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Numbers and space are two semantic primitives that interact with each other. Both recruit
brain regions along the dorsal pathway, notably parietal cortex. This makes parietal cor-
tex a candidate for the origin of numerical–spatial interaction. The underlying cognitive
architecture of the interaction is still under scrutiny.Two classes of explanations can be dis-
tinguished. The early interaction approach assumes that numerical and spatial information
are integrated into a single representation at a semantic level. A second approach pos-
tulates independent semantic representations. Only at the stage of response selection
and preparation these two streams interact. In this study we used a numerical landmark
task to identify the locus of the interaction between numbers and space. While lying in
an MR scanner participants decided on the smaller of two numerical intervals in a visually
presented number triplet. The spatial position of the middle number was varied; hence
spatial intervals were congruent or incongruent with the numerical intervals. Responses
in incongruent trials were slower and less accurate than in congruent trials. By combining
across-vertex correlations (micro pattern) with a cluster analysis (macro pattern) we identi-
fied large-scale networks that were devoted to number processing, eye movements, and
sensory–motor functions. Using support vector classification in different regions of inter-
est along the intraparietal sulcus, the frontal eye fields, and supplementary motor area we
were able to distinguish between congruent and incongruent trials in each of the networks.
We suggest that the identified networks participate in the integration of numerical and spa-
tial information and that the exclusive assumption of either an early or a late interaction
between numerical and spatial information does not do justice to the complex interaction
between both dimensions.

Keywords: cluster analysis, early interaction, interaction between number and space, late interaction, multi-voxel

pattern analysis, numerical landmark task

INTRODUCTION
Large parts of the human brain are dedicated to the analysis
of visual information and the guidance of motor behavior. The
extraction of spatial and metric characteristics of the objects in
a visual scene is crucial for successful motor actions. Depth cues
and retinal size information, for example, are integrated to inform
about the actual physical size as well as the position of a given tar-
get object, and allow us to successfully grasp it. Beyond the spatial
information of a visual scene, recent studies suggest that number
is another primary feature of vision (Burr and Ross, 2008; Ross
and Burr, 2010). A number of studies suggest that numerical and
spatial representations are not independent of each other but do
interact in various ways (Hubbard et al., 2005). Few neuroimag-
ing studies directly investigated this consensual notion, focusing
mostly on the overlap between physical and numerical size (Pinel
et al., 2004; Hubbard et al., 2005; Kaufmann et al., 2005, 2006,
2008; Cohen Kadosh et al., 2007). The current study aimed at

investigating the interaction between numbers and space and tried
to identify the locus of the interaction between both domains.
Locus here refers to both the stage in the stream of information
processing (sensory, central, response) as well as the brain region
where both dimensions exhibit representational overlap.

The Spatial–Numerical Association of Response Codes
(SNARC) effect is often taken as an indicator for an association of
numerical magnitude with external space (Dehaene et al., 1993):
left side responses are faster for small numbers while right side
responses are faster for larger numbers. This has been interpreted
by many authors as evidence for a left-to-right oriented “mental
number line” with smaller numbers placed to the left of larger
numbers (at least in left-to-right reading cultures; Shaki and Fis-
cher, 2008; Shaki et al., 2009). While some authors argued that the
observed link between numbers and space relies on the congruence
of the response codes with an intermediate categorical polarity
representation (Proctor and Cho, 2006; Santens and Gevers, 2008),
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it has been demonstrated that this link prevails in paradigms where
response and stimulus representation are orthogonal to each other
(Nicholls et al., 2008) and in paradigms that did not use spatially
encoded manual responses (Stoianov et al., 2008). The concept
of the mental number line also proved useful in explaining the
impact of numerical information on spatial attention. When asked
to indicate the appearance of a stimulus that appeared to the left
or right of a centrally presented number, participants responded
faster to right-sided stimuli that followed a large number as com-
pared to right-sided stimuli that followed small numbers (Fischer
et al., 2003). An equivalent advantage for left-sided stimuli follow-
ing small numbers was observed. Fischer et al. (2003) attributed
this finding to the automatic activation of a number’s position on
the spatially oriented mental number line which in turn caused
a shift of the focus of attention on the mental representation
accompanied by a shift of attention in the visual field. Together
this points to a mental representation of numbers that entails spa-
tial characteristics and affects perception and behavior. Song and
Nakayama (2008) measured the trajectories of pointing move-
ments to a lateralized target in response to a numerical comparison
task (smaller or larger than five) with a centrally presented number.
They observed that with decreasing numerical distance the initial
trajectory approached the central location and was corrected in
direction of the target during later periods of the movement. It
seems that the spatial position of the number on a mental rep-
resentation (i.e., the mental number line) has a significant and
dynamic impact on the movement trajectory. This demonstrates
the automatic (i.e., non-voluntary) influence of mental represen-
tations on information processing up to the execution of motor
responses. The idea that numerical and spatial representations
overlap and interact is supported by the finding that numerical
magnitude primes various aspects of motor responses such as grip
aperture (Andres et al., 2004; Lindemann et al., 2007) and grip
force (Vierck and Kiesel, 2010). In general, these results imply
that both physical size of an object and numerical magnitude are
automatically processed and influence each other.

The presence of two basic cognitive effects, i.e., the distance and
the size effect in both dimensions (number and space) supports the
idea of overlapping representations. The distance effect describes
the fact that – either in spatial or in numerical terms – the closer
two objects are in size the more difficult it is to indicate the larger
one. The size effect describes the phenomenon that a constant
level of accuracy in size comparison tasks is achieved only when
the distance between both objects increases proportionally with
increasing absolute size. The universality of these effects, which
can also be found in the temporal domain, has lead to the assump-
tion of common cortical metrics for space, numbers, and time
(Walsh, 2003).

At the neuro-functional level, spatial overlap between systems
that are activated when either numerical or spatial information is
processed has been interpreted as evidence for overlapping mental
representations. Using positron emission tomography, Fias et al.
(2003) observed overlapping activity along the intraparietal sul-
cus (IPS) for symbolic and non-symbolic numbers as well as for
line lengths and angles. In a similar vein, Cohen Kadosh et al.
(2007) reported functional brain activations using functional mag-
netic resonance imaging (fMRI) in posterior parietal cortex when

participants compared two digits in terms of numerical size, phys-
ical size, or luminance. One might argue, however, that the mere
co-activation of a given region by different dimensions does not
necessarily imply the recourse of both dimensions on identical
neural circuits. The coarse spatial resolution of fMRI does not
allow for identification of overlapping but separate neural cir-
cuits in a single voxel. That is, any observed co-activation can
equally well be explained by either identical neural circuits that
are activated by several contrasts or by independent circuits that
occur in the same voxel. More fine-grained multivariate analysis
approaches might prove useful in this context.

The size-congruity effect (SCE) has often been used to explore
the interaction between numbers and space. When asked to decide
on the physically larger of two visually presented numbers, partic-
ipants’ responses are significantly slower for incongruent stimulus
pairs such as 2 and 9 as compared to congruent stimulus pairs
like 2 and 9. While nine is the numerically larger number in both
cases, the comparison of the physical sizes points to the two in the
first and to the nine in the second pair, giving rise to a response
conflict for the former stimulus pair (Foltz et al., 1984). In this type
of paradigm one distinguishes between two stimulus dimensions
(e.g., numerical and physical size) which interact with each other.
An interesting question concerns the locus of this interaction.
Broadly speaking, two scenarios have been proposed. The early
interaction approach assumes that numerical and physical size are
integrated into a single representation at a semantic level (Schwarz
and Heinze, 1998). The late interaction approach assumes that the
two dimensions are processed in parallel and an interaction (or
integration) occurs only at the response level (e.g., Ridderinkhof,
2002).

Evidence for a joint neural circuit processing both numerical
and other extensive dimensions comes from fMRI studies that
show that the SCE itself modulates activity in the IPS (Pinel
et al., 2004; Kaufmann et al., 2005). Again, the authors mainly
report overlapping activity in support of this notion. In an event-
related potential study (ERP), Schwarz and Heinze (1998) found
that congruity between numerical and spatial size of the pre-
sented digits affected the latency of the P300 component over
centro-parietal electrodes. Since the amplitude of the P300 com-
ponent is thought to vary with numerical distance in the context
of numerical cognition experiments (Grune et al., 1993), this
result supports the idea of an early interaction between numer-
ical and size information. Conversely, Schwarz and Heinze (1998)
did not observe any response preparation due to the irrelevant
dimension in the lateralized readiness potentials, again speaking
against the late interaction hypothesis. It should be noted that the
absence of response preparation for a response activated by the
irrelevant dimension in the ERPs does not necessarily mean that
earlier response stages remained unaffected by the congruence
between numerical and physical size. The particular orientation
of a putative dipole in supplementary motor areas (SMAs), for
example, might prevent any observable amplitude difference on
the scalp.

On the other hand, a number of studies support the idea of
late interaction of two conflicting sources of information from
a single stimulus. By adopting thorough analyzes of the distri-
bution of reaction times and error rates, Ridderinkhof (2002)
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reported results that strongly implied a late interaction between
relevant (e.g., stimulus color) and irrelevant (e.g., stimulus loca-
tion) stimulus parameters. In particular, this approach postulates
that the conflicting information is integrated and the conflict
resolved only at a very late, response-related stage of information
processing. Additionally, Ridderinkhof (2002) proposed an active
suppression mechanism that selectively operates on the irrelevant
stimulus dimension and helps to suppress conflicting (i.e., erro-
neous) response tendencies, a view that is supported by results
from Notebaert and Soetens (2006). They observed a reduced
impact of the irrelevant stimulus dimension in trials that fol-
lowed the response in incongruent trials with a very short temporal
interval only (50 ms). This is thought to reflect the consequences
of the lingering inhibition of the irrelevant dimension. Recently,
Forstmann et al. (2008) used MRI to demonstrate that structural
and functional brain parameters characterizing the right inferior
frontal cortex were systematically related to the individual model
parameters that quantified the inhibition of irrelevant informa-
tion in a Simon task. In a combined fMRI and ERP study using
a size-congruity paradigm, Cohen Kadosh et al. (2007) found an
interaction of numerical and physical size in parietal regions as well
as in motor regions, implying late interaction at the response stage.
This effect was modulated by cognitive load, however, with the
late interaction hypothesis being supported only with low cogni-
tive load. Knops et al. (submitted) employed a paradigm in which
participants had to decide on the larger of two intervals in a num-
ber triplet. The triplet was presented visually and the horizontal
position of the middle number was varied. Hence the physical
intervals between the middle number and the outer numbers could
be congruent or incongruent with the corresponding numerical
intervals (see Figure 1). When asked for the numerical intervals,
incongruent trials were responded to slower and more error prone,
implying that the irrelevant physical information had an impact
on the numerical decision. No such influence was observed when
participants had to decide on the physical intervals. Participants
were significantly faster in deciding on the physical intervals than
in deciding on the numerical intervals, which might explain the
observed asymmetry. In sum, the results from this experiment
suggest a dual route mechanism with late interaction between
numerical and spatial information.

Beyond the opposing views of an early or late interaction
between different (and sometimes conflicting) stimulus dimen-
sions, a recent review article (Cohen Kadosh et al., 2008) con-
cluded that both shared and distinct magnitude mechanisms may
co-exist. On a neurobiological level this view received support
from recent single-unit recordings in monkeys. Tudusciuc and
Nieder (2007, 2009) reported neurons in parietal and frontal cor-
tex that coded for numerosity, for line length or for both types of
information at the same time.

In the current fMRI study we want to shed light on the func-
tional architecture subserving the interaction between numbers
and space. To this end we propose a new multivariate analysis
approach that might prove useful in the identification and analysis
of functional networks. We used a so-called numerical landmark
task, revealing robust behavioral interactions between the process-
ing of numerical and spatial distances (Lonnemann et al., 2008).
No study so far has shown the neural correlates of the putative

FIGURE 1 | Schematic depiction of the numerical landmark paradigm.

The spatial position of the middle number of a number triplet (here: 62) was
varied such that the spatial intervals to the outer numbers (here: 53 and 98)
could be neutral (top), congruent (middle), or incongruent (bottom) with the
respective numerical intervals. Percentages relate the respective intervals
to the size of the interval between the outer numbers. Participants were
asked to decide which side the smaller numerical interval is on.

association between numerical distances and spatial distances.
Since parietal cortex seems to play a central role in the processing
of numbers and space, we employed a scanning protocol with a
relatively small voxel size (2 mm × 2 mm × 2 mm) that allows for
a more fine-grained functional parcellation of different areas in
parietal cortex as compared to previous studies. In combination
with cortex-based alignment and the analysis of unsmoothed data,
such a protocol offers the opportunity to delineate in more detail
sub-divisions of parietal cortex and their particular role in the
context of numerical–spatial interactions. The chosen voxel size
also allowed for the adoption of multivariate analysis approaches,
offering a more comprehensive data analysis than the standard
voxel-wise univariate general linear model (GLM) approach. Pre-
vious fMRI studies mainly reported overlapping activations from
GLM analyses in parietal cortex and interpreted this as evidence
for shared representations. Overlapping activations, however, can
have multiple origins and do not necessarily imply shared neural
circuits. A multivariate analysis of the spatial pattern of acti-
vations appears to be better suited to detect shared functional
circuits. Temporal resolution of fMRI is poor and by itself does
not allow for an analysis of the temporal dynamics of the brain.
By combining across-voxel correlations and cluster analysis we
may be able to identify large-scale functional networks in the
brain that can be associated with either stimulus integration
or response-related processes. That is, by thoroughly analyzing
brain activation in response-related and stimulus-related struc-
tures we aimed at investigating the locus of the numerical–spatial
interaction.

Frontiers in Human Neuroscience www.frontiersin.org October 2011 | Volume 5 | Article 115 | 3

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Koten Jr. et al. Micro and macro pattern analysis

MATERIALS AND METHODS
PARTICIPANTS
After having given their written informed consent eighteen (nine
female) right-handed participants [mean age 26.1 (19–32) years]
participated in this study, which was approved by the local Ethics
Committee of the Medical Faculty, RWTH Aachen University.
Three participants (one female, two male) were excluded from
all subsequent analyses due to head movement artifacts. All
participants had normal or corrected to normal vision and no
neurological or psychiatric history.

EXPERIMENTAL DESIGN
Cerebral activations were studied for three different tasks, two
localizer tasks (subtraction, saccades), and a numerical landmark
test. Participants were introduced to all of the tasks before fMRI
scanning. The numerical landmark test was conducted in an event-
related design and divided in two identical blocks of 120 trials each.
The two localizer tasks were administered in a block design. Each
of the localizer tasks was compared to a control task matched for
stimulus characteristics. During an fMRI scanning sequence, eight
blocks (12 trials each) were presented with an alternation of pri-
mary task and control task blocks (four blocks each). Breaks of
20 s separated the different blocks. Each participant started with
the numerical landmark test, while the sequence of the remaining
tasks was counterbalanced across participants. Stimuli were pre-
sented via a head-mounted video display designed to meet MR
requirements. The whole experimental procedure lasted approx-
imately 90 min and was controlled by Presentation® software
(Neurobehavioral Systems, Inc.).

Numerical landmark task
In the numerical landmark task participants had to decide which
one of the two numerical distances in a number triplet was numer-
ically smaller. The stimulus set consisted of 16 two-digit number
triplets spatially arranged in a horizontal fashion on the screen at
two varying spatial intervals between the middle number and the
outer two numerals (see Figure 1). The constituting numerals of a
triplet were always arranged in numerically ascending order from
left-to-right. Numerical and spatial distances were manipulated
independently. As a result, numerical and spatial intervals could
be congruent or incongruent. In neutral triplets, spatial intervals
were identical. The stimulus set was identical to the one used in a
previous study (Lonnemann et al., 2008) but presented twice. The
participants had to indicate the side where the numerical distance
was smaller by pressing a response button with the left index finger
when it was smaller on the left side and by using the right index fin-
ger when it was smaller on the right side. Instruction stressed both
speed and accuracy. Digits were presented in white color against
an otherwise black background and had a visual angle of 0.7˚ in
height and of 0.5˚ in width. The two blocks of 120 trials each were
separated by a break of 1 min. Each block included 24 null-events,
in which a black screen was presented. A trial started with the
presentation of a fixation cross for 500 ms. After the fixation cross
had vanished, the target appeared until the response, but only for
a maximum duration of 3000 ms, followed by a black screen for
a varying time interval [500, 1000, 1500, 2500, 3500, or 6000 ms
(mean = 2500 ms)].

Subtraction task
In the subtraction task, stimuli were white Arabic digits from 2
to 9 with a visual angle of 0.7˚ in height and of 0.5˚ in width
presented at fixation and against a black background. Each trial
started with the presentation of a digit appearing for 150 ms, which
was then replaced by a fixation cross. Participants were instructed
to subtract the respective number from 11 and to name the result
mentally within 3000 ms. In the control naming task, stimuli were
uppercase letters between B and J, excluding I. Participants were
asked to name each letter mentally.

Saccades task
In the saccades task participants were shown eight boxes (each
with a visual angle of 1.2˚ in width and height) arranged in a circle
at 6˚ eccentricity from a similar box positioned at the center of the
screen. Each trial started with the presentation of a white square
appearing within a randomly chosen box for 150 ms, which was
replaced by a fixation cross centered in the box. The participants
were asked to move their eyes toward this box and fixate it for
2000 ms until the next trial appeared. In the control fixation task,
participants had to fixate the center position while white squares
appeared in the peripheral positions following the same order as
in the primary task.

IMAGING PROTOCOL
Functional images were acquired on a 3-T Philips Gyroscan NT
with a SENSE head coil. Transversal multi-slice T2∗-weighted
images were obtained with a gradient echo planar imaging
sequence (TE = 30 ms; TR = 2 s; 80 × 80 matrix; flip angle = 90˚;
24 slices, 2 mm × 2 mm in-plane resolution; slice thickness 2 mm)
covering most of the frontal, of the parietal, and of the occip-
ital lobe. During the numerical landmark task 780 volumes
were acquired, while in each of the other two tasks 250 vol-
umes were recorded. Each part of a session started with five
dummy scans to allow tissue to reach steady state magnetiza-
tion. These scans were not recorded for data analysis. A high-
resolution T1-weighted three-dimensional anatomical image was
also acquired (TE = 4.59 ms; 256 × 256 matrix; voxel dimen-
sions = 1 mm × 1 mm × 1 mm).

DATA ANALYSIS
Behavioral data
Analyses of variance (ANOVAs) and post hoc tests for further inves-
tigations were conducted separately for reaction time (henceforth
RT) and error rate (henceforth ER). ER was arcsine-transformed
(2arcsin

√
error rate). The Huynh–Feldt epsilon (ε) was computed

to correct the degrees of freedom of the F-statistics in case of
significant violation of the sphericity assumption. To minimize
the risk of alpha error inflation due to multiple post hoc test-
ing we applied the sequentially rejective Bonferroni method by
Holm (1979) to all reported post hoc tests. We report only sig-
nificant results. Only correct responses were used for calculating
mean RT. Trials in which no response occurred were classified
as errors. Responses below 200 ms were excluded from further
analysis, as well as responses outside an interval of ±3 SDs
around the individual mean. A total of 0.7% of the response was
excluded.
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Neuro-functional data
BrainVoyager QX 1.9 software (Brain Innovation, Maastricht, The
Netherlands) was used to analyze neuroimaging data (Goebel
et al., 2006). Preprocessing was done separately for each of the
three parts of a session and included slice scan time correction
(using cubic spline interpolation), temporal high-pass filtering,
and three-dimensional-motion correction. Estimated translation
and rotation parameters never exceeded 2 mm. Functional datasets
were co-registered to the Talairach-transformed anatomical image.
All individual brains were segmented at the gray/white matter
boundary using a semiautomatic procedure based on intensity
values (ITK-SNAP; Yushkevich et al., 2006). The cortical surfaces
were reconstructed, inflated, and flattened with BrainVoyager QX
1.9 software. A high-resolution cortical alignment (CBA) method
using curvature information reflecting the gyral/sulcal folding pat-
tern was used to improve correspondence across brains beyond
Talairach space matching. Using unsmoothed data, this kind of
cortex-based analysis has been shown to reveal spatially more
confined group clusters of activation (Goebel et al., 2006). Using
CBA offers has major advantages over standard Talairach nor-
malization. First, by respecting the anatomical folding pattern of
the individual brain anatomy the spatial relations of any given
pair of vertices on the resulting two-dimensional structure reflect
their spatial relations as observed in the cortex. For example, two
points on opposite walls of a given sulcus may unwarrantedly be
interpreted as being spatially close to each other when using stan-
dard Talairach normalization since the gyral/sulcal folding pattern
is not taken into account. Using CBA, however, the two points
will not appear next to each other but the true distance between
them – that roughly corresponds to twice the depth of the sulcus –
will be respected. Second, Talairach normalization results in poor
anatomical precision (Fischl et al., 1999). The large mismatch of
spatial correspondence between important anatomical landmarks
after Talairach transformation is usually compensated by applying
spatial smoothing of functional data. However, spatial smoothing
affects the spatial resolution of data which is of disadvantage when
smaller voxels are used as is the case in the present study. The use of
spatially unsmoothed data with high spatial resolution is recom-
mended when classifiers are used. CBA can create a high amount
of anatomical correspondence between individuals without spatial
smoothing and is therefore ideally suited for the use of decoding
methods such as multi-voxel pattern analysis (MVPA, see below).
It should be noted that we used vertices rather than voxels as fea-
tures for classification. Hence, MVPA will be used throughout the
article as acronym for multi vertex pattern analysis but it refers
to the same family of decoding techniques (e.g., support vector
classification) as multi-voxel pattern analysis.

Activation data were submitted to a classical GLM approach
and projected on the mean cortex-based aligned brain anatomy
of the 15 participants. To visualize the functional network acti-
vated by the numerical landmark task we report the results of
the conjunction between the contrasts congruent > baseline and
incongruent > baseline. The calculation network was visualized
by the contrast calculation > control. The saccades network was
visualized by the contrast saccades > control. We applied a surface-
based version of the cluster size exclusion method used for multiple
comparisons correction as introduced by Hagler et al. (2006) to all

random effects contrasts with voxel-wise p = 0.005. This method
estimates the cluster size limit at a desired statistical threshold and
validates it by means of Monte Carlo simulation (500 iterations).

The GLM approach is a powerful tool to analyze the differences
between two conditions in terms of activation amplitude. It lacks,
however, the capacity to integrate the numerous relations between
vertices in a given region of interest (ROI) that form specific spa-
tial or temporal patterns of activations which in turn characterize
a cognitive task. Recent approaches to the analysis of multivariate
brain imaging data emphasize that different tasks, conditions, and
even stimuli give rise to distinct and recognizable patterns of acti-
vations even in situations when the GLM approach is not sensitive
enough to reveal amplitude differences (Peelen et al., 2006; O’Toole
et al., 2007). Especially with cognitively close conditions it is not
plausible to assume large differences in the distribution of distinct
networks of neurons which would cause differences in amplitude
between two regions or huge differences in the BOLD responses
to specific conditions. It is very likely that closely intermingled
cortical circuits elicit very similar activations for two conditions
when looking only at the amplitude of the BOLD response. By
taking into account the specific spatial pattern of activity across
a larger set of vertices in a ROI one might therefore increase the
sensitivity to detect fine-grained differences between two condi-
tions. We defined six ROIs in both hemispheres. The parietal cortex
along the IPS was subdivided into four distinct, non-overlapping
ROIs (see Figure 2B). Two ROIs cover horizontal aspects of pari-
etal cortex [horizontal aspect of the IPS (HIPS), aHIPS], that is
thought to play a major role in the representation of numerical
magnitude (Hubbard et al., 2005). Two ROIs were chosen that
are frequently linked to response selection, response preparation,
and motor planning, i.e., SMA and the anterior aspect of the IPS,
area AIP/BA 2. Finally, two ROIs were defined that cover (1) the
parietal saccades system that appears to be play a role also in the
attribution of spatial attention along the mental magnitude rep-
resentation, the posterior superior parietal lobule (PSPL) of the
IPS, as well as (2) the frontal saccades system, i.e., the frontal eye
fields (FEF). In detail, the vertices for the different ROIs were cho-
sen as follows. Active vertices from the calculation localizer in the
HIPS were attributed to the ROI HIPS. Vertices that were active in
the calculation localizer (calculation > control) and located ante-
rior to those attributed to the HIPS ROI were defined as aHIPS.
The number of vertices that were included in the latter two ROIs
were taken as guideline for the size of the subsequent ROIs, when
possible [mean = 165.9 vertices (SD = 7.0)]. Based on converging
evidence from both human and monkey imaging studies (Cul-
ham et al., 2006) the area AIP/BA2 was defined as those vertices
that were active in the neutral condition of the landmark task and
covered the descending part of the IPS extending to the posterior
bank of the postcentral sulcus. This region was chosen since it
might correspond to an area in the monkey that was found to con-
tain neurons that code for the number of movements (Sawamura
et al., 2002). We chose vertices that were active in the neutral con-
dition to protect us against the circularity fallacy as described by
Kriegeskorte et al. (2009). The neutral condition is independent
in the sense that those trials did not enter the decoding analyses
(see below) but were used only for the selection of the vertices.
Active vertices from the saccades localizer that were situated on
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FIGURE 2 | (A) Brain activation data of the GLM analysis (p = 0.005)
projected on the cortex based aligned average anatomy of the sample.
Mapped contrasts: conjunction of incongruent and congruent vs. baseline
(green); subtraction vs. control (blue); saccades vs. control (pink). (B) The 12
ROIs that were used for across voxel correlations, MVPA, and cluster
analyses.

the medial bank of the posterior, superior aspects of the IPS were
used to define the PSPL, a putative human homolog of the lat-
eral intraparietal cortex (LIP) region in the monkey (Sereno et al.,
2001). For SMA we chose vertices in medial frontal cortex, in close
vicinity to the precentral sulcus which were active in the neutral
trials of the numerical landmark task. For the FEF we chose ver-
tices that were active in the saccades localizer (saccades > control)
and located in precentral sulcus. The ROIs are shown in Figure 2B.
From these ROIs we extracted the beta weights of the incongruent

(I) and congruent (C) conditions of the landmark task, as well as
the beta weights from the calculation localizer (A for arithmetic)
and the saccades localizer (S). We used the beta weights from the
contrasts as described in the GLM analysis (see above). Those
beta weights were then correlated across vertices in each of the 12
ROIs as suggested by Peelen et al. (2006). The resulting across-
vertex correlation (AVC) matrices reflect the micro-organization
of the vertices within each of the 12 ROIs in the course of the four
cognitive tasks.

To fully explore the differential relations between different
micro-organizations across vertices in the 12 ROIs we subjected
the AVC matrices to a cluster analysis (complete linkage with
Euclidean distances as dissimilarity measure) in SPSS software.
This cluster analysis reveals the macro-organization of brain activ-
ity since it subsumes different ROIs according to their functional
similarity in the AVCs at hand.

To investigate the role of each of the above ROIs to the con-
text of numerical–spatial interaction we used MVPA to distinguish
between congruent and incongruent number triplets. Unlike other
multivariate analysis approaches (e.g., independent component
analysis, ICA) that fail to provide quantifiable links to experimental
design variables (O’Toole et al., 2007), MVPA is based on the beta
weights that are estimated on the basis of the underlying exper-
imental design. Thus, MVPA links the multivariate data analysis
to the experimental design and offers a more stringent analysis as
compared to other multivariate analysis strategies. Since the rapid
event-related design of the current study does not lend itself for the
extraction of the raw time series per vertex as input for the MVPA
we decided to use the parameter estimates (beta) of a new GLM.
We computed the new GLM by defining a predictor for each trial of
the landmark task. We focused on the incongruent and congruent
trials to exploit the benefits of the bias-free measure from signal
detection theory (i.e., d-prime) for the classifier performance. We
extracted the betas of incongruent and congruent trials from all
vertices in the 12 ROIs defined above, and analyzed them [after z-
standardization (mean = 0, SD = 1) per participant and condition
over vertices] with a support vector machine (SVM) classifier from
the scikits.learn module1 running on python 2.62. We used a radial
basis function kernel (default width = 1/number of features) with
a regularization parameter C = 1. Data were cross-validated using
a stratified K-fold procedure (K = 64). From each of the two cat-
egories (congruent and incongruent) one trial was left out and
the classifier was trained on the remaining 126 [=2×(64 − 1)] tri-
als. The left-out trials were then used to test the generalization
of the classifier. Each trial was left out once in a single run, and
performance was averaged over 100 runs.

RESULTS
BEHAVIORAL RESULTS
We first analyzed whether behavior (i.e., RT and ER) revealed a
significant impact of the congruity between numerical and spatial
information.

To this end we calculated a 4 × 5 repeated measures
ANOVA with the factors numerical distance (20_80, 40_60,

1http://scikit-learn.sourceforge.net
2www.python.org
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60_40, and 80_20) and spatial distance (20_80, 40_60, 50_50,
60_40, and 80_20) for RT and ER. Beyond significant main
effects of numerical [RT: F(3,42) = 59.54, p < 0.001; ER:
F(3,42) = 71.41, p < 0.001, ε = 0.829] and spatial distance [only
for RT: F(4,56) = 3.06, p < 0.05] a significant interaction between
both factors was observed [RT: F(12,168) = 8.61, p < 0.001; ER:
F(12,168) = 9.37, p < 0.001, ε = 0.796]. To investigate in more
detail the origin of this interaction, we subsumed correspond-
ing conditions under congruent, incongruent, and neutral tri-
als according to the relation of numerical and spatial dis-
tances and submitted them to a one-way repeated measures
ANOVA with the factor congruity. For RT a significant main
effect congruity [F(2, 28) = 35.75, p < 0.001] was due to increas-
ing mean RT from congruent [1457 ms (270 ms)] over neutral
[1515 ms (254 ms)] to incongruent trials [1585 ms (288 ms)].
This order was confirmed by significant post hoc paired-sample
t -tests [incongruent – congruent: t (14) = 10.38, p < 0.001; incon-
gruent – neutral: t (14) = 4.33, p = 0.001; neutral – congruent:
t (14) = 3.49, p < 0.01]. The increase in RT from congruent to
incongruent trials was paralleled by a decreasing precision in
terms of ER [congruent: 9.4% (5.8%), neutral: 12.9% (7.7%),
incongruent: 19.8% (6.5), F(2, 28) = 28.3, p < 0.001]. Post hoc
paired-sample t -tests revealed the following order of condi-
tions congruent < neutral < incongruent [incongruent – congru-
ent: t (14) = 6.81, p < 0.001; incongruent – neutral: t (14) = 6.46,
p < 0.001; neutral – congruent: t (14) = 2.47, p < 0.05].

BRAIN ACTIVATION DATA
GLM analysis
We begin by summarizing the activated networks of the three
administered tasks in a classical GLM approach that are pro-
jected on the mean cortex-based aligned brain anatomy of the
15 participants.

The saccade localizer task reliably activated regions in the bilat-
eral posterior parietal cortex, extending into the HIPS, and the FEF
in both hemispheres. The results of the contrast saccades > control
is shown in pink in Figure 2A.

Consistent with results from earlier studies (Pinel and Dehaene,
2010), the calculation localizer (calculation > control) activated
bilateral regions along the IPS, extending into posterior parietal
areas, partially overlapping with the saccades activations. It also
activated portions of the FEF in both hemispheres. The activations
are shown in dark blue in Figure 2A.

To visualize the cortical network that was activated in the
landmark task, we calculated the conjunction of the incongru-
ent and congruent condition against baseline. The numerical
landmark task activated a network of areas along the IPS, par-
tially overlapping with the calculation activations and extending
into posterior parietal areas where it showed overlap with the
saccades task. Unlike these latter two tasks, the landmark task
significantly activated regions in more anterior parts of the IPS,
i.e., the descending aspect of the IPS including the posterior bank
of the postcentral sulcus. Beyond parietal activation it also elicited
significant activations in bilateral medial frontal cortex, i.e., SMAs
and the FEF overlapping with FEF activation of the previously
described tasks. The activations of the landmark task are shown in
light green in Figure 2A.

To visualize the regions in the brain that are particularly affected
by the interaction between numerical and spatial information
(see Behavioral Results) we computed the contrast incongru-
ent > congruent trials. No significantly activated region emerged
from this contrast, even at a very liberal threshold of p = 0.05.

ROI analysis using across-vertex correlations
The beta weights of the incongruent (I) and congruent (C) con-
ditions of the landmark task, as well as the beta weights from the
calculation localizer (A for arithmetic) and the saccades localizer
(S) were correlated across vertices in each of the 12 ROIs. The
resulting AVC matrices reflect the micro-organization of the ver-
tices within each of the 12 ROIs in the course of the four cognitive
tasks. We subjected the AVC matrices to a cluster analysis (com-
plete linkage with Euclidean distances as dissimilarity measure) to
reveal the macro-organization of brain activity.

Results are shown in Figure 3A. The height of the AVC in
the 12 ROIs is shown as color-coded link between four nodes
referring to the activation from the contrast congruent (C, upper
left), incongruent (I, lower left), arithmetic (A, upper right), and
saccades (S, lower right). Blue and green colors indicate low cor-
relations, followed by yellow, orange for medium, and red for
high correlations (see color-bar at the bottom of Figure 3A).
To facilitate recognition of the different ROIs the colors of the
nodes correspond to the colors of the ROIs in Figure 2B. Across
all 12 ROIs, it becomes evident that congruent and incongru-
ent trials elicit highly correlated patterns of activations ranging
from 0.81 in ROI AIP/BA2 of the right hemisphere to 0.94 in
ROI PSPL of the right hemisphere. Although the respective pat-
terns of activation across vertices in the different ROIs should be
highly correlated, because they are obtained from the same exper-
iment the level of the correlations is remarkably high. Together
with the non-significant difference in activation amplitude – as
revealed by the contrast incongruent > congruent (see above) –
this supports the notion that both types of trials rely on neural
circuits that are overlapping in space and show a highly corre-
lated pattern of activity across vertices. It should be noted that the
correlation becomes lowest when we move out of parietal cortex
and approach response-related motor systems, i.e., ROIs AIP/BA2
and SMA.

The calculation task correlates to a higher degree with the land-
mark task (irrespective of congruency) than it does with saccades.
This makes sense if one keeps in mind that the landmark task
entails some calculation aspects in order to determine the larger
of the two numerical intervals defined by the number triplet. This
relation is even true for areas where calculation elicits only weaker
activations and the spatial overlap is hence reduced between all
three tasks such as PSPL. Put differently, the correlations across
vertices reveal a functional recruitment of certain brain areas in the
course of different tasks that would go undetected by the standard
GLM approach.

The results of the cluster analysis using all 12 ROIs suggest two
large-scale networks. Network one comprises the ROIs SMA_L
(the suffixes “_L” and “_R” refer to left and right hemisphere,
respectively) and the ROI AIP from both hemispheres and can thus
be labeled motor-related network. The second network comprises
the remaining nine ROIs and exhibits three sub-clusters. The first
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FIGURE 3 | (A) Results of the cluster analysis of the across-voxel
correlations between congruent and incongruent contrasts, and the
two localizer tasks (saccades and calculation) in the 12 ROIs (see
Figure 2B). The nodes of the AVC matrices represent congruent
(“C”), incongruent (“I”), calculation (“A”) and saccades (“S”)
contrasts. The color of the connecting lines between the disks
indicates the height of the respective correlation in the ROI (see
bottom for scale). (B) Results of the cluster analysis of the 12 ROIs

collapsed across hemispheres. (C) Results of the decoding analysis
differentiating incongruent from congruent trials in the different ROIs.
Coefficient d-prime was computed by defining correct classification of
congruent trials as congruent as “hit” (true positive) and classification
of incongruent trials as incongruent as “correct rejection” (true
negative). Stars indicate d-prime significantly larger than zero (red
line) at p < 0.05 (corrected for multiple comparisons). Error bars
represent SE of the mean.

sub-cluster comprises ROIs FEF and PSPL from both hemispheres
and can readily be related to eye movements. A second sub-
cluster comprises aHIPS from both hemispheres as well as HIPS_L.
This sub-cluster cluster can be related to number processing and

calculation. A third sub-cluster contains only two ROIs from
the right hemisphere, i.e., HIPS_R and SMA_R. This sub-cluster
might represent ROIs that link motor-related regions with number
processing and saccades.
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We further analyzed the macro-organization by collapsing ROIs
over hemispheres and submitting the averaged correlation matri-
ces to the same cluster algorithm (complete linkage with Euclidean
distances). The result is shown in Figure 3B. Again, we find a
motor-cluster comprising the ROIs AIP and SMA, as well as a sec-
ond cluster with a core sub-cluster comprising the number-related
ROIs (HIPS and aHIPS). Only in subsequent iterations ROIs from
the saccades system (i.e., FEF and PSPL) are assigned to the cluster,
implying that, averaged across hemispheres, HIPS is more similar
to aHIPS than to SMA.

The analysis of the micro and macro-organization of the differ-
ent tasks in the different ROIs can be interpreted as first evidence
for a subdivision of the areas along the HIPS and a differential
involvement of the areas defined here in the resolution of the
conflict occurring when spatial and numerical information do not
converge on the same response. Broadly speaking, we find that the
cluster analysis differentiates the motor system (SMA & AIP/BA
2) from the saccades & number system. On a more fine-grained
level we see that the ROIs HIPS and SMA of the right hemisphere
seem to be functionally located in between the two large-scale clus-
ters. This implies that the HIPS of left and right hemisphere seem
to serve slightly different purposes, with the HIPS_L being more
closely related to the other areas from the HIPS, i.e., putatively
number-related areas (aHIPS). Right hemisphere HIPS seems to
be closely related to the motor system since it clusters with SMA
of the right hemisphere. Inversely one might argue that the SMA
of the right hemisphere seems to be linked with number-related
processes as clusters with right hemisphere HIPS.

Multi vertex pattern analysis
To further investigate the implication of the different clusters (and
the ROIs therein) in the context of the numerical landmark task we
used a SVM classifier to differentiate congruent from incongruent
trials. Similar to the correlations across vertices reported above,
MVPA takes into account the spatial relations between vertices in
a given ROI and goes beyond the vertex-wise analysis approach of
the GLM that treats vertices as independent from each other.

Results are shown in Figure 3C. Stars indicate significant
classification performance (p < 0.05) as tested by a one-sample
t -test against zero, corrected for multiple comparisons (see
Materials and Methods section). We observed a d-prime sig-
nificantly larger than zero in the ROIs HIPS_L [d′ = 0.32,
t (14) = 5.29, p = 0.0001], HIPS_R [d′ = 0.28, t (14) = 4.76,
p = 0.0003], SMA_R [d′ = 0.21, t (14) = 3.31, p = 0.005], SMA_L
[d′ = 0.17, t (14) = 3.05, p = 0.009], and PSPL_R [d′ = 0.28,
t (14) = 2.95, p = 0.011]. It should be noted that classification
performance in PSPL_L and right hemisphere AIP/BA 2 was
good but did not pass the statistical correction for multiple test-
ing [d′ = 0.24, t (14) = 2.44, p = 0.028 and d′ = 0.14, t (14) = 2.27,
p = 0.039, respectively]. It becomes evident that in individual
ROIs from each of the two large-scale networks, which were
identified and described above, the spatial activation patterns
allowed for a better-than-chance distinction between congruent
and incongruent trials. Overall, classification performance was
best in parietal areas with classification rates in terms of d′ up
to 0.32 in left HIPS. To test for putatively different classifica-
tion results between the different ROIs we computed a 2 × 6

repeated measures ANOVA with the factors hemisphere (2) and
ROI (6) on the individual d-prime measures. We observed a signif-
icant effect of ROI [F(5,70) = 3.29, p = 0.017, ε = 0.8]. No other
main effect or interaction was significant (all F < 1). We ran pair
wise comparisons between the ROIs averaged across hemispheres
and found that d-prime in HIPS was significantly higher than
in aHIPS [t (14) = 4.04; p = 0.001]. No other pair wise compar-
isons were significant after correction for multiple comparisons.
Since the ANOVA suggests that hemisphere does not have a signif-
icant impact on the data, we re-analyzed the individual d-primes
from the six ROIs and found d-primes significantly larger than
zero in HIPS [t (14) = 5.87 and p < 0.0001], SMA [t (14) = 4.07,
p = 0.001], and PSPL [t (14) = 3.34 and p = 0.005].

To avoid possible confounds in the classification we checked
if participants pressed as much left as right for both incongru-
ent and congruent trials in the landmark task by computing
a 2 × 2 repeated measures ANOVA with the factors “side” and
“congruency” on the frequency of left and right button presses
under the two conditions. We observed a significant main effect of
congruency [F(1,14) = 6.472, p = 0.023, ε = 1]. No other main
effect or interaction was significant (all p > 0.05). In none of
the two congruency conditions (congruent or incongruent) we
observed a significant difference in frequency of left vs. right but-
ton presses [congruent: t (14) = 0.4706, p = 0.645; incongruent:
t (14) = 1.8522, p = 0.085].

DISCUSSION
The present study was designed to investigate the interaction
between numbers and space and its neural correlates with a focus
on parietal cortex. By doing so we hoped to be able to separate
early from late interaction of both dimensions. Behaviorally, we
found that congruent number triplets were responded to faster and
more accurately than neutral and incongruent number triplets.
Together with an absence of the corresponding interaction when
participants had to respond to the spatial intervals (Knops et al.,
submitted) this suggests that spatial and numerical information
are extracted and processed in parallel and independent routes
that interact at the level of response selection/response prepara-
tion only. The present study is the first to employ a comprehensive
analysis of both the micro- and macro-patterns of brain activation
in a task tapping numerical–spatial interaction and complement-
ing standard massive univariate analysis techniques by model-
related,multivariate analysis techniques (i.e.,MVPA and AVC). For
the numerical landmark task the standard GLM approach revealed
activation in a network including regions along the IPS, areas in
central and postcentral sulcus as well as supplementary motor
cortex, and FEF. Activation overlapped with activation from the
calculation localizer in HIPS, PSPL, and FEF (see Figure 2A). In
PSPL and FEF we found an overlap between the saccades network
and the numerical landmark task. By clustering the patterns of the
correlations across vertices, we were able to identify two indepen-
dent large-scale networks, each encompassing several ROIs. The
networks can readily be described as a motor or response-related
network comprising regions AIP/BA 2 and SMA as opposed to
a saccades & number network, comprising the remaining ROIs.
Within the latter cluster we observed three sub-clusters that can be
labeled as a saccades network (FEF and PSPL), a number network
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(aHIPS and HIPS_L), as well as a right hemispheric network that
links number and motor processes (HIPS_R and SMA_R). At
first, the appearance of right hemisphere ROIs HIPS and SMA
in a sub-cluster seemed somewhat surprising, given that SMA
is frequently linked with response selection while the HIPS has
repeatedly been shown to subserve number representation and
mental arithmetic (Piazza et al., 2004, 2007; Hubbard et al., 2005).
Apart from numerical functions the HIPS seems to serve manifold
purposes, however. Most central to the present study, some authors
argue that regions in the IPS that most likely corresponds to our
ROI HIPS are implicated in response selection processes (Jiang
and Kanwisher, 2003a,b) while more recent studies investigating
the locus of response selection suggest more frontal areas such as
posterior lateral prefrontal cortex (pLPFC) and SMA (Dux et al.,
2006). Dux et al. (2006) argue that some aspects of the IPS activ-
ity profile support its implication in response selection processes,
while other aspects make it appear a more general purpose area.
Here the current approach might help to further specify the cog-
nitive functions of a given area. Rather than focusing on the signal
variation in a single spot, we also take into account the spatial
variation of the signal and its relation with other regions in the
brain. The results of the cluster analysis imply differential involve-
ment of sub-regions along the IPS. While left hemisphere ROIs
HIPS and aHIPS seem to be clearly distinct from the response-
related system, the right HIPS appears to be functionally involved
in both – numerical and response-related processes. Our study is
thus one of the first to delineate in greater detail a putative can-
didate network in the right hemisphere that links numerical and
response-related processes in the course of a task that shows a
massive interaction between numerical and spatial information.

Although the temporal resolution of fMRI does not allow for a
clear-cut distinction between input and output-related processes,
the different networks can be attributed to stages of informa-
tion processing in the course of the current task. One might then
analyze activation data from these regions to investigate different
stages of information processing.

In case of early interaction, numerical and spatial information
should be integrated before further processing. Since both, numer-
ical and spatial information, are processed in parietal cortex we
hypothesized that parietal cortex would qualify as a candidate area
for the integration of spatial and numerical information. This is in
line with Walsh (2003) who assumed common metrics for num-
bers, space, and time that have their neural correlates in parietal
cortex and with the finding of Tudusciuc and Nieder (2009), who
observed neurons in parietal cortex that simultaneously coded
for numerical and spatial features of a stimulus. We further rea-
soned that if the integration is accomplished in parietal cortex,
we should observe differences between congruent and incongru-
ent trials in exactly those regions. While the GLM analysis did not
reveal any significant difference between incongruent and congru-
ent trials, by adopting a MVPA analysis we were able to identify
regions in the HIPS in which both types of trials evoked sep-
arable spatial patterns of activation. The fact that we were able
to classify congruent from incongruent trials in ROIs that – as
revealed by the cluster analysis – can be coined a number-related
network speaks for an early interaction between both stimulus
dimensions.

The late interaction notion posits that numerical and spatial
information are extracted and processed in parallel and interact
only at the level of response selection/response preparation. We
hypothesized that in this case we should be able to classify con-
gruent from incongruent trials in a response-related network in
the brain. The cluster analysis revealed a response-related net-
work consisting of SMA_L and AIP/BA2. According to the cluster
analysis this network is functionally maximally different from the
other ROIs since they are agglomerated only at the last linkage
level (see Figures 3A,B). The MVPA analysis revealed a better-
than-chance classification performance between congruent and
incongruent trials in left and right SMA (see Figure 3C). This
constellation can be interpreted in at least two ways. First, the dif-
ferential activation pattern can be interpreted as a consequence
of an inhibition process that operates in incongruent trials when
irrelevant spatial response tendencies have to be suppressed but
less so in congruent trials when no response tendency has to be
inhibited. In this vein Forstmann et al. (2008) recently observed
a strong link between both functional and structural fMRI para-
meters in right ventral premotor cortex and RT parameters that
signal response inhibition in a Simon task. The ventral premotor
cortex, in turn, is predominantly interconnected with the region
AIP (Rushworth et al., 2006), a region that showed good albeit not
significant classification performance in the right hemisphere. Sec-
ond, these differential activation patterns could represent a direct
consequence of the differential activation patterns in the number-
related network, i.e., these regions receive their input from the
close-by number-related network (aHIPS and HIPS_L) and covary
with the latter. This is further corroborated by the finding that
HIPS_R and SMA_R cluster form a sub-cluster that might link
number and motor information in the course of information pro-
cessing. On the basis of the present data we cannot decide between
these two interpretations. Most crucially, both imply a significant
contribution of the response-related network which in turn lends
support to late interaction between numbers and space.

A major advantage of the adopted CBA in combination with
unsmoothed imaging data of higher accuracy is that we can delin-
eate in higher detail the neuro-cognitive architecture in tasks
tapping number space interaction. In combination with the MVPA
analyses we found that some parietal regions are differentially
involved in congruent and incongruent trials (e.g., PSPL, HIPS)
while others are not. In particular we could demonstrate that
aHIPS is well activated by the numerical landmark task (and
the calculation localizer) but its contribution appears unaffected
by the congruency between numerical and spatial information.
One might speculate that aHIPS is implicated in “purely” numer-
ical processes of a task, i.e., it remains unaffected by its spatial
aspects. In contrast, it has been argued that area hIP2 but not
area hIP1, two anterior areas in the IPS where hIP2 may roughly
correspond to our ROI aHIPS while hIP1 may overlap with
our ROI HIPS (Choi et al., 2006), was implicated in “top-down
modulated directionality-specific reorienting of motor attention
during incongruent motor responses” (Cieslik et al., 2010). With
the present study we cannot disentangle numeric processes from
more general task components or top-down processes in manual
response tasks, unfortunately. This demonstrates the importance
of increased spatial resolution in future neuroimaging studies to
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further improve the mapping of numerical and spatial functions
along the IPS.

The successful classification performance in the eye movement
network (PSPL) may reflect differential scanning patterns in con-
gruent and incongruent trials, respectively. This result cannot be
explained in terms of a simple difference in amplitudes of the
BOLD response, e.g., due to more eye movements in incongruent
than in congruent trials for two reasons. First, as reported above,
there was no region that showed a significant difference in terms
of amplitude of the BOLD response. Second, before entering the
beta weights from each of the two conditions into the classifier
they were z-standardized, thus leveling out putative differences in
amplitude.

Taken together, the results are in line with the literature
that reports evidence for an integrated representation of sev-
eral dimensions, amongst them numbers and space (Schwarz and
Heinze, 1998; Walsh, 2003). The results are also in line with evi-
dence for a late interaction of information in tasks that induce
a conflict between irrelevant and relevant stimulus dimensions
(Ridderinkhof, 2002; Cohen Kadosh et al., 2007, 2008; Forstmann
et al., 2008).

By combining the AVC with a cluster analysis we identified
two functional networks devoted to sensory–motor information
on the one side and eye movements and number processing on
the other with the latter containing three sub-cluster devoted
to eye movements, number processing, and linking number to
motor information, respectively. While the eye movement system
is strictly organized according to ROIs (i.e., ROIs are clustered
across hemispheres), this is not the case for the remaining clus-
ters that combine ROIs from within one hemisphere on the first
clustering level (e.g., aHIPS_L and HIPS_L for number system).
Additionally, it should be noted that the cluster analyses do not
merely reflect superficial task characteristics, such as whether men-
tal manipulation of numbers is required or not. In this case, the
eye movement system would be different from a second clus-

ter containing all other ROIs. This is clearly not the case. This
demonstrates that the results of this analysis are far from trivial
and that the presented combination of AVC and cluster analysis
might prove useful in identifying large-scale functional networks
in many domains of cognitive neuroscience. It may serve the defi-
nition of functionally defined regions of interest that can then be
subject to further analyses. By carefully adapting tasks and con-
trasts in a given study it might prove useful to investigate to what
degree the large-scale organization of brain activity reflects par-
ticipants’ different performance levels. Rotzer et al. (2009), for
instance, suggested that a dysfunctional neural network of spatial
working memory contributes to developmental dyscalculia. The
combination of AVC and cluster analysis might be used to delineate
the functional relation between these networks and other related
functions such as different aspects of verbal working memory or
memory retrieval in both dyscalculics and controls.

To sum up, by enriching standard GLM analysis with a com-
bination of AVC and cluster analysis we identified large-scale
networks that can be related to different stages of information pro-
cessing. In each of these we were able to differentiate congruent
from incongruent trials by using support vector classification. We
provide evidence for both an early integration and a late interac-
tion of conflicting stimulus dimensions, i.e., numerical and spatial
distances.
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