Modeling NAFLD disease burden in China, France, Germany, Italy,Japan, Spain, United Kingdom, and United States for the period 2016-2030
Estes C, Anstee Q M, Arias-Loste M T, Bantel H, Bellentani S, Caballeria J, ColomboM, Craxi A, Crespo J, Day C P, Geier A, Kondili L, Kroy D, Lazarus J V, Loomba R,Manns M P, Marchesini G, Negro F, Petta S, Ratziu V, Romero-Gomez M, Sanyal A,Schattenberg J M, Tacke F, Trautwein C, Wei L, Zeuzem S, Razavi H
Table of contents
Search Parameters 2
Delphi Process 2
Input Data Sources 3
Markov Model 3
Transition Rates 5
Incidence (New Cases) Calculations 16
Uncertainty and Sensitivity Analysis 18
References 28

Search Parameters

Searches for relevant model inputs were conducted in PubMed and EMBASE. Search terms were limited to studies of NAFLD / NASH in selected countries. In addition, national and international databases and publications were used to develop longitudinal estimates for the prevalence of adult obesity and type 2 diabetes mellitus (DM) in each country, along with estimates for the number of incident liver cancers and liver transplantations at the national level, where such data were available.

Search Terms	PubMed	EMBASE
NAFLD I NASH	(NAFLD OR NASH OR steatosis OR steatohepatitis	('NAFLD'/exp OR NAFLD) OR ('NASH'/exp OR OASH) OR ('steatosis'/exp OR steatosis) OR OR (fatty liver)) ('steatohepatitis'/exp OR steatohepatitis) OR ('fatty
		liver'lexp OR fatty liver)
	China OR Hong Kong OR Taiwan OR France OR	'China' OR 'Hong Kong' OR 'Taiwan' OR 'France' OR
	Germany OR Italy OR Spain OR United Kingdom OR	'Germany' OR 'Italy' OR 'Spain' OR 'United Kingdom'
	UK OR England OR Scotland OR United States OR	OR 'UK' OR 'England' OR 'Scotland' OR 'United
	US	States' OR 'US'

Data collected - NAFLD and NASH prevalence, as well as data for the distribution of cases by sex, age and disease state were collected, when available. In addition, data for the study population, sample size, dates of data collection, and analysis type (metaanalysis, modeling, review article, surveillance study or other/unknown) were extracted from each publication.

Delphi Process

Expert consensus was developed using a modified Delphi process as described in
Table 1.

Table S1. Delphi Process

Activities		
	๙ை	Identify country experts who are willing to collaborate - Experts were identified through NAFLD-related scientific contributions, or through referrals and recommendations from leading researchers.
	न	Literature Search - Review the internal database for previously identified sources - Review online sources (e.g., CDC, etc.) to capture non-indexed sources - Run a literature search to identify recent publications - Summarize input data available through the literature - Gather empirical data for new HCC cases, liver transplants, percent of HCC and transplants due to NAFLD, percent of cases with obesity or DM - Build draft model based on published data - Schedule meeting with experts
	N゙	Expert Meeting 1 (2-3 hours) - Provide a background on the project, model and methodology - Review data identified in Phase 1b and highlight gaps in data - Request data in local non-indexed journals, unpublished data and any other available data (e.g., hospitallevel data) that can be used to fill the gaps - Gain agreement on data sources that can used as for extrapolation when no local data are available Follow up with Experts Post Meeting 1 - Send minutes of the meeting and list of remaining action items to experts - Follow up with experts to collect missing data and get copies of publications, government reports and unpublished data (e.g., raw hospital or registry-level data) - Analyze raw data and send to experts for approval
$\begin{aligned} & \text { Phase } 2 \text { - } \\ & \text { Country Meetings and } \end{aligned}$	N - 	Disease Burden Modeling - Populate disease burden model with inputs and calibrate model to empirical data - Schedule second meeting - Develop a slide deck summarizing all inputs and associated data sources - Perform a final check of the model and slide deck and approve internally Expert Meeting 2 (2-3 hours) - Review all inputs as well as data provided by experts since meeting 1 and results of analyses of any raw data provided - Gain agreement on all inputs to be used in the model - Update the model using any updated inputs
	¢	Follow-up Analyses - Update model as necessary and send results to experts - Provide support to address follow-up questions - Finalize approved inputs and outputs - Update analysis as new information becomes available (e.g., new national studies, updated treatment data)

Input Data Sources

The data sources that were approved to be used for each country analysis are shown in

Table 2.

Table S2. Data Sources

	China	France	Germany	Italy	Japan	Spain	UK	US
Adult Obesity Prevalence	$[1,2]$	$[3-5]$	$[6]$	$[7,8]$	$[9]$	$[10]$	$[11,12]$	$[13,14]$
Adult Diabetes Prevalence	$[15,16]$	$[17,18]$	$[19,20]$	$[21]$	$[22]$	$[23,24]$	$[25]$	$[26,27]$
HCC Incidence		$[28,29]$		$[29-31]$	$[32]$	$[23]$	$[33]$	$[34,35]$
\% HCC NAFLD $/$ NASH Related							$[36]$	$[37]$
Total Transplants	$[38]$	$[39]$	$[40]$	$[41,42]$	$[43]$	$[44]$	$[45]$	$[34,46]$
\% NAFLD related NAFLD Prevalence by Age and Gender	$[49]$					$[44]$	$[47]$	$[48]$

Markov Model

The Markov model (Figure 1) was built using Microsoft Excel ${ }^{\circledR}$ (Microsoft Corp., Redmond, WA) to track the annual NAFLD population by fibrosis stage and NASH status (steatosis only [NAFL] or NASH) from 1950-2030.

Fig. S1. NAFLD Disease Progression Model

Beginning with the estimated annual new NAFLD cases (defined as the onset of steatosis rather than newly diagnosed), fibrosis progression of all cases was modeled through 2030. Cases by stage of disease were calculated annually by age and gender,
with one-year age cohorts through age 84 and cases aged ≥ 85 years tracked as a single cohort. Annually, the population in each age group (excluding the ≥ 85 year cohort) was advanced to the next age to simulate the impact of aging. Historical and medium-fertility projection population data for all countries were obtained from the United Nations' population database by gender and one year age cohort [52].

Disease progression through fibrosis and advanced liver disease (decompensated cirrhosis and HCC) (Figure 1) was estimated with adjustment for all-cause mortality (including general background, excess cardiovascular and liver-related mortality). New cases by disease stage (New Cases stage x) were calculated by multiplying progression rates and the total cases at prior stages of the disease in the previous year (Total Cases stage $x-1$, Year $Y-1$) as shown in Equation 1.

Equation 1

Total Cases Stage $_{x} \&$ Year $_{y} \&$ Age Cohort ${ }_{z}$

$$
\begin{aligned}
& =\left(\text { Total Cases }_{\text {Stage }_{x} \& \text { Year }_{y-1} \& \text { Age Cohort }_{z-1}}\right)+\text { New Cases } \text { Stage }_{x} \& \text { Year }_{y} \& \text { Age Cohort }_{z} \\
& - \text { All Cause Mortality } \\
& \text { Stage }_{x} \& \text { Year }_{y} \& \text { Age Cohort }_{z}
\end{aligned}
$$

where:
New Cases Stage $_{x} \&$ Year $_{y} \&$ Age Cohort $_{z}=$

Background Mortality $_{\text {Stage }_{x} \& \text { Year }_{y} \& \text { Age Cohort }_{z}}=$

Progressed $_{\text {Stage }_{x} \& \text { Yeary }_{y} \text { \& Age Cohort }}^{z}$ $=$
$\left(\right.$ Total Cases $\left._{\text {Stage }_{x-1} \& \text { Year }_{y-1} \& \text { Age Cohort }_{z}}\right)\left(\right.$ Progression Rate $\left._{\left.\text {Stage }_{x} \rightarrow \text { Stage }_{x+1} \& \text { Age Cohort }_{z}\right)}\right)$
Liver Related Mortality Stage $_{x}$ Year $_{y}$ Age Cohort $_{z}=\left(\right.$ Total Cases $_{\text {Stage }_{x} \text { Year }_{y-1} \text { Age Cohort }_{z-1}}-$ Adjusted Background Mortality Stage $_{x}$ Year $_{y}$ Age Cohort $_{z}-$
Progressed $_{\text {Stage }_{x}}$ Year $_{y}$ Age Cohort $\left._{z}\right)\left(\right.$ Liver Related Mortality Rate $\left._{\text {Year }_{y-1} \text { Age Cohort }_{z-1}}\right)$

Transition Rates

The annual transition probabilities were based on published estimates and expert consensus as shown in Table 3.

Table S3. Disease Stage Annual Transitions Rates

Disease Stage Transition	Annual Rate	Source
F0 to F1	$0.3-2.2 \%$	Back-calculated
F0 to HCC	0.0004%	$[37,53]$
F1 to F2	$2.8-13.3 \%$	Back-calculated
F1 to HCC	0.011%	$[37,53]$
F2 to F3	$2.8-13.3 \%$	Back-calculated
F2 to HCC	0.022%	$[37,53]$
F3 to F4 (Cirrhosis)	$3.8-9.9 \%$	Back-calculated
F3 to HCC	0.044%	$[37,53]$
Cirrhosis to Decomp Cirrhosis	3.80%	$[54]$
Cirrhosis to HCC	0.34%	$[37,53]$
Decomp Cirrhosis to Liver Rel. Death	20.0%	$[54]$
HCC to Liver Rel. Death (Yr 1)	61.0%	$[37]$
HCC to L.R. Death (Sub Yrs)	16.2%	$[55]$

However, single annual transition rates resulted in poor validation of the models comparison of modeled and reported HCC cases, as described below.

Thus, age and gender specific fibrosis progression rates were developed based on assumptions for the distribution of cases by NASH status and fibrosis stage, as described below. Fibrosis progression rates are available from studies analyzing consecutive liver biopsies, but report highly varied rates, including negative progression (e.g. regression) [56]. For the purpose of the model, progression rates were assumed to be the sum of forward progression minus the rate of regression. Where data or expert input were available for the incidence of NAFLD-related HCC, decompensated cirrhosis and related mortality, progression rates were modified to align with reported data and expert consensus (Table 3). A long term follow up study of individuals with NASH-
related cirrhosis reported that 45\% experienced liver failure or decompensated cirrhosis, defined as an increase in Child-Turcotte-Pugh score by 2 points over twelve years of follow up in patients with Child Class A Cirrhosis [54]. An annual progression rate of 3.8\% decompensation among cirrhotics was calculated and applied in the model.

Fibrosis progression rates was further adjusted with overweight individuals (BMI 25 to $<30 \mathrm{~kg} / \mathrm{m}^{2}$) having 2.35 greater odds and obese individuals ($\mathrm{BMI} \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$) having 5.70 greater odds of advanced fibrosis [57] (Table 4). It was assumed that relative differences at the national level in the proportion of overweight and obese individuals would be reflective of each country's NAFLD populations.

For every country, it was assumed that 64% of incident HCC cases would occur among cirrhotics [53]. Using US data as an analogue, the annual transition rate from F4 to HCC was estimated at 0.33%. The remaining 36% of incident HCC cases occurred among F0-F3 cases. The incidence rate among F3 cases was back-calculated and progression decreased exponentially with each decreasing level of fibrosis from 0.038\% (F3 to HCC) to 0.00035% (FO to HCC) (Table 3). NAFLD-related HCC cases may experience greater mortality as compared to HCV-related HCC; first year mortality (61\%) was applied to new HCC cases, with subsequent years mortality rates based on long-term survival data [37, 55]. A long term follow up study of individuals with NASH-related cirrhosis reported an annual progression rate of 3.8\% for clinical decompensation [54] (increase of 2 in Child Turcotte Pugh score among Child Class A Cirrhosis $[58,59]$) and this rate was applied in the model. The annual calculated transition rates, by country, are shown in Table 4.

Table S4. Fibrosis Transition Probabilities by Country, Disease Stage, Sex and Age Group
China Fibrosis Transition Probabilities by Disease Stage, Sex and Age Group

F0 to F1	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	1.0\%	1.0\%	1.0\%	1.0\%	1.0\%	1.0\%	1.0\%	1.0\%	1.0\%	1.0\%
Low	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%
High	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%
Females	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%
Low	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%
High	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%
F1 to F2	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	8.8\%	8.8\%	8.8\%	8.8\%	8.8\%	8.8\%	8.8\%	8.8\%	8.8\%	8.8\%
Low	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%
High	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%
Females	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%
Low	1.6\%	1.6\%	1.6\%	1.6\%	1.6\%	1.6\%	1.6\%	1.6\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%
High	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	11.3\%	11.3\%	11.3\%	11.3\%	11.3\%	11.3\%	11.3\%	11.3\%	11.3\%	11.3\%
F2 to F3	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	8.8\%	8.8\%	8.8\%	8.8\%	8.8\%	8.8\%	8.8\%	8.8\%	8.8\%	8.8\%
Low	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%
High	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%
Females	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%
Low	1.6\%	1.6\%	1.6\%	1.6\%	1.6\%	1.6\%	1.6\%	1.6\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%
High	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	11.3\%	11.3\%	11.3\%	11.3\%	11.3\%	11.3\%	11.3\%	11.3\%	11.3\%	11.3\%
F3 to F4 (Cirrhosis)	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	3.4\%	3.4\%	3.4\%	3.4\%	3.4\%	3.4\%	3.4\%	3.4\%	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%
Low	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	3.1\%	3.1\%	3.1\%	3.1\%	3.1\%	3.1\%	3.1\%	3.1\%	3.1\%	3.1\%
High	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	10.5\%	10.5\%	10.5\%	10.5\%	10.5\%	10.5\%	10.5\%	10.5\%	10.5\%	10.5\%
Females	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	4.6\%	4.6\%	4.6\%	4.6\%	4.6\%	4.6\%	4.6\%	4.6\%	4.6\%	4.6\%
Low	1.6\%	1.6\%	1.6\%	1.6\%	1.6\%	1.6\%	1.6\%	1.6\%	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%
High	5.4\%	5.4\%	5.4\%	5.4\%	5.4\%	5.4\%	5.4\%	5.4\%	8.7\%	8.7\%	8.7\%	8.7\%	8.7\%	8.7\%	8.7\%	8.7\%	8.7\%	8.7\%

France Fibrosis Transition Probabilities by Disease Stage, Sex and Age Group

F0 to F1	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%
Low	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%
High	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%
Females	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%
Low	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%
High	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	1.7\%	1.7\%	1.7\%	1.7\%	1.7\%	1.7\%	1.7\%	1.7\%	1.7\%	1.7\%
F1 to F2	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	3.9\%	3.9\%	3.9\%	3.9\%	3.9\%	3.9\%	3.9\%	3.9\%	10.3\%	10.3\%	10.3\%	10.3\%	10.3\%	10.3\%	10.3\%	10.3\%	10.3\%	10.3\%
Low	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%
High	6.0\%	6.0\%	6.0\%	6.0\%	6.0\%	6.0\%	6.0\%	6.0\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%
Females	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	8.6\%	8.6\%	8.6\%	8.6\%	8.6\%	8.6\%	8.6\%	8.6\%	8.6\%	8.6\%
Low	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%
High	5.0\%	5.0\%	5.0\%	5.0\%	5.0\%	5.0\%	5.0\%	5.0\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%
F2 to F3	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	3.9\%	3.9\%	3.9\%	3.9\%	3.9\%	3.9\%	3.9\%	3.9\%	10.3\%	10.3\%	10.3\%	10.3\%	10.3\%	10.3\%	10.3\%	10.3\%	10.3\%	10.3\%
Low	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%
High	6.0\%	6.0\%	6.0\%	6.0\%	6.0\%	6.0\%	6.0\%	6.0\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%
Females	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	8.6\%	8.6\%	8.6\%	8.6\%	8.6\%	8.6\%	8.6\%	8.6\%	8.6\%	8.6\%
Low	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%
High	5.0\%	5.0\%	5.0\%	5.0\%	5.0\%	5.0\%	5.0\%	5.0\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%
F3 to F4 (Cirrhosis)	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	4.7\%	4.7\%	4.7\%	4.7\%	4.7\%	4.7\%	4.7\%	4.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%
Low	2.7\%	2.7\%	2.7\%	2.7\%	2.7\%	2.7\%	2.7\%	2.7\%	4.4\%	4.4\%	4.4\%	4.4\%	4.4\%	4.4\%	4.4\%	4.4\%	4.4\%	4.4\%
High	9.0\%	9.0\%	9.0\%	9.0\%	9.0\%	9.0\%	9.0\%	9.0\%	14.7\%	14.7\%	14.7\%	14.7\%	14.7\%	14.7\%	14.7\%	14.7\%	14.7\%	14.7\%
Females	3.9\%	3.9\%	3.9\%	3.9\%	3.9\%	3.9\%	3.9\%	3.9\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%
Low	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	3.7\%	3.7\%	3.7\%	3.7\%	3.7\%	3.7\%	3.7\%	3.7\%	3.7\%	3.7\%
High	7.5\%	7.5\%	7.5\%	7.5\%	7.5\%	7.5\%	7.5\%	7.5\%	12.2\%	12.2\%	12.2\%	12.2\%	12.2\%	12.2\%	12.2\%	12.2\%	12.2\%	12.2\%

Germany Fibrosis Transition Probabilities by Disease Stage, Sex and Age Group

F0 to F1	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%
Low	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%
High	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%
Females	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%
Low	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%
High	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%
F1 to F2	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	11.4\%	11.4\%	11.4\%	11.4\%	11.4\%	11.4\%	11.4\%	11.4\%	11.4\%	11.4\%
Low	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	6.7\%	6.7\%	6.7\%	6.7\%	6.7\%	6.7\%	6.7\%	6.7\%	6.7\%	6.7\%
High	6.6\%	6.6\%	6.6\%	6.6\%	6.6\%	6.6\%	6.6\%	6.6\%	17.5\%	17.5\%	17.5\%	17.5\%	17.5\%	17.5\%	17.5\%	17.5\%	17.5\%	17.5\%
Females	3.6\%	3.6\%	3.6\%	3.6\%	3.6\%	3.6\%	3.6\%	3.6\%	9.5\%	9.5\%	9.5\%	9.5\%	9.5\%	9.5\%	9.5\%	9.5\%	9.5\%	9.5\%
Low	2.1\%	2.1\%	2.1\%	2.1\%	2.1\%	2.1\%	2.1\%	2.1\%	5.6\%	5.6\%	5.6\%	5.6\%	5.6\%	5.6\%	5.6\%	5.6\%	5.6\%	5.6\%
High	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%	14.5\%	14.5\%	14.5\%	14.5\%	14.5\%	14.5\%	14.5\%	14.5\%	14.5\%	14.5\%
F2 to F3	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	11.4\%	11.4\%	11.4\%	11.4\%	11.4\%	11.4\%	11.4\%	11.4\%	11.4\%	11.4\%
Low	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	6.7\%	6.7\%	6.7\%	6.7\%	6.7\%	6.7\%	6.7\%	6.7\%	6.7\%	6.7\%
High	6.6\%	6.6\%	6.6\%	6.6\%	6.6\%	6.6\%	6.6\%	6.6\%	17.5\%	17.5\%	17.5\%	17.5\%	17.5\%	17.5\%	17.5\%	17.5\%	17.5\%	17.5\%
Females	3.6\%	3.6\%	3.6\%	3.6\%	3.6\%	3.6\%	3.6\%	3.6\%	9.5\%	9.5\%	9.5\%	9.5\%	9.5\%	9.5\%	9.5\%	9.5\%	9.5\%	9.5\%
Low	2.1\%	2.1\%	2.1\%	2.1\%	2.1\%	2.1\%	2.1\%	2.1\%	5.6\%	5.6\%	5.6\%	5.6\%	5.6\%	5.6\%	5.6\%	5.6\%	5.6\%	5.6\%
High	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%	14.5\%	14.5\%	14.5\%	14.5\%	14.5\%	14.5\%	14.5\%	14.5\%	14.5\%	14.5\%
F3 to F4 (Cirrhosis)	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	8.5\%	8.5\%	8.5\%	8.5\%	8.5\%	8.5\%	8.5\%	8.5\%	8.5\%	8.5\%
Low	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%
High	9.9\%	9.9\%	9.9\%	9.9\%	9.9\%	9.9\%	9.9\%	9.9\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%
Females	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	7.1\%	7.1\%	7.1\%	7.1\%	7.1\%	7.1\%	7.1\%	7.1\%	7.1\%	7.1\%
Low	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%
High	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%	13.5\%

Italy Fibrosis Transition Probabilities by Disease Stage, Sex and Age Group

F0 to F1	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%
Low	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%
High	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	2.1\%	2.1\%	2.1\%	2.1\%	2.1\%	2.1\%	2.1\%	2.1\%	2.1\%	2.1\%
Females	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%
Low	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%
High	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	1.7\%	1.7\%	1.7\%	1.7\%	1.7\%	1.7\%	1.7\%	1.7\%	1.7\%	1.7\%
F1 to F2	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%
Low	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	7.5\%	7.5\%	7.5\%	7.5\%	7.5\%	7.5\%	7.5\%	7.5\%	7.5\%	7.5\%
High	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	19.4\%	19.4\%	19.4\%	19.4\%	19.4\%	19.4\%	19.4\%	19.4\%	19.4\%	19.4\%
Females	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%
Low	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%	6.2\%	6.2\%	6.2\%	6.2\%	6.2\%	6.2\%	6.2\%	6.2\%	6.2\%	6.2\%
High	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%
F2 to F3	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%
Low	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	7.5\%	7.5\%	7.5\%	7.5\%	7.5\%	7.5\%	7.5\%	7.5\%	7.5\%	7.5\%
High	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	19.4\%	19.4\%	19.4\%	19.4\%	19.4\%	19.4\%	19.4\%	19.4\%	19.4\%	19.4\%
Females	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%
Low	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%	6.2\%	6.2\%	6.2\%	6.2\%	6.2\%	6.2\%	6.2\%	6.2\%	6.2\%	6.2\%
High	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%	16.2\%
F3 to F4 (Cirrhosis)	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	7.9\%	7.9\%	7.9\%	7.9\%	7.9\%	7.9\%	7.9\%	7.9\%	7.9\%	7.9\%
Low	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	4.5\%	4.5\%	4.5\%	4.5\%	4.5\%	4.5\%	4.5\%	4.5\%	4.5\%	4.5\%
High	9.2\%	9.2\%	9.2\%	9.2\%	9.2\%	9.2\%	9.2\%	9.2\%	15.1\%	15.1\%	15.1\%	15.1\%	15.1\%	15.1\%	15.1\%	15.1\%	15.1\%	15.1\%
Females	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	6.6\%	6.6\%	6.6\%	6.6\%	6.6\%	6.6\%	6.6\%	6.6\%	6.6\%	6.6\%
Low	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%	2.3\%	3.8\%	3.8\%	3.8\%	3.8\%	3.8\%	3.8\%	3.8\%	3.8\%	3.8\%	3.8\%
High	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	12.5\%	12.5\%	12.5\%	12.5\%	12.5\%	12.5\%	12.5\%	12.5\%	12.5\%	12.5\%

Page 11 of 33

Japan Transition Probabilities by Disease Stage, Sex and Age Group

F0 to F1	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%
Low	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%
High	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%
Females	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%
Low	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%
High	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%
F1 to F2	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	3.2\%	3.2\%	3.2\%	3.2\%	3.2\%	3.2\%	3.2\%	3.2\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%
Low	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%
High	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%
Females	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%
Low	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	4.1\%	4.1\%	4.1\%	4.1\%	4.1\%	4.1\%	4.1\%	4.1\%	4.1\%	4.1\%
High	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%
F2 to F3	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	3.2\%	3.2\%	3.2\%	3.2\%	3.2\%	3.2\%	3.2\%	3.2\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%
Low	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	1.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%	4.9\%
High	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%	12.7\%
Females	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%
Low	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	4.1\%	4.1\%	4.1\%	4.1\%	4.1\%	4.1\%	4.1\%	4.1\%	4.1\%	4.1\%
High	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%	10.6\%
F3 to F4 (Cirrhosis)	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	3.2\%	3.2\%	3.2\%	3.2\%	3.2\%	3.2\%	3.2\%	3.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%	5.2\%
Low	1.8\%	1.8\%	1.8\%	1.8\%	1.8\%	1.8\%	1.8\%	1.8\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%
High	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	9.9\%	9.9\%	9.9\%	9.9\%	9.9\%	9.9\%	9.9\%	9.9\%	9.9\%	9.9\%
Females	2.7\%	2.7\%	2.7\%	2.7\%	2.7\%	2.7\%	2.7\%	2.7\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%
Low	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%
High	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	8.2\%	8.2\%	8.2\%	8.2\%	8.2\%	8.2\%	8.2\%	8.2\%	8.2\%	8.2\%

Spain Fibrosis Transition Probabilities by Disease Stage, Sex and Age Group

F0 to F1	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%	1.4\%
Low	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%
High	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%
Females	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%	1.2\%
Low	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%
High	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	1.8\%	1.8\%	1.8\%	1.8\%	1.8\%	1.8\%	1.8\%	1.8\%	1.8\%	1.8\%
F1 to F2	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%
Low	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%
High	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	20.4\%	20.4\%	20.4\%	20.4\%	20.4\%	20.4\%	20.4\%	20.4\%	20.4\%	20.4\%
Females	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	11.1\%	11.1\%	11.1\%	11.1\%	11.1\%	11.1\%	11.1\%	11.1\%	11.1\%	11.1\%
Low	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%
High	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%
F2 to F3	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%
Low	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%
High	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	20.4\%	20.4\%	20.4\%	20.4\%	20.4\%	20.4\%	20.4\%	20.4\%	20.4\%	20.4\%
Females	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	11.1\%	11.1\%	11.1\%	11.1\%	11.1\%	11.1\%	11.1\%	11.1\%	11.1\%	11.1\%
Low	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%
High	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%
F3 to F4 (Cirrhosis)	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%
Low	2.9\%	2.9\%	2.9\%	2.9\%	2.9\%	2.9\%	2.9\%	2.9\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%	4.8\%
High	9.7\%	9.7\%	9.7\%	9.7\%	9.7\%	9.7\%	9.7\%	9.7\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%	15.8\%
Females	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	4.3\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%
Low	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%
High	8.1\%	8.1\%	8.1\%	8.1\%	8.1\%	8.1\%	8.1\%	8.1\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%	13.2\%

UK Fibrosis Transition Probabilities by Disease Stage, Sex and Age Group

F0 to F1	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%	1.5\%
Low	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%
High	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	0.9\%	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%	2.4\%
Females	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%
Low	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%
High	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%
F1 to F2	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	4.5\%	4.5\%	4.5\%	4.5\%	4.5\%	4.5\%	4.5\%	4.5\%	11.9\%	11.9\%	11.9\%	11.9\%	11.9\%	11.9\%	11.9\%	11.9\%	11.9\%	11.9\%
Low	2.7\%	2.7\%	2.7\%	2.7\%	2.7\%	2.7\%	2.7\%	2.7\%	7.0\%	7.0\%	7.0\%	7.0\%	7.0\%	7.0\%	7.0\%	7.0\%	7.0\%	7.0\%
High	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	18.3\%	18.3\%	18.3\%	18.3\%	18.3\%	18.3\%	18.3\%	18.3\%	18.3\%	18.3\%
Females	3.8\%	3.8\%	3.8\%	3.8\%	3.8\%	3.8\%	3.8\%	3.8\%	10.0\%	10.0\%	10.0\%	10.0\%	10.0\%	10.0\%	10.0\%	10.0\%	10.0\%	10.0\%
Low	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	5.9\%	5.9\%	5.9\%	5.9\%	5.9\%	5.9\%	5.9\%	5.9\%	5.9\%	5.9\%
High	5.8\%	5.8\%	5.8\%	5.8\%	5.8\%	5.8\%	5.8\%	5.8\%	15.3\%	15.3\%	15.3\%	15.3\%	15.3\%	15.3\%	15.3\%	15.3\%	15.3\%	15.3\%
F2 to F3	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	4.5\%	4.5\%	4.5\%	4.5\%	4.5\%	4.5\%	4.5\%	4.5\%	11.9\%	11.9\%	11.9\%	11.9\%	11.9\%	11.9\%	11.9\%	11.9\%	11.9\%	11.9\%
Low	2.7\%	2.7\%	2.7\%	2.7\%	2.7\%	2.7\%	2.7\%	2.7\%	7.0\%	7.0\%	7.0\%	7.0\%	7.0\%	7.0\%	7.0\%	7.0\%	7.0\%	7.0\%
High	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	6.9\%	18.3\%	18.3\%	18.3\%	18.3\%	18.3\%	18.3\%	18.3\%	18.3\%	18.3\%	18.3\%
Females	3.8\%	3.8\%	3.8\%	3.8\%	3.8\%	3.8\%	3.8\%	3.8\%	10.0\%	10.0\%	10.0\%	10.0\%	10.0\%	10.0\%	10.0\%	10.0\%	10.0\%	10.0\%
Low	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	5.9\%	5.9\%	5.9\%	5.9\%	5.9\%	5.9\%	5.9\%	5.9\%	5.9\%	5.9\%
High	5.8\%	5.8\%	5.8\%	5.8\%	5.8\%	5.8\%	5.8\%	5.8\%	15.3\%	15.3\%	15.3\%	15.3\%	15.3\%	15.3\%	15.3\%	15.3\%	15.3\%	15.3\%
F3 to F4 (Cirrhosis)	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%	5.5\%	8.9\%	8.9\%	8.9\%	8.9\%	8.9\%	8.9\%	8.9\%	8.9\%	8.9\%	8.9\%
Low	3.1\%	3.1\%	3.1\%	3.1\%	3.1\%	3.1\%	3.1\%	3.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%
High	10.4\%	10.4\%	10.4\%	10.4\%	10.4\%	10.4\%	10.4\%	10.4\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%	17.0\%
Females	4.6\%	4.6\%	4.6\%	4.6\%	4.6\%	4.6\%	4.6\%	4.6\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%
Low	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%	2.6\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%
High	8.7\%	8.7\%	8.7\%	8.7\%	8.7\%	8.7\%	8.7\%	8.7\%	14.1\%	14.1\%	14.1\%	14.1\%	14.1\%	14.1\%	14.1\%	14.1\%	14.1\%	14.1\%

Page 14 of 33

US Fibrosis Transition Probabilities by Disease Stage, Sex and Age Group

F0 to F1	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	0.8\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%
Low	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%
High	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	1.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%	3.3\%
Females	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	0.7\%	1.8\%	1.8\%	1.8\%	1.8\%	1.8\%	1.8\%	1.8\%	1.8\%	1.8\%	1.8\%
Low	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	0.4\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%	1.1\%
High	1.0\%	1.0\%	1.0\%	1.0\%	1.0\%	1.0\%	1.0\%	1.0\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%	2.8\%
F1 to F2	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	5.0\%	5.0\%	5.0\%	5.0\%	5.0\%	5.0\%	5.0\%	5.0\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%
Low	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%
High	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	20.3\%	20.3\%	20.3\%	20.3\%	20.3\%	20.3\%	20.3\%	20.3\%	20.3\%	20.3\%
Females	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	11.0\%	11.0\%	11.0\%	11.0\%	11.0\%	11.0\%	11.0\%	11.0\%	11.0\%	11.0\%
Low	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%
High	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	16.9\%	16.9\%	16.9\%	16.9\%	16.9\%	16.9\%	16.9\%	16.9\%	16.9\%	16.9\%
F2 to F3	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	5.0\%	5.0\%	5.0\%	5.0\%	5.0\%	5.0\%	5.0\%	5.0\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%	13.3\%
Low	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	3.0\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%	7.8\%
High	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	7.7\%	20.3\%	20.3\%	20.3\%	20.3\%	20.3\%	20.3\%	20.3\%	20.3\%	20.3\%	20.3\%
Females	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	4.2\%	11.0\%	11.0\%	11.0\%	11.0\%	11.0\%	11.0\%	11.0\%	11.0\%	11.0\%	11.0\%
Low	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	2.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%	6.5\%
High	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	6.4\%	16.9\%	16.9\%	16.9\%	16.9\%	16.9\%	16.9\%	16.9\%	16.9\%	16.9\%	16.9\%
F3 to F4 (Cirrhosis)	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
Males	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	6.1\%	9.9\%	9.9\%	9.9\%	9.9\%	9.9\%	9.9\%	9.9\%	9.9\%	9.9\%	9.9\%
Low	3.5\%	3.5\%	3.5\%	3.5\%	3.5\%	3.5\%	3.5\%	3.5\%	5.7\%	5.7\%	5.7\%	5.7\%	5.7\%	5.7\%	5.7\%	5.7\%	5.7\%	5.7\%
High	11.5\%	11.5\%	11.5\%	11.5\%	11.5\%	11.5\%	11.5\%	11.5\%	18.8\%	18.8\%	18.8\%	18.8\%	18.8\%	18.8\%	18.8\%	18.8\%	18.8\%	18.8\%
Females	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	5.1\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%	8.3\%
Low	2.9\%	2.9\%	2.9\%	2.9\%	2.9\%	2.9\%	2.9\%	2.9\%	4.7\%	4.7\%	4.7\%	4.7\%	4.7\%	4.7\%	4.7\%	4.7\%	4.7\%	4.7\%
High	9.6\%	9.6\%	9.6\%	9.6\%	9.6\%	9.6\%	9.6\%	9.6\%	15.7\%	15.7\%	15.7\%	15.7\%	15.7\%	15.7\%	15.7\%	15.7\%	15.7\%	15.7\%

Page 15 of 33

Incidence (New Cases) Calculations

Recent and accurate estimates of NAFLD incidence and prevalence were either unavailable, had limitations that precluded application to the general population, or were subject to varied diagnostic techniques. Therefore, annual changes in the number of new cases were back calculated using the change in obesity and DM as a surrogate for the change in new NAFLD cases. Total prevalent cases were assumed to be the sum of existing and new NAFLD cases after accounting for mortality, and were calibrated to the estimated prevalence of NAFLD in 2015. Incidence was used to describe new NAFLD cases (onset of steatosis) and not the time of first diagnosis.

In every country studied, the reported rates of adult obesity and diagnosed diabetes have increased over time (Figure 2). Unlike obesity, DM data are less readily available due to changes in awareness, screening, and diagnosis levels. In most countries, reliable estimates of true DM prevalence (diagnosed and undiagnosed) were unavailable until recent decades. Long term changes in adult obesity and DM prevalence were plotted and trend lines were examined to identify the time period in which the rate of increase was greatest (Figure 2). The growth in NAFLD new cases was assumed to follow the growth in obesity and lag behand the growth in DM as shown in Figure 2. Future trends in adult obesity and DM were forecasted using best-fit sigmoidal functions. The change in annual prevalence was used to estimate the change in new cases/incidence of adult obesity and DM. Due to the lower prevalence of DM, the incidence was scaled from 0 to 1 to allow side by side comparison. As shown in Figure 2, except for China, the rate of new (incidence) obesity and DM is forecasted to decrease while total cases (prevalence) will continue to increase (Figure 3).

Fig. S2. Relative Incidence and Prevalence Changes in Adult Obesity and Diabetes - 1990-2030

Published data suggest that males have a higher NAFLD prevalence than females and prevalence rates increase with age [49-51]. Relative incidence values describe changes in the annual number of new NAFLD cases. A curve was fitted from 1950 to the estimated peak and a second curve followed the decline in relative incidence (Figure 2). Relative changes in the number of total NAFLD cases and the distribution of NAFL versus NASH within the population were imputed from data related to trends for obesity and DM (Figure 2) for which more robust data existed. For China, urbanization level (proportion of individuals residing in urban areas) was also used to estimate increases in the adoption of obesigenic lifestyles [62].

Annual relative incidence values were used to describe changes in the annual number of new NAFLD cases over time. The Excel® Solver add-in was used to solve for the constant, which when multiplied by the annual relative incidence, resulted in the known prevalence after adjusting for mortality. This constant multiplied by the relative incidence provided the number of new NAFLD cases per year. Data related to the distribution of NAFL vs. NASH in these populations were used to impute the trends for these histological phenotypes [51, 63, 64].

Next, annual incident cases were distributed by age and gender to fit the adjusted NAFLD prevalence. A weighting factor was applied to reported prevalence by age and gender in order to reach estimated NAFLD prevalence in the adult age groups in 2015. The percentage of the incident population allocated to each age and gender cohort in years 1950-1965 was set equal to 1966 and trended linearly in 5 five-year increments until 2011, at which point the percent of incident cases allocated to each age and gender cohort were held constant until 2030.

The relative impact of incident NAFLD cases occurring prior to 1950 was negligible and not included.

Uncertainty and Sensitivity Analysis

Uncertainty intervals (UI) were generated using Beta-PERT distributions around key uncertainties by Monte Carlo analysis using Oracle Crystal Ball® (Oracle Corp., Redwood City, CA, Release 11.1.3708.0). The prevalent NAFLD cases between 20162030 and the corresponding uncertainty intervals are shown in Figure 3. Asian countries (China and Japan) had higher uncertainty which will be reduced as the additional epidemiology studies are conducted. In addition, the movement of people from rural to urban area was also a key uncertainty in China as obesity is increasing more dramatically in the urban settings.

Fig. S3. Prevalent NAFLD Cases with Uncertainty Intervals, 2015-2030

The age pyramid of the countries' and the NAFLD population are shown in Figure 4. Although there are considerable differences in countries' populations, the NAFLD populations have a more similar age distribution due to similar risk factors for NAFLD development across countries.

Fig. S4. Distribution of General and Prevalent NAFLD Populations by Sex and Age Group - 2015 \& 2030

References

[1] Gordon-Larsen P, Wang H, Popkin BM. Overweight dynamics in Chinese children and adults. Obes Rev 2014;15 Suppl 1:37-48.
[2] Qin X, Pan J. The Medical Cost Attributable to Obesity and Overweight in China: Estimation Based on Longitudinal Surveys. Health Econ 2016;25:1291-1311.
[3] Charles MA, Eschwege E, Basdevant A. Monitoring the obesity epidemic in France: the Obepi surveys 1997-2006. Obesity (Silver Spring) 2008;16:2182-2186.
[4] Schneider H, Dietrich ES, Venetz WP. Trends and stabilization up to 2022 in overweight and obesity in Switzerland, comparison to France, UK, US and Australia. Int J Environ Res Public Health 2010;7:460-472.
[5] OECD. Obesity and the Economics of Prevention: Fit not Fat, Key Facts - France, Update 2012: OECD Publishing; 2012.
[6] Mensink GB, Schienkiewitz A, Haftenberger M, Lampert T, Ziese T, Scheidt-Nave C. [Overweight and obesity in Germany: results of the German Health Interview and Examination Survey for Adults (DEGS1)]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2013;56:786-794.
[7] Istat. Italy in figures 2015: Italian National Institute of Statistics 2015.
[8] Istat. Italy in figures 2011: Italian National Institute of Statistics 2011.
[9] Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014;384:766-781.
[10] García-Goñi M, Hernández-Quevedo C. The evolution of obesity in Spain. Eurohealth 2012;18:22-25.
[11] Public Health England. UK and Ireland prevalence and trends. 2016 [cited 2016 September 15]; Available from: https://www.noo.org.uk/NOO_about_obesity/adult_obesity/UK_prevalence_and_trends
[12] Scottish Parliament Information Centre. Obesity in Scotland; 2015.
[13] Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011-2012. Jama 2014;311:806-814.
[14] Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, Sherry B, et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med 2012;42:563-570.
[15] Xu Y, Wang L, He J, Bi Y, Li M, Wang T, et al. Prevalence and control of diabetes in Chinese adults. JAMA 2013;310:948-959.
[16] Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047-1053.
[17] Bonaldi C, Vernay M, Roudier C, Salanave B, Oleko A, Malon A, et al. A first national prevalence estimate of diagnosed and undiagnosed diabetes in France in 18- to 74 -year-old individuals: the French Nutrition and Health Survey 2006/2007. DiabetMed 2011;28:583-589.
[18] Kusnik-Joinville O, Weill A, Salanave B, Ricordeau P, Allemand H. Prevalence and treatment of diabetes in France: trends between 2000 and 2005. Diabetes Metab 2008;34:266-272.
[19] Heidemann C, Du Y, Schubert I, Rathmann W, Scheidt-Nave C. [Prevalence and temporal trend of known diabetes mellitus: results of the German Health Interview and Examination Survey for Adults (DEGS1)]. BundesgesundheitsblattGesundheitsforschungGesundheitsschutz 2013;56:668-677.
[20] Heidemann C, Du Y, Paprott R, Haftenberger M, Rathmann W, Scheidt-Nave C. Temporal changes in the prevalence of diagnosed diabetes, undiagnosed diabetes and prediabetes: findings from the German Health Interview and Examination Surveys in 1997-1999 and 2008-2011. Diabet Med 2015.
[21] Istat. II Diabete in Italia Anni 2000-2011: Italian National Institute of Statistics 2012.
[22] Charvat H, Goto A, Goto M, Inoue M, Heianza Y, Arase Y, et al. Impact of population aging on trends in diabetes prevalence: A meta-regression analysis of 160,000 Japanese adults. J Diabetes Investig 2015;6:533-542.
[23] Jimenez Mejias E, Olvera Porcel MC, Amezcua Prieto C, Olmedo-Requena R, Martinez Ruiz V, Jimenez Moleon JJ. [Effect of age on the prevalence of diabetes mellitus in Spain between 2001 and 2012]. Nutr Hosp 2014;29:1335-1338.
[24] Soriguer F, Goday A, Bosch-Comas A, Bordiu E, Calle-Pascual A, Carmena R, et al. Prevalence of diabetes mellitus and impaired glucose regulation in Spain: the Di@bet.es Study. Diabetologia 2012;55:88-93.
[25] Diabetes UK. Diabetes UK Facts and Stats; 2015.
[26] CDC Division of Diabetes Translation. Long-term trends in diagnosed diabetes; 20162016.
[27] Gregg EW, Boyle JP, Thompson TJ, Barker LE, Albright AL, Williamson DF. Modeling the impact of prevention policies on future diabetes prevalence in the United States: 2010-2030. Popul Health Metr 2013;11:18.
[28] Binder-Foucard F, Bossard N, Delafosse P, Belot A, Woronoff AS, Remontet L. Cancer incidence and mortality in France over the 1980-2012 period: solid tumors. Rev Epidemiol Sante Publique 2014;62:95-108.
[29] Bosetti C, Bianchi C, Negri E, Colombo M, La Vecchia C. Estimates of the incidence and prevalence of hepatocellular carcinoma in Italy in 2002 and projections for the years 2007 and 2012. Tumori 2009;95:23-27.
[30] AIOM-AIRTUM. I numeri del cancro in Italia 2015; 2015.
[31] Stroffolini T, Trevisani F, Pinzello G, Brunello F, Tommasini MA, lavarone M, et al. Changing aetiological factors of hepatocellular carcinoma and their potential impact on the effectiveness of surveillance. Dig Liver Dis 2011;43:875-880.
[32] Cancer Information Service. Cancer Statistics in Japan. Incidence (National estimates) 2016 [cited 2017 January 1]; Available from: http://ganjoho.jp/en/professional/statistics/table_download.html
[33] Cancer Research UK. Cancer Statistics for the UK. 2013 [cited 2016 September 16]; Available from: http://www.cancerresearchuk.org/health-professional/cancer-statistics
[34] SEER. SEER Stat Fact Sheets: Liver and Intrahepatic Bile Duct Cancer. 2016 August 10th 2016 [cited; April 2016:[Available from: http://seer.cancer.gov/statfacts/html/livibd.html
[35] Altekruse SF, Henley SJ, Cucinelli JE, McGlynn KA. Changing hepatocellular carcinoma incidence and liver cancer mortality rates in the United States. Am J Gastroenterol 2014;109:542-553.
[36] Dyson J, Jaques B, Chattopadyhay D, Lochan R, Graham J, Das D, et al. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J Hepatol 2014;60:110-117.
[37] Younossi ZM, Otgonsuren M, Henry L, Venkatesan C, Mishra A, Erario M, et al. Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009. Hepatology 2015;62:1723-1730.
[38] Wang H, Jiang W, Zhou Z, Long J, Li W, Fan ST. Liver transplantation in mainland China: the overview of CLTR 2011 annual scientific report. Hepatobiliary Surg Nutr 2013;2:188-197.
[39] Agence de la Biomédecine. Le rapport médical et scientifique du prélèvement et de la greffe en France. 2015 [cited 2016 September 16]; Available from: http://www.agence-biomedecine.fr/annexes/bilan2015/donnees/organes/05-foie/synthese.htm
[40] Eurotransplant. Statistics Report Library. 2016 [cited 2016 September 16]; Available from: http://statistics.eurotransplant.org/
[41] Sistema Informativo Trapianti. Attività di donazione al 31 Dicembre 2014; 2015.
[42] Sistema Informativo Trapianti. Registrazione della dichiarazione di volontà al momento del rilascio della carta d'identità - Aggiornamento al 2015; 2016.
[43] Umeshita K, Inomata Y, Furukawa H, Kasahara M, Kawasaki S, Kobayashi E, et al. Liver transplantation in Japan: Registry by the Japanese Liver Transplantation Society. Hepatol Res 2016;46:1171-1186.
[44] El Registro Español de Trasplante Hepático (RETH). Registro Español de Trasplante Hepático Memoria de Resultados 2014; 2015.
[45] NHS Blood and Transplant. Organ Donation and Transplantation Activity Report 2015/16; 2016.
[46] SEER. Surveillance, Epidemiology, and End Results (SEER) Program Research Data (19732013). April 2016 ed: National Cancer Institute; 2016.
[47] Williams R, Aspinall R, Bellis M, Camps-Walsh G, Cramp M, Dhawan A, et al. Addressing liver disease in the UK: a blueprint for attaining excellence in health care and reducing premature mortality from lifestyle issues of excess consumption of alcohol, obesity, and viral hepatitis. Lancet 2014;384:19531997.
[48] Wong RJ, Aguilar M, Cheung R, Perumpail RB, Harrison SA, Younossi ZM, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015;148:547-555.
[49] Fan JG, Farrell GC. Epidemiology of non-alcoholic fatty liver disease in China. J Hepatol 2009;50:204-210.
[50] Caballeria L, Pera G, Auladell MA, Toran P, Munoz L, Miranda D, et al. Prevalence and factors associated with the presence of nonalcoholic fatty liver disease in an adult population in Spain. EurJ GastroenterolHepatol 2010;22:24-32.
[51] Lazo M, Hernaez R, Eberhardt MS, Bonekamp S, Kamel I, Guallar E, et al. Prevalence of nonalcoholic fatty liver disease in the United States: the Third National Health and Nutrition Examination Survey, 1988-1994. AmJ Epidemiol 2013;178:38-45.
[52] United Nations.Department of Economic Social Affairs Population Division. World population prospects: The 2015 revision. New York: United Nations; 2016.
[53] Rahman RN, Ibdah JA. Nonalcoholic fatty liver disease without cirrhosis is an emergent and independent risk factor of hepatocellular carcinoma: A population based study. Hepatology 2012:241A.
[54] Sanyal AJ, Banas C, Sargeant C, Luketic VA, Sterling RK, Stravitz RT, et al. Similarities and differences in outcomes of cirrhosis due to nonalcoholic steatohepatitis and hepatitis C. Hepatology 2006;43:682-689.
[55] Ries L, Young G, Keel G, Eisner M, Lin Y, Horner M. SEER survival monograph: Cancer survival among adults: U.S. SEER program, 1988-2001, patient and tumor characteristics. Bethesda, MD: National Cancer Institute, SEER Program; 2007.
[56] Singh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of pairedbiopsy studies. Clin Gastroenterol Hepatol 2015;13:643-654.e641-649; quiz e639-640.
[57] Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007;45:846854.
[58] Child CG, Turcotte JG. Surgery and portal hypertension. Major Probl Clin Surg 1964;1:1-85.
[59] Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg 1973;60:646-649.
[60] Robert Koch Institute and the Association of Population-based Cancer Registries in Germany. Cancer in Germany 2009/2010. Berlin; 2014.
[61] Altekruse SF, Henley SJ, Cucinelli JE, McGlynn KA. Changing hepatocellular carcinoma incidence and liver cancer mortality rates in the United States. Am J Gastroenterol 2014;109:542-553.
[62] United Nations.Department of Economic Social Affairs Population Division. World urbanization prospects: The 2014 revision. New York: United Nations; 2016.
[63] Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global Epidemiology of NonAlcoholic Fatty Liver Disease-Meta-Analytic Assessment of Prevalence, Incidence and Outcomes. Hepatology 2015.
[64] Portillo-Sanchez P, Bril F, Maximos M, Lomonaco R, Biernacki D, Orsak B, et al. High Prevalence of Nonalcoholic Fatty Liver Disease in Patients With Type 2 Diabetes Mellitus and Normal Plasma Aminotransferase Levels. J Clin Endocrinol Metab 2015;100:2231-2238.

