considered as the brain’s working memory. Curiously,
the theoretical fading memory capacity has been shown to be greatly in-
creased in random networks at the edge-of-chaos, which raises the possibility
of further improvements due to plasticity action, in a similar manner than
other information processing abilities near critical regimes. We begin this
chapter by investigating the co-occurrence of neuronal avalanches and fading
memory improvements resulting from biologically inspired self-organization,
again by employing self-organizing recurrent neural networks (SORNs). The
goal of this analysis is twofold: not only we observe how plasticity and near
critical dynamics are able to improve learning and memory abilities, but also
we aim to better understand how both definitions of criticality (edge-of-chaos
and avalanches) may meet as a result of self-organization. We continue by
discussing possible applications of this memory capacity to spatio-temporal
tasks and finally investigate the performance of SORNs in a few simple gram-
mar and language learning tasks. For the latter, we take a turn in the di-
rection of machine learning and compare SORNs to simple deep recurrent
network architectures. Finally, we finish by taking advantage of their spatio-
temporal learning abilities near criticality and propose their use as simple
generative models.

5.1 Criticality in reservoir computing

The SORNp, model (Lazar et al., 2009) was initially proposed as an improved
reservoir with time-varying connections and firing thresholds, outperform-
ing classic static reservoirs at various spatio-temporal tasks. Such improve-
ment in performance was a consequence of the plasticity driven dynamics,
which was likely maintained near criticality both in its spontaneous activity
and under external input. Nonetheless, static reservoirs, and more generally
sparsely connected recurrent neural networks, already have their own merits
on spatio-temporal learning tasks. Differently than most feedforward mod-
els, reservoirs and recurrent networks aim to solve spatio-temporal pattern
recognition tasks since they are suited for dynamic data processing instead of
only regression and classification. In other words, recurrent neural networks
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and reservoirs approximate dynamical systems, while feedforward networks
approximate functions (LukoSevic¢ius and Jaeger, 2009). Generally, static
reservoirs first map inputs onto high-dimensional spaces, from which linear
supervised readout layers are able to extract patterns and only then per-
form regression or classification. This already shows an important advantage
compared to dense recurrent neural networks trained with gradient descent
methods: reservoirs typically learn faster, avoiding the computational cost
of performing backpropagation at each time step. Additionally, due to their
relative simplicity and the lack of adaptive weights, reservoirs are more suit-
able for hardware implementation, for which various physical systems could
potentially be used (Paquot et al., 2012; Tanaka et al., 2018).

Given the performance-driven deep learning “revolution” in recent years,
computation with reservoirs has become comparatively less popular as a
framework for applied artificial neural networks. With the increase in gen-
eral computation capacity, combined with cheaper parallel computing on
GPUs, backpropagation became feasible in reasonable computational time
for increasingly complex architectures and deeper networks. In the case of
recurrent neural networks, the current popular models are based on Long
Short-Term Memory cells (LSTM; Hochreiter and Schmidhuber (1997)) or
Gated Recurrent Units (GRU; Cho et al. (2014)), which differently from
static reservoirs have adaptive, dense weights updated via variations of back-
propagation through time (Werbos, 1988)!. Although effective in terms of
model performance and generative tasks, these weight update rules suffer
from the inevitable shortcomings of their own complexity: the huge number
of variables and architecture dependent hyperparameters eventually led to
empirical optimizations in spite of a broader understanding of the models’ dy-
namics. Static reservoirs are in a somewhat opposite situation: by combining
fixed weights with linear readouts, their dynamics and tuning mechanisms are
better understood and easier to implement (Jaeger, 2002; Lukosevic¢ius and
Jaeger, 2009; Lukosevicius, 2012), but their simplicity suggests that further
architecture improvements, especially regarding the random initialization of
weights, are possible and desirable.

As we have seen in Chapter 4, improvements in multiple information pro-
cessing capacities are associated with dynamics near criticality in multiple

IThe development of reservoir computing, in fact, was aided by the backpropagation-
decorrelation algorithm (Steil, 2004; LukoSevi¢ius and Jaeger, 2009), which decouples
adaptive rules for recurrent and output layers, i.e. it trains a separate readout layer
as in reservoir computing frameworks.
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Figure 5.1: Fading memory scaling for distinct dynamics in reser-
voirs (Bertschinger and Natschlager, 2004). (A) Ordered, critical, and
chaotic dynamics in externally driven recurrent networks. The dynamical
regimes were tuned via an external input (u) and weight distribution (Gaus-
sian with zero mean and o? variance). (B) Memory curve for a three-bit
parity task. The mutual information between input and output, MI, de-
cayed for increasing time delays between input and prediction. The memory
capacity, MC', was estimated as the total information retained by the net-
work (area under the curve). (C) Scaling of memory capacity. In contrast to
other states, critical dynamics yielded logarithmic growth (curves show aver-
ages of 10 randomly drawn networks for each state). Figures were reproduced
with permission from the original manuscript.
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neural network models and experimental setups (Shew and Plenz, 2013). It
is, therefore, reasonable to hypothesize that the same occurs for static reser-
voirs and randomly connected recurrent neural networks. In particular, in
networks with fixed connections, the dynamical state is dictated by their
connectivity pattern, weight distributions, and external drive, all of which
can be chosen in order to tune the model to a phase transition point. Inter-
estingly, this hypothesis has been verified for a particular type of reservoirs:
externally driven networks of gated units and fixed, randomly chosen con-
nections? can be poised at a phase transition point with critical dynamics
and optimized computation abilities (Bertschinger and Natschléger (2004);
Fig. 5.1A). Importantly, in this study, criticality, or edge-of-chaos dynam-
ics, was defined in terms of small perturbations and Lyapunov exponents,
via the estimation of the Hamming distance for infinite systems (or equiva-
lently, a mean-field approximation for the thermodynamic limit). As we dis-
cussed in the last chapter, edge-of-chaos dynamics is, in principle, a distinct
phenomenon and does not necessarily co-occur with power-law distributed
neuronal avalanches (Kanders et al., 2017a), and thus we differentiate be-
tween edge-of-chaos criticality and avalanche criticality. Although the au-
thors of Bertschinger and Natschlager (2004) did not investigate the occur-
rence of avalanche criticality, they have shown that edge-of-chaos criticality
supports complex computations in randomly connected neural networks, by
examining a three-bit parity task®. The performance of the network was
measured as the mutual information between the true input parity and the
network output (given by a linear readout), which decayed as a function
of time delays between input and prediction (Fig. 5.1B). From this decay,
or memory curve, an overall fading memory capacity could be estimated as
the amount of information on past inputs a network was capable of retain-
ing. This memory capacity was shown not only to be maximal for networks
at edge-of-chaos criticality but also to scale logarithmically with the net-
work size, while networks with ordered and chaotic dynamics showed a much
less steep growth (Fig. 5.1C). The result demonstrated that reservoirs indeed

2Note that such networks are qualitatively similar to a SORN composed of only exci-
tatory neurons, without plasticity mechanisms or membrane noise. The main difference
is their spread of a single input among all units, while SORNs restrain distinct inputs to
distinct subgroups of neurons.

3A parity task consists in a task whose desired output network signal should be given
by the parity of three past binary inputs, u(t — ¢,), u(t — t, — 1), and u(t — t, — 2), for
increasing delays t,,.
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have increased information processing capacities when tuned to edge-of-chaos
criticality (although not necessarily avalanche criticality). Thus, adaptation
mechanisms that are able to always drive reservoirs towards this state can
be particularly useful for their memory properties. Given the appearance of
avalanche criticality in SORNs, we again turn our attention to their plasticity
mechanisms and investigate possible links between self-organization towards
criticality and improved memory capacity.

5.1.1 Self-organization in reservoirs

In order to improve a static reservoir’s performance and memory, different
tuning techniques have been proposed, with various degrees of success. For
example, multilayer readouts (Maass et al., 2002), multiple readout super-
vised training techniques (logistic regression, pseudo-inverse methods, ridge
regularization; LukoSevi¢ius and Jaeger (2009)), readouts trained via rein-
forcement learning (Legenstein et al., 2008), evolutionary algorithms (Xu
et al., 2005), clustering (Bush and Anderson, 2006), and support vector ma-
chines (SVMs; Shi and Han (2007)) exist in the literature. Instead of review-
ing and comparing each of these readout training methods, we here focus on
the update of a reservoir’s weights, with the goal of studying the effects of
self-organization towards an (edge-of-chaos) critical dynamics on its learning
abilities. We take advantage of the biologically inspired plasticity mecha-
nisms from the SORN model, which were shown to originate and maintain
(avalanche) criticality signatures (Chapter 4). Thus, our goal is not only to
show how plasticity driven dynamics can generally improve reservoirs but
also link the appearance of edge-of-chaos criticality in self-organized reser-
voirs with a potential function of criticality in the brain: the improvement
of the fading memory capacity.

The original SORN, model already established that a combination of
spike-timing-dependent plasticity (STDP), synaptic normalization (SN), and
intrinsic plasticity (IP) outperforms static reservoirs in various pattern learn-
ing tasks (Lazar et al., 2009)%. Interestingly, however, the model displayed
subcritical dynamics under small perturbations (Lyapunov exponents esti-
mated via Hamming distance — thus, the edge-of-chaos definition of criti-
cality) when subject to structured, repeating external input of learning tasks.
In order to better understand how this combination of plasticity mechanisms

4For a detailed description of SORN models and their variations, see Chapter 3.
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can improve a model’s memory, potentially due to self-organization towards
a critical state, we compared the fading memory capacity M C of SORNs and
static reservoirs driven only by random external input, in the form of random
sequences of symbols (details on the fading memory estimation are provided
in the next section). Importantly, the lack of temporal structure in the exter-
nal input avoided any possible interference of spatio-temporal learning in the
model’s dynamical regime and/or fading memory estimation. As expected,
synaptic plasticity improved the overall memory capacity after a short self-
organization period (approximately T.se = 10000 time steps), which was
not observed in random networks (i.e., static reservoirs with excitatory and
inhibitory units) or in SORNs with only STDP or IP (Fig. 5.2). Additionally,
for a network of size N¥ = 100, the memory capacity after self-organization
reached the same level as a reservoir twice its size, confirming that synaptic
plasticity is indeed a powerful mechanism to improve a reservoir’s memory
capacity.

Figure 5.2: Self-organization due
to plasticity improves the fading
memory capacity. Fading memory
capacity (MC') as a function of con-
vergence time (Tplas;) for static reser-
voirs (Random Network) and SORNs
with and without STDP and IP plas-

/  — Random Network ticity rules (N® = 200). The dashed
LN STDP only .
o — IPonly gray line shows the convergence for a
— SORN(STDP +1P) smaller SORN, whose memory capac-
—~—- SORN (STDP + IP, N£=100) . . . .
‘ : ity is comparable to a static reservoir
0 1-10 2-10 3-10° L .
Thiast twice 1ts size.

5.2 Fading memory capacity

The fading memory capacity, which was independently named short-term
memory in echo state networks (Jaeger, 2002), is the ability of a system to
retain and combine information about previous inputs in its current activity,
at any given time step. In the case of recurrent neural networks, this capacity
can be estimated from the state x(¢), when such state is a function of a finite
number of past inputs u(t — t,), for ¢, in some time window [T, 0] (Maass
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et al., 2002)®. Such property allows for appropriate readout functions to de-
code past recent inputs from the network state®, what underlies the complex
temporal pattern learning abilities of recurrent neural networks. Importantly,
the fading memory capacity is essentially different from a network’s learning
capacity: while the first stores information about the input history in the
recurrent activity, the second refers to the encoding of information about a
specific task and its parameters. In fact, recent work has shown that various
recurrent neural network architectures (such as LSTMs and GRUs) achieve
nearly the same general capacity bounds (per task and per unit), which var-
ied only due to distinct training methods’ effectiveness (Collins et al., 2016).
Although task information encoding increased approximately linearly with
the number of parameters of the tested models, the authors showed that in-
put history information increased instead with the number of hidden units,
suggesting that the fading memory capacity might not depend on a partic-
ular task learning capacity. The extent to which these separate properties
relate in different models or depend on distinct dynamical states, however,
is currently unknown.

In order to estimate the fading memory capacity of static reservoirs and
SORNS, we took advantage of a modified Sequence Learning task, which was
already employed in the last chapter as an example of structured external
input. The input of the Sequence Learning task consisted of a repeating se-
quence, with length L, of symbols drawn from an alphabet of size U,. Each
symbol provided extra input to a fixed, randomly chosen subset NV < N¥ of
reservoir units or excitatory neurons. The readout layer was trained on the
network activity vector x(t) for Ty, time steps while all plasticity mech-
anisms were turned off. Subsequently, the performance of the model was
evaluated for Ti. time steps, again with plasticity mechanisms off, but fol-
lowing distinct procedures for the estimation of learning or fading memory
capacities. For learning tasks, as described previously, the performance was
defined as the percent of correct predictions of the next input symbol. For

5This property implies that the initial state is forgotten in a finite number of time steps,
which makes the fading memory capacity, by definition, finite (Lukosevi¢ius and Jaeger,
2009).

6Note that, for a model without fading memory capacity, this must not necessarily
happen. The network state could retain information about initial conditions or noise (in
case of a non-deterministic system). In these cases, training a readout layer to recover
information about recent inputs is more difficult or impossible. As we will see later in this
chapter, this is exactly what happens for a supercritical, noise-driven dynamics.
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memory tasks, however, the input consisted of non-repeating random se-
quences (L — oo) and the performance was evaluated on past time steps:
at each time step t, the performance was defined as the normalized number
of correct classifications of input symbols received ¢, time steps in the past.
Again, we emphasize that both capacities refer to different phenomena: the
learning capacity measures the encoding of temporal patterns from the input
sequence, while the fading memory capacity measures the amount of past
information a model can retain in its recurrent activity. This justifies our
choice for random sequences as input for memory tasks, as they contain no
temporal pattern to be encoded, thus allowing for fading memory capacity
estimation.

5.2.1 Critical capacity scaling with plasticity action

We defined the fading memory capacity M C' as the average memory of recent
symbols stored in the SORNL’s excitatory activity after self-organization, i.e.,
the average number of past time steps in which past input symbols could be
correctly classified by the readout layer with a reasonably small error. In
order to define what a reasonably small error was, we first looked at the
memory curves for networks of various sizes (see Fig. 5.3A and Fig. 5.3B for
examples of memory curves for N¥ = 100 and N¥ = 1600, respectively). The
curves showed that the error quickly increased as a function of the delay ¢, for
different alphabet and network sizes, and eventually reached chance level. As
expected, bigger networks were able to recall inputs for longer delays, and
bigger alphabets” resulted in seemingly smaller memory capacities due to
faster memory decay. Interestingly, networks of size N¥ = 1600 could recall
input symbols up to 10 past time steps with a performance of around 90%,
when the alphabet was small enough (U, = 10).

Given the quick increase in error (or decay of the memory), a natural
definition of reasonably small error was a fixed threshold that could detect
how many past time steps would cause such decay. Based on the memory
curves of a network of size N¥ = 200 (Fig. 5.3C), we set this threshold at
10% (gray dashed line). Thus, we estimated the fading memory capacity as

"Note that for big alphabet sizes and small networks, the input neuron pool for different
symbols necessarily had overlaps, i.e., there existed neurons that received input from two
or more distinct symbols. Our tests (not shown) suggested that these overlaps did not
have significant effects on the model’s performance as long as they were kept to a minimum
and any two symbols never had identical input pools.
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Figure 5.3: Memory curves and memory capacity scaling for the
SORNyL. (A) Memory curves for a network of size N¥ = 100, for dif-
ferent alphabet sizes. Curves show the average classification error increase
for increasingly long delays, until stabilization at around chance level. (B)
Equivalent curves for N¥ = 1600. (C) Memory capacity definition via er-
ror threshold (gray dashed line) for N¥ = 200. (D) Fading memory MC
scaling with network size, for different alphabet sizes. Gray dashed lines
show logarithmic functions fitted to the data (of the form a - log(NF) + b;
A = 20: (a,b) = (1.70,—6.09); A = 30: (a,b) =~ (1.50,—5.64); A = 40:
(a,b) ~ (1.27,—4.78)). Red curve shows the scaling for a random static reser-
voir (RR), which has a slower increase compared to logarithmic functions.
All plots show averages of 10 independent simulations (standard deviations

have been omitted for the sake of clarity).
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the average number of past time steps from which a network could recall
inputs with performance higher than 90%. Note that, since the time steps
were discrete, we typically interpolated linear curves between consecutive
points in order to achieve a more precise estimation. Remarkably, the fading
memory capacity increased approximately logarithmically with the network
size (Fig. 5.3D), independently of the alphabet size, reaching MC' ~ 6 for
NE = 1600 and Uy = 208. Such scaling, which was not seen in static random
reservoirs, was comparable to the one observed in recurrent networks oper-
ating at the edge-of-chaos (compare Fig. 5.3D to Fig. 5.1C), suggesting that
self-organization due to plasticity action might be as beneficial to reservoirs
as critical dynamics.

5.2.2 A link between neuronal avalanches and memory
improvement

We have seen that self-organization due to plasticity mechanisms in the
SORN is capable of originating avalanche criticality signatures in its sponta-
neous activity, but that they disappear under structured input (Chapter 4).
Now, we have additionally shown that plasticity can also improve the fading
memory capacity of reservoirs and yield a logarithmic scaling only observed
during edge-of-chaos criticality. It remains to been verified, however, whether
a fading memory improvement is also observed at the dynamical state in
which power-law distributed neuronal avalanches appear. In principle, states
in which neuronal avalanches are present do not need to show optimal mem-
ory capacity. Networks of spiking neurons with fixed synapses, for example,
show a peak in information storage at a state with a different configuration
than the one where neuronal avalanches are observed (Mediano and Shana-
han, 2017). Interestingly, nonetheless, the latter state balanced information
storage and transfer, suggesting that power-law distributions can be observed
in a state that, although not optimal for a single information processing ca-
pacity, balances the performance of important brain functions. Addition-
ally, recent studies have suggested that near-critical dynamics are necessary
to stabilize and consolidate sparsely driven input representations (Skilling
et al., 2017), offering further support to a functional role of criticality in the

8Note that a fading memory capacity of 6 for an alphabet size of 20 means that the
network needs to be able to distinguish 206 = 64 Million patterns with an error smaller
than 10%)!



118 CHAPTER 5. LEARNING WITH PLASTICITY

memory capacity of a network.

Our results on the SORN model go in the same direction, suggesting a
link between improved memory and neuronal avalanches. We tested whether
the power-law distributed neuronal avalanches present in the SORN7’s spon-
taneous activity were associated with an improvement in its fading memory
by comparing different levels of membrane noise during the Sequence Learn-
ing task with random sequences as input (L — oo). Three different noise
levels, which had revealed the existence of an externally driven phase tran-
sition point (see section 4.2.4), were compared?. For consistency, we stick
here to the same nomenclature as the previous chapter: low, medium, and
high noise levels correspond to Gaussian membrane noise with zero mean and
variance o2 = 0.005, o3, = 0.05, or 0 = 5, respectively. High levels of mem-
brane noise abolished the network’s learning and memory capacities, and the
performance remained just slightly above chance level (Fig. 5.4). Such low
performance was expected, as any input information quickly gets lost in a
purely stochastic state. Medium noise levels, despite their higher stochas-
ticity, were not only associated with neuronal avalanches but also resulted
in improved fading memory capacity, as inferred from its improved memory
curve, in comparison to low noise levels. This rather counter intuitive result
suggested that criticality signatures in spontaneous activity might indeed be
associated with an increase in the computational power of networks for tasks
requiring the recognition of temporal patterns.

Taken together, our simulations showed that both “types” of criticality
do not co-occur in SORN models after self-organization. Interestingly, how-
ever, even though criticality signatures are not associated with maximum
performance in relatively simple learning tasks, we highlight that they co-
incide with an improvement of the time scale of memory persistence in the
models. Furthermore, such capacity scaled logarithmically with the network
size, a property so far observed only in reservoirs tuned to edge-of-chaos crit-
icality (Bertschinger and Natschlager, 2004). These findings imply that the
presence of criticality signatures might not only be beneficial to a network’s
memory but also linked to the existence of edge-of-chaos critical dynamics, as
both phenomena result from an increase in the long-range correlations across
units and in time. Importantly, this implies that the dynamical state of the
cortex or of a neural network could (and ideally should) be adapted to task

9The membrane noise was provided to the neurons in addition to the input from the
Sequence Learning task, resulting in a combined non-deterministic neuronal input.
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Figure 5.4: Memory curves
show an improvement in the
memory capacity at medium
noise levels. Error in input
recall as a function of the de-
lay time ¢, for a SORNy of size
NE = 200, when performing a
Sequence Learning task (alpha-
Noise level bet size A = 20). Smallest errors
— low were observed for medium noise
—— medium levels, when neuronal avalanches
— high occur. Curves show averages of
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requirements. Such tuning is particularly sensitive if the network operates in
a reverberating state in the vicinity of criticality, as similar network models
have recently shown (Wilting et al., 2018).

A formal description of the relation between those tuning properties, how-
ever, is beyond the scope of this thesis. Such a description necessarily requires
a better understanding of the classes of systems in which edge-of-chaos and
avalanche criticality co-occur, or at least are correlated to some extent. The
investigation of these classes is still in its infancy, and future research on
criticality should shed light on the relationship between distinct “critical”
points and their relation to functional properties in networks. Instead, we
focus now on our final topic of investigation in this work: a practical applica-
tion of self-organizational improvements to learning and memory capacities
of recurrent neural networks, in the form of simple grammar learning and
language processing.

5.3 Simple grammar learning: ‘“novel” sen-
tence generation
After learning repeating sequences of symbols with a fixed length, a reason-

able next step in terms of task complexity is learning sequences that combine
various temporal dependencies. Such sequences, for example, may integrate
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long and short-range temporal dependencies, in which each symbol can only
be correctly determined by recalling information from multiple, not neces-
sarily consecutive, past time steps. A typical example is language: in order
to be correctly placed in a given sentence, a character (or even a phoneme)
depends on the near past (for example, the current word), the previous words
in the sentence, and finally on the context in which the sentence is inserted.
Combining all these time scales, although challenging, is a task which bio-
logical neural circuits naturally excel. However, the mechanisms underlying
these processes are still not fully understood. Taking advantage of the SORN
sequence learning framework and self-organization mechanisms, we assessed
whether these models can learn simple grammar rules by training the net-
work on sentences with grammatical structures and investigating its posterior
self-generated sentences.

Based on its performance on sequence learning, we chose the SORNy, for
the grammar learning tasks. As previously, the model was trained with se-
quences of sentences, one character per time step, during T} time steps.
Each sentence, built by selecting at random (with equal probability) words
from a predefined dictionary and combining them according to a fixed gram-
mar, contained a full stop character (end-of-sentence marker) and started
with a space character (both considered independent symbols, which were
treated as normal letters), while all other characters were kept lowercase for
simplicity. Subsequently, synaptic plasticity was frozen and the readout layer
was trained for T},.;n steps in order to predict the next character in the input
(as previously, the readout training was performed via logistic regression).
The addition now was the autonomous phase: after the readout training,
external input was replaced by the output of the readout layer (i.e., the next
character prediction) for T, time steps, creating a feedback loop, while
plasticity was still kept frozen (Fig. 5.5). This turned the network into an
autonomous dynamical system that generated sequences of letters and sen-
tences, which could then be classified as correct or incorrect according to
some definition of error type. The input sentences were drawn from prede-
fined dictionaries (see Appendix C for more details and an overview of all
the sentences contained in each dictionary) and the total training time steps
were set to Tplast = 100000 and Tiyain = Tauto = 10000.

We first tested whether the model was able to learn and generalize gram-
mar rules from a subset of dictionary sentences with the same structure.
The sentences consisted of tuples of words of various lengths, according to
the pattern “[subject] [verb] [object].” (including spaces and the full stop).
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Figure 5.5: Grammar learning task: training and autonomous
phases. During the training phase, the SORNp, receives training input, with
which the reservoir and the readout layer are trained separately (for Tpast
and Ty, time steps, respectively; black arrows). Afterwards, the training
input is cut off and the output (next character prediction) becomes the new
input, creating a feedback loop (green arrows), while plasticity is kept frozen.

Combinations of subjects, verbs, and objects were randomly drawn from a
dictionary and were constrained by a simple rule: objects could only be cor-
rectly associated with one of two verbs. The predefined dictionary for this
task, FDT'?, contained 8 subjects, 2 verbs, and 8 objects (4 associated with
each verb), and thus was able to generate a total of 64 distinct sentences,
with an alphabet size (including letters, spaces, and punctuation) of Uy = 25.
During the network training phase (including the readout training), a fixed
number of randomly chosen sentences were excluded from the input in such
a way that every word would, necessarily, still appear at least once. The per-
formance was estimated by a comparison of three classes of output sentences
(i.e., all the characters separated by full stops) in the autonomous phase:
correct, sentences that had appeared in the input; incorrect, sentences that
could not be generated by the FDT dictionary and contained incorrect combi-
nations of words or characters; and new, sentences that could be constructed
from FDT, but were excluded from the input. We quantified those types of

10This dictionary was named after its most iconic sentence, “ fox drinks tea.”.
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Figure 5.6: Generation of new sentences by the SORNy, (A) Incorrect
and new sentences as a function of the network size for the FDT dictio-
nary, when 25% of the possible input sentences were excluded from training.
Curves show averages of 20 independent simulations and the shaded area
shows the 25% to 75% percentile interval (with linear interpolation between
points). Although the percent of new sentences fluctuated around 10%, in-
correct sentences were virtually absent for networks containing more than
600 excitatory neurons. (B) Incorrect and new sentences as a function of
the relative number of excluded input sentences, for the same dictionary and
NE = 400. New sentences peak at 75% due to the FDT definition (see text).
Shaded areas show the same interval as (A). (C) Sample autonomous output
sentences for N¥ = 200. Blue and red lines highlight new sentences, which
did not appear in the input, and typical incorrect sentences, respectively.
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output by estimating the percent of the total number!! of output sentences
that could be classified in each class'?. Interestingly, the relative number of
incorrect sentences quickly decreased with network size N¥ and was over-
taken by the relative number of new sentences in networks composed of more
than approximately 200 excitatory neurons, when 1/4 of the dictionary sen-
tences were removed from the training input (Fig. 5.6A). The relative number
of new sentences roughly fluctuated around 10%, independently of the net-
work size, while the relative number of incorrect sentences was virtually zero
for N¥ > 600. This result was surprising since, after random initialization,
the SORNy, turned into a deterministic model, and thus the new sentences
were generated purely as a result of its unsupervised input encoding!®. This
showed that the model was indeed capable of learning distinct temporal pat-
terns, outputting correct characters and combinations of words of various
lengths. The relative number of new sentences, furthermore, was limited
not by the model’s learning capacity, but instead by the number of excluded
input sentences. An increase in the percent of excluded input sentences led
to a roughly linear increase in the relative number of new sentences up to a
maximum point, while the number of incorrect sentences remained negligible
(Fig. 5.6B). As expected, the maximum peak for new sentences, at around
75%, was a consequence of the FDT dictionary definition: when more than
75% of the sentences were excluded, the input did not contain enough vari-
ability to allow for generalization, and new sentences were not as frequently
observed in the output.

A detailed look at the incorrect sentences provided additional insights
into the temporal dependencies the model was able to learn (Fig. 5.6C).
First, spaces and full stops typically appeared at the expected correct places,
including for new sentences. Second, most errors consisted of single incorrect
characters (as in “breat” instead of “bread” or “dranks” instead of “drinks”).
Third, a few incorrect sentences seemingly consisted of a mixture of distinct
dictionary words sharing a single letter, as in “cater” (possibly a combination
of “cat” and “water”, both contained in the FDT). These types or errors
suggested that the model, due to self-organization, was indeed able to encode
some letter statistics from the input, as the output contained letters that were

HTn practice, we removed the first and last output sentences from the analysis, as they
could be incomplete, depending on the number of time steps in the autonomous phase.

12Note that the classes are exhaustive and mutually exclusive by construction, thus their
percentages add up to 100%.

13Recall that during the autonomous phase all plasticity mechanisms were kept frozen.
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generated, sometimes incorrectly, based on the observed temporal patterns.

The SORNY,’s capacity of encoding input statistics at the character level
suggested that more complex tasks could potentially be performed. Given
the nature of plural construction rules in the English language, in which
most plural nouns and verbs consist of their singular forms with the addition
or removal of the letter “s”, we extended the FDT dictionary to include
singular and plural subjects and verbs, maintaining the constraint for verb
and object association. Learning and correctly differentiating singular and
plural sentences could be particularly challenging if the model relied only
on short term temporal dependencies, since the correct placement of the
characters depends on previous words'*. The extended FDT, or eFDT, was
composed of 128 distinct sentences, including their singular and plural forms
(see again Appendix C for details). Additionally, we considered yet another
simplified dictionary containing singular and plural “[subject]| [verb].” pairs
(e.g., “dog barks.” and “dogs bark.”) for 12 sentences, SinPlu (Appendix C).
SinPlu was relevant not only due to the “s” placement, which necessarily
relied on longer temporal dependencies, but also due to its similarity to
morphological parsing!®, which has been typically employed in statistical
learning models of natural language and speech transcription (Willits et al.,
2009; Huebner and Willits, 2018).

Similarly to the FDT, the autonomous output of the SORNy, after train-
ing on the eFDT and the SinPlu dictionaries was evaluated by looking at the
relative percentages of incorrect sentences. Here, however, we did not remove
any sentences from the input, and thus the model could not generate novel
correct ones. Not surprisingly, both dictionaries resulted in a bigger number
of incorrect sentences when compared to the FDT output (Fig. 5.7A), con-
firming that tasks including singular and plural sentences are generally more
complex due to the higher ambiguity of input letters. Interestingly, the rela-
tive number of incorrect sentences decayed very similarly for the eFDT and
the SinPlu, reaching a minimum of around 3% for N¥ > 1500. For the SinPlu
output, we further differentiate incorrect sentences as grammatical, in which

MFor instance, in the sentence pair “cat meows.” and “cats meow”, the correct place-
ment of the letter “s” after the verb depends on the previous occurrence of the same letter
after the subject.

> Morphological parsing refers to the splitting of word ending tokens, such as the plural
forms “s” and “es” or the past-tense “ed”, into new words in order to facilitate learning
at the word-level. This is equivalent to the split of one character, “s”, from the rest of the
word, which happens by construction in character-level leaning models.
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Figure 5.7: Errors in the generation of singular and plural sentences.
(A) Percent of incorrect output sentences as a function of the network size,
for different artificial dictionaries. In contrast to FDT, eFDT and SinPlu con-
tained singular and plural pairs of sentences, which are harder for a model to
learn (see text). (B) Types of incorrect sentences for the SinPlu dictionary.
Grammatically incorrect sentences are more common than semantically in-
correct ones for small networks, but their numbers greatly decrease with
network size. Curves show averages of 20 independent simulations, and the
shared area show the 25% to 75% percentile interval (with linear interpolation
between points). (C) Sample autonomous output sentences after training on
SinPlu, for N® = 200. Colors indicate the types of errors: grammatical
(blue), semantic (yellow), and other (red).
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the subject and the verb were correct but their number did not agree due to
the position of the letter “s” (e.g. “dog bark” or “dogs barks”); semantic,
in which the subject and the verb agreed in number but their combination
was not present in the input dictionary (e.g. “dog meows”); and other, for
the remaining incorrect sentences (e.g. “dog arks”; Fig. 5.7B). As additional
evidence of the higher complexity of the task of differentiating singular and
plural forms, the grammatically incorrect sentences were systematically more
numerous than the semantically incorrect ones, especially for small networks,
although both were outnumbered by the other types of errors (Fig. 5.7C.

In conclusion, the SORN'’s ability to generate new, correct sentences ac-
cording to predefined grammar rules was remarkable since its dynamics were
deterministic and its reservoir learning rules, STDP, IP, and SN, were unsu-
pervised. Importantly, the capacity of encoding various time dependencies
in its activity, which was evidenced by the learning of singular and plural
forms of sentences, was a potential consequence of the improved SORNy’s
fading memory capacity, which itself was a result of the biologically inspired
self-organizational mechanisms that we extensively discussed in the previous
chapters and sections. Thus, our results on simple grammar learning sug-
gested that self-organization in neural networks can result in powerful learn-
ing abilities even on relatively small models with a few hundred or thousand
neurons. Such learning abilities were particularly encouraging for both reser-
voir computing and plasticity driven self-organization and might pave the
way for future detailed optimization of unsupervised information encoding
via biologically inspired plasticity mechanisms. For now, in the last part of
this study, we briefly investigated a more realistic task, focusing on natural
language acquisition.

5.4 SORNSs as generative language models

Temporal patterns from artificially constructed dictionaries, of course, are
distant from the complexity and noise of natural language. Furthermore,
language learning has been suggested to rely not only on temporal pat-
terns but also on acquired semantic knowledge (Huebner and Willits, 2018),
a feature that is absent from most recurrent neural network models. Al-
though the mechanisms responsible for the emergence of semantic knowledge
are difficult to identify and currently not fully understood, infants seem to
use computational strategies to detect statistical patterns in language input,
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which are learned and reproduced with remarkable speed (Kuhl, 2004). Even
more surprisingly, this learning process occurs simply by exposure to speech,
oftentimes without supervision, a process that is potentially analogous to
the unsupervised reservoir training methods we have been discussing so far.
Given the promising results on simple grammar rules, we next investigate
how SORN models perform on language learning tasks, and discuss whether
a deterministic neural network model with biologically plausible learning
rules can perform statistical learning and generate sentences that resemble a
highly variable realistic input.

5.4.1 Language acquisition

Even though the underlying neural mechanisms of language acquisition are
not yet completely understood, their study has been of great interest, in par-
ticular, because infants are able to learn to speak even without supervision,
just by being exposed to speech. It has not only been shown that infants learn
language through some form of statistical inference (Kuhl, 2004), but also
that the language outcome of children is highly correlated with the amount
and variety of language input they received as infants (Golinkoff et al., 2015).
Furthermore, 8-months old infants are already able to extract words from
exposure to fluent speech from an artificial language, where the only cues
are the conditional probabilities between syllables within words compared
to syllables between word boundaries (Saffran et al., 1996). Such excellent
language learning skills are, as other general learning abilities, determined by
multiple plasticity mechanisms in the brain, thus the use of computational
models could be essential for the clarification of their roles and capabilities.

In order to study the SORNy’s behavior under the input of realistic lan-
guage, we employed the American English CHILDES database (MacWhin-
ney, 2000), as precompiled by Willits and colleagues (Willits et al., 2016).
The dataset contained transcripts of interactions between parents and in-
fants aged up to 72 months in various situations (see Appendix C for more
details and an overview of the required pre-processing methods). With sim-
pler vocabulary and shorter, repetitive words, this dataset contained features
and short temporal patterns which we expected the SORN to capture, in an
analogy to language acquisition in infants. We employed a training procedure
identical to the previous grammar learning tasks, training the network with
unsupervised synaptic and homeostatic plasticity mechanisms and a sepa-
rate supervised readout layer to predict the next letter in the input corpus
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(for Thiast = 500000 and Tiam = 30000, respectively). After training, and
with all plasticity frozen, this prediction was again fed back as input, result-
ing in an autonomous system that generated potentially “new” speech-like
words and sentences. Again, as our model was built at the character-level,
we treated spaces and punctuation as single characters, which resulted in an
alphabet size of Uy = 32 (rare, non-ASCII characters were removed, while
all letters were converted to lower case).

Importantly, the performance of a language generation task based on
transcripts of speech is not trivially measured. Much like real language, and
differently from our artificially generated grammars, a full set of correct possi-
ble sentences does not exist, and even the input contains various patterns and
words that could be considered correct or incorrect under different assump-
tions'®. Thus, instead of searching for new grammatically correct sentences
in the spontaneous output, we first described the performance of the SORNy,
model in predicting the nezt letter from the input (Fig. 5.8A), by comparing
models of different sizes while keeping the input exactly the same. Specif-
ically, the plasticity phase always received the first 500 000 characters from
the CHILDES input corpus, the readout layer was trained on the subsequent
30000 characters, and finally evaluated on the next 30 000. As expected, the
average prediction performance for each letter increased with network size for
the majority of characters, although even relatively big networks (with tens
of thousand neurons) were not capable of reaching a high performance for
the majority of them. One notable exception was the space character, which
separated words. Its performance was comparatively higher as the network
only had to identify the time step in which a word ends, which did not require
a long memory scale. In particular, output samples showed that smaller net-
works tend to generate shorter words on average, which resulted in a higher
count of, and consequently a higher performance for space characters.

The fluctuating performance observed for the remaining letters could be
potentially a consequence of their frequency in the input dataset. We com-
pared the frequency of characters from CHILDES to the ones typically ob-
served in the spontaneous output of the SORNy, (Fig. 5.8B). This compar-
ison revealed an important difference: although the distributions generally
followed a similar decay (i.e., most frequent input characters were also the

16This is a consequence of learning at the character-level, as words can only be associated
to their context in terms of letter sequences instead of meaning or high-level abstractions.
For example, even if the model is able to reproduce correct words, their position in a
sentence might not be grammatically or semantically correct.
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Figure 5.8: Statistical learning in the CHILDES dataset. (A) Correct
predictions of the subsequent character in the input corpus, for various net-
work sizes, including spaces (invisible first character to the left) and basic
punctuation signs. Bar plots show the average scores for 10 independent
simulations. (B) Character frequency in examples of spontaneous outputs
(Tauto = 50000) for networks of different sizes, in comparison to the input
CHILDES dataset. Inset shows the Kullback-Leibler (KL) divergence be-
tween the distribution of character frequencies in the example outputs and
the CHILDES dataset input.
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most frequent output characters on average), some letters were clearly over-
represented in the spontaneous output. In fact, such a phenomenon pointed
to the occurrence of short, repeating loops of words in the output, suggest-
ing a limited capacity of the model in generating language-like sentences
(Fig. 5.9). Although small loops were also present in the input dataset (a
consequence of the repetition of short sentences during interactions), their
predominant appearance in the output showed that, although SORNp, mod-
els recalled frequently repeated parts of the input, their dynamics did not
generate enough variability in order to recreate input patterns indefinitely.
This was likely a consequence of the deterministic nature of our model, and
in particular, the deterministic output character choice by the readout layer.
Nevertheless, at least for the tested scenarios, standard deterministic SORNs
did not prove to be adequate models for the reproduction of the various tem-
poral patterns contained in the CHILDES dataset and were only able to
capture simple input statistics such as the overall letter count.

5.4.2 SORNSs vs. “deep” recurrent neural networks

Given the complexity of real language input, deterministic SORNs were
only capable of identifying and reproducing the temporal patterns in the
CHILDES dataset to a limited extent. The performance on the prediction of
the next letters did not exceed 50% even for the most frequent cases (such as
the vowels “e” or “0”). Of course, optimal performance in this task is limited
due the variable and sometimes unpredictable nature of spoken language, but
a more detailed look at the autonomous output showed a limited reproduc-
tion of input patterns, with frequent recurrent loops (Fig. 5.9 — an example
of SORN with N¥ = 1000 that reached the infinite loop of repeating char-
acters “teddy bear. turn around!”). However, deep neural networks such as
LSTMs have been shown to be able to learn a huge variety of patterns, even
at the character level, and to produce autonomous outputs that resemble
the input corpus (Karpathy, 2015). What are the main differences between
SORNs and other recurrent neural networks typically used for natural lan-
guage processing? In this final section, we summarize their main distinctive
features and qualitatively compare their generative abilities, in order to bet-
ter understand the mechanisms via which complex temporal encoding can be
improved in self-organizing networks.

We chose to compare SORNs to a recurrent network of GRU units (see
Appendix C for details on the GRU implementation and parameters). Differ-
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Figure 5.9: Sample spontaneous outputs for SORNs and GRUs. Sam-
ple outputs for different recurrent networks after training on the first 500 000
characters of the CHILDES dataset, exemplifying the emergence of correct
words (SORN, NE = 1000), sentence patterns (GRU, 100 hidden units),
and context dependent interactions (GRU, 1000 hidden units). SORNs were
trained for Tijase = 500000, Tiain = 30000, and Ty = 20000. GRUs
were trained for 100 epochs, with sequence length of 100, batch size of 64,
embedding dimension 256, and output temperature 0.3.

ently from SORNs, GRUs’ learning rules relied on gradient descent methods
rather than biologically inspired self-organization. In summary, the GRU
model combined an input embedding representation, in which each input
character was a multidimensional vector of fixed size, with a dense recur-
rent network of GRU units (Cho et al., 2014) and a fully connected readout
layer, which predicted the next character based on a previous sequence of
fixed length with a softmax output sampling (i.e., the output character was
sampled from a softmax distribution with a given “temperature” parame-
ter). The model was trained for a number of epochs, in which it received the
whole dataset as input!”. After training, its spontaneous output was gener-

17The reader might note that this is not the case for SORNs, which were trained only
once on a subset of the CHILDES input corpus. Training SORNs on the whole dataset,
however, was impractical due to computational time. Furthermore, there was no evidence
that training SORNs on the whole dataset would lead to more realistic autonomous out-
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ated via a similar input retro-fed process, which replaced the external input.
It is easy to see the main reason why such a model was fairly different from
reservoir computing networks and was expected to have higher performance
when generating text: it contained a huge number of trainable variables
and controllable hyperparameters. As a simple comparison, a SORNy, with
1000 excitatory neurons contained approximately 10° trainable variables in
its reservoir, while a GRU with the same number of hidden units included
approximately 4 x 105 8. An additional important difference was the train-
ing procedure: while SORNs relied on a combination of self-organizational
unsupervised mechanisms in the main reservoir, GRUs updated their weights
in order to minimize a loss function in a supervised manner. There are little
to no studies discussing how self-organization relates to gradient descent op-
timization in neural networks (but see section 6.2.2 for recent developments),
and a formal comparison was beyond the scope of this short section. Finally,
the GRU model drew its predicted output from a softmax distribution rather
than always choosing the most probable character, which in practice resulted
in a non-deterministic readout layer!?.

Instead of comparing the theoretical mechanisms responsible for the learn-
ing capacity in both SORNs and GRUs, which would require an extensive
description of gradient descent based algorithms and the differential equa-
tions for the units’ gates, we analyzed the models’ empirical results on the
CHILDES dataset by looking at their autonomously generated text (Fig. 5.9).
For the sake of simplicity, we restricted our comparison to relatively small
(or “shallow”) GRU models, with a maximum of 1000 hidden units in a
single recurrent layer. The provided text samples illustrate typical outputs
of models of different sizes, which were also observed in longer and indepen-
dent simulations (not shown). First, small SORNs (N¥ = 100) generated
sentences that contained short, mostly incorrect words, with few exceptions.
Bigger models (N¥ = 1000), however, were already capable of generating

puts. A systematic comparison, therefore, was beyond our scope, and we suggest that
future work should investigate the effects of the input corpus size for plasticity driven
learning.

18Likewise, a GRU model with approximately 100 hidden units contained approximately
the same number of trainable variables as a SORN with 1000 excitatory units. This
difference emerged from the multiple variables employed in each of the various gates of
GRU units.

YNote that, qualitatively, the output softmax temperature parameter controlled the
output variability, analogously to physical temperature. Temperatures close to zero re-
sulted in less variability, while higher temperatures made the output more variable.
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sentences with mostly correct words, but eventually reached recurrent loops
of short sentences that could not be escaped and would be repeated indefi-
nitely. In contrast, GRUs were already capable of generating correct words
while avoiding loops for fairly small models with 100 hidden units. Although
many of the generated sentences were very similar (such as the ones starting
with “you are going to get” in the provided example), we already observed
some variability in words, due to the softmax output. Finally, Larger GRUs
(1000 hidden units) showed variable outputs and were able to keep some
semantic connections between sentences (which were, of course, learned from
the input corpus).

It is insightful to compare the autonomous outputs of SORNs and GRUs
with the same number of trainable variables (as discussed, 1000 excitatory
units for SORNs and 100 hidden units for GRUs), since learning capacity
has been suggested to be a function of the number of units and different
training methods in recurrent neural networks (Collins et al., 2016). As both
outputs lacked context connections between sentences, the main contrast be-
tween them was the presence of repeating short loops in the SORN case,
which were only temporary or absent in the output of GRUs. Given the
GRU readout layer, however, this result was not surprising: in contrast to
the deterministic SORN, the output prediction sampling from a softmax dis-
tribution with non-zero temperature could explain the higher variability and
lack of repeating sequences of characters. In fact, the addition of softmax
sampling (with a small temperature of 0.05) during the autonomous phase of
the SORN led to more realistic language generation without loops, as exem-
plified by the quote at the beginning of this chapter, which is a sample output
of the SORN after being trained with the first two sections (5.1 and 5.2)2°.
This result suggested two important conclusions. First, even though the
SORNp, was not capable of generating enough variability in its autonomous
outputs, it was able to learn many distinct temporal patterns from the input
corpus. The output variability was limited, in fact, by the readout layer,
which could easily be modified to generate more variable sentences. Sec-
ond, self-organization combined with non-linear methods might lead to more
realistic autonomous outputs, possibly even comparable to small recurrent
neural networks of gated units trained via gradient descent.

20The language of the input corpus, in this case, was arguably more difficult to learn
than the CHILDES dataset, reason why a realistic autonomous output required a network
with more neurons. This result, nonetheless, was very well received by the author of this
particular input text.
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In summary, our brief comparison between SORNs and GRU models
suggested that a deterministic self-organizing network is capable of encod-
ing input temporal information, but requires a stochastic readout layer in
order to autonomously generate similar output. Importantly, although self-
organization in the SORN is inspired by biological plasticity mechanisms, the
same is not true for the readout layer, which is a supervised multi-class clas-
sifier trained via logistic regression (see Chapter 3). Our results suggest that
a more complex and possibly non-deterministic mechanism might be respon-
sible for language acquisition and reproduction in biological neural circuits.
Such mechanisms should work in addition to the combination of synaptic
and homeostatic plasticity responsible for the encoding of input information.
The combination of synaptic and homeostatic plasticity, furthermore, might
assist spatio-temporal learning even for complex tasks that are commonly
approached via supervised deep neural networks. Future work should re-
veal if and how unsupervised plasticity driven self-organization is able to
assist current supervised neural network architectures and training methods
in capturing different input temporal scales together, from character-level
dependencies to the context of words and sentences.

5.5 Discussion

We have extended the analysis of criticality from the previous chapter in
order to investigate its links to another brain function, the fading (or work-
ing) memory capacity, which measures how long past inputs can remain in
a system’s recurrent activity. This analysis was initially motivated by the
maximum logarithmic memory scaling observed in reservoirs at the edge-of-
chaos (Bertschinger and Natschldger, 2004), whose general relation to neu-
ronal avalanches and self-organized criticality was unknown. Our results
showed that a logarithmic scaling was indeed observed in the SORNy, when
recalling distinct symbols from random past inputs, even though the same
input was responsible for the breakdown of the power-law distributions of
neuronal avalanches’ sizes and durations in the SORNz. When driven by a
similar input from a counting task, however, the SORNp, has been shown to
exhibit subcritical behavior via perturbation analysis (Lazar et al., 2009),
resulting in an apparent contradiction to the observed critical memory scal-
ing. Fortunately, this contradiction did not hold under careful analysis.
First, edge-of-chaos dynamics do not generally co-occur with critical phe-
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nomena (Kanders et al., 2017a), and our results suggested SORN models
exemplify this previous observation. Second, the critical memory scaling
might have been achieved via self-organization even if the network did not
display dynamics at the edge-of-chaos. Third, as discussed in the previous
chapter, disentangling the input of sequence learning tasks and the model’s
dynamical state is particularly difficult. The lack of power-law scaling for
neuronal avalanches in the case of structured, learnable inputs is not neces-
sarily a proof of non-critical dynamics, but likely a consequence of the input
temporal structure.

Given all those observations, what can we finally conclude about the re-
lationship between criticality, neuronal avalanches, learning, and memory
abilities? The connecting factor among all our results is the plasticity driven
self-organization, which is capable of driving the models towards different
dynamical states depending on the input conditions. This adaptation to
input intensity and patterns has a parallel with different experimental se-
tups (Priesemann et al., 2014): while neuronal avalanches appear only in
spiking activity in-vitro, plasticity in-vivo could potentially act to improve
functional properties such as the fading memory, while keeping the system
away from criticality signatures due to the external drive. Interestingly, our
results also suggested that memory curves are improved, but not maximized,
at intermediate membrane noise levels, in which power-law scaling of neu-
ronal avalanches occur?'. Thus, the relationship among those mechanisms
remains elusive, and we expect future studies to investigate the maximization
of the fading memory capacity as a potential functional role of critical, or
near critical, dynamics in the brain.

Whereas in models the link between processing capacity, memory and
criticality has been widely investigated, experimental evidence is scarce, po-
tentially because it is harder to obtain. The main challenge is to tune the
experimental system precisely from sub- to supercritical states, ideally in a
manner that does not impede its natural processing capacities in a given
state. Additionally, the processing capacities, such as the fading memory,
need to be quantified. The classical approach is to make use of pharma-
cological interventions to control the excitatory and inhibitory balance. For
instance, the dynamic range obtained from local field potential (LFP) record-

2I'We emphasize the difference between improvement and maximization of the fading
memory capacity. For instance, we have observed that a lognormal target firing rate
distribution among excitatory neurons can also improve the SORN’s learning and memory
capacities, although it does not, a priori, maximize them.
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ings n-vitro under electrical stimulation is maximized in an unperturbed sys-
tem and diminished when excitation or inhibition is reduced pharmacologi-
cally (Shew et al., 2009). The same holds for the entropy of evoked patterns
and for the mutual information between stimulus strength and response pat-
tern (Shew et al., 2011; Shew and Plenz, 2013). Recent work has also shown
that the mutual information between the past activity of two neurons and
their future spiking increases with circuit maturation in-vitro (Wibral et al.,
2017). Given that with maturation neural networks in-vitro approach a crit-
ical state (Levina and Priesemann, 2017), this clearly indicates that more
information about the past can be read out in the future, as the network
self-organizes towards a critical point. By characterizing contributions from
the source neurons (Wibral et al., 2015), a complementary study showed
that the relative contribution of synergy to mutual information increased, al-
though the unique contributions from each source decreased during the first
four weeks, indicating that the neural network developed information mod-
ification capabilities. In the fifth week, however, the redundant or shared
contribution dominated, and information processing became highly similar
across neurons, possibly due to a lack of external inputs (Wibral et al., 2017).
Together, these studies showed that favorable information processing capa-
bilities increased around criticality, and therefore agreed with our modeling
results.

In the second part of the chapter, we tested the limits of learning and
memory abilities in the SORNp, by employing more challenging temporal
learning tasks, in the form of grammar learning, sentence generation, and
language acquisition. It is important to mention that grammar learning has
been attempted with SORN models before (Duarte et al., 2014), however
with a different approach. Instead of learning temporal sequences of charac-
ters, the authors focused on simpler Reber grammars (Reber, 1967), which
contained “sentences” composed of a small number of symbols and transition
rules based on a predefined directed graph. The SORNy succeeded in distin-
guishing correct and incorrect input sentences (generated from a transition
graph), although the prediction of future input symbols was not required. We
have extended those results and shown that not only multiple real sentences
can be correctly learned at the character level, but they can also be subse-
quently recalled and autonomously generated long after the external input
was cut off. Additionally, new correct sentences could be generated, showing
that output variability might arise even in deterministic models. Interest-
ingly, neural variability akin to cortical spike recordings has been shown to
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also emerge in the same deterministic models of the SORN family (Hartmann
et al., 2015), further emphasizing that plasticity driven self-organization in
neural circuits can generate non-deterministic behavior.

Learning temporal patterns with recurrent networks is by no means a new
topic, and simple random networks have long been introduced as a way of
performing statistical learning and storing input structures (Elman, 1990).
Curiously, today most natural language processing models encode informa-
tion at the word-level via embedding representations (Mikolov et al., 2013),
possibly due to the fact that words themselves do not need to be learned in
these cases. This approach, however, is not able to detect the fine structure
of symbols in a given sentence, relying instead on learned relationships be-
tween words, and has limited application for the investigation of how simple
language structures are first acquired. We have attempted to describe lan-
guage learning at the character-level by emulating statistical learning during
language acquisition (Kuhl, 2004). Importantly, the sequences of letters in
our models could be more realistically thought as phonemes, when spoken
language was considered??. Unfortunately, SORN models were too simple
to capture and reproduce all the complexity of spoken language, even when
restricted to a dataset of interactions with infants. Nonetheless, we have
shown that self-organization in the reservoir alone was able to learn some of
the input character statistics. Interestingly, the lack of realistic autonomous
output was a consequence of the SORN’s linear readout layer, which could
be combined with softmax sampling (typically employed in various machine
learning architectures) in order to generate improved outputs. Such a result
suggested that self-organization due to biologically inspired plasticity might
be combined with other recurrent neural network architectures and learning
algorithms for more efficient models, and we hope future biologically inspired
network architectures can be designed or improved based on this combina-
tion.

Last, the fact that a combination of a deterministic neural network model
with a simple stochastic output generation mechanism was able to give ori-
gin to realistic variability, either in the form of new correct sentences or
“language-like” output, was remarkable. Although we did not explore the

22Precisely, the number of phonemes in a language is typically higher than the number
of letters in its alphabet (English, for instance, has 44 phonemes). However, our results
were robust regarding the alphabet size, and the neural input pool NV for each letter
could be increased or decreased as necessary to accommodate a higher or smaller number
of distinct inputs, with negligible effects on our results.
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full extent of possibilities and insights to be gained for language acquisition
modeling, we hope that these results will pave the way and possibly inspire
more detailed models of statistical language learning in infants. In partic-
ular, as our model mainly failed to capture long-range temporal patterns
and correlations, we expect that hierarchical models that combine learning
mechanisms acting at different levels might yield improved results and more
realistic autonomous output in the future.



Chapter 6

Conclusion and outlook

Good news, everyone!

Professor Hubert J. Farnsworth

6.1 Summary

The brain’s dynamical state is surprisingly stable (i.e., activity neither dies
out or is repeatedly amplified) given the constant adaptation required by mul-
tiple input intensities and spatio-temporal patterns. This adaptation is reg-
ulated by various synaptic and homeostatic mechanisms acting at the neural
level, which also play essential roles for information processing. Nonetheless,
experimental evidence has suggested that this self-organization phenomenon
might result in different dynamics depending on internal and external fac-
tors, while theoretical and computational models have repeatedly shown the
existence of a critical state for neural networks, in which information pro-
cessing is maximized. Therefore, it is straightforward to speculate that, at
least under certain conditions, the brain is poised at criticality.

In this thesis, our goal was to investigate the role of self-organization in
the emergence of criticality signatures in neural circuits and a potential con-
nection between criticality and learning abilities in neural networks. This
was achieved using a family of self-organizing recurrent neural network mod-
els (SORNs), which not only have been shown to outperform static reservoirs
on sequence learning tasks but also combine biologically inspired plasticity
mechanisms and have been able to reproduce neural variability and various
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features of cortical dynamics. In Chapter 4, we explored the mechanisms
underlying the occurrence and maintenance of experimentally observed criti-
cality signatures, focusing on neuronal avalanches with power-law distributed
sizes and durations. Second, in Chapters 4 and 5, we observed that the same
neural self-organizational mechanisms are responsible for the model’s learn-
ing abilities and, perhaps surprisingly, may result in a logarithmic scaling of
fading memory, so far only observed in networks at the edge-of-chaos. Fi-
nally, in Chapter 5, we explored applications of the critical-like improvement
in memory and proposed a self-organizational model for language learning
and generation.

6.1.1 Ciriticality in neural circuits

We have observed criticality signatures in the form of power-law distributed
bursts of neural activity in the spontaneous activity of the SORNyz model.
These signatures resulted from plasticity driven self-organization and resem-
bled the neuronal avalanches detected in multiple experimental setups, in-
cluding their transient break down under random external input and total
absence under simple inputs containing learnable temporal patterns. Impor-
tantly, not only we found the power-laws to be input dependent, but they
required a suitable level of membrane noise to occur, suggesting a potential
experimentally testable control parameter. The contrast between the pres-
ence of neuronal avalanches in the model’s spontaneous activity and their ab-
sence under simple structured input has a straightforward analogy to spiking
activity in-vitro and in-vivo, and we have shown that the same combination
of Hebbian and homeostatic plasticity can account for both cases, leading the
system towards to and also away from criticality depending on the input. We
highlight, again, that such a self-organization process could be highly advan-
tageous for the brain: while a near critical dynamical state takes advantage of
various information processing benefits, it avoids dangerous epileptic regimes.

Ultimately, does the critical brain hypothesis hold true and the brain is
indeed poised at a phase transition state? A short answer is maybe, but
likely not always. A slightly longer answer is that seemingly incompatible
experimental measurements on criticality signatures might, in fact, be rec-
onciled when self-organization and local input levels are considered. The
results on SORN models are less speculative: criticality signatures appear
in the SORNy spontaneous activity, while the SORNy, is slightly subcriti-
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cal when performing learning tasks'. The presence of power-law distributed
neuronal avalanches, however, was not sufficient to prove that the SORNy,
belongs to a class of self-organized criticality (SOC) models. In fact, the
power-law exponents were different from the ones typically observed in ex-
periments and branching processes, which reflected the emergence of more
complex dynamics after self-organization. Given the effects of the noise level,
we also note that the structure of particular inputs might generate apparent
criticality in non-critical systems and vice-versa. Therefore, the input drive
should be disentangled from the internal model dynamics when drawing fur-
ther conclusions about criticality. Last, the term “criticality” itself is used
in the literature to refer to at least two generally distinct dynamics, SOC
phenomena and phase transitions from ordered to chaotic states. We have
shown that SORNs are biologically inspired examples of complex models in
which both do not, necessarily, co-occur.

6.1.2 Ciriticality meets learning and memory

As we have discussed in Chapter 4, external input, including the drive from
other brain areas, is crucial for the local emergence of criticality signatures
and possibly critical dynamics. However, linking criticality or the deviation
from it to the performance in a particular task is challenging. For exam-
ple, in this thesis we have shown apparently contradictory results: neuronal
avalanches coincide with an increase in the fading memory capacity of the
SORNyz model, but they are not connected to maximal performance in sim-
ple learning tasks with structured input. While the relation between fading
memory and performance in various tasks has not yet been clarified, this
discrepancy can be explained by the nature of the learning task and the
readout training procedure from reservoir computing. Although the addition
of membrane noise level results in an increased number of internal repre-
sentational states, suggested by the increase in the fading memory capacity,
such effect cannot be fully exploited by a linear supervised readout layer, as
the noisy network activity increases the error of the classifier. Additionally,
as the power-law distributions seem to require unstructured input, their ab-
sence under repeating input sequences was not surprising, since the network
can still achieve an internal structure that is beneficial for pattern learning.

'Recall that the differences between these models are two plasticity mechanisms, in-
hibitory spike-timing-dependent plasticity (iISTDP) and structural plasticity (SP), and the
presence of neuronal membrane noise.
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These results can be interpreted as a deviation from avalanche criticality
due to structured input, while other network information processing abili-
ties, including the fading memory, remain unaffected. Therefore, criticality
signatures might still indicate a favorable, although not unique, dynamical
regime for learning in recurrent networks.

In the last part of our study (Chapter 5), we have shown that self-
organization in reservoirs (SORNp) leads to a logarithmic scaling of fad-
ing memory which only occurs for static reservoirs at the edge-of-chaos.
This result has two main consequences for reservoir computing. First, self-
organization might be responsible for maintaining a critical-like scaling even
without poising the model at criticality. Second, an improved fading mem-
ory capacity in reservoirs indicates they are able to learn more complex tem-
poral tasks. Although our results on language learning fall short of the
current state-of-the-art deep learning frameworks in terms of performance,
self-organization via biologically plausible Hebbian and homeostatic plastic-
ity mechanisms might lead to future insights in statistical models of lan-
guage acquisition. In particular, the successful generation of novel, correct
sentences following predefined grammar rules and containing words from ar-
tificially built dictionaries suggests that self-organization might play a key
role in how brain networks are able to encode complex temporal patterns.

6.2 Outlook

Our results suggested a few possible directions for follow-up studies, partic-
ularly regarding the role of criticality for brain function and the mechanisms
governing the adaptation to different input conditions. Additionally, given
the combination of self-organization and reservoir computing, or more gen-
erally machine learning, the implications of our studies might be relevant
beyond the field of computational neuroscience.

6.2.1 Ciriticality and neural circuits

The debate about criticality in the brain has evolved since the observation of
its first experimental evidence (Beggs and Plenz, 2003) but remains far from
settled. Our results suggest that future theoretical work should focus on clar-
ifying the relationship between power-law scaling (avalanche criticality) and
“true” second-order phase transitions (as in sandpile models and branching
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processes) in various classes of dynamical systems. Although multiple mod-
els assume they co-occur, SORNs and other complex systems (Markovié and
Gros, 2014; Kanders and Stoop, 2016) are examples in which this relation-
ship is not trivial and simple analogies to SOC might fail. In particular,
our results support the idea that criticality analyses in brain circuits should
always take into consideration the system’s external drive, since biological
self-organization mechanisms, including synaptic plasticity, seem to be able
to sustain distinct dynamical states. This is potentially a consequence of the
lack of separation of time scales in neural networks, and developing theo-
retical and experimental approaches to disentangle internally and externally
driven dynamics are important future challenges. Interestingly, similar net-
work adaptation has recently been observed at the whole-brain level (Ponce-
Alvarez et al., 2018), in which external inputs are counterbalanced by plas-
ticity action resulting in a repeated return to a phase transition point (such
counterbalance by plasticity action can be achieved via equilibrium of excita-
tory and inhibitory synapses, as shown by recent work (Agrawal et al., 2018)).
This experimentally observed process is comparable to self-organization and
the emergence of criticality signatures we described in the SORN’s sponta-
neous activity.

As for our modeling approach, obvious next steps are the investigation of
experimentally motivated changes in the SORN’s synaptic and homeostatic
plasticity mechanisms and their effects on the system’s dynamical state. Re-
garding synaptic plasticity, extensions of the STDP rule in the form of re-
ward modulation have already been introduced in previous works (Savin and
Triesch, 2014; Aswolinskiy and Pipa, 2015), suggesting that self-organizing
neural networks might be used as models of reward-dependent learning under
the theory of three-factor learning rules (Frémaux and Gerstner, 2016). Our
own preliminary experiments have shown that reward dependence can be ef-
fectively combined with Hebbian learning for simple reinforcement learning
tasks, although any link to critical dynamics, or even criticality signatures,
remains unexplored. Self-organization via homeostatic plasticity, in addition,
can be modified to account for the lognormal distributions of neuronal tar-
get firing rates observed in cortical tissues. Our exploratory tests, in fact,
have shown that non-uniform firing rates slightly increased the SORN’s per-
formance in some of the learning tasks we studied, which should be further
investigated by future work. Finally, a question that remains to be answered
is the scalability of our results: how does self-organization affect much larger
networks, with size and topology comparable to real neural circuits? The
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fact that critical dynamical behavior might emerge in hierarchical network
architectures even when underlying processes are not critical (Friedman and
Landsberg, 2013) suggests that hierarchical SORN-like models are an inter-
esting possibility to study self-organization in large scale brain activity, and
we believe our current results might provide important insights for the design
of future large scale neural networks.

6.2.2 Self-organization and computing

We have provided empirical evidence that self-organization and criticality
signatures are linked to learning and improved memory scaling in recurrent
neural networks. However, we have left a formal description of the relation-
ship between these capacities for future studies. As the scaling of these prop-
erties is arguably task dependent, a mathematical formulation of particular
classes of tasks that may be optimized at critical or near critical dynami-
cal regimes could improve the fine tuning of parameters of neural networks
constructed to excel at those tasks. We have suggested language acquisi-
tion and generation as possible applications of deterministic, self-organizing
reservoirs, but other applications for supervised and unsupervised learning
could be investigated in the future. For example, due to the combination of
various temporal patterns in language, hierarchical self-organizing networks
could be particularly effective and greatly improve the results we obtained
with SORNs. Furthermore, SOC analogies have recently been proposed for
complex optimization problems in deep learning such as unsupervised image
segmentation, in which costly parameter search methods could be replaced
by self-regulation rules (Hoffmann and Payton, 2018). More generally, maps
between self-organization phenomena (and renormalization theory) and mod-
ern deep learning frameworks have been suggested (Mehta and Schwab, 2014;
Martin and Mahoney, 2018), and the possibility that biological plasticity
mechanisms can improve standard gradient descent based techniques pro-
vides an interesting new topic of investigation that lies at the intersection of
computational neuroscience, machine learning, and physics. In that sense,
our description of self-organization towards criticality in small “toy” networks
might not only shed light on important properties underlying biologically in-
spired learning models but also provide insights for the setup of more effective
architectures of artificial neural networks.



Appendix A

Model implementation in
python

During the course of this thesis, we developed two distinct implementations
of SORN models. The initial implementation was the SORN repository in
python 2.7, which was based on a former repository from previous stud-
ies (Hartmann et al., 2015, 2016). This version was employed to generate
and analyze the results in Chapter 4, and the exact code to reproduce our
analyses and figures has been made publicly available on github, as part of
our publication (Del Papa et al., 2017). The maintenance of this old ver-
sion, however, has become difficult due to conflicts in dependencies, multiple
packages versions, and overall lack of backwards compatibility. Therefore, a
second implementation and a new repository, SORN-V2, were created, in-
cluding an update of the model to python 3.6 and more organized installation
guides and reproducibility instructions combined with improved general soft-
ware development practices. This new version was employed to generate the
results, analyses, and figures in Chapter 5, as well as the follow-up book
chapter (Del Papa et al., 2019). Both implementations are compatible and
yielded equivalent results for all our tests, including the replication of the
original SORNy, (Lazar et al., 2009) and the extended SORNyz (Zheng et al.,
2013) models. This is to be expected as they share some of the core classes
and functions. In order to avoid confusion, we describe here the main differ-
ences between both implementations and provide basic instructions for future
use, although we strongly recommend interested users to choose SORN-V2,
as the old SORN repository is no longer maintained and will likely create
various conflicts with different versions of old python packages.
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A.1 SORN

Repository: https://github.com/delpapa/SORN

The main SORN dynamics are relatively easy to implement in most pro-
gramming languages, as the update steps are a result of simple independent
learning rules (Chapter 3). In order to properly manage experiments, test
different sets of parameters, and plot desired results with relative ease, each
experiment was organized in a separate module and kept apart from core
functions that are shared by most simulations (e.g., the functions regulat-
ing plasticity rules or the readout training). This framework was already in
place from previous implementations (Hartmann et al., 2015, 2016) and was
initially kept the same for compatibility reasons. A new experiment module
to compute neuronal avalanches was implemented in addition to other for-
mer experiments, with respective configuration files and plot scripts for the
figures shown in Chapter 4.

Due to the nature of the neuronal avalanche analyses, which typically re-
quired distributions of thousands of events, independent simulations of mil-
lions of time steps were routinely required. A single SORNy simulation, for
example, required a few hours in this framework (CPU implementation),
which was already optimized by taking advantage of sparse matrices (the
time bottleneck, as expected, was in the matrix multiplication operations
required for some plasticity mechanisms and readout training). This large
computational time cost demanded the implementation of a two-stage pro-
cess: the main SORN simulation runs separately from the data analysis and
plots, while intermediary results (for example, the total SORN excitatory
activity per time step) were stored in disk (naturally, these intermediary re-
sults were not uploaded in the repository, and any new user would need to
generate them again). Importantly, on top of the original implementation,
the powerlaw package (Alstott et al., 2014) was necessary in order to plot
power-laws and estimate exponents of various candidate distributions for the
neuronal avalanches sizes, durations, and exponent ratios. The SORN simu-
lation and experiments, finally, relied on additional standard python modules
(numpy, scipy, matplotlib, among others).
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A.2 SORN-V2

Repository: https://github.com/delpapa/SORN_V2

This follow-up repository includes the implementation of all experiments
presented in this thesis, namely Counting Task, Random Sequence Task,
Neuronal Avalanches, Memory Avalanches (which combines the neuronal
avalanches and fading memory capacity analyses), Grammar Learning Tasks,
and, finally, Language Learning Tasks. Experiments have been made into in-
dividual modules that can be run independently with different combinations
of parameters and active plasticity mechanisms, although they share the com-
mon update methods and utility functions. Each experiment module refers
to a different section of this thesis. The Counting and Random Sequence
Tasks, as well as the Neuronal Avalanches, have been employed to validate
the results from Chapter 4. The Random Sequence Task and the Memory
Avalanches have been used to obtain the results regarding the fading mem-
ory capacity in Chapter 5. Finally, the Grammar and Language Learning
Tasks have yielded the results from the second half of Chapter 5, including
the generative language experiments.

The Counting Task was able to validate the performance results from the
original SORNy, study (Lazar et al., 2009), while the Neuronal Avalanches
experiment replicated results from SORNy (Zheng et al., 2013), including the
lognormal distribution of synaptic efficacies and the evolution of the number
of active excitatory synapses over time. From a practical perspective, each
experiment module was divided into three parts for easier modular implemen-
tation: a configuration file, where all the simulation parameters are given, an
experiment description script, in which particular experimental instructions
are stored, and a source script containing all the information about the par-
ticular input source. Additionally, the majority of plot scripts have also been
provided, allowing for the reproduction of this thesis’ main figures (however,
as in the previous repository, the main SORN simulation and analyses must
be run separately and the intermediate results must be stored locally). The
SORN-V2 implementation relied on the updated versions of the packages
from the previous SORN repository, but now appropriate instructions for
environment setting have been provided in order to avoid version conflicts in
different machine setups. Further instructions and command line commands
are provided in the repository’s public web page, and interested users should
be able to easily run a single simulation of the model.
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Appendix B

Fitting power-laws with
maximum likelihood estimators

As we have seen through this thesis, power-laws form the bulk of experi-
mental evidence supporting the critical brain hypothesis. Additionally, we
investigated and showed multiple power-law distributions in the SORN’s ac-
tivity, on which most of our conclusions are based. Given that the process
of fitting power-laws is, in contrast to the common intuition, not straightfor-
ward, we describe here the method employed during this thesis to fit power-
laws (Clauset et al., 2009).

Power-laws typically attract attention due to their mathematical proper-
ties and their presence in myriad natural and artificial systems, but their fit is
particularly difficult due to uneven variations in the distribution’s tail (Gold-
stein et al., 2004; Clauset et al., 2009). This noise in the tail can be both
the result of the statistical nature of the system or even rounding errors,
and already requires a specific logarithmic binning process, particularly for
discrete data (Milojevi¢, 2010). Mathematically, a variable z is said to follow
a power-law if it is drawn from a distribution of the form:

pla) o (B.1)

in which a > 0 is the exponent (also known as slope or scaling parameter).
In practice, power-laws appear above a z.;, > 0 value, as the distribution
diverges for z — 0. With the additional constraint of @ > 1, normalizing the
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Figure B.1: Power-law-like distributions in a log-log plot. Comparison
between randomly sampled distributions. Under a simple visual inspection,
exponentials, lognormals, and power-laws look alike and can, in principle,
resemble one another. More rigorous statistical tests such as MLE combined
with goodness of fit are required in order to correctly classify the distribu-
tions.

distribution results in:

plz) = 22 (i) - (B2)

Lmin Lmin «, mmin)

in which ((@, ZTmin) = Do o(R+Tmin) " is the generalized zeta function. The
problem of fitting such a distribution to experimental data can be roughly
divided into two steps. First, the best-fit parameters, o and x.,;,, have to
be appropriately calculated. Second, a goodness of fit parameter should
be estimated, comparing how good a power-law fit is to other similar func-
tions. Common choices of similar functions are exponentials, stretched ex-
ponentials, power-laws with exponential cut-offs, and lognormal distribu-
tions (Clauset et al., 2009), all of which look alike under a simple visual
inspection of a log-log plot or histogram (see Fig. B.1 for a few examples).
The problem of fitting parameters is more complex than it seems at first
sight. As power-laws typically have huge statistical fluctuations at the dis-
tributions’ tails, a simple linear regression fit (for example, least squares
regression) is biased and can lead to spurious exponents (Goldstein et al.,
2004). In fact, most of the important information about the distribution
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is contained in the first points, and giving them more weight in the fit can
already result in smaller variances. The most precise method to derive ex-
ponents in this case, for an assumed power-law distribution, is the maximal
likelihood estimate (MLE; Clauset et al. (2009); for a more general and less
formal tutorial on maximum likelihood with simpler examples, see Myung
(2003)). Assuming that x.;, is given, the probability, or likelihood, that
n observations of continuous data x were drawn from a “pure” power-law
distribution with exponent « is:

ko) =TT oy (5.3

Thus, we should maximize this likelihood with respect to « in order to
find to best exponent fit a*. Alternatively, maximizing the logarithm of this
distribution:
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results in the MLE for the exponent:
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in which convergence happens in the hmlt of large n. The case of discrete data
x is, however, more complicated and has no general closed form (Goldstein
et al., 2004). Following Clauset et al. (2009), the MLE for the discrete case
can be approximated with high accuracy (= 1%) by:

of =14+n

-1

Zln (a:mm == 5)] (B.6)

given that x;, > 6. For the purposes of this thesis, we tested both discrete
and continuous exponent estimates for the neuronal avalanche data resulting
from our SORN simulations (which are discrete). As suggested by the original
work (Clauset et al., 2009), we opted for the discrete approximation, as it

of~1+n




152 APPENDIX B. FITTING POWER-LAWS

provided higher accuracy, especially for n > 50 (recall that, in our data, we
had thousands of events per simulation, resulting in hundreds of thousand
data points per distribution).

In order to estimate the second fit parameter, z,;,, different methods
can be employed, including a visual estimation in a log-log plot (Clauset
et al., 2009). For simplicity, we chose the discrete value which minimized
the distance of our experimental distribution to a pure power-law, by testing
the exponents and errors for each possible x.;, value. This approach, if
not carefully done, can introduce biases towards power-laws, which is an
additional reason to compare the goodness of fit between power-laws and
other alternative distributions.

The goodness of fit can be considered an estimate of how plausible a
power-law distribution is to the given data. In practice, estimating the best-
fit parameters may result in the best power-law fit, but this procedure pro-
vides no information about the plausibility of a power-law distribution for
the data. Ideally, a goodness of fit measure should detect if deviations from
a pure power-law are purely statistical or actually suggest that the given
dataset follows another distribution. Naturally, it is always possible to over-
fit any dataset with a distribution defined by enough parameters, while it
is impossible to compare every possible distribution and choose the best fit.
Therefore, some prior knowledge about the dataset is always required, and
in practice, typical distributions compared to power-laws are heavy-tailed
distributions with only one fitted parameter. Any two distributions can be
compared using a loglikelihood ratio test (Clauset et al., 2009), among other
approaches. This test estimates the loglikelihood ratio R between two dis-
tributions at data points x;. Assuming the test is to be made to compare
distribution p;(x) and po(z), R is given by:

n

A= 20 = ) ~mae)] (B

i=1

in which both logarithms are, in practice, the loglikelihood for a single mea-
sure x;. For the limit of large n, R is positive is case p; is more likely and
negative in case po is more likely, and a significance p can be estimated based
on the variance of the distribution of R'. In practice, if p is small enough
(p < 0.1), it can be shown that R is unlikely to be a chance result and can be

LOf course, for the sake of brevity, we are glossing over many details on the calculation
of R. See Clauset et al. (2009) and references within for those details.
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trusted when choosing the more accurate distribution to represent the data.
Fortunately, the estimation of «, z,,;,, R and p can be done using auto-
mated python packages developed specifically for this purpose and based on
MLE, using the same procedure briefly described here — namely the power-
law module (Alstott et al., 2014). During our work, we have first employed
our own functions to estimate those parameters but switched for the pre-
implemented ones and powerlaw for consistency and computational speed
(as far as we have tested, the estimated exponents were similar when using
our functions or the package). Therefore, all the results shown in this thesis
have been plotted and estimated using this particular python package, and
the current SORN implementation depends on it for the avalanche analysis.



154 APPENDIX B. FITTING POWER-LAWS



Appendix C

Grammar and language
learning

In Chapter 5, we studied the SORN’s grammar and language learning abilities
by employing artificially constructed dictionaries, an open dataset contain-
ing transcripts of language acquisition in infants, and finally implemented a
simple “deep” recurrent neural network composed of Gated Recurrent Units
(GRUs; Cho et al. (2014)). Here we provide additional information about
each of those auxiliary tools.

C.1 Predefined dictionaries

In order to create simple, language-like inputs composed of sequences of
symbols with various time dependencies, we created 3 distinct dictionaries
to serve as input to the SORN: the “ fox drinks tea.” (FDT), the extended
FDT (eFDT), and the singular/plural sentences (SinPlu). Each contained a
different number of words and grammar rules that not only made the learning
tasks increasingly difficult but also captured some properties of real language.

FDT This first dictionary contained sentences of the form “[subject] [verd]
[object].”, including spaces and the final stop, and from which words in each
category were randomly drawn from a fixed list. This list contained 8 different
subjects, 2 verbs, and 8 objects, with the constraint that each verb could
only be followed by 4 exclusive objects (Fig. C.1A), resulting in a total of
64 possible sentences with an alphabet size Uy = 25 (i.e., containing almost
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(A) subjects verbs objects (C) subjects verbs
woman [;?:;; dog barks
mﬁln fish cat |  Mmeows
t?oy /-/ vegetables pig L » OINKks
child \-\ — brd _|—#| sings
dog milk sun | shines
cat tea fish |—» swims
fox juice wind p| blows
monkey |—m climbs
horse » gallops
(B) subjects verbs objects Tion L ) hunts
elephant > toots
woman duck [—® quacks
man eats meat
Eg)‘( N bfri‘iﬁd dogs |—® bark
chiid vegetables cats p» meow
dog drinks pigs — ] oink
?:; birds ] sing
suns > shine
fishes » swim
women winds > blow
men eat monkeys |—»| climb
Eg;(ss / water horses »  gallop
children \ milk ions | hunt
dogs drink / juice elephants > toot
fgiss ducks [—® quack

Figure C.1: Artificial dictionaries for the grammar learning tasks.
(A) Fox Drinks Tea dictionary (FDT). Sentences were constructed by ran-
dom selection of subjects, verbs, and objects, according to the arrows: each
verb could only be followed by half of the objects. (B) Extended FDT dictio-
nary (eFDT). Sentences constructed by this dictionary included the singular
and plural forms of the ones in the FDT, duplicating the number of its sub-
jects and verbs. (C) Singular/plural dictionary (SinPlu). Sentences were
constructed via the random selection of subject-verb pairs from 12 possibili-
ties, which could be either in their singular or plural forms (thus, 24 distinct
possible distinct sentences). Subjects and verbs were associated according to
the arrows.
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all lower case letters of the English alphabet). In order to construct an
input corpus, sentences were randomly selected, with equal probability, and
concatenated while preserving the punctuation. For simulations in which a
number of randomly selected sentences were removed from the input, their
probability of selection was set to 0. As an example, an input fragment
could be composed of the sentences “ fox drinks tea. cat eats meat. dog eats
vegetables.”.

eFDT As an extension of the FDT dictionary, eFDT contained sentences
according to the same grammar patterns and verb-object constraints, but
also including plural forms of subjects and their respective verbs (Fig. C.1B).
Overall, this dictionary contained 16 subjects, 4 verbs, and 8 objects, for a
total of 128 possible distinct sentences (alphabet size remained Uy = 25).

SinPlu In analogy to the parsing of plural indicator tokens, commonly ob-
served in statistical learning models of natural language (Willits et al., 2009),
this dictionary was composed of 12 subject-verb pairs (Ua = 24), which could
be either in the singular or plural form (Fig C.1C). The main difference be-
tween singular and plural forms was the position of the “s” character or
plural token: for singular sentences, it should be placed after the verb and
not after the subject, while for plural sentences the exact opposite should
take place. The input corpus constructed from the SinPlu dictionary con-
catenated randomly chosen sentences, with equal probability, independently
of their singular or plural state. For example, a fragment could read “ dogs
bark. duck quacks. dog barks. cat meows.”

C.2 The CHILDES dataset

To address a more realistic language learning framework, we also trained
SORNSs on the CHILDES corpus, an open database containing transcripts of
interactions with infants in various types of situations (MacWhinney, 2000).
The CHILDES database contains multiple short transcripts of activities such
as reading, playing, and eating, and provides a relatively realistic overview of
vocabulary and grammar structures to which infants are commonly exposed.
Importantly, this database reproduces transcripts of native American English
spoken language, and thus contains more variable patterns and more flexible
structures that are not commonly found in written texts. In our simulations,
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we employed a raw unparsed version of the dataset which included 4568 short
transcripts of different interactions involving infants and children up to 72
months of age. This was an expanded version of the dataset employed by
a previous language acquisition study (Huebner and Willits, 2018), whose
authors kindly provided their corpus text files. The CHILDES does not, of
course, reproduce the full range of language interactions infants typically are
subject to, but should be viewed as an approximation of the semantic and
grammatical structures that occur during various stages of development.

The raw corpus contained capital and lower case letters, numbers, various
punctuation marks! and onomatopoeias, and almost no pre-processing, ex-
cept for the substitution of female, male, and genderless names for “FNAME” |
“MNAME”, and “ANAME”, respectively. Overall, the corpus had an alpha-
bet size of Uy = 59 (including capital and lower case letters, spaces and
punctuation), and contained approximately 1 million sentences, composed of
roughly 6.5 million words (or 32 million characters). In order to make the
corpus less variable, and therefore easier for the SORN to learn, we converted
all letters to lower case and removed all numbers and punctuation characters
with fewer than 1000 occurrences (the remaining ones were: “. 7«17 ¢
770 ¢ 7 and “ 7). Such data processing reduced the alphabet size to
Ux = 32 while maintaining the corpus size roughly unaltered.

C.3 A simple GRU network

In the end of Chapter 5, we presented text generation results obtained from
a character level based recurrent neural network with gated recurrent units
(GRUs; Cho et al. (2014)). Differently from reservoir computing, this model
consisted of a “deep” network with three layers: embedding, GRU, and dense.
Its implementation followed a text generation example in tensorflow (Ten-
sorFlow, 2018), based on a famous experiment with deep LSTM models and
Shakespearian text (Karpathy, 2015). As with SORNs, the GRU model was
initially trained on a prediction task, by estimating which was the next most
probable character to appear in a sequence given the recent character his-

!Punctuation marks were originally provided as tokens, e.g. “PERIOD” or “QUES-
TTION” for full stops and questions marks, respectively. These tokens are useful for word-
level learning models, which treat each of them as separate words. In our character-level
learning model, they were substituted for the respective punctuation symbol, in order to
maintain each token as a single character.
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tory. Without going into details of the specific model implementation?, we
qualitatively describe here the behavior and functions of each layer, in order
to contrast the learning rules with the self-organization mechanisms of the
SORN models.

The first difference between GRUs and reservoirs is the use of an em-
bedding layer, which expands the representation of each character into a
high-dimensional space before using it as input to the main recurrent net-
work. This high-dimensional representation may also evolve over time, and
characters that appear nearby frequently tend to have a lower “distance” on
a high-dimensional Euclidian space, thus facilitating the network training.
This method is inspired by a word-level representation algorithm, known as
word2vec (Mikolov et al., 2013), and adds the embedding dimension as a
hyperparameter to the GRU model. The output of this embedding layer is
received by a recurrent network, roughly analogous to the main SORN reser-
voir, but with two important differences. First, GRU units implement com-
plex non-linear functions with multiple internal variables, taking advantage
of “gates” that learn when to store or release the units’ input information.
Second, each network update is performed at the same time for a sequence
of characters instead of a single one. In practice, that means the units’
state is updated (via backpropagation through time) after using a sequence
of fixed length (typically 100 characters) to predict the probability for each
next character. Finally, the probability of each output character is predicted
via a dense, fully connected layer, which plays a similar role to the readout
layer in reservoir computing.

After the training phase, in which the GRU model is presented with the
whole text dataset for a number of epochs, its output is fed back as input,
in an autonomous phase. This phase, however, is also different from our
SORNS, since GRUs explicitly use a sequence of fixed length (again, typically
around 100 characters) as input to predict each next character, instead of
relying only on the internal temporal encoding. In practice, this means that,
at every time step, a number of characters (in their embedded form) are
used as input, in contrast to only a single one in SORNs. Although this
procedure clearly improves the encoding of long-range temporal information,

2The interested reader can look up the source code from a side project at https:
//github.com/delpapa/TweetGen, where we have used the same model to generate new
tweets based on the statistical patterns of the twitter history of a given user. It is straight-
forward to change the input source to, for example, the CHILDES dataset or any other
desired text.
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we highlight that this method explicitly relies on multiple past time steps,
and any single output character is presented to the model multiple times
during the subsequent time steps.

Last, we note that even a relatively small GRU model has millions of
variables. For example, a model trained on the English alphabet (including
punctuation, upper and lower case characters — an alphabet size of Uy = 65)
with an embedding dimension of 256, sequence length of 100, batch size of 64,
and 1024 GRU units has approximately 4 million variables, most of which in
its recurrent units. For the purposes of this thesis, we followed the training
procedure suggested in TensorFlow (2018), employing the Adam optimizer
for backpropagation during 100 epochs. As in every machine learning model,
we emphasize that our results are highly dependent on the particular param-
eter tuning and model architecture, and exploring their effects for language
learning and autonomous generation at character-level was out of our scope.
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